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ABSTRACT

The Table Mountain Group (TMG) Aquifer System is a regional fractured aquifer system

with a large potential as a source of future water supplies in the Western and Eastern Cape.

This system is currently under consideration for large-scale water abstraction. Many terrestrial

ecosystems, however, are dependent on these groundwater resources for survival.

Exploitation of ground water resources at a rate exceeding the rate of natural recharge would

result in a lowering of the water table and the drying up of seeps.

The main objective of this study was to determine if satellite remote sensing data can be used

for the detection of groundwater-dependent wetlands, and secondly, to use multi-temporal

imagery for estimating seasonal changes experienced in wetland communities in relation to

surrounding vegetation. The Kogelberg Biosphere Reserve, situated approximately 30km to

the east of Cape Point in the Western Cape, South Africa, was selected for investigation. To

accomplish the objectives, three Landsat 7 ETM+ images (path/row: 175/84) captured on 22

September 2001, 18 May 2002 and 23 September 2002 were acquired. Image fusion of the

multispectral bands (30m resolution) with the panchromatic band (15m resolution) provided

15m multispectral images for analysis purposes. Geometric correction, radiometric

normalisation and atmospheric corrections was performed in order to ensure pixel-level

comparability between images. Once comparability between images was guaranteed,

vegetation indices and tasselled cap components were derived to provide threshold values of

moisture stress indicators and productivity estimations of wetland communities in relation to

surrounding non-wetland communities. Additionally, change vector analysis on these

transformations provided the ability to detect and assess the seasonal changes experienced by

these communities during an annual cycle. The results of these transformations were

combined in a rule-based image classifier in order to assist in estimating the seasonal

dependency of observed wetland communities.

The ability to use Landsat 7 images and the abovementioned image processing procedures to

identify wetland communities with a high probability of groundwater interaction was

demonstrated with a high degree of accuracy (78%). It is recommended that future studies

concentrate on increasing classification accuracies, while focusing on incorporating these

techniques into a remote monitoring system for assessing the impacts of groundwater

extraction on the groundwater-dependent wetland communities.
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OPSOMMING

Die Tafelberg Groep (TBG) Akwifer is 'n regionale verskuiwingsakwifer sisteem met groot

potensiaal as toekomstige waterbron vir die Wes- en Oos-Kaap. Grootskaalse grondwater-

onttrekking uit hierdie sisteem word tans ondersoek. Baie terrestriële ekosisteme is egter vir

oorlewing van grondwaterbronne afhanklik. Grondwaterontginning teen 'n tempo hoër as die

natuurlike aanvultempo sal die watertafel laat daal en syfersones laat opdroog.

Die hoofdoel van die studie was om te bepaal of satellietbeelde gebruik kan word om

grondwater-afhanklike vleilande waar te neem, en om 'n tydsreeks van beelde te gebruik om

die seisoenale verandering in vleilandgemeenskappe relatief tot omliggende plantegroei te

raam. Die Kogelberg Biosfeer Reservaat, ongeveer 30km oos van Kaappunt, is as

studiegebied geïdentifiseer. Drie Landsat 7 beelde (baan/ry: 175/84) van 22 September 2001,

18 Mei 2002 en 23 September 2002 is ontleed. Die Landsat 7 multispektrale bande (30m

resolusie) is met behulp van beeld-fusietegnieke met die panchromatiese band (15m resolusie)

gekombineer om multispektrale beelde te lewer met 15m grondresolusie. Geometriese

korreksie, radiometriese normalisering en atmosferiese korreksie is op elk van die beelde

toegepas om beeld-selvlak vergelykings tussen beelde 'n moontlikheid te maak. Met

beeldvergelykbaarheid verseker, is plantegroei-indekse en 'tassled cap' transformasies

gebruik om afsnywaardes vir vleiland-identifikasie te bereken. Verder is veranderingsvektor-

analises op die transformasies bereken om die seisoenale veranderinge oor die jaarsiklus in

vleilande te bepaal. Die resultate hiervan is vervat in 'n reël-gebaseerde beeldklassifiseerder

waarmee vleilande se seisoenale grondwater afhanklikheid geraam is.

Die vermoë om vleilande met 'n hol! waarskynlikheid van grondwater interaksie uit Landsat 7

beelde te identifiseer is met 'n hol! vlak van totale akkuraatheid (78%) gedemonstreer. Die

aanbeveling is dat toekomstige studies moet fokus op die verhoging van hierdie klassifikasie

akkuraathede. Die tegnieke moet toegespits word op die ontwikkeling van 'n

afstandswaarnemingstelsel om die impak van grondwater onttrekking op grondwater-

afhanklike vleilande te moniteer.
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CHAPTER I: BACKGROUND TO THE STUDY

1.1 INTRODUCTION TO THE STUDY

The limited supply of - and the increasing demand for - water, together with the variability of

rainfall, makes water resource availability a critical factor for the City of Cape Town (Ninham

Shand 2004). As available surface water resources become over-exploited, attention is turning

to groundwater as a supplementary source. However, the exploitation of groundwater

resources poses unique problems. Many ecosystems are dependent on groundwater resources

for survival, especially groundwater-fed wetland ecosystems, which remain saturated

throughout the year. Exploitation of ground water resources at a rate exceeding the rate of

natural recharge would result in a lowering of the water table and, consequently, many

groundwater seeps would dry up.

There is thus a need to develop environmental monitoring tools to better understand where

decreases in wetland ecosystem performance are occurring and to assess the trends and

possible impacts of groundwater extraction. Early detection of vegetation stress may be

critical for the monitoring of plant ecosystems and how aquifer exploitation would influence

them. Because of their multispectral character, broad scope and timeliness, satellite data have

been very effective in monitoring the status of plant communities and the detection of the

effects of stress and disease.

A Water Research Commission (WRC) research project entitled: "Ecological and

environmental impacts of large-volume ground water abstraction in the Table Mountain

Group (TMG) Aquifer systems" is being undertaken by a consortium of scientists from the

Western Cape, led by Umvoto Africa, the CSIR and Southern Waters. The TMG-Eco project

aims to identify and characterise TMG groundwater-dependent ecosystems and their

sensitivity to variable boundary conditions, which include primarily large-scale water

abstraction, but also climate change and loss of biodiversity. Evaluation of the potential

impacts of water abstraction from TMG aquifer systems requires an understanding of the

nature and extent of dependency of the ecosystems on this natural resource. One of the critical

areas that will be addressed is the development of predictive tools and indicators to assess the

impact of ground water extraction on the environment (Brown, Colvin, Hartnady, Hay, Le

Maitre & Riemann 2003).
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According to Brown et al. (2003), the methods to assess ground water's contribution to the

ecosystem include the identification of groundwater discharge regimes and related water

availability to terrestrial ecosystems. This can be achieved by either direct measurements in

the field, or with the use of remote sensing techniques, or preferably, both.

1.2 STATEMENT OF THE PROBLEM

Due to the inaccessibility of many of the groundwater seeps and, consequently, the cost of

direct monitoring by means of field observations, as well as the extended time scales

involved, a means of remote monitoring of seep communities would be ideal for long-term

ecosystem status assessment.

One of the ways of evaluating the degree of groundwater dependency of ecosystems is to

assess the relative groundwater contribution to the ecosystem as a whole (Brown et al. 2003).

This contribution can be assessed by means of remote sensing techniques, which would

provide a means of monitoring the seasonal changes in wetlands, as well as the degree of

moisture stress experienced by the different species during an annual cycle.

1.3 THE RESEARCH QUESTIONS

The objectives of the study can be summarised by the following research questions:

• Can groundwater dependent wetland communities be identified by means of satellite

remote sensing techniques?

• Can the seasonal changes experienced by these communities be quantified using these

techniques?

• Can the degree of groundwater dependency (i.e. ephemeral-, seasonal- or perennial

dependency) be estimated?

The objective of the study is ultimately to establish the use of satellite remote sensing

techniques to identify groundwater-dependent ecosystems and consequently those

communities most likely to be affected by groundwater extraction. The ability to estimate the

seasonal changes in these communities would imply that the proposed techniques could later

be used for the development of monitoring tools for assessing the impact of groundwater

extraction on the environment.
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1.4 DESCRIPTION OF THE STUDY AREA

In order to understand the location of, and the changes experienced by, the groundwater-

dependent wetland communities, it is necessary to consider the physical characteristics that

will govern wetland formation within the study area. The physical characteristics that will

influence the location of possible groundwater-dependent ecosystems are the geohydrological

conditions in the area.

The Kogelberg Biosphere Reserve was selected for investigation because it was identified as

one of the areas to be considered for assessing the possible impacts of large-scale

groundwater abstraction on groundwater-dependent vegetation (Hartnady, Jackson &

Riemann 2004). The reserve is situated approximately 30km to the east of Cape Point in the

Western Cape Province, South Africa. The area investigated is included in the 3418 BO

Hangklip 1:50 000 scale topographical map sheet. The map of the study area is presented in

Figure 1.1.

N

A

MITCHELL'S PLAIN.~._.,~--,-
Fa/seBay

Kage/Bay

_ U!'bInareaa

I'wi~ Kogelberg BlOIphero R... rveo 10 20 30 40

i1i~. .. .... -======5......Ë======~~
o

Figure 1.1: The study area in the Kogelberg Biosphere Reserve near Cape Hangklip.
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The Kogelberg Biosphere Reserve extends from 0 to 1265m above sea level. Slopes range

between 0 and 70 degrees, with the majority of the steep slopes (45 to 70 degrees) facing

south to south-west. The reserve receives a total annual rainfall in excess of 1000mm, with

the majority of precipitation occurring during autumn and spring (May to September). The

annual temperatures range between a minimum of 12°Cand a maximum of 23°C.

According to Boucher (1982), the sandstone mountains in the area support mainly typical

Mountain Fynbos vegetation types (the vegetation map of the area is presented in Figure 1.2).

The majority of the species in the area experience their growing season in the spring and

summer, with productivity increasing sharply during this time. At the onset of winter (the wet

season), the shorter days and colder temperatures will result in decreasing vegetation

productivity. However, according to Weier & Herring (2001), vegetation growth and

productivity are limited by water availability and, consequently, relative vegetation density

would be a good indication of water availability. This means that during the relatively dry

growing season, water availability to perennial wetland communities will result in these

communities being discernable from the surrounding vegetated areas. This is due to the fact

that the perennial wetland communities will be wetter and greener than the surrounding

vegetation.

