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Abstract 

In macroecology, body sizes in animal assemblages have traditionally been 

investigated from two perspectives: body size frequency distributions (BSFDs) and 

geographic variation in body size. Neither of these has been investigated for the 

South African avifauna; one objective of this study was therefore to explore these. 

The regional BSFD of South African birds was found to be right-skewed, as is usually 

found for assemblages at large scales. This suggests that mechanisms driving the 

shape of BSFDs elsewhere are also acting for the South African avifauna. The 

Southern African Bird Atlas database was used to calculate median body sizes of 

avian assemblages in quarter degree grid cells. Median sizes were then used to 

investigate geographic variation in body size across the country. Of the mechanisms 

previously proposed to explain geographic variation in body size, only the starvation 

resistance hypothesis, which states that large size confers starvation resistance 

during seasonally resource shortages, was supported, though weakly, as median 

body size decreased with increasing productivity. The ability of null models to predict 

the variation in body size was subsequently explored, and it was found that much of 

the variation in median size of assemblages could be predicted by randomly drawing 

species from the regional BSFD, particularly at high species richness values. This 

provides empirical support for a continuum between the dominance of niche-based 

processes (where assemblages are a product of organisms' response to their 

environment) at low richness and neutral processes (where organisms assemble at 

random) at higher richness. In addition, it emphasizes the need to consider null 

expectations in investigations of the geographic variation in size. The importance of 

the regional BSFD and species richness for body sizes of local assemblages is 

highlighted. 
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Body size is one of several life history and community characteristics of animals 

that may be affected by anthropogenic disturbance to the environment. World-wide, 

landscapes are increasingly being altered by people, though few studies have 

investigated the effect of such disturbances on the avifauna of South Africa. The 

consequence of land-use changes on avian assemblages was therefore assessed in 

three South African regions which experience different environmental conditions and 

are threatened by different land-use changes. Birds were recorded in transects in 

undisturbed protected areas and the disturbed landscape outside the protected areas 

in the three regions. The effect of land-use change on avian assemblages varied 

between regions, and avian assemblages were most affected where disturbance was 

most intense. While species richness was not affected in a consistent manner across 

regions, species composition always changed in response to disturbance. This led to 

higher regional species richness as natural and disturbed areas supported different 

avian assemblages, and heterogeneity of assemblages between vegetation types 

usually became less pronounced in disturbed areas. Functional diversity was also 

compromised by land-use changes: the relative proportion of feeding guilds was 

altered, indicating that changes in food availability affect composition of 

assemblages. In contrast, mean body size of birds did not change in disturbed 

landscapes, which suggests that habitat architecture has little effect on body size. 

This study therefore highlights the importance of natural and protected areas for 

conserving species, assemblages and ecosystem processes. 
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Opsomming 

In makro-ekologie is liggaamsgrootte van diergemeenskappe tradisioneel uit twee 

oogpunte ondersoek: liggaamsgrootte-frekwensieverspreidings (LGFVs) en 

geografiese variasie in liggaamsgrootte. Nie een van hierdie twee is al vir Suid­

Afrikaanse voels bepaal nie, en dit is dus 'n doel van hierdie studie om dit te 

ondersoek. Daar is gevind dat die land-wye LGFV 'n patroon van skuins na regs 

gewys het, soos gewwonlik die geval is vir diergemeenskappe op groat skaal. 

Prosesse wat die LGFV elders bepaal, is dus waarskynlik ook belangrik vir die LGFV 

van Suid-Afrikaanse voels. Die Suider Afrikaanse Voel Atlas is gebruik om die 

mediaan van die liggaamsgrootte van voelspesies in elke 15' x 15' vierkant te bepaal. 

Die waardes is gebruik om die geografiese variasie in liggaamsgrootte oor die hele 

land te ondersoek. Daar is al verskeie meganismes voorgestel wat geografiese 

variasie in liggaamsgrootte kan be"invloed. Hier is ondersteuning, alhoewel swak, 

gevind (liggaamsgrootte neem toe soos produktiwiteit afneem) vir die verhongering­

weerstands hipotese, wat se dat groat liggaamsgrootte weerstand teen verhongering 

bied tydens tydperke van seisoenale tekortkominge. Daar is ook ondersoek hoe nul­

modelle variasie in liggaamsgrootte kan voorspel, en daar is gevind dat baie van die 

variasie in liggaamsgrootte voorspel kon word deur spesies willekeurig vanuit die 

land-wye LGFV te kies. Dit was veral die geval vir gemeenskappe met hoe 

spesierykheid. Die resultate verskaf empiriese steun vir 'n kontinuum tussen nis­

gebaseerde prosesse (waar gemeenskappe ontstaan as gevolg van die manier hoe 

organismes op hulle omgewing reageer) wat by lae spesierykheid domineer, en 

neutrale prosesse (waar gemeenskappe willekeurig saamgestel word) wat by hoer 

spesierykheid domineer. Dit beklemtoon ook die noodsaakliheid van nul-modelle in 

die ondersoek van geografiese variasie in liggaamsgrootte, sowel as die 
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belangrikheid van spesierykheid eri die grootskaalse LGFV vir liggaamsgroottes in 

plaaslike gemeenskappe. 

Liggaamsgrootte en ander kenmerke van dieregemeenskappe kan be'fnvloed word 

deur menslike steuringe aan die omgewing. Landskappe word wereldwyd al hoe 

meer deur mense verander. Daar bestaan tans min studies wat die invloed van 

hierdie antropogeniese steuringe op voels in Suid-Afrika bestudeer het. Die gevolge 

van landskapveranderinge vir voelgemeenskappe in drie Suid-Afrikaanse streke wat 

van mekaar verskil op grand van die omgewing en van landskapveranderinge is dus 

hier ondersoek. Voels is getel in natuurlike bewaarde gebiede en in versteurde areas 

buite die bewaringsgebiede. Die invloed van landskapveranderinge op 

voelgemeenskappe was verskillend in die drie streke, en die voelgemeenskappe is 

meeste geaffekter waar die landskapsteuring die meeste intens was. Terwyl 

spesierykheid nie op 'n konsekwente manier deur landskapveranderinge be'invloed is 

nie, het die samestelling van die gemeenskappe altyd verander. Die gemeenskappe 

in natuurlike en versteurde gebiede besit dus verskillende spesiesamestellings, wat 

tot hoer spesierykheid in die streke lei. Heterogeniteit in voelgemeenskappe tussen 

verskillende soorte vegetasie was meestal ook minder in versteurde as in natuurlike 

gebiede. Die funksionele diversiteit van voelgemeenskappe word boonop bedreig 

deur landskapveranderinge: in versteurde gebiede het die relatiewe proporsies van 

voedinggildes verander, wat aandui dat voedselbeskikbaarheid die samestelling van 

gemeenskappe affekteer, maar die gemiddelde grootte van voels het nie verander 

nie; die argitektuur van die omgewing het dus min invloed op die voels se . 

liggaamsgrootte. Die studie beklemtoon dus dat ongesteurde en bewaarde gebiede 

belangrik is om spesies, gemeenskappe en ekosisteemprosese te bewaar. 
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Chapter 1 

General Introduction 

The importance of protected areas and the effect of land-use changes 

Habitat destruction and transformation are among the largest threats faced by 

birds (e.g. Stratford and Stouffer 1999, Castelletta et al. 2000, Wardell-Johnson and 

Williams 2000, Dean et al. 2002, Gaston et al. 2003, Birdlife International 2004). 

Given current trends in land-use practices and human population growth, there is 

ample reason to be concerned about the world's avifauna (Vitousek et al. 1997, 

Balmford et al. 2001, McKee et al. 2003, Birdlife International 2004, Gaston 2005, 

Davies et al. 2006). In the last three centuries, areas with the highest concentrations 

of endemic bird species have been disproportionately targeted for agriculture 

(Scharlemann et al. 2004a), the land use practice posing the largest threat to birds 

(Scharlemann et al. 2004b). In addition, the majority of the world's threatened 

species are found in developing countries (Scharlemann et al. 2004c), which are 

generally those that possess inadequate resources and funds to invest in 

conservation (Brooks and Thompson 2001, Birdlife International 2004). In South 

Africa (Chown et al. 2003, Evans et al. 2006b), as elsewhere in Africa (Balmford et 

al. 2001, Burgess et al. 2007) and the world (Gaston 2005), a positive relationship 

between avian species richness and human population densities exists. Given that 

demographic pressures constitute one of the most serious threats to the world's biota 

(Birdlife International 2004, Davies et al. 2006), the fact that humans have 

aggregated in areas that also support the highest diversity of birds is alarming. 

Globally, agriculture is the main source of landscape transformation (Vitousek et 

al. 1997, Birdlife International 2004, Foley et al. 2005). South Africa follows this 

world-wide trend, with the main sources of landscape transformation, in decreasing 
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order of importance, being cultivation, afforestation and urbanization (Fairbanks et al. 

2000, Biggs and Scholes 2002). While grazing does not directly transform 

landscapes per se, it can have detrimental affects on the environment (sometimes 

resulting in vegetation changes) and the avitauna inhabiting it (e.g. Macdonald 1989, 

Herremans 1998, Hoffman et al. 1999, Zalba and Cozzani 2004). Much of South 

Africa's landscape is used for livestock grazing, the extent of which has been 

estimated to be about two-thirds of South Africa's surface (Macdonald 1989). Dense 

stands of invasive plants have also modified South Africa's environment considerably 

(see e.g. Rouget et al. 2003, Latimer et al. 2004, Richardson and van Wilgen 2004), 

and may pose a threat to avian diversity (Dean et al. 2002, Birdlife International 

2004, Flanders et al. 2006, Ortega et al. 2006). 

Few studies have assessed the effects of landscape transformation or land-use 

changes on South African avifauna at local scales (Armstrong and Vanhensbergen 

1994, Little and Crowe 1994, Jansen et al. 1999, Dean et al. 2002, Mangnall and 

Crowe 2003, Schwarzenberger and Dean 2003, Little et al. 2005, Wethered and 

Lawes 2005), and there is a paucity of studies that compares the effects of land use 

on avifauna at small and large scales (Fairbanks 2004). At regional (quarter-degree 

grid) scale, Van Rensburg et al. (2004b) established that boundaries between 

transformed and untransformed landscapes are not associated with spatial turnover 

of avifauna. At this same scale, areas with the greatest degree of transformation or 

human disturbance tend to possess the lowest evenness and, contrary to 

expectations, the highest diversity of avifauna (Fairbanks et al. 2002, Fairbanks 

2004). The increase in diversity may be a scaling effect. At small scales, heavily 

transformed and untransformed areas may support different bird assemblages. At the 

larger, quarter-degree grid cell-scale, heavily transformed areas which are 

interspersed with pockets of natural vegetation are classified as transformed, yet they 
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support birds associated with both transformed and natural landscapes (Chown et al. 

2003 , Fairbanks 2004). 

Bio me 

.. Forest 

Fynbos 

.. Grassland 

.. Nama Karoo 

.. Savanna 

.. Succulent Karoo 

Thicket 

Jonkershoek Nature Reserve J 

Figure 1. The positions of Jonkershoek Nature Reserve, the Karoo National Park 

and Tembe Elephant Park and the biomes (after Low and Rebelo 1996) in which they 

are located. 

Because species are increasingly being threatened by changes in land use, 

interest has grown in the success of untransformed, and , especially, protected areas 

at conserving ecosystems and the organisms inhabiting them (Siegfried 1989, 

Howard et al. 1998, Margules and Pressey 2000 , Balmford et al. 2001 , Bruner et al. 

2001 , Lovejoy 2006) . While parks were historically not necessarily selected to 
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maximise the species conserved and have, in some instances, failed to conserve a 

representative proportion of the biodiversity of an area (Siegfried 1989, Wright and 

Mattson 1996, Margules and Pressey 2000, Yip et al. 2004), they have been valuable 

in maintaining viable populations of several species in areas where the landscape is 

otherwise much transformed or disturbed (Brooks 1999, Sanchez-Azofeifa et al. 

1999, Bruner et al. 2001, Sanchez-Azofeifa et al. 2003, Evans et al. 2006a). Evans et 

al. (2006a) used the Southern African Bird Atlas Project (SABAP) data (Harrison et 

al. 1997) to assess how well South Africa's protected areas perform in conserving 

avian species richness. After controlling for NOVI (Normalized Difference Vegetation 

Index - a measure of productivity, Kerr and Ostrovsky 2003), percentage protected 

area was positively related to species richness of all species and of threatened 

species, suggesting that protected areas are important in preserving species 

richness. 

Findings by Fairbanks (2002, 2004) and van Rensburg et al. (2004b) are contrary 

to those of Evans et al. (2006a): the former found that anthropogenic activities had 

little or a positive effect on avian species richness, while the latter suggested that 

richness was adversely affected by human activities. It is thus necessary to examine 

how land-use changes and protected areas affect the South African avifauna at 

smaller spatial scales (Blackburn and Gaston 2002, Cushman and McGarigal 2004). 

Therefore, the first major aim of this study is to ascertain how essential three very 

different reserves (Fig. 1) are for the protection of the avifauna of the regions within 

which they are embedded. One (Jonkershoek Nature Reserve) is situated in a winter 

rainfall, high productivity area, another (Karoo National Park) in a summer rainfall, 

low productivity area, and the third (Tembe Elephant Park) in a summer rainfall, high 

productivity region. The three regions also differ from one another in terms of the 

land-use changes that have taken place outside the boundaries of the reserve. 
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Outside Jonkershoek, Pinus plantations dominate; cattle, sheep and game farms 

(often characterized by overgrazing in the latter case) surround the Karoo National 

Park. Areas outside Tembe Elephant Park have mainly been transformed by 

subsistence farming. 

Avian body size 

Land-use change is likely not only to influence species richness and abundance, 

but also the body size of birds in local assemblages (Gaston and Blackburn 1995, 

Cardillo and Brom ham 2001 ). To comprehend the full extent of such changes and 

what might be responsible for them, it is necessary to understand what is driving 

body size patterns more broadly in the region. Therefore, a second major aim of this 

study is to investigate mechanisms that may be affecting body sizes of assemblages 

of South African birds. 

Body size is one of the best-studied attributes of animals, and it influences or is 

influenced by processes at all levels of organisation (Peters 1983, Schmidt-Nielsen 

1984, Blackburn and Gaston 1994, Koztowski and Weiner 1997, Smith et al. 2004). 

In addition to affecting the biology of organisms, e.g. metabolic rate, transport 

mechanisms, organ design and functioning, and locomotion (Peters 1983, Schmidt­

Nielsen 1984), body size also influences the manner in which organisms interact with 

their environment, perhaps most notably their energy consumption (Brown and 

Maurer 1989, Currie and Fritz 1993, Blackburn and Gaston 2001 ). Moreover, 

community characteristics such as abundance and diversity are also affected by 

body size (Griffiths 1986, Cardillo 2002). Indeed, it has been proposed that life 

history attributes, population interactions and ecosystem processes can all be 

quantitatively predicted from the 0.75 size scaling exponent of metabolic rate 

(Metabolic Theory of Ecology [MTE], Brown et al. 2004) - though the MTE has been 
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criticized on several grounds (see Cyr and Walker 2004, Tilman et al. 2004, Clarke 

2006, van der Meer 2006). 

Over short time periods, size-dependent behavioural responses or extinction in 

reaction to environmental change may affect the body sizes of species in 

assemblages. In terrestrial vertebrates, large species are likely to be the first species 

to disappear when anthropogenic pressures arise (Gaston and Blackburn 1995, 

McKinney 1997, Cardillo and Bramham 2001, Gaston and Evans 2004), although it 

has been reported that large birds are mainly threatened by human-related hunting 

and predation, while habitat destruction is posing the greatest threat to small species 

(Owens and Bennett 2000). Unfortunately, size-selective disappearance of species 

does not only affect these species, but may result in cascading effects on other 

components of communities as food web construction is perturbed (Woodward et al. 

2005). 

Over longer time periods, body sizes may evolve in response to the conditions 

species experience (McKinney 1990). Larger animals generally possess a smaller 

surface-area volume ratio, through which heat or water is lost and gained slower than 

for large animals (Schmidt-Nielsen 1984 ). It has therefore long been suggested that 

the size of animals, especially homeotherms, evolves in response to the climatic 

conditions they experience (Bergmann 1847, James 1970, Ashton et al. 2000). 

Selection on body size also takes place as a consequence of the quality and 

predictability of food supplies and extent of seasonal variation (McKinney 1990). In 

addition, avian body size may be associated with habitat structure. In benthic 

ecosystems, the correlation between habitat architecture and body sizes has been 

relatively well explored (Robson et al. 2005), while the relationship between body 

size and habitat preference in vertebrates has been poorly researched. In 

Mediterranean woods, average body mass of birds increased in thinned forest stands 
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(De la Montana et al. 2006). Body mass frequency distributions (Bakker and Kelt 

2000), gaps in distributions (Holling 1992, but see Siemann and Brown 1999, Leaper 

et al. 2001) and mean sizes (Telleria and Carrascal 1994, Polo and Carrascal 1999) 

of organisms living in differently structured environments have been explained by 

environmental architecture. However, based on analyses conducted at the biome 

scale, Siemann and Brown (1999) contested the idea that vegetation structure affects 

body size structure, and suggested that instead size is influenced by continental­

scale processes. 

Species-body size frequency distributions are one of a number of measures 

related to animal body size that have enjoyed considerable attention in the literature 

(e.g. Lindsey 1966, van Valen 1972, May 1978, Brown and Maurer 1989, Brown and 

Nicolette 1991, Chown and Gaston 1997, Polo and Carrascal 1999, Bakker and Kelt 

2000, Koztowski and Gawelczyk 2002, Smith et al. 2004, Allen et al. 2006). They 

quantify how many species of different body size classes comprise an assemblage. 

The shape of the species-body size distribution seems to depend on the scale at 

which studies are conducted. Analyses of a wide variety of taxa have indicated that, 

at global or continental scales, body size distributions are right-skewed, i.e. most 

species are small, but not of the smallest body size class (May 1978, 1988, Brown 

and Maurer 1989, Blackburn and Gaston 1994, Gaston and Blackburn 2000, Smith et 

al. 2004, Storch and Gaston 2004). At regional or local spatial scales, however, the 

distribution of species-body size is very variable. In many cases (see Arita and 

Figueroa 1999, Marquet and Cofre 1999, Bakker and Kelt 2000 for exceptions) they 

differ from what would be expected if the species were a random draw from the 

broader-scale species pool (Gaston and Blackburn 2000). While some local- or 

regional-scale distributions simply exhibit less right skew than larger scale 

distributions (Bakker and Kelt 2000, Cardillo 2002), others show no modality (Brown 
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and Nicoletta 1991, Bakker and Kelt 2000, Aava 2001 ), are bimodal (Griffiths 1986, 

Gaston and Blackburn 2000), left-skewed (Bakker and Kelt 2000), or unimodal 

without skew (Maurer et al. 1992, Arita and Figueroa 1999, Bakker and Kelt 2000). 

Because there is no consistent manner in which species-body size distributions 

change when examined at increasingly smaller scales, it is difficult to determine what 

generates these changes (Gaston and Blackburn 2000), although some hypotheses 

have been proposed. Brown and Nicoletta (1991 ), for example, speculated about the 

cause of the dissimilarities in body size distributions they obtained at different scales 

(right-skewed at continental-scale, uniform at patch-scale and intermediate at biome­

scale). They suggested that three mechanisms act to generate these body size 

distributions. 1) Competition between similar-sized organisms prevents them from co­

existing in the same local environment. Body size distributions at small scales are 

thus more uniform than expected by chance. 2) The likelihood of extinction is great 

for large species occupying small ranges: because large species have high energy 

requirements, they forage more extensively and thus occur at low densities. 3) 

Animals of the modal size class have undergone specialization. The animals in these 

size classes have small range sizes and exhibit high species turnover, which, the 

authors propose, is a factor of size-specific constraints on physiology and energetics: 

smaller organisms possess higher mass-specific nutritional demands and require 

better quality food than larger animals due to their lower mass-specific gut capacity 

and gut retention time. Therefore, small animals are required to specialise on high 

quality food, which constrains them to forage only within a small area where the food 

they have specialized on is located. The mode of the species body size distributions 

is always situated at small size categories at a regional scale, while at a local scale 

there is little overlap of ranges of specialized species, resulting in a uniform size 

distribution. One of the criticisms of this model is that distributions at smaller spatial 
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scales are not always different from what would be expected from a random draw 

from a larger species pool (Arita and Figueroa 1999, Marquet and Cofre 1999, 

Bakker and Kelt 2000). In addition, the model fails to explain the decrease in the 

frequency of the smallest body size values (Brown and Nicolette 1991 ). 

Several other hypotheses have been proposed to explain right-skewed body size 

frequency distributions (Gaston and Blackburn 2000, Allen et al. 2006). Brown et al. 

(1993) suggested that 'reproductive power', the rate at which resources are turned 

into reproduction, drives body size evolution, and that an optimum body mass exists 

at which reproductive power is maximized. It is this body mass which is the modal 

size in body size frequency distributions. This model has been criticized on several 

grounds (see Blackburn and Gaston 1996, Chown and Gaston 1997, Gaston and 

Blackburn 2000, Koztowski 2002), including the absence of the effect of mortality on 

life history evolution (Koztowski and Weiner 1997), the questionability of the 

existence of an optimum size (Blackburn and Gaston 1996, Gaston and Blackburn 

2000), and the inability to predict the shape of the distribution of sizes around the so-

called optimum (Blackburn and Gaston 1996). 

By contrast, Koztowski and colleagues (Koztowski and Weiner 1997, Koztowski 

and Gawelczyk 2002) proposed that a range of optimum body sizes exists. Optimal 

size depends not only on energy requirements for investing in growth and 

reproduction, but also on size-dependent mortality. A trade-off exists between 1) 

being small, investing little energy into growth and much energy into reproduction, 

but possessing high mortality, and 2) investing much energy into growth, reproducing 

less frequently, but possessing lower mortality. The variation that exists in organisms' 

energy requirements and mortality rates generates a right-skewed species-body size 

distribution in large assemblages, and, as the variation in body size decreases, 

distributions become more log-normal (Koztowski and Weiner 1997, Koztowski and 
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Gawelczyk 2002). For tests of this (and the previous) model, assumptions are made 

about the values of constants used in the simulations, which may have affected the 

results obtained. A further problem with model is the lack of explanation offered for 

size distributions of small assemblages, which are frequently non-random samples of 

distributions at larger scales (Gaston and Blackburn 2000). 

The fractal nature of the environment, providing more space for smaller organisms 

to inhabit and allowing more small than large species to co-exist (Hutchinson and 

MacArthur 1959, Morse et al. 1985), size-biased extinctions (Maurer et al. 1992), and 

constraint on the evolution of small species (McKinney 1990, McShea 1994) have 

also been implicated in the development of right-skewed body size frequency 

distributions, although these hypotheses have also been questioned on a variety of 

grounds (Maurer 1998, Gaston and Blackburn 2000, Koztowski and Gawelczyk 2002, 

Allen et al. 2006). 

