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Abstract

Cellular network operators globally loose between 3% and 5% of their annual revenue to

telecommunications fraud. Hence it is of great importance that fraud management sys-

tems are implemented to detect, alarm, and shut down fraud within minutes, minimising

revenue loss. Modern proprietary fraud management systems employ (i) classification

methods, most often artificial neural networks learning from classified call data records to

classify new call data records as fraudulent or legitimate, (ii) statistical methods building

subscriber behaviour profiles based on the subscriber’s usage in the cellular network and

detecting sudden changes in behaviour, and (iii) rules and threshold values defined by

fraud analysts, utilising their knowledge of valid fraud cases and the false alarm rate as

guidance. The purpose of this thesis is to establish a context for and evaluate the per-

formance of well-known data mining techniques that may be incorporated in the fraud

detection process.

Firstly, a theoretical background of various well-known data mining techniques is

provided and a number of seminal articles on fraud detection, which influenced this thesis,

are summarised. The cellular telecommunications industry is introduced, including a brief

discussion of the types of fraud experienced by South African cellular network operators.

Secondly, the data collection process and the characteristics of the collected data are

discussed. Different data mining techniques are applied to the collected data, demon-

strating how user behaviour profiles may be built and how fraud may be predicted. An

appraisal of the performances and appropriateness of the different data mining techniques

is given in the context of the fraud detection process.

Finally, an indication of further work is provided in the conclusion to this thesis, in

the form of a number of recommendations for possible adaptations of the fraud detection

methods, and improvements thereof. A combination of data mining techniques that may

be used to build a comprehensive fraud detection model is also suggested.
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Opsomming

Sellulêre netwerk operateurs verloor wêreldwyd tussen 3% en 5% van hul jaarlikse inkom-

ste as gevolg van telekommunikasie bedrog. Dit is dus van die uiterse belang dat bedrog

bestuurstelsels gëımplimenteer word om bedrog op te spoor, alarms te genereer, en bedrog

binne minute te staak om verlies aan inkomste tot ’n minimum te beperk. Moderne

gepatenteerde bedrog bestuurstelsels maak gebruik van (i) klassifikasie metodes, mees

dikwels kunsmatige neurale netwerke wat leer vanaf geklassifiseerde oproep rekords en

gebruik word om nuwe oproep rekords as bedrog-draend of nie bedrog-draend te klassi-

fiseer, (ii) statistiese metodes wat gedragsprofiele van ’n intekenaar bou, gebaseer op die

intekenaar se gedrag in die sellulêre netwerk, en skielike verandering in gedrag opspoor,

en (iii) reëls en drempelwaardes wat deur bedrog analiste daar gestel word, deur gebruik

te maak van hulle ondervinding met geldige gevalle van bedrog en die koers waarteen

vals alarms gegenereer word. Die doel van hierdie tesis is om ’n konteks te bepaal vir

en die werksverrigting te evalueer van bekende data ontginningstegnieke wat in bedrog

opsporingstelsels gebruik kan word.

Eerstens word ’n teoretiese agtergrond vir ’n aantal bekende data ontginningstegnieke

voorsien en ’n aantal gedagteryke artikels wat oor bedrog opsporing handel en wat hierdie

tesis bëınvloed het, opgesom. Die sellulêre telekommunikasie industrie word bekend ge-

stel, insluitend ’n kort bespreking oor die tipes bedrog wat deur Suid-Afrikaanse sellulêre

telekommunikasie netwerk operateurs ondervind word.

Tweedens word die data versamelingsproses en die eienskappe van die versamelde

data bespreek. Verskillende data ontginningstegnieke word vervolgens toegepas op die

versamelde data om te demonstreer hoe gedragsprofiele van gebruikers gebou kan word

en hoe bedrog voorspel kan word. Die werksverrigting en gepastheid van die verskillende

data ontginningstegnieke word bespreek in die konteks van die bedrog opsporingsproses.

Laastens word ’n aanduiding van verdere werk in die gevolgtrekking tot hierdie tesis

verskaf, en wel in die vorm van ’n aantal aanbevelings oor moontlike aanpassings en ver-

beterings van die bedrog opsporingsmetodes wat beskou en toegepas is. ’n Omvattende

bedrog opsporingsmodel wat gebruik maak van ’n kombinasie van data ontginningsteg-

nieke word ook voorgestel.
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Terms of Reference

This thesis was initiated as an investigation into the fraud detection and prevention arena

after being awarded the opportunity to be involved with the implementation of a fraud

management system at one of South Africa’s cellular network operators. Early on in the

project it became apparent that South African fraud management systems rely on the

intuition of fraud analysts and their experience with fraudulent behaviour for defining

fraud detection rules and threshold values rather than on objective scientific methods and

techniques, resulting in large numbers of false alarms and undetected fraud. Modern fraud

management systems make use of data mining techniques in the fraud detection process

— not to detect fraud, but rather to confirm fraud detected by rule-based methods, or

to assess the severity of detected fraud. Data mining techniques may aid fraud analysts

to define fraud detection rules and threshold values, including classification methods able

to classify call data records as fraudulent or legitimate and clustering methods grouping

subscribers into behaviour profiles. The purpose of this thesis is to establish a context

and evaluate the performance of these well-known data mining techniques in the fraud

detection process.

Prof JH van Vuuren was the supervisor to the author when working on this thesis.

The call data records used in this thesis, as well as insight into fraud detection and

prevention processes, were provided by a South African cellular network operator, which

has requested to remain anonymous. Work on this thesis commenced in February 2002

and was completed in May 2005.
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Glossary

Activation Function: A mathematical function within the neuron of a neural network

that translates the summed score of the weighted input values into a single output

value.

Adjusted Coefficient of Determination: A modified measure of the coefficient of de-

termination that takes into account the number of explanatory variables included

in a regression equation.

Agglomerative Hierarchical Method: A clustering procedure that begins with each

observation in a separate cluster. In each subsequent step, two clusters that are

most similar are combined to build a new cluster of observations.

Apriori Algorithm: A data mining algorithm for mining frequent item sets for boolean

association rules.

Apriori Property: A property used to reduce the search space and improve the gener-

ation of frequent item sets in the process of association rule mining.

Artificial Neural Network: See Neural Network.

Association Measure: A measure of similarity used in cluster analysis representing

similarity as the correspondence of patterns across variables measured in nonmetric

terms.

Association Rule: A rule based on the correlation between sets of items is a data set.

Association Rule Mining: The process of mining for association rules.

Backpropagation: The most common learning process in neural networks, in which

errors in estimating the output nodes are propagated back though the neural network

and used to adjust the weights for each node.

Bayesian Classification: See Bayesian Decision Making.

Bayesian Decision Making: A fundamental statistical approach which aids in the de-

sign of an optimal classifier if the complete statistical model governing a set of

observations is known.

vi



vii

Bayesian Network: A graphical model of causal relationships that allows class condi-

tional dependencies to be defined between subsets of variables.

Base Station Controller: The part of a cellular telecommunications network’s infras-

tructure that performs radio signal management functions for base transceiver sta-

tions, managing functions such as frequency assignment.

Base Station Subsystem: A subsystem in the cellular telecommunications network

that refers to the combined functions of the base transceiver station and base station

controller.

Base Transceiver Station: The name for the antenna and radio equipment necessary

to provide cellular telecommunication service in an area.

Belief Network: See Bayesian Network.

Call Data Record: A record of a placed call. Call data records include the time when

the call was placed and the duration of the call.

Call Selling: A method used by fraudsters as a means of setting up their own cut-price

telephone service which they then proceed to sell — typically to fraudsters, to illegal

immigrants or to refugees.

Cellular Telephone: See Mobile Station.

Class Assignment Rule: A rule assigning a class to every terminal node in a classifi-

cation tree.

Classification: In classification-type problems one attempts to predict values of a cate-

gorical response variable from one or more explanatory variables.

Classification Tree: See Decision Tree.

Cloning: A technique used by fraudsters as a means of gaining free access to a cellu-

lar telecommunications network whereby a cellular telephone is reprogrammed to

transmit the electronic serial number and telephone number belonging to another

legitimate subscriber.

Cluster Analysis: A multivariate statistical technique which assesses the similarities

between units or assemblages, based on the occurrence or non-occurrence of specific

artifact types or other components within them.

Coefficient of Determination: A measure of the proportion of the variance of the

response variable about its mean that is explained by the explanatory variables.
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Conditional Mean: The mean value of the response variable, given the value of the

explanatory variables in a regression equation.

Confidence: The proportion of times two or more item sets occur jointly during the

process of association rule mining.

Correlation Measure: A measure of similarity used in cluster analysis representing

similarity as the correspondence of patterns across the variables.

Data Mining: The exploration and analysis, by automatic or semi-automatic means, of

large quantities of data in order to discover meaningful patterns and rules.

Decision Tree: A rule-based model consisting of nodes and branches that reaches mul-

tiple outcomes, based on passing through two or more nodes.

Descendent: If an arc is present from a node t to a node td in a belief network, then td

is called a descendent of node t.

Deviation: A statistic used in logistic regression to determine how well a logistic regres-

sion model fits the data.

Deviation-based Outlier Detection: An outlier detection technique identifying out-

liers by examining the main characteristics of observations in a group. Observations

that deviate from this description are considered outliers.

Discordancy Test: A test examining two hypotheses, a working hypothesis and an al-

ternative hypothesis. The hypothesis is retained if there is no statistically significant

evidence supporting its rejection.

Distance-based Outlier: An outlier detection technique identifying outliers by examin-

ing the distance between observations in a group. An observation is a distance-based

outlier if a fraction of the observations in the group lie a distance larger than some

threshold value from the observation.

Distance Measure: A measure of similarity used in cluster analysis representing simi-

larity as the proximity of observations to one another across the variables.

Divisive Hierarchical Method: A clustering procedure that begins with all observa-

tions in a single cluster, which is then divided at each step into two clusters con-

taining the most dissimilar observations.

Explanatory Variable: The independent variable in regression analysis.
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Equipment Identity Register: A database used to verify the validity of equipment

being used in cellular telecommunications networks. It may provide security features

such as blocking of calls from stolen cellular phones and preventing unauthorised

access to the network.

F Statistic: See F -Test.

F -test: A statistical test for the additional contribution to the prediction accuracy of a

variable above that of the variables already in the regression equation.

F -to-enter Value: The minimum F -test value required when deciding on adding addi-

tional explanatory variables to the regression equation during the forward variable

selection procedure.

F -to-remove Value: An F -test value used to decide when to stop removing explanatory

variables from the regression equation when employing the backward elimination

variable selection procedure.

Feedforward Neural Network: A neural network where nodes in one layer are con-

nected only to nodes in the next layer, and not to nodes in a preceding layer or

nodes in the same layer.

Forward Model Selection: A method of variable selection in which variables are added

to the model sequentially until the gain from adding another conditioning variable

is insignificant.

Fraud Detection: The use of scientific tools to detect compromises to a cellular telecom-

munications network as part of a fraud management strategy.

Fraud Deterrence: Measures put in place to deter fraudsters from committing fraud

implemented as part of a fraud management strategy.

Fraud Prevention: The process of erecting obstacles for unauthorised access to an op-

erator’s network and systems as part of a fraud management strategy.

Frequent Item Set: An item set satisfying minimum support in the process of associ-

ation rule mining.

Global System for Mobile Communications: A digital cellular telecommunications

technology deployed in Europe, North America and South Africa.

Goodness of Split: The decrease in impurity when a parent node is splitted into two

descendent nodes during classification tree construction.

Handset: See Mobile Station.
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Hidden Node: A node in one of the hidden layers of a multilayer neural network. It is

the hidden layers and activation function that allow neural networks to represent

nonlinear relationships.

Home Location Register: A database residing in a cellular telecommunications net-

work containing subscriber and service profiles and used to confirm the identity of

local subscribers.

Immediate Predecessor: If an arc is present from a node t to a node td in a belief

network, then t is called an immediate predecessor of node td.

Impurity Function: A function calculating the ability of a classification tree node to

distinguish between different classes.

Impurity Measure: The value returned by an impurity function and referred to as the

goodness of split in classification tree construction.

Index-based Algorithm: An algorithm used in distance-based outlier detection em-

ploying multidimensional indexing structures, such as R-trees or KD-trees.

Input Node: A node in the first layer of a multilayer neural network representing a

single variable or pattern.

Input Processor: See Input Node.

Intermediate Processor: See Hidden Node.

Internal Estimate: An estimate of classifier accuracy calculated as the proportion of

observations misclassified when the classifier is applied to a sample of observations

drawn from the same population from which the learning sample was drawn.

International Mobile Equipment Identity: A unique 15-digit number that serves as

the serial number of a cellular telephone.

International Mobile Subscriber Identity: A unique 15-digit number that identifies

a subscriber.

Item Set: A subset of items employed in the process of association rule mining.

KD Tree: A binary tree that recursively partitions an input space into parts, in a manner

similar to a decision tree, acting on real-valued inputs.

Kullback-Leibler Distance: A measure of distance between two probability distribu-

tions. It may be described as the difference between the cross entropy of the two

probability distributions and the entropy of one of them.
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Law of Iterated Probability: A theorem stating that a multivariate distribution may

be expressed as the product of marginal and conditional probility distributions.

Learning Sample: A sample of observations used in the learning process of data mining

techniques.

Linear Regression: A statistical technique that may be used to predict the value of a

response variable from known values of one or more explanatory variables.

Logistic Regression: A technique for predicting a binary response variable from known

values of one or more explanatory variables.

Memorandum of Understanding: An agreement signed between all the major global

system for mobile communications (GSM) operators to work together to promote

GSM.

Min-Max Normalisation: A normalisation technique performing a linear transforma-

tion on a set of data, scaling it to a specific range, such as [0.0, 1.0].

Minimal Cost-Complexity Method: A method of classification tree pruning, mea-

suring tree complexity as the number of terminal nodes in the tree.

Minimum Support: See Support.

Minimum Support Count: The number of transactions required for an item set to

satisfy minimum support in the process of association rule mining.

Minkowski Metric: A method of measuring the distance between two points in P di-

mensions using a variable scaling factor. When the scaling factor is 1 this metric

measures the rectilinear distance between two points, and it measures the Euclidean

distance when the scaling factor is 2.

Multivariate Analysis: A generic term used for a statistical technique that analyses a

multidimensional data set.

Mobile: See Mobile Station.

Mobile Station: A station in a cellular telecommunications network intended to be used

while in motion or during halts at unspecified points.

Mobile Subscriber Integrated Services Digital Network: The number used to call

a cellular subscriber. This number consists of a country code, a national destination

code and a subscriber number.
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Mobile Switching Centre: A central switch that controls the operation of a number

of base stations. It is a sophisticated computer that monitors all cellular calls,

tracks the location of all cellular telephones in the system and keeps track of billing

information.

National Destination Code: Part of the mobile subscriber integrated services digital

network number used to identify a subscriber’s cellular network operator.

Network Subsystem: A subsystem in a cellular telecommunications network that refers

to the mobile switching centre and network registers.

Neural Network: A nonlinear predictive weighted graph model that learns through

sequential processing of large samples of observations during which the classification

errors are used to adjust weights to improve estimation.

Neuron: A node or basic building block in a neural network.

Node: See Neuron.

Observation: A record or object in a data set made up of various attributes describing

the object.

Outlier: An observation that is substantially different from the other observations.

Outlier Analysis: A technique used to identify data observations that do not comply

with the general behaviour of the data set.

Output Node: A node in the final layer of a multilayer neural network representing

class membership.

Output Processor: See Output Node.

Overlapping Calls Detection: A fraud detection technique identifying calls from the

same cellular subscriber overlapping in time in an attempt to detect the existence

of two cellular telephones with identical identification codes.

Parent: See Immediate Predecessor.

Personal Identification Number: A code used by a cellular telephone in conjunction

with a subscriber identity module (SIM) card to complete a call.

Premium Rate Service Fraud: A type of fraud involving a large number of calls to a

premium rate service number from a subscriber’s account without their knowledge.
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Principle Component Analysis: The process of identifying a set of variables that de-

fine a projection encapsulating the maximum amount of variation in a data set and

is orthogonal to the previous principle component of the same data set.

Probabilistic Network: See Bayesian Network.

Public Switched Telephone Network: The traditional landline network that cellular

telecommunications networks often connect with to complete calls.

R-Tree: A tree data structure used by spatial access methods, such as indexing multi-

dimensional information.

Receiver Operating Characteristic: A graphical plot of the fraction of true positives

versus the fraction of false positives for a binary classifier system as its discrimination

threshold is varied.

Regression: The process of attempting to predict the values of a continuous response

variable from one or more explanatory variables.

Residual Mean Square: A measure of how well a regression curve fits a set of data

points.

Response Variable: The dependent variable in regression analysis.

Resubstitution Estimate: An estimate of classifier accuracy using the same sample

used to construct the classifier.

Saturated Model: A logistic regression model containing as many parameters as there

are observations.

Sequencial Exception Technique: One of the techniques used in deviation-based out-

lier detection, simulating the way in which humans are able to distinguish unusual

observations from among a series of supposedly-like observations.

Short Message Service: The transmission of short alphanumeric text-messages to and

from a cellular telephone. These messages may be no longer than 160 alphanumeric

characters and contain no images or graphics.

Signature: A multivariate probability distribution describing customer behaviour.

Similarity Coefficient: An indication of similarity between observations based on the

presence or absence of certain characteristics.

Statistical-Based Outlier Detection: An approach to outlier detection assuming a

distribution or probability model for the given data set, and which identifies outliers

with respect to the model, using a discordancy test.
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Strong: Association rules that satisfy both the minimum support threshold and the

minimum confidence threshold are called strong.

Subscriber Identity Module: A card inserted into a cellular telephone containing

subscriber-related data.

Subscription Fraud: Fraud occurring when a subscriber signs up for a service with

fraudulently obtained subscriber information, or false identification.

Sum of Squared Errors: The sum of the squared prediction errors across all observa-

tions. It is used to denote the variance in the response variables not yet accounted

for by a regression model.

Sum of Squared Regression: Sum of the squared differences between the mean and

predicted values of the response variable for all observations in a regression equation.

Supervised Learning: The process in a neural network implementation where a known

target value is associated with each input in the training set.

Support: The percentage of the total sample for which an association rule is valid.

Terminal Node: A node in a classification tree for which further splitting will not result

in a decrease in impurity.

Test Sample Estimate: An estimate of classifier accuracy dividing the learning sample

into two subsets, using one set to construct the classifier and the other to obtain

the estimate.

Total Sum of Squares: Total amount of variation in the response variable of a regres-

sion equation that exists and needs to be explained by the explanatory variables.

Training Phase: A phase of a neural network implementation during which learning

takes place through sequential processing of large samples of observations in which

the classification errors are used to adjust weights in order to improve estimation.

Tumbling: A technique used by fraudsters, switching between captured cellular tele-

phone identification numbers to gain access to the cellular telecommunications net-

work.

Unsupervised Learning: The process in a neural network implementation where learn-

ing occurs when the training data lack target output values corresponding to input

patterns.
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V -fold Cross-Validation: A method of estimating classifier accuracy by dividing the

learning sample into v subsets of approximately equal size, using as learning sample

all of the subsets bar one to construct a classifier, repeated across all v subsets

exclusions.

Velocity Traps: A fraud detection technique testing for call origin locations geographi-

cally far appart, but in temporal proximity.

Visitor Location Register: A network database that holds information about cellular

customers using an operators’s cellular telecommunications network but not sub-

scribing to that cellular operator.