Kage/Bay

N

A

Legend

Ptant communities
.. Acid aand ftats communities

_ Chondropetalum - Berzella upper slope hygric fynbos

_ Chondropetalum - Restio tussock marsh

_ Coleonema album short coastal rock fynbos

_ Erica - O.mitopsls seepage fynbos & maf5h COrnmJnitl8$

_ Fynbos on yellow plinthlc solis

_ Hypolaena - Erica tillite tussock
_ Ktoof forest

_ Umeltone communities
... low dune scrub and strand pioneers
_ Mesic seaward slope Erica - Restio veld

_ Mixed lower slope fynbos

_ Palmiet .awary
_ Riverine scrub

_ Saeetorest

_ Sideroxylon Inenna tan dune scrub

_ Tall shale forest

_ Xeric & mesic upper .Iope Erica - Restio veld

_ Xeric Inland nats Erica - Restio veld

_ Xeric Inland lower slope Erica - Restlo veld

_ Xeric seaward slope Erica - Restio veld

_ unsurveyed cliffsoKogelberg Biosphere Reserve

(Source: Western Cape Nature Conservation Board)

Figure 1.2: Vegetation of the Kogelberg Biosphere Reserve
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The locations of groundwater-dependent ecosystems are governed by groundwater discharge

from the water-bearing lithologies in the area. The geology of the study area is dominated by

sediments of the Cape Supergroup, including the Table Mountain Group (TMG) and the

Bokkeveld Group. The geology of the study area is shown in Figure 1.3.

o Kogelberg boundary
lV Fractures
_ Beach and
_ Alluvial Terraces
lE:~ Alluvium
_Sand
_Screer-n . Ferrlcrete
III Silcrete
_ Bokkeveld Group
_ Rietvlei Formation
Ss Skurweberg Formation

_ Goudlnl formation
_ Cedarberg FormatIOn
_ Pakhuis FormatIOn
_ Peninsula Formation
_ BasementIGranlte

The Peninsula and Pakhuis sandstone Formations are separated from the Goudini,

Skurweberg and Rietvlei Formations (mostly consisting of quartzitic sandstones) by the

Cedarberg Shale Formation. These formations form part of the TMG sediments and are

overlain by the Gydo (predominantly shale) Formation of the Bokkeveld Group sediments

(Theron, Gresse, Siegfried & Rogers 1992). The main groundwater-bearing lithologies

considered for medium- to large-scale abstraction are the Skurweberg and Peninsula

Formations (Brown et al. 2003).

Source: ENPAT 2001

Figure 1.3: Geology of the Kogelberg area

The sandstones of the TMG are heavily fractured and folded, with the majority of these

structures trending north-east or north-west. The major fault zones in the area are believed to

provide preferred pathways for groundwater flow (Colvin, Le Maitre & Hughes 2002).
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According to Colvin et al. (2002), groundwater discharge from the fractures results in

complex discharge patterns with seepage areas occurring at various points along slopes, at

changes in slopes as well as in localised flat areas. A typical TMG geohydrological setting is

presented in Figure 1.4. Groundwater flow typically follows regional paths along fault zones

and lithological contacts. Groundwater-dependent wetland ecosystems are likely to occur at

the points where the groundwater discharges to the surface (Colvin et al. 2002).

III Shale/Sandstone lavers

D Fractured sandstone• Shale

ElIlI Basementrock I18 Colluvial material and soil• River

0 Ocean... Rainfall: Groundwater flow

/ Maior faaltzone

,1 J

(Source: Colvin et al. 2002)

Figure 1.4: Fractured sedimentary terrain showing groundwater flow paths and groundwater

dependent ecosystems

This type of geohydrological setting supports a range of groundwater discharge regimes,

including ephemeral to wet-season only, and perennial springs and wetlands. This diversity of

discharge regimes in turn supports a range of groundwater-dependent ecosystems with

different sensitivities to changes in groundwater availability (Colvin et al. 2002). In this study

references to non-perennial wetland communities should be taken to indicate any wetland

communities that are not saturated throughout the year, including ephemeral and seasonal

wetland communities. Perennial wetland communities refer to those communities that remain

saturated throughout the annual cycle.

It is important to note that, according to Colvin et al. (2002), groundwater availability to a

certain vegetation community does not necessarily imply groundwater dependence.

~ependency on groundwater suggests that the ecosystem will be significantly altered if
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groundwater availability was to change beyond its normal range of fluctuation. Although the

study will concentrate on identifying wetlands with a likely component of groundwater

interaction, these communities will be referred to as groundwater-dependent communities.

The true nature of groundwater dependency, however, can only be assessed by water

chemistry studies.

1.5 MATERIALS AND METHODS

1.5.1 Data requirements

The suitability of satellite imagery selected for use in a particular study can be assessed in

terms of availability, spectral characteristics, spatial resolution and cost (Colvin et al. 2002).

The Landsat 7 ETM+ imagery was chosen for this application because of its high spectral

resolution (7 multispectral bands and one panchromatic band), while providing a suitable

spatial resolution (30m resolution for the multispectral bands, and 15m resolution for the

panchromatic band). Additionally, the l6-day revisit period provides multi-temporal image

availability, while imagery can be acquired at reasonable cost from primary data suppliers.

The data requirements for the development and application of the proposed techniques are:

i. Satellite images of the region of interest (acquired from the Satellite Application

Centre). These include images captured at the end of the dry period (where water

stress is expected to be at a maximum) and at the end of the wet period (where water

stress will be at a minimum);

ii. Vegetation and geological maps of the area of interest (acquired from the Western

Cape Nature Conservation Board);

iii. A high-resolution digital elevation model (DEM), supplied by the Centre for

Geographical Analysis, University of Stellenbosch.

1.5.2 Satellite image selection criteria

Groundwater-dependent wetlands in the area are expected to exhibit significant spectral

differences to surrounding vegetation. This is due to the fact that perennial groundwater-fed

wetlands are expected to remain water-saturated throughout the year, causing these wetland

communities to remain wetter and greener, even after the dry season. Non-perennial wetlands

and surrounding non-wetland vegetation communities are expected to experience a certain

Stellenbosch University http://scholar.sun.ac.za



16

degree of moisture deficiency, especially after the dry season. Therefore, multi-temporal

images (at the onset of the wet season and at the onset of the dry season) for each year are

desirable. For the selection of dates of image capture, a list of available weather stations and

their monthly rainfall data was requested from the Institute for Soil, Climate and Water

(lSCW) in Stellenbosch. The nearest weather station to the Kogelberg Biosphere Reserve

(with data from 2000 to 2003) is the Oudebosch weather station. The location of this station

as well as other weather stations in the area is presented in Figure l.S.

N

A

MITCHELL'S PLAIN~.
Fa/seBay

• Weather Station.
_ Urban areas

, * I KDgoIberg BIosphere Reoerve0 10 20 30 40
b]'IJ Dana ... _ .... ë=:=:::::::S.... _ .... ====:::J Km

Figure 1.5: Weather station locations for the Kogelberg Biosphere Reserve and the

surrounding areas

For the purpose of analysis successive end-of-wet period and end-of-dry period images should

be selected. In order to estimate end-of-dry period and end-of-wet period conditions, the

cumulative average rainfall for different sets of three successive months were computed to

isolate the three-month period with the lowest average rainfall, as well as the period with the

highest average rainfall. It is important (especially for the end-of-dry season data) to then

obtain images captured on a date for which there was an extended period of low or no rainfall.
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The daily rainfall data for the above chosen months were inspected in order to obtain these

dates. The suitable dates for image capture are summarised in Table 1.1.

Table 1.1: Sets of dry and wet periods, and preferable capture dates for images

Year Driest three months End of dry period Wettest three months End of wet period

2000 Feb, Mar, Apr 9-19 May Jul, Aug, Sep 2-80ct

2001 Jan, Feb, Mar 27 Mar-l Apr Jul, Aug, Sep 27 Sep - 17 Oct

2002 Feb, Mar, Apr 1-3 May Jun, Jul, Aug 30Aug-8 Sep

2003 Dec, Jan, Feb 1-6 Mar Jul, Aug, Sep 7-110ct

After examining the Satellite Application Centre's online catalogue, three Landsat 7 images

were chosen. The first was captured on 22 October 2001, which reflects the end-of-wet period

conditions. The second image was captured on 18 May 2002 which represents the end-of-dry

period conditions, while the third image, captured on 23 September 2002, approximates end-

of-wet period conditions. Table 1.2 provides a brief description of imagery data obtained.

Table 1.2: Image data to be used for wetland change detection

Image Dates Landsat Spatial resolution Preprocessing level OtherSensor

LevellG:
21 Oct 2001 30 m (Bands 1 - 6) Geometrically WRS: 175/84

18May 2002 ETM+ 15m Panchromatic rectified product free UTM Zone 34,
from distortions from Ref. ellipse: WGS

23 Sep 2002 30 m Thermal sensor, satellite and 84
earth

1.5.3 Proposed image analysis strategies

1.5.3.1 Image preprocessing
The raw data collected by satellite sensors have both geometric and radiometric flaws.

Radiometric corrections are necessary because remotely sensed data are affected by solar

incidence angle, solar azimuth, earth-sun distance, viewing angle and atmospheric effects

(LUck 2004; Munyati 2000). These factors combine to produce significant band-dependent

radiometric differences that could influence the interpretation of both temporal and spatial
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data sets (Huang, Yang, Homer, Wylie, Vogelman & DeFelice 2001; Irish 2000). When using

Landsat imagery to map and monitor vegetation cover changes, it is desirable to remove these

effects by methods which would produce a radiometrically consistent time-series of images.

This enables indices or classifications derived for individual scenes to match other scenes

both spatially and over time (Xiaoliang, Danaher, Wallace & CampbeIl200I).

Geometric errors are caused by factors such as the earth's curvature and rotation as well as

variations in the velocity, altitude and attitude of the sensor platform. Geometric correction is

the step in correcting these errors in order to make data spatially consistent over time (Vergara

s.d.). Systematic errors such as those introduced by the earth's curvature, as well as the yaw,

pitch, roll, band alignment and sensor jitter from the satellite sensor are usually corrected by

data suppliers selling level-I processed imagery. Additional distortion introduced by

topography and referencing of the image to an accurate geographic location has to be

undertaken by the user (LUck2004).

Additionally, the spatial resolution of Landsat 7 bands 1 - 5 and 7 is 30 meters. Considering

the size of many of the wetlands in question, this resolution might prove to be too coarse for

meaningful analyses. Image fusion, a method for combining the high spatial resolution of the

15 meter panchromatic band with the high spectral resolution of the multispectral bands

(Zhang 2004), will prove to be a very important preprocessing procedure for wetland

detection. Figure 1.6 is a diagrammatic illustration of the steps that will be taken during the

image preprocessing stages.

Figure 1.6: Steps involved in the image preprocessing

1.5.3.2 Image processing

After ensuring the radiometric and geometric comparability between data sets, various image

analysis techniques will be employed in order to enhance latent information on vegetation

productivity and moisture content of vegetation classes within the scene. Using the

differential spectral properties of the vegetation classes of interest, the outputs of the different
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image analysis strategies will be combined in a rule based classifier for discrimination

between the vegetation communities of interest.

The image analysis strategies that will be employed to extract relevant vegetation-related

variables will involve the following:

• Band ratios/vegetation indices derived from different combinations of spectral bands

will provide a quantitative measure of various vegetation-related variables such as

biomass and productivity, as well as soil and canopy moisture. When using

productivity-related indices (such as the near infrared/red ratio) a high pixel value will

reflect a condition with a high density of healthy vegetation, while lower values will

indicate either a lower density of vegetation, or stressed vegetation. Moisture stress-

related indices provided by the SWIRINIR ratioing strategy will present a means of

assessing the canopy and soil moisture within a pixel. Higher values will indicate

lower moisture content, while lower values will be an indication of higher moisture

content with a high possibility of wetland-related vegetation communities. Change

vector analysis on the vegetation indices derived for different seasons within a year

will present a means of assessing how the productivity and moisture content of the

different communities fluctuates seasonally. Theoretically, since perennial

groundwater-dependent communities remain saturated throughout the year, they

would show a lesser degree of variation in productivity during an annual cycle, while

also exhibiting a very low change in moisture stress index throughout the year.