In the second chapter I therefore investigate the factors that may be influencing 

median size and, in less detail, other size variables of bird assemblages in South 

Africa at the regional scale. Initially, only the effects of environmental factors which 

have traditionally been thought to be major determinants of body size (e.g. Bergmann 

1847, James 1970, Lindstedt and Boyce 1985, Blackburn et al. 1999, Blackburn and 

Hawkins 2004, Jones et al. 2005) on median size are investigated. Subsequently, the 

ability of null models to predict body size patterns is examined. This provides an 

indication of the contribution of the regional body size frequency distribution to the 

local size frequency distribution. 

Birds and Landscapes 

South Africa has shown to be a useful location for testing ideas in ecology. In 

addition to the above-mentioned studies (Fairbanks et al. 2002, Fairbanks 2004, 
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Evans et al. 2006a), several other investigations of South Africa's avifauna have 

been undertaken to evaluate ideas or patterns that have relevance for other regions 

or other taxa. For example, the effectiveness of data from different levels of sampling 

intensity for reserve selection based on complementarity was assessed using the 

South African avifauna (Gaston and Rodrigues 2003) - reserve selection was found 

to be effective even when sampling intensity was poor. In light of the fact that 

conservation prioritization is frequently based on certain groups of species or taxa, 

Bonn et al. (2002) assessed the efficacy of endemic and threatened for predicting the 

biodiversity of all birds. Although areas selected on the basis of endemic or 

threatened species perform better than areas selected at random, they fail to capture 

some patterns of overall biodiversity. The effects of expected climate change on the 

geographic ranges of several species, including birds, have been investigated with 

climate envelope models, which predict that a general eastward shift of species 

ranges (Erasmus et al. 2002), but also range contractions (Simmons et al. 2004) will 

occur. A further study found that selected environmental variables, particularly 

temperature seasonality and variability, explained a considerable amount of the 

variation in the distribution and abundance of bird species in the arid Karoo of South 

Africa (Githaiga-Mwicigi et al. 2002). In a similar vein, Van Rensburg et al. (2002) 

investigated the contribution of several climatic variables and habitat heterogeneity to 

the variability in avian species richness at different spatial scales. They concluded 

that richness is probably a function of several variables, the importance of which 

varies at different spatial scales. In addition, a positive relationship between avian 

species richness and human population density has been observed (Chown et al. 

2003), though change in population size over a five-year period was unrelated to 

avian species richness (Evans et al. 2006b). Based on data of the South African 
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avifauna, methods to estimate bird abundances (Kemp et al. 2001) and predicting 

species occurrence (Osborne and Tigar 1992) have also been developed. 

It has been suggested that vegetation is the major driver of avian distributions in 

South Africa (Winterbottom 1978, van Rensburg et al. 2004b), and vicariance events 

have had little effect on the distribution of the South African avifauna (Hockey et al. 

2005). South Africa has indeed experienced a relatively stable geological and 

climatic history (Hockey et al. 2005). However, the current climate and vegetation 

vary considerably across the country (see Figure 1, Rutherford and Westfall 1986, 

Low and Rebelo 1996, Schulze 1997), and much of the distribution of the vegetation 

is determined by climatic conditions, particularly rainfall seasonality and summer 

aridity (Rutherford and Westfall 1986). The central and western parts of the region 

receive little and unpredictable rainfall and the vegetation lacks structural complexity, 

while the eastern areas of the country predominantly comprise grasslands and 

savannas (Rutherford and Westfall 1986, Low and Rebelo 1996, Schulze 1997). The 

Mediterranean-type Fynbos biome, dominated by shrubs, is mainly situated in the 

south-western parts of the country, where it receives winter rainfall, and thus 

experience hot, dry summers (Cowling and Richardson 1995, Low and Rebelo 1996). 

Some small forest pockets are found in the southern and eastern regions, and 

subtropical thicket, which is dominated by succulent and sclerophyllous trees and 

lacks a grassy understory, occupies parts of the southern and eastern parts of the 

country (Low and Rebelo 1996). 

Within the context of their environment, birds perform a variety of ecological 

functions ($ekercioglu 2006). They act as pollinators (Anderson et al. 2005, Ortega­

Olivencia et al. 2005, Wester and Clar.ien-Bockhoff 2006) and seed dispersers (Bas 

et al. 2006, Dennis and Westcott 2006, McEuen and Curran 2006), and perform vital 

roles in nutrient cycling (Lindeboom 1984, Post et al. 1998). They form important 
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links between trophic processes ($ekercioglu 2006) - e.g. raptors as top predators 

(Korpimaki and Norrdahl 1998, Mitani et al. 2001 ), insectivores as regulators of insect 

populations (Mols and Visser 2002, Van Bael and Brawn 2005) and scavengers as 

recyclers of carcasses (Dean and Milton 2003, Devault et al. 2003). Some bird 

species also function as ecosystem engineers, generating biotic or abiotic 

modifications in their environment which affect the resource availability of other 

organisms (Casas-Criville and Valera 2005, Sinclair and Chown 2006). 

These and other factors make birds popular environmental indicators: they are 

also an easily identified and well-studied taxon, and their mobility enables 

comparative studies to be conducted at relatively large scales (Furness et al. 1993, 

but see Hilty and Merenlender 2000, Moore et al. 2003). Multi-species studies are 

especially effective at establishing how communities are impacted by their 

environment (Hilty and Merenlender 2000), and it has been predicted that bird 

declines will have significant ecological repercussions due to the loss of ecological 

functions (Bond 1994, $ekercioglu et al. 2004). 

For the southern African avifauna, the Southern African Bird Atlas (Harrison et al. 

1997) provides detailed information about the distribution of the region's avifauna. It 

was compiled from data collected from 1987-1992. Voluntary observers used score 

cards to record the bird species they detected within a month in quarter-degree grid 

cells of South Africa. Several large-scale studies have been conducted using the 

SABAP data (e.g. Osborne and Tigar 1992, Berruti et al. 1994, Allan et al. 1997, 

Wessels et al. 2000, Bonn et al. 2002, Erasmus et al. 2002, Fairbanks et al. 2002, 

Githaiga-Mwicigi et al. 2002, van Rensburg et al. 2002, Chown et al. 2003, Gaston 

and Rodrigues 2003, Fairbanks 2004, van Rensburg et al. 2004a, van Rensburg et 

al. 2004b, Evans et al. 2006a, Evans et al. 2006b). Given all these factors, the South 

African avifauna makes an appropriate taxon to examine the subjects set out above. 
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Chapter 2 

Geographic variation in body size of the South African 

avifauna, and the use of deterministic and neutral models 

in assessing this variation 

Introduction 

Body size variation has traditionally been investigated from two perspectives: body 

size frequency distributions (BSFDs) and geographic variation in body size. At large 

geographic scales, BSFDs of terrestrial vertebrates tend to be right log-skewed 

(Brown and Nicoletta 1991, Gaston and Blackburn 1995, Marquet and Cofre 1999, 

Gaston and Blackburn 2000), while at smaller spatial scales they are more variable, 

ranging from right-skewed to log-normal and bimodal (Brown and Nicoletta 1991, 

Maurer et al. 1992, Arita and Figueroa 1999, Marquet and Cofre 1999, Bakker and 

Kelt 2000, Gaston and Blackburn 2000, Aava 2001 ). BSFDs also become more 

variable at lower taxonomic levels (Chown and Gaston 1997, Maurer 1998, 

Koz+owski and Gawelczyk 2002). Several studies have investigated how well random 

draws from regional species body size distributions predict patterns in local BSFDs 

(Brown and Nicoletta 1991, Arita and Figueroa 1999, Marquet and Cofre 1999, 

Bakker and Kelt 2000). Whilst BSFDs of some assemblages can be predicted by a 

random draw from the regional body size distribution (Brown and Nicoletta 1991, 

Arita and Figueroa 1999, Marquet and Cofre 1999), in other assemblages BSFDs are 

less right-skewed than expected from regional distributions (Brown and Nicoletta 

1991, Arita and Figueroa 1999, Marquet and Cofre 1999, Bakker and Kelt 2000). 

Geographic variation in body size is typically investigated by exploring the 

existence and form of such variation and then by testing the underlying mechanisms 
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that have been proposed to explain it. Although the identification of geographic 

patterns in body size and the subsequent exploration of mechanisms underlying that 

variation are interlinked, as are pattern and process investigations in all 

macroecological investigations, distinguishing the two remains important (Lomolino et 

al. 2006), especially in the context of spatial variation in body size (Blackburn et al. 

1999). Bergmann's rule (Bergmann 1847), or the increase of body size with latitude, 

is probably the most commonly tested ecological 'rule' relating body size to 

geographic variation in the environment (see Blackburn et al. 1999, Ashton et al. 

2000, Meiri and Dayan 2003). Debate about the precise definition of the rule is 

common for several reasons. A failure to distinguish pattern from process is one of 

the most significant causes of the debate (James 1970, Blackburn et al. 1999). 

Bergmann attributed the latitudinal body size cline to a decrease of temperature with 

increasing body size. Some authors have thus interpreted Bergmann's rule as an 

increase in body size with decreasing temperature (Wigginton and Dobson 1999, 

Ashton et al. 2000, Freckleton et al. 2003, Meiri and Dayan 2003, Rodriguez et al. 

2006) , which really describes one potential mechanism underlying the pattern. 

Another source of contention surrounding Bergmann's rule is the taxonomic level at 

which latitudinal body size variation is measured (James 1970, Blackburn et al. 

1999). Although Bergmann was referring to interspecific differences in body size 

between closely related species when he formulated his hypothesis (James 1970), 

tests of latitudinal body size clines have been extended to various other taxonomic 

levels (see Blackburn et al. 1999 for a discussion thereof). 

In terms of a mechanistic explanation for the interspecific increase of size with 

latitude, Bergmann (184 7) suggested that animals were larger at high latitudes to 

prevent heat loss in these cold areas (heat conservation hypothesis). Several 

alternative biological hypotheses have subsequently been proposed: small size is 
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favoured in hot, humid environments to facilitate evaporative cooling (evaporative 

cooling hypothesis, James 1970); more large species have managed to colonize 

areas that were previously glaciated/inaccessible because they have better dispersal 

capabilities over greater distances (glaciation hypothesis, Blackburn and Hawkins 

2004); large body size confers starvation resistance in environments that experience 

seasonal resource shortages (starvation resistance hypothesis, Rosenzweig 1968, 

Lindstedt and Boyce 1985). Given suggestions that pattern should be separated from 

process during investigations of Bergmann's rule, many studies have recently 

adopted such an approach. First, a pattern is examined, often from a latitudinal 

perspective (Rosenzweig 1968, McNab 1971, Cushman et al. 1993, Blackburn and 

Gaston 1996b, Ashton and Feldman 2003, Jones et al. 2005), or, especially more 

recently, in two dimensions (James 1970, Wigginton and Dobson 1999, Blackburn 

and Ruggiero 2001, Blackburn and Hawkins 2004, Meiri et al. 2005, Olalla-Tarraga et 

al. 2006), with maps of spatial variation being identified as useful for interpretation of 

the patterns (Ruggiero and Hawkins 2006). Thereafter, if spatial variation is 

significant (Blackburn and Gaston 2006), which typically means an increase of body 

size with latitude, the mechanisms underlying such variation are investigated. 

Usually, the percentage variation in body size explained by one or more 

environmental variable that relates to the hypotheses being tested is determined, 

using either univariate methods (Zeveloff and Boyce 1988, Blackburn and Gaston 

1996b, Blackburn and Hawkins 2004, Olalla-Tarraga et al. 2006, Rodriguez et al. 

2006) or a multivariate model-selection process, such as minimum adequate 

regression models, which consider the model explaining most of the variation of the 

dependent variable (Zeveloff and Boyce 1988, Blackburn and Hawkins 2004, Olalla­

Tarraga et al. 2006, Rodriguez et al. 2006). The variable(s) explaining most of the 
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variation are then assumed to be indicators of the primary mechanism underlying the 

pattern observed. 

However, little has been done to assess how much of the geographic variation in 

local body size is explained by sampling from the regional body size frequency 

distribution. If BSFDs of local assemblages represent a random sample of a regional 

frequency distribution, as has been shown in several studies (Arita and Figueroa 

1999, Marquet and Cofre 1999, Blackburn and Gaston 2001 ), geographic variation in 

body sizes of assemblages might be a consequence of random sampling at various 

species richness values. Although such a sampling effect has been poorly explored 

in the literature (Cardillo 2002, Rodriguez et al. 2006), it has been suggested that 

variation in biological traits such as body size should be well predicted by random 

sampling (neutrality, sensu Hubbell 1997, 2001) at higher species richness as all 

available niches become occupied (Gravel et al. 2006, Holt 2006, Scheffer and van 

Nes 2006). Moreover, as richness increases and approaches the overall richness of 

the regional distribution, possible values of body size become increasingly 

constrained as they tend towards the size statistic of the regional BSFD (Cardillo 

2002). If this is not taken into consideration when examining the extent to which 

variation in parameters such as mean body size can be predicted by environmental 

predictors, relationships between size and the environment may be detected merely 

as a feature of a relationship between the environment and species richness. Indeed, 

much of the variation in species richness is typically explained by the same 

environmental variables that are thought to influence body size variation (Blackburn 

and Gaston 1996a, Chown and Gaston 1999, van Rensburg et al. 2002, Bailey et al. 

2004, Bonn et al. 2004, Evans et al. 2005). 
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MAX MO 
10.00 - 16.71 
16.72 - 20.31 

- 20.32- 22.18 
- 22.19- 24.16 
- 24.17 - 28.42 

PPT 
26.85 - 286. 72 

- 286.73- 473.82 

- 473.83 - 648.91 
- 648.92- 847.53 
-847.54- 1417.71 

• 

(a) 

(c) 

MINMO 
-0.66- 7.83 
7.84 - 9.71 

- 9.72-11 .53 
- 11 .54-14.25 
- 14.26- 18.10 

f1NDVI 
0.00-0.04 

- 0.05-0.10 
- 0.11 - 0.16 
- 0.17 -0.23 
.0.24-0.34 

(b) 

(d) 

Figure 1. (a) Maximum monthly temperatures (°C) of the hottest months of the year, 

(b) minimum monthly temperatures (°C) of the coldest months of the year, (c) annual 

precipitation (mm), and (d) the absolute difference between the January and July 

normalized difference vegetation indices across South Africa and Lesotho at quarter 

degree grid cell-resolution . Only grid cells used in the study are shown . 
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Therefore, my aims here are to 

1. Investigate the species body size frequency distribution of the South African 

avifauna. Although regional-scale spatial variability of many aspects of this 

group has been investigated (Harrison and Martinez 1995, Fairbanks et al. 

2002, van Rensburg et al. 2002, Chown et al. 2003, Bonn et al. 2004, 

Fairbanks 2004, van Rensburg et al. 2004, Evans et al. 2006a, Evans et al. 

2006b), body size is conspicuously absent from most of these studies. The 

South African avifauna constitutes an appropriate test case for exploring 

variation between body size and environmental variables for several 

reasons. First, the country supports over 700 bird species, the body sizes of 

which vary quite considerably (ranging from 5.9 to 68 700 g). Second, the 

distributions of birds in the region were well-mapped between 1987 and 1993 

at quarter degree grid cell (QDGC) grain for the Southern African Bird Atlas 

Project (SABAP, Harrison et al. 1997). For the SABAP, observers created 

monthly records of the species they observed within a QDGC, from which the 

distribution of species was mapped. Third, South Africa experiences a range 

of geographically structured climatic conditions (Schulze 1997a, b). 

2. Examine whether spatial variation in body size exists in the South African 

avifauna. The heat conservation hypothesis (Bergmann 1847) predicts that 

the variation in temperature experienced across the country may explain 

much of the body size variation. South Africa's north-south temperature 

gradient is interrupted by the effect of topography on temperature (Figs 1 a & 

b, Schulze 1997a). The Great Escarpment, which stretches approximately 

200-300 km inland from the south to the east coast of the country, and the 

easterly increase in elevation, result in lowered temperatures of the interior, 

while the ocean buffers temperatures along the coast. Humidity is most 
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marked along the coast, especially the southern and the eastern coast, and 

displays a general declining east-west gradient (Schulze 1997b). James' 

(1970) evaporative cooling hypothesis thus predicts a west to east decline in 

bird sizes associated with the precipitation. The starvation resistance 

hypothesis (Rosenzweig 1968) predicts a relatively strong east to west 

decline in body size, associated with the seasonality of productivity, as 

seasonality is most marked in the eastern parts of the country, particularly 

the high-lying areas that are some distance away from the ocean (Fig. 1 d). 

Likewise, it might be expected that a complex pattern should be present 

owing to the interaction of several of the above-mentioned factors on avian 

body sizes. 

3. Explore the extent to which the variation in median body size of avian 

assemblages can be predicted by random draws from the regional BSFD. 

Although the regional BSFD constrains the range of size variation that can 

be obtained for a given richness (Cardillo 2002, Makarieva et al. 2005), 

median (or mean) body sizes may still differ considerably from what would be 

expected from random sampling (e.g. Bakker and Kelt 2000, Rodriguez et al. 

2006). If the regional BSFD predicts much of the variation in median body 

size, then geographic variation in size must be considered in the context of 

processes that determine the regional BSFD, which ultimately result from the 

interplay between regional and local processes. In addition, richness 

constrains median body sizes that can be obtained from the regional BSFD 

(Cardillo 2002). I therefore also examined how much of the variation in body 

size can be explained by species richness. Richness may also be influenced 

by the same factors driving body size variation (Cardillo 2002, Evans et al. 

2005), and is thought to impact on body size (Blackburn and Gaston 1996b, 
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c, Cardillo 2002). Including species richness as a covariate in statistical 

models (e.g. Cardillo 2002) may therefore factor out the environmental 

variation acting on species richness rather than body size. 

Methods 

Body size measures for bird assemblages of QDGCs in South Africa and Lesotho 

were calculated. Bird distributions were obtained from the SABAP (Harrison et al. 

1997). Adult body mass (in grams) was used as a measure of bird body size. 

Although body mass can be a variable trait, dependent on aspects such as season, 

sex, and the condition of the bird, it is not as variable as other body size measures, 

and it is comparable across all species (Gaston and Blackburn 2000). Roberts Birds 

of Southern Africa (Vllth edition, Hockey et al. 2005) was used as the primary source 

for obtaining avian body sizes. Where the mean male and mean female body masses 

of a species were available, their arithmetic mean was calculated and used as body 

mass for the species. Otherwise the mean of unsexed individuals was used. If the 

mean size of one sex was obtained from less than 10 individuals, and a mean from a 

large sample size of unsexed individuals was given, the latter was used instead of 

the male-female mean. If means from different locations and/or seasons were given, 

their arithmetic mean was used. If only a range of sizes was provided, the mid-point 

of the range was used instead of the mean. For species whose sizes were 

unavailable or unreliable (e.g. small sample sizes, approximated weights, juvenile 

weights), other sources were used (Brown et al. 1982, Urban et al. 1986, Fry et al. 

1988, Keith et al. 1992, Maclean 1993, Urban et al. 1997, Fry et al. 2000, Fry and 

Keith 2001 ). Seabirds were removed from the analyses because their distribution is 

dependent on oceanic conditions rather than environmental characteristics of the 

terrestrial landscape. Body sizes were log10 transformed. 
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Only QDGCs with 50% or more of their surface area on South African and/or 

Lesotho ground were considered in this study. QDGCs with a reporting rate smaller 

than 11 (i.e. QDGCs for which less than 11 reporting cards were collected) were 

discarded because they were inadequately sampled. The midpoints of QDGCs used 

in this study lie between 22°13.5' S and 34°22.5' S, and between 16°13.5 E and 

32°52.5 E. The body size frequency distribution of the birds that were recorded in the 

QDGCs included in the study was plotted. Shapiro-Wilk's W test for normality was 

conducted to determine whether the distribution differed significantly from normality. 

For each QDGC, the median, skewness, kurtosis, the coefficient of variation, 25% 

and 75% quartiles, and the interquartile range of body sizes were calculated. 

Because minimum and maximum body size values could represent outliers or 

extreme values, quartiles were used (Blackburn and Hawkins 2004). 

GEOGRAPHIC VARIATION IN BODY SIZE 

Each of the mechanisms proposed to underlie spatial variation in body size makes 

specific predictions regarding the relationship between one or more environmental 

variables and body size. Therefore, the following environmental variables were 

examined: 1.) Temperature (maximum [MAXMO] and minimum [MINMO] monthly 

temperatures of the hottest and coldest months of the year respectively) was used to 

test the heat conservation hypothesis. In cooler areas animals would be expected to 

be larger to minimize the surface area-volume ratio and therefore also heat loss. 2.) 

In conjunction with temperature, mean annual precipitation (PPT) was used to test 

the evaporative cooling hypothesis. In humid (warm, moist) areas species should be 

smaller to facilitate evaporative heat loss through their small surface area-volume 

ratio. 3.) To test the starvation resistance hypothesis, the absolute differences 

between the mean January and July normalized difference vegetation indices 
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(~NOVI), a measure of primary productivity, were used. This seasonal variation in 

NOVI provides one measure of the likelihood that starvation resistance increases 

survival during periods of low resource availability. Mean January and July NOVI 

measures (obtained from the African Real Time Environmental Monitoring using the 

Meteorological Satellites program [Artemis] of the Food and Agriculture Organization 

[FAO, see http://metart.fao.org/default.htm]) were calculated from 1982 - 1999 

values. Because the only glaciation South Africa has experienced since the start of 

the Quatenary encompasses a very restricted area (the Drakensberg, Young and 

Hastenrath 1991 ), the glaciation hypothesis is irrelevant. The square of all predictors 

were also included in models to detect curvilinear relationships (van Rensburg et al. 

2002, Blackburn and Hawkins 2004). 

General linear models (PROC MIXED, SAS 9.1) were used to examine body size 

variation. First, models were constructed to determine whether latitude or longitude, 

or an interaction between the two, might explain variation among QDGCs in avian 

median body size. Initially, either latitude or longitude was the only predictor in 

models to test the existence and strength of north-south and east-west median size 

gradients respectively. Polynomial regressions detect non-linear relationships 

between a response variable and predictors, and tend to increase model fit 

(Legendre and Legendre 1998). A third-order polynomial regression detects linear 

relationships, but also patches or gaps in data (Borcard et al. 1992). To identify which 

combination of the nine spatial terms of a third-order polynomial best describe 

variability in median size, the Akaike information criterion (AIC) was used. Models 

with all combinations of the nine terms were constructed and analysed using PROC 

MIXED. The model with the lowest AIC value represents the best-fit model and 

should be reported (Burnham and Anderson 1998). 
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A similar procedure was followed to determine how well the environmental 

variables explain variation in median body size. Models with all combinations of the 

four predictors and their squares were constructed, and the model with the lowest 

AIC value selected and reported. Akaike weights, which quantify how well each of the 

model fits the data, were calculated from AIC values. The best-fit models with the 

lowest AIC values possess the highest AIC weights. If the AIC weight is larger than 

0.1, the model is considered to fit data well (Westphal et al. 2003). Spatial data, 

especially if presented in a spatial lattice (such as the environmental variables used 

here), is usually spatially autocorrelated (Lennon 2000). Conducting simple statistical 

tests on such data without factoring out spatial autocorrelation can lead to inflation of 

Type I errors (Borcard et al. 1992, Diniz-Filho et al. 2003), and an inflated likelihood 

that spatially autocorrelated predictors explain variation in the dependent variable 

(Lennon 2000) . To compensate for the spatial structure in the variation in 

environmental variables, all models, except those already containing spatial terms 

(latitude and longitude) were therefore also run with the PROC MIXED procedure. 