List of Reserved Symbols

α the level of significance used during an F -test [variable selection]

aki the net input of the ith observation into node k [artificial neural

network]

A a subset of X obtained by repeated splitting [classification tree]

Aj a subset of X for which d(Xi) predicts membership of class Cj

[classification tree]

An a signature component after call n [subscriber behaviour profiling]

AI , BI , . . . sets of items in I [association rule mining]

βi the regression coefficient of the ith explanatory variable [regression

analysis]

β̂i the estimated value of a regression coefficient βi [regression analysis]

bi the ith category of categorical variable xji [classification tree]

b1(aki), b2(aki), a number of different activation functions [artificial neural network]

b3(aki), b(·)
B the possible values of categorical variable xji [artificial neural net-

work]

c the percentage of transactions inDI containing AI that also contain

BI [association rule mining]

C the possible values ranging between (−∞,∞) that continuous vari-

able xji may take on [classification tree]

CI the minimum confidence threshold [association rule mining]

Cj the jth class in C [classification tree]

C a set of J classes [classification tree]

δqi the error of the ith observation at output node q [artificial neural

network]

d(Xi) a classifier classifying observations Xi [classification tree]

d(v) a classifier constructed from the vth subset of learning sample L
using the method of V -fold cross-validation to calculate the internal

estimate [classification tree]
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duv the distance or similarity between clusters U and V [cluster analy-

sis]

d(uv)w the minimum of distances or similarities duw and dvw [cluster anal-

ysis]

dik the distance or similarity between clustered item i and item k [clus-

ter analysis]

d1(Xi,Xj) the Euclidean distance between two P -dimensional observations Xi

and Xj [cluster analysis]

d2(Xi,Xj) the Minkowski metric between two P -dimensional observations Xi

and Xj [cluster analysis]

d3(Xi,Xj) the Gower’s general similarity coefficient between two P -

dimensional observations Xi and Xj [cluster analysis]

d4k
(Xi,Xj) the contribution to Gower’s general similarity coefficient provided

by the kth variable in the two P -dimensional observations Xi and

Xj [cluster analysis]

D the N × N symmetric matrix of distances or similarities between

observations [cluster analysis]

D(Xi, yi) the deviation in prediction accuracy between the current model and

saturated model [logistic regression]

Do(k, l) a distance-based outlier with parameters k and l [outlier analysis]

D2 a measure of distance between two points in the space defined by

two or more correlated variables, also called the Mahalanobis dis-

tance [outlier analysis]

DI a set of database transactions TI [association rule mining]

εi the stochastic error at the ith observation [regression analysis]

ei the prediction error of the regression model at the ith observation

[regression analysis]

E the sum of squared errors across all observations [regression analy-

sis]

EP the sum of squared errors computed with P explanatory variables

[regression analysis]

E(yi|Xi) the conditional mean of the response variable yi, given the values

of explanatory variables Xi [logistic regression]

fqi the input of the ith observation into output node q [artificial neural

network]

F the F -test statistic calculating the prediction improvement when

adding additional explanatory variables to a regression model [vari-

able selection]
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Fo the initial distribution of observations [outlier analysis]

g(Xi) the logistic transformation of the logistic regression model π(Xi)

[logistic regression]

G(Xi, yi) the difference in deviation of models with and without explanatory

variable xji [logistic regression]

hki the input of the ith observation into hidden node k [artificial neural

network]

H the total number of hidden nodes [artificial neural network]

Hi a hypothesis [variable selection]

H i an alternative hypothesis [outlier analysis]

i(t) the impurity measure of node t [classification tree]

ii the ith item in the universal set of items I [association rule mining]

∆i(s, t) the decrease in impurity caused by candidate split s at tree node t

[classification tree]

I a universal set of items [association rule mining]

I(·) an indicator function defined to be 1 if the statement between the

parenthesis is true, and 0 otherwise [artificial neural network]

I(T ) the impurity measure of tree T [classification tree]

J the number of classes contained among the response values in yi

[classification tree]

KIk
a set of candidate k-item sets [association rule mining]

l(β1, . . . , βP ) the likelihood function [logistic regression]

lIi
an item set in LI [association rule mining]

lIi
[j] the jth item in item set lIi

[association rule mining]

L a learning sample used when constructing data mining models

Li a subset of the learning sample L [classification tree]

L(β1, . . . , βP ) the log of the likelihood function l(β1, . . . , βP ) [logistic regression]

LI a frequent item set in association rule mining [association rule min-

ing]

mk the kth subscriber in the set of observations [association rule mining]

M the number of input nodes [artificial neural network]

M2 the residual mean square for estimating prediction accuracy [regres-

sion analysis]

N the number of observations in a data set

NCi
the number of observations of class Ci [Bayesian decision making]

NCji
the number of observations of class Ci having the value xji [Bayesian

decision making]



xix

NMl
the maximum number of observations within radius l of an outlier

[outlier analysis]

Ns the total number of subsets of the observations in X [outlier anal-

ysis]

NC the confidence count [association rule mining]

NS the support count [association rule mining]

N(0, σ2) a normal distribution with mean 0 and variance σ2 [regression anal-

ysis]

η a factor scaling the step size when updating weights [artificial neural

network]

O the total number of output nodes [artificial neural network]

O(t) the set of parents of node t [Bayesian network]

pj(t) the proportion of observations at tree node t belonging to class Cj

[classification tree]

pR the proportion of observations in node t sent to node tR by candi-

date split s [classification tree]

pL the proportion of observations in node t sent to node tL by candidate

split s [classification tree]

p(t) the resubstitution estimate of the probability that any observation

falls into node t [classification tree]

P the number of explanatory variables in one observation

P [Hi|Xi] the conditional probability that the hypothesis Hi holds given the

observation Xi [Bayesian decision making]

Pwijq
a conditional probability table entry [Bayesian network]

Pw the set of conditional probability table entries [Bayesian network]

PPw the probability of prediction accuracy under the conditional prob-

ability table Pw [Bayesian network]

Ps[vi] the significance probability of the value of the test statistic Ts on

observation Xi [outlier analysis]

Pmk
the probability distribution describing the behaviour of subscriber

mk as a series of probabilities of cluster membership [association

rule mining]

Q the number of additional explanatory variables available [variable

selection]

Q a set of binary questions used during tree construction [classification

tree]

r(t) the resubstitution estimate of the probability of misclassification

[classification tree]



xx

Rg the sum of squared regression across all observations of a regression

model [variable selection]

R2 the coefficient of determination for estimating prediction accuracy

in regression models [variable selection]

R
2

the adjusted coefficient of determination for estimating prediction

accuracy in regression models [variable selection]

R∗
c(d) the rate of misclassification when applying classifier d to a set of
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Chapter 1

Introduction

1.1 Fraud in Mobile Telecommunication Networks

Fraud in a mobile telecommunication network refers to the illegal access of the network and

the subsequent use of its services. The development of intelligent data analysis methods for

fraud detection may certainly be motivated from an economic point of view. Additionally,

the reputation of a network operator may suffer from an increasing number of fraud cases.

The Business Day of 20 March 2003 [9] reported that globally, mobile telecommunication

fraud is bigger business than international drug trafficking, with operators worldwide

typically losing US $55bn a year. It is the single largest cause of revenue loss for operators,

costing them between 3% and 5% of their annual revenue. In Africa alone, carriers write

off R700m a year to fraud, which is expected to increase since more than thirty million

Africans have access to cellular telephones, providing criminals with a very large wireless

market to infiltrate [9].

Historically, earlier types of fraud involved use of technological means to acquire free

access to the mobile telecommunication network. Cloning of cellphones by creating copies

of handsets with identification numbers from legitimate subscribers was typically used as

a means of gaining free access to the network. In the era of analog handsets, identification

numbers could be captured easily by eavesdropping with suitable receiver equipment in

public places, where cellphones were evidently used. One specific type of fraud, called

tumbling , was quite prevalent in the United States. It exploited deficiencies in the valida-

tion of subscriber identity when a cellphone subscription was used outside the subscriber’s

home area. The fraudster kept switching between captured identification numbers to gain

access. Early fraud detection systems examined whether two instances of one subscription

were used at the same time — this was called the overlapping calls detection mechanism.

Detection systems testing for call origin locations geographically far appart, but in tem-

poral proximity, were called velocity traps . Both the overlapping calls and the velocity

trap methods attempted to detect the existence of two cellphones with identical iden-

1
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tification codes, clearly evidencing cloning. As a countermeasure to these fraud types,

technological improvements were introduced [22]. However, new forms of fraud also came

into existence. One of the growing types of fraud in South Africa is so-called subscription

fraud . In subscription fraud, a fraudster obtains a subscription, possibly with false iden-

tification, and starts a fraudulent activity with no intention to pay the bill. Another kind

of subscription fraud, known to most South Africans, is the theft of cellphones, where

offenders steal cellphones and use them to make calls until the theft is reported and the

handset is locked by the service provider. In September 2001 the media reported that

MTN, one of South Africa’s cellular service providers, receives on average 5 700 reported

thefts of cellphones every month [32].

One way that operators may fight back is by installing fraud prevention software to

detect usage anomalies quickly. Callers are dissimilar, so calls that look like fraud for

one account, may be expected behaviour for another. Fraud detection must therefore be

tailored to each account’s own activity. However, a change in behaviour patterns is a

common characteristic in nearly all fraud scenarios.

1.2 Problem Description and Thesis Objectives

The mobile telecommunication industry suffers major losses each year due to fraud, as

mentioned in §1.1. Because of the direct impact of fraud on the bottom-line of network

operators, the prevention and detection of fraud has become a priority. Subscription

fraud is currently a major form of fraud, but as fraud detection software becomes more

successful in detecting and preventing this kind of fraud, criminals are likely to discover

new techniques to defraud service providers and their customers.

Modern computerised fraud management systems implement a combination of dif-

ferent proprietary fraud detection techniques, each one contributing to a subscriber’s

fraud weight, typically generating an alarm when the fraud weight exceeds a user-defined

threshold value. Classification techniques — most often artificial neural networks — are

routinely included in modern fraud management systems; such systems usually are not

used to detect fraud, but rather to confirm fraud detected by other techniques. Fraud

management systems achieve behaviour profiling by grouping subscribers according to

the product to which they subscribe, thereby assuming that subscribers subscribing to

a certain product exhibit similar behaviour. Detection rules and threshold values, being

the heart of most fraud detection strategies, are defined by fraud analysts using a method

of trial and error.

In this thesis the focus is on the use of well-known data mining techniques in the fraud

detection process. The following objectives have been set:

1. To employ classification, clustering, association and probabilistic techniques to build
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models for use in the fraud detection process.

2. To establish a context for well-known data mining techniques in fraud detection.

3. To evaluate and compare the performances of various data mining methodologies

typically employed to detect fraud. Performance may be measured by the fraud

detection rate and the false alarm rate.

4. To suggest a combination of data mining techniques that may be used to build a

comprehensive fraud detection model that is capable of outperforming models based

on a single data mining methodology.

1.3 Layout of Thesis Structure

This thesis consists of seven chapters. Various basic data mining methodologies used in

building cellular telephone user behaviour profiles and detecting fraud are described in

Chapter 2. In Chapter 3, the nature and operation of the cellular telecommunications

industry is described. The chapter proceeds with a discussion of the types of fraud

experienced by South African network operators, and the methods they employ to detect

and prevent these fraud types. In Chapter 4, a number of seminal articles related to fraud

detection in specifically cellular telecommunication networks, which influenced this thesis,

are summarised. Chapter 5 provides insight into the call data collection process and the

characteristics of the collected data. Chapter 6 forms the core of the thesis, where different

data mining methods are applied to real data, demonstrating how user behaviour profiles

may be built and how fraud may be predicted. The chapter also contains an appraisal of

the performance and appropriateness of the different data mining methods in the context

of the fraud detection process. A number of conclusions and recommendations are made

in Chapter 7. A combination of data mining techniques are suggested in the chapter that

may be used in conjunction with each other to build a comprehensive fraud detection

model capable of outperforming models based on a single data mining methodology.



Chapter 2

Data Mining Methodologies

Berry, et al. [4] define data mining as the exploration and analysis, by automatic or semi-

automatic means, of large quantities of data in order to discover meaningful patterns and

rules. The statistical techniques of data mining include linear and logistic regression, mul-

tivariate analysis , principle component analysis , decision trees , neural networks , Bayesian

decision making , association rule mining , cluster analysis and outlier analysis .

The data mining methodologies employed in this thesis during the analysis of cellular

telephone call data and the subsequent model building process are reviewed in this chapter.

2.1 Decision Trees

Hair, et al. [20] define the process of constructing decision trees as a sequential partition-

ing of observations to maximise the differences on response variables over the different

partition sets. The construction of a decision tree is a technique that generates a graphic

representation of the model it produces. It is called a decision tree, because the resulting

model is presented in the form of a tree structure. Decision tree problems are divided

into classification problems and regression problems. In classification problems one at-

tempts to predict values of a categorical response variable from one or more continuous

and/or categorical explanatory variables , whilst in regression problems one attempts to

predict the values of a continuous variable from one or more continuous and/or categorical

explanatory variable(s) [7].

2.1.1 Classification Trees

A classifier or classification rule is a systematic method of predicting to which class an

observation belongs, given a set of measurements on each observation. A more precise

formulation of what is meant by a classification rule may be achieved by defining the

measurements Xi = (x1i, x2i, . . . , xPi) as the measurement vector made during observa-

tion i of some process. The measurement space X is defined as containing all possible

4
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measurement vectors Xi. Suppose the response variables yi of the observations fall into

J classes C1, C2, . . . , CJ , and let C be the set of classes, C = {C1, . . . , CJ}. A systematic

way of predicting class membership is a rule that assigns a class membership in C to every

measurement vector Xi in X . That is, given any Xi ∈ X , the rule assigns one of the

classes in C to Xi.

A classifier or classification rule is a function d : X 7→ C. Another way of view-

ing a classifier is to define Aj as the subset of X for which d(Xi) = Cj, that is Aj =

{Xi : d(Xi) = Cj}. The sets A1, . . . , Aj are disjoint and X= ∪jAj. A classifier is there-

fore a partition of X into J disjoint subsets, A1, . . . , Aj, such that, for every Xi ∈ Aj, the

predicted class is Cj.

In systematic classifier construction, past experience is summarised in a learning sam-

ple L. This consists of the measurement data on N past observations together with their

actual classifications, that is a set of data of the form L = {(X1, y1) , . . . , (XN , yN)} on N

observations, where Xi ∈ X and yi ∈ C, i = 1, . . . , N [8].

Classifier Accuracy Estimates

One way to measure the accuracy of a classifier is to test the classifier on subsequent

observations whose correct classifications are known. This may be achieved by construct-

ing d using L, drawing another very large set of observations from the same population

from which L was drawn and then observing the correct classification for each of those

observations, and also finding the predicted classification using d(Xi). Let the proportion

misclassified by d be denoted by R∗
c(d). In actual problems, only the data in L are avail-

able, with little prospect of obtaining an additional large sample of classified observations.

In such cases L is used both to construct d(Xi) and to estimate R∗
c(d). Such estimates of

R∗
c(d) are referred to as internal estimates .

The least accurate and most commonly used internal estimate is the resubstitution

estimate. After the classifier d is constructed, the observations in L are run through the

classifier. The proportion of observations misclassified is the resubstitution estimate. An

indicator function I(·) is defined to be one if the statement between the parenthesis is

true, and zero otherwise. The resubstitution estimate may then be formulated as

Rc(d) =
1

N

∑
(Xi,yi)∈L

I (d(Xi) 6= yi) . (2.1)

The problem with the resubstitution estimate is that it is computed using the same data

used to construct d, instead of using an independent sample. Using the subsequent value

of Rc(d) as an estimate of R∗
c(d) may give an overly optimistic measure of the accuracy

of d.

Another internal estimate often used is the test sample estimate. Here the observations

in L are partitioned into two sets, L1 and L2. Only the observations in L1 are used to



Chapter 2 — Data Mining Methodologies 6

construct d. Then the observations in L2 are used to estimate R∗
c(d), using the expression

in (2.1). The test sample approach has the drawback that it reduces the effective sample

size. This is a minor difficulty if the sample size is large.

However, for smaller sample sizes, another method, called V -fold cross-validation, is

usually preferred. The observations in L are randomly partitioned into V subsets of

approximately equal size, denoted by L1, . . . ,LV . The classification procedure is applied

for every v ∈ {1, . . . , V }, using as the learning sample L\Lv, to obtain a classifier d(v)(Xi).

Since none of the observations in Lv have been used in the construction of d(v), a test

sample estimate for R∗
c

(
d(v)
)

is calculated, using the expression in (2.1). Finally, using

the same procedure again, a classifier d is constructed using all observations in L.

Construction of Classification Trees

Tree structured classifiers are constructed by repeated splits of subsets of X into two

descendant subsets, beginning with X itself. Those subsets which are not split are called

terminal subsets. The terminal subsets form a partition of X and are designated by a

class label. The entire construction of a tree revolves around three elements:

1. Selection of the splits.

2. Decisions as to when to declare a node terminal, or to continue splitting it.

3. Assignment of each terminal node to a class.

Assume that the measurement vectors have the form Xi = (x1i, . . . , xPi). Let Q be a

set of binary questions of the form {Is Xi ∈ A?}, where A ⊂ X is obtained by (possibly

repeated) splitting of the space X . The set of questions Q is defined by adhering to the

following rules:

1. Each split depends on the value of a single variable.

2. For each continuous variable xji, Q includes all questions of the form {Is xji ≤ C?}
for all C ranging over (−∞,∞).

3. If xji is categorical, taking values in {b1, b2, . . . , bL}, then Q includes all questions

of the form {Is xji ∈ B?} as B ranges over all subsets of {b1, b2, . . . , bL}.

The idea is to select each split of a subset so that the data in each of the descendant

subsets is purer than the data in the parent subset. A so–called goodness of split crite-

rion is derived from a so–called impurity function φ, defined on the set of all J-tuples

(p1(t), . . . , pJ(t)), where pj(t), j ∈ {1, . . . , J}, is the proportion of observations at node t,

Xi ∈ t, belonging to class Cj and satisfying pj(t) ≥ 0,
∑

j pj(t) = 1, with the properties
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that:

1. φ is a maximum only at the point
(

1
j
, 1

j
, . . . , 1

j

)
,

2. φ achieves its minimum only at the points (1, 0, . . . , 0) , (0, 1, . . . , 0) , . . . , (0, 0, . . . , 1).

Given an impurity function φ, an impurity measure i(t) at node t is defined as

i(t) = φ (p1(t), p2(t), . . . , pJ(t)) .

If a candidate split s at node t sends a proportion pR of the observations in t to descendant

subset tR and the proportion pL to descendant subset tL, the decrease in impurity is defined

as

∆i(s, t) = i(t)− pRi(tR)− pLi(tL),

which is referred to as the goodness of the split s of t. At the node t all candidate splits

in S are considered so as to find a split s∗ that yields the largest decrease in impurity,

that is for which

∆i(s∗, t) = max
s∈S

∆i(s, t).

After a certain amount of splitting has been performed, the set of splits used, together

with the order in which they were performed, determines a binary tree T . The current

set of terminal nodes are denoted by T̃ . The tree impurity I(T ) is defined as

I(T ) =
∑
t∈T̃

i(t)p(t),

where p(t) is the resubstitution estimate of the probability that any observation falls into

node t, and is defined by p(t) =
∑

j pj(t), where pj(t) is the resubstitution estimate for

the probability that an observation will both be in class Cj and falls into node t. Tree

growing is terminated when a node t is reached in which no significant decrease in impurity

is possible. Such a node t then becomes a terminal node. This may be achieved by setting

a threshold κ > 0, and declaring a node t terminal if

max
s∈S

∆(s, t) < κ. (2.2)

A so–called class assignment rule assigns a class Cj, j ∈ {1, . . . , J}, to every terminal

node t ∈ T̃ . The class assigned to node t ∈ T̃ is denoted by j(t). The class assignment of

a terminal node is determined by

pj(t) = max
i
{pi(t)},

in which case node t is designated as a class Cj terminal node. If the maximum is achieved

for two or more different classes, Cj is assigned arbitrarily as any one of the maximising

classes.
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Some observations in L may be incomplete in terms of values for certain explanatory

variables. This problem may be overcome by the use of surrogate splits. The idea is to

define a measure of similarity between any two candidate splits s and s′ of a node t. If

the best split of t is the candidate split s on the variable xji, the candidate split s′ on

the variables other than xji is found that is most similar to s, and s′ is called the best

surrogate for s. The second best surrogate, third best, and so on are defined similarly. If

an observation does not include xji in its set of explanatory variables, the decision as to

whether it goes to tL or tR is made by using the best surrogate split.

The resubstitution estimate of the probability of misclassification, r(t), given that an

observation falls into node t, is defined by

r(t) = 1−max
j
{pj(t)}.

The resubstitution estimate for the overall misclassification cost, R∗
c(T ), is given by

R∗
c(T ) =

∑
t∈T̃

r(t)p(t)

=
∑
t∈T̃

Rc(t),

where R∗
c(T ) is the tree misclassification cost and Rc(t) is the node misclassification cost.

The splitting termination rule, given by inequality (2.2), typically produces unsatis-

factory results [8]. A more satisfactory procedure is to grow a very large tree Tmax by

letting the splitting procedure continue until all terminal nodes are either small, or pure,

or contain only identical measurement vectors. Here, pure means that the node observa-

tions are all in one class. The large tree Tmax, may then selectively be pruned, producing

a sequence of subtrees of Tmax, and eventually collapsing to the tree {t1} consisting of the

root node.

A branch Tt of T with root node t ∈ T consists of node t and all descendants of t

in T . Pruning a branch Tt from T consists of deleting from T all descendants of t, that

is, cutting off all of Tt, except its root node. The tree pruned in this way is denoted by

T − Tt. If T ′ is obtained from T by successively pruning off branches, then T ′ is called a

pruned subtree of T , denoted by T ′ < T . Even for a moderately sized tree, Tmax, there

is a potentially large number of subtrees and an even larger number of distinct ways of

pruning up to the root node {t1}. A selective pruning procedure is necessary, that is, a

selection of a reasonable number of subtrees, decreasing in size, such that each subtree

selected is the best subtree in its size range.

The so–called minimal cost-complexity method of pruning results in a decreasing se-

quence of subtrees. The complexity of any subtree T < Tmax, is defined as |T̃ |, the number

of terminal nodes in T . Let γ ≥ 0 be a real number called the complexity parameter and



Chapter 2 — Data Mining Methodologies 9

define the cost-complexity measure Rcγ(T ) as

Rcγ(T ) = Rc(T ) + γ|T̃ |. (2.3)

For each value of γ, that subtree T (γ) < Tmax is found which minimises Rcγ(T ), that is

Rcγ (T (γ)) = min
T≤Tmax

{Rcγ(T )}.

If γ is small, the penalty for having a large number of terminal nodes is small and T (γ)

will be large. As the penalty γ per terminal node increases, the minimising subtrees T (γ)

will have fewer terminal nodes. For γ sufficiently large, the minimising subtree T (γ) will

consist of the root node only. The minimal cost-complexity method of pruning results in

a decreasing sequence of subtrees T1 > T2 > . . . > {t1}, where Tk = T (γk) and γ1 = 0.

The problem is now reduced to selecting one of these subtrees as the optimum-sized tree

[8]. The best subtree, Tk0 , is a subtree minimising the estimate of the misclassification

cost.

2.1.2 Regression Trees

In regression, an observation consists of data (Xi, yi) where Xi, the measurement vector,

lies in a measurement space X , and yi, the response variable of the ith observation, is a real-

valued number. With regression, construction of a predictor d(Xi) and the determination

of its accuracy are achieved in the same way as in classifier construction, as described

in §2.1.1; the only difference being that a classifier predicts class membership, while

regression predicts a real-valued number.

A regression tree is constructed by partitioning the space X by a sequence of binary

splits into terminal nodes. In each terminal node t, the predicted response value y(t) is

constant. Starting with a learning sample L, three elements are necessary to determine a

tree predictor:

1. A method to select a split at every intermediate node,

2. A rule for determining when a node is terminal, and

3. A rule for assigning a value y(t) to every terminal node t.

In order to assign a value to each terminal node, the resubstitution estimate for the

misclassification cost,

Rr(d) =
1

N

N∑
i=1

(yi − d(Xi))
2 ,

is calculated. Then y(t) is taken to minimise Rr(d). The value of y(t) that minimises

Rr(d) is the average of yi for all observations (Xi, yi) falling into t. Thus, the extremal
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value of y(t) in question is given by

y(t) =
1

N(t)

∑
Xi∈t

yi,

where the sum is taken over all yi such that Xi ∈ t, and where N(t) is the total number

of observations in t. The error of a regression tree T is given by

Rr(T ) =
∑
t∈T̃

Rr(t),

where, Rr(t), the error of node t is given by

Rr(t) =
1

N

∑
Xi∈t

(yi − y(t))2 .