• Tasse/ed cap transformations will be performed in order to derive the main

components of vegetation, namely brightness, greenness and wetness. Especially the

wetness and greenness components could prove to be useful for vegetation community

discrimination. Greenness, like the vegetation productivity indices, will provide a

measure of vegetation biomass, while the wetness component will present another

means of assessing the moisture content within a pixel. Two images will then be

compared, and change pairs computed by differencing images on each of the three

tasseled cap components. The change vector then connects the same pixel as measured

over two different times and the magnitude and direction of change can be interpreted

(Lunetta, Johnson, Lyon & Crotwell 2004). For example, a pixel representing non-

perennial wetland conditions would have a significant decrease in wetness when

moving from end-of-wet period to end-of-dry period conditions, while perennial

wetland communities would be expected to have a high wetness component

throughout the year.
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• A rule based expert classifier will be constructed using ERDAS Imagine's Knowledge

Engineer. This classifier will enable the classification of perennial and non-perennial

wetland communities. The classification of these general wetland communities will

rely heavily on the output data layers produced during vegetation index derivation and

tasselled cap transformation, and the various change detection results between the

successive images. Based on the output of these general wetland communities, an

attempt will be made to discriminate between different types of perennial wetlands,

including those related to geological faults, and those occurring on lithological

boundaries. Here additional ancillary data such as lithological boundary and fault data

sets will be employed.

Campbell (1996) states that the high spectral, spatial and temporal resolution of satellite

imagery data provides a means of monitoring vegetation health and productivity of

vegetation classes over time. To determine the utility of Landsat 7 ETM+ data for the

classification of vegetation/groundwater interaction, methods of data analysis, synthesis

and comparison using remote sensing methodologies will be employed. The following

chapter provides an introduction and theoretical background for the image analysis

strategies employed for this study.
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CHAPTER2: LITERATURE REVIEW AND THEORY

2.1 INTRODUCTION

Long-term monitoring of ecological regions is a labour-intensive and time-consuming

process, frequently requiring inaccessible areas to be covered by foot. Since vegetation vigour

and productivity are continuously changing, monitoring would require frequent re-visitations,

making this process virtually impossible to implement in practical terms. The use of remote

sensing for the mapping and long-term monitoring of vegetation surfaces could overcome

many of these limitations. It provides the analyst with the tools for monitoring the changes

that takes place in ecosystems, with fieldwork being required only for the verification of

results.

This chapter discusses the theory behind the various remote sensing and image analysis

techniques for the detection and classification of groundwater dependent ecosystems used in

this study. The use of vegetation indices and tasselled cap components in vegetation studies

are reviewed, as well as how change vector analysis on these transformations can assist the

classification process.

2.2 INTERACTION OF VEGETATION WITH ELECTROMAGNETIC

RADIATION

Parker & Wolff (1965) noted that everything in nature has its own unique distribution of

reflected, emitted and absorbed radiation. These spectral characteristics can be used to

distinguish between different objects, or to obtain information about their shape, size and

other physical or chemical properties. The variations in the amount of emitted and reflected

energy across the electromagnetic spectrum are used to establish the spectral signatures for

the given objects. The theory behind spectral signatures is that similar objects or classes of

objects will have similar interactive properties with the electromagnetic radiation at any given

wavelength, while different objects will have different interactive properties (Short 2003). A

plot of the emitted or reflected result of these interactions against the different wavelengths

would result in a unique curve, or spectral signature, that is diagnostic of the particular object

(LP DAAC staff2004).
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Where vegetation is concerned, the use of the unique spectral curves associated with

vegetated areas can be particularly effective for the assessment of various vegetation-related

parameters. This is due to the fact that the pigment in plant leaves, chlorophyll, strongly

absorbs blue and red visible radiation for use in photosynthesis, while strongly reflecting

green radiation, resulting in the green appearance of plants (Campbell 1996; Short 2003;

Weier & Herring 2001). Furthermore, the internal leaf structure of plants strongly reflects

near infrared (NIR) radiation. These reflective/absorptive properties of vegetation provide a

means of distinguishing vegetation from most other materials on a satellite scene. Healthy

green vegetation would absorb most of the visible red light that it interacts with, while

reflecting a large portion of NIR radiation, whereas unhealthy vegetation would reflect more

of the visible light and less of the NIR radiation (Weier & Herring 2001). Additionally, the

difference in reflectance between different plant species is most pronounced in the NIR

portion of the electromagnetic spectrum, making discrimination between different vegetation

classes a possibility (Campbell 1996).

Short (2003) states that spectral variability between species can also be a result of variable

physical properties, including vegetation water content. Here, the short wave infrared (SWIR)

radiation plays an especially important role. SWIR radiation is very sensitive to the presence

of thin layers of soil and canopy moisture, with SWIR absorption increasing with increasing

moisture content. This spectral property proved to be especially useful for the assessment and

monitoring of wetland communities. Using a combination of SWIR and NIR reflective

characteristics, moisture-deficient vegetation communities can be identified by their

progressive decrease in NIR reflectance (decrease in productivity) as well as the increase in

SWIR reflectance (decrease in moisture content) (Short 2003).

The interaction of electromagnetic radiation with vegetation has been used for various

vegetation applications. Agricultural applications include the detection of stress as a result of

moisture deficiency, pests and disease (Ceccato, Flasse, Tarantola, Jacquemoud & Gregoire

2001; Hatfield & Pinter 1993; Lelong, Pinet & Poilvë 1998; Moran, Clarke, Inoue & Vidal

1994; Zhang et al. 2003) as well as the determination of production estimates and crop yield

(Doraiswamy, Hatfield, Jackson, Akhmedov, Prueger & Stem 2004; Shao, Fan, Liu, Xiao,

Ross, Brisco, Brown & Staples 2001; Pradhan 2001; Tottrup & Rasmussen 2004). Other

applications include the monitoring of desertification (Collado, Chuvieco & Camarasa 2002),

fire-risk assessment (Mbow, Goïta & Bénié et al. 2004), and mapping forest stand age

distribution (Zhang, Pavlic, Chen, Latifovic, Fraser & Cihlar 2004).
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2.3 VEGETATION INDICES

The distinctive reflective properties of vegetation mentioned above allow for the classification

of vegetation into different vegetation communities. Various physiological parameters, such

as biomass and productivity, can also be quantified based on different combinations of

satellite image bands (Viedma, Meliá, Segarra & Garcia-Haro 1997; Weier & Herring 2001).

The various strategies that are employed to quantify the different vegetation-related

parameters are collectively known as vegetation indices (Campbell 1996; Sims & Gamon

2003; Viedma et al. 1997). Various vegetation indices have been derived by using different

combinations of spectral bands that are multiplied, divided, added or subtracted. The result of

this image algebra would result in a single value that is indicative of the various plant

physiological parameters within a pixel (Campbell 1996; Viedma et al. 1997; Weier &

Herring 2001). According to Viedma et al. (1997), the close relationship between vegetation

indices and the physiological plant parameters they estimate makes their use a valuable tool

for monitoring and assessing vegetation conditions.

The most common image algebra strategy employed for the derivation of vegetation indices

are band ratios. Band ratios are quotients between the reflectance values recorded in the

different satellite image bands. Band ratios have been found to highlight certain absorptive

and reflective properties of surface features, especially where there is an inverse relationship

between the spectral responses for certain image bands (Campbell 1996). The inverse

relationship between the reflectance of NIR and visible radiation for vegetation makes the

ratioing strategy particularly effective for vegetation studies (Campbell 1996).

One of the many measures of vegetative vigour and abundance is the near infrared/red

(NIRIR) ratio. Yet another measure employs the strong reflectance of green light by healthy

green vegetation in a green/red band ratio. Some have found this index to be very effective,

especially when the NIR band is unavailable (Gitelson, Kaufman & Merzlyak 1996), but

others have found it less useful (Campbell 1996). The strong absorption ofSWIR radiation by

thin layers of canopy and soil water, and the high reflectance of NIR radiation by healthy

green vegetation, provide another inverse relationship that can be effectively utilised,

especially for the detection of wetland communities. The SWIRINIR ratio, also referred to as

the moisture stress index (Sims & Gamon 2003; Weier & Herring 2001), would then highlight

areas with a high portion of healthy green vegetation, as well as a high moisture content, i.e.

wetland vegetation communities.
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Weier & Herring (200 I) found that, using vegetation indices, satellite remote sensors can

quantify what fraction of radiation used for photosynthesis is absorbed by vegetation. They

state that scientists have found a direct relationship between the radiation that a plant absorbs

and the net plant photosynthesis. The more a plant is absorbing visible light during the

growing season, the more it is photosynthesising and, consequently, the more productive it is

being. On the other hand, the less radiation a plant absorbs, the less the plant is

photo synthesising and the less productive it is (Zhang, Qin, Liu & Ustin 2003). Either

scenario results in a vegetation index value that, over time, can be averaged in order to

establish the normal growing condition for the vegetation during the year. The measuring of

plant productivity by means of vegetation indices can be used to characterise the health of

vegetation during the year relative to the norm. In most climates vegetation growth is

constrained by water availability, so that the relative vegetation density could be a good

indicator of plant moisture stress (Hatfield & Pinter 1993; Weier & Herring 2001). According

to Budde, Tappan, Rowland, Lewis & Tieszen (2004), vegetation degradation resulting from

human pressures can be estimated by using vegetation indices, allowing assessment and

monitoring of areas that are either consistently productive or degraded when compared to

their surroundings.

According to Hatfield & Pinter (1993), the multispectral vegetation indices derived from

vegetation reflectance values can be used to monitor the growth responses of vegetation in

relation to measured or predicted climate variables. In this study seasonal variation in

wetlands was used to assess the perennial or non-perennial nature of the wetland

communities. Since perennial groundwater-fed wetland communities will remain saturated

throughout the year, they will exhibit a lesser degree of variability in their productivity

throughout the year. They will also have a lower degree of change in their moisture stress

index when moving from end-of-dry period to end-of-wet period conditions, compared to

surrounding vegetation.

Previous studies of vegetation indices applied for the monitoring and assessment of vegetation

productivity include the use of vegetation indices for the quantification of photosynthetic

tissues (Sims & Gamon 2002), the use of vegetation indices to assess vegetation re-growth

after fire (Viedma et al. 1997), the use of the correlation between annual normalised

difference vegetation index (NDVI) and rainfall as a signal of landcover performance (Urban

2000), as well as the use of NDVI together with local variance analysis for assessing

vegetation degradation resulting from human pressures (Budde et al. 2004). The use of
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thermal infrared (TIR) bands together with NOVI calculations has also demonstrated the

ability to discriminate between senescent vegetation and bare soils (French, Schmugge &

Kustas 2000).

2.4 THE TASSELLED CAP TRANSFORMA TION

The tasselled cap transformation, also referred to as the Kauth-Thomas (KT) transformation,

is based on a linear model similar to a principal component analysis (PCA), which considers

the spectral variations common to a data set and separates the variability into discrete, non-

correlated components (Levien, Fischer, Roffers & Maurizi 1998). The tasselled cap

transformation reduces the ETM+ bands, excluding band 6, into six components, the first

three of which correspond to the main components of vegetation. These are known as the

brightness, greenness and wetness components, and are calculated from the reflectance values

within a satellite scene (Huang et al. 2001; Urban 2000). The coefficients for the derivation of

tasselled cap components for Landsat 7 imagery were developed by Huang et al. (2001) and

are presented in Table 2.1.