Models with no predictors were run with different spatial covariance structures 

(exponential, power, spatial, Gaussian, log and log-linear), and the structure that 

produced the lowest AIC value (exponential in this case) was used to run the full 

models. 

From the random draw models (see next section) it was apparent that median size 

behaved differently at low and at higher species richness values. This suggests that 

different mechanisms may be impacting median body size in more species-rich and 

less species-rich assemblages. Therefore, the above analyses were repeated for 

QDGCs with species richness values lower than 105, and with those greater than or 

equal to 105. 
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NULL MODELS 

Null models were used to determine how bird assemblages in QDGCs differ from 

random expectation. Random assemblages were generated to predict body size 

variables of QDGCs with different species richness values given the regional BSFD. 

Random draws were conducted in R (v. 2.3.1 ). Species richness values in QDGCs 

included in the analyses ranged from 35 to 403. For each species richness value, 

1000 random assemblages were created from the regional body size frequency 

distribution (which comprised all species present in the QDGCs used for this study). 

For each random assemblage, species were sampled without replacement. These 

"unweighted randomizations" are based on the assumption that all species are 

demographically identical. Such neutrality may be an acceptable assumption for 

trophically similar groups that compete with one another (Hubbell 1997). However, 

the bird species of South Africa are not trophically similar. Therefore, because 

assumptions made by the models are not met for the South African avifauna, a 

second set of random assemblages was generated in which species were selected 

with a probability proportional to their geographical distribution in the region (Preston 

1948, Stone et al. 1996, Gotelli 2000), i.e. the number of QDGCs in which a given 

species was recorded in ('partial range size', Blackburn and Gaston 1996b, which 

therefore does not encompass the entire distribution), rather than their entire 

distribution. Blackburn and Gaston (2001) found that such randomizations were the 

best predictors of several body size statistics of a deciduous wood bird community. 

Randomizations weighted by species range size are henceforth referred to as 

"range-weighted randomizations". 

To determine how well random sampling from the regional BSFD predicts body 

size statistics of the actual assemblages, each QDGC was classified according to 

whether its median size was smaller or larger than the median of random median 
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sizes at the corresponding species richness value. To determine whether the degree 

to which random values predicted real values changed with species richness, 

QDGCs were then assigned to categories according to their species richness values; 

each category contained 20 species richness values (30-49, 50-69 ... , 390-409). Two­

tailed Fisher exact tests (Siegel 1956) were conducted to determine whether the 

proportion of QDGCs with median sizes smaller and sizes larger than the median of 

the randomizations were equal in each species richness category. Size categories 

30-49, 370-389 and 390-409 contained few (three or four) grid cells - Fisher exact 

tests were thus not conducted for these. When conducting several tests, the 

likelihood of type I errors is inflated (Garcia 2003, 2004). Therefore, step-up false 

discovery rates (FDR, Benjamini and Hochberg 1995) were applied to the p-values 

from Fisher exact tests. This analysis was repeated for the other six body size 

variables too. QDGCs with median size values which fell outside 95 % of the random 

size values for the respective species richness value were also assigned to species 

richness categories and plotted against species richness. 

Results 

The BSFD of South African birds is right-log skewed (skewness= 0.8291, Shapiro­

Wilk's W = 0.93520, p < 0.0001 ), with the highest number of species occurring in 

small, but not the smallest, size categories (Fig. 2). 

Contrary to Bergmann's rule, no latitudinal body size gradient exists (Fig. 3, Table 

1 a). Longitude also explained little of the variation in median body size. The minimum 

adequate model of the terms from the third-order polynomial equation for latitude and 

longitude retained both latitudinal and longitudinal terms (Table 1 a). The model 

indicated that patches exist where adjacent QDGCs possess similar median size 

values, which is also evident from Fig. 3a. Median body sizes are especially large in 
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the north-east of the country in the savanna biome (particularly in the Kruger National 

Park, the largest protected area in the country), the central north-eastern areas of the 

country in the grassland biome (areas of which support the highest human population 

densities in the country, Chown et al. 2003, van Rensburg et al. 2004), and the 

south-western Cape in the fynbos biome. In the semi-arid Kalahari and Karoo median 

sizes tend to be small. 

50 

40 
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c 
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::J 
rr 
~ 20 
LL 
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0 1 2 3 4 5 

Log Body Mass (g) 

Figure 2. Frequency distribution of log body mass of the birds of South Africa and 

Lesotho (686 species, excluding sea birds). 

Because environmental variables show strong spatial autocorrelation (Fig. 1 ), 

results from the spatial models will mainly be considered here. Because no r2 value 

can be obtained for the spatial models (K. L. Evans, pers. comm.), non-spatial results 

are also shown to give an indication of the percentage variability explained by the 

environmental models. If minimum adequate models alone are used to ascertain how 
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environmental variables explain geographic variation in median body size, as is done 

in most such studies (e.g. Zeveloff and Boyce 1988, Blackburn and Gaston 1996b, 

Blackburn and Hawkins 2004, Olalla-Tarraga et al. 2006), some of the variation in 

median body size of the complete dataset could be explained by environmental 

factors (Table 1 ). All predictors co-varied (Table 2), therefore the explanatory power 

assigned to one variable in regression models may be affected by the other 

predictors. LiNDVI was the only significant predictor of median size - the relationship 

between median size and LiNDVI could be explained by a positive linear function 

(Table 1 b). However, species richness, which was related to median size by a 

quadratic relationship (hump-shaped), alone explained almost as much of the 

variation in size as the best-fit environmental model (Table 1 c). If species richness 

was included as predictor in the environmental models, model fit increased, and, in 

the spatial model, richness remained the only significant predictor of median body 

size (Table 1d). 

Because at low species richness median size always fell within the lower range of 

values expected from randomizations (see below), general linear models were also 

run for median size at species richness smaller than 105, and greater or equal than 

105 (see Fig. 3h for the geographic locations of the respective QDGCs). This 

provided an opportunity to determine whether different environmental variables are 

driving body size at high and low species richness. At low species richness ( < 105), 

none of the environmental variables predicted body size variation (Table 3a[2]), while 

species richness increased with median size (Table 3a[3]; see also Figs 2a & 3a). 

When species richness was included in environmental models, it again remained the 

only significant explanatory variable (Table 3a[4]). Model fit for all non-spatial models 

was relatively low (r2 < 19%). 
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(a) 
Skewness (b) 

Kurtosis 
(c) 

Coefficient of Variation 
(d) Median Size 0.208 - 0.580 -1 .289 - -0 .540 0.349 - 0.383 

1.409-1 .550 [ 0.581 - 0.759 r -0 .539 - -0.071 [ 0.384 - 0.397 

1.551 - 1.642 - 0. 760 - 0.934 .::::: -0.076 - 0.493 - 0.398 - 0.409 
- 1.643-1 .716 - 0.935 - 1.200 .. ~ - 0.494 - 1.524 ... ~ - 0.410-0.424 

- 1.717-1 .807 .. ~ .1.201 - 1.852 - 1.525 - 3.865 - 0.425 - 0.455 
. 1.808-2.130 

75% Quartile Interquartile Range 
25% Quartile ( e) 1.757 - 2.130 (f) 0.449 - 0.851 (g) Species Richness (h) 

1.167-1 .279 [ 2.131-2.334 l 0.852-1 .023 35-104 
1.280-1 .333 . 2.335-2.500 - 1.024-1 .161 - 105-190 

1.334-1 .365 - 2.501 - 2.644 ·~ . 1.162-1 .280 ·~ - 191-260 

- 1.366 - 1.394 _. ~ - 2.645 - 2.858 .. ~4~ - 1.281 - 1.440 .. ~:-:;\ - 261 - 403 
. 1.395 - 1.482 

~- , __ ·· 
La:...: ... 

Im 

Figure 3. Statistics of log body sizes (a-g) and species richness (h) of birds (excluding sea birds) in South Africa and Lesotho in quarter 

degree grid cells with a reporting rate greater than 10. 
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Table 1. Minimum adequate models of the relationship between median avian log body size in quarter degree grid cells and various 

predictors. Models were selected on account of model fit as indicated by the Akaike information criterion (AIC); lower AIC-values, which 

result in higher AIC-weights, indicate a better fit. Results from non-spatial general linear models (GLM) and spatial models with 

exponential covariance structure (Spatial [Exp)) are shown. In (a), results of models containing only either latitude or longitude as 

predictor, and the best subset model of a third-order polynomial of latitude and longitude are shown; (b) represents the best-fit model 

from models with all combinations of environmental variables; in (c) only species richness was included in the model; (d) is as (b), except 

species richness was included as covariate in all models. Lat= latitude, Long= longitude, ~NOVI= absolute difference between January 

and July NOVI, MAX.MO and MINMO = maximum and minimum monthly temperatures of the hottest and coldest months of the year 

respectively, PPT = annual precipitation, SppRich = species richness. (ns = not siginificant; + = p <0.05, positive effect; ++ = p <0.01, 

positive effect;++++= p <0.0001, positive effect; -- = p <0.0001, negative effect) 

Model Type Variables in model 

(a) Latitude & Longitude 

GLM 

GLM 

GLM 

(best subset) 

Lat (F1.12ss = 41.30++++) 

Long (F1.12ss = 61.09++++) 

Lat (F1,12so = 43.7++++}, Long (F1.12so = 83.3-), Laf (F1,12so = 52.71++++), Lat*Long (F1.12so = 52.55-), Long2 (F1.12so = 

44.09++++}, Laf*Long (F1,12so = 62.74-), Long3 (F1.1 2so = 44.64--) 

AIC value Model Fit 

(model weight) (r2) 

-2288.9 

-2307.5 

-2375.7 (0.688) 

3.09% 

4.50% 

15.5% 
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Table 1 (continued) 
Model Type Variables in model 

(b) Environmental Variables 

GLM Dvl2 ( ++++ ++++ P 2 F 2 28-6N F1,1294=47.99 ), PPT (F1,1294=114.47 ), P T ( 1,1294=10 . ) 

Spatial (Exp) 6NDVI (Fu29s=6.7++), 6NDVl2 (F1,12gs=0.07"5
) 

(c) Species Richness 

GLM 

Spatial (Exp) 

SppRich (F1.129s=134.22++++), SppRich2 (F1,129s=78.31-) 

SppRich (F1.12gs=110.46++++), SppRich2 (F1,12gs=48.09-) 

(d) Environmental Variables + Species Richness 

GLM 

Spatial (Exp) 

6NDVl2 (F1,1291=68.03++++), MAXMO (F1,1291=18.30++++), MINMO (F1.1291=31.41-), MINM02 (F1,1291=21.82++++), 

SppRich (F1.1291=127.41++++), SppRich2 (F1.1291=77.02-) 

6NDVl2 (Fu294=1.63"5
), SppRich (F1.1294=108.14++++), SppRich2 (F1.1294=47.35-) 

AIC value Model Fit 

(model weight) (r2) 

-2465.3 (0.473) 18.03% 

-2931.8 (0.530) n/a 

-2469.7 17.87% 

-3110.1 n/a 

-2530.9 (0.465) 23.91% 

-3112.9 (0.430) n/a 
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Table 2. r-values from the correlation matrix of the predictor variables used in minimum adequate models. All correlations are significant 

(p < 0.05). See Table 1 for abbreviations. 

~NOVI MAXMO temperature MINMO temperature Precipitation 

~NOVI 1 

MAXMO temperature -0.353 1 

MINMO temperature 0.143 0.569 1 

Precipitation 0.673 -0.428 0.145 1 
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Table 3.Minimum adequate models of t~e relationship between median avian log body size in quarter degree grid cells and various 

predictors. QDGCs were divided into those with species richness smaller than 105 (a), and with species richness equal or greater than 

105 (b). Models were selected on account of model fit as indicated by the Akaike information criterion (AIC); lower AIC-values, which 

result in higher AIC-weights, indicate a better fit. Results from non-spatial general linear models (GLM) and spatial models with 

exponential covariance structure (Spatial [Exp]) are shown. In (1 ), results of models containing only either latitude or longitude as 

predictor, and the best subset model of a third-order polynomial of latitude and longitude are shown; (2) represents the best-fit model 

from models with all combinations of environmental variables; in (3) only species richness was included in the model; (4) is as (2), except 

species richness was included as covariate in all models. See Table 1 for abbreviations. ("5 = not siginificant; + = p <0.05, positive effect; 

++ = p <0.01, positive effect; +++ = p <0.001, positive effect; ++++ = p <0.0001, positive effect; - = p <0.0001, negative effect) 

(a) Quarter degree grid cells with a species richness less than 105. 

Model Type Variables in model 

(1) Latitude & Longitude 

GLM 

GLM 

GLM 

(best subset) 

Lat (F1.131 = 5.24+) 

Long (F1.131 = 3.48"5
) 

Lat (F1,131 = 5.24+) 

AIC value (model 

weight) 

-175.4 

-172.4 

-175.4 

Model Fit (?) 

3.85% 

ns 

3.85% 
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,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----------------------------------------------------------------~ 

Table 3(a) (continued) 
Model Type Variables in model 

(2) Environmental Variables 

GLM 

Spatial (Exp) 

LlNDVI (F1.130=3. 7"5), LlNDVl2 (F1,130=1.04"5
) 

LlNDVI (F1,130=0.22"5
), LlNDVl2 (F1.130=0.24"5

) 

(3) Species Richness 

GLM 

Spatial (Exp) 

SppRich (F1.131=22.81++++) 

SppRich (F1.131=21.73++++) 

(4) Environmental Variables + Species Richness 

GLM 

Spatial (Exp) 

LlNDVI (F1.129=2.43"5
), LlNDVl2 (F1.129=0.72"5), SppRich (F1.129=18.67++++) 

LlNDVI (F1,129=0.16"5), LlNDVl 2 
(F1.1 29=1.74"5

), SppRich (F1.129=21.97++++) 

AIC value (model Model Fit (r2) 

weight) 

-190.4 (0.711) ns 

-228.6 (0.739) n/a 

-187.0 14.83% 

-226.8 n/a 

-195.1 (0.301) 18.53% 

-235.8 (0.747) n/a 

51 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



Table 3(b) Quarter degree grid cells with a species richness equal or greater than 105. 

Model Type Variables in model 

(1) latitude & longitude 

GLM Lat (F1,11s3 = 30.19++++) 

GLM 

GLM 

Long (F1.1153 = 8.81 ++) 

Lat (F1,11s1 = 33.87- ), Long (F1.11s1 = 30.25- ), Lat2 (F1.11s1 = 27.17- ), Lat*Long (F1,11s1 = 27.43+++•), 

(best subset) Long2 (F,,1157 = 38.49++++), Lat3 (F1.11s1 = 24.42- ), Long
3 

(F1.11s1 = 37.43- ) 

(2) Environmental Variables 

GLM ~NDV12 (F1,1153=116.83++++) 

Spatial (Exp) ~NOVI (F1 ,1152=4.65•), ~NDVl2 
(F1,1162=0.01 °

5
) 

(3) Species Richness 

GLM 

Spatial (Exp) 

SppRich (F1.11s3=59.74++++) 

SppRich (F1,11s3=139.07++++) 

(4) Environmental Variables + Species Richness 

GLM ~NDVl2 (F1,1159=86.44++++), MAXMO (F1,1159=13.07++•), MINMO (F1.1159=30.22- ), MINM0
2 

(F1.11s9=21 .84++++). SppRich (Fu1s9=27.17++++) 

Spatial (Exp) ~NDVl2 (F1.1162=1 .96"5), SppRich (F1 .11s29=134.17++++) 

AIC value (model 

weight) 

-2300.4 

-2279.2 

-2322.6 (0.481) 

-2394.6 ( 0.413) 

-2788.0 (0 .694) 

-2323.0 

-2394.6 

-2399.8 (0.276) 

-2892.4 (0.393) 

Model Fit (r) 

2.53% 

0.75% 

11 .5% 

9.13% 

n/a 

4.89% 

n/a 

13.80% 

n/a 
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Figure 4. Log body size variables of birds in South African quarter-degree grid cells (red) and in random assemblages (black) at different 

species richness values. For each random assemblage, species were randomly selected without replacement from the pool of South 

African species. 
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Figure 5. Log body size variables of birds in South African quarter-degree grid cells (red) and in random assemblages (black) at different 

species richness values. For each random assemblage, species were randomly selected without replacement from the pool of South 

African species with a probability proportional to the extent of the geographical distribution of the species. 
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Table 4. Number of quarter degree grid cells with median avian body size 

smaller: larger than expected from 1000 unweighted randomizations and 1000 

randomizations weighted by species range sizes (see text for details) conducted for 

each species richness value. Grid cells were grouped into species richness 

categories. Two-tailed Fisher exact tests were performed to determine whether the 

proportion of grid cells with the ratio smaller:larger size was significantly different 

from 1 :1. * = p <0.05, ** = p <0.01, *** = p <0.001. (*) represents values that were 

not significant after controlling for false discovery rate. 

Species Richness Category Unweighted Weighted 

50-69 13:0** 13:0** 

70-89 48:4*** 47:5*** 

90-109 73:11*** 69: 15*** 

110-129 83:24*** 73:34** 

130-149 103:47** 86:65 

150-169 94:55(*) 68:78 

170-189 109:58** 75:92 

190-209 70:64 58:77 

210-229 55:46 41:60 

230-249 61:34 47:48 

250-269 40:31 23:48(*) 

270-289 31:20 10:41 ** 

290-309 19:19 10:27 

310-329 16:14 8:22 

330-349 9:16 1 :24*** 

350-369 2:8 1 :9 
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The results for QDGCs with high species richness(;:: 105, Table 3b) were similar 

to those of the complete dataset. ~NOVI remained the only significant variable in the 

environmental models, increasing with median size whether models were run with or 

without considering spatial autocorrelation (Table 3b[2]). Species richness also 

increased with median size, but it predicted very little of the variation in median size 

(Table 3b[3]). When species richness was included as predictor in the environmental 

models, it remained the only significant variable in spatial models (Table 3b[4]). 

Model fit of non-spatial models was poor (r2 < 14%) in all cases. 

For a given species richness value, body size variables of actual assemblages 

displayed a fair amount of similarity with assemblages expected from randomizations 

(Figs 4 & 5, Appendix 1 ). If the median body sizes of QDGCs with different species 

richness values are overlaid on the median sizes from both weighted (Fig. 4a) and 

unweighted (Fig. 5a) randomizations, much of the variation seems to be explained by 

random sampling alone. Only at low species richness does median size continuously 

fall within the lower values that would be expected from randomizations (see also 

Table 4). At low richness values, more QDGCs had median size values significantly 

lower than expected from random (Fig. 6a). Unweighted randomizations predicted 

real median body size in South African QDGCs better than weighted randomizations 

did (Table 4, Fig. 6). For example, the number of QDGCs with median size values 

larger than expected from random increased with richness for the weighted 
c 

randomizations (Fig. 6b). From Figs 4 and 5 it is apparent that all body size variables 

were not always as well predicted by the randomizations as median size was. 

Although the empirical data mostly fell within the boundaries of the unweighted 

randomizations, they were usually biased towards either the upper or the lower 

random values - with the exception of 25% quartiles (Fig. 4, Appendix 1 ). Range-

weighted randomizations were better predictors of the actual data for skewness, 
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coefficients of variation, 75% quartiles and interquartile ranges of body size (Fig 5, 

Appendix 1 ). 
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Figure 6. Proportion of quarter degree grid cells with median sizes larger ( •) and 

smaller (ti) than 95 % of the median sizes of (a) unweighted and (b) weighted 

randomizations (see text). 
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Discussion 

The body size frequency distribution of the birds of South Africa and Lesotho is 

strongly right-skewed, as has been shown for various regional assemblages and taxa 

(May 1978, Brown and Nicoletta 1991, Marquet and Cofre 1999, Bakker and Kelt 

2000, Gaston and Blackburn 2000), and for the global avian BSFD (Blackburn and 

Gaston 1994 ). This suggests that the mechanisms generating right-skewed BSFDs 

elsewhere may also be operating here. Compared to the global avian BSFD 

(Blackburn and Gaston 1994}, birds in the smallest size classes, e.g. hummingbirds 

(Dunning 1993), are missing from the South African BSFD, while the upper limits of 

the South African and global avian BSFDs are similar. The modes of the global and 

South African avian BSFDs are similar, and the median size of South African birds 

(53.45 g) is somewhat higher than that of the birds as a whole (37.6 g). 

If, as in most studies, only the relationship between the geographic variation in 

body size and possible predictors of median body size are considered for the South 

African avifauna, several patterns are observed. No latitudinal body size cline, as 

predicted by Bergmann (1847), exists for South African avifaunal assemblages. 

Longitude alone also explains little of the variation in median size. However, median 

body size variation is not randomly distributed across the landscape - patches of 

assemblages with similar median sizes exist. Given features of South Africa's 

topography and climate that interrupt latitudinal and longitudinal climatic gradients, 

this is, perhaps, not unexpected. The gradual west-east increase in altitude across 

the country is, for example, interrupted by a sudden drop in altitude at the 

escarpment, which influences rainfall and temperature, while the eastern escarpment 

interrupts the south-north temperature gradient (Schulze 1997b). As mentioned 

previously, temperatures around the coast are also buffered and display relatively 

low variability, while humidity in coastal regions is raised due to the effect of the 
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ocean (Schulze 1997b). All of these factors result in 'patches', rather than absolute 

gradients, in the environment that are climatically or environmentally similar and 

could possess avian assemblages with similar body sizes. In addition, median body 

sizes of adjacent QDGCs in this study are not independent - overlap in the ranges of 

species, but also populations and individual birds will exist between adjacent 

QDGCs, which may further promote the occurrence of areas with similar median 

body sizes (Diniz-Filho et al. 2003). 

Despite the absence of a latitudinal or longitudinal body size cline, environmental 

variables alone do explain some variability in body size, suggesting that the 

mechanisms driving latitudinal body size clines elsewhere (Zeveloff and Boyce 1988, 

Cotgreave and Stockley 1994, Blackburn and Gaston 1996b, Blackburn and Hawkins 

2004, Olalla-Tarraga et al. 2006, Rodriguez et al. 2006) could be affecting body size 

patterns of South African avifaunal assemblages. The percentage variability 

explained by environmental models is not high, however (r2 < 20%). In other 

investigations of Bergmann's rule in vertebrate assemblages the amount of variability 

explained by the environment is often considerably higher than that found here 

(Zeveloff and Boyce 1988, Blackburn and Gaston 1996b, Blackburn and Hawkins 

2004, Olalla-Tarraga et al. 2006, Rodriguez et al. 2006), with the exception of the 

lizard and snake fauna of North America (r2 < 20%, Olalla-Tarraga et al. 2006) and 

the mammal fauna of southern Europe (r2 = 18%, Rodriguez et al. 2006). 