Given any set of candidate splits S of a current terminal node t in T̃ , the best split

s∗ of t is a split in S which decreases Rr(T ) most. For any split s of t into descendant

subsets tL and tR, let ∆Rr(s, t) = Rr(t)−Rr(tL)−Rr(tR). The best split, such that

∆Rr(s
∗, t) = max

s∈S
{∆Rr(s, t)},

is taken.

Minimal error-complexity pruning in regression trees is achieved in exactly the same

way as minimal cost-complexity pruning in classification trees. The result of minimal

error-complexity pruning is a decreasing sequence of trees T1 > T2 > . . . > {t1}, with

{t1} < Tmax, and a corresponding increasing sequence of γ values 0 = γ1 < γ2 < . . .,

such that, for γk ≤ γ < γk+1, Tk is the smallest subtree of Tmax minimising Rrγ(T ), the

error-complexity measure of tree T as given by the expression in (2.3).

2.2 Variable Selection

Variable selection methods are used mainly in exploratory situations, where many explana-

tory variables have been measured and a final model explaining the response variable has

not been reached or established [1].

Suppose yi is a variable of interest, depending in some (possibly complex) way on a

set of potential explanatory variables or predictors (x1i, . . . , xPi). The problem of variable

selection, or subset selection as it is often called, arises when modelling the relationship

between yi and a subset of (x1i, . . . , xPi), where there is uncertainty about which subset to

use. Such a situation is of particular interest when P is large and (x1i, . . . , xPi) is thought

to contain many redundant or irrelevant variables [17].

The variable selection problem is most familiar in the context of linear regression,

where attention is restricted to linear models. Hair, et al. [20] describe linear regression



Chapter 2 — Data Mining Methodologies 11

analysis as a statistical technique that may be used to analyze the relationship between a

single response variable and several explanatory variables. The objective of linear regres-

sion analysis is to use the explanatory variables whose values are known to predict the

single response variable selected by the researcher. Each explanatory variable is weighted

by the regression analysis procedure to ensure optimal prediction of the response variable

from the set of explanatory variables. The weights denote the relative contribution of

the explanatory variables to the overall prediction and facilitate interpretation as to the

influence of each variable in making the prediction, although correlation among the ex-

planatory variables complicates the interpretive process. The set of weighted explanatory

variables forms the regression variate, a linear combination of the explanatory variables

that best predicts the response variable.

2.2.1 The Regression Model

Suppose P explanatory variables are used to predict the response variable Y, and N

observations of the form (yi, x1i, x2i, . . . , xPi) are available, where xji is the value of the

jth explanatory variable at the ith observation, and yi is the value of the response variable

at the ith observation. Linear regression models assume a relationship between Y and the

P explanatory variables of the form

yi = β0 + β1x1i + β2x2i + . . .+ βPxPi + εi, (2.4)

where εi is a stochastic error term, with mean 0, representing noise in the data. The errors

εi are assumed to be independent and identically normally distributed with a constant

variance σ2; that is for all i = 1, . . . , N

εi ∼ N(0, σ2).

Suppose βj (j = 0, 1, . . . , P ) is estimated by β̂j, then the prediction for yi is given by

ŷi = β̂0 + β̂1x1i + β̂2x2i + . . .+ β̂PxPi.

The prediction error of the regression model is defined by ei = yi− ŷi, for all i = 1, . . . , N

[42].

2.2.2 Criteria for Variable Selection

Any variable selection procedure requires a criterion for deciding how many and which

variables to select for the prediction of a response variable. The least squares method of

estimation minimises the residual sum of squares, also called the sum of squared errors .

Hair, et al. [20] define the sum of squared errors as the sum of squared prediction errors



Chapter 2 — Data Mining Methodologies 12

(residuals) across all observations, denoted by E. This quantity is used to denote the

variance in the response variable not yet accounted for by the regression model. Hence

E =
N∑

i=1

(yi − ŷi)
2 =

N∑
i=1

e2i . (2.5)

Small values of E indicate that the least squares profile fits the data well. Therefore,

an implicit criterion for variable selection is the value of E. A related criterion to assess

prediction accuracy is the sum of squared regression, which is the sum of squared differ-

ences between the mean and predicted values of the response variable for all observations.

This quantity is denoted by Rg and represents the amount of improvement in explanation

of the response variable attributable to the explanatory variables, as more explanatory

variables are added to the regression equation. That is,

Rg =
N∑

i=1

(ŷi − y)2. (2.6)

The total sum of squares , denoted by TS, is the total amount of variation that exists and

needs to be explained by the explanatory variables. The so–called baseline is calculated

by summing the squared differences between the mean and actual values for the response

variables across all observations, that is

TS =
N∑

i=1

(yi − y)2 =
N∑

i=1

(ŷi − y)2 +
N∑

i=1

(yi − ŷi)
2 = Rg + E.

In deciding between alternative subsets of variables, the subset producing the smaller

value of E would typically be selected. Prediction accuracy may also be expressed by the

coefficient of determination (R2), given by

R2 =
Rg

T
.

This quantity is a measure of the proportion of the variance of the response variable about

its mean that is explained by the explanatory variables. The higher the value of R2, the

greater the explanatory power of the regression equation, and therefore the better the

prediction of the response variable [20]. Note that

E =
N∑

i=1

(ŷi − y)2(1−R2).

Therefore, minimising E is equivalent to maximising the coefficient of determination (R2).

The value of R2 will never decrease by including additional variables, therefore all the

explanatory variables will be selected if the criterion of maximising R2 is used. The
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adjusted coefficient of determination, denoted by R
2
, will reduce this bias and is related

to R2 by the relationship

R
2

= R2 − P (1−R2)

N − P − 1
,

where P is the number of explanatory variables and N is the sample size. The idea is

that those explanatory variables that maximise R
2

are chosen [1].

Another method of variable selection is to minimise the residual mean square, defined

as

M2 =
E

N − P − 1
.

This quantity is related to the value of R
2

by means of the relationship

R
2

=
1−M2

S2
y

,

where

S2
y =

N∑
i=1

(ŷi − y)2

N − 1
.

The so–called general F -test is the basis for several selection procedures. Suppose

the explanatory variables (x1i, x2i, . . . , xPi) are used in the regression equation. Suppose

also that measurements onQ additional variables (xP+1,i, xP+2,i, . . . , xP+Q,i), are available.

Before deciding whether any of the additional variables should be included, the hypothesis

that, as a set, the Q variables do not improve the prediction of the response variable, is

tested. If the regression equation in the population has the form of equation (2.4), the

hypothesis

H0 : βP+1 = βP+2 = . . . = βP+Q = 0

is tested. To perform the test, an equation that includes all P + Q variables is first

obtained, and the residual sum of squares (EP+Q) is computed. Similarly, an equation

that includes only the first P variables and the corresponding residual sum of squares

(EP ). Then the test statistic is computed as

F =
(EP − EP+Q)/Q

EP+Q/(N − P −Q− 1)
.

The numerator measures the improvement in the equation by using the additional Q

variables. The hypothesis is rejected if the computed value of F exceeds the tabled value

F (1− α) at a level of significance α, with Q and N − P −Q− 1 degrees of freedom [1].

2.2.3 General Approaches to Variable Selection

There are several approaches to assist in finding the best regression model.
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2.2.3.1 Forward Selection Method

In the forward selection method the best single variable is selected by choosing the variable

with the highest absolute correlation with yi. The partial correlation coefficients are

examined to find an additional explanatory variable that explains the largest statistically

significant potion of the error remaining from the first regression equation. The variable

selected will maximise the F statistic for testing that the partial correlation coefficient

is zero. The forward selection method proceeds in this manner, each time adding one

variable to the variables previously selected, until a specified termination rule is satisfied.

The most commonly used termination rule is based on the F -test of the hypothesis that

the partial correlation of the variable entered is equal to zero. The termination rule

terminates the process of entering variables when the computed value of F is less than a

specified value. This cutoff value is called the minimum F -to-enter value [1, 20].

2.2.3.2 Backward Elimination Method

The backward elimination method begins with all the variables in the equation and pro-

ceeds by eliminating the least useful variables one at a time. For each variable, the F

statistic testing that the variable’s coefficient is zero, is computed. The F statistic here is

called the computed F -to-remove value. The variable with the smallest computed F -to-

remove value is a candidate for removal. The maximum F -to-remove value is specified.

The termination rule terminates the process of removing variables when the minimum

F -to-remove value is greater than some threshold [1].

2.2.3.3 Stepwise Procedure

The stepwise variable selection procedure is a combination of the forward selection and

backward elimination methods. At step 0 only y is included. At step 1 the variable with

highest computed F -to-enter value is selected. At step 2 a second variable with highest

computed F -to-enter value is entered, if the highest computed F -to-enter value is greater

than the minimum F -to-enter value. After the second variable is entered, the F -to-remove

value is computed for both variables. If either of them is lower than the maximum F -to-

remove value, the variable is removed. If not, a third variable is included if its computed

F -to-enter value is large enough. In successive steps this process in repeated. For a given

equation, variables with small enough computed F -to-remove values are removed, and

the variables with large enough computed F -to-enter values are included. The process

terminates when no variables may be deleted or added [1].
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2.3 Logistic Regression

The goal in logistic regression is to find the best fitting, and most parsimonious model, to

describe the relationship between a response or outcome variable, and a set of explanatory

or predictor variables [24]. Logistic regression is a special form of regression, one in which

the response variable is a nonmetric, dichotomous variable. Although some differences

exist, the general manner of interpretation is similar to that of linear regression [20], as

described in §2.2.

2.3.1 Difference between Logistic and Linear Regression

The key quantity in any regression analysis is the mean value of the response variable,

given the values of the explanatory variables. This value is called the conditional mean,

and is expressed as E(yi|Xi), where yi denotes the response variable and Xi denotes the

value of the explanatory variables, as before. In the linear regression case, this mean is

expressed as an equation linear in Xi, that is

E(yi|Xi) = β0 + β1x1i + . . .+ βPxPi.

This expression implies that it is possible for E(yi|Xi) to take on any value as Xi ranges

between −∞ and +∞. When the response variable is a dichotomous variable, the mean

must be greater than or equal to zero, and less than or equal to one, that is 0 ≤ E(yi|Xi) ≤
1. The logistic regression model is given by

π(Xi) =
eβ0+β1x1i+...+βP xPi

1 + eβ0+β1x1i+...+βP xPi
, (2.7)

where π(Xi) = E(yi|Xi). The logistic transformation is central in the study of logistic

regression, and is defined in terms of π(Xi), as

g(Xi) = ln

[
π(Xi)

1− π(Xi)

]
= β0 + β1x1i + . . .+ βPxPi.

The significance of this transformation is that g(Xi) has many of the desirable properties of

a linear regression model. The logistic transformation, g(Xi), is linear in its parameters,

may be continuous, and may range from −∞ to +∞, depending on the range of and

properties of Xi [24].

The conditional distribution of the response variable in linear regression is different to

that in logistic regression. In linear regression models, it is assumed that an observation

of the response variable may be expressed as yi = E(yi|Xi) + εi, where εi indicates the

observation’s deviation from the conditional mean. It is assumed that εi follows a normal

distribution with mean equal to zero and some variance that is constant across all values
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of the explanatory variables. It follows that the conditional distribution of the response

variable, given Xi, will be normal with mean E(yi|Xi), and the variance is constant. This

is not the case with a dichotomous response variable. In this situation, the value of the

response variable, given Xi, may be expressed as yi = π(Xi) + εi, where εi may assume

one of two possible values. If yi = 1, εi = 1 − π(Xi), with probability π(Xi). If yi = 0,

εi = −π(Xi), with probability 1−π(Xi). Hence, εi has a distribution with mean equal to

zero and variance equal to π(Xi)[1− π(Xi)] [24].

2.3.2 Fitting the Logistic Regression Model

Suppose a sample of N independent observations of the pair (Xi, yi), i = 1, 2, . . . , N exists,

where yi denotes the value of the dichotomous response variable, and Xi is the value of the

explanatory variables in the ith observation. To fit the logistic regression model in (2.7) to

a data set, the values of the unknown parameters, (β1, . . . , βP ), must be estimated. The

maximum likelihood method is used to estimate the logistic regression model. In general,

this method yields values for the unknown parameters which maximises the probability

of obtaining the observed set of data.

If yi is coded as zero or one, then the conditional probability that yi is equal to 1

given Xi, is provided by the expression for π(Xi), given in expression (2.7). This is

denoted as P [(yi = 1)|Xi]. The conditional probability that yi is equal to zero given Xi,

P [(yi = 0)|Xi], is given by 1 − π(Xi). For those pairs (Xi, yi), for which yi = 1, the

contribution to the likelihood function is π(Xi), and for those pairs for which yi = 0, the

contribution to the likelihood function is 1− π(Xi). The contribution of the pair (Xi, yi)

to the likelihood function may be expressed as

ζ(Xi, yi) = π(Xi)
yi [1− π(Xi)]

1−yi . (2.8)

The observations are assumed to be independent, hence, the likelihood function is

obtained as the product of terms given in expression (2.8), that is

l(β1, . . . , βP ) =
N∏

i=1

ζ(Xi, yi). (2.9)

The principle of maximum likelihood states that the values which maximise the ex-

pression in (2.9) should be used as estimates of (β1, . . . , βP ). It is mathematically easier

to work with the logarithm of the quantity l(β1, . . . , βP ) in (2.9), defined as

L(β1, . . . , βP ) = ln[l(β1, . . . , βP )]

=
N∑

i=1

{yi ln[π(Xi)] + (1− yi) ln[1− π(Xi)]}. (2.10)
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To find values (β1, . . . , βP ) that maximise L(β1, . . . , βP ), the function is differentiated with

respect to (β1, . . . , βP ), and the resulting expressions set to zero. The resultant equations

are

N∑
i=1

[yi − π(Xi)] = 0 (2.11)

and

N∑
i=1

Xi[yi − π(Xi)] = 0. (2.12)

Equations (2.11) and (2.12) are nonlinear in (β1, . . . , βP ), and are therefore solved numer-

ically using iterative methods [24].

2.3.3 Testing for the Significance of the Coefficients

After estimating the coefficients of the explanatory variables in a response variable predic-

tion model, an assessment of the significance of the variables in the model is performed.

One approach to testing for the significance of the coefficient of an explanatory variable

in any model, is to compare the prediction accuracy of a model that includes the variable

in question, and that of a model that does not include that variable, with observed values

of the response variable.

In linear regression, the assessment of the significance of a coefficient is performed

by constructing an analysis of variance table. In this table the total sum of squares,

denoted by T , is partitioned into the residual sum of squares, denoted by E, and the

sum of squared regression, denoted by Rg. The observed value is denoted by yi, and the

predicted value for the ith set of explanatory variable observation values under the model,

is denoted by ŷi. This comparison is evaluated in (2.5). Under the model not containing

explanatory variables, the only parameter is β0, and β̂0 = y, the mean of the response

variable. In this case ŷi = y, and E is equal to the total variance. When explanatory

variables are included in the model, any decrease in E will be due to the fact that the

slope coefficient for the explanatory variables is not zero. A change in the value of E

is due to the regression source of variability, denoted Rg in (2.6). A large value for Rg

suggests that the explanatory variable is important, whereas a small value suggests that

the explanatory variable is not helpful in predicting the response.

The guiding principle in logistic regression is the same as in linear regression: The ob-

served values of the response variable are compared to the predicted values obtained from

models with and without the variable in question. In logistic regression, comparison of

observed values of the response variable to predicted values, is based on the log likelihood

function, defined in (2.10). To understand this comparison better, note that the observed
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value of the response variable is also a predicted value resulting from a saturated model .

A saturated model is one that contains as many parameters as there are observations.

The comparison between observed and predicted values of the regression model, using the

log likelihood function, is based on the expression

D(Xi, yi) = −2 ln

[
Lc

Ls

]
, (2.13)

where Lc is the log likelihood of the current model, and Ls is the log likelihood of the

saturated model. The reason for using minus twice the log is of a mathematically technical

nature, and is necessary to obtain a quantity whose distribution is known and may thus

be used for hypothesis testing purposes [24]. Such a test is called the likelihood ratio test.

Using (2.10), the expression in (2.13) becomes

D(Xi, yi) = −2
N∑

i=1

[
yi ln

(
π̂(Xi)

yi

)
+ (1− yi) ln

(
1− π̂(Xi)

1− yi

)]
, (2.14)

where π̂(Xi) is the maximum likelihood estimate of π(Xi). The statistic, D(Xi, yi), in

expression (2.14) is called the deviation. The deviation in logistic regression plays the same

role as the residual sum of squares plays in linear regression. To assess the significance

of an explanatory variable, the values of D(Xi, yi) for equations with and without the

explanatory variable, are compared. The change in D(Xi, yi) is obtained as

G(Xi, yi) = D(X̃i, yi)−D(Xi, yi)

= −2 ln

[
L̃i

Li

]
, (2.15)

where X̃i is the model without explanatory variable xji, Xi is the model with explanatory

variable xji, Li is the log likelihood of the model with the explanatory variable xji, and

L̃i is the log likelihood of the model without the explanatory variable xji. For the case

of a single explanatory variable, it is known that when that variable is not in the model,

the maximum likelihood estimate of β0 is ln(n1/n0), where n1 =
∑N

i=1 yi, and n0 =∑N
i=1(1 − yi), and the predicted value is the constant, n1/N . In this case the value of

G(Xi, yi) is given by

G(Xi, yi) = −2 ln

[ (
n1

N

)n1
(

n0

N

)n0∏N
i=1 π̂(Xi)yi(1− π̂(Xi))(1−yi)

]

= 2
N∑

i=1

[yi ln(π̂(Xi) + (1− yi) ln(1− π̂(Xi)]− [n1 ln(n1) + n0 ln(n0)−N ln(N)].

Under the hypothesis that β1, . . . , βP is equal to zero, the statistic G(Xi, yi) follows a

chi-square distribution with one degree of freedom [24].
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2.4 Artificial Neural Networks

Hair, et al. [20] state that neural networks are one of the tools most likely to be associated

with data mining. Patterned after the workings of the neural system of the brain, a neural

network attempts to learn, by means of repeated trials, how to organise itself so as to

achieve optimal prediction. The neural network model is composed of nodes , also called

neurons , which act as inputs , outputs , or intermediate processors . Each node is connected

to a set of neighbouring nodes by means of a series of weighted paths, similar to the weights

in a regression model. Based on a learning paradigm, the model takes the input data of

the first observation, and makes an initial prediction based on the weights of the network.

The prediction error is assessed, and then the model attempts to modify the weights so

as to improve prediction, and then moves on to the next observation. This cycle repeats

itself for each observation in what is termed the training phase, when the model is being

calibrated. After calibration, the model may be used on a separate sample of observations

to assess its external validity.

2.4.1 Basic Concepts of Neural Networks

There are three basic types of neural networks: multilayer perceptron networks, radial

basis function networks, and Kohonen networks. The multilayer perceptron model is the

most commonly used and is the type described in this section.

The most basic element in a neural network is a node, a self-contained processing

unit that acts in parallel with other nodes in the neural network. Each connection from

another node has an assigned weight. A weight wkj is interpreted as the strength of the

connection from the jth node to the kth node. The node processes the incoming data by

creating a weighted sum value in which each input value is multiplied by its respective

weight. Thus the net input into node k during observation i is given by

aki =
∑

j

wkjxji + µk,

where xji denotes the output value of the ith observation from node j, and µk is a threshold

value for node k.

Each node takes its net input and applies an activation function to it. For example,

the output of the jth node is b (aki), where b(·) is the activation function. The two common

choices for activation functions, are the threshold function

b1(aki) =

{
1 if aki ≥ 0

0 otherwise

or sigmoidal functions, such as

b2(aki) =
1

1 + e−aki
(2.16)
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or

b3(aki) = tanh(aki).

A layer of a multilayer network is composed of nodes that perform similar tasks. A

feedforward network is one where nodes in one layer are connected only to nodes in the

next layer, and not to nodes in a preceding layer or nodes in the same layer. The first

layer of a multilayer network consists of the input nodes , denoted by xji. An input node

represents a single variable or pattern. Metric variables require only one node for each

variable. Nonmetric variables have to be encoded, which means that each value of the

nonmetric variable should be represented by a binary variable. The last layer contains

the output nodes , denoted by yqi. The outputs represent membership of one of the q

classes. All other nodes in the model are called hidden nodes , denoted hki, and together

constitute the hidden layers. It is the hidden layers and activation function that allow

neural networks to represent nonlinear relationships. A feedforward network may have a

number of hidden layers with a variable number of hidden nodes per layer [40].

2.4.2 Neural Network Learning

The weights in neural networks are adjusted to solve the problem presented to the network.

Learning or training is the term used to describe the process of finding the values of these

weights. The two types of learning associated with neural networks are supervised learning

and unsupervised learning . Supervised learning occurs when there is a known target value

associated with each input in the training set. The output of the network is compared

with the target value, and the difference is used to train the network. Unsupervised

learning occurs when the training data lack target output values corresponding to input

patterns. The network must learn to group input patterns based on some common feature.

One of the most common algorithms used for training neural networks, in the context of

supervised learning, is backpropagation.

The backpropagation algorithm is a method to find weights for a multilayered feedfor-

ward network. To accomplish learning, some form of an objective function or performance

metric is required. The goal is to use the objective function to optimise the weights. The

most common performance metric used in neural networks is the sum of squared errors,

defined as

E =
1

2

N∑
i=1

O∑
q=1

(yqi − ŷqi)
2, (2.17)

where the subscript i indexes observations (with a total of N observations), where the

subscript q indexes output nodes (with a total of O output nodes), where y is the observed

response, and where ŷ is the model response.