Table 2.1 : Coefficients for tasselled cap component derivation of Landsat 7 imagery

Index Band I Band2 Band3 Band4 Band5 Band7

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596

Greenness -0.3344 -0.3544 -0.4556 0.6966 -0.0242 -0.2630

Wetness 0.2626 0.2141 0.0926 0.0656 -0.7629 -0.5388

Fourth 0.0805 -0.0498 0.1950 -0.1327 0.5752 -0.7775

Fifth -0.7252 -0.0202 0.6683 0.0631 -0.1494 -0.0274

Sixth 0.4000 -0.8172 0.3832 0.0602 -0.1095 0.0985

(Source: Huang et al. 2001)

The brightness component is the weighted sum of all bands and is designed to capture the

main trend of variation in soil reflectance (Levien et al. 1998; Urban 2000). This component

is sensitive to changes in biological factors that would influence soil reflectance. Here the

NIR band (Band 4) is weighted heavily, since this band is responsive to differences in soil

brightness. The SWIR band (Band 5) is also weighted heavily due to its inverse response to

soil moisture, which will affect soil brightness (Patterson & Y001 1998).

The greenness component is related to the amount of healthy green vegetation within a scene

(Levien et al. 1998; Urban 2000). This component is a function of the NIR (Band 4)
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reflectance from the internal structure of leaves, but also of the absorption and reflection of

visible radiation by chlorophyll (patterson & Yoo11998; Urban 2000).

Wetness, the third component, is associated with canopy and soil moisture (Levien et al.

1998; Urban 2000). The component contrasts the NIR band (Band 4) with the SWIR (Band 5)

and mid infrared (Band 7) bands. This is based on the premise that increases in moisture will

lead to a decrease in the amount of reflectance recorded by Bands 5 and 7, hence the negative

signs in Table 2.1. The visible and NIR bands are less sensitive to variations in canopy and

soil moisture, and contrasting these bands with Bands 5 and 7 accentuates moisture

differences (Patterson & Y001 1998).

In this study, the tasselled cap components can be used in various ways for discriminating

between wetland and non-wetland vegetation classes. Change vector analysis on the different

tasselled cap components provide a means of summarising the change experienced within the

pixel based on each of the tasselled cap components. The change vector inspects the same

pixel on two different images, and the magnitude and direction of change between these two

times can then be interpreted. Since perennial groundwater-fed wetland communities remain

saturated throughout the year, they would exhibit only marginal variations in their wetness

and greenness components during an annual cycle. Non-perennial wetland communities, on

the other hand, would have a marked decrease in the wetness component when moving from

end-of-wet period to end-of-dry period conditions. While all vegetation classes are expected

to show an increase in greenness from the end of the wet period (end of winter) to the end of

the dry period (end of summer - the growing season), the perennial wetland vegetation is

expected to have a higher degree of productivity. This would be due mainly to the higher

water availability for photosynthesis during the relatively dry growing season.

Tasseled cap transformations performed in conjunction with change detection strategies have

been used extensively in many vegetation studies, including the monitoring of forest canopy

changes due to drought (Collins & Woodcock 1996), stratifying land cover dynamics in terms

of biomass loss and gain (Lorena, dos Santos, Shimabukuro, Brown & Kux 2002), monitoring

vegetation cover change during two or more time periods (Rogan, Franklin & Roberts 2002)

and the estimation of vegetation damage as a result of pests (Skakun, Wulder & Franklin

2003).
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2.5 RULE BASED IMAGE CLASSIFICATION

According to Kidane (2004), classification of landcover classes based purely on the spectral

characteristics of the features in question might be difficult, producing poor results. Some

additional ancillary data might be useful for image classification and might significantly

enhance the classification product. Knowledge-based expert classifiers provide a means by

which the spectral characteristics of landcover classes may be used together with additional

ancillary data for the purpose of landcover classification.

Ancillary data are defmed as data generated by methods other than remote sensing analysis

and can be used to assist in the classification of the landcover classes (Kidane 2004). The

ancillary data that would prove useful for wetland classification include a geological map of

the area of interest (including lithologies and faults), a digital elevation model (DEM) and the

subsequent additional data layers that could be derived from these data sets. Additional

image-derived data that were used for wetland classification in this study include the

previously described tasseled cap component layers and vegetation productivity indicators,

based on vegetation indices.

According to Kidane (2004), the knowledge/rule based classifier consists of three main

elements:

• The knowledge base is a set of facts composed of imagery and ancillary data as well as a

set of rules that describe the relationship between these facts;

• The rules are formalised during a training phase in order to identity distinguishable

relationships between elements;

• The recognition path implies the problem-solving mechanism. It includes sets of

production rules designed to access the knowledge base facts and rules. The recognition

path controls the order in which rules are activated and used, and is most commonly

implemented in the form of a decision tree.

The classification model is constructed by using two hierarchical levels. The first level,

containing the basic models (BM), is the lowest level of the classifier structure. These models

describe basic algorithms and rules which act as a recipe to create a data product. The

explanatory variables that make up a basic model are analyzed statistically in order to identity

suitable thresholds to identity the response variable. Relationships between the explanatory
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and response variables can be described by expert knowledge of the features of interest.

Where no expert knowledge exists, threshold values are determined by means of statistical

analysis of training samples. The output results of the basic models can then be used within

the second hierarchical level, the compound models (Kidane 2004).

Expert Classification Model

Compound models (CM) are constructed by integrating several basic models and may take as

input the output of other compound models. The compound models are designed to identify a

single landcover class. The classification model is then defmed by a sequence of compound

models, keeping in mind that the order of execution of the models is important to ensure

mutual exclusiveness of pixels. The basic hierarchical structure of the expert classifier is

illustrated in Figure 2.1.

,,,,,,,,,,,,,
,,

(Source: Kidane 2004)

Figure 2.1: Expert classifier structure (BMn= Basic Model; CMm = Compound model).

The expert classification models use various decision criteria and operations to identify the

landcover classes of interest. Here certain pre-defined spatial operations (i.e. tasselled cap

components and vegetation indices) are used for the construction of one or more basic

models, which, in tum, are used to construct one or more compound models.

The past decade has seen significant research focussed on remote sensing techniques for

various vegetation-related studies, with a number of different satellite- and aircraft-based

sensors being used for this purpose. The use of Landsat 7 ETM+ data for the derivation of

tasselled cap components and vegetation indices has been well documented and it is by means

Stellenbosch University http://scholar.sun.ac.za



29

of these transformations that a classification and assessment of groundwater interaction in

vegetation communities were attempted. The ability to combine such image transformations

with additional ancillary data for improving classification accuracy results will result in a

method of identifying those vegetated areas with a high probability of groundwater

interaction. The following chapter describes the image transformation procedures and the

image classification process employed for this purpose.
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CHAPTER3: DATA ANALYSIS PROCEDURES

3.1 INTRODUCTION

The following chapter provides a description of the image processing procedures employed

for this study, which can be summarised as follows (section numbers are indicated by

brackets):

Pan fusion; } 3.2.1.1

Geometric correction and orthorectification; } 3.2.1.2

Conversion of digital number (DN) images to radiance; } 3.2.1
3.2.1.3

Conversion from radiance to reflectance;

Atmospheric correction; } 3.2.1.4

Vegetation index derivation and change vector analysis; } 3.2.2.1
} 3.2.2

Tasseled cap transformation and change vector analysis; } 3.2.2.2

Rule based image classification. } 3.3

All analysis was performed using the Earth Resources Data Analysis System (ERDAS)

image processing software, except for the pan sharpening and atmospheric correction

procedures, which were performed using PCI Geomatica 9.1 software.

The ability to use remote sensing data to classify landcover classes is dependent upon the

relationship between the remotely sensed reflectance values and the actual surface conditions

(Munyati 2000). However, many external factors would influence the recorded pixel values.

These include variations in sun illumination angle, earth-sun distance, atmospheric

conditions as well as earth and sensor geometry (LUck 2004; Munyati 2000). Multi-temporal

images are likely to be influenced differentially by these parameters and the images should

therefore be normalised so that the effect of differing conditions could be eliminated, or at

least minimised. Differences in values that arise from fluctuations in orbital and sensor

characteristics are well documented and the necessary corrections are usually applied in the

early stages of data collection by primary data suppliers (LUck 2004). For this study,

3.2 DATA PROCESSING
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however, additional image preprocessing had to be performed by the user in order to ensure

pixel-level comparability between images.

3.2.1 Satellite image preprocessing

The satellite data received from the data suppliers were subjected to LevelIG preprocessing,

meaning that the data were geometrically and radiometrically corrected. During LevelIG

processing the data undergoes two-dimensional resampling according to user-specified

parameters such as output map projection. The LevelIG product is considered to be free

from distortions related to sensor movement Gitter, roll, view-angle effects), satellite

movement (attitude deviations from nominal) and earth movement (e.g. rotation, curvature)

(Irish 2000). These standard geometric and radiometric processing procedures result in digital

number (DN) images, which represent the degree of at-satellite radiance.

The DN image data are usually affected by a substantial amount of noise, but a significant

portion of the noise between images can be normalised by image preprocessing techniques

(Huang et al. 2001). In order to compare images taken at different dates, images have to be

matched radiometrically in order to account for variations in overall brightness and matched

geometrically to ensure that pixels overlay precisely when images are compared. In addition,

the pixel data will not only be influenced by sensor differences, but also by the accuracy of

spatial registration of images, differences in atmospheric composition at the time of image

capture and the spatial size of changes relative to the image resolution (Munyati 2000).

3.2.1.1 Image fusion for enhancement of spatial resolution

According to Zhang (2004), image fusion/pan sharpening is a method for the integration of

the geometric detail of a high-resolution (15 meter) panchromatic image, with the radiometric

detail of lower-resolution (30 meter) multispectral bands. This is done in order to derive a

high spatial resolution image with a high spectral resolution. Since the spatial extents of the

wetlands in question are expected to be less than 30 meters, this was compulsory for wetland

detection.

The statistics-based image fusion module called PANSHARP, implemented in the PCI

Geomatica 9.1 software package, was used for the fusion of the Landsat 7 multispectral bands
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with the Landsat 7 panchromatic band. This module uses the least squares technique to find

the best fit between the digital values of the image bands being fused and to adjust the

contribution of individual bands to the fusion result to reduce the colour distortion. It also

employs a set of statistical approaches to estimate the grey value relationship between all the

input bands. This reduces the influence of dataset variation and automates the fusion process

(Zhang 2004).

According to Zhang (2004), the PANSHARP module is expected to have a minimal colour

distortion, as is evident in the Figure 3.1, which is the result of the image fusion process.

A: Pan-sharpened image B: Un-sharpened image

Figure 3.1: Comparison between a sharpened and un-sharpened multispectral image. Capture

date: 22 September 2002. RGB = 453
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3.2.1.2 Geometric correction

Levien et al. (1998) state that, when using satellite images for change detection, imagery must

be co-registered to ensure that multi-temporal images from the same row and path are

registered to within one pixel. This is achieved by on-screen identification of common

features, such as road intersections. If pixels do not correspond completely, changes due to

misregistration of pixels will be recorded in the final change map. According to Munyati

(2000), geometric registration of a multi-temporal image set with RMS error of 0.25-0.5

pixel, or 1 pixel at most, is necessary for accurate change detection applications.