Nevertheless, of the environmental variables considered in this study, seasonality 

in NOVI alone remains as predictor of median body size. The South African 

landscape varies quite considerably in terms of seasonality (Schulze 1997a). For 

example, temperatures along the coastal areas are buffered by the ocean, creating 

an environment with relatively small temperature variation between seasons, while 

the continental interior displays more variability in temperature, resulting in higher 
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distinctions between seasons. Seasonal variation in solar radiation is affected by the 

timing of the rainy season, day length, which varies from the northern to the southern 

parts of the country, and proximity to the ocean, where weather systems often 

originate (Schulze 1997b). For the South African avifauna, median body size 

increases with seasonality in NOVI (when species richness is not included in 

minimum adequate models). This is in agreement with the starvation resistance 

hypothesis, which predicts that size increases in more variable environments, 

allowing larger animals to better survive periods of resource shortage because of 

their ability to store greater quantities of fat per unit body mass (Lindstedt and Boyce 

1985). Although it has been suggested that small animals should be able to survive 

unfavourable periods due to their ability to better exploit microclimates or employ 

physiological compensatory mechanisms such as torpor (Dunbrack and Ramsay 

1993), this mechanism does not appear to be operating within the avifauna of South 

Africa (see also Zeveloff and Boyce 1988, Blackburn and Hawkins 2004, Rodriguez 

et al. 2006). The South African avifauna also supports several migratory species 

(Hockey et al. 2005), which are therefore not exposed to seasonality. It has indeed 

been shown that migrants are less likely to conform to Bergmann's rule than 

sedentary species are (Meiri and Dayan 2003). Because migratory species were 

included in analyses, the strength of the body size-NOVI seasonality relationship 

presented in the results may be a conservative representation of the effect of 

seasonality on avian body size of South Africa assemblages. 

In South Africa, annual variation in environmental variables follows a different 

pattern to seasonal variation though: areas displaying high seasonal variability often 

show low annual variability, and vice versa (Schulze 1997a, b). The response of 

median body size to annual variation in the environment may therefore differ from the 

response to seasonal variation (see Rosenzweig 1968). However, in North America, 
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annual variation in climatic variables does correlate positively with mean body size, 

although not as strongly as seasonal variation (Zeveloff and Boyce 1988). Therefore, 

large body size may increase the ability to survive high annual resource variability too 

(Zeveloff and Boyce 1988). Given that resource availability in regions with high 

annual variation is often patchy (e.g. Desmet and Cowling 1999), large animals could 

also possess the ability to travel to such patches over larger distances to obtain food, 

which would result in a positive relationship between annual environmental variation 

and body size too. Alternatively, in highly variable regions with patchy resource 

availability, smaller species may be favoured due to their ability to exploit smaller 

patches of resources because of their lower individual energy requirements. Whether 

a relationship between inter-annual variation in environmental variables and median 

body size exists in South African birds remains to be determined. 

Temperature has been shown to be an important predictor of body size in several 

studies (Zeveloff and Boyce 1988, Blackburn and Gaston 1996b, Blackburn and 

Hawkins 2004, Rodriguez et al. 2006), but explained little of the variation here. In a 

study of European mammals it was found that temperature was an important 

predictor of body size in the cold northern areas of the region, but that this 

relationship virtually disappeared above a certain temperature threshold (Rodriguez 

et al. 2006). As for the South African avifauna, seasonality (in plant production) was 

the best predictor of body size variation in the warm southern region, and also 

explained only a small percentage (18%) of the variation. Rodriguez et al. (2006) 

suggested that temperature-body size relationships may be non-linear, increasing in 

colder areas, but becoming non-significant in warmer environments. In terms of 

temperature, South Africa's climate is more similar to that of southern than northern 

Europe (Lockwood 1985). If the non-linear temperature-body size relationship 
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proposed by Rodriguez et al. (2006) is indeed operating, South Africa's temperature 

range may fall within the horizontal portion of the relationship. 

In multi-species investigations of Bergmann's rule, only the relationship between 

body size and some environmental predictor(s) associated with a mechanism that 

could generate body size clines are typically investigated. Few studies (Cardillo 

2002, Rodriguez et al. 2006) have considered the contribution of random sampling 

from a regional species pool on variation in body size. While results from the 

minimum adequate models can be used to hypothesize what mechanisms might be 

responsible for the geographic variation of body size in avian assemblages, the 

correspondence between real and random median sizes seen here indicates that 

much of the variation in body size can be predicted by random sampling from the 

regional BSFD. Null models have increasingly been used to ascertain how closely 

community characteristics correspond to what would be expected from 

randomizations from a known or imagined distribution (Gotelli and Graves 1996, see 

e.g. Stone et al. 1996, Marquet and Cofre 1999, Blackburn and Gaston 2001 , 

Cardillo 2002, Diniz-Filho et al. 2002, Bell 2003, Smith et al. 2004, Sfenthourakis et 

al. 2006). Here, bird assemblages at higher species richness in South Africa possess 

median body sizes that may be expected from unweighted randomizations. While 

there is general agreement that all individuals and species are unlikely to be identical 

(Hubbell 1997, Chave 2004), as is assumed by the null models conducted here, it is 

none the less noteworthy that randomizations predicted assemblage body size 

relatively effectively. 

Recent work has attempted to reconcile niche and neutral theory (Etienne and Olff 

2004, Gravel et al. 2006, Holt 2006, Leibold and McPeek 2006, Scheffer and van 

Nes 2006). Gravel et al. (2006) proposed that niche and neutral theories form two 

extremes of a continuum. In a model of this continuum, the probability of a species 
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establishing is proportional to its abundance in the source pool (as in neutral theory), 

while propagules possess species-specific survival rates (as in niche theory). Under 

a range of conditions, increasing species richness results in increasing neutrality 

because higher niche overlap is required for species to co-exist (i.e. more similar 

species have to co-exist as all possible niches became occupied). In addition, 

assemblages tend towards neutrality if there is high local dispersal, because 

immigration balances out the effect of competition, and because species richness 

increases, which again results in all possible niches being occupied. A model by 

Scheffer and van Nes (2006) also predicted increased neutrality at higher species 

richness. The model assumed that similar-sized species occupied the same niche 

and were thus strong competitors. As many different-sized species were placed 

along a niche axis at high abundances, similar-sized species formed aggregations on 

the niche axis, and such aggregations of similar-sized species were separated from 

one another by strong competition. Therefore, as neutral theory predic:ts, species that 

are strong competitors were found to co-exist at high richness. 

South African avifaunal assemblages support predictions of Gravel et al.'s (2006) 

continuum hypothesis: randomizations were better predictors of median size as 

species richness increased, while environmental factors, which represent the niche­

based end of the continuum, were poor predictors of body size variation. Stochastic 

neutral processes may thus indeed be more important than niche processes at high 

richness. 

In conclusion, this work has provided support for the general pattern of log right­

skewed body size frequency distributions at regional scales. Moreover, it has shown 

that the factors which give rise to the regional BSFD (see e.g. Hutchinson and 

MacArthur 1959, Brown and Nicoletta 1991, Maurer et al. 1992, Brown et al. 1993, 

Koztowski and Weiner 1997) play a primary role in generating patterns of geographic 
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variation in size, especially in areas of high richness. In consequence, this study 

demonstrates that future investigations of geographic variation in size should take 

stochastic processes into account before attributing variation entirely to deterministic 

responses to environmental variation. 
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Appendix 

Appendix 1. Number of quarter degree grid cells with body size measures smaller: larger than expected from 1000 unweighted 

("Unweight") randomizations and 1000 randomizations weighted by species range sizes ("Weight", see text for details) conducted for 

each species richness value. Grid cells were grouped into species richness categories. Two-tailed Fisher exact tests were performed to 

determine whether the proportion of grid cells with the ratio of smaller: larger sizes was significantly different from 1: 1. * = p <0.05, ** = p 

<0.01, *** = p <0.001. (*) represents values that were insignificant after controlling for false discovery rate. 

(a) 

Skewness Kurtosis Coefficient of Variation First Quartile Third Quartile Interquartile Range 

Spp. Rich. 

Category Unweight Weight Unweight Weight Unweight Weight Unweight Weight Unweight Weight Unweight Weight 

50-69 0:13** 0:13** 3:10 0:13** 2:11 13:0** 10:30 11 :2 10:3 13:0** 9:4 13:0** 

70-89 9:43*** 7:45*** 22:30 11:41** 9:43*** 41:11** 34:18 34:18 33:18 41: 11 ** 34:18 40:12** 

90-109 29:55 26:58(*) 42:42 32:52 12:72*** 48:36 50:33 50:33 36:48 48:36 32:52 46:38 

110-129 55:52 47:60 49:58 35:72* 16:91*** 43:64 44:63 43:64 24:83*** 43:64 21 :86*** 42:65 

130-149 85:66 76:75 89:62 62:89 25:126*** 41 :11 O*** 64:87 58:88 22:129*** 41 :11 O*** 16:135*** 38:113*** 

150-169 94:57(*) 88:63 89:62 65:86 34:117*** 38:113*** 51:1 oo<**> 48:101** 21 :128*** 38:113*** 18:133*** 37:114*** 

170-189 119:49*** 105:63(*) 118:50*** 87:81 31:137*** 39:129*** 66:102 60:106(*) 21:146*** 39:129*** 18:150*** 35:133*** 

190-209 90:45** 88:47(*) 94:41** 82:53 38:97*** 40:93** 55:80 50:82(*) 28:106*** 40:93** 26:109*** 39:96*** 
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Appendix 1 (continued) 

Skewness Kurtosis Coefficient of Variation First Quartile Third Quartile Interquartile Range 

Spp. Rich. 

Category Unweight Weight Unweight Weight Unweight Weight Unweight Weight Unweight Weight Unweight Weight 

210-229 66:35* 62:39 76:25** 69:32* 31 :70** 43:57 52:49 46:52 23:77*** 43:57 20:81*** 42:59 

230-249 57:38 56:39 68:27** 65:30* 28:67** 49:45 59:35 49:41 24:71 *** 49:45 20:75*** 45:50 

250-269 50:22* 48:24 53:19 51:21* 19:53** 32:38 35:37 23:47(*) 12:60*** 32:38 15:57*** 33:39 

270-289 38:16(*) 32:22 35:19 28:26 9:45** 34:20 29:24 18:29 7:46*** 34:20 9:45*** 33:21 

290-309 28:11 27:12 27:12 21:18 10:29* 22:16 24:15 9:27(*) 5:33*** 22:16 5:34*** 26:13 

310-329 21:10 21 :10 20:11 18:13 8:23 23:7(*) 21:10 8:17 5:25** 23:7(*) 4:27** 26:5** 

330-349 24:1*** 24:1 *** 22:3** 19:6 5:20* 7:18 10:14 1 :24*** 1:24*** 7:18 1 :24*** 16:9 

350-369 9:1 9:1 8:2 6:4 3:7 4:5 5:4 1:8 1:9 4:5 0:10* 8:2 
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Chapter 3 

The effects of human disturbance on avian assemblages in three 

South African regions: species richness, composition and 

functional diversity 

Introduction 

Conflict between humans and biodiversity exists globally, and is predicted to 

increase in the future (Kerr and Currie 1995, Balmford et al. 2001, McKee et al. 2003, 

Scharlemann et al. 2004). Although regions that are not under formal protection are 

of considerable significance for biodiversity conservation (Knight 1999, Norton 2000, 

Dudley et al. 2005), they are increasingly being fragmented and placed under 

mounting threat by land-use changes (Sanchez-Azofeifa et al. 2003, Gutierrez 2005, 

Gaston et al. 2006, Sigel et al. 2006, Young et al. 2006). Protected areas are 

therefore playing an increasingly important role in protecting indigenous biodiversity 

as anthropogenic pressures increase outside the borders of these conservation 

areas (e.g. Bruner et al. 2001, Lamprey and Reid 2004). 

Species richness comprises one possible measure of the effect of land-use 

change on biodiversity, although interpretations of changes in richness necessarily 

depend on spatial scale (Sax and Gaines 2003). At the global scale, richness is 

decreasing because the global rate of extinction is outweighing that of speciation 

(Sax and Gaines 2003). At regional and local scales species richness often shows 

temporal increases owing to the introduction of exotics and changes in patch 

heterogeneity. Landscapes classified as transformed can therefore have higher 

species richness values than natural landscapes because they are often interspersed 

with small patches of natural vegetation that support different assemblages 

(Rosenzweig 2001, Sax and Gaines 2003, Fairbanks 2004). At the patch scale, the 
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richness of a transect with a single land use is usually measured, therefore this scale 

often reveals local extinctions, invasions, or both, frequently as a consequence of 

land-use changes (e.g. Little and Crowe 1994, Wardell-Johnson and Williams 2000, 

Dean et al. 2002, Watson 2003, Didham et al. 2005, Smart et al. 2005). 

However, losses or changes in biodiversity cannot simply be assessed in terms of 

species richness, because richness does not describe assemblage compositional 

change, i.e. the identity of the species lost or gained (Dufrene and Legendre 1997, 

Whitford 1997, Margules and Pressey 2000). Ecological effects of disturbances 

should rather be considered in the context of impacts on richness, identity and 

abundance, i.e. the community and environment within which species exist, and the 

ecological roles such species fulfill (Cardinale et al. 2006). Extinction of species may 

result in the loss of the ecological functions they fulfill in their habitat (Petchey and 

Gaston 2002a), while the addition of species may create new ecological roles in the 

ecosystem (e.g. Huyser et al. 2000, Coomes et al. 2003, Wiles et al. 2003). Because 

individuals and species do not exist in isolation, but interact with other organisms 

(see Began et al. 1996), factors that directly affect one taxon may indirectly impact 

other taxa through the breakdown or alteration of such interactions and of ecosystem 

functions (Paine 1969, Bond 1994, Vitousek et al. 1996, Berlow 1999, Knops et al. 

1999, Huyser et al. 2000, Lareau et al. 2001, Koh et al. 2004, $ekercioglu et al. 

2004, Knight et al. 2005, Cardinale et al. 2006). 

One process by which community interactions are disrupted is through alterations 

to the existing food web. Indeed, changes in land use have been shown to affect bird 

assemblages by altering their food availability (Soderstrom et al. 2001, Benton et al. 

2002, Newton 2004, Maron and Lill 2005). Much attention has been directed at 

drastic declines of farmland birds in Europe, which have largely been attributed to 

reductions in components of the birds' diets (Beecher et al. 2002, Benton et al. 2002, 
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Barker 2004, Moreby 2004, Newton 2004, Britschgi et al. 2006). For example, 

negative effects of land use on insects seem to be leading to lower abundances and 

local extinction of insectivorous birds. Declines in insect abundance and diversity in 

response to vegetation changes associated with agricultural practices, and as a 

consequence of pesticide and herbicide use have been recorded (Herremans 1998, 

Clapperton et al. 2002, Sinclair et al. 2002, Gebeyehu and Samways 2003, Barker 

2004, Newton 2004, Stefanescu et al. 2004, Bates et al. 2006, Britschgi et al. 2006, 

Chacoff and Aizen 2006, Cleary and Mooers 2006), and land-use changes have 

often been shown to result in lowered abundance and species richness of 

insectivorous birds (Fjeldsa 1999, Stratford and Stouffer 1999, Dean et al. 2002, 

Raman and Sukumar 2002, Lim and Sodhi 2004, Little et al. 2005, Waltert et al. 

2005, Newmark 2006). Indeed, several studies have directly linked declines in 

insectivore abundance to decreases in insect diversity (Benton et al. 2002, Sinclair et 

al. 2002, Britschgi et al. 2006). 

Gaston et al. (2006) recently highlighted the need for, but also the lack of, studies 

investigating the effectiveness of conservation areas for representing and protecting 

biodiversity. Protected areas can serve as benchmarks to evaluate the effects of 

anthropogenic activities on biodiversity (Sinclair et al. 2002, Sigel et al. 2006), and 

make important contributions to the conservation of the organisms inhabiting them, 

whose diversity is otherwise adversely affected in surrounding landscapes. 

Conservation areas have indeed been shown to be valuable for conserving bird 

(Brooks 1999, Sinclair et al. 2002, Sigel et al. 2006), reptile (Brooks 1999, though 

see Smart et al. 2005) and insect (Rivers-Moore and Samways 1996, Gebeyehu and 

Samways 2002, Sinclair et al. 2002, Bates et al. 2006) assemblages. 

In South Africa, as is the case elsewhere, humans and other species are 

competing for available land and resources (Macdonald 1989, Wessels et al. 2000, 
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Chown et al. 2003, Wessels et al. 2003). Human effects on biodiversity have been 

detected at several levels and for a variety of taxa (for reviews see Huntley 1989, 

Driver et al. 2005). At a regional scale, for example, these effects are reflected by 

increasing avian species richness with an increase in percentage of area protected 

(Evans et al. 2006), although it has also been found that landscape transformation 

has little effect on species turnover at this scale (van Rensburg et al. 2004). 

Moreover, it also appears that at this scale richness increases with human 

disturbance - possibly due to the addition of synantrophic species to the already 

existing species pool remaining in fragments of natural vegetation (Fairbanks 2004). 

At local scales, few investigations have quantitatively investigated the contribution 

of protected areas to the conservation of birds in South Africa (Little and Crowe 1994, 

Little et al. 2005, Fox 2006), or the effects of land-use changes on the avifauna 

(Armstrong and Vanhensbergen 1994, Little and Crowe 1994, Jansen et al. 1999, 

Dean et al. 2002, Mangnall and Crowe 2003, Schwarzenberger and Dean 2003, Little 

et al. 2005, Wethered and Lawes 2005, Fox 2006). At local scales, species richness 

has been shown to be both higher (Armstrong and Vanhensbergen 1994, Jansen et 

al. 1999, Dean et al. 2002, Mangnall and Crowe 2003, Little et al. 2005) and lower 

(Little and Crowe 1994, Schwarzenberger and Dean 2003, Fox 2006) in natural than 

in disturbed landscapes, although differences are often small. This suggests that at 

local scale the effect of land-use changes on avian richness may be dependent on 

factors such as locality and the type of land-use change. However, several of these 

studies were not conducted with the purpose of directly assessing the effect of land­

use changes on avian assemblages. Therefore, other factors may have influenced 

their outcomes. For example, sampling effort in different land-use types was not 

always equivalent (e.g. Little and Crowe 1994), the disturbed landscape did not 

support the same vegetation type prior to its transformation as the natural landscape 
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with which it was being compared (Armstrong and Vanhensbergen 1994), and 

differences in richness could be attributed to factors other than land-use changes, 

such as the presence or absence of planted trees (Little et al. 2005). In some 

instances, increases in richness with disturbance were also a consequence of 

artificial water bodies which allowed water birds to occupy areas previously not 

available to them (e.g. Little and Crowe 1994, Fox 2006). In consequence, few 

studies have offered conclusive evidence for the contribution of reserves to avian 

conservation in South Africa, and the effects of landscape change on avian 

assemblages. 

The aim of the present study is therefore to provide a quantitative evaluation of the 

contribution of three South African reserves to the conservation of the avifauna of 

three very different regions. More specifically, I will test Fairbanks' (2004), van 

Rensburg et al.'s (2004) and Evans et al.'s (2006) conflicting conclusions about the 

effect of protected/natural land on the species richness of South African birds at a 

finer spatial scale than the one used in each of those studies. That is, I will determine 

whether richness in pristine areas inside reserves differs from richness in disturbed 

areas outside reserves and how species turnover between areas inside and outside 

the reserve contribute to the overall species richness of a region. I will also examine 

how the functional diversity (in particular feeding guilds and body size) is affected by 

land-use changes. In two of the three regions investigated, insect numbers are 

known to decrease in response to agricultural practices (Witt and Samways 2004, 

Bates et al. 2006), and these declines in insect abundance may be reflected in the 

avian communities. 
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Methods 

STUDY AREA 

Three regions in South Africa were selected for this study (see Fig. 1 in Chapter 

1 ). Each region consisted of a protected area (Jonkershoek Nature Reserve [33°57' 

S, 18°55' E] in the south-western Cape, the Karoo National Park in the southern­

central area of South Africa [32°17' S, 22°25' E] and Tembe Elephant Park [27°01' S, 

32°24' E] in northern KwaZulu-Natal), and land adjacent to each of the protected 

areas that has been modified by human activities. The vegetation and biota of the 

latter was similar to those of the adjacent reserves prior to land-use changes. 

Protected areas will also be referred to as 'natural' areas in the text, and unprotected 

areas which have undergone land-use changes as 'disturbed' areas. 

Jonkershoek Nature Reserve and Assegaaibos Nature Reserve (henceforth 

Jonkershoek) lie in the Jonkershoek valley, one of the highest rainfall regions in 

South Africa (Schulze 1997). Most precipitation is recorded in winter, and summers 

are hot and dry. Jonkershoek forms part of the larger Hottentots-Holland Nature 

Reserve, which is situated in the Fynbos biome. Fynbos is a component of the Cape 

Floral Kingdom - the smallest, but richest floral kingdom of the world, and its 

vegetation is characterized by a high diversity of three plant families: the 

Restionaceae, Proteaceae and Ericaceae, of which a large proportion are endemic to 

the region (Cowling and Richardson 1995). Despite its high floral diversity, Fynbos is 

not home to a large variety of vertebrates, primarily because the region is nutrient­

poor and structurally simple (Cowling and Richardson 1995). In addition, many of the 

large game species that roamed the area are now extinct in the biome (Cowling and 

Richardson 1995). Fire is an integral part of Fynbos; fires naturally recur every 12 to 

15 years. The region in which this study was conducted is situated at the foot of the 

Hottentots Holland Mountains in the Eerste River valley. The vegetation here has 
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been classified as mesic mountain fynbos, characterized by seasonally waterlogged, 

mesic soils, and is interspersed with forests and riparian vegetation on the banks of 

rivers and streams (Moll et al. 1984, McDonald 1985). Because of its low nutrient 

quality, Fynbos is unsuitable for intensive grazing; therefore, land-use activities 

usually result in complete transformation of the landscape. Areas directly adjacent to 

the reserve have been afforested by Pinus radiata. Because (as the name suggests) 

mountain fynbos is mainly restricted to mountainous terrain, it is not as threatened as 

lowland fynbos and renosterveld of the low-lying areas of the south-western Cape, 

which have been extensively transformed by agricultural activities (Hockey et al. 

1989, Cowling and Richardson 1995). Even so, tracts of Fynbos, including those 

adjacent to Jonkershoek, have been replaced by vineyards and plantations of fast­

growing exotics such as Pinus, Eucalyptus and Acacia species (Hockey et al. 1989). 

In addition, alien invasives are a major threat to the biome (Cowling and Richardson 

1995). 