The process of passing information through the multilayer feedforward neural network

starts with the input values being presented to the input layer. The input nodes perform
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no operation on this information, but simply pass it onto the hidden nodes. The input to

the kth hidden node is

hki =
M∑

j=1

wkjxji,

where M is the total number of input nodes. The kth hidden node applies an activation

function,

vki = b(hki) =
1

1 + e−hki
,

to its net inputs and outputs, assuming that the activation function b(·) is the sigmoidal

function, defined in (2.16). Similarly, an output node q receives a net input of

fqi =
H∑

k=1

Wqkvki,

where H is the number of hidden nodes, and Wqk represents the weight from hidden node

k to output q. The node then outputs the quantity

ŷqi = b(fqi) =
1

1 + e−fqi
.

The goal is to find the set of weights wkj, the weights connecting the input nodes to the

hidden nodes, and Wqk, the weights connecting the hidden nodes to the output nodes that

minimise the objective function, the sum of squared errors in (2.17). The objective func-

tion is a function of the unknown weights wkj and Wqk. Therefore, the partial derivative of

the objective function with respect to weights wkj and Wqk represents the rates of change

of the objective function with respect to a unit change of those weights. The method to

find values for the weights is an iterative process, evaluating the partial derivatives of the

objective function with respect to the weights, and adjusting the weights in a direction

down the slope, continuing in this manner until the error function no longer decreases.

To update the weight Wqk, the quantity

∆Wqk = −η ∂E

∂Wqk

= −η ∂E
∂ŷqi

∂ŷqi

∂fqi

∂fqi

∂Wqk

= −η[(−1)(yqi − ŷqi)]ŷqi(1− ŷqi)vki (2.18)

is computed, where η simply scales the step size. The weights are updated as

W
′

qk = Wqk + ∆Wqk.
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To update the weight wkj, the quantity

∆wkj = −η ∂E
∂wkj

= −η
O∑

q=1

∂E

∂ŷqi

∂ŷqi

∂fqi

∂fqi

∂vki

∂vki

∂hki

∂hki

∂wkj

= −η
O∑

q=1

(yqi − ŷqi)ŷqi(1− ŷqi)Wqkvki(1− vki)xji

is computed, and substituted into the iterative relationship w
′

kj = wkj + ∆wkj. Note that

there is a summation over the number of output nodes. This is because each hidden node

is connected to all the output nodes.

The method described above may be summarised as follows in algorithmic fashion

[40]:

Algorithm 1. Backpropagation Algorithm

1. Initialise the weights to small random values.

2. Choose an observation i and propagate it forward. This yields values for vki and ŷqi,

the outputs from the hidden layer and output layer.

3. Compute the output errors: δqi = (yqi − ŷqi)b
′(fqi).

4. Compute the hidden layer errors: ψki =
∑O

q=1 δqiWqkvki(1− vki).

5. Compute ∆Wqk = ηδqivki and ∆wkj = ηψkixji

6. Repeat steps 2–5 for each observation.

2.4.3 Neural Networks vs Standard Statistical Techniques

Sarle [34] argues that artificial neural networks are nothing more than nonlinear regression

and discriminant models that may be implemented with standard statistical software.

Many artificial neural networks are similar or identical to popular statistical techniques1,

especially where the emphasis is on prediction of complicated phenomena, rather than

on explanation. Sarle argues that artificial neural networks learn in much the same way

that many statistical algorithms perform estimation, but usually much more slowly than

statistical algorithms.

1Generalised linear regression models, polynomial regression models, nonparametric regression models
and discriminant analysis, projection pursuit regression models, principle component analysis, and cluster
analysis.
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Multilayer perceptron models are general-purpose, flexible, nonlinear models that,

given enough hidden nodes and enough data, are able to approximate virtually any func-

tion to any desired degree of accuracy. The complexity of the multilayer perceptron model

may be varied by varying the number of hidden layers and the number of hidden nodes in

each hidden layer. With a small number of hidden nodes, a multilayer perceptron model

is a parametric model that provides a useful alternative to polynomial regression. With

a moderate number of hidden nodes, the multilayer perceptron model may be considered

a quasi-parametric model, similar to projection pursuit regression models. A multilayer

perceptron model with one hidden layer is essentially the same as the projection pursuit

regression model, except that a multilayer perceptron model uses a predetermined func-

tional form for the activation function in the hidden layer, whereas projection pursuit

models use a flexible nonlinear smoother. If the number of hidden nodes is allowed to

increase with the sample size, a multilayer perceptron model becomes a nonparametric

sieve that provides a useful alternative to methods, such as kernel regression and smooth-

ing splines. Multilayer perceptron models are especially valuable, because the complexity

of these models may be varied from a simple parametric model to a highly flexible, non-

parametric model.

2.5 Bayesian Decision Making

Bayesian analysis is concerned with the basic problem of assessing some underlying state

of nature that is in some way uncertain. On the basis of whatever evidence does exist,

some action or actions are to be chosen from among various possible alternatives. Suppose

that there exists a set of mutually exclusive and exhaustive events that are considered

possible. It is known in advance that one, and only one, of these events will actually

occur, but there is uncertainty about which one of these it will be. Bayesian analysis

involves assigning a probability to each of these events on the basis of whatever evidence

is currently available. If additional evidence is subsequently obtained, then the initial

probabilities are revised on the basis of this new evidence by means of Bayes’ Theorem.

The initial probabilities are known as prior probabilities in that they are assigned before

the acquisition of the additional evidence bearing on the problem. The probabilities which

result from the revision process are known as posterior probabilities [31].

Bayesian classifiers are statistical classifiers, that are able to predict class membership

probabilities, such as the probability that a given sample belongs to a particular class.

Let Xi be an observation whose class label is unknown and let Hi be some hypothesis,

such as, that the observation Xi belongs to a specified class. For classification problems,

the probability that the hypothesis Hi holds, given the observation Xi, namely P [Hi|Xi],

must be determined. The conditional probability P [Hi|Xi] can be calculated by Bayes’
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theorem, namely

P [Hi|Xi] =
P [Xi|Hi]P [Hi]

P [Xi]
.

2.5.1 Naive Bayesian Classification

In a naive Bayesian classification process, each observation is represented by a P -dimen-

sional feature vector, Xi = (x1i, x2i, . . . , xPi), denoting measurements made on P at-

tributes.

Suppose that there are J classes, C1, C2, . . . , CJ . Given an unknown observation, Xi,

the naive Bayesian classifier predicts that Xi belongs to the class having the highest

posterior probability, conditioned on Xi. That is, the naive Bayesian classifier assigns an

unknown observation Xi to the class Ci if and only if

P [Ci|Xi] > P [Cj|Xi] for 1 ≤ j ≤ J, j 6= i. (2.19)

Thus P [Ci|Xi] is maximised. The class Ci for which P [Ci|Xi] is maximised is called the

maximum posteriori hypothesis. By Bayes’ theorem it holds that

P [Ci|Xi] =
P [Xi|Ci]P [Ci]

P [Xi]
,

where P [Xi] is the prior probability of observation Xi, P [Ci] is the prior probability of the

observations belonging to class Ci and P [Xi|Ci] the posterior probability of observation

Xi conditioned on class Ci.

The value P [Xi] is independent of class. Therefore, only the product P [Xi|Ci]P [Ci]

needs to be maximised. If the class prior probabilities are not known, then it is commonly

assumed that the classes are equally likely, that is, P [C1] = P [C2] = . . . = P [CJ ], and

therefore P [Xi|Ci] will be maximised. Otherwise, P [Xi|Ci]P [Ci] will be maximised. The

class prior probabilities may be estimated by P [Ci] =
NCi

N
, where NCi

is the number of

observations of class Ci, and N is the total number of observations.

Given data sets with many attributes, it may be computationally expensive to compute

P [Xi|Ci]. In order to reduce computational expense in evaluating P [Xi|Ci], a naive

assumption of class conditional independence is made. In this assumption one presumes

that the values of the attributes are conditionally independent of one another, given the

class label of the observation. Thus,

P [Xi|Ci] =
P∏

j=1

P [xji|Ci].

The probabilities P [x1i|Ci], P [x2i|Ci], . . . , P [xPi|Ci] may be estimated from the training

samples, where
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1. P [xji|Ci] =
NCji

NCi
, if xji is categorical, where NCji

is the number of observations of

class Ci having the value xji, and NCi
is the number of observations belonging to

Ci.

2. The attribute is typically assumed to have a Gaussian distribution if xji is continu-

ous, so that

P [xji|Ci] =
1√
2πσ

e−
(xji−µ)2

2σ2 ,

where µ and σ are the mean and standard deviation, respectively, given the values

for attribute xji for observations of class Ci.

2.5.2 Bayesian Belief Networks

In practice, however, dependencies may exist between variables. Bayesian belief net-

works specify joint conditional probability distributions in order to accommodate such

dependencies. They allow class conditional dependencies to be defined between subsets of

variables, by providing a graphical model of causal relationships, on which learning may

be performed. These networks are also known as belief networks , Bayesian networks , or

probabilistic networks .

A belief network is defined by two components. The first is a directed acyclic graph,

in which each node represents a random variable and each arc represents a probabilistic

dependence. If an arc is drawn from a node t to a node td, then t is called a parent or

immediate predecessor of td, and td is called a descendent of t. Each variable is condition-

ally independent of its nondescendents in the graph, given its parents. The variables may

be discrete or continuous. They may correspond to actual attributes given in the data or

to hidden variables believed to form a relationship.

The second component defining a belief network consists of one conditional probability

table for each variable. The conditional probability table for td specifies the conditional

distribution P [td|O(td)], where O(td) is the set of parents of td.

The joint probability of any tuple (x1i, . . . , xPi) corresponding to the variables or

attributes of td1 , . . . , tdP
is computed by

P [x1i, . . . , xPi] =
P∏

j=1

P [xji|O(tdj
)],

where the values for P [td|O(td)] correspond to the entries in the conditional probability

table for tdj
.

A node within the network may be selected as an output node, representing a class label

attribute. There may be more than one output node. Inference algorithms for learning

may also be applied on the network. The classification process, rather than returning a
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single class label, returns a probability distribution for the class label attribute, that is,

predicting the probability for membership to each class [21].

2.5.3 Training Bayesian Belief Networks

During the learning or training phase of a belief network, a number of scenarios are

possible. The network structure may be given in advance or inferred from the data, and

the network variables may be observable or hidden in all or some of the observations.

If the network structure is known and the variables are observable, then training the

network is straightforward. It consists of computing the conditional probability table

entries, as is done when computing the probabilities involved in a naive Bayesian classi-

fication process.

When the network structure is given and some of the variables are hidden, then a

method of gradient descent is typically used to train the belief network. The objective

is to learn the values of the conditional probability table entries. Let X be a set of N

observations, X1,X2, . . . ,XN . Let Pwijq
be a conditional probability table entry for the

variable tdj
= yqi having the parents O(tdj

) = xji. Pwijq
is viewed as a weight, analogous to

the weights in hidden nodes of neural networks. The set of weights is collectively referred

to as Pw. The weights are initialised to random probability values. At each iteration of

the gradient descent method, the weights are updated and eventually converge to a local

optimum solution.

The method searches for the Pwijq
values that best model the data, based on the

assumption that each possible setting of Pw is equally likely. The goal is thus to max-

imise PPw [X ] =
∏N

k=1 PPw [Xk]. This is achieved by following the gradient of lnPPw [X ],

which makes the problem simpler. Given the network structure and initialised Pwijq
, the

algorithm proceeds as follows:

Algorithm 2. Bayesian Belief Network Training Algorithm

1. The gradients are computed: For each i, j, q the derivatives

∂ lnPPw [X ]

∂Pwijq

=
N∑

k=1

P [tdj
= yqi, O(tdj

) = xji|Xk]

Pwijq

(2.20)

are computed. The probability on the right-hand side of (2.20) is to be calculated

for each training sample Xk in X . When the variables represented by tdj
and O(tdj

)

are hidden for some Xk, then the corresponding probability on the right-hand side

of (2.20) may be computed from the observed variables of the sample using standard

algorithms for Bayesian network inference.
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2. A small step is taken in the direction of the gradient, and the weights are updated

by

Pwijq
← Pwijq

+ (l)
∂ lnPPw [X ]

∂Pwijq

, (2.21)

where l is the learning rate representing the step size.

3. The weights are renormalised: Because the weights Pwijq
are probability values, they

must be between 0 and 1, and
∑

j Pwijq
must be equal to 1 for all i, q. These criteria

are achieved by renormalising the weights after they have been updated [21].

4. Steps 1-3 are repeated until the values Pwijq
maximise PPw .

2.6 Cluster Analysis

Exploratory procedures are often quite helpful in understanding the complex nature of

multivariate relationships. Searching available data for a structure of groupings is an

important exploratory technique [28]. Groupings may provide an informal means for

assessing dimensionality, identifying outliers, and suggesting interesting hypotheses con-

cerning relationships between data points. Cluster analysis is distinct from classification

methods in that the latter pertains to a known number of groups, where the operational

objective is to assign new observations to one of these groups. Cluster analysis, however,

is a more primitive technique in that no assumptions are made concerning the number of

groupings or the group structure of the data. It is an analytical technique for developing

meaningful subgroups of observations, in which the objective is to classify a sample of ob-

servations into a small number of mutually exclusive groupings, based on the similarities

and differences among the observations [28]. Cluster analysis usually involves three steps:

(i) the measurement of some form of similarity or association among the observations, so

as to determine how many groupings justifiably exist in the sample, (ii) the partitioning

of observations into clusters, and (iii) the profiling of the variables to determine their

composition [20].

2.6.1 Hierarchical Clustering Methods

The concept of similarity is fundamental to cluster analysis. So–called inter-observation

similarity is a measure of correspondence, or resemblance, between observations to be

clustered. Inter-observation similarity may be measured in a variety of ways, but three

methods dominate the applications of cluster analysis: correlation measures , distance

measures , and association measures [20].
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The Euclidean distance between two P -dimensional observations Xi = (x1i, x2i, . . . , xPi)

and Xj = (x1j, x2j, . . . , xPj) is

d1(Xi,Xj) =
√

(x1i − x1j)2 + (x2i − x2j)2 + . . .+ (xPi − xPj)2

=
√

(Xi −Xj)
′(Xi −Xj).

Another distance measure often used is the so–called Minkowski metric, given by

d2(Xi,Xj) =

[
P∑

k=1

|xki − xkj|m
] 1

m

.

For m = 1, d2(Xi,Xj) measures the rectilinear distance between two points in P dimen-

sions. For m = 2, d2(Xi,Xj) becomes the Euclidean distance.

Gower’s [19] general similarity coefficient is one of the most popular measures of prox-

imity for mixed data types, and normalises the meaningful variables to the range [0.0, 1.0].

Gower’s general similarity coefficient d3(Xi,Xj) compares two P -dimensional observations

Xi = (x1i, x2i, . . . , xPi) and Xj = (x1j, x2j, . . . , xPj), and is defined as

d3(Xi,Xj) =

∑P
k=1Wijkd4k

(Xi,Xj)∑P
k=1Wijk

, (2.22)

where d4k
(Xi,Xj) denotes the contribution provided by the kth variable, and Wijk is

usually 1 or 0, depending upon whether or not the comparison is valid for the kth variable

[19]. For ordinal and continuous variables, Gower [19] defines the value of d4k
(Xi,Xj) as

d4k
(Xi,Xj) = 1− |xik − xjk|

rk

,

where rk is the range of values for the kth variable. For continuous variables, d4(Xi,Xj)

ranges between 1, for identical values xik = xjk, and 0, for two extreme values of x. The

value of d4k
(Xi,Xj) for nominal variables is 1 if xik = xjk, and 0 if xik 6= xjk. For binary

variables, d4k
(Xi,Xj) = 1 if observations i and j both have attribute k present, or 0

otherwise [21, 19].

When observations cannot be represented by meaningful P -dimensional measure-

ments, pairs of items are often compared on the basis of the presence or absence of certain

characteristics. The presence or absence of a characteristic may be described mathemat-

ically by introducing a binary variable, which assumes the value 1 if the characteristic is

present and the value 0 if the characteristic is absent. Similarity coefficients are defined

by arranging the frequencies of matches and mismatches for items i and k in the form of a

contingency table. In the contingency table shown in Table 2.1, a represents the frequency

of 1−1 matches, and b is the frequency of 1−0 matches, and so forth. The most common

similarity coefficient used, defined in terms of the frequencies in the contingency table, is

a+ d

p
,

in which equal weights for 1− 1 and 0− 0 similarities are applied [28].
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Item k

1 0 Totals

1 a b a+ b

Item i

0 c d c+ d

Totals a+ c b+ d p = a+ b+ c+ d

Table 2.1: Similarity contingency table.

Methods of Clustering

Hierarchical clustering techniques proceed either by a series of successive mergers, termed

agglomerative hierarchical methods , or by a series of successive divisions, termed divisive

hierarchical methods [20]. Agglomerative hierarchical methods start with the individual

observations — hence there are initially as many clusters as observations. The most similar

observations are first grouped together, and these initial groups are merged according to

their similarities. Eventually, as the similarity decreases, all subgroups are fused into a

single cluster. Divisive hierarchical methods work in the opposite direction. An initial

single group of observations is divided into two subgroups, such that the observations in

one subgroup are far from the observations in the other in some sense. These subgroups

are then further divided into dissimilar subgroups. The process continues until there are

as many subgroups as observations [28]. In both agglomerative or divisive hierarchical

clustering, one may specify the desired number of clusters as a termination condition. The

agglomerative hierarchical clustering algorithm for grouping N observations, is described

by the following steps:

Algorithm 3. Agglomerative Hierarchical Clustering Algorithm

1. The algorithm starts with N clusters, each containing a single observation and an

N ×N symmetric matrix of distances or similarities D = {dik}.

2. The distance matrix is searched for the nearest or most similar pair of clusters. The

distance between the most similar clusters, U and V , is given by duv.

3. Clusters U and V are merged into a new cluster, labelled (UV ). The entries in

the distance matrix are updated by deleting the rows and columns corresponding to

clusters U and V , and by adding a row and column giving the distances between

cluster (UV ) and the remaining clusters.

4. Steps 2 and 3 are repeated N − 1 times, until all observations are in a single cluster

or until the termination condition is met.
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Four popular agglomerative methods used to develop clusters are:

1. Single linkage,

2. Complete linkage,

3. Average linkage and

4. McQuitty’s Similarity Analysis.

Single Linkage

The inputs to single linkage algorithms may be distances or similarities between pairs of

observations. Groups are formed from the individual observations by merging the nearest

neighbours, where the term nearest neighbour indicates smallest distance or largest simi-

larity. Initially, the smallest distance in D = {dik} must be found, and the corresponding

clusters merged, say U and V , to obtain the cluster (UV ). In Step 3 of the general algo-

rithm (Algorithm 3), the distances between (UV ) and any other cluster W are computed

by

d(UV )W = min{dUW , dV W}.

The quantities dUW and dV W are the distances between the nearest neighbours of clusters

U and W and clusters V and W , respectively.

Complete Linkage

Complete linkage clustering proceeds in much the same manner as single linkage, with

one important exception. At each stage, the distance, or similarity, between clusters is

determined by distance, or similarity, between two elements, one from each cluster, that

are most distant. Complete linkage ensures that all items in a cluster are within some

maximum distance, or minimum similarity, of each other. The general agglomerative

algorithm again starts by finding the minimum entry in D = {dik} and merging the

corresponding clusters, such as U and V , to obtain cluster (UV ). In Step 3 of the general

algorithm (Algorithm 3), the distances between (UV ), and any other cluster W , are

computed by

d(UV )W = max{dUW , dV W}.

The quantities dUW and dV W are distances between the most distant members of clusters

U and W , and clusters V and W , respectively.

Average Linkage

In the average linkage approach one treats the distances between two clusters as the

average distance between all pairs of items, where one member of a pair belongs to each
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cluster. The input to the average linkage algorithm may be distances or similarities.

Average linkage algorithms begin by searching the distance matrix D = {dik} to find the

nearest, or most similar, clusters, for example, U and V . These clusters are merged to

form the cluster (UV ). In Step 3 of the general agglomerative algorithm (Algorithm 3),

the distances between (UV ), and any other cluster W , are determined by

d(UV )W =

∑
i

∑
k dik

N(UV )NW

,

where dik is the distance between item i in the cluster (UV ) and item k in the cluster W ,

and N(UV ) and NW are the number of items in clusters (UV ) and W , respectively.

McQuitty’s Similarity Analysis

The inputs to McQuitty’s Similarity Analysis may be distances or similarities between

pairs of clusters. Groups are formed from the individual observations by merging the

nearest neighbours, where the term nearest neighbour is taken to mean neighbour with

largest similarity. Initially, the largest similarity in D = {dik} must be found, and the

corresponding clusters merged, say U and V , to get the cluster (UV ). In Step 3 of the

general algorithm (Algorithm 3), the similarities between (UV ) and any other cluster W

are computed by

d(UV )W = (dUW + dV W )/2.

The quantities dUW and dV W measure the similarity between clusters U and W , and

clusters V and W , respectively.

2.6.2 Non–hierarchical Clustering Methods

Non–hierarchical clustering techniques are designed to group items, rather than variables,

into a collection of K clusters. The number of clusters, K, may either be specified in

advance, or determined as part of the clustering procedure [28]. Non–hierarchical methods

start from either an initial partition of items into groups, or an initial set of seed points,

which form the nuclei of clusters. One way to start the process is to select seed points

randomly from among the items, or to partition the items randomly into initial groups.

K-means Method

The K-means algorithm assigns each item to the cluster having the nearest centroid. This

process consists of three steps.

Algorithm 4. K-means Algorithm

1. The items are partitioned into K initial clusters.
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2. The algorithm proceeds through the list of items, assigning an item to the cluster

whose centroid is nearest. The centroid for the cluster receiving the item, and the

cluster losing the item, are recalculated.

3. Step 2 is repeated until no more reassignments take place.

2.7 Outlier Analysis

Very often, there exist observations in a data set that do not comply with the general

behaviour or model of the set of data. Such observations, which are grossly different from

or inconsistent with the remaining set of data, are called outliers .

Many data mining algorithms attempt to minimise the influence of outliers or eliminate

them all together. However, this could result in the loss of important hidden information.