As mentioned earlier, the LevelIG data were geometrically corrected. The geometric

corrections employed by primary data providers ensure that the data are free from distortions

caused by the Earth's rotation and curvature. However, according to Irish (2000), the 1 G

correction does not employ ground control or relief models to ensure absolute geodetic

accuracy. Consequently, as stated by LUck (2004), the removal of distortion introduced by

topography and subsequent referencing of pixels to their accurate geographic location has to

be undertaken by the user.

The ERDAS IMAGINE 8.7 Image Geometric Correction module was used for the geometric

correction of the image. The Landsat geometric model was chosen, which allows for the

orthorectification of Landsat data. A digital elevation model of the Western Cape (supplied by

the Centre for Geographical Analysis, University of Stellenbosch) was used as elevation file.

Fifty ground control points (GCPs) were collected on the 18May 2002 image relative to a

projected roads vector layer (1:50000). A maximum root mean square (RMS) error of9.0225

was achieved (refer to Table 3.1), ensuring that the data were accurate to within one pixel for

the 15 meter resolution image, and less than a half a pixel for the 30 meter resolution images.

The corrected 18 May 2002 image then served as reference image relative to which the 21

October 2001 and 23 September 2002 images were also corrected. The result of the image

geometric correction and orthorectification is shown in Figure 3.2.
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Table 3.1: Magnitude of error in orthorectification of images

Image Pixel size after rectification Total root-mean square error

22-10-01 (Panfuse ) 15m 4.1477 (0.277 pixels)

22-10-01 (Original) 30m 5.5305 (0.184 pixels)

18-05-02 (Panfuse) 15m 9.0225 (0.602 pixels)

18-05-02 (Original) 30m 9.023 (0.301 pixels)

23-09-02 (panfuse) 15m 2.1621 (0.144 pixels)

23-09-02 (Original) 30m 2.1822 (0.072 pixels)

A: Uncorrected image B: Geometrically corrected image

Figure 3.2: Comparison between the geometrically corrected and uncorrected images. Capture

date: 22 September 2001. RGB = 432
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According to Irish (2000), the residual error in the systematic LevelIG product is

approximately 250 meters in flat areas at sea level. The correction and orthorectification of

the images using GCPs reduced the geodetic error of the output images to less than 15 meters,

ensuring pixel-level comparability between images.

3.2.1.3 Radiometric calibration
In order to standardise the impact of illumination geometry on the 8-bit digital number (DN)

imagery, it first had to be converted to at-satellite radiance, and then to at-satellite reflectance,

using information extracted from the imagery header files.

The formula for the conversion of digital numbers to at-satellite radiance can be expressed as:

L ..= (gain .. x DN .. )+ bias .. (Source: Irish 2000),

where L .. is the at-satellite radiance for band A, gain and bias are the band-specific gain and

bias values extracted from the image header files, and DN is the band-specific digital number

values of the uncorrected image.

Conversion from at-satellite radiance to at-satellite reflectance will ensure inter-scene

standardization for effects, including Earth-Sun distance and solar elevation angle. The

conversion can be expressed as:

n x L «d?
P .. = ... (Source: Irish 2000),

ESUN .. xsmB

where P.. is the unitiess at-satellite reflectance, L.. is the at-satellite radiance, d is the Earth-

Sun distance (extracted from imagery header files), ESUN .. is the band-specific mean solar

exoatmospheric irradiance (Table 3.2), and B is the solar elevation angle (extracted from

imagery header files).

Table 3.2: ETM + Solar spectral irradiances

Band no. 2 3 4 5 7 8

Irradiance 1969.000 1840.000 1551.000 1044.000 125.700 82.0700 1368.000

(Source: USGS 2001)
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Landsat 7 thermal infrared bands (Band 6) can also be converted to at-satellite temperatures

of the viewed Earth-atmosphere system under the assumption of uniform emissivity and using

the pre-launch calibration constants listed in Table 3.3. The formula for this conversion can be

expressed as follows:

T = (K2 ) (Source: Irish 2000)
In Kl! + I

/L).

Where T is the Effective at-satellite temperature in Kelvin, Kl and IQ is calibration constants

1 and 2 from Table 3.3 and L is the spectral at-satellite radiance.

Table 3.3: ETM+ thermal band calibration constants

Constant 1 (K 1) in watts/(m2 * ster * 11m) Constant 2 (K2) in Kelvin

666.09 1282.71

(Source: Irish 2000)

3.2.1.4 Atmospheric correction

Electromagnetic radiation (EMR) undergoes significant interactions with the atmosphere

before it reaches the earth's surface, and again as it moves from the earth's surface to the

satellite sensor. Essentially, two processes affect the propagation of EMR through the

atmosphere, namely absorption (where radiation is absorbed by particles in the atmosphere,

and later re-emitted at different wavelengths) and scattering (where EMR is redirected due to

particles in the atmosphere). The type and significance of the scattering depends upon the size

of the scattering element compared to the wavelength of the radiation. This could have

significant effects on an image, especially in the visible bands. These effects are observable as

haze within a satellite image scene (Pani 2001). According to Chavez (1988), the influence of

scattering on the visible and near-infrared bands is an additive effect on the radiation reaching

the satellite sensor, thereby increasing the recorded reflected radiation. It must therefore be

compensated for when investigating reflective properties of ground features over time.

Consequently, any image processing techniques that analyze the spectral response of different

spectral bands will be affected by the composition of the atmosphere at the time of image

capture (Pani 2001).
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The spectral response of the vegetation classes of interest (wetland vs. non-wetland

vegetation) will be affected by the changing atmospheric conditions at the different times of

image capture. Since seasonal data will be analysed, different atmospheric conditions are

expected to influence the different images. To ensure that observed seasonal changes are a

result of actual changes on the ground and not due to variable atmospheric conditions, the

image data used need to be atmospherically corrected and normalised.

Several techniques have been developed to compensate for atmospheric scattering and

effective haze removal. According to Coppin (2002), these techniques are grouped into three

broad categories.

• First-order corrections rely on recorded reflectance values of scene features of known

or assumed brightness. Certain assumptions, not always applicable to the case at hand,

are made. These assumptions include uniformity of haze degradation over the entire

scene, the additive character and wavelength dependency of atmospheric scattering, as

well as the equal effect on all pixel brightness values. Examples include the dark

object subtraction technique, which involves the identification of the lowest pixel

value within an image. The pixel is then assumed to have a reflectance value of zero

and the recorded deviation from zero then represents the additive atmospheric

component, which can be subtracted from the entire image (Chavez 1988; Coppin

2002; Song, Woodcock, Seto, Lenney & Macomber 2001).

• The second category also uses reflectance values of features with known or assumed

brightness, but also attempts to exploit the knowledge of the relationships between the

separate spectral bands. An example of such a technique is regression analysis, where

a best-fit line of plots for pixels within homogeneous cover types is determined. The

slope of the line would then be representative of the ratio of reflected radiation

(Coppin 2002).

• The third category of procedures attempts to model the physical behaviour of EMR as

it passes through the atmosphere. Here detailed meteorological information is

required, but since data on atmospheric humidity and concentration of atmospheric

particles are difficult to obtain in the necessary detail, these techniques are not

routinely used. One example of such a model (ATeOR 2) was developed by Dr

Richter of the German Aerospace Centre (DLR) (pCI Geomatica V9.1 online help).

This model includes certain pre-defined atmospheric conditions (based on geographic
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location and seasonal climate variables), which are stored in a database. For the

implementation of this model, only ancillary data related to satellite gains and bias

values, solar zenith angle and sun elevation (which can be extracted from the imagery

header files) are needed for each image.

It is important to note that the ATCOR 2 algorithm, as implemented in the PCI Geomatica

v9.1 software, takes radiometrically uncorrected digital number images as input. Radiometric

normalisation by conversion of DN images to radiance, and then to at-satellite reflectance is

implemented within the algorithm. This means that, if the user intends to employ the ATCOR

2 algorithm for atmospheric corrections, the radiometric preprocessing procedure, as

described in Section 3.2.1.3, would not be necessary.

The ATCOR 2 atmospheric correction algorithm employed in PCI Geomatica v9.l was

applied to each image by using the atmospheric correction functions stored in the database

look-up tables. The model assumes a flat terrain consisting of horizontal surfaces. Input

parameters for the model include the specification of a calibration file (extracted from the

image header files), as well as an atmospheric definition that can be chosen from a list of pre-

defined atmospheric conditions. Haze and cloud were also removed from the images by

means of the following statistical haze removal algorithm:

1. Firstly, the scene is partitioned into clear, haze and cloud regions. Haze and clear areas

are masked by means of the fourth tasseled cap component, which can be calculated

by TC4 = (XI * BI) + (x2 * B3), where Bl and B3 are the blue and red bands

respectively, while X I and X2 are their respective weighting coefficients (Table 2.1).

Clear (or haze-free) pixels are then defmed as those pixels with a TC4 value of less

than the mean TC4 value for the entire image. Cloud areas are masked in order to

exclude them from the haze regions, since surface reflectance information cannot be

retrieved from these regions. The haze and cloud masks derived during this process

are presented in Figure 3.3.
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Figure 3.3 Haze mask (green) and cloud mask (red) generated by the ATCOR 2 module.

Capture date: 22 September 2001.

2. Linear regression ofthe pixel values of B3 and Bl for the clear regions provides a line

representing the clear sky vector. The direction of the clear sky vector can be

expressed by its slope angle «()). An increase in atmospheric contamination will

manifest itself by increasing deviation from this clear sky vector. An example of a

clear sky vector generated from the 22 September 2002 image is presented in Figure

3.4.

Clear sky vector
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Figure 3.4: Clear sky vector for cloud free area.

Stellenbosch University http://scholar.sun.ac.za



40

3. The transformation that quantifies the perpendicular displacement of a pixel along the

clear line can then be calculated by HOT = Bl sin ()- B3 sin () where BJ and B 3 are the

digital numbers of the blue and red bands respectively. This transformation is applied

to each pixel in order to generate a HOT (Haze Optimized Transformation) image,

which is a representation of the haze variation within a scene.

4. For each spectral band, the histograms of the haze regions are matched to the

histograms of the haze-free and cloud-free regions. Here the assumption is made that

the statistical properties of the hazy part of the scene are the same after haze removal

as the statistical properties of the non-hazy part.

5. The last step involves the conversion of digital numbers to reflectance values.

The output of the ATCOR 2 algorithm is a satellite image in which atmospheric effects are

removed, thereby retrieving the actual physical parameters of the earth's surface, i.e. surface

reflectance. The atmospherically corrected output in comparison with the atmospherically

uncorrected image is shown in Figure 3.5 a and b respectively.

Figure 3.5: Comparison between the original (a) and atmospherically corrected (b) images.