The Karoo National Park (henceforth Karoo) lies in the semi-arid Nama Karoo 

biome (Desmet and Cowling 1999), the vertebrate fauna of which is relatively 

species-poor and supports few endemics (Vernon 1999). Due to seasonal and 

unpredictable climatic conditions, the area was historically characterized by migrating 

species. The region supports the highest proportion of nomadic bird species in the 

country, which take advantage of seasonally unfavourable conditions which other 

species cannot endure (Dean 1997). The erection of fences and hunting have greatly 

reduced numbers of migrating mammals and have effectively caused the 

disintegration of their movement patterns (Hoffman et al. 1999, Siegfried 1999). The 

vegetation of the Nama Karoo is dominated by grasses and shrubs (Midgley and van 

der Heyden 1999), and the greatest limiting factor of the region is moisture (Cowling 

and Hilton-Taylor 1999). The Karoo National Park was proclaimed in 1979, and 

82 

Stellenbosch University  https://scholar.sun.ac.za



further farms, previously used for stock farming, have been added to the reserve 

since the 1990s (Rubin et al. 2001, South African National Parks 2005). Several 

game species that once occupied the region have been reintroduced to the park over 

the past years (South African National Parks 2005). A segment of the Nuweveld 

Mountains falls within the boundaries of the Karoo National Park, where they form 

part of the escarpment that divides South Africa's central plateau and coastal areas 

(Rubin et al. 2001 ). Two veld types, as defined by Acocks (1988), are represented in 

the Karoo, namely Karroid Broken Veld and Karroid Merxmuellera Mountain Veld 

replaced by Karoo vegetation (Rubin et al. 2001 ). The former is associated with the 

middle, and the latter with the upper plateau of the Karoo (Rubin et al. 2001) The 

major threats to the region are associated with farming activities, specifically 

pastoralism. Overgrazing and trampling by livestock (mainly sheep, goats, some 

cattle, and more recently, game), and the imposition of perennial grazing regimes in 

highly seasonal or periodic landscapes is having negative effects on the landscape 

(Werger 1978, Hoffman et al. 1999, Vernon 1999, G. Pretorius pers. comm.). 

Tembe Elephant Park (hereafter Tembe) was proclaimed in 1983, prior to which it 

was sparsely populated communal land. The park lies in the Maputaland Centre, 

which is part of the Maputaland-Pondoland-Albany biodiversity hotspot and is home 

to many endemic species and subspecies (Matthews et al. 2001, 

www.biodiversityhotspots.org) and is a region with a relatively high turnover in 

vegetation (Moll 1980, Kirkwood and Midgley 2003). The fauna and flora of the 

region possess a distinctive tropical element (Poynton 1961 ). The area in and around 

the Tembe consists of a matrix of woodland, grassland and sand forest patches, of 

which the latter is considered to be of particularly high conservation value (Matthews 

et al. 2001 ). Sand forest distributions are thought to be determined mainly by historic 

plant dynamics, rather than current environmental factors, and it is thus thought that 
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they do not re-grow once they have been disturbed (Matthews et al. 2001 ). 

Vegetation plays an important role in the distribution of birds in the region; mixed 

woodland and sand forest support different assemblages (van Rensburg et al. 2000). 

Tembe lies in the summer rainfall region of the subcontinent and experiences 

relatively high humidity, especially in summer (Matthews et al. 2001 ). Anthropogenic 

threats to areas outside Tembe include frequent burning, livestock grazing and the 

utilization of selected plant species for traditional medicines or wood carvings. Inside 

the park, elephants are damaging sand forests due to the fact that their natural 

migration routes have been obstructed by the erection of fences around the park 

border, causing them to no longer exclusively select the preferred woodland areas for 

feeding (Matthews et al. 2001 ). 

SAMPLING DESIGN 

In each reserve, equal numbers of transects were selected in undisturbed (natural) 

areas inside, and in disturbed areas outside the reserve. Natural and disturbed areas 

are referred to as the two land-use types in the text. In Jonkershoek, a total of 32 

transects (16 in natural and 16 in disturbed areas), and in Tembe and the Karoo 40 

transects (20 in natural 20 in disturbed areas) were selected. In Jonkershoek and the 

Karoo, transects were randomly selected from the study area. Randomly selected 

transects which were inaccessible or far from roads were repositioned to more 

accessible areas. Because vegetation types and disturbed areas are patchily 

distributed in and around Tembe, transect-selection here was done with the 

assistance of the park's regional ecologist and local people of the region. 

A stratified sampling design was employed. In Jonkershoek (Fig. 1 ), transects 

were selected in two vegetation types: mountain fynbos vegetation above 600 m 

altitude (10 transects in each land-use type) and mountain fynbos vegetation below 
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600 m altitude (six transects in each land-use type). Because the two vegetation 

types supported similar bird assemblages, data from the two vegetation types were 

pooled , and therefore only one vegetation type, referred to as 'mountain fynbos' here, 

was effectively sampled . In August/September 2005, every point was sampled on 

five different mornings, and in March/April on four mornings. In March, one of the 

transects in the plantations was harvested before sampling had been completed . For 

this reason , a similar point was chosen , and two counts, which were pooled with the 

now harvested transect's data, conducted here. 

• 
• • • 

O 1 2 km 
I I I I I I I I I 

Natural - Mou ntal n Fyn bos 

Disturbed - Plantations 

• 

• • •• • 
• 

Figure 1. Position of point transects in Jonkershoek Nature Reserve. Areas shaded 

in green and brown represent protected (natural) and unprotected (disturbed) areas 

respectively. 

In the Karoo National Park (Fig . 2) , transects were only selected in areas that had 

been incorporated in the reserve for more than 10 years. Transects were positioned 

in five different vegetation types as defined by Bezuidenhout and Holness (2004). For 
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each land-use type, nine transects were allocated to Stipagrostis ciliata Dwarf 

Shrubland, two to both Montane Open Shrubland and Aristida diffusa-Rhus burchel/i 

Grassy Shrubland, one to Montane Dwarf Shrubland and five to Karoo Slope Mosaic. 

Transects in Stipagrostis ciliata Dwarf Shrubland will henceforth be referred to as 

'Lowlands' transects (n = 9 in each land-use type), data from Montane Open 

Shrubland and Montane Dwarf Shrubland, both of which are found on the top of the 

escarpment, were pooled and are referred to as the 'Plateau' vegetation type (n = 3), 

and Aristida diffusa-Rhus burchelli Grassy Shrubland, which occurs on the middle 

plateau, and Karoo Slope Mosaic, which occurs on the slopes of the mountains, were 

pooled and are referred to as 'Slopes & Middle Plateau' (n = 7). Transects crossed 

riverine patches (vegetation classified as Karoo Drainage Line Complex, sensu 

Bezuidenhout and Holness 2004). In each sampling period, every transect was 

sampled on one morning and one afternoon. Counts were carried out in October 

2005 and February/March 2006. 

In both natural and disturbed areas in Tembe (Fig. 3), 10 transects were selected 

in each of two vegetation types: mixed woodland and sand forest (van Rensburg et 

al. 2000). According to stratified sampling theory, the proportion of transects 

assigned to each vegetation type should be indicative of the percentage cover of the 

respective vegetation type (Bibby et al. 2000). In Tembe mixed woodlands cover a 

larger area of the study region than sand forests (Matthews et al. 2001 ). However, 

because it has been shown that bird assemblages are more variable in sand forests 

than woodlands (van Rensburg et al. 2000), an equal number of transects was 

selected in each vegetation type. Bird counts in Tembe were done in 

November/December 2005 and April/May 2006. In each sampling period, every 

transect was visited on three mornings and two afternoons. 

86 

Stellenbosch University  https://scholar.sun.ac.za



Fig. 4 is a schematic representation of the experimental set-up employed in the 

three regions and summarises terminology used in the text. 

Stratum 

Lowlands 

.. Slopes & Middle Plateau 

Plateau 

Riverine 

Figure 2. Position of line transects (black lines) in and around the Karoo National 

Park. The green line represents the park borders. Vegetation types have been 

mapped (data from Bezuidenhout and Holness 2004), and the position of riverine 

vegetation (Karoo drainage line complex vegetation type) has also been shown. 
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Figure 3. Position of point transects in Tembe. Areas shaded in green and brown 

represent protected (natural) areas and unprotected (disturbed) areas respectively. 

(N = natural , D = disturbed) 

Because the three study regions possess different vegetation structure and also 

differ from one another in terms of their avian species richness, different sampling 

techniques were employed . At every transect, distance-based line transects (Karoo) 

or point counts (point transects - Tembe and Jonkershoek) were conducted 

(Buckland et al. 2001 ). The former involves an observer walking in a straight line for 

a specified distance and time, and recording the distance from the line of each bird 

detected (Buckland et al. 2001 ). In the Karoo, transects were 1 km long and 
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detections were recorded up to a distance of 50 m perpendicular to, and on either 

side of the transect line. If a bird was recorded in front of the observer, the angle of 

the bird from the point on the transect at which the observer was standing, and the 

distance of the bird from the observer were recorded. These parameters were used 

to calculate the perpendicular distance of the bird from the transect line. Line 

transects are considered the more accurate sampling method, but require that the 

vegetation structure is suited for walking in straight lines (Bibby et al. 2000). Because 

this was not practical in Jonkershoek and Tembe, birds were monitored using point 

transects here. For point transects, the observer stood at one point for a specified 

time, and recorded the birds heard or seen and their horizontal distance from the 

point (Buckland et al. 2001 ). This method is more superior in dense vegetation (Bibby 

et al. 2000). Swarovski 10 x 42 EL binoculars were used for bird observations, and 

distances were measured with a Bushnell Yardage Pro Sport laser rangefinder; if the 

bird was not visible or the undergrowth was very dense, distances were estimated by 

measuring the distance to objects thought to be in the vicinity of the bird. If birds 

moved within a transect, distances were recorded at the initial location they were 

recorded at (Buckland et al. 2001 ). Birds flying through transects were not counted 

(van Rensburg et al. 2000). The observer(s) (MG, and, in Tembe, Bongani Tembe) 

spent approximately two minutes at point transects before the count commenced to 

allow birds to become accustomed to the observers' presence and settle (Bibby et al. 

2000). The duration of point counts at each point transect was seven minutes at 

Jonkershoek transects and ten minutes at the structurally more complex and more 

species-rich Tembe transects (Fuller and Langslow 1984). Count durations in the two 

regions were different to maximise the number of species observed in the given time, 

while minimising the chances of counting the same bird twice (Fuller and Langslow 

1984, Bibby et al. 2000). 
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Figure 4. Schematic diagram of the experimental set-up in each of the three study 

regions, and terminology used throughout the text. Three regions were sampled : 

Jonkershoek, the Karoo and Tembe. In every region , natural areas inside a reserve 

and disturbed areas outside the reserve were sampled. Natural and disturbed areas 

are also referred to as the two land-use types. Within every land-use type, different 

vegetation types were identified (except in Jonkershoek, where only one vegetation 

type was assessed). Within every vegetation type, transects were sampled . In 

Jonkershoek and Tembe, point transects were used, and line transects in the Karoo. 

Note that the number of vegetation types per region and the number of transects 

within each vegetation type were not necessarily as shown. 

Morning counts were conducted from dawn until three hours after sunrise, and in 

the afternoons from three hours before sunset until dusk. The order in which 
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transects were sampled was randomized so far as was possible. No counts were 

carried out in very windy conditions or in rain. 

ANALYSES 

Sampling sufficiency 

Sample-based rarefaction curves were used to assess sampling adequacy (Gotelli 

and Colwell 2001 ). Rarefaction curves were calculated using a moment-based 

interpolation method (Mao Tau), which requires no resampling and has been shown 

to be as accurate as the traditional re-sampling method (Colwell et al. 2004). The 

rarefaction curve represents the expected shape of the corresponding sample-based 

accumulation curve (Gotelli and Colwell 2001 ). Sampling is considered to be 

adequate if the rarefaction curve approaches an asymptote (Longino et al. 2002). 

Analyses were run in Estimates v. 7.5 (http://viceroy.eeb.uconn.edu/estimates, 

Colwell 2004). 

Species richness and abundance 

Species richness was calculated using the Jacknife2 estimator (Burnham and 

Overton 1978, 1979, Smith and van Belle 1984, Palmer 1991 ). Unlike several other 

species richness estimators, Jacknife2 does not require transects to be 

compositionally similar, data to be normally distributed, or an independence of 

species (Smith and van Belle 1984, Lande et al. 2000, Chao 2004, Magurran 2004). 

In addition, the index has been shown to provide conservative, but accurate richness 

estimates (see Magurran 2004 for a synopsis of studies assessing this and other 

nonparametric species richness estimators). Jacknife2 is obtained by considering 

successively smaller samples from the observed species pool. From these, the 

number of undetected species occurring in the sampled area is estimated from the 
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number of singletons and doubletons in the subsamples (Chao 2004). Estimates v. 

7.5 (Colwell 2004) was used to obtain richness estimates. 

Jacknife2 estimates were calculated for the natural or disturbed areas of each of 

the three regions. Two different Jacknife2 estimates are presented. The first was 

obtained without resampling. This produces the most accurate richness estimate 

(Colwell 2005). The second was obtained using 500 randomizations; sampling with 

replacement was used. Although sampling without replacement (which provides 

identical richness estimates to analyses conducted without resampling) provides 

more accurate estimates of richness (Colwell 2005), the generated data is dependent 

on the real data (Walther and Moore 2005), and no variance is provided for richness 

estimates (Colwell 2005). Therefore, sampling with replacement is more appropriate 

for the comparisons of datasets (Colwell 2005) and was therefore used to statistically 

compare richness between natural and disturbed sites. 

Jacknife2 was also calculated for every transect using 10000 randomizations with 

replacement. Differences in species richness between transects in different land-use 

types, vegetation types (except in Jonkershoek, where only one vegetation type was 

sampled) and years (except for the Karoo dataset, where years were pooled due to 

small sample sizes) were assessed using generalized linear models (PROC 

GENMOD) in SAS (factorial ANOVA, Poisson distribution, log-link function, type 3 

likelihood test, Quinn and Keough 2002). To account for overdispersion (Agresti 

1996), standard errors were scaled using deviance as the estimate of the dispersion 

parameter. Where interactions were significant, post-hoc tests were conducted to 

determine which classes of treatments were significantly different from one another. 

Bird density was calculated by dividing the mean number of birds recorded per 

sample by the area of the transect. Abundance (and therefore density) estimates are 

usually dependent on the scale at which abundance is measures (Gaston et al. 1999, 
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Pautasso and Gaston 2006). Comparisons of densities here were, however, made 

between equally-sized transects. Because the area of transects in Jonkershoek and 

Tembe (TT x 50 x 50 m2
) was different to the area of transects in the Karoo (100 x 

1000 m2
), comparisons between reserves could, however, be confounded. 

Detectability was not considered for density calculations - it is therefore probable that 

density values given here are an underestimate, as undetected birds were not 

accounted for (Bibby and Buckland 1987). This effect would have been most marked 

in Tembe natural sand forest, where vegetation complexity was greatest. Visibility 

was approximately identical in natural and disturbed mixed woodland and disturbed 

sand forest transects. In Jonkershoek most birds in both natural and disturbed 

habitats were detected by their calls, while the vegetation structure between natural 

and disturbed areas and in different vegetation types in the Karoo was very similar. 

Therefore density comparisons should give representative estimates of relative 

increase or decreases due to land-use change. 

To assess how avian density responds to disturbance, generalized linear models 

(PROC GENMOD in SAS: factorial ANOVA, Poisson distribution, log-link function, 

type 3 likelihood test) were again employed to assess the effect of disturbance, 

vegetation type (except in Jonkershoek, where only one vegetation type was 

sampled) and sampling period (except in the Karoo, where samples from 2005 and 

2006 were pooled due to small sample sizes), and interactions between the three, on 

avian densities. Standard errors were scaled using deviance (Agresti 1996). 

Significant interactions were further investigated with post-hoc tests. 

Rank-abundance plots are useful for visualising patterns in species richness and 

abundance in different communities and can be used to assess the evenness of a 

community (Magurran 2004). A community dominated by few species will possess a 

steep rank-abundance curve, while curves with a shallow slope indicate high 
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evenness. Rank-abundance plots were therefore plotted for the two land-use types 

and the different vegetation types of Jonkershoek, the Karoo and Tembe. 

Abundances were log10 transformed to accommodate species whose abundances 

span several orders of magnitude on one plot (Magurran 2004). 

13-diversity 

P.,-diversity is a measure of species turnover in space (Koleff et al. 2003). Here, P.,­

diversity was assessed in two ways. Additive partitioning assesses the relative 

contribution of diversity at different spatial scales to the overall regional diversity 

(Veech et al. 2002, Crist et al. 2003). In space, diversity can be partitioned in the 

following manner: Vi= Oi-1 + r.,i-1. where i is the spatial scale (also referred to as 'level') 

of analysis. In other words, regional diversity (y) is the sum of local diversity (a;, the 

mean diversity within samples at level 1) and beta diversity (the diversity among 

samples, calculated as ai+t - ai) (Crist et al. 2003). Additive partitioning for the 

reserves sampled in this study can thus be presented in the following manner: Vregion 

= Osamples + r.,samples + r.,transects + r.,vegetation types + r.,land use (except in Jonkershoek, where 

no r.,vegetation types existed because only one vegetation type was sampled). The relative 

contribution of diversity (species richness was used as diversity measure here) at 

these spatial scales to the regional diversity was calculated using the programme 

PARTITION developed by J.A. Veech and T.O. Crist (Crist et al. 2003, available at 

http://zoology.muohio.edu/crist/). To assess whether diversity at each level was 

significantly different from expected, randomization procedures were used. Two 

randomizations with different null expectations were employed (Crist et al. 2003): at 

the lowest level (asamples and r.,samples), randomizations were individual-based, and 

assessed the probability that individuals aggregate with other individuals of their 

species; at the other levels (P.,transects. r.,vegetation types and r.,land use). samples, rather than 
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I 

individuals, from one level were randomly allocated to the next higher level to test 

whether the samples from one level can be considered random samples from the 

next lowest level. Ten thousand randomizations were run, except at the third level 

(11vegetation types) in the Karoo dataset, where randomizations were only conducted 1000 

times because the software could not deal with 10000 randomizations. 

To obtain additional insight into how land-use changes have impacted on the 

composition of avian assemblages, another 11-diversity measure, f35 ;m (Lennon et al. 

2001 ), was used. The mathematical formula for f35 ;m is ~in(b,c) , where a is the 
mm(b,c)+a 

number of species shared by both transects, b is the number of species unique to 

one transect and c the number of species unique to the other transect. The metric is 

thus calculated from presence-absence data, and is therefore independent of 

abundance. In addition, f3s;m is not biased by species richness, and was found to be 

one of the best 11-diversity measures for presence-absence data (Koleff et al. 2003). 

f3s;m was calculated for all pairs of all transects of each sampling region. Numbers of 

shared and unique species were calculated in Estimates (Colwell 2004), and f3s;m 

subsequently calculated using a spreadsheet. f3s;m values were classified according 

to the land-use type and vegetation type of the transects from which their values 

were calculated. Generalized linear models (PROC GENMOD in SAS) were then 

used to determine how 11-diversity is affected by disturbance, and therefore how 

species turnover changes as a result of disturbance. Because proportional data was 

used, models were run with binomial error distribution and a log-link function 

(Crawley 2002), and deviance was scaled to compensate for overdispersion. Post 

hoc tests were conducted to determine which combination of transects displayed 

significantly higher or lower 11-diversity than which other combination of transects. 

Results are presented only for combinations of transects that are sensible in the 

context of this study. Comparison of f35;m between natural transects of one vegetation 
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type and fSsim between disturbed transects of the same vegetation type indicates 

within which land-use type species turnover is greater, and can indicate whether 

homogenization within a vegetation type has taken place. Comparisons of fSsim 

between two different vegetation types in natural areas and fSs;m between the same 

two vegetation types in disturbed areas indicate whether species turnover between 

vegetation types of natural and disturbed areas differ, and whether homogenization 

has occurred between vegetation types. Finally, comparisons of fSs;m between 

transects within either natural or disturbed transects and fSs;m between disturbed and 

natural transects indicate whether species turnover between natural and disturbed 

areas is greater than within natural or within disturbed areas. 

Ordinations 

To further assess how land-use changes affected species composition, 

assemblages in natural and disturbed areas were compared using multivariate 

analyses using the PRIMER v. 5 software (Clarke and Gorley 2001 ). The Bray-Curtis 

similarity index was used to calculate similarities between assemblages (Magurran 

2004). This index considers both species identity and abundance. Data were fourth­

root transformed to down-weight common species (Clarke and Warwick 1994). Non­

parametric analyses of similarity (ANOSIM, Clarke 1993) were conducted to 

determine how treatments differed with respect to assemblage structure. Two-way 

crossed ANOSIMs were used to ascertain what the contribution of land use, 

sampling period and/or vegetation type was to the composition of bird assemblages. 

For Jonkershoek, where only one stratum was sampled, land use and sampling 

period were used as factors. For the Karoo National Park and Tembe, data from both 

years were pooled, and land use and vegetation type comprised the two factors. 

Global R values were used to determine the degree of similarity between treatments. 
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The closer R is to 1, the more dissimilar assemblages are. ANOSIMs were conducted 

between combinations of land-use type and vegetation type (where applicable) for 

each sampling period (except for the Karoo dataset, where results from both 

sampling periods were pooled due to small sample size). Species assemblages of 

different land-use types, vegetation types and sampling periods were plotted with 

multi-dimensional scaling (MOS) ordinations (Clarke and Warwick 1994). Six random 

restarts were used each with a different number of randomizations (10, 20, 30, 40, 

50, 100) to ensure the lowest stress value (i.e. the global optimum) was obtained 

(Clarke 1993). The stress values presented in the results were obtained for all 

restarts. 

Feeding Guilds 

Birds were assigned to one of six feeding guilds (frugivore, granivore, insectivore, 

mixed, nectarivore, predator, after Dean et al. 2002) based on diet descriptions in 

Hockey et al. (2005). The proportion of species of each guild in transects was 

calculated and compared between land-use types and, for the Tembe dataset, 

vegetation types. (Sample sizes were too small to consider vegetation types in the 

Karoo dataset.) Data from different sampling periods were pooled. Because 

proportional data was used, generalized linear models with binomial error distribution 

and a log-link function (Crawley 2002) were run in SAS (Proc GENMOD). The 

deviance of the model was scaled to compensate for overdispersion. Percentage 

deviance explained was calculated by dividing the difference between the deviance 

of an empty model (no predictors) and that of the model with predictors, by the 

deviance of the empty model. Post-hoc tests were conducted to determine which 

classes of treatments were significantly different from one another. Analyses were 
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not conducted for guilds that were absent/rare (Jonkershoek: predators; Karoo: 

predators and nectarivores; Tembe: nectarivores). 

Indicator Species 

To determine whether any species could be considered as indicators of a land-use 

type, Indicator Value (lndVal, Dufrene and Legendre 1997) analyses were 

conducted. The advantage of this method is that it is based both on the specificity 

and fidelity of species to a defined site group, i.e. indicator species should be unique 

to, and widespread and abundant within the sites in the site group (McGeoch and 

Chown 1998). 999 permutations of random allocations of transects among transect 

groups were used to assess the significance of indicator values. Analyses were 

conducted separately for both sampling periods, except for the Karoo dataset for 

which years were pooled. Comparisons were made between land-use types (i.e. 

natural vs. disturbed) for each vegetation type separately. Species with significant 

/ndVals larger than 70% were considered to be indicator species (van Rensburg et 

al. 1999). 