In other words, the outliers themselves may be of particular interest, such as in the case

of fraud detection, where outliers may indicate fraudulent activity.

Outlier mining may be described in general terms as follows: Given a set of N ob-

servations, and k, the expected number of outliers, the objective is to find the top k

observations that are considerably dissimilar, exceptional, or inconsistent with the re-

maining data. The outlier mining problem may be viewed as two subproblems: to define

which data may be considered inconsistent in a given data set, and to find an efficient

method to mine the outliers so defined [21].

2.7.1 Statistical-Based Outlier Detection

In the statistical approach to outlier detection one assumes a distribution or probability

model for the given data set, and then identifies outliers with respect to the model, using

a so–called discordancy test . A statistical discordancy test examines two hypotheses,

a working hypothesis, and an alternative hypothesis. A working hypothesis, Hi, is a

statement that the entire data set of N observations comes from an initial distribution

model, Fo, that is,

Hi : Xi ∈ Fo,where i = 1, 2, . . . , N.

The hypothesis is retained if there is no statistically significant evidence supporting its

rejection. A discordancy test verifies whether an observation Xi is significantly large, or

small, in relation to the distribution Fo. Different test statistics have been proposed for

use in discordancy tests, depending on the available knowledge about the data. Assuming

that some statistic Ts has been chosen for discordancy testing, and that the value of the

statistic for observation Xi is vi, the distribution of Ts is constructed. The so–called

significance probability Ps[vi] = P [Ts > vi] is evaluated. If some Ps[vi] is sufficiently

small, then Xi is discordant and the working hypothesis is rejected for that value of i. An
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alternative hypothesis, H i, which states that Xi comes from another distribution model

is adopted. The result is dependent on which model Fo is chosen, since Xi may be an

outlier under one model and a perfectly valid value under another.

A major drawback of the statistical approach to outlier detection, is that most tests

are for single attributes. Moreover, the statistical approach requires knowledge about

parameters of the data set, such as the data distribution. Statistical methods do not

guarantee that all outliers will be found for the cases where no data-specific test was

developed, or where the observed distribution cannot be modelled adequately by means

of any standard distribution [21].

2.7.2 Distance–Based Outlier Detection

An observation Xi is a distance–based outlier with parameters k and l, denoted byDo(k, l),

if at least a fraction 0 ≤ k ≤ 1 of the observations in X lie at a distance greater than

l from observation Xi. In distance–based outlier detection the ideas behind discordancy

testing for various standard distributions are generalised. For many discordancy tests, it

may be shown that if an observation Xi is an outlier according to the given test, then

Xi is also a Do(k, l) outlier for some suitably defined k and l. Distance–based outlier

detection requires the user to set values for both k and l. Finding suitable values for

these parameters may involve a tedious trial and error process [21, 3].

Several efficient algorithms for mining distance–based outliers have been developed,

of which the index–based algorithm is one. The index–based algorithm uses multidimen-

sional indexing structures, such as R-trees or KD-trees , to search for neighbours of each

observation Xi within a radius l around that observation. Let NMl
be the maximum

number of observations within this radius of an outlier. Then, once NMl
+ 1 neighbours

of an observation Xi are found, it is clear that Xi is not an outlier [21].

2.7.3 Deviation–Based Outlier Detection

In a deviation–based outlier detection approach, one does not use statistical tests or

distance–based measures to identify exceptional observations. Instead, one identifies out-

liers by examining the main characteristics of observations in a group. Observations that

deviate from this description are considered outliers. One of the techniques used to detect

outliers, is the sequencial exception technique. This technique simulates the way in which

humans are able to distinguish unusual observations from among a series of supposedly-like

observations. It uses implicit redundancy of the data. Given a set X of N observations,

a sequence of subsets, (S1, S2, . . . , SNs), of these observations with 2 ≤ Ns ≤ N is built

such that

Sj−1 ⊂ Sj, where Sj ⊆ X for all s ≤ j ≤ N.
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Instead of assessing the dissimilarity of the current subset with respect to its comple-

mentary set, the algorithm selects a sequence of subsets from the set for analysis. For

every subset, it determines the dissimilarity difference of the subset with respect to the

preceding subset in the sequence. The dissimilarity difference may be computed by any

function returning a low value if the observations are similar to one another, and a higher

value if the opposite is true [21].

2.8 Association Rule Mining

Progress in bar-code technology has made it possible for retail organizations to collect and

store massive amounts of sales data, referred to as basket data. A record in such a data

set typically consists of the transaction date and the items bought during the transaction

[2]. In association rule mining one searches for interesting relationships among items in a

given data set [21].

2.8.1 Basic Concepts in Association Rule Mining

Let I = {i1, i2, . . . .im} be a universal set of items. A subset of items in I is referred to as

an item set . An item set that contains k items is called a k-item set. Let DI , the task

relevant data, be a set of database transactions where each transaction TI is a set of items

such that TI ⊆ I. Each transaction is associated with an identifier, called the transaction

ID. Let AI be any set of items. A transaction TI is said to contain AI if and only if

AI ⊆ TI . The frequency of occurrence of an item set is the number of transactions that

contain the item set. An item set satisfies minimum support if the frequency of occurrence

of the item set is greater than or equal to the product of the minimum support threshold

and the total number of transactions in DI . An association rule is an implication of the

form AI ⇒ BI , where AI ⊂ I, BI ⊂ I, and AI

⋂
BI = ∅. The rule AI ⇒ BI holds

in the transaction set DI with support c, where c is the percentage of transactions in

DI that contain AI

⋃
BI . This is taken to be an estimate of the probability P [AI

⋃
BI ].

The rule AI ⇒ BI is said to have confidence c in the transaction set DI if c is the

percentage of transactions in DI containing AI that also contain BI . This is taken to be

an estimate of the conditional probability, P [AI |BI ]. Rules that satisfy both a minimum

support threshold, denoted SI , and a minimum confidence threshold, denoted CI , are

called strong . The number of transactions required for an item set to satisfy minimum

support is referred to as the minimum support count . If an item set satisfies minimum

support, then it is called a frequent item set . The set of frequent k-item sets is denoted

by LIk
[21, 2].

Association rule mining is a two-step process:
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1. Finding all frequent item sets : By definition, each of these item sets will occur at

least as frequently as a pre-determined minimum support count.

2. Generating strong association rules from the frequent item sets : By definition, these

rules must satisfy minimum support and minimum confidence.

2.8.2 The Apriori Algorithm

The Apriori algorithm is an algorithm for mining frequent item sets for boolean association

rules. The algorithm uses prior knowledge of frequent item set properties. Apriori employs

an iterative approach known as level-wise search, were k-item sets are used to explore

(k + 1)-item sets. First, the set of frequent 1-item sets is found. This set is denoted LI1 ,

and is used to find LI2 , the set of frequent 2-item sets, which is used to find LI3 , and so

on, until no more frequent k-item sets can be found.

To improve the efficiency of the level-wise generation of frequent item sets, an impor-

tant property called the Apriori property is used to reduce the search space. In order

to use the Apriori property, all non-empty subsets of a frequent item set must also be

frequent. This property is based on the following observation. By definition, if an item

set I does not satisfy the minimum support threshold, SI , then I is not frequent, that

is, P [I] < SI . If an item AI is added to the item set I, then the resulting item set

cannot occur more frequently than I. Therefore, I
⋃
AI is not frequent either, that is,

P [I
⋃
AI ] < SI .

A two-step process, consisting of join and prune actions, is used in the Apriori algo-

rithms to find LIk
, using LIk−1

:

Algorithm 5. Apriori Algorithm

1. The join step. To find LIk
, a set of candidate k-item sets is generated by joining LIk−1

with itself. This set of candidates is denoted KIk
. Let lI1 and lI2 be item sets in LIk−1

.

The notation lIi
[j] refers to the jth item in lIi

. By convention, the Apriori algorithm

assumes that items within an item set are sorted in lexicographic order. The join,

denoted LIk−1
./ LIk−1

, is performed, where members of LIk−1
are joinable if their

first (k−2) items are in common. That is, members lI1 and lI2 of LIk−1
are joined if

(lI1 [1] = lI2 [1])∧(lI1 [2] = lI2 [2])∧ . . .∧(lI1 [k−2] = lI2 [k−2])∧(lI1 [k−1] < lI2 [k−1]),

where ∧ reads “and”. The condition (lI1 [k − 1] < lI2 [k − 1]) simply ensures that no

duplicates are generated. The resulting item set formed by joining lI1 and lI2 is

lI1 [1]lI1 [2] . . . lI1 [k − 1]lI2 [k − 1].

2. The prune step. KIk
is a superset of LIk

, that is, its members may or may not

be frequent, but all of the frequent k-item sets are included in KIk
. A scan of the
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database to determine the count of each candidate in KIk
would result in the deter-

mination of LIk
. KIk

, however, may be very large. To reduce the size of KIk
, the

Apriori property is used as follows. Any (k− 1)-item set that is not frequent cannot

be a subset of a frequent k-item set. Hence, if any (k − 1)-subset of a candidate

k-item set is not in LIk−1
, then the candidate cannot be frequent either and so can

be removed from KIk
.

2.8.3 Generating Association Rules from Frequent Item Sets

Once the frequent item sets from transactions in a database DI have been found, strong

association rules may be generated from them. This may be achieved by using the fol-

lowing equation for confidence, where the conditional probability is expressed in terms of

the item set support count

NC(AI ⇒ BI) = P [AI |BI ] =
NS(AI ∪BI)

NS(AI)
,

with NC the rule of confidence, where NS is the support count, where NS(AI

⋃
BI) is the

number of transactions containing the item sets AI

⋃
BI , and where NS(AI) is the number

of transactions containing the item set AI . For each frequent item set lI , all non-empty

subsets of lI are generated. For each non-empty subset sI of lI , the rule sI ⇒ (lI − sI) is

given, if NS(lI)
NS(sI)

≥ CI , where CI is the minimum confidence threshold [21].

2.9 Chapter Summary

In this chapter, a number of data mining methodologies were reviewed, starting with a

discussion on decision trees (focussing on classification and regression trees), followed by

an examination of the regression model and its role in performing variable selection. This

was succeeded by a summary of logistic regression and the differences between linear and

logistic regression. Background on artificial neural networks and the learning of these

networks using the backpropagation algorithm was also provided, followed by a review

of Bayesian decision making (focussing on naive Bayesian classification and Bayesian

believe networks). The remaining sections focussed on cluster analysis, outlier analysis

and association rule mining. The data mining methodologies reviewed in this chapter are

all applied to real call data records later in this thesis.



Chapter 3

The Cellular Telecommunications

Industry

Just 20 years after the launch of the world’s first commercial cellular services, there

were more cellular telephone than fixed-line telephone users globally, and nearly as many

people had a cellular telephone than had a television. Cellular communications experience

faster growth rates in low-income countries. Low- and middle-income countries therefore

account for a rising share of the world cellular market.

Africa has been the fastest growing cellular market in the world during the period

2000 – 2005. The first cellular telephone call in Africa was made in Zaire in 1987. In 2005

there were more than 52 million cellular telephone users in the continent, compared to

about 25 million fixed lines — in 19 African countries, cellular telephones account for at

least three quarters of all telephones. At the end of 2003, there were 6.1 cellular telephone

subscribers for every 100 inhabitants in Africa, compared with 3 fixed line subscribers per

100 inhabitants [18].

In June 2004 South Africa had 18.7 million cellular subscribers, with a projected 19

million in 2006 [37]. The South African market is dominated by Vodacom and MTN,

with a third license awarded in June 2001 to Cell C. The South African cellular telephone

market was worth R 23 billion in 2005 and was estimated to grow to approximately

R 54 billion by 2007 [37]. More than 5 500 Vodacom base stations were in place in 2005

to provide to 60% of the geographical area of the country. Together the three networks

covered more than 71% of the population geographically in April 2005 [37].

3.1 Cellular Network Architecture

The Global System for Mobile Communications (GSM) network consists of three major

parts (a graphical representation may be found in Figure 3.1): The mobile station is car-

ried by the subscriber, the base station subsystem controls the radio link with the mobile

37
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station and the network subsystem, whose main part is the Mobile services Switching

Centre (MSC), performs the switching of calls between mobile users, and between mobile

and fixed line users. The mobile station, also referred to as mobile or cellular telephone

or handset , consists of the physical equipment, such as the radio transceiver, display and

digital signal processors, and a smart card called the Subscriber Identity Module (SIM).

The mobile station is uniquely identified by the International Mobile Equipment Identity

(IMEI). The SIM card provides personal mobility, so that the user may have access to

all subscribed services irrespective of the location of the telephone and independent of

the use of a specific telephone, and contains the International Mobile Subscriber Identity

(IMSI) used to identify the subscriber to the system. The SIM card may be protected

against unauthorised use by a password or personal identity number.

Figure 3.1: Graphical representation of the interaction between different components in

a cellular telecommunications network.

The directory number dialled to reach a mobile subscriber is called the Mobile Sub-

scriber Integrated Services Digital Network (MSISDN). This number includes a country

code and a National Destination Code (NDC), which identifies the subscriber’s operator or

service provider. When a mobile subscriber makes a call, the nearest cell site transceiver,
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depending on the best signal strength received, makes a radio connection with the cellular

telephone. This connection is made possible by the base station for the cell site. The base

station subsystem is composed of two parts, the Base Transceiver Station (BTS) and the

Base Station Controller (BSC). The BTS houses the radio transceivers that define a cell

and handles the radio-link with the mobile station. There are typically a large number of

BTSs deployed in a large urban area. The call is then routed through the base station’s

transceiver to the Mobile Switching Centre (MSC). The mobile switch queries several

databases before permitting a call to ensure that the caller is allowed on the network.

The call is processed and routed to the Public Switched Telephone Network (PSTN) if the

other party in the call is not subscribed to the same network operator as the caller. Calls

between subscribers of the same network operator are routed via the cellular network.

The Home Location Register (HLR) and Visitor Location Register (VLR), together with

the MSC, provide the call-routing capabilities of the network. The HLR contains all the

administrative information of each subscriber registered in the corresponding network,

along with the current location of the mobile station. The location of the mobile station

is typically in the form of the signalling address of the VLR associated with the mobile

station. The VLR contains selected administrative information from the HLR, necessary

for call control and provision of the subscribed services, for each mobile telephone cur-

rently located in the geographical area controlled by the VLR. The Equipment Identity

Register (EIR) is a database that contains a list of all valid mobile equipment on the net-

work, where each mobile station is identified by its IMEI. An IMEI is marked as invalid

if it has been reported stolen or is not approved to be used on the GSM network [36].

3.2 Cellular Network Operations

Computer systems are used to administer subscribers, mediate call data records and bill

each billable call. The subscriber administration and provisioning system is used by the

network operator and service providers to administer each subscriber. Network operators

offer a wide range of products catering for different groups of subscribers, based on their

network usage patterns. For example, a subscriber making most of its calls during off-peak

periods will benefit from one of the products in the leisure group, having a low monthly

subscription fee, with a bundle of free call units during off-peak periods, but expensive

peak call rates. On the other hand, a subscriber making a large number of calls during

peak periods will benefit more from a product in the high business category, having a

more expensive monthly subscription, but with low peak call rates. Prepaid subscribers

do not pay a fixed monthly subscription fee and are not billed at the end of each billing

period, but must have a positive account balance before allowed to make a call. Postpaid

subscribers, on the other hand, pay a monthly subscription fee, depending on the product
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subscribed to and additional services provisioned for, and are billed at the end of each

billing period for the use of these services. All subscribers are provisioned by default with

the basic telephony service allowing it to make and receive voice calls. Additional services

may be provisioned, some at no additional cost, as part of the subscribed product, or on

request. Most products include provisioning of services allowing the subscriber to send

and receive text messages (SMSs). The data service, for example, allowing the subscriber

to send and receive data over the cellular network, may be provisioned at no additional

cost on most products, when requested.

The subscriber administration and provisioning system maintains a set of attributes

indicating the subscriber’s suspension status on the network. The subscriber may be

suspended from creating and/or partaking in any network traffic, making international

calls or making and receiving calls while in a foreign country. When a subscriber’s mobile

telephone is reported stolen the subscriber administration and provisioning system may

be used to blacklist the subscriber’s SIM card and mobile telephone, barring a fraudster

from making and receiving calls. The subscribed product, provisioned services, payment

method and other subscriber-related attributes are used to create a profile for each sub-

scriber. The HLR, mediation system and billing system are updated with each subscriber’s

latest profile.

When an outgoing call is made, the VLR tests whether the subscriber is allowed to

make that call. For example, if the subscriber is suspended from international dailing, an

outgoing call to an international destination will not be allowed by the VLR. The HLR

also tracks individual devices via the EIR and is used to track mobile telephones that

have been reported stolen, reporting and preventing their use on the cellular network.

The MSC generates a call data record for every call originating or terminating in the

cellular network. This call data record contains basic information describing the call,

including the unique identifier of the subscriber on the cellular network, the duration

of the call, services used while making the call, which base station facilitated the call,

and other characteristics describing the call. The mediation system aggregates the call

data records received from the MSC, matches them with a service and price-per-unit, and

finally generates a standardised call data record ready to be billed by the billing system.

3.3 Cellular Telecommunications Fraud

There are many different definitions of telecommunications fraud [26]. However, there

seems to be a general consensus that telecommunications fraud involves the theft of ser-

vices or deliberate abuse of cellular telephone networks. Furthermore, it is accepted that

in these circumstances the perpetrator’s intention is to avoid completely or at least re-

duce the charges that would legitimately have been charged for the services used. This is
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only a small part of the fraud problem, since the majority of telecommunications fraud

that is committed, is for own profit. On occasion, this avoidance of call charges will be

achieved through the use of deception in order to fool billing and customer care systems

into invoicing the wrong party. Telecommunications fraud has been identified as the single

largest cause of revenue loss for network operators, with figures averaging between 3 and

5 percent of an operator’s annual revenue [26]. Fraud is the most significant threat to

the communications business, eroding profit margins, consuming network capacity and

jeopardising customer relationships.

Cellular telephone theft is the largest type of telecommunications fraud in South

Africa, as is the case in other developing countries. A cellular telephone stolen from

a legitimate subscriber may be used until the theft is reported and the SIM card is locked

for further use on the cellular network. During mid 1995 the Memorandum of Under-

standing (MoU), the controlling and regulating document for GSM standards, defined a

system whereby GSM networks may identify each cellular telephone’s IMEI number. If

the IMEI number is listed as stolen, the number may be flagged in the EIR, preventing

access from the relevant unit to the network, regardless of which SIM card is inserted into

the telephone.

South African network operators pay connection bonusses to service providers, who, in

turn, use these bonusses to subsidise the price of cellular telephones as an added incentive

to sign airtime contracts. Using fraudulent means, operators with false identity documents

often buy discounted cellular telephones and sell the handset at a profit, holding on to the

SIM card to be sold separately. The user of the SIM card has several days and sometimes

weeks in which to make as many calls as desired before the accounts department realises

that it is a bad account and disconnects the SIM card. Corrupt service providers also

take advantage of the connection incentive scheme by connecting non-existing subscribers,

thereby receiving an incentive bonus for the fraudulent connection.

Subscription fraud is the most common form of fraud worldwide. Perpetrators of

this type of fraud apply for a service and once activated, immediately use it for national

and international calls with no intention to pay for the calls made. Subscription fraud

is almost always associated with call selling , also known as ‘phreaking’. Criminal gangs

increasingly use ‘phreaking’ as a means of setting up their own cut-price telephone service

which they then proceed to sell to other criminals, to illegal immigrants and to refugees.

One of Germany’s more notorious ‘phreaking’ cases occurred when six fraudsters bought

six cellular telephones for cash, thereby avoiding a credit check. They hired a hotel room

and advertised calls to Vietnam at reduced rates. Once the customers arrived, they were

asked to pay DM100 for 30-minute telephone calls. The cellular telephones were in use

24 hours a day and it took six weeks for them to be disconnected before they ran up bills

for millions of Deutschmark [39].
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Call forwarding manipulation consists of setting up a local number to forward calls

to an international destination. A local number, number A, dials the call forwarding

set number, number B, which forwards the call to the international number, number

C. The call between number A and B is charged at local rates against subscriber A’s

account, while the forwarded call between number B and C are charged at international

rates against subscriber B’s account. Another scenario of call forwarding manipulation is

where collusion exists between the caller and a call centre operator. The caller calls the

call centre operator known to him free of charge, while the operator forwards the call to

a third party.

The owner of a premium rate service receives revenue from users calling the number.

Premium rate service fraud involves a high number of calls made to the premium rate

service number from a subscriber’s account without their knowledge, or from a number

where there is no intention to pay for the calls.

3.4 Cellular Telecommunications Fraud Detection

A successful fraud management strategy consists of three elements: Prevention, Detection

and Deterrence.

The purpose of a fraud prevention strategy is to erect obstacles to unauthorised ac-

cess to the operator’s network and systems. Technical solutions may include the issuing

of password and PIN codes, performing pre-call validation using call operators or PINs,

and the use of authentication and encryption procedures. In addition to technical solu-

tions, network operators also implement business and procedural solutions. These include

subscriber identity verification, requiring deposits before providing a service and imple-

menting call restrictions for new subscribers.

When prevention mechanisms fail, fraud detection is used to detect compromises to

the cellular network. Fraud has a common pattern of unusual or unexpected subscriber

behaviour. Tools for monitoring subscriber behaviour include high-usage alerts, alerting

fraud analysts when a subscriber’s usage is above a pre-defined threshold value, and

maintaining subscriber behaviour profiles, identifying significant changes in subscriber

behaviour.

The purpose of fraud deterrence is to discourage criminals from committing fraud.

Proactive fraud monitoring and the prosecution of perpetrators may contribute to deter-

ring criminals from committing fraud.
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3.5 Chapter Summary

The reader was provided with a basic understanding of the cellular telecommunications

industry in this chapter, in which the architecture and operation of a cellular network,

telecommunications fraud experienced by cellular network operators, and the required

elements of a successful fraud management strategy were described. The focus in this

thesis is on the use of mathematical and statistical techniques aiding in the process of

fraud detection (one of the three elements of a successful fraud management strategy

introduced in §3.4). The following chapter (Chapter 4) is dedicated to a concise literature

survey of such fraud detection aids proposed for use in computerised fraud management

systems in the cellular telecommunications industry.