Capture date: 22 September 2002; RGB = 321
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3.2.2 Image processing and analysis

3.2.2.1 Derivation of vegetation indices

The band ratioing strategy was used for the derivation of the vegetation indices. Of the two

band ratios that were employed, the first was based on the NIR reflection and the visible red

absorption of productive vegetation. This band ratioing strategy has been used extensively in

vegetation studies, more commonly in the form of the normalised difference vegetation index

(NDVI), which can be expressed as:

NIR-R
NDVI = (Source: Urban 2000)

NIR+R

The NIRIR ratio in this form partially normalises the effects of external factors associated

with illumination variations such as the change in sun angle and atmospheric degradation

(Urban 2000; Weier & Herring 2001). Since radiometric normalisation and atmospheric

correction of the satellite imagery during the image preprocessing phase resulted in images

free from these distortions, the NIRIR band ratio in its simple form was derived. The result of

this band ratioing strategy resulted in a single-band image in which the value within a pixel is

related to the amount of productive vegetation in that pixel. The output is presented in Figure

3.6.

Figure 3.6: Grey-scale image representing the NIRIR (productivity) index. Capture date: 22

September 2001.
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Change vector analysis on the vegetation indices for the different seasons provided an

indication of the variance in productivity of the different communities within an annual cycle.

When moving from end-of-wet period to end-of-dry period conditions, one would expect an

overall increase in productivity of all vegetation communities, since the end of the wet period

corresponds with the start of the growing season. However, according to Weier & Herring

(200 I), the amount of photosynthesis and consequently productivity is directly related to

water availability. This implies that wetland communities, which still remain saturated during

the dry summer period, would exhibit a higher degree of productivity in comparison with the

surrounding non-saturated vegetation. When moving from end-of-dry period to end-of-wet

period conditions, one would expect an overall decrease in productivity of all vegetation

communities, since the end of the dry period corresponds with the start of the winter season.

The colder, shorter days result in vegetation communities becoming senescent, and

consequently less productive. The result of the change vector analysis for the end of the wet

period to the end of the dry period is presented in Figure 3.7.

_oeaease
_Increase

Figure 3.7: Highlighted NIRIR change image. 22 September 2001 to 18May 2002.
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The decreasing productivity exhibited on the south facing slopes is misleading. These areas

are located in the shadows of the mountains on the 18 May 2002 image meaning that the

spectral responses of the pixels could not be retrieved. These areas were masked out of the

fmal wetland classification procedure.

The second band ratios that were derived are based on the inverse relationship between SWIR

and NIR radiation of wetland communities. Since wetland communities will still have a high

NIR reflectance, but a high SWIR absorption relative to non-wetland communities, this

ratioing strategy would provide a means by which non-wetland vegetation could be

distinguished from wetland vegetation. These ratios, also referred to as moisture stress

indices, would provide a quantitative measure of the moisture content of the soils and

canopies. A high ratio value would indicate a low amount of moisture for productive

vegetation, while a low ratio value would indicate high moisture content for productive

vegetation. The result of the SWIRINIR ratio is presented in Figure 3.8.

Figure 3.8: Grey-scale image representing the SWIRINIR ratio (Moisture stress index).

Capture date: 22 September 2001.

Change vector analysis on the moisture stress index images would provide a means of

assessing the relative moisture content change within a pixel. Perennial wetland communities

would be indicated by a relatively constant moisture stress index throughout the year, while
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non-perennial wetlands would show a decrease in moisture stress index when moving from

end-of-dry period to end-of-wet period conditions (meaning an increase in moisture content).

The same non-perennial wetland communities would exhibit an increase in moisture stress

index when moving from end-of-wet period to end-of-dry period conditions (decrease in

moisture content). The result of the change vector analysis on the moisture stress index from

the end of the wet period to the end of the dry period is presented in Figure 3.9.

_Increase

Figure 3.9: Highlighted moisture stress index change image. 22 September 2001 to 18 May

2002.

The decreasing moisture stress exhibited on the south facing slopes is misleading. These areas

are located in the shadows of the mountains on the 18 May 2002 image meaning that the

spectral responses of the pixels could not be retrieved. These areas were masked out of the

fmal wetland classification procedure.

Where productivity is concerned, one would expect that an increase in water availability will

go hand in hand with an increase in productivity. This is true for most vegetated surfaces, but

because the Western Cape is associated with winter precipitation, this assumption cannot
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always be made. Higher productivity associated with the wet season cannot be assumed in

this case, since the wet season is also the winter season, implying that the vegetation

communities will become senescent. However, the productivity index was compared to the

moisture stress index and a high negative correlation was found between both the end-of-wet

period to end-of-dry period change vectors (Pearson r = -0.96), and the end-of-dry period to

end-of-wet period change vectors (Pearson r = -0.93). This means that a decrease in moisture

stress index (increased moisture content) could be associated with an increase in productivity

index (increased productivity).

3.2.2.2 Calculation of tasselled cap components

The tasselled cap transformation was computed using the Landsat 7 weighting coefficients

(Table 2.1) for the reflectance values for each of the three images. Only the second

(greenness) and third (wetness) components from the output transformations were used for

further analysis. Change detection was performed between the greenness and wetness layers

for each of the successive images. This created two successive greenness difference images as

well as two successive wetness change images. The result of the change detection strategy for

end-of-wet period to end-of-dry period conditions is presented in Figure 3.10.
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Wetness change
_ Decrease_Increase

Figure 3.10: Highlighted change image for the wetness tasselled cap component. 22

September 2001 to 18May 2002.

Positive changes in the greenness component in two successive images suggest an increase in

productivity of vegetation over time, while a decrease in the greenness component will reflect

a lesser degree of productivity, possibly a result of moisture deficiency (Viedma et al. 1997).

Wetness component changes, on the other hand, will provide an indication of water

availability during two successive seasons. A decrease in wetness component would be an

indication of a decrease in water availability from one season to the next, while an increase in

wetness would indicate increased water availability.

Like the productivity index, a greenness increase associated with increased wetness cannot be

assumed, since the vegetation communities are associated with a winter precipitation climate.

Here the wet season corresponds with the winter period, meaning that most vegetation

communities will become senescent. When correlating change in wetness and change in

greenness, only a weak correlation was found for both change results (end-of-wet period to
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end-of-dry period Pearson r = -0.69; and end-of-dry period to end-of-wet period Pearson r = -
0.19)

3.3 RULE BASED IMAGE CLASSIFICA nON

The sample data used for training and thresholding purposes was obtained from a vector layer

containing GPS coordinates of known wetland communities, collected by researchers during

2005. Overall, 23 known wetland communities were identified, 7 of which were randomly

selected to serve as training datasets. The training sites were converted to 9 by 9 pixel areas of

interest and used to extract the pixel data and spectral responses from each of the data layers.

Of the remaining 16 sites, 9 could not be used due to the fact that these where located within

the shadows of mountains on the dry period image, or underneath the masked out cloud

regions on the 23 September 2002 image. Spectral data could not be extracted from these

areas and, consequently, these areas could not be classified. The remaining 7 wetland

communities were used at a later stage to test classification accuracies. Threshold values were

estimated by investigating the statistics (minimum, maximum and mean values) of the pixel

data for each of the 7 training sites. The wetland communities used for training and reference

data, as well as those that could not be classified is presented in Figure 3.11.

Figure 3.11: Field data used for training and accuracy assessment
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An attempt was made to discriminate between six wetland categories, the first two of which

represent general perennial and non-perennial wetland communities. After identifying

perennial wetland communities, this category was refined to differentiate between two types

of wetlands related to certain geological conditions. They include wetlands related to

geological faults, and those that are related to contacts between different geological

formations. These geological features are believed to be a source of groundwater discharge,

and consequently these communities are likely to be dependent on water supplied by the

TMG aquifer. Since lithological boundaries and faults frequently coincide, the third class was

designed to identify those wetlands that are related to both faults and lithological boundaries,

and hence those areas with a very high probability of groundwater interaction. However, not

all perennial wetland communities can be expected to coincide with these geological

conditions and, consequently the fourth category will include those pixels that were classified

as perennial wetlands, but which do not coincide with the predefined geological conditions.

The fifth class was designed to identify those wetland communities with only seasonal

groundwater availability. This means that these communities will remain saturated for the

duration of the wet period, but will dry up during the dry period. The fmal class was designed

to identify the wetland communities that will form as a result of surface water accumulation,

including rainwater accumulation. These wetlands are not expected to have a significant

amount of groundwater interaction, but the degree of interaction can only be estimated by

water chemistry investigations.

ERDAS Imagine 8.3's Knowledge Engineer was used for the construction of the rule based

classifier. A classifier is constructed using three main elements: 1) variables, which represent

the image data products derived during the image processing stage; 2) rules, which describe

the conditions pertaining to the variables in order to place them within a certain class (also

known as basic models); and 3) the hypothesis, which is defined by the rules and variables

(also referred to as compound models).

The following sections describe the compound models constructed for the classification of

each of the wetland classes together with the associated basic models that build up the

compound model in question.
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3.3.1 Perennial wetland communities (Compound Modell)

Wetland communities can be distinguished from other vegetation communities based on their

high SWIR absorption, which is due to their relatively higher moisture content. A low

moisture stress index value (SWIRlNIR) as well as a high wetness tasselled cap component

relative to the surrounding vegetated areas will provide an indication of the existence of

wetland communities. The seasonal or perennial nature of these communities will be

estimated by means of change vector analysis on the derived vegetation indices and tasselled

cap components.

The basic assumption made during the classification of perennial wetland communities was

that these communities will remain water saturated throughout the year. This is indicated by a

very low amount of change in their moisture stress indices and wetness components when

moving from end-of-dry period to end-of-wet period conditions. The high inverse correlation

between moisture stress index change and productivity index change means that the same

principle can be applied to the change in productivity index. Since water availability is

believed to equate to higher productivity, a lower greenness component change can also be

expected, adding another principle to perennial wetland classification. The criteria used for

the creation of the respective basic models are discussed below.

Basic Modell: Dry period wetness

Due to the constant water supply to perennial wetland communities, these communities will

exhibit a high wetness component even during the dry period. Identifying areas with a high

wetness component when compared to surrounding areas at the end of the dry period will

identify perennial moisture-rich conditions.

Basic Model2: Wetness component change (end of wet period to end of dry period)

Change vector analysis on the wetness component between two successive images can be

used to estimate the amount and type (increase, decrease, or no change) of change

experienced for each pixel. When classifying perennial wetland communities, one would not

expect a significant amount of change in the wetness component when moving from end-of-

wet period to end-of-dry period conditions, since these wetlands remain saturated throughout

the year. Consequently, those pixels experiencing a decrease in their wetness component

values when moving from end-of-wet period to end-of-dry period conditions are ruled out of

the perennial wetland class.
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Basic Model3: Dry period moisture stress index

Similar to Basic Model I, constant water supply to perennial wetland communities will cause

these communities to exhibit a low moisture stress index value even during the relatively dry

growing season. Thresholding the moisture stress index values at the end of the dry period

will identify moisture-rich areas, relative to the surrounding vegetation, and will be used as an

indication of perennial water availability.

Basic Model4: Moisture stress index change (end of wet period to end of dry period)

Similar to Basic Model 2, change vector analysis on the moisture stress index between the

end-of-wet period and end-of-dry period data sets would provide an indication of the degree

of change experienced within those pixels. Here, perennial wetland communities will not

exhibit a significant amount of change in moisture stress index value when moving from end-

of-wet period to end-of-dry period conditions. Pixels experiencing an increase in moisture

stress index (decrease in moisture content) for this time period will be ruled out of the

perennial wetland category.