Body Size 

Kruskal-Wallis tests were conducted to determine whether species found in natural 

and disturbed areas differed from one another with respect to body mass. Species 

body mass values were obtained from the database used in Chapter 2. To ascertain 

whether land use, vegetation type (except for Jonkershoek, where only one 

vegetation type was sampled) and sampling period (except for the Karoo data, where 

data from both years was pooled) affect the mean biomass of the avifauna recorded 

at transects, generalized linear models (log-link function, normal distribution) were 

utilized. 
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Results 

Sample-based rarefaction curves started flattening off for all three study regions 

(Fig. S), although they did not reach an asymptote, especially in the Karoo lowland 

(Fig. Sb) and the Tembe transects (Fig. Sc). Therefore, results should be treated with 

the necessary caution. 
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Figure S. (see next page for figure title) 
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Figure 5. Sample-based rarefaction curves of avian assemblages in Jonkershoek 

(a), the Karoo (b) and Tembe (c). (N = natural, D = disturbed, Mtn Fynb = mountain 

fynbos, Lowl = lowlands, Slopes & MP= slopes & middle plateau, Plat= plateau, MW 

=mixed woodland, SF= sand forest.) 
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Jacknife2 species richness estimates were larger for natural areas than disturbed 

areas in all three regions, although they were not statistically different from one 

another (Table 1). The total number of individual birds recorded was also greater in 

natural than disturbed areas in all three regions (Table 1 ), although abundances have 

not been statistically compared, and the higher abundance in Tembe's natural area 

can mainly be attributed to one record of 750 barn swallows (scientific names of birds 

are provided in the appendix) in a natural transect. In all regions some of the species 

were only identified in one land-use type (Table 1). 

Table 1. Total abundance, recorded species richness and estimated species 

richness (Jacknife2, obtained without resampling and with resampling with 

replacement) of natural (N) and disturbed (D) sites, and the number of recorded 

species shared between natural and disturbed sites. Jacknife2 estimates obtained 

without resampling provide more accurate estimates, while estimates obtained from 

resampling with replacement provide measures of variation (standard deviations are 

shown here) allowing statistical comparisons to be made (Colwell 2005, Walther and 

Moore 2005). 

Jonkershoek Karoo Tern be 

N D N D N D 

Abundance 937 497 1220 707 2032 1827 

No. of Species Recorded 33 25 57 49 95 95 

Jacknife2 (no resampling) 46 32 91 62 136 119 

Jacknife2 (with resampling) 35.2 ± 5.1 26.8 ± 4.5 61.8 ± 9.3 52.9 ± 7.0 83.0 ± 9.3 77.6 ± 8.8 

No. of Species Shared 20 43 70 

Avian richness recorded per transect did not respond to disturbance in a 

consistent way. Land use had the most apparent effect on avian species richness in 

Jonkershoek Nature Reserve (Fig. 6). Natural transects supported more species than 
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disturbed transects. More species were also recorded per transect in spring 2005 

than in autumn 2006 (Appendix 2). In the Karoo, land use alone had no effect on 

species richness, while significant differences were observed between the different 

vegetation types (Appendix 2). When interactions between land use and vegetation 

types were considered, significant differences between different land uses of one 

vegetation type were only observed in the lowlands: more species were recorded in 

natural than disturbed lowland transects (Fig. 7). In Tembe, differences in species 

richness between land-use types within one sampling period were recorded in 

autumn 2006, when more species were recorded in disturbed than natural transects 

(Fig. 8, Appendix 2). In summer 2005, more species were also recorded in sand 

forest than in mixed woodland transects (Appendix 2). 

In Jonkershoek and the Karoo, land use was a significant predictor of bird 

densities (Table 2): natural transects supported more dense assemblages, although 

sampling period (in Jonkershoek) and vegetation type (in the Karoo) also affected 

abundances. In Tembe, land use did not influence avian density. 

Disturbance resulted in lower evenness in avian communities in Jonkershoek, 

especially in the autumn sampling period (Fig. 9a). In disturbed areas, communities 

were dominated by few species, while other species possessed low abundances, 

whereas abundances in natural communities were relatively evenly distributed across 

the species in the community. The same was true for the Karoo lowlands - evenness 

decreased with disturbance, although this was not the case for the other two Karoo 

vegetation types, where rank-abundance plots of natural and disturbed transects 

were similar (Fig. 9b). In Tembe, disturbance did not produce a decrease in 

evenness - in fact, in the autumn 2006 sampling period, evenness increased after 

disturbance in both mixed woodlands and sand forests (Fig. 9c & d). 
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Figure 6. Box-and-whisker plots of mean species richness values of transects in 

natural (N) areas inside and disturbed (D) areas outside Jonkershoek Nature 

Reserve . Upper and lower bounds of the boxes represent 75% and 25% quartiles 

respectively, and whiskers 95% confidence intervals. Letters above the bars indicate 

significant differences determined by generalized linear models. 
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Figure 7. Box-and-whisker plots of mean species richness values of transects in 

lowland vegetation of natural (N) areas inside and disturbed (D) areas outside the 

Karoo National Park. Upper and lower bounds of the boxes represent 75% and 25% 

quartiles respectively , and whiskers 95% confidence intervals. Letters above the bars 

indicate significant differences determined by generalized linear models. 
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Figure 8. Box-and-whisker plots of mean species richness values of transects in 

different sampling periods in natural (N) areas inside and disturbed (D) areas outside 

Tembe Elephant Park. Upper and lower bounds of the boxes represent 75% and 

25% quartiles respectively, and whiskers 95% confidence intervals. Letters above the 

bars indicate significant differences determined by generalized linear models. 

In all three regions, a-diversity within samples was lower than expected from 

random and never contributed more than 12 % of the overall diversity of the region 

(Fig. 10). Between samples within a transect, ~-diversity was also lower than 

expected . This indicates that birds were not randomly distributed within samples or 

transects but aggregated with other individuals of their species. In contrast, ~-

diversity between transects and between vegetation types (except in Jonkershoek, 

where only one vegetation type was sampled) was greater than random expectation 
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in all three regions. Species composition between different transects and vegetation 

types was therefore more different than expected. At these levels, '1-diversity also 

made the greatest contribution to the overall diversity: in Jonkershoek and Tembe, 

the greatest species turnover was between transects, while the greatest turnover in 

the Karoo was recorded between vegetation types. In Jonkershoek and Tembe, land 

use contributed more to the total diversity of the region than expected - in both cases 

more than 20 % of the diversity could be attributed to differences in species 

composition between natural and disturbed transects. In the Karoo, ~-diversity at this 

level was not different from expectation. 

Table 2. Results from generalized linear model ANOVAs and post-hoc ANOVAs 

comparing avian density between land-use types, vegetation types and sampling 

periods in Jonkershoek, the Karoo and Tembe. Italicized values in brackets represent 

mean density values, which may be underestimates (see Methods). Only significant 

differences relevant in the context of this study are shown. (N = natural, D = 

disturbed, SI= slopes & middle plateau, Lo= lowlands, Pl= plateau) 

Jonkershoek (35.1) 

Land use 

Year 

Karoo (12.33) 

Land use 

Vegetation Type 

Tembe (49.1) 

Land use*Year 

Scaled 

Dev/df N df 

64 

40 

80 

x2 Effect 

30.04*** N (42.5) > D (28.0) 

13.12*** 2005 (39.3) > 2006 (31.1) 

11.68** N (15.65) > D (9.01) 

9.88** Lo (10.19) <SI (16.21) 

4.22* SI> Pl (10.42) 

8.14** 2005 N (78.0) > 2006 N (25.5) 
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When considering f3 5;m between different classes of land use and vegetation types 

(Appendix 3), species turnover between transects within disturbed areas was greater 

than turnover between transects within natural areas in Jonkershoek, on the slopes 

and middle plateau of the Karoo, and in Tembe sand forest (Fig. 11). In these areas, 

homogenization within vegetation types has therefore not taken place due to 

disturbance - the opposite has rather happened: within these vegetation types a 

greater turnover of species between transects has occurred as a consequence of 

disturbance. In the Karoo, turnover between lowland and either of the other two 

vegetation-type transects was greater in disturbed than in natural areas, indicating 

that between vegetation types, disturbance also increases the disparity between the 

composition of assemblages (Fig. 12a). In Tembe, however, different vegetation 

types supported more similar assemblages if they were disturbed, indicating a 

homogenization effect between vegetation types in the event of habitat disturbance 

(Fig. 12b). For a specific vegetation type, ~-diversity between natural and disturbed 

areas was greater than ~-diversity within either the natural or the disturbed areas in 

Jonkershoek and Tembe (Fig. 13a & c), which was expected due to the change in 

species composition in response to disturbance (see Fig. 14). However, in the Karoo, 

no significant differences in ~-diversity were found between transects within one 

land-use type and transects between natural and disturbed areas within the same 

vegetation type (Fig. 13b), indicating that the identity of species in natural and 

disturbed areas differs little. 
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Figure 9. (see next page for figure title) 
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Figure 9. Rank-abundance curves for (a) Jonkershoek, (b) the Karoo, and Tembe 

mixed woodland (c) and sand forest (d) . (N =natural , D =disturbed) 

Assemblages differed between natural and disturbed transects in all three regions 

(Fig. 14). In Jonkershoek, disturbance created the greatest change in assemblage 

species composition , although sampling season also had a significant, though less 

pronounced , effect on composition. In the Karoo National Park, land use had a 

relatively small influence on composition (and may mainly have been driven by 

differences in abundance, considering the lack of significant differences in Bs;m values 

between natural and disturbed transects [Fig . 13b]), while vegetation type comprised 

the more important predictor of assemblage composition in the Karoo (Fig 14b). In 

Tembe, bird assemblages in natural and disturbed landscapes clustered separately 

too. In addition , mixed woodland and sand forest assemblages separated out 

distinctly in the natural area, but in disturbed landscapes assemblages of the two 

vegetation types were more similar, providing further evidence for the 

homogenization of the avifauna in disturbed areas (Fig 14c). 
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Figure 10. Additive partitioning of diversity (species richness) observed (0) and 

expected (E) from 10000 randomizations in Jonkershoek, the Karoo and Tembe. 

Richness is partitioned between different spatial scales; in Jonkershoek: within 

samples (alpha1 ), between samples (beta1 ), between transects (beta2) and between 

land-use types (beta3); in the Karoo and Tembe: within samples (alpha1), between 

samples (beta1 ), between transects (beta2), between vegetation types (beta3) and 

between land-use types (beta4). All observed diversity values were significantly 

smaller or greater (as indicated in the figure) than expected from random, with the 

exception of beta4 (turnover between land-use types) in the Karoo. 

By examining the effect of disturbance on not only species identity, but also on 

functional classes of organisms, an indication of the aspect of the species' biology 

which makes them vulnerable to disturbances may be obtained . In this study, relative 

proportions of different feeding guilds changed in response to land-use changes (Fig. 

15, Appendix 4). (Trends and significance for absolute abundances were identical to 

those presented for proportions in Fig. 15, with the exception of those of Jonkershoek 

mixed feeders, which occurred in equal abundances in the two land-use types; data 
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not shown.) In the Karoo, land-use changes had the least effect on feeding guilds -

slightly more mixed feeders were observed in the reserve than on surrounding farms. 

However, in Jonkershoek and Tembe, the proportion of insectivores decreased with 

landscape transformation, while granivores and mixed feeders were more dominant 

in transformed than natural transects. The proportion of nectarivores in Jonkershoek 

was also lower in disturbed areas than in natural vegetation. In Tembe Elephant Park 

vegetation type affected the proportion of frugivores and predators - higher 

proportions of both guilds were recorded in sand forests than in mixed woodlands 

(Appendix 4). 

Indicator species were identified in natural areas of all three regions (Table 3). In 

Jonkershoek, more species were specific to natural than disturbed areas, indicating 

that more species are disadvantaged by disturbance than benefit from it. Two of the 

indicator species (Cape sugarbird and orange-breasted sunbird) of the natural areas 

are endemic to the Fynbos biome (Cowling and Richardson 1995), and two other 

endemics (Victorin's warbler and protea seed-eater) were only recorded in natural 

transects (although protea seed-eaters especially were not widespread in this land-

. use type). Disturbance therefore poses a threat to some endemic species of the 

region. The Cape siskin, another endemic, however profits from the plantations - it 

was common here in spring (see also Armstrong and Vanhensbergen 1994). In the 

Karoo, few indicator species were identified, and they were all indicators of natural 

areas. In Tembe, indicators for natural areas were lacking in the mixed woodland, 

while several indicators for sand forest assemblages were identified, most of them for 

the spring sampling season. In the disturbed landscapes, indicator species were 

wide-spread generalists often associated with agriculture or human activities. In 

Jonkershoek and Tembe, general trends observed for the feeding guilds of all 

species (Fig. 15) were reflected in the indicator species: insectivores and 
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nectarivores in Jonkershoek comprised the dominant indicator species for natural 

transects, while granivores and mixed feeders were dominant in disturbed transects. 

Changes in land use therefore not only causes a decline in the abundance of 

insectivores (and nectarivores in Jonkershoek), but threatens individual insectivore 

and nectarivore species, while certain granivorous and mixed feeder species, rather 

than just individuals, benefit from landscape disturbance. 

In none of the study regions did birds in natural and disturbed areas differ from 

one another in terms of body size (Kruskal-Wallis test, Jonkershoek: H = 1.351, n = 

58, p = 0.245; Karoo: H = 0.255, n = 77, p > 0.61; Tembe: H = 0.091, n = 191, p = 

0.763). Land use had an effect on the biomass of birds in Jonkershoek and in the 

Karoo: in both cases biomass decreased in response to disturbance (Table 4). In 

Tembe, differences in biomass were only recorded between sampling periods. 
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Figure 11. Difference between mean f!,sim of transects in natural areas and mean f!,sim 

of transects in disturbed areas for each vegetation type in (a) Jonkershoek Nature 

Reserve, (b) the Karoo National Park, and (c) Tembe Elephant Park. (e.g. 

Nalo/Nalo - Dilo/Dilo = mean l!,5;m between all natural lowland transects minus 

mean f!,s;m between all disturbed lowland transects.) Significant differences as 

determined by generalized linear models are indicated on the figures (*** p < 0.001, * 

p < 0.05). (Na = natural, Di =disturbed, Lo= lowlands, SI = slopes & middle plateau, 

Pl= plateau, MW= mixed woodland, SF= sand forest.) 
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IFigUJre 12. Difference between mean f3sim of transects of two vegetation types within 

natural areas and mean f3sim of the same two vegetation types in disturbed areas in 

(a) the Karoo National Park, and (b) Tembe Elephant Park. In Jonkershoek, only one 

vegetation type was sampled. Significant differences as determined by generalized 

linear models are indicated on the figures (*** p < 0.001 ). (Na = natural, Di = 

disturbed, Lo = lowlands, SI = slopes & middle plateau, Pl = plateau, MW = mixed 

woodland, SF= sand forest.) 
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Figure 13. Difference between mean f3s;m of transects within one land-use type 

(either natural or disturbed) and mean f3s;m of transects between both land-use types 

for each vegetation type in (a) Jonkershoek Nature Reserve (b) the Karoo National 

Park, and (c) Tembe Elephant Park. Significant differences, as determined by 

generalized linear models are indicated on the figures (*** p < 0.001). (Na = natural, 

Di = disturbed, Lo = lowlands, SI = slopes & middle plateau, Pl = plateau, MW = 
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Nature Reserve, (b) the Karoo National Park and (c) Tembe Elephant Park based on 

land-use type, sampling period and vegetation type. (N = natural, D = disturbed) 
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Figure 15. Mean proportion of abundance of birds in feeding guilds per transect in 

(a) Jonkershoek Nature Reserve, (b) the Karoo National Park and (c) Tembe 

Elephant Park. Bars represent 95 % confidence intervals, and significant differences 

in proportions between natural and disturbed transects as calculated from 

generalized linear models are indicated(* p < 0.05, ** p < 0.01, *** p < 0.001) 

117 

Stellenbosch University  https://scholar.sun.ac.za



Table 3. lndVal values of indicator species (lndVal > 70%) in natural and disturbed 

areas in (a) Jonkershoek, (b) the Karoo and (c) Tembe in the 2005 and 2006 

sampling periods. Feeding guilds are indicated after species names in brackets (F = 

frugivore, G = granivore, I = insectivore, M = mixed feeder, N = nectarivore). No 

indicator species emerged for disturbed areas outside the Karoo National Park. 

Scientific names are provided in the Appendix.* p < 0.05 (MW= mixed woodland, SF 

= sand forest) 

(a) Jonkershoek 

Natural 

Species 

Cape Grassbird (I) 

Cape Robin-Chat (I) 

Cape Sugarbird (N) 

Karoo Prinia (I) 

Neddicky (I) 

Orange-breasted Sunbird (N) 

(b) Karoo 

Vegetation Type 

Slopes & Middle Plateau 

Plateau 

Disturbed 

/ndVal Ind Val Ind Val Ind Va/ 

'05 '06 Species '05 '06 

73.9* 81.3* African Dusky Flycatcher (I) 71.9* 

76.5* Cape Canary (G) 

73.3* 93.8* Cape Siskin (G) 

85.1* Cape White-eye (M) 

74.3* 

90.6* 96.0* 

Natural 

Species Ind Val 

White-throated Canary (G) 

Grey-backed Cisticola (I) 

Karoo Prinia (I) 

80.7* 

76.8* 

87.5* 

74.2* 

79.4* 

70.5* 

Disturbed 

Species Ind Val 
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Table 3(c) Tembe 

Natural Disturbed 

Vegetation Ind Va/ Ind Val Ind Val Ind Val 
Species Species 

Type '05 '06 '05 '06 

MW Blue Waxbill (G) 80.0* 

Yellow-fronted Canary (G) 75.3* 

SF Bearded Scrub-Robin (I) 80.0* Blue Waxbill (G) 70.0* 

Crested Guineafowl (M) 70.0* Dark-capped Bulbul (F) 80.0* 

Emerald-spotted Wood-
Eastern Nicator (I) 84.4* 76.5* 

Dove (M) 

Green-backed 
86.2* Red-eyed Dove (M) 70.0* 

Camaroptera (I) 

Square-tailed Orengo (I) 84.6* 82.5* 

Yellow-bellied Greenbul (F) 98.3* 

Yellow-breasted Apalis (I) 82.4* 
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Table 4. Results from generalized linear models showing significant effects of land 

use (in Jonkershoek and the Karoo) and sampling period (in Tembe) on the mean 

biomass of birds in transects. Italicized values in brackets represent mean biomass 

values in grams. Only significant effects are shown. (N = natural, D =disturbed) 

Scaled 

Factor Dev/df N df X2 Effect 

Jonkershoek Land use 1.07 64 1 19.34*** N (753) > D ( 168) 

Karoo Land use 1.2 80 1 4.20* N ( 657)> D (287) 

Tembe Year 1.1 80 1 3.37* 2005 (655) > 2006 (239) 

Discussion 

The results presented here provide only a snap-shot of the consequences of 

landscape transformation on birds, though human disturbance is likely to have 

affected assemblages at greater geographic scales and over a longer time period 

(Dean 2000, Willis and Birks 2006). 

The effects of land-use changes on avian assemblages in three South African 

regions vary, but it is clear that the diversity of birds has been compromised by these 

changes in all three regions. The most pronounced effect of disturbance on 

assemblages was observed in Jonkershoek, where species richness decreased, 

species composition changed most drastically, changes in proportions of feeding 

guilds occurred and several endemic species disappeared from disturbed areas. In 

Tembe, avian assemblages reacted to land-use changes in a similar, though not as 

drastic manner. Species richness did not decrease in response to land-use change 

(in fact, it increased in some cases), but species composition changed considerably, 

as did the relative abundance of species in different feeding guilds. Karoo birds were 
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least affected by alterations in the land-use regime (vegetation type seemed more 

important in determining assemblage composition), the most significant effect being 

on species richness in the lowlands and bird abundances, although it has been 

suggested that changes in Karoo bird assemblages already occurred more than a 

century ago and at a greater spatial scale due to the extermination of large nomadic 

herds that used to roam the Karoo, which has altered ecosystem properties (Dean 

2000). 

In the fragmentation literature, emphasis has increasingly been placed on the 

importance of the landscape matrix in determining how biodiversity is affected by 

disturbance (Lindenmayer et al. 2001, Ricketts 2001, Watson et al. 2005, Wethered 

and Lawes 2005, Kupfer et al. 2006). General consensus exists that not all matrices 

(therefore all types of landscape transformation) bring about identical changes in the 

composition of indigenous species because the matrices differ in their suitability for 

indigenous species. For example, in a South African study of the avifauna of 

Afromontane forest fragments (Wethered and Lawes 2005), which highlighted how 

different land-use types affect avian assemblages, it was found that the composition 

of birds in forest patches in the natural grassland matrix was non-random, and the 

presence of species area-dependent. Where exotic plantations were cultivated 

between forest fragments, the movement of some abundant generalist species 

between fragments was aided, while specialists disappeared from such small 

fragments (Wethered and Lawes 2005). Similarly, the different extent of habitat 

change outside the three reserves considered here is likely to have affected the 

degree to, and manner in which avian assemblages were affected. In Jonkershoek, 

very little indigenous vegetation remained in the plantations, especially in older Pinus 

stands. Around Tembe, the extent of cultivation has risen in recent years, as there 

has been an influx of people to the region (W. S. Matthews, pers. comm.), but fields 
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are cultivated only for personal use, and transformation has not been as extensive 

(see also Wessels et al. 2003). Natural vegetation remains outside the reserve, 

although trees and smaller plants here are selectively harvested for several purposes 

such as traditional medicines, building material, fire wood and curios. In the disturbed 

areas that were sampled in the Karoo, no vegetation clearing had taken place; 

disturbance occurred due to grazing by non-indigenous mammals C!_nd overgrazing in 

some regions, though this in itself can lead to altered plant communities (du Tait and 

Cumming 1999) with a higher dominance of unpalatable plants which can affect the 

food supply of birds (Dean 2000). 

Species richness of avian assemblages did not change consistently in response to 

land-use changes. However, in Jonkershoek and Tembe, species turnover between 

land-use types was greater than expected from random, and turnover between 

natural and disturbed areas was greater than within natural (or disturbed) areas. 

Therefore, while locally richness was smaller, larger, or not significantly different in 

disturbed than in natural areas, regional richness increased with disturbance. This 

supports Fairbanks' (2004) and van Rensburg et al.'s (2004) proposition that avian 

richness increased with landscape transformation due to increased vegetation 

heterogeneity, which provides habitat for a greater variety of avifauna. However, 

these results do not necessarily contradict Evans et al.'s (2006) findings. Although 

they established that percentage protected land predicted some of the variation in 

avian richness across South Africa, the explanatory power of this relationship 

became negligible when grid cells with no protected land were excluded from the 

analyses. Habitat heterogeneity between protected and unprotected landscapes may 

therefore be the principal driver of increased avian richness observed in grid cells 

containing protected land. 
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Although habitat disturbance causes an increase in regional species richness, it 

results in the disappearance of certain species from disturbed areas and in changes 

in local species composition (see Rooney et al. 2007). Beta diversity indices indicate 

that this effect is small in the Karoo, but quite evident in Jonkershoek and Tembe. 