Chapter 4

Literature on Fraud Detection

Summarising account activity is a major step in the design of a fraud detection system,

because it is rarely practical to access or analyse all the call records for an account every

time it is evaluated for fraud. A common approach is to reduce the call records for an

account to several statistics that are recomputed during each period of fraud detection.

Account summaries may be compared to threshold values during each period, and an

account whose summary exceeds a threshold value may be queued to be analysed for

fraud, by hand.

4.1 Fixed-time Fraud Detection

Taniguchi, et al. [38] present three methods to detect fraud, which may be combined to

improve fraud detection performance. These methods are used to compute subscriber spe-

cific statistics for each period. First, a feed-forward neural network based on supervised

learning is used to distinguish between the classes of fraudulent behaviour and legitimate

behaviour, by means of a non-linear discriminative function. The problem with super-

vised learning is to adapt the neural network weights so that the input-output mapping

corresponds to the input-output samples. The feed-forward mapping of a three-layer feed

forward network is defined as

H∑
k=0

Wqkb

(
M∑

j=0

wkjxji

)
,

where b is a non-linear mapping, where Wqk is the weight of the link between the qth

output node and the kth node in the hidden layer, and where wkj is the weight of the link

between the the jth input node and the kth node in the hidden layer. The feed-forward

network used by Taniguchi, et al. [38] consists of five hidden units and a binary output. In

order to constrain the complexity of the mapping, Taniguchi, et al. [38] use a weight decay

regularisation. Secondly, density estimation is applied to model the past behaviour of each

subscriber and to detect any abnormalities, based on past behaviour. The problem with

44
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probability density estimation is that a probability density function P [x] of the mobile

telephone subscriber’s past behaviour has to be found or estimated, given a finite number

of data points drawn from that density. Taniguchi, et al. [38] estimate the probability

density function and compute the probability of current usage with the model. To model

the probability density function, they use a Gaussian mixture model, which is a sum of

weighted component densities of Gaussian form,

P [x] =
H∑

k=1

P [x|k]P [k],

where P [x|k] is the kth component density of Gaussian form and P [k] is its mixing propor-

tion. Finally, Bayesian networks are used by Taniguchi, et al. [38] to define probabilistic

models under the assumptions of fraud and legitimate. Bayes’ rule is used to invert these

measures so as to calculate the probability for fraud, given the subscriber’s behaviour.

The data used in all three approaches are based on call data records, which are call records

stored for billing purposes.

Fawcett, et al. [13] introduce the notion of activity monitoring, which typically involves

monitoring the behaviour of a large population of entities for interesting events requiring

further attention. The goal of activity monitoring is to issue alarms accurately and in a

timely fashion. Cellular telephone fraud detection is a typical activity monitoring problem.

The task is to scan a large set of accounts, examining the calling behaviour of each, and

to issue an alarm when an account appears to have been defrauded. Let each X ∈ X
represent a customer account, where X is a set of data streams, and X is an ordered set

of data items (X1, . . . ,XN). Each Xi (i = 1, . . . , N) represents the detail of a cellular

telephone call. Fawcett, et al. [13] define activity monitoring as the task of analysing

the data streams in order to detect the occurrence of interesting behaviour, which they

refer to as positive activity. Let τ be a point in time denoting the onset of positive

activity. For the data items X, τ designates the beginning of a contiguous subsequence

Xτ = (Xp1 , . . . ,Xpm), such that time(Xi) ≥ τ, Xi ∈ Xτ . The goal of activity monitoring

is to give an indication that the sequence is exhibiting positive activity, called an alarm.

An alarm $ represents the point in time when it is issued. Fawcett, et al. [13] assert that

the goal of activity monitoring is not to identify all positive activity, nor to classify each

Xi as positive or negative. Rather, the goal is to identify in a timely fashion that positive

activity has begun. Alarming earlier may be more beneficial, but after a first alarm, a

second alarm on the same sequence may add no value. Fawcett, et al. [13] define a scoring

function s(τ,$,X) which returns the benefit of an alarm $ on a given sub-sequence, with

respect to a given τ . Positive activity may be defined in terms of this scoring function as

the sub-sequence of X for which s(τ, time(Xj),X) > 0. One possible scoring function is

to count the number of fraudulent calls that would have been made, had the fraud not
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been detected, i.e.

s(τ,$,X) = |{Xi ∈ X | call start(Xi) ≥ $}| .

To evaluate activity monitoring performance, Fawcett, et al. [13] used so–called Receiver

Operating Characteristic (ROC) analysis with minor modifications. ROC analysis depicts

the tradeoff between true positive classifications and false positive ones, which is similar

to the goal of activity monitoring.

Fawcett, et al. [14] define a method for choosing account-specific threshold values,

rather than universal threshold values that apply to all customers. This procedure takes

daily traffic summaries for a set of accounts that experienced at least 30 days of fraud-free

traffic, before being hit by fraudulent activity, and applies a machine learning algorithm

to each account separately in order to develop a set of rules that distinguishes between

fraudulent and legitimate activity for the account. The superset of rules for all accounts

is then pruned by keeping only those that apply to a number of accounts, with possibly

different threshold values for different accounts. The final set of rules, therefore, covers

most accounts, with the understanding that most of the final rules may be irrelevant

for most accounts, but that all the final rules are relevant for at least some accounts.

This fraud detection system separates calls by account, computes account summaries,

and then compares account summaries to account-specific threshold values that were

previously computed from training data. The account-specific threshold values may be

updated periodically by re-fitting trees and sequentially selecting the account summaries

to use.

However, account-specific threshold values have limitations. A procedure that requires

a fixed period of uncontaminated traffic for training purposes does not apply to accounts

that experience fraudulent activity before the training period is over. Moreover, rules

that are good for one time period may not be relevant for future time periods, because

account calling behaviour typically changes over time, and may even be seasonal.

Researchers at Bell Laboratories [11] agree with Fawcett, et al. [14] that fraud detection

must be tailored to each account’s own activity, but their goals for fraud detection are

more ambitious. First, they argue that fraud detection should be event-driven, not time-

driven, so that fraud may be detected as it is happening, not at fixed points in time that

are unrelated to account activity. Secondly, fraud detection methods should have memory

and use all past calls on an account, weighting recent calls more heavily but not ignoring

earlier calls. Thirdly, fraud detection methods should be able to learn from the calling

pattern on an account and adapt to legitimate changes in calling behaviour. Finally, fraud

detection methods should be self-initialising, so that they may be applied to new accounts

that do not have enough data for training.
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4.2 Real-time Fraud Detection

The fraud detection algorithms of researchers at Bell Laboratories are based on tracking

the behaviour of each customer by means of a multivariate probability distribution that

may be used to predict the customer’s next legitimate call. The estimate of this distri-

bution is termed a signature, because it captures all that is known about the customer’s

current transaction behaviour. Signature design involves choosing a set of marginal and

conditional distributions that is best for detecting fraud. In order to detect fraudulent

activity quickly, it is important to be able to assign a meaningful initial signature or

predictive distribution to new customers.

4.2.1 Account Signatures

Cahill, et al. [10] propose a fraud detection method based on the tracking of account be-

haviour, using so-called account signatures. An account signature might describe which

call durations, times-between-calls, days-of-week and times-of-day, terminating numbers,

and payment methods are likely for the account and which are unlikely for the account.

That is, the call variables for each call are described by a multivariate probability distribu-

tion, and an account signature is an estimate of the multivariate probability distribution.

Cahill, et al. [10] propose use of the law of iterated probability to reduce the complexity of

the multivariate distribution. Designing a signature amounts to eliminating conditioning

variables that do not matter from the product of probabilities, given by the law of iterated

probabilities. They assume that all signature components are represented by histograms

in which the labels of the bins are not fixed. The histogram bins are selected so that,

on average, it is as easy as possible to distinguish between legitimate calls and fraudu-

lent calls. For a signature variable, this may be accomplished by maximising the average

weighted Kullback-Leibler distance from the histogram for an account in the priming data

to the histogram for the fraudulent data. For deciding which conditional distributions

to keep in the signature, Cahill, et al. [10] compute the p-value for a Chi-square test for

each account in the training data and keep only the conditioning variables that are sta-

tistically significant for the majority of accounts and highly statistically significant for at

least certain accounts. Conditioning variables are added sequentially, until the incremen-

tal benefit from any of the remaining variables is too small to be statistically significant

for a majority of accounts. To keep the signature current, they propose exponentially

weighted moving averaging for updating signature components. The updated signature

component, based on call n+ 1, is given by

An+1 = (1− w)An + wXn+1, (4.1)
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where An denotes the account’s signature component after call n, where Xn+1 captures

the attribute of call n + 1, represented by a vector of 0’s except for a 1 in the bin that

contains the observed value of the call, and where w denotes the rate at which old calls are

aged out of the signature component, which determines the effect of the current call on the

component. To detect fraudulent activity, using signatures, Cahill, et al. [10] use a scoring

method. They compare the call’s attribute probability under the account signature to its

probability under a fraudulent signature. The higher the call score, the more suspicious

the call. For a call to obtain a high score, it has to be unexpected for the account.

Scott [35] outlines a paradigm for designing network intrusion detection systems based

on stochastic models. Different networks have individual characteristics that should be

considered, but rather than focussing on one detailed algorithm for a single type of net-

work, Scott emphasises global aspects of intrusion detection common to most networks.

Most networks share three qualities that set intrusion detection apart from other discrimi-

nation problems: criminal intrusion is rare, the networks to be screened typically generate

massive amounts of data, and screening is to be done in real time. Scott [35] recommends

Bayesian reasoning as the foundation for network intrusion detection systems. The most

often cited quality of Bayesian reasoning, is its ability to include prior information, but

Scott [35] notes that the greatest advantage of Bayesian methods is that they simplify the

logic of building a coherent system. Let X represent observed data for an account and let

the complementary events C and U denote whether fraudulent activity was present on

the account while the data was generated, or whether the account was controlled solely

by the user. In this case Bayes’ theorem may be expressed as the posterior odds ratio

P [C|X]

P [U |X]
=
P [X|C]P [C]

P [X|U ]P [U ]
.

The quantity P [X|C]/P [X|U ] is known as the Bayes factor for fraudulent activity. Bayes

factors codify the evidence of an intrusion contained in the data. The prior distribution

P [C] is an important means of limiting false alarms in network intrusion detection. Scott

[35] cited the paper by Cahill, et al. [10] as a good method for modelling telephone traffic.

The method is based on account signatures, as explained above. The signature system

collects information on telephone call characteristics believed to be good discriminators

of customer and criminal behaviour. The system discretises continuous information and

models the resulting multivariate categorical observations, using graphical methods. A

signature is kept for each account, and a separate signature is maintained as an intruder

profile. The signature system assigns to each incomming call a score interpretable as the

log Bayes odds ratio in favour of the call having been produced by an intruder.

Hollmén, et al. [23] present a real-time fraud detection system, but one which is based

on a stochastic generative model . In the generative model, they incorporate a variable

victimised, which indicates whether or not the account has been victimised by a fraudster
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and a second variable fraud, which indicates whether or not the fraudster is currently

performing fraud. Both variables are hidden. They have an observed variable call, which

indicates whether a call is being made, or not. The transition probabilities from no-

call to call and from call to no-call are dependent on the state of the variable fraud.

Overall, they obtain a regime-switching stochastic time-series model which uses a Markov

chain to implement switching, where the variables in the time-series are binary, and the

switching variable has a hierarchical structure. Hollmén, et al. [23] argue that the benefit

of a hierarchical structure is that it allows modelling of the time-series at different time

scales. At the lowest hierarchical structure, dynamical behaviour of the individual calls is

modelled, at the next level the transition from normal behaviour to fraudulent behaviour,

and at the next level the transition to being victimised.

4.2.2 Designing Customer Behaviour Profiles

Chen, et al. [12] describe a method for reducing a database of transaction records when

interest lies in the behaviour of the people making the transactions. They propose the

use of histograms to summarise transaction behaviour dynamically, by discretising the

variables, and updating the bin counts whenever a new call is made. Problems with this

approach are that the intervals must be chosen, and choices which seem appropriate for

one customer may be inappropriate for another. In addition, standard histograms give

equal importance to recent and old transactions, and the customer’s pattern of behaviour

for any one variable may depend on other variables, so that a multidimensional histogram

may be required. Signature designing starts with the collection of transaction records from

a representative set of customers during a fixed period. It is proposed that one target

signature is computed from the data of all customers with that target behaviour, and that

these customers should be removed from the priming data, which is then used for designing

customer specific signatures. The next step in signature designing is to choose histogram

bin intervals. The task of binning signature variables is to choose the bin separation points

so that the coarsened distribution is as close as possible to the original distribution for

each customer. Using the priming data, bin separation points are chosen to maximise the

Kullback-Leibler distance in order to balance the signature’s ability to identify members

of the target group, and its ability to avoid misclassification of a customer, who does not

belong to the target group. The vector of transaction parameters for a customer may be

written as a joint probability distribution, which may, in turn, be written as a product

of one-dimensional distributions. The next step in designing a signature is to reduce

this product of one-dimensional distributions by ignoring certain conditioning variables.

Chen, et al. [12] state that, generally, X should be conditioned on Y if the distribution of

X varies significantly with Y , which happens if the conditional distributions of X given Y

differ significantly from the distribution of X that does not condition on Y . They propose
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a method of forward model selection for this task, where variables are added to the model

sequentially until the gain from adding another conditioning variable is insignificant. It is

important that a customer is assigned an initial signature as soon as the customer begins

to transact. The task of assigning initial signatures resembles customer segmentation,

where initial signature components constituting an initial signature, is assigned to the

customer, based on the information available at the time of the assignment. A key feature

of a signature is that it may be updated sequentially from current records. Chen, et al.

[12] propose exponentially weighted moving averaging for updating signature components,

where updating requires only the most recent histogram, the number of transactions made

up to that point in time and a current transaction. A fixed weight is defined that controls

the extent to which the signature component is affected by a new transaction and the

rate at which the previous transaction is aged out.

The predictive model of each customer is updated with each transaction that the

customer makes. Standard dynamic updating algorithms may often be used when the

variable being updated may be modelled as a random draw from its signature component.

Lambert, et al. [29] argue that chronological variables are not observed at random, but

in order; so all the Monday transactions for the week have to be observed before all the

Tuesday transactions for the week, for example. They use a dynamic Poisson process to

derive an approximation to a posterior mean that is almost as easy to compute as a linear

estimate, and that predicts accurately on both real and simulated data. In other words,

they derive a sequential estimator for timing distributions that is based on a Poisson model

with periodic rates which may evolve over time. Updating histograms sequentially is not

difficult when observations are randomly sampled, but when behaviour changes over time,

a histogram of relative frequencies is inappropriate, because recent transactions have no

more influence on the histogram than do old transactions. Evolving behaviour is tracked

better by an exponentially weighted moving average. Timing variables, however, are

not randomly sampled, and this makes unweighted averages and exponentially weighted

moving averages inappropriate estimators. The key idea is to estimate the transaction

rate for a period at the time of the transaction and then to estimate the probability for

the period. Lambert, et al. [29] define an event-driven estimator, which is very close to the

exact maximum likelihood estimator of a simulated Poisson process, as an approximate

posterior mean of the transaction rate under a simple dynamic Poisson model.

Chen, et al. [11] introduce an incremental quantile estimator, based on stochastic ap-

proximation, to track call duration for a set of callers. The incremental estimate depends

on its previous estimate and the current set of measurements, and require only a few arith-

metic operations. They compare the performance of the exponentially weighted moving

average to other incremental quantile estimators by means of a simulation study, when

measurements are either normal or exponential, and the parameters of the distributions
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are either constant over time or changing linearly over time. As an application of the

incremental quantile estimator, Chen, et al. [11] apply exponentially weighted stochastic

approximation to track call duration for a set of telecommunication customers.

4.3 Industry Tested Fraud Detection Concepts

Moreau, et al. [30] suggest two approaches to user profiling, one which employs absolute

analysis, and one which employs differential analysis of call data records. Call data

records are transmitted to the network operator by the cells or switches with which the

mobile telephone was communicating at the time, due to proximity. Moreau, et al. [30]

state that existing fraud detection systems tend to interrogate sequences of call data

records, comparing a function of the various fields by means of fixed criteria, known as

triggers. A trigger, if activated, raises an alert status, which cumulatively would lead to an

investigation by the network operator. Such fixed trigger systems perform what is known

as an absolute analysis of call data records, and are good at detecting the extremes of

fraudulent activity. Another approach to the problem is to perform a differential analysis.

Here the behavioural patterns of the mobile telephone is monitored, and its most recent

activities compared with a history of its usage. Criteria may then be derived to be used as

triggers that are activated when usage patterns of a particular mobile telephone change

significantly over a short period of time. As an initial approach to differential usages

systems, the information of call data records are extracted and stored in record format.

This process requires two windows over the sequence of transactions for each user. The

shorter window is called the current user profile, and the longer window, the user profile

history. When a new call data record arrives for a given user, the oldest entry from the

user profile history is discarded, and the oldest entry from the current user profile moves

to the back of the user profile history queue. The new record encoded from the incomming

call data record then joins the back of the current user profile queue. Moreau, et al. [30]

identify the following call data record components as the most relevant measures with

respect to fraud detection, which should continually be picked out of the call data records

and incorporated into the user profiles:

• an identification number, identifying the telephone user,

• the location of mobile originating calls,

• the duration of a call,

• an indicator to distinguish between national and international calls and

• the number dialled.
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The following features are derived from the extracted call data record components:

• the number of mobile originated national calls per time interval,

• the number of mobile originated international calls per time interval,

• the total duration of mobile originated national calls per time interval,

• the total duration of mobile originated international calls per time interval,

• the number of hot (in the sense of high fraud probability) destinations per time

interval,

• serveral statistical measures per time interval and

• fraud ranking.

Even over a long period of time, user behaviour should be efficiently storable, without loss

of essential information. For this purpose Moreau, et al. [30] use two different methods of

user profiling for the short-term window and for the long-term window. While user infor-

mation gathered in the recent history is represented by current user profiles, information

collected in the long term is stored in the user profile history. For the short-term window,

several current user profiles may be stored to keep more detailed information for a longer

time period. Moreau, et al. [30] maintain user behaviour profiles similar to that of Cahill,

et al. [10] as defined in (§4.1).

4.4 Chapter Summary

The reader was provided with an overview of research performed in the field of cellular

telecommunications fraud detection in this chapter. South African cellular network oper-

ators mainly rely on rule-based techniques to detect fraud, but modern fraud management

systems making use of more sophisticated mathematical and statistical techniques to de-

tect fraud are being implemented world-wide. The fraud detection literature considered

in this chapter were divided according to the ability of fraud detection techniques to de-

tect fraud at fixed points in time (§4.1) or in real-time (§4.2). Fixed-time fraud detection

techniques, such as the classification of accounts as fraudulent or legitimate using arti-

ficial neural networks, classification trees and Bayesian classification are often found in

computerised fraud management systems and will also be applied to real call data records

later in this thesis. Real-time fraud detection techniques found in the literature make

use of account behaviour profiles, also called account signatures. Real call data records

will also be used later in this thesis to build account behaviour profiles employing cluster

analysis and association rule mining. This chapter closed with a section (§4.3) providing
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insight into current implementation and maintenance of user behaviour profiles in the

industry.



Chapter 5

Cellular Telephone Call Data

Call data records (CDRs) are produced by telephone switches on a per-call basis and

contain all the infomation of the telephone call, be it from or to a subscriber belonging to

the cellular network. Information included in a call data record are the telephone numbers

involved in the call, the date and time of the call, the duration of the call, call features

used (such as conference call or three way calling), identification of the cell transmitting

the call to the subscriber’s telephone, and more. Call data records form the source of

billable records, containing the data necessary for billing systems to rate a particular call

and bill the subscriber. Call data records do not contain tariff information, but mediation

systems use the telephone number to enrich call data records by adding the subscriber’s

tariff to each record. Billing systems then use call data records and the tariff and duration

information they contain to calculate a rate for each call.

5.1 Data Collection

The data set considered in this thesis originates from one of South Africa’s cellular net-

work operators, and consists of three components. The main data component consists

of 2 127 261 call data records, giving the detail of each voice and text message (SMS)

transaction, originating from and terminating on a subscriber’s telephone. The data set

contains transactions executed between April and September 2003, for 500 prepaid and

500 postpaid subscribers, chosen randomly from the operator’s set of active subscribers.

The attributes contained in each call data record are defined in Table 5.1. Call data

record examples, with the subscriber’s telehone number (MSISDN) and other party num-

ber encrypted (in order to protect the identity of the subscriber) are given in Table 5.2.

The description assigned to each cell may be used to derive its location, which is the

second data component provided. Table 5.3 provides an example of cell descriptions.

The third data component provides the tariff at which the subscriber’s calls are rated,

and examples may be found in Table 5.4. Meaning is given to call transaction types, by

54
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Attribute Name Attribute Definition

MSISDN Acronym for Mobile Subscriber Integrated Services Digital Network
(ISDN) number. The mobile subscriber’s international telehone num-
ber.

Other Party Number Other party present in the transaction. In the case of mobile originating
transactions, is it the number dialled by the subscriber, and in the case
of mobile terminating transactions, is it the party dialling the subscriber.

Location Area Code Identification of a set of cells that are typically served by the same MSC.

Cell Id Identification of the cell closest to the cellular telephone when the call
was made.

Call Date Date and time of transaction.

Call Duration Duration, measured in seconds, of mobile originating and mobile termi-
nating calls. Call duration for SMS transactions is set to 0.

Call Charge Amount, measured in Rands and cents, charged for the transaction.

Call Transaction Type Differentiation label for transaction types. Transaction types include
mobile originating calls (MOC), mobile terminating calls (MTC), SMS
originating from mobile subscriber’s telephone (SMSO), and SMS ter-
minating on mobile subscriber’s telephone (SMSMT).