Basic Model 5:Dry period productivity index

Since perennial wetland communities have a constant water supply throughout the annual

cycle, water availability during the dry growing season would be associated with higher

productivity relative to the surrounding vegetation at the end of the dry period (Viedma et al.

1997). Thresholding the productivity index values to identify those areas with a higher

productivity compared to the surrounding areas would provide an indication of water

availability during the dry period.

Basic Model6: Productivity index change (end of wet period to end of dry period)

Change vector analysis on the productivity index between the end-of-wet period and end-of-

dry period data sets would provide an indication of the degree of change in productivity

experienced within those pixels. Due to the high inverse correlation between moisture stress

index change and productivity index change (Section 3.2.2.1), one would expect a lesser

degree of variability in productivity in perennial wetland communities during an annual cycle.

Basic Model 7: Dry period greenness

Similar to Basic ModelS, water availability during the dry growing season would be

associated with higher productivity and, consequently, a higher greenness component

compared to the surrounding vegetation. Thresholding the greenness component at the end of
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the dry period would identify those areas that are more productive than the surrounding

vegetation and, consequently, those areas with a high likelihood of groundwater interaction.

An illustration of the basic models and how they were combined to build up the compound

model is illustrated in Figure 3.12. The basic models are combined by a series of AND

statements, implying that each of the basic model threshold values must be true in order for a

pixel to be classified in the perennial wetland class. The result of the perennial wetland

classification is illustrated in Figure 3.13. The output of the perennial wetlands compound

model can now be used as input for additional compound models designed for refining the

classification of perennial wetlands with a high likelihood of groundwater interaction.

(Compound model I)

Figure 3.12: Compound model for perennial wetlands classification (BM = Basic Model)

Stellenbosch University http://scholar.sun.ac.za



52

_ Water Bodies

_ Perennial wetlands

Figure 3.13: Perennial wetlands classification

3.3.2 Perennial wetlands related to geological features (Compound Models 2, 3 and 4)

The output of Compound Model 1 (perennial wetlands) presents the classification of those

areas that remain water saturated throughout the annual cycle. Since many of the perennial

wetland communities are thought to be dependent on groundwater discharge from the TMG

aquifer, it is necessary to identify those wetlands that can be directly associated with

geological features that act as water discharge sites. Since the faults in the study area are

known to be associated with groundwater discharge (Brown et al. 2003), the perennial

wetlands situated on these faults are likely to be dependent on groundwater interaction.

Additionally, since many of the geological formations are water bearing, the boundaries of

these formations are likely sites for aquifer discharge to the surface (Brown et al. 2003). For

the classification of the geological feature-related wetlands, the output of Compound Model 1

was used as input for Compound Model 2 (fault-related wetlands) as well as Compound

Model 3 (lithological boundary-related wetlands). The additional basic models combined with
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the output of Cornpound Model 1 for assessing the proxirnity to known faults and lithological

boundaries are discussed below.

Basic Model 8: Buffer distance tofaults

The use of cornpound rnodel 1, together with a layer identifying those areas within a 70rn

buffer distance of known faults, resulted in the classification of perennial wetland

cornrnunities associated with aquifer discharge frorn faults.

Basic Model 9: Buffer distance to lithological boundaries

The boundaries between the different geological formations were extracted by rneans of a

non-directional edge-detection algorithm. The resulting grid was converted to a vector layer,

after which areas within a buffer distance of 70rn to the boundaries were extracted. Re-

converting the resulting vector layer to grid format provided a suitable lithological boundary

layer needed for the construction of this rnodel. The result is a classification of perennial

wetland communities situated on the boundaries between the various lithological formations.

Using Basic Models 8 and 9 together with Cornpound Model 1 will result in an additional

wetland category (Cornpound Model 4), identifying those perennial wetlands occurring in

areas where faults and lithological boundaries coincide. These wetlands will have a high

probability of groundwater interaction. Sirnilar to Cornpound Modell, the basic rnodels are

cornbined by a series of AND staternents, implying that each of the basic rnodel threshold

values rnust be true in order for a pixel to be classified in the fault and/or lithological

boundary-related wetland class. An illustration of the construction of Cornpound Model 2, 3

and 4 is illustrated in Figure 3.14 a, b and c respectively.
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_------- é;!:I Fauls
(Compound Model 2)

(a) Compound model for fault related wetlands classification

(Compound Model 3)

(b) Compound model for lithological boundary related wetlands classification

(Compound Model4)

(c) Compound model for fault and boundary related wetlands classification

Figure 3.14: Construction of Compound model2, 3 and 4

The result of the image classification using Compound Models 1 through 4 is illustrated in

Figure 3.15.
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_ waterbodies

_ Fault and lithology related

1:",ij~01Fault related
_ Lithology related

_ Perennial wetlands

Figure 3.15: Perennial wetland classification discriminating between wetlands occurring on

predefined geological conditions

3.3.3 Non perennial groundwater dependent wetlands (Compound Model 5)

The seasonal groundwater dependent wetland communities can be distinguished from their

perennial counterparts by analysing the changes they undergo during an annual cycle.

Although the non-perennial wetland communities will exhibit the same spectral

characteristics as perennial wetlands during the wet season, discontinued water availability

during the dry season will cause the seeps to dry up, resulting in a decrease in wetness

component and an increase in moisture stress index.

The compound model for the identification of the non-perennial wetland communities was

designed to identify those communities with a high likelihood of seasonal groundwater

interaction. Additionally, comparing the proximity of these communities to the perennial

groundwater-dependent communities could provide an indication of variation in the amount
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of groundwater availability during the annual cycle. The basic models employed for the

construction of this compound model are discussed below.

Basic ModellO: End of wet period wetness

Defining threshold values for the end-of-wet period wetness components would identify those

areas that, during the wet period, are relatively more moisture enriched than their

surroundings. Groundwater interaction in these areas will lead to more productive, greener

vegetation compared to the surrounding areas, making wetland identification a possibility.

Basic Modeill: Wetness increase (end of dry period to end of wet period)

Non-perennial wetlands would show a significant increase in wetness component when

comparing end-of-dry period to end-of-wet period wetness. Identifying these areas will be an

indication of wetland communities with only seasonal groundwater interaction.

Basic Model12: Wetness decrease (end of wet period to end of dry period)

The opposite changes to those described in Basic Model Il will be experienced by non-

perennial wetland communities when moving from end-of-wet period to end-of-dry period

conditions. Due to discontinued groundwater contribution to these communities, a decrease

in wetness component will be exhibited by these communities, making their identification a

possibility .

Basic Modell3: Wet period moisture stress index

Similar to Basic Model 10, thresholding the wet period moisture stress index values could

identify those areas with a high amount of healthy green vegetation with higher moisture

content than the surrounding areas during the wet period.

Basic ModelU: Moisture stress index increase (end of wet period to end of dry period)

The non-perennial wetland communities are expected to exhibit a large amount of moisture

stress during the dry period, while the moisture stress value will be very low during the wet

period. Identifying those areas with a significant increase in moisture stress index when

moving from end-of-wet period to end-of-dry period conditions would provide an indication

of wetland communities with only seasonal groundwater interaction.
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Basic Model IS: Moisture stress index decrease (end of dry period to end of wet period)

The opposite conditions to those described in Basic Model 14 will be applicable when

comparing end-of-dry period to end-of-wet period moisture stress index values. The non-

perennial wetland communities will exhibit a significant decrease in moisture stress when

moving from end-of-dry period to end-of-wet period conditions, allowing for the

identification of wetland communities with seasonal groundwater interaction.

The combination of basic models used in the construction of this compound model is

illustrated in Figure 3.16.

(Compound ModelS)

Figure 3.16: Construction of Compound ModelS

3.3.4 Surface flow accumulation (Compound Model 6)

This compound model was designed to classify those wetland communities that form due to

surface water accumulation. These communities may have a certain degree of groundwater

interaction due to runoff from groundwater discharge sites, but the degree of groundwater

interaction in these communities can only be estimated by means of water chemistry studies.

Water supply to these communities is mainly due to surface runoff, with water accumulation

in topographically suitable areas after precipitation events. Spectrally, these communities are

indistinguishable from the non-perennial wetland communities, allowing the use of the output

of Compound Model 5 for distinguishing these communities from their perennial

counterparts. Additionally, basic models will be added to identify suitable areas for water

accumulation. Slopes of less than 8 degrees have been specified as one of the conditions for

wetland formation (Kidane 2004). Steeper slopes will result in surface runoff and

consequently, wetlands would not have the opportunity to form. Another topographical
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parameter that governs the formation of wetland communities is dictated by the curvature of

the surface. Suitable curvature conditions, together with gradual slopes, will act as areas

where water will accumulate (Arrell 2002), resulting in suitable conditions for wetland

formation. The slope and curvature of the landscape were calculated as derivatives of the

digital elevation model (OEM) using ArcView 3.3 software. Derivation of curvature of the

surface resulted in two output data layers. The first, profile curvature, represents the down-

surface shape, while plan curvature represents the cross-surface shape.

Three possible plan curvatures (convex, concave and plane), and three possible profile

curvatures (convex, concave and plane) can be distinguished. The variations in plan and

profile curves are presented in Figure 3.17.

Plan
Curvature

Convex Concave Plane

Profile
Curvature

Convex Concave Plane

(Adapted from: WaskIewicz et al. 2005)

Figure 3.17: Three possible plan- and three possible profile curvatures

If the plan and profile curves are combined, there are nine possible surfaces (refer to Figure

3.18), three of which present suitable areas for water accumulation (Arre1l2002; Waskiewicz,

Staley & Seruntine 2005). These are (a) concave-convex areas, (b) concave-concave areas,

and (c) planar-concave areas.
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Profile
Curvature

Plan
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Convex Concave Plane
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(Adapted from: Wasklewicz et al. 2005)

Figure 3.18: Nine possible classes of combined plan and profile curvature

The four additional basic models that will be combined with Compound Model 5 are

described below.

Basic Model16: Slope percentage

According to Kidane (2004), one of the criteria of wetland formation is that gradual slopes

must be present. In the presence of steep slopes, surface water will run off until an area is

found where water tends to accumulate. Including only those areas with slopes less than 8

degrees in the classification would ensure that only suitable areas are included in the

classification.

Basic Model17: Concave-Convex surface curvature

For both the plan and profile layers the magnitude of the value reflects the degree of

curvature, while the sign reflects the convexity or concavity of the surface (WaskIewicz et al.

2005). Concave curvatures are presented with negative numbers, planar surfaces with a zero,

and convex curvatures with positive numbers. Specifying negative numbers for plan curvature
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and positive numbers for the profile curvature data layers will result in the inclusion of areas

with a combined concave-convex curvature and, consequently, those areas where water is

likely to accumulate.

Basic ModelIR: Concave-Concave surface curvature
Similar to Basic Model 17, the specification of negative numbers for both plan and profile

curvatures will result in the inclusion of concave-concave curvatures, another likely area for

surface water accumulation.

Basic Model 19: Planar-Concave surface curvature
Specifying a zero value for the plan curvature layer combined with negative numbers for the

profile curvature layer will ensure the inclusion of a combined planar-concave curvature.

The compound model constructed for the identification of wetlands formed due to surface

water accumulation is presented in Figure 3.19. The final wetland classification map is

presented in Figure 3.20.