Although in Jonkershoek and Tembe beta diversity of avian assemblages within 

vegetation types is greater in disturbed than natural areas, indicating greater 

heterogeneity in disturbed than natural assemblages, natural areas display greater 

species turnover between vegetation types than disturbed areas do. For Tembe, 

evidence for biotic homogenization (McKinney and Lockwood 1999, Olden and Poff 

2004) between vegetation types is presented in Fig. 12b. In Jonkershoek only one 

vegetation type was sampled. However, Armstrong and Vanhensbergen (1994) 

found that bird assemblages in plantations (which had been mountain fynbos before 

afforestation) in Jonkershoek were more similar to those in riverine forests, the other 

vegetation type in Jonkershoek valley, than to fynbos assemblages. This suggests 

that disturbance is also promoting biotic homogenization in Jonkershoek. 

Several of the species which emerged as indicators for the disturbed landscape in 

Jonkershoek and in Tembe were wide-spread generalists associated with human 

activities more broadly in South Africa (e.g. Cape canary, Cape white-eye, dark­

capped bulbul, red-eyed dove - Hockey et al. 2005). On the other hand, some of the 

indicators for the natural areas were endemic or species typical to the region (e.g. 

orange-breasted sunbird, Cape sugarbird, Karoo prinia, bearded scrub-robin, Eastern 

nicator, square-tailed drongo - Cooper 1980, Cowling and Richardson 1995, Hockey 

et al. 2005). Because indicator species are determined not only by their fidelity, but 

also their specificity to a land-use type (McGeoch and Chown 1998), the indicator 

species of natural landscapes here were, by definition, rare or absent in disturbed 

areas. Therefore, some of the avifauna of Jonkershoek and Tembe that is typical of, 
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and unique to these regions is threatened by disturbance. Other common and wide­

spread species associated with human activities more broadly in South Africa have 

benefited from land-use changes. Indeed, in South Africa, agricultural corridors have 

aided the spread of several such bird species to new regions (Macdonald 1986, 

Hockey et al. 1989, Oschadleus and Underhill 2006). 

Olden et al. (2004) highlighted the fact that environmental disturbance influences 

not only taxonomic diversity (i.e. taxon presence or absence), but also has an effect 

on a genetic (e.g. through the breakdown of dispersal barriers, resulting in higher 

gene flow and lower genetic isolation) and functional level. If some functional 

characteristics of species make them more sensitive to land-use changes (see e.g. 

Henle et al. 2004), the distribution of functional traits in a community will change in 

response to land use. It is the loss of functional roles of individual species, rather 

than reduced species richness, which is thought to decrease ecosystem stability 

when species are lost (Lareau et al. 2001 ). In the reserves considered here, feeding 

habits appear to affect the sensitivity of birds to disturbance, as changes in the 

relative proportions of feeding guilds occurred in response to land-use change. The 

loss of insectivores due to land-use change, as was found here for Jonkershoek and 

Tembe, has been widely recorded (see Introduction). Indications are that land-use 

changes often greatly reduce the diversity and abundance of insects (Steenkamp 

and Chown 1996, Sinclair et al. 2002, Stefanescu et al. 2004, Witt and Samways 

2004, Bates et al. 2006), which has knock-on effects on, amongst other, birds 

(Sinclair et al. 2002, Barker 2004, Newton 2004). Newton (2004) (see also 

Mclaughlin and Mineau 1995) reviewed the proximate and ultimate causes for 

insectivorous (and other) farmland bird declines. The demographic mechanisms by 

which species decline mainly comprise lower breeding success or lower survival of 

adult birds due to food shortages. Ultimate causes are more varied: pesticides and 
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herbicides cause decreases in insect populations, either directly (pesticides) or 

indirectly (herbicides; by killing plants that insects feed on). Vegetation clearing 

results in habitat destruction, while intercropping and crop rotation are more 

beneficial than monocultures. Overstocking of pastures also results in changes in 

vegetation structure and lower insect abundance. The specific mechanisms acting on 

insectivore declines in this study were not considered, although dung beetle declines 

in human-disturbed areas outside Tembe Elephant Park were attributed to changes 

in vegetation structure and the abundance and quality of dung (Bates et al. 2006). 

However, changes in vegetation cover may be the main cause of other insect, and 

insectivore declines in the three sampled regions too (see also Steenkamp and 

Chown 1996, Cremene et al. 2005), because pesticides and herbicides are typically 

not used in the regions sampled (though they may be for locust outbreaks in the 

Karoo), while insectivore declines occur in Tembe despite the fact that disturbed 

areas here did not comprise monocultures. 

In Jonkershoek, nectarivores also decreased in response to disturbance. This 

could mainly be attributed to the virtual absence of orange-breasted sunbirds and 

Cape sugarbirds from disturbed areas (Appendix 5). A large proportion of the food 

source of these two Fynbos endemics is nectar from plants endemic to Fynbos, 

particularly of the Proteaceae or Ericaceae (Hockey et al. 2005). The undergrowth of 

plantations supports few or none of these flowering plants. Nectarivores are 

important pollinators for several Fynbos plant species (Bond 1994), and declines in 

nectarivores may affect the reproduction of these plants (see Koh et al. 2004), 

although plants usually do not exclusively rely on the birds for pollination (Bond 

1994). 

Increases in granivore numbers outside Tembe Elephant Park are most likely a 

result of the grain crops cultivated in the area. In Jonkershoek, higher granivore 
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abundance could mainly be attributed to high abundances of the Cape siskin and 

Cape canary in the plantations, where they were foraging in the branches of the 

Pinus. Increases in mixed feeders in both reserves emphasize the fact that 

generalists benefit from land-use changes. In the Karoo, however, numbers of mixed 

feeders declined in response to land-use change. 

The effect of land-use change on another functional trait, body mass, was not as 

pronounced as that on feeding guilds. Despite the fact that size is one of the most 

influential life history characteristics, (Schmidt-Nielsen 1984, Gaston and Blackburn 

2000), disturbance did not influence the mean size in any of the avian assemblages 

(see also Watson et al. 2005). Although mean size was not affected, large birds (and 

mammals) at Tembe have virtually been restricted to the park because they are 

hunted outside the reserve (pers. obs., B. Tembe, pers. comm., see also discussions 

in Redford and Sanderson 2000, Scholes and Biggs 2005). In addition, in 

Jonkershoek and the Karoo the biomass of birds declined in disturbed areas, 

indicating that the carrying capacity of the land was lowered by plantations and 

grazing by non-native, and in some cases overstocked, species respectively. 

If extinctions are dependent on functional characteristics of species, ecological 

repercussions and community disassembly are expected to be more pronounced as 

these functional traits disappear from communities ($ekercioglu et al. 2004), and 

overall functional diversity (FD, describing the cumulative 'diversity' of several 

biological traits in a community, Petchey and Gaston 2002b) of communities may 

decline more than expected from random extinctions (Petchey and Gaston 2002a). 

Indeed, species which are extinct or have very small global populations can be 

considered functionally extinct, as they contribute very little (or nothing) to ecosystem 

processes ($ekercioglu et al. 2004). $ekercioglu et al. (2004) found that, for the 

global avifauna, species in certain feeding guilds (scavengers, frugivores, herbivores, 
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omnivores and piscivores) were more extinction-prone than average, while an 

increasing number of bird species are predicted to become extinct, functionally 

extinct and functionally deficient as populations continue to decline ($ekercioglu et al. 

2004). Although they established that insectivores were less threatened than 

average, this guild possessed the most extinction-prone species ($ekercioglu et al. 

2004). Ecosystem functioning is expected to be heavily compromised by current and 

predicted future land-use changes due to the loss of functional diversity. 

CONSERVATION IMPLICATIONS 

Here I show what the effects are of different agricultural practices on avian 

assemblages in three South African regions. Species richness of transects did not 

respond to land-use changes in a consistent manner. However, richness estimates of 

natural areas were consistently greater than estimates of disturbed areas. In addition, 

species turnover between natural and disturbed areas in Jonkershoek and Tembe 

was greater than within natural areas, as natural and disturbed areas supported 

different avian assemblages, which contributed to elevated richness of the region. 

Functional diversity was also compromised by land-use changes. In Jonkershoek 

and Tembe, insectivores and nectarivores (in Jonkershoek only) declined, while 

granivores and mixed feeders benefited in disturbed landscapes. In the Karoo, only 

the mixed feeders declined in disturbed landscapes. 

The significant contribution of protected areas as biodiversity repositories is 

highlighted here. In South Africa, the conflict between landscape transformation and 

biodiversity conservation priorities is projected to increase (Wessels et al. 2003). 

Indeed, Maputaland, where Tembe Elephant Park is situated, has been identified as 

a region of high conservation value which is currently little transformed, but where 

potential future agricultural activities may pose a major threat to the biodiversity of 
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the area (Wessels et al. 2003). The effects of land-use changes are expected to 

become more pronounced if land-use transformation in the regions sampled here 

becomes more intensive and extensive (Wessels et al. 2003), as remnants of natural 

vegetation outside the protected area will probably shrink (see Tilman et al. 2001, 

Newton 2004, Gutierrez 2005, Watson et al. 2005 for general discussion), and the 

quality of the landscape matrix for indigenous biota decline (Kupfer et al. 2006). 

Indeed, whilst protected areas play a vital role in conserving biodiversity, they are not 

isolated from anthropogenic activities outside, or even inside, their borders. Edge 

effects (Woodroffe and Ginsberg 1998, Parks and Harcourt 2002), isolation (Carroll 

et al. 2004, Sigel et al. 2006, Young et al. 2006) and the area (Rivard et al. 2000, 

Carroll et al. 2004) of the protected landscape, the quality of the surrounding matrix 

(Rivard et al. 2000, Carroll et al. 2004), invasive species (Pauchard et al. 2003), and 

the extent of human development inside the protected area (Rivard et al. 2000) all 

threaten biodiversity in protected areas (Woodroffe and Ginsberg 1998, Rivard et al. 

2000, Chown et al. 2003, Kupfer et al. 2006). To maintain indigenous diversity and 

ecological processes, management actions should therefore not be limited to the 

establishment of protected areas, but also to the minimization of anthropogenic 

disturbances inside reserves (especially considering increasing focus on ecotourism 

in protected areas, Kruger 2005), and to land use in surrounding landscapes. 
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Appendix 

Appendix 1. Photographs of vegetation types and land use in (a) Jonkershoek, (b) 

the Karoo and (c) Tembe. 

(a-1) Plantation cover in Jonkershoek valley. 

(a-2) Natural mountain fynbos (a-3) Plantations (disturbed "mountain 

fynbos") 
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(b-1) Lowlands (in foreground) (b-2) Slopes and middle plateau 

(b-3) Plateau 
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(c-1) Natural mixed woodland 

(c-3) Natural sand forest 

(c-2) Field cleared for agriculture 

(disturbed "mixed woodland") 

(c-4) Fallow field (disturbed "sand 

forest") 
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Appendix 2. Results from factorial generalized linear model ANOVAs and post-hoc 

ANOVAs comparing species richness (Jacknife2) between land-use types, 

vegetation types and sampling period in Jonkershoek, the Karoo and Tembe. Values 

in brackets are Jacknife2 values and their standard errors. Only significant results 

from post-hoc tests are given. Significant differences between comparable disturbed 

and natural transects (e.g. same land-use type/same year) have been italicized. (N = 

natural, D = disturbed, Slopes & MP = Slopes & Middle Plateau, MW = Mixed 

Woodland, SF= Sand Forest.) 

* p < 0.05; ** p < 0.01; *** p < 0.001 

Source 

(a) Jonkershoek 

Land use 

N (9. 69 ± 0. 53) > D (6. 98 ± 0.43) 

Year 

2005 (9.52 ± 0.51) > 2006 (7.16 ± 0.48) 

Land use*Year 

Land use 

(b) Karoo 

Land use 

Vegetation Type 

Lowlands (11.82 ± 1.61) > Plateau (6.93 ± 1.02) 

Lowlands (11.82±1.61) <Slopes & MP (17.41±1.40) 

Plateau (6.93 ± 1.02) <Slopes & MP (17.41±1.40) 

df 

1 

1 

1 

1 

1 

2 

1 

1 

1 

x 

20.65*** 

16.05*** 

2.36 

3.21 

3.21 

21.21*** 

4.06* 

11.3*** 

15.26*** 
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Appendix 2 (continued) 

Source df x 

(b) Karoo (continued) 

Land use*Vegetation Type 2 8.75* 

N Lowlands (15.76 ± 2.64) > N Plateau (8.03 ± 1.51) 1 4.8* 

N Lowlands (15. 76 ± 2. 64) > D Lowlands (7. 87 ± 0. 73) 1 12. 78*** 

N Lowlands (15.76 ± 2.64) > D Plateau (5.84 ± 2.29) 1 7.85** 

N Plateau (8.03 ± 1.51) < N Slopes & MP (16.63 ± 6.42) 1 5.35* 

N Plateau (8.03 ± 1.51) < D Slopes & MP (18.19 ± 1.53) 1 6.84** 

N Slopes & MP (16.63 ± 6.42) > D Lowlands (7.87 ± 0.73) 1 13.27*** 

N Slopes & MP (16.63 ± 6.42) > D Plateau (5.84 ± 2.29) 1 8.42** 

D Lowlands (7.87 ± 0.73) < D Slopes & MP (18.19 ± 1.53) 1 17.23*** 

D Plateau (5.84 ± 2.29) < D Slopes & MP (18.19 ± 1.53) 1 10.04** 

(c) Tembe 

Land use 1 1.84 

Vegetation Type 1 1.7 

Year 1 1.36 

Land use*Vegetation Type 1 3.08 

Vegetation Type*Year 1 4.9* 

2005 MW (13.44 ± 1.19) < 2005 SF (18.04 ± 1.02) 1 6.5* 

2005 SF (18.04 ± 1.02) > 2006 SF (13.66 ± 0.91) 1 6.03* 

Land use*Year 1 8.22** 

2005 N (16.85 ± 1.48) > 2006 N (11.89 ± 0.83) 1 7.65** 

2006 N (11.89 ± 0.83) < 2006 D (16.80 ± 1.16) 1 8.51** 

Land use*Vegetation Type*Year 1 0.02 
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Appendix 3. 13s;m values between transects of different combinations of land-use 

types and vegetation types in (a) Jonkershoek, (b) the Karoo and (c) Tembe. 

Significant differences between values as calculated from generalized linear models 

are indicated by letters above the bars. (N/Na = natural, D/Di = disturbed, Lo = 

lowlands, Pl = plateau, SI =slopes and middle plateau, MW= mixed woodland, SF = 

sand forest). Upper and lower bounds of the boxes represent 75% and 25% quartiles 

respectively, and whiskers 95% confidence intervals. 

153 

Stellenbosch University  https://scholar.sun.ac.za



Appendix 4. Differences between the proportion of species of feeding guilds 

between natural (N) and disturbed (D) areas in three South African regions. For the 

Tembe dataset, differences between vegetation types ([Veg Type]: mixed woodland 

[MW] and sand forest [SF]) were also assessed. (% DE = percentage deviance 

explained.) Significance values calculated from generalized linear models are 

indicated. * p < 0.05; ** p < 0.01; *** p < 0.001 

Scaled Dev/df N df x2 Effect %DE 

Jonkershoek 

Frugivore 1.00 32 1 1.91 

Granivore 1.00 32 1 22.87*** N<D 45% 

Insectivore 1.00 32 1 20.43*** N>D 41 % 

Mixed 1.00 32 1 7.28** N<D 20 % 

Nectarivore 1.00 32 1 21.40*** N>D 44% 

Karoo 

Frugivore 1.00 40 1 1.42 

Granivore 1.00 40 1 1.20 

Insectivore 1.00 40 1 0.53 

Mixed 1.00 40 1 4.40* N>D 10 % 

154 

Stellenbosch University  https://scholar.sun.ac.za



Appendix 4 (continued) 

Scaled Dev/df N df x2 Effect % DE 

Tern be 

Frugivore 1.00 40 1 17 % 

Land use 0.04 

Veg Type 5.94* MW<SF 

Land use* Veg Type 1.26 

Granivore 1.00 40 1 53 % 

Land use 22.40*** N<D 

Veg Type 3.15 

Land use* Veg Type 0.83 

Insectivore 1.00 40 1 42% 

Land use 23.95*** N>D 

Veg Type 2.39 

Land use* Veg Type 0.31 

Mixed 1.00 40 1 23 % 

Land use 6.89** N<D 

Veg Type 0.00 

Land use* Veg Type 3.63 

Predator 1.00 40 1 14 % 

Land use 0.03 

Veg Type 4.85* MW<SF 

Land use* Veg Type 0.58 
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Appendix 5. Abundance of bird species recorded in natural areas (N) in 

Jonkershoek Nature Reserve and in disturbed areas (D) outside the reserve. 

Common Name 

African Dusky Flycatcher 

African Goshawk 

African Olive-Pigeon 

Bar-throated Apalis 

Bokmakierie 

Cape Batis 

Cape Bulbul 

Cape Canary 

Cape Grassbird 

Cape Robin-Chat 

Cape Rock-Thrush 

Cape Siskin 

Cape Spurfowl 

Cape Sugarbird 

Cape Turtle-Dove 

Cape White-eye 

Cloud Cisticola 

Common Waxbill 

Fiscal Flycatcher 

Forest Buzzard 

Fork-tailed Drongo 

Greater Honeyguide 

Grey-backed Cisticola 

Karoo Prinia 

Lesser Swamp-Warbler 

Malachite Sunbird 

Neddicky 

Olive Thrush 

Olive Woodpecker 

Scientific Name 

Muscicapa adusta 

Accipiter tachiro 

Columba arquatrix 

Apa/is thoracica 

Telophorus zeylonus 

Batis capensis 

Pycnonotus capensis 

Serinus canicollis 

Sphenoeacus afer 

Cossypha caffra 

Monticola rupestris 

Crithagra totta 

Ptemistis capensis 

Promerops cater 

Streptopelia capicola 

Zosterops virens 

Cisticola textrix 

Estrifda astrild 

Sigelus silens 

Buteo trizonatus 

Dicrurus adsimilis 

Indicator indicator 

Cisticola subruficapilla 

Prinia maculosa 

Acrocephalus gracilirostris 

Nectarinia famosa 

Cisticola fulvicapilla 

Turdus olivaceus 

Spring 2005 

N D 

22 

0 

0 

5 

0 

10 

18 

3 

55 

27 

3 

64 

0 

62 

6 

0 

0 

3 

2 

50 

0 

18 

51 

0 

110 

2 

13 

0 

6 

0 

111 

6 

10 

0 

90 

0 

0 

3 

112 

0 

0 

4 

0 

8 

0 

3 

0 

0 

54 

20 

17 

Dendropicos griseocephalus 4 

Autumn 2006 

N D 

4 

0 

13 

0 

25 

32 

0 

0 

117 

2 

11 

0 

0 

2 

0 

0 

0 

0 

33 

19 

15 

0 

3 

33 

0 

23 

0 

0 

0 

8 

0 

2 

0 

48 

0 

0 

0 

72 

0 

0 

0 

11 

0 

0 

2 

0 

18 

9 
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Appendix 5 (continued) 

Spring 2005 Autumn 2006 

Common Name Scientific Name N D N D 

Orange-breasted Sunbird Anthobaphes violacea 176 4 217 9 

Protea Seedeater Crithagra leucopterus 7 0 9 0 

Red-chested Cuckoo Cuculus solitarius 0 0 0 

Southern Boubou Laniarius ferrugineus 4 0 0 

Southern Double-collared Sunbird Cinnyris chalybeus 0 0 6 0 

Speckled Mousebird Colius striatus 7 0 0 0 

Speckled Pigeon Columba guinea 0 3 0 0 

Victorin's Warbler Cryptillas victorini 41 0 16 0 

Yellow Bishop Euplectes capensis 15 0 12 0 

Species Richness 27 21 23 16 

Total Abundance 657 579 542 240 
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Appendix 6. Abundance of bird species recorded in three vegetation types in natural 

areas in the Karoo National Park and in disturbed areas outside the park. (Lo = 

lowlands, Pl = plateau, SI = slopes & middle plateau) 

Natural Disturbed 

Common Name Scientific Name Lo Pl SI Lo Pl SI 

Acacia Pied Barbet Tricholaema /eucomelas 0 0 0 0 0 

African Pipit Anthus cinnamomeus 0 0 0 0 0 5 

African Red-eyed Bulbul Pycnonotus nigricans 2 0 2 0 0 4 

African Rock Pipit Anthus crenatus 0 11 0 0 18 

Ant-eating Chat Myrmecocichla formicivora 0 0 2 0 0 

Black-headed Canary Serinus alario 0 0 12 0 0 4 

Bokmakierie Telophorus zey/onus 6 4 5 0 9 

Cape Bunting Emberiza capensis 16 11 48 2 6 30 

Cape Clapper Lark Mirafra apiata 2 0 0 0 0 

Cape Penduline-Tit Anthoscopus minutus 0 0 0 0 0 

Cape Sparrow Passer melanurus 0 0 0 0 

Cape Turtle-Dove Streptopelia capicola 5 0 0 0 0 

Chat Flycatcher Bradomis infuscatus 0 0 0 0 0 

Chestnut-vented Tit-Babbler Parisoma subcaeruleum 4 0 2 0 0 

Cinnamon-breasted Bunting Emberiza tahapisi 0 0 0 0 0 

Common Fiscal Lanius collaris 2 0 2 2 0 3 

Double-banded Courser Rhinoptilus africanus 0 0 0 3 0 0 

Dusky Sunbird Cinnyris fuscus 13 0 16 0 0 4 

European Bee-eater Merops apiaster 2 0 0 0 0 0 

Fairy Flycatcher Stenostira scita 12 0 22 0 0 12 

Familiar Chat Cercomela familiaris 10 10 0 0 15 

Fiscal Flycatcher Sigelus silens 5 0 2 0 0 0 

Grey-backed Cisticola Cisticola subruficapilla 22 76 92 5 23 69 

Grey-backed Sparrowlark Eremopterix verticalis 22 0 0 54 0 2 

Grey-winged Francolin Scleroptila africanus 10 37 0 0 0 0 

Ground Woodpecker Geocolaptes o/ivaceus 0 0 5 0 0 

Karoo Chat Cercomela schlegelii 23 0 6 12 0 2 

Karoo Eremomela Eremomela gregalis 4 0 0 0 0 
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Appendix 6 (continued) 