Inter Seq Num The switch technology used by the network operator separate calls of
long duration into shorter duration segments. Inter Seq Num joins these
segments to form a call data record.

Subscriber Type Identification of the subscriber as a Prepaid or Postpaid subscriber.

Fraud Ind Classification of the call data record as a fraudulent or legitimate call.

Table 5.1: Definitions of the attributes contained in each call data record.

assigning a description to each type, which may be found in Table 5.5. Only voice calls

originating from a subscriber’s telephone, identified by transaction type 1, are used in

further processing of the data, reducing the data set to 908 153 records, necessitated by

resource requirements of complex data mining algorithms when applied to large sets of

data.

The two kinds of fraud most often detected by cellular networks, are dealer- and

subscription fraud. The incentives paid by cellular networks to dealers for obtaining new

subscribers, and retaining current subscribers, are the main motivation behind committing

dealer fraud. The dealer incentive scheme specifies that a subscriber must generate traffic

on the network for the dealer to qualify for an incentive for that subscriber. In order to

meet this requirement, dealers sometimes provision non-existing subscribers, and make

one call on each subscriber’s account, lasting only a few seconds. After the initial call,

no additional traffic is generated for these subscribers. Call data records, 80 in total,

with a duration of 3 seconds, and no charge, were added to the set of observations,

exemplifying typical subscriber behaviour when this type of fraud is present (see Table



Chapter 5 — Cellular Telephone Call Data 56
O

t
h
e
r

L
o
c
a
t
io

n
I
n
t
e
r

P
a
r
t
y

A
r
e
a

C
a
ll

C
a
ll

T
r
a
n
s
a
c
t
io

n
S
e
q
u
e
n
c
e

S
u
b
s
c
r
ib

e
r

F
r
a
u
d

M
S
I
S
D

N
N

u
m

b
e
r

C
o
d
e

C
e
ll

I
d

C
a
ll

D
a
t
e

D
u
r
a
t
io

n
C

h
a
r
g
e

T
y
p
e

N
u
m

b
e
r

T
y
p
e

I
n
d

2
7
5
5
6
7
1
4
5
9
8

1
1
4
4
3
0
3
3
6

1
4
1

1
1
9
7
1

2
0
0
3
-0

4
-0

3
2
0
:4

6
:2

8
6

0
.0

0
1

0
P

0

2
7
5
5
6
7
1
4
5
9
8

1
1
4
4
3
0
3
3
6

1
4
1

1
1
9
7
1

2
0
0
3
-0

4
-0

3
2
0
:4

6
:4

8
5

0
.0

8
1

0
P

0

2
7
5
5
6
7
1
4
5
9
8

1
1
4
4
3
0
3
3
6

1
4
1

1
1
9
7
1

2
0
0
3
-0

4
-0

3
2
0
:4

7
:0

4
6

0
.0

0
1

0
P

0

2
7
5
5
6
7
1
4
5
9
8

1
1
4
4
3
0
3
3
6

1
4
1

1
1
9
7
1

2
0
0
3
-0

4
-0

3
2
0
:4

7
:2

2
3
3

0
.5

3
1

0
P

0

2
7
5
5
6
7
1
4
5
9
8

5
5
8
6
0
9
2
7
3

1
4
1

1
1
9
7
1

2
0
0
3
-0

4
-0

5
1
8
:1

9
:4

8
3
9

0
.6

2
1

0
P

0

2
7
5
5
6
7
9
4
1
0
4

7
2
2
6
3
7
0
8
5

1
3
3

5
3
0
4
1

2
0
0
3
-0

4
-0

5
1
4
:1

9
:5

1
5
1

0
.8

2
1

0
P

0

2
7
5
5
2
5
8
6
3
6
9

7
2
2
3
7
3
0
4
7

1
8
2

1
3
3
6
1

2
0
0
3
-0

4
-0

3
1
6
:3

9
:4

4
9

0
.5

4
1

0
P

0

2
7
5
5
6
7
7
4
5
9
9

2
7
8
3
5
9
4
8
8
0
1

1
8
1

1
1
0
4
3

2
0
0
3
-0

4
-1

6
1
4
:4

3
:0

8
1
4

0
.8

4
1

0
P

0

2
7
5
5
6
7
3
4
6
6
9

5
5
6
6
0
6
4
5
6

1
5
1

1
3
1
8
3

2
0
0
3
-0

4
-1

6
1
4
:5

0
:0

5
6

0
.0

0
1

0
P

0

2
7
5
5
6
7
6
4
6
8
1

7
2
1
5
5
0
8
1
4

4
1
1

2
1
1
4
1

2
0
0
3
-0

4
-0

5
1
6
:1

8
:3

1
1
7

0
.2

7
1

0
P

0

2
7
5
5
3
2
0
0
2
7
5

8
3
5
0
6
7
6
9
5

1
3
1

5
4
3
3
2

2
0
0
3
-0

4
-0

8
1
5
:0

4
:2

2
4
0

0
.8

6
1

0
C

0

2
7
5
5
3
2
0
0
3
1
5

5
5
6
4
3
6
5
6
8

1
3
1

5
4
3
3
2

2
0
0
3
-0

4
-0

8
1
5
:1

1
:4

9
3
5

0
.7

5
1

0
C

0

2
7
5
5
3
2
0
0
1
4
1

1
2
1

4
0
9

4
6
0
2
7

2
0
0
3
-0

4
-0

5
1
4
:0

7
:3

5
5

0
.0

0
1

0
C

0

2
7
5
5
3
2
0
0
3
7
7

4
3
7
2
6
5
8
7
6

4
0
9

2
0
6
3
1

2
0
0
3
-0

4
-0

5
1
4
:0

8
:3

7
5
9

0
.7

6
1

0
C

0

2
7
5
5
3
2
0
0
7
1
0

7
2
4
3
3
0
1
1
8

2
0
8

2
3
3
0
2

2
0
0
3
-0

4
-0

5
1
6
:3

7
:4

6
1
3

0
.7

6
1

0
C

0

2
7
5
5
3
2
0
0
4
5
3

7
2
2
5
2
0
0
1
7

3
0
5

3
6
1
4
0

2
0
0
3
-0

4
-0

5
1
3
:4

5
:2

4
2

0
.0

2
1

0
C

0

2
7
5
5
3
2
0
0
4
5
3

7
2
2
5
2
0
0
1
7

3
0
5

3
6
1
4
0

2
0
0
3
-0

4
-0

5
1
3
:4

9
:4

8
2

0
.0

2
1

0
C

0

2
7
5
5
3
2
0
0
4
5
3

5
5
5
1
0
9
4
9
2

3
0
5

3
6
1
4
0

2
0
0
3
-0

4
-0

5
1
3
:5

1
:0

1
4
5

0
.5

5
1

0
C

0

2
7
5
5
3
2
0
0
4
5
3

7
2
2
5
2
0
0
1
7

3
0
5

3
6
1
4
0

2
0
0
3
-0

4
-0

5
1
4
:0

3
:0

5
1
3

0
.1

6
1

0
C

0

2
7
5
5
2
5
8
5
5
6
2

2
7
7
3
1
6
6
1
4
6
5

1
8
2

1
0
2
7
2

2
0
0
3
-0

4
-0

3
1
7
:4

2
:4

8
6
7

5
.7

0
1

0
P

0

2
7
5
5
6
7
3
4
6
6
9

5
5
6
6
0
5
5
6
6
0
6
4
5
6

1
5
1

1
3
1
8
3

2
0
0
3
-0

4
-1

6
1
4
:4

7
:3

0
1
3
1

7
.8

6
1

0
P

0

2
7
5
5
2
5
8
5
6
5
1

8
4
7
1
3
9
0
7
7

1
8
2

1
5
7
1
1

2
0
0
3
-0

4
-0

3
1
7
:4

8
:1

4
1
3
0

8
.5

5
1

0
P

0

2
7
5
5
6
7
8
4
6
7
4

2
7
8
3
5
5
5
1
6
7
6

1
3
4

4
3
0
6
9

2
0
0
3
-0

4
-1

5
1
4
:3

5
:4

8
1
1
0

6
.6

0
1

0
P

0

2
7
5
5
6
7
8
4
6
5
6

8
3
6
9
0
5
7
1
9

1
5
1

1
3
3
1
2

2
0
0
3
-0

4
-0

3
2
0
:3

3
:5

4
2
3
6

7
.3

5
1

0
P

0

2
7
5
5
6
7
2
4
6
7
5

2
7
5
5
2
4
9
1
0
0
0

1
8
2

4
4
0
1
5

2
0
0
3
-0

4
-0

3
1
6
:3

1
:0

3
8
5

5
.7

0
1

0
P

0

2
7
5
5
6
7
6
4
6
9
9

5
5
9
5
3
1
0
6
5

1
5
1

1
0
7
1
3

2
0
0
3
-0

4
-1

5
1
4
:4

4
:1

6
7
1

5
.7

0
1

0
P

0

2
7
5
5
6
7
3
8
5
5
7

3
1
2
6
2
5
8
5
2

3
0
6

3
1
5
6
2

2
0
0
3
-0

4
-1

5
1
4
:5

1
:0

9
1
0
3

5
.7

0
1

0
P

0

2
7
5
5
2
5
3
5
9
2
9

2
7
8
3
4
9
4
1
3
7
3

2
0
2

2
6
8
3
2

2
0
0
3
-0

4
-2

3
2
0
:3

4
:3

9
9
1
7

2
4
.8

0
1

0
P

0

2
7
5
5
6
7
6
8
8
4
4

8
4
7
4
1
2
2
9
6

1
3
8

5
4
6
8
0

2
0
0
3
-0

4
-2

3
1
7
:5

2
:1

8
4
9
3

2
5
.6

5
1

0
P

0

2
7
5
5
6
7
1
4
5
9
8

7
2
5
4
3
5
7
1
7

1
4
1

1
1
9
7
1

2
0
0
3
-0

4
-0

7
2
1
:5

3
:2

7
1
3
1
0

2
0
.9

6
1

0
P

0

2
7
5
5
6
7
6
8
8
8
8

5
5
5
5
2
5
5
8
7

1
6
1

1
1
4
4
2

2
0
0
3
-0

4
-1

1
1
1
:4

6
:5

6
3
4
6

2
0
.7

6
1

0
P

0

2
7
5
5
6
7
5
4
6
2
7

2
7
8
3
7
2
4
8
1
5
4

1
4
2

1
0
9
8
1

2
0
0
3
-0

4
-3

0
1
8
:1

7
:1

1
4
0
4

2
4
.2

4
1

0
P

0

2
7
5
5
2
5
8
6
3
6
9

5
5
7
6
6
9
4
4
6

1
8
2

1
4
1
8
2

2
0
0
3
-0

4
-3

0
1
9
:1

6
:2

3
3
4
5

2
0
.7

0
1

0
P

0

2
7
5
5
2
5
3
5
9
2
9

5
5
4
8
8
3
8
1
8

1
8
3

1
7
3
3
0

2
0
0
3
-0

4
-0

1
1
6
:0

5
:2

7
4
6
5

2
2
.8

0
1

0
P

0

2
7
5
5
6
7
6
8
8
8
3

5
5
6
8
7
2
2
9
2

3
0
5

3
2
1
7
2

2
0
0
3
-0

4
-2

4
1
0
:0

9
:1

8
5
6
5

2
8
.5

0
1

0
P

0

2
7
5
5
6
7
6
4
6
4
6

9
3
5
7
2
2
5
1
6
2
0
1

1
8
2

1
3
0
9
1

2
0
0
3
-0

4
-1

4
1
3
:2

6
:2

6
2
1
6

6
0
.0

0
1

0
P

0

2
7
5
5
2
5
3
5
9
2
9

8
3
4
9
4
1
3
7
3

2
0
2

2
6
8
3
2

2
0
0
3
-0

4
-2

4
1
9
:4

4
:5

2
1
7
8
0

6
7
.3

0
1

0
P

0

2
7
5
5
6
7
4
8
9
0
4

9
2
6
6
2
2
3
2
4
3
9
5

5
0
1

2
7
2
0
0

2
0
0
3
-0

4
-1

6
1
0
:1

1
:1

1
6
8
1

6
0
.0

0
1

0
P

0

2
7
5
5
6
7
7
4
6
6
7

4
4
7
9
4
0
3
7
1
6
5
3

1
8
3

1
9
1
6
2

2
0
0
3
-0

4
-0

3
2
1
:3

9
:5

3
3
6
0

6
0
.0

0
1

0
P

0

2
7
5
5
6
7
8
4
6
7
5

9
4
4
2
0
8
9
8
1
4
4
6
5

1
5
2

1
2
9
9
2

2
0
0
3
-0

8
-2

7
1
6
:5

5
:0

5
3
3
3

6
0
.0

0
1

0
P

0

2
7
5
5
2
5
3
5
9
2
9

8
3
4
9
4
1
3
7
3

2
0
2

2
6
8
3
2

2
0
0
3
-0

8
-2

6
1
9
:3

9
:4

2
1
1
8
0

5
7
.0

0
1

0
P

0

2
7
5
5
6
7
0
9
0
4
9

9
4
4
7
7
6
2
8
3
8
3
7
7

1
3
1

5
9
4
9
1

2
0
0
3
-0

8
-3

0
1
9
:5

1
:2

3
4
2
6

1
0
2
.2

4
1

0
P

0

2
7
5
5
3
2
0
0
5
2
6

2
1
5
5
7
9
0
8
6

2
0
5

2
6
8
9
2

2
0
0
3
-0

4
-0

7
0
9
:1

7
:4

8
1
5
0
9

6
0
.4

3
1

1
C

0

2
7
5
5
3
2
0
0
9
0
7

8
3
6
0
3
7
6
6
3

1
6
1

1
3
2
5
1

2
0
0
3
-0

4
-0

1
1
2
:5

9
:1

5
1
2
7
1

5
0
.9

5
1

0
C

0

2
7
5
5
3
2
0
0
0
9
9

9
9
7
1
5
0
3
5
0
0
0
2
6

4
0
9

2
4
6
5
2

2
0
0
3
-0

4
-0

8
1
6
:5

5
:3

9
8
4
7

9
6
.0

7
1

0
C

0

2
7
5
5
3
2
0
0
9
2
5

9
3
3
6
2
1
7
2
8
1
6
1

1
3
3

5
3
2
6
0

2
0
0
3
-0

4
-0

9
1
0
:5

1
:5

5
1
4
4
2

1
1
8
.6

7
1

0
C

0

Table 5.2: Extract from the set of call data records.
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Location Cell ID
Area Code Cell ID Description

202 21411 Mowbray 1

202 26962 Batavia 2

202 46542 UCT MC2

202 61560 Ysterplaat Mobile

161 11121 Diepsloot-1

161 40644 Mellis Court MC2

161 40678 Cresta Centre MC4

161 14913 Didata Campus-3

141 16232 Corporate Park-2

141 16233 Corporate Park-3

141 11082 Randjiesfontein-2

141 10622 Kyalami-2

141 11411 Sunninghill Centre-1

141 11413 Sunninghill Centre-3

Table 5.3: Extract from the set of cell id descriptions.

5.6). Subscription fraud occurs when a subscriber signs up for a service with fraudulently

obtained subscriber information, or false identification. Cellphone theft, where a criminal

makes calls on a subscriber’s account, may also be seen as a type of subscription fraud.

Subscription fraud may usually be identified by a large number of expensive calls, often

to international destinations. Call data records for 30 subscribers were added to the set

of observations, exemplifying subscription fraud (see Table 5.7).

MSISDN Tariff Tariff Usage Group

27552535929 4UP Prepaid

27556748904 WNP Leisure

27553200099 200 Low Business

27553200377 100 Low Business

27556768883 BUS Low Business

27556754627 500 High Business

27553200453 S1T High Business

27556768844 T1K High Business

Table 5.4: Extract from subscriber tariffs, grouping each tariff according to expected

usage.
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Transaction Type Short Code Description

1 MOC Mobile Originating Calls

2 MTC Mobile Terminating Calls

29 CF Call Forward

30 SMSO SMS Mobile Originating

31 SMSMT SMS Mobile Terminating

Table 5.5: Call transaction type description.

5.2 Data Preparation

Today’s real-world databases are highly susceptible to noisy, missing, and inconsistent

data due to their typically large sizes, often several terabytes or more. There are a number

of data preprocessing techniques available to clean, integrate, transform and reduce the

data. Data cleaning may be applied to remove noise and correct inconsistencies in the

data. Data integration merges data from multiple sources into a coherent data store. Data

transformation processes, such as normalisation, may be applied, improving the accuracy

and efficiency of mining algorithms involving distance measurements. Data reduction may

reduce the data set size by aggregating, eliminating redundant features, or clustering, for

instance. These data processing techniques, when applied prior to mining, may improve

the overall quality of the patterns mined and the time required for the actual mining

substantially [21].

Switch technology used by the particular network operator in question, segments calls

exceeding 1 780 seconds into separate call data records, each one no longer than 1 780

seconds, with the sum of the call segments not exceeding 3 591 seconds. Calls exceeding

3 591 seconds are terminated by the switch. Segmented call data records were merged

during data preparation, resulting in one call data record per call for all calls. The

attribute Inter Seq Num, forming part of a call data record, is used to identify segmented

calls, and merge the segments into one call data record for each call.

To aid in the mining process, new attributes were constructed from the given set of

attributes, and were added to the data set. The network operator’s marketing brochures

were used to assign a value to each subscription tariff, creating a new attribute Sub-

scriber Tariff. The attribute Call Date was used to derive a binary attribute, Peak Ind, in-

dicating the rate period during which the call was made, replacing the attribute Call Date.

Calls made during the peak period are charged more than those made during the off-

peak period. The peak period for cellular customers in South Africa is between 07h00

and 20h00, excluding weekends and public holidays. The attributes Cell Id and Loca-

tion Area Code were used to create a new attribute, Cell Location (replacing these two

attributes) deriving the cell’s approximate location, as a distance in kilometres between
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Other Party Location Call Call Call Fraud

MSISDN Number Area Code Cell ID Call Date Duration Charge Destination Ind

27559990001 214171835 111 13051 2005-07-08 01:41:22 3 0.00 South Africa 1

27559990002 834541575 111 13051 2005-07-09 04:06:47 3 0.00 South Africa 1

27559990003 112 111 13051 2005-07-10 06:32:11 3 0.00 South Africa 1

27559990004 214171835 111 13051 2005-07-11 08:57:36 3 0.00 South Africa 1

27559990005 834541575 111 13051 2005-07-12 11:23:00 3 0.00 South Africa 1

27559990006 112 111 13051 2005-07-13 13:48:24 3 0.00 South Africa 1

27559990007 214171835 111 13051 2005-07-14 16:13:50 3 0.00 South Africa 1

27559990008 834541575 111 13051 2005-07-15 18:39:14 3 0.00 South Africa 1

27559990009 112 111 13051 2005-07-16 21:04:38 3 0.00 South Africa 1

27559990010 214171835 111 13051 2005-07-17 23:30:03 3 0.00 South Africa 1

27559990011 834541575 111 13051 2005-07-19 01:55:27 3 0.00 South Africa 1

27559990012 112 111 13051 2005-07-20 04:20:52 3 0.00 South Africa 1

27559990013 214171835 111 13051 2005-07-21 06:46:16 3 0.00 South Africa 1

27559990014 834541575 111 13051 2005-07-22 09:11:40 3 0.00 South Africa 1

27559990015 112 111 13051 2005-07-23 11:37:05 3 0.00 South Africa 1

27559990016 214171835 111 13051 2005-07-24 14:02:29 3 0.00 South Africa 1

27559990017 834541575 111 13051 2005-07-25 16:27:53 3 0.00 South Africa 1

27559990018 112 111 13051 2005-07-26 18:53:18 3 0.00 South Africa 1

27559990019 214171835 111 13051 2005-07-27 21:18:43 3 0.00 South Africa 1

27559990020 834541575 111 13051 2005-07-28 23:44:08 3 0.00 South Africa 1

27559990021 112 111 13051 2005-07-30 02:09:32 3 0.00 South Africa 1

27559990022 214171835 111 13051 2005-07-31 04:34:56 3 0.00 South Africa 1

27559990023 834541575 111 13051 2005-08-01 07:00:21 3 0.00 South Africa 1

27559990024 112 111 13051 2005-08-02 09:25:45 3 0.00 South Africa 1

27559990025 214171835 111 13051 2005-08-03 11:51:09 3 0.00 South Africa 1

27559990026 834541575 111 13051 2005-08-04 14:16:34 3 0.00 South Africa 1

27559990027 112 111 13051 2005-08-05 16:41:58 3 0.00 South Africa 1

27559990028 214171835 111 13051 2005-08-06 19:07:23 3 0.00 South Africa 1

27559990029 834541575 111 13051 2005-08-07 21:32:47 3 0.00 South Africa 1

27559990030 112 111 13051 2005-08-08 23:58:11 3 0.00 South Africa 1

27559990031 214171835 111 13051 2005-08-10 02:23:37 3 0.00 South Africa 1

27559990032 834541575 111 13051 2005-08-11 04:49:01 3 0.00 South Africa 1

27559990033 112 111 13051 2005-08-12 07:14:25 3 0.00 South Africa 1

27559990034 214171835 111 13051 2005-08-13 09:39:50 3 0.00 South Africa 1

27559990035 834541575 111 13051 2005-08-14 12:05:14 3 0.00 South Africa 1

27559990036 112 111 13051 2005-08-15 14:30:39 3 0.00 South Africa 1

27559990037 214171835 111 13051 2005-08-16 16:56:03 3 0.00 South Africa 1

27559990038 834541575 111 13051 2005-08-17 19:21:27 3 0.00 South Africa 1

27559990039 112 111 13051 2005-08-18 21:46:52 3 0.00 South Africa 1

27559990040 214171835 111 13051 2005-08-20 00:12:16 3 0.00 South Africa 1

27559990041 834541575 111 13051 2005-08-21 02:37:40 3 0.00 South Africa 1

27559990042 112 111 13051 2005-08-22 05:03:05 3 0.00 South Africa 1

27559990043 214171835 111 13051 2005-08-23 07:28:30 3 0.00 South Africa 1

27559990044 834541575 111 13051 2005-08-24 09:53:55 3 0.00 South Africa 1

27559990045 112 111 13051 2005-08-25 12:19:19 3 0.00 South Africa 1

27559990046 214171835 111 13051 2005-08-26 14:44:43 3 0.00 South Africa 1

27559990047 834541575 111 13051 2005-08-27 17:10:08 3 0.00 South Africa 1

27559990048 112 111 13051 2005-08-28 19:35:32 3 0.00 South Africa 1

27559990049 214171835 111 13051 2005-08-29 22:00:56 3 0.00 South Africa 1

27559990050 834541575 111 13051 2005-08-31 00:26:21 3 0.00 South Africa 1

27559990051 112 111 13051 2005-09-01 02:51:45 3 0.00 South Africa 1

27559990052 214171835 111 13051 2005-09-02 05:17:10 3 0.00 South Africa 1

27559990053 834541575 111 13051 2005-09-03 07:42:34 3 0.00 South Africa 1

27559990054 112 111 13051 2005-09-04 10:07:58 3 0.00 South Africa 1

27559990055 214171835 111 13051 2005-09-05 12:33:24 3 0.00 South Africa 1

27559990056 834541575 111 13051 2005-09-06 14:58:48 3 0.00 South Africa 1

27559990057 112 111 13051 2005-09-07 17:24:12 3 0.00 South Africa 1

27559990058 214171835 111 13051 2005-09-08 19:49:37 3 0.00 South Africa 1

27559990059 834541575 111 13051 2005-09-09 22:15:01 3 0.00 South Africa 1

27559990060 112 111 13051 2005-09-11 00:40:26 3 0.00 South Africa 1

Table 5.6: Extract from call data records exemplifying dealer fraud.
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Other Party Location Call Call Call Fraud