OR

ê Concave_plan

Figure 3.19: Compound Model6 construction
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_ Waterbodies

_ Fault and lithology related

I"! <"iT IFault related

_ Lithology related

_ Perennial Wetlands

D Surface water accumulation

_ Non-perennial wetlands

Figure 3.20: Final wetlands classification map

3.4 ASSESSMENT OF CLASSIFICATION ACCURACIES

According to Lillesand, Kiefer & Chipman (2004), no classification is complete until the

accuracy of the classification has been assessed. Accuracy assessment is usually achieved by

constructing an error matrix in which the relationship between reference data and the result of

image classification can be presented. This error matrix is constructed by listing the known

cover types used for training versus the pixels actually classified into each landcover category

(Lillesand et al. 2004). However, since the ground truth data representing the GPS

coordinates of known wetland communities does not include detail about the nature of the

wetland communities, or a sufficient description of the geological or topographic conditions

associated with the observed communities, the error matrix method could not be used.

Consequently, only the perennial wetlands class was inspected for accuracy assessment

purposes. Accuracy assessment was performed by determining the percentage of pixels in the
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reference data set that were correctly classified as perennial wetlands. The percentage of

correctly classified training pixels was also estimated. The result is presented in Table 3.4.

Table 3.4: Quantifying the accuracy of the perennial wetlands classification process

Training Pixels Reference Pixels

Basic Model 1 98.41% 92.06 %

Basic Model 2 98.41 % 87.30 %

Basic Model 3 96.83 % 87.30 %

Basic Model 4 93.65 % 77.78 %

Basic Model 5 93.65 % 77.78 %

Basic Model 6 90.48 % 77.78 %

Basic Model 7 90.48 % 77.78 %

Total number of Pixels 63 63

Total Accuracy (%) 90.48% 77.78%

This table represents the cumulative producer's accuracy of the perennial wetlands

classification after each basic model has been added. For example, for the training data, the

accuracy after Basic Models I and 2 is 98.41%, but after Basic Model 3 is added, the

accuracy decreases to 96.83%. The total accuracy of training pixel classification is 90.48%

while the reference pixels were classified at a total accuracy of 77.78%. In order to fully

assess the accuracy with which a particular feature or class is identified, information

regarding the presence as well as the absence of the feature needs to be considered. Therefore

areas where the feature occurs, as well as areas where the feature does not occur, is needed.

The result of the accuracy assessment done during this study is misleading since only areas

were wetlands communities are present were used during accuracy quantification.

Consequently, if the entire image were classified as wetlands, the producer's accuracy would

have been 100%, which is obviously not accurate.

Errors of omission describe the number of pixels that should have been classified as perennial

wetlands, but were omitted from this class. From Table 3.4 one can gather that fewer pixels

that should have been classified as perennial wetlands are classified as such with the addition

of each basic model, implying that the error of omission increases. Errors of commission, on

the other hand, describe the number of pixels that were classified as perennial wetlands, but in

reality belong to a different class altogether. The lack of data pertaining to non-wetland
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vegetation classes means that errors of commission could not be quantified. However, visual

inspection of Figure 3.21 reveals that the total number of classified pixels decrease with the

addition of each basic model. It could be therefore be expected that, together with the number

of pixels that were correctly classified, the number of pixels that were wrongly classified as

perennial wetlands would also decrease, resulting in a subsequent decrease in errors of

commission. In order to verify the decrease in errors of commission, however, detailed

ground truth data are required.

Basic Model 5

N

A
...... 5C=====1.0..... 1C5==~20Km

Figure 3.21: Output of classification process after each basic model addition (White =

Perennial wetlands, Black = Undefined)
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CHAPTER4: DISCUSSION AND RECOMMENDATIONS

4.1 DISCUSSION OF THE RESULTS

The main objective of the study was to establish whether Landsat 7 data could be used for the

identification of groundwater-dependent ecosystems. This ability was demonstrated with a

high level of accuracy by using a combination of tasseled cap components and vegetation

indices to identify the existence of wetland vegetation. The success of change vector analysis

using tasseled cap components and vegetation indices demonstrated the technique's ability to

estimate the seasonal changes experienced in the wetland communities, and consequently

provide an estimate to the degree of groundwater dependency.

While change vector analysis can be used to detect a variety of changes, this study was only

concerned with change related to different degrees of groundwater interaction. In the case of

perennial groundwater dependency, a low degree of changes is expected during an annual

cycle. The perennial groundwater-dependent ecosystems will remain consistently moisture

enriched (low degree of change in wetness component and moisture stress index) and,

consequently, consistently productive (low degree of change in productivity index). When

these change detection strategies are applied in a monitoring exercise, significant changes

experienced in known wetland communities may reveal unnatural fluctuations in groundwater

availability to these communities, and the necessary corrective steps can be taken. In the case

of non-perennial wetlands, significant changes in moisture stress index and wetness

component are expected during the annual cycle. The proximity of these communities to

perennial groundwater-dependent communities may be an indication of wetland expansion

due to additional water availability from precipitation during the wet period.

The absence of wetlands on the south facing slopes is misleading. Their absence is due to the

presence of shadows on the 18 May 2002 image. Since spectral responses of landcover

classes can not be extracted from areas covered by shadows, these areas were masked out of

the classification procedure. An astonishing amount of perennial wetlands were classified on

the fmal landcover map. It is unlikely that such a large amount of perennial wetland

communities are indeed present. This is an indication that classification threshold values need

adjustment. This would however result in diminished classification accuracy. From the

classification accuracy assessment, one could infer that when classifying the wetland

communities, there would be a trade-off between errors of omission and errors of
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commission. The use for which the output of the image classification procedure will be

applied would dictate a suitable mid-way between these errors. If the output will be used

solely for the monitoring of the changes experienced in known perennial wetland

communities, larger errors of commission might be overlooked. However, if the classification

procedure is aimed at identifying wetland communities with a high likelihood of groundwater

interaction, errors of commission should be kept to a minimum. Future studies should

concentrate on reducing both the errors of omission and the errors of commission in order to

produce a system that can be utilized for addressing both problems. The following section

will consist of the researcher's recommendations for increasing the classification accuracies.

Possible follow-up studies on remote sensing for monitoring groundwater-dependent

ecosystems are also recommended.

4.2 RECOMMENDATIONS FOR FUTURE RESEARCH

4.2.1 Increasing classification accuracies

Further studies on the classification of groundwater-dependent wetland communities should

concentrate on increasing the accuracy of the classification. Possible reasons for insufficient

classification accuracy in this study that can be addressed during subsequent research are

indicated below.

• Lack of topographic normalisation and the impact on tasselled cap components:

According to Lu, Mausel, Brondizio & Moran (2004) the brightness and greenness

components of the tasselled cap transformation is highly sensitive to topographic variation

within a scene. Due to software constraints, the topographic normalisation was not

performed, but performing this normalisation to correct for the bi-directional reflectance

effect will alleviate this sensitivity to topographic variation, with the added possibility of

significantly enhancing the classification results.

• Cloud formations on imagery and masking of cloud shadows: The 23 September 2002

image is influenced by a significant presence of clouds over the area. Although

atmospheric correction effectively masked out the optically thick cloud layers, spectral

data beneath these cloud regions could not be extracted, and hence change detection in

these regions could not be performed. Additionally, the shadows cast by the cloud

formations constitute additional areas for which pixel data could not be extracted,

meaning that large areas of this image could not be used in the change detection process.

Using cloud-free data will improve change detection strategies and classification results.
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• Problems related to thresholds for the identification of vegetation classes: Classification

of wetland communities was performed by thresholding the change vector data in order to

create images indicating positive, negative and no-change vectors. However, according to

Wilson, Nelson, Boots & Wulder (2004), threshold selection is generally the most

subjective and most problematic step in the change detection process. Allen & Kupfer

(2000) defined thresholds using statistical analysis in a local measure of auto-correlation,

which allows for the identification of clusters of similar change that are extreme relative

to the mean change. Using this method for the estimation of threshold values should be

considered for improving classification results.

• Nominalfrequency of remote sensor data acquisitions: According to Lunetta et al. (2004),

an important consideration for monitoring landcover change is the temporal frequency of

data acquisitions required to characterise change events adequately. According to Rogan

et al. (2002), errors found in vegetation change detection can be a result of sizable

differences in precipitation during the time of the study. They found that inter-annual

phonological variability caused by variable precipitation patterns can produce errors in

identifying temporal changes. The researcher suggests that annual changes in vegetation

productivity be analysed in conjunction with precipitation data in order to estimate

changes in productivity in relation to changes in precipitation.

• Lack of sufficient ground truth data and detai/ed field work: An in-depth groundtruthing

exercise including an assessment of the degree of groundwater dependency is necessary

for the identification of satisfactory training sites for the classification of the different

types of wetland communities, as well as for the proper assessment of classification

accuracy.

4.2.2 Follow-up studies on remote sensing for groundwater dependent ecosystems

In order to estimate the viability of using remote sensing data for monitoring the ecosystems

in question, an in-depth study of alternative satellite sensors that could be used should be

conducted. According to Colvin et al. (2002), the suitability assessment should include the

following:

a) Availability, addressing the issue of whether satellite imagery of the study area is

available and if routine image acquisitions are a possibility. Continuity is also

important, especially where the project is focused on monitoring. There must be
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certainty that the satellite will not be decommissioned or that the series will not be

discontinued;

b) Spectral characteristics of the sensor should be investigated to determine if the bands

most common for vegetation studies (visible, near infrared and shortwave infrared) are

present;

c) Spatial resolution should be considered because the size of the wetland communities

under investigation would influence the choice of satellite sensor;

d) Cost, the most limiting factor, can be assessed in terms of a cost-benefit analysis,

describing the cost implications for using the remote sensing data for monitoring of

wetland communities instead of by fieldwork.

Some alternative sensors to the multispectral imagery (such as Landsat) should be

investigated in terms of addressing the vegetation-related questions. Alternative sensors

include hyperspeetral sensors (Asner, Wessman, Bateson & Privette 2000; Short 2003; Zhang

et al. 2003), very high-resolution sensors (Hirose, Mori, Akamatsu & Li 2003; Narsavage,

Gentry & Weber 2004) and radar remote sensors (Moran, Hymer, Qi & Kerra Y 2002; Wang,

Qi, Moran & Marsett 2004).

Irrespective of the satellite sensor used, studies are needed which focus on addressing

questions such as:

Where are the different groundwater-dependent ecosystems situated and what are their

size?

Does the size of these communities change during an annual cycle?

How are these communities influenced by climate changes such as precipitation

fluctuations?

Which satellite sensors could be used as alternatives, but would still provide

comparable results?

Campbell (1996) states that human activities are rapidly destroying large areas of ecological

importance and that the multi-temporal availability of remote sensing data may provide the

only practical means of mapping and monitoring the changes in these areas. The various

image processing and classification techniques should be applied to a time-series of images

over a large number of years in order to estimate the normal growing conditions and mean

changes experienced in the wetland communities during an annual cycle. Characterising the

health and moisture content of wetlands relative to this norm will provide the capability of
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estimating where deviations from the expected seasonal patterns are occurring. These

deviations will be an indication of external factors influencing plant growth. Monitoring of

the wetland ecosystems performance could lead to the early detection of vegetation

degradation as a result of discontinued water availability and the necessary corrective steps

could then be taken.
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