Natural Disturbed 

Common Name Scientific Name Lo Pl SI Lo Pl SI 

Karoo Korhaan Eupodotis vigorsii 5 0 0 4 0 0 

Karoo Lark Ca/endulauda albescens 4 0 0 0 0 0 

Karoo Prinia Prinia maculosa 8 21 12 0 3 9 

Karoo Scrub-Robin Cercotrichas coryphoeus 19 4 9 0 22 

Large-billed Lark Galerida magnirostris 6 0 0 4 10 0 

Lark-like Bunting Emberiza impetuani 131 2 129 55 0 61 

Laughing Dove Streptopelia senegalensis 3 0 0 0 0 0 

Layard's Tit-Babbler Parisoma layardi 9 0 23 0 0 24 

Long-billed Crombec Sylvietta rufescens 3 0 4 0 2 

Long-billed Pipit Anthus similis 0 0 0 4 0 

Malachite Sunbird Nectarinia famosa 2 0 2 0 0 4 

Mountain Wheatear Oenanthe monticola 2 0 28 0 0 9 

Namaqua Dove Oena capensis 0 0 0 0 0 

Namaqua Sandgrouse Pterocles namaqua 2 0 0 0 0 0 

Pale-winged Starling Onychognathus nabouroup 0 0 3 0 0 13 

Plain-backed Pipit Anthus leucophrys 2 0 0 0 0 4 

Pririt Batis Batis pririt 0 0 2 0 0 

Red-backed Shrike Lanius collurio 0 0 2 0 0 0 

Red-faced Mousebird Urocolius indicus 0 2 0 0 

Red-winged Starling Onychognathus morio 0 0 0 0 9 0 

Rock Kestrel Falco rupicolus 0 0 0 0 0 4 

Rufous-eared Warbler Malcorus pectoralis 69 0 17 50 11 6 

Sabota Lark Calendulauda sabota 9 0 0 0 0 

Short-toed Rock-Thrush Monticola brevipes 0 0 7 0 0 6 

Sickle-winged Chat Cercomela sinuata 12 5 17 11 12 9 

.Southern Double-collared Sunbird Cinnyris chalybeus 0 2 0 0 4 

Southern Masked-Weaver Ploceus velatus 15 0 0 0 0 0 

Southern Pale Chanting Goshawk Me/ierax canorus 2 0 0 0 0 0 

Speckled Pigeon Co/umba guinea 0 0 0 0 0 

Spike-heeled Lark Chersomanes albofasciata 17 5 0 29 0 0 
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Appendix 6 (continued) 

Natural Disturbed 

Common Name Scientific Name Lo Pl SI Lo Pl SI 

Tractrac Chat Cercomela tractrac 0 0 7 0 0 

White-backed Mousebird Colius colius 3 0 18 0 0 12 

White-throated Canary Crithagra albogularis 7 0 16 0 

Yellow Canary Crithagra flaviventris 4 0 0 2 0 0 

Yellow-bellied Eremomela Eremomela icteropygialis 20 0 0 6 0 0 

Species Richness 48 13 32 21 11 35 

Total Abundance 522 169 529 253 81 373 
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Appendix 7. Abundance of bird species recorded in two vegetation types in natural 

areas in Tembe Elephant Park and in disturbed areas outside the park. (MW= mixed 

woodland, SF= sand forest) 

Common Name 

African Broadbill 

African Dusky Flycatcher 

African Goshawk 

African Green-Pigeon 

African Paradise-Flycatcher 

African Yellow White-eye 

Ashy Flycatcher 

Barn Swallow 

Bearded Scrub-Robin 

Bennett's Woodpecker 

Black Cuckooshrike 

Black-backed Puffback 

Black-bellied Starling 

Black-collared Barbet 

Black-crowned Tchagra 

Blue Waxbill 

Blue-mantled 

Flycatcher 

Brimstone Canary 

Broad-billed Roller 

Bronze Mannikin 

Crested-

Brown Scrub-Robin 

Brown-crowned Tchagra 

Brown-hooded Kingfisher 

Burchell's Coucal 

Cape Turtle-Dove 

Cape Weaver 

Cardinal Woodpecker 

Scientific Name 

Smithomis capensis 

Muscicapa adusta 

Accipiter tachiro 

Treron calvus 

Terpsiphone viridis 

Zosterops senegalensis 

Muscicapa caerulescens 

Hirundo rustica 

Cercotrichas quadrivirgata 

Campethera bennettii 

Campephaga flava 

Dryoscopus cub/a 

Lamprotomis corruscus 

Lybius torquatus 

Tchagra senegalus 

Uraeginthus angolensis 

Trochocercus cyanomelas 

Crithagra sulphuratus 

Eurystomus g/aucurus 

Spermestes cucullatus 

Cercotrichas signata 

Tchagra australis 

Halcyon albiventris 

Centropus burchellii 

Streptopelia capicola 

Ploceus capensis 

Dendropicos fuscescens 

2005 Summer 

Natural 

MW 

0 

0 

0 

0 

0 

0 

0 

766 

13 

0 

8 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

SF 

0 

0 

0 

0 

0 

16 

0 

9 

33 

0 

0 

0 

8 

0 

0 

0 

4 

0 

0 

0 

0 

0 

Disturbed 

MW 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

6 

7 

0 

0 

0 

4 

0 

28 

0 

3 

0 

0 

0 

0 

0 

SF 

0 

3 

0 

12 

0 

4 

0 

117 

0 

0 

3 

12 

13 

0 

0 

11 

0 

0 

5 

6 

0 

0 

0 

0 

0 

0 

2006 Autumn 

Natural 

MW SF 

0 

0 

0 

2 

0 

6 

0 

0 

0 

0 

6 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

0 

19 

0 

0 

8 

5 

0 

0 

0 

7 

0 

0 

0 

7 

0 

0 

0 

2 

0 

0 

Disturbed 

MW 

0 

0 

0 

0 

0 

0 

9 

0 

0 

0 

28 

0 

SF 

0 

0 

0 

0 

8 

3 

0 

2 

0 

6 

0 

0 

59 

8 0 

0 0 

117 3 

0 0 

6 

2 9 

2 

0 

0 

3 0 
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Appendix 7 (continued) 

2005 Summer 

Common Name 

Cattle Egret 

Chinspot Batis 

Chorister Robin-Chat 

Collared Sunbird 

Common Scimitarbill 

Crested Francolin 

Crested Guineafowl 

Croaking Cisticola 

Crowned Hornbill 

Dark-backed Weaver 

Dark-capped Bulbul 

Diderick Cuckoo 

Eastern Nicator 

Natural 

Scientific Name MW SF 

Bubu/cus ibis 0 0 

Batis molitor 17 2 

Cossypha dichroa 0 

Hedydipna col/aris 2 5 

Rhinopomastus cyanomelas O 0 

Dendroperdix sephaena 

Guttera edouardi 4 19 

Cisticola natalensis 0 

Tockus alboterminatus 2 3 

Ploceus bico/or 0 25 

Pycnonotus tricolor 27 22 

Chrysococcyx caprius 0 O 

Nie a tor gularis 

Emerald-spotted 

Dove 

Wood- Turtur chalcospilos 

0 

5 

15 

8 

European Bee-eater 

Fiscal Flycatcher 

Flappet Lark 

Fork-tailed Orengo 

Golden-breasted Bunting 

Golden-tailed Woodpecker 

Gorgeous Bush-Shrike 

Green Wood-Hoopoe 

Green-backed Camaroptera 

Grey Sunbird 

GreyWaxbill 

Grey-headed Bush-Shrike 

Hadeda Ibis 

House Sparrow 

lcterine Warbler 

Merops apiaster 

Sige/us si/ens 

Mirafra rufocinnamomea 

Dicrurus adsimilis 

Emberiza flaviventris 

Campethera abingoni 

Telophorus viridis 

Phoeniculus purpureus 

Camaroptera brachyura 

Cyanomitra veroxii 

Estrilda perreini 

Malaconotus blanchoti 

Bostrychia hagedash 

Passer domesticus 

Hippolais icterina 

0 

0 

0 

0 

0 

0 

26 

0 

0 

0 

0 

0 

4 

0 

0 

0 

0 

0 

9 

0 

25 

4 

0 

5 

2 

0 

0 

Disturbed 

MW SF 

0 

0 0 

0 0 

3 

0 0 

0 0 

0 0 

0 

0 2 

0 0 

36 43 

0 

0 

11 

0 

0 

0 

0 

3 

0 

0 

0 

8 

0 

2 

0 

0 

2 

4 

8 

3 

0 

0 

0 

0 

0 

4 

0 

0 

0 

0 

0 

0 

2006 Autumn 

Natural 

MW SF 

0 0 

8 0 

0 0 

9 6 

2 0 

0 2 

0 0 

0 0 

3 2 

2 26 

30 0 

0 0 

11 

2 

0 

0 

0 

0 

0 

3 

12 

0 

2 

0 

0 

0 

0 

9 

0 

0 

0 

0 

0 

6 

7 

0 

0 

0 

0 

0 

Disturbed 

MW SF 

0 3 

4 0 

0 0 

10 8 

0 0 

0 0 

0 0 

0 0 

2 2 

4 

39 24 

0 0 

0 

11 

0 

0 

0 

0 

0 

0 

6 

10 

0 

7 

0 

0 

0 

162 

22 

0 

0 

0 

0 

0 

0 

0 

10 

0 

2 

0 

9 

0 
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Appendix 7 (continued) 

2005 Summer 

Common Name 

Jameson's Firefinch 

Klaas's Cuckoo 

Kurrichane Thrush 

Lesser Honeyguide 

Lilac-breasted Roller 

Lizard Buzzard 

Long-billed Crombec 

Marico Sunbird 

Narina Trogon 

Nedd icky 

Natural 

Scientific Name MW SF 

Lagonosticta rhodopareia 

Chrysococcyx klaas 

Turdus libonyanus 

Indicator minor 

0 0 

0 0 

0 4 

0 0 

Coracias caudatus 0 

Kaupifalco monogrammicus O 

Sylvietta rufescens 6 

Cinnyris mariquensis 2 

Apaloderma narina O 

Cisticola fu/vicapilla 2 

Cinnyris neergaardi 

Telophorus olivaceus O 

0 

0 

0 

0 

2 

0 

11 Neergaard's Sunbird 

Olive Bush-Shrike 

Olive Sunbird 

Orange-breasted 

Shrike 

Cyanomitra olivacea 

Bush- Telophorus sulfureopectus 

0 4 

0 

Pale Flycatcher 

Pink-throated Twinspot 

Plain-backed Sunbird 

Purple-banded Sunbird 

Purple-crested Turaco 

Rattling Cisticola 

Red-backed Mannikin 

Red-backed Shrike 

Red-billed Firefinch 

Red-capped Robin-Chat 

Red-chested Cuckoo 

Red-eyed Dove 

Red-faced Mousebird 

Red-fronted Tinkerbird 

Retz's Helmet-Shrike 

Bradomis pallidus 

Hypargos margaritatus 

Anthreptes reichenowi 

Cinnyris bifasciatus 

Gal/irex porphyreolophus 

Cisticola chiniana 

Spermestes bicolor 

Lanius collurio 

Lagonosticta senegala 

Cossypha natalensis 

Cuculus solitarius 

Streptope/ia semitorquata 

Urocolius indicus 

Pogoniulus pusil/us 

Prionops retzii 

3 

0 

0 

22 

2 

56 

0 

2 

0 

0 

0 

0 

0 

0 

2 

4 

2 

3 

0 

0 

0 

0 

4 

8 

0 

0 

0 

11 

Disturbed 

MW SF 

0 0 

0 

12 

0 0 

0 

0 

5 

0 

0 

0 

0 

0 

0 

14 

0 

0 

12 

2 

22 

0 

2 

0 

0 

16 

2 

4 

0 

0 

0 

0 

0 

0 

2 

5 

2 

0 

9 

2 

3 

0 

3 

2 

11 

2 

0 

2006 Autumn 

Natural 

MW SF 

0 0 

0 0 

0 0 

0 

0 

0 

5 

0 

0 

6 

0 

0 

0 

5 

7 

0 

0 

0 

18 

0 

0 

3 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

5 

0 

0 

Disturbed 

MW SF 

4 4 

0 0 

6 4 

0 

0 

2 

0 

0 

0 

0 

0 

0 

2 

18 

9 

0 

0 

0 

22 

0 

0 

19 

0 

9 

0 

0 

0 

163 

0 

2 

0 

2 

0 

0 

0 

0 

0 

0 

2 

0 

3 

0 

0 

0 

2 

63 

0 

3 

0 

0 

13 

0 

0 

0 
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Appendix 7 (continued) 

Common Name 

Rudd's Apalis 

Rufous-naped Lark 

Scarlet-chested Sunbird 

Sombre Greenbul 

Southern Black Flycatcher 

Southern Black Tit 

Southern Boubou 

Southern Grey-headed 

Sparrow 

Speckled Mousebird 

Spectacled Weaver 

Spotted Flycatcher 

Square-tailed Drongo 

Streaky-headed Seedeater 

Striped Kingfisher 

Tambourine Dove 

Tawny-flanked Prinia 

Terrestrial Brownbul 

Thick-billed Weaver 

Village lndigobird 

Village Weaver 

Violet-backed Starling 

White-bellied Sunbird 

White-browed Scrub-Robin 

Scientific Name 

Apa/is ruddi 

Mirafra africana 

Chalcomitra senegalensis 

Andropadus importunus 

Melaenomis pammelaina 

Parus niger 

Laniarius ferrugineus 

Passer diffusus 

Colius striatus 

Ploceus ocularis 

Muscicapa striata 

Dicrurus /udwigii 

Crithagra gularis 

Halcyon chelicuti 

Turtur tympanistria 

Prinia subflava 

Phyllastrephus terrestris 

Amblyospiza albifrons 

Vidua chalybeata 

Ploceus cucullatus 

Cinnyricinclus leucogaster 

Cinnyris talatala 

Cercotrichas leucophrys 

White-crested 

Shrike 

Helmet- Prionops plumatus 

White-throated Robin-Chat 

Woodwards' Batis 

Yellow Weaver 

Yellow-bellied Eremomela 

Cossypha humeralis 

Batis fratrum 

Ploceus subaureus 

Eremomela icteropygialis 

2005 Summer 

Natural 

MW SF 

0 0 

4 0 

6 

4 

0 

0 

0 

0 

2 

5 

0 

8 

0 

0 

0 

0 

0 

10 

8 

0 

0 

2 

14 

0 

3 

6 

0 

0 

0 

0 

44 

0 

0 

8 

0 

19 

0 

0 

0 

2 

0 

0 

0 

2 

10 

0 

0 

Disturbed 

MW SF 

0 0 

0 0 

0 

13 

3 

2 

0 

16 

0 

3 

5 

0 

0 

9 

0 

0 

0 

33 

4 

21 

0 

0 

0 

0 

0 

2 

17 

8 

3 

0 

21 

0 

0 

8 

0 

3 

0 

6 

5 

0 

0 

56 

8 

0 

0 

0 

0 

0 

0 

2006 Autumn 

Natural 

MW SF 

7 2 

0 0 

0 

14 

5 

11 

0 

0 

0 

0 

0 

5 

0 

0 

0 

3 

0 

0 

0 

0 

0 

5 

6 

0 

0 

0 

0 

0 

11 

0 

3 

2 

0 

0 

0 

0 

33 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

9 

0 

0 

Disturbed 

MW SF 

0 0 

0 0 

0 

2 

17 

5 

3 

0 

10 

3 

0 

8 

0 

0 

0 

24 

7 

0 

0 

7 

0 

12 

2 

0 

3 

0 

0 

0 

164 

6 

3 

5 

2 

24 

0 

0 

0 

7 

0 

0 

0 

8 

5 

0 

3 

48 

0 

0 

0 

0 

0 

0 
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Appendix 7 (continued) 

2005 Summer 2006 Autumn 

Natural Disturbed Natural Disturbed 

Common Name Scientific Name MW SF MW SF MW SF MW SF 

Yellow-bellied Greenbul Chlorocichla flaviventris 3 59 3 5 23 2 6 

Yellow-breasted Apalis Apa/is flavida 12 27 2 6 27 42 15 9 

Yellow-fronted Canary Crithagra mozambicus 7 0 32 19 4 64 26 

Yellow-rumped Tinkerbird Pogoniu/us bilineatus 0 0 0 0 0 0 

Yellow-throated Longclaw Macronyx croceus 2 0 0 0 0 0 0 

Yellow-throated Petronia Petronia superciliaris 0 0 0 2 0 0 2 3 

Zitting Cisticola Cisticola juncidis 0 0 0 0 0 0 

Species Richness 48 51 46 57 42 35 56 52 

Total Abundance 1057 475 351 482 247 253 555 439 

165 

L.~~~~~~~~~~--------------------------

Stellenbosch University  https://scholar.sun.ac.za



Chapter 4 

General Conclusion 

I have here considered the response of avian assemblages to the environmental 

conditions acting on two different time scales. In Chapter 2 I examined the response 

of the body size of avian assemblages to environmental conditions over an 

evolutionary time scale. Because it is central to many aspects of an organism's 

ecology and physiology, body size is likely under selection (McKinney 1990). Indeed, 

most studies of large-scale variation of body size in multi-species assemblages (e.g. 

Zeveloff and Boyce 1988, Blackburn and Gaston 1996, Blackburn and Hawkins 

2004, Olalla-Tarraga et al. 2006) have examined how size correlates with 

environmental predictors to examine how environmental conditions may produce 

existing patterns of body size variation. 

In a review of the potential application of null model analyses, Gotelli (2001) 

suggested that null models should also be used in macroecological studies to 

determine probabilistic boundaries beyond which real data points cannot occur. In 

accordance, random draw models have been used extensively to test the mid­

domain hypothesis of species ranges (see Colwell and Lees 2000, Zapata et al. 

2003, Colwell et al. 2004, Zapata et al. 2005). The ability of null models to predict the 

size of faunal assemblages has also been assessed (Brown and Nicoletta 1991, Arita 

and Figueroa 1999, Marquet and Cofre 1999, Bakker and Kelt 2000, Blackburn and 

Gaston 2001 ). However, few studies have employed random draw models to assess 

how much geographic variation in body size measures might deviate from a random 

expectation (Cardillo 2002, Rodriguez et al. 2006, Ulrich 2006). Here I compared 

how much of variation in median body size of avian assemblages in South Africa 

could be explained by (a) deterministic models, which are generally used to test the 
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role of environmental factors in driving body size variation, and (b) random sampling 

from the regional body size frequency distribution. I showed that, although there was 

some support that large body size confers starvation resistance during seasonally 

unfavourable periods (Rosenzweig 1968, Lindstedt and Boyce 1985), much of the 

variation in body size could be explained by random draw models, especially at high 

richness values. The ability of null models to predict median size was weak at low 

richness, but increases with species richness. To my knowledge, this is the first study 

to empirically test how the ability of random draw models to predict size changes with 

richness. 

I recommend that, in addition to deterministic models usually employed, the use of 

null models to assess body size variation becomes standard practice. By employing 

null models alongside traditional techniques that relate abiotic or biotic factors to life 

history characteristics of organisms, the manner in which both neutral (Hubbell 1997, 

2001) and niche-based processes (Leibold et al. 2001, Gravel et al. 2006) operate in 

a system can be explored (see Alonso et al. 2006), as was done here. In a review of 

neutral theory, Chave (2004) stated, "Further improvements should lead to an explicit 

linking (of neutral theory) to niche-based processes. This research programme will 

depend crucially on forthcoming theoretical and empirical achievements". Several 

authors have tested such theoretical models that integrate niche and neutral 

processes with simulations (Etienne and Olff 2004, Gravel et al. 2006, Leibold and 

McPeek 2006, Scheffer and van Nes 2006), though empirical evidence has at times 

been lacking (but see Etienne and Olff 2004, Scheffer and van Nes 2006). Here I 

found empirical support for Gravel et al.'s (2006) continuum hypothesis uniting niche 

and neutral theory, which suggests that niche-based processes become less evident 

as species richness increases. 
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Although van Rensburg et al. (2004) found that landscape transformation had no 

effect on species turnover in South African avian assemblages, and therefore 

concluded that, at this scale, underlying biogeographical patterns persist for birds, it 

is unlikely that only evolutionary and stochastic processes act on bird assemblages. 

At smaller spatial scales the effects of non-evolutionary deterministic processes on 

assemblages may be detected. Therefore, while Chapter 2 focussed on evolutionary 

and stochastic processes in avian assemblages, Chapter 3 examined the response 

of assemblages to environmental conditions, more specifically human-induced 

conditions, over a significantly shorter time scale. Land-use changes are happening 

at an alarming rate world-wide (Vitousek et al. 1997), and the rate of change is of 

such a nature that many organisms cannot adapt to new conditions and are suffering 

population declines or local extinction as they cannot subsist in the altered 

environment (e.g. Kerr and Currie 1995, McKee et al. 2003, Thomas et al. 2004). 

Because birds comprise one of the taxa which is least sensitive to land-use changes, 

they provide a conservative estimate of the effects of disturbance on biodiversity 

($ekercioglu et al. 2004). However, birds fulfil important ecological functions 

($ekercioglu 2006) and changes in avian assemblages may result in effects 

cascading to other species and to processes in the ecosystem. 

I assessed the effect of different anthropogenic land-use changes on avian 

assemblages in three regions of South Africa. In all regions, bird assemblages were 

affected by these changes, although the consequences of disturbance were not 

consistent across regions. Species richness of disturbed transects was greater, 

smaller and not significantly different to richness of natural transects, but regional 

richness increased due to habitat heterogeneity: natural and disturbed areas 

supported different assemblages. This observation allowed me to examine species 

richness trends previously assessed at larger spatial scale and grain (Fairbanks 
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2004, van Rensburg et al. 2004, Evans et al. 2006a). In addition, the carrying 

capacity for birds of landscapes in two of the regions decreased with disturbance. I 

also showed how functional diversity, particularly feeding guilds, was affected by 

land-use changes. One of the effects of disturbance on functional diversity was the 

decline of insectivores in two of the regions sampled. This indicates that disturbance 

is probably causing declines in insect abundance, and possibly diversity (see also 

$ekercioglu et al. 2004). Indeed, bird declines have been directly linked to decreases 

in insect abundance (Sinclair et al. 2002, Barker 2004, Newton 2004). This suggests 

that the potential exists for insectivores to be used as indicators of trends in insect 

assemblages, both in time and over space, although it remains to be determined 

whether changes in insectivore abundances reflect changes in insect diversity or 

abundance or both. 

A strength of this study is that it examines the effects of land-use change on avian 

assemblages for several regions in South Africa which differ in their climate, 

vegetation, land use and biodiversity. This allows for approximations of the effect of 

land-use change to be made. The study therefore makes a valuable contribution to 

determining the consequences of human activities on, but also the contribution of 

protected areas to avian assemblages, which were previously not consistently 

assessed in South Africa. Indeed, as the country's human population is growing 

(Statistics South Africa 2006, see also Evans et al. 2006b) and anthropogenic 

pressure on untransformed areas is expected to increase in years to come (Wessels 

et al. 2003), it is vital to prioritise conservation early to maximise the biodiversity 

conserved and to prevent the need to conduct costly remedial action when much 

damage has already been done (Fuller et al. 2007). Currently, approximately six 

percent of South Africa's terrestrial surface enjoys formal protection, although it has 

been recommended that this area be expanded to better represent the range of 
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South Africa's biodiversity (Driver et al. 2005). Here I show that the benefits of 

protected areas extend beyond the conservation of species to the preservation of 

functional diversity and therefore ecological processes - one of the priorities for 

biodiversity planning in South Africa (Driver et al. 2005). It is therefore essential that 

South Africa continues to identify and protect areas of conservation importance that 

are threatened by land-use changes (Wessels et al. 2000, Fairbanks et al. 2001, 

Wessels et al. 2003, Department: Environmental Affairs and Tourism 2005, Scholes 

and Biggs 2005) to prevent the local or complete extinction of indigenous biota and 

the loss of essential ecosystem processes in these regions. 
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