MSISDN Number Area Code Cell ID Call Date Duration Charge Destination Ind

27554435190 992215887322 301 47512 2003-08-28 13:34:34 500 171.21 Pakistan 1

27554435190 992215887330 301 47512 2003-08-28 16:34:34 400 151.21 Pakistan 1

27554435190 992215887220 301 47509 2003-08-28 12:34:34 440 160.17 Pakistan 1

27552546298 991215854874 301 47509 2003-08-10 12:34:34 3591 1292.21 India 1

27552546298 991215854130 301 47509 2003-08-10 11:34:34 359 129.51 India 1

27552546298 991215854120 301 47509 2003-08-10 15:34:34 3590 1256.21 India 1

27552546298 834435190 301 47509 2003-08-10 17:34:34 3590 120.21 South Africa 1

27552546298 834435190 301 47509 2003-08-10 19:34:34 3590 120.21 South Africa 1

27552546298 834435190 301 47518 2003-08-10 21:34:34 3590 120.21 South Africa 1

27552546298 834435200 301 47518 2003-08-10 22:34:34 3590 120.21 South Africa 1

27552585886 27557280552 111 13161 2003-09-23 19:40:42 41 2.85 South Africa 1

27552585886 27726060672 111 13161 2003-09-24 13:55:21 4 2.85 South Africa 1

27552585886 27558594554 111 13161 2003-09-25 16:35:39 12 1.51 South Africa 1

27552585886 27836365342 111 13161 2003-09-28 12:12:41 11 2.02 South Africa 1

27552585886 27558594554 111 13161 2003-09-28 14:19:34 34 1.51 South Africa 1

27552585886 27558336696 111 13161 2003-09-25 20:45:48 71 1.18 South Africa 1

27552585886 27553203320 111 13161 2003-09-22 11:14:25 4 1.51 South Africa 1

27552585886 5575040201 111 13161 2003-09-24 09:52:41 68 1.49 South Africa 1

27552585886 27555010630 111 13161 2003-09-26 18:23:48 2 1.51 South Africa 1

27552585886 27437451055 111 13161 2003-09-30 07:53:47 37 1.51 South Africa 1

27552585886 27558336696 111 13161 2003-09-26 17:19:01 74 2.26 South Africa 1

27552585886 27558336696 111 13161 2003-09-27 08:46:48 20 0.79 South Africa 1

27552585886 27126530213 111 13161 2003-09-27 06:52:13 30 0.79 South Africa 1

27552585886 5551461113 111 13161 2003-09-30 08:35:12 36 0.79 South Africa 1

27552585886 27554554342 111 13161 2003-09-24 10:06:04 316 8.30 South Africa 1

27552585886 27557263357 111 13161 2003-09-25 17:51:22 16 1.51 South Africa 1

27552585886 8474615656 111 13161 2003-09-24 08:44:15 135 3.44 South Africa 1

27552585886 27835449801 111 13161 2003-09-30 12:24:26 12 0.56 South Africa 1

27552585886 27835449801 111 13161 2003-09-25 22:43:12 8 0.12 South Africa 1

27552585886 27835449801 111 13161 2003-09-30 13:16:36 11 0.51 South Africa 1

27552585886 27583035251 111 13161 2003-09-26 15:52:44 159 4.53 South Africa 1

27552585886 27559223296 111 13161 2003-09-25 12:43:36 45 1.51 South Africa 1

27552585886 27589133254 111 13161 2003-09-25 09:33:25 5 1.51 South Africa 1

27552585886 27835847216 111 13161 2003-09-27 19:09:44 23 0.92 South Africa 1

27552585886 27837610583 111 13161 2003-09-24 17:11:56 20 2.41 South Africa 1

27552585886 27837080508 111 13161 2003-09-22 18:21:31 79 3.61 South Africa 1

27552585886 27722439951 111 13161 2003-09-27 16:27:28 27 0.79 South Africa 1

27552585886 27559723610 111 13161 2003-09-24 10:14:50 225 6.32 South Africa 1

27552585886 27722479391 111 13161 2003-09-23 20:54:37 21 0.27 South Africa 1

27552585886 27555641270 111 13161 2003-09-24 18:20:06 22 1.58 South Africa 1

27552585886 27555641270 111 13161 2003-09-24 18:13:20 62 2.37 South Africa 1

27552585886 27555641270 111 13161 2003-09-24 18:46:34 49 1.58 South Africa 1

27552585886 27832363020 111 13161 2003-09-30 19:26:41 56 2.41 South Africa 1

27552585886 27555641270 111 13161 2003-09-27 16:28:13 20 0.79 South Africa 1

27552585886 27832363020 111 13161 2003-09-24 18:36:28 14 2.41 South Africa 1

27552585886 27415554939 111 13161 2003-09-28 19:50:30 46 2.37 South Africa 1

27552585886 27115527700 111 13161 2003-09-28 13:28:07 28 1.54 South Africa 1

27552585886 27557226209 111 13161 2003-09-27 16:29:31 2 0.79 South Africa 1

27552585886 27557959701 111 13161 2003-09-23 09:23:10 5 1.54 South Africa 1

27552585886 27557226209 111 13161 2003-09-27 14:59:34 67 1.18 South Africa 1

27552585886 27556511401 111 13161 2003-09-28 16:26:48 43 1.54 South Africa 1

27552585886 27724895389 111 13161 2003-09-25 15:10:59 113 3.08 South Africa 1

27552585886 27725702297 111 13161 2003-09-29 10:25:52 20 0.44 South Africa 1

27552585886 27836856959 111 13161 2003-09-29 18:32:49 57 2.02 South Africa 1

27552585886 27413604533 111 13161 2003-09-23 19:32:57 48 1.54 South Africa 1

27552585886 27553329144 111 13161 2003-09-24 10:35:16 59 3.54 South Africa 1

27552585886 27553334106 111 13161 2003-09-23 16:42:20 32 2.85 South Africa 1

Table 5.7: Extract from call data records exemplifying subscription fraud.
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the provincial capital in which the cell is located, and a fixed point, taken as Johannesburg

[16]. The country and area code were extracted from the number dialled, contained in

the attribute Other Party Number, and were used to determine the distance of each call,

storing the result in attribute Call Distance [25]. The attribute Subscriber Type, taking

the values C (contract/postpaid) or P (prepaid), was transformed into a binary attribute,

Prepaid Ind, with 1 indicating a prepaid subscriber, and 0 a postpaid subscriber.

The final set of attributes was grouped into explanatory and response variables, and

a variable name was assigned to each. The results are shown in Table 5.8, and a subset

of observations, using these variable names, are given in Table 5.9.

Attribute Name Variable Name Variable Type Variable Data
Type

Prepaid Ind x1 Explanatory Binary

Subscriber Tariff x2 Explanatory Nominal

Peak Ind x3 Explanatory Binary

Cell Location x4 Explanatory Continuous

Call Distance x5 Explanatory Continuous

Call Charge x6 Explanatory Continuous

Call Duration x7 Explanatory Continuous

Call Transaction Type x8 Explanatory Categorical

Fraud Ind Y Response Binary

Table 5.8: Variable definitions and types.

Distance-based mining algorithms, such as neural networks or clustering techniques,

provide better results if the data to be analysed have been normalised, that is, scaled to

a specific range, such as [0.0, 1.0]. When one variable takes many more values than an-

other, it will typically outweigh distance measurements taken on the other variables if left

unnormalised [21]. Continuous variables in the data set were therefore normalised using

min-max normalisation. In min-max normalisation one performs a linear transformation

on the original data. Suppose that min(xj) and max(xj) are the minimum and maximum

values of the variable xj. Min-max normalisation maps the i-th value xji of xj to x′ji in

the new range [min(x′j),max(x′j)] by means of transformation

x′ji =
xji −min(xj)

max(xj)−min(xj)
(max(x′j)−min(x′j)) + min(x′j). (5.1)

Min-max normalisation preserves the relationship among the original data values [21].
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x1 x2 x3 x4 x5 x6 x7 x8 Y

1 1 0 0 0 1.44 90 1 0

1 1 0 0 0 0.08 5 1 0

1 1 0 0 0 0.53 33 1 0

1 1 0 0 0 0.62 39 1 0

1 1 1 442 0 1.62 27 1 0

1 1 1 0 0 2.85 28 1 0

1 1 1 442 0 3.30 55 1 0

1 1 0 0 0 1.55 33 1 0

1 1 0 0 0 4.65 122 1 0

1 1 0 395 0 2.42 151 1 0

1 1 0 395 0 0.82 51 1 0

1 1 0 1 265 0 0.27 17 1 0

1 1 0 395 0 0.91 57 1 0

1 1 1 0 0 8.55 130 1 0

1 1 0 239 0 0.53 33 1 0

1 1 1 0 0 2.85 2 1 0

1 1 1 159 0 2.85 3 1 0

1 1 1 395 0 6.60 110 1 0

1 1 0 0 0 16.65 579 1 0

1 1 1 0 0 2.40 40 1 0

1 1 0 0 451 10.00 83 1 0

1 1 1 300 304 16.68 139 1 0

1 1 0 159 276 3.12 26 1 0

1 1 0 159 276 2.16 18 1 0

1 1 0 0 451 31.92 266 1 0

Table 5.9: Extract from the final set of call data records, grouping attributes into

explanatory and response variables.

5.3 Variable Selection

Variable selection techniques are usually the first step in statistical analyses, and assists

in making a choice among numerous explanatory variables for inclusion into predictive

models. In this section regression techniques are applied to select a subset of explanatory

variables from the data set best predicting the response variable.

5.3.1 Linear Regression

Linear regression analysis is only useful when the response variable is continuous. This

supports the introduction of a new response variable, termed fraud weight and given the

variable name Y
′
, indicating the severity of fraud for each transaction. Fraud weight is
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set to 0 for legitimate calls, and equal to call charge for fraudulent calls. To obtain a

preliminary impression of the data, the descriptive statistics of the data set are examined,

as well as the Pearson’s correlation between response variable Y
′

and the continuous

explanatory variables, as shown in Table 5.10.

Variable Standard
Name Minimum Maximum Mean Deviation Correlation

x2 1 1 490 443.1 366.262 −0.006

x4 0 1 265 319.71 405.382 −0.002

x5 0 13 097 5.17 210.639 0.173

x6 0 1 292.21 1.681 5.692 0.849

x7 0 3 591 65.17 124.414 0.113

Table 5.10: Descriptive statistics of the continuous explanatory variables x2 (Subscriber

Tariff), x4 (Cell Location), x5 (Call Distance), x6 (Call Charge) and x7 (Call Duration).

Statistics of categorical variables x1 (Prepaid Indicator) and x3 (Peak Indicator) were

examined by means of frequency tables, which may be found in Table 5.11 and Table

5.12 respectively. Note that the response variable Y
′

is most highly correlated with

Percentage
Value Frequency of Total

0 680 779 75.0

1 226 948 25.0

Total 907 727 100.0

Table 5.11: Frequency table for the categorical variable x1 (Prepaid Indicator) in the

set of call data records.

Percentage
Value Frequency of Total

0 359 403 39.59

1 548 324 60.41

Total 907 727 100.00

Table 5.12: Frequency table for the categorical variable x3 (Peak Indicator) in the set

of call data records.

the explanatory variable x6 (Call Charge). This is to be expected, since fraud weight

is derived from call charge. It is possible to derive a regression equation using all the

explanatory variables. However, since some of the explanatory variables are strongly
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interrelated, it is more efficient to use only a subset of explanatory variables to derive the

regression equation.

The variable selection problem may be described as considering certain subsets of

explanatory variables and selecting that subset that either maximises or minimises an

appropriate criterion. Two obvious subsets are the best single variable and the complete

set of explanatory variables. The problem lies in selecting an intermediate subset that

may lie somewhere between both these extremes. Stepwise regression using the forward

selection method, as described in §2.2.3.1, is employed for making this choice. The forward

selection method starts by choosing the explanatory variable with the highest absolute

correlation with Y
′
. In the set of observations used, x6 (Call Charge), is chosen as the

best single predictor of Y
′
. The partial correlations between Y

′
and each of the other

explanatory variables, after removing the linear affect of x6 (Call Charge), are shown in

Table 5.13. Explanatory variable x7 (Call Duration) is the next variable chosen by the

Correlation

x2 0.126

x4 −0.041

x5 −0.017

x7 −0.718

Table 5.13: Partial pearson’s correlation matrix after removing x6 (Call Charge) in the

forward selection method.

forward selection method.

Afifi, et al. [1] suggested that a minimum F -to-enter value be used as stopping rule,

but other criteria may also be used as the basis for a stopping rule. The coefficient of

determination (R2) may be used, terminating the process when the increase in R2 is a

very small amount. Alternatively, the series of adjusted coefficient of determination (R
2
)

values may be examined, and the process terminated when R
2

is maximised. The forward

selection method introduces one variable into the regression model at each step, computing

the F -to-enter value. The computed F -to-enter value, coefficient of determination (R2)

and adjusted coefficient of determination (R
2
), computed at each step of the forward

selection method, are shown in Table 5.14. Using the coefficient of determination (R2) as

stopping rule, and terminating the process when no increase in R2 is achieved by adding an

additional variable into the regression model, results in four variables being added to the

model, namely x6 (Call Charge), x7 (Call Duration), x2 (Subscriber Tariff) and x5 (Call

Distance). The inclusion of x6 (Call Charge), x7 (Call Duration) and x5 (Call Distance)

into the regression model confirms the assumption that fraudsters committing subscription

fraud make expensive calls of long duration, some to foreign destinations, since they will

not be held responsible for the charges generated. The correlation matrix in Table 5.10
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Variable Entered F-to-enter R2 R
2

1 x6 2 335 677 0.720 0.720

2 x7 2 895 539 0.864 0.864

3 x2 2 000 287 0.869 0.869

4 x5 1 521 224 0.870 0.870

5 x4 1 217 470 0.870 0.870

Table 5.14: Selection of variables x6 (Call Charge), x7 (Call Duration), x2 (Subscriber

Tariff), x5 (Call Distance) and x4 (Cell Location) in the forward selection method, using

linear regression.

confirms the assumption that long duration expensive calls are good indicators of fraud.

Variable x2 (Subscriber Tariff), on the other hand, may be a good indicator of dealer

fraud, since incentives paid to dealers are based on the subscriber’s tariff.

5.3.2 Logistic Regression

It is often the case that the response variable is discrete, taking on two or more possible

values. Over the decade 1995 – 2005 the logistic regression model has become, in many

fields, the standard method of analysis in this situation [24]. The observations used here,

depicting the behaviour of ligitimate and fraudulent subscribers in a cellular telephone

network, is a typical example of a set of explanatory variables describing a binary response

variable.

The variable selection process starts with a model that does not include any of the

explanatory variables, as described in §2.2.3.1. At each step the explanatory variable with

the largest score statistic, whose significance value is less than 0.05, is selected. Table 5.15

indicates the score statistics of each explanatory variable at the start of the process. The

Variable Score Statistic Degrees of Freedom Significance

x2 77.399 1 0

x4 66.459 1 0

x5 8 999.084 1 0

x6 81 648.927 1 0

x7 4 216.900 1 0

Table 5.15: Variable score statistics for the logistic regression forward select method of

the continuous explanatory variables x2 (Subscriber Tariff), x4 (Cell Location), x5 (Call

Distance), x6 (Call Charge) and x7 (Call Duration).

first step of this method selects explanatory variable x6 (Call Charge) for inclusion. The

selection of variable x6 (Call Charge) produces the logistic regression model summarised in
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Table 5.16, with an associated log–likelihood estimate calculated as L(β̂1) = −1 350.287.

The maximum likelihood estimates of β0 and β1 are β̂0 = −8.947 and β̂1 = 0.063. The

Estimated Standard
Variable Coefficient Error

x6 0.063 0.003

Constant −8.947 0.088

Table 5.16: Fitting the logistic regression model to the data.

fitted values are given by

π̂(x6) =
e−8.947+0.063x6

1 + e−8.947+0.063x6

and the estimated logistic transformation, ĝ(Xi), is given by

ĝ(x6) = −8.947 + 0.063x6.

After estimating the coefficients of the logistic regression model the significance of the

variables are assessed. One approach is to compare the observed values of the response

variable to the predicted values obtained from models with and without the variable in

question, calculating this statistic as G(x6, yi) = 643.262. The logistic regression process

continues in this fasion, adding one additional explanatory variable at each step, and

testing the significance of the coefficients. Table 5.17 indicates the variables included

in the model at each step and the statistics calculated. The logistic regression model

Model Xi G(Xi, yi) L(β1, . . . , βP )

1 x6 643.262 −1 350.287

2 x6,x4 95.844 −1 302.365

3 x6,x4,x2 34.507 −1 285.112

4 x6,x4,x2,x7 4.837 −1 282.894

Table 5.17: Logistic regression model summary indicating the variables included at each

step of the model building process.

evaluated in step 4 of Table 5.17 consists of a similar set of variables as the set selected

using linear regression, with the exception of variable x5 (Call Distance). Increasing the

significance threshold value from 0.05 to 0.076 results in an additional step of the variable

selection process, adding variable x5 (Call Distance) to the logistic regression model.

The variable selection methods applied in this section were not used to exclude certain

variables from further analysis, but rather to provide insight into the characteristics of

the data used in this thesis. It is clear from both the methods applied that explanatory

variable x6 (Call Charge) is the best single predictor of fraud.
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5.4 Chapter Summary

This chapter was devoted to describing the call data records collected from one of South

Africa’s cellular network operators. The call data record attributes were defined in Table

5.1 and an extract of call data records given in Table 5.2. Artificially created call data

records signifying fraudulent behaviour were introduced to the set of call data records in

§5.1. Data preparation techniques were discussed in §5.2. New attributes were constructed

from the given set of attributes and added to the data set to aid in the mining process.

Linear and logistic regression techniques were applied in §5.3 as part of forward variable

selection, providing insight into the characteristics of the call data set. The data will be

transformed further in the next chapter, in which well-known data mining methods are

applied to the results in order to aid in the fraud detection process.



Chapter 6

Application of Fraud Detection

Methods to Call Data

The data mining methodologies described in Chapter 2 are applied in this chapter to the

data set prepared in Chapter 5. The methods of decision trees (§6.1), artificial neural

networks (§6.2), Bayesian decision making (§6.3), cluster analysis (§6.4), outlier analysis

(§6.5) and association rule mining (§6.6) are applied, discussed and their fraud detection

abilities are assessed.

6.1 Decision Trees

Most fraud management systems implemeted by cellular service providers use rule-based

methods to detect and prevent fraud. The rules entered into these systems are derived

from fraud scenarios experienced by the service provider, or by using trial and error

methods. However, decision trees may also play a significant role in deriving rules to

be used in rule-based fraud management systems, using call data records classified as

fraudulent or legitimate to train decision trees. The rules derived from the decision trees

may then be entered into rule-based fraud management systems to detect and prevent

future fraudulent attempts using similar methods.

The observations in the reduced data set described in Chapter 5 were further processed

by calculating daily statistics for each subscriber. The calculated statistics for each sub-

scriber per day, included call count, total call duration, maximum call duration and call

duration standard deviation. The same set of statistics were calculated for call charge.

The relevant variable names and definitions are listed in Table 6.1. The daily statistics

per subscriber were averaged to a set of statistics per subscriber. An excerpt of the daily

subscriber statistics may be found in Table 6.2. The daily subscriber statistics consist of

1 085 observations, including 85 classified as fraudulent.

The tree derived in this section (see Appendix A.1 for a description of the computer

68
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Attribute Name Variable Name Variable Type

Call Count x1 Explanatory

Call Duration Summ x2 Explanatory

Call Duration Max x3 Explanatory

Call Duration Stddev x4 Explanatory

Call Charge Summ x5 Explanatory

Call Charge Max x6 Explanatory

Call Charge Stddev x7 Explanatory

Fraud Ind Y Response

Table 6.1: Classification tree variable definition.

programs) is a classification tree, as defined in §2.1.1, with measurement vector Xi, and

response variables yi ∈ Y, where N = 1 085. The response variables yi of the obser-

vations fall into one of two classes, C1 or C2, belonging to C, indicating call behaviour

as respectively fraudulent or legitimate. The classification tree assigns class membership

in C to every measurement vector Xi in X . The learning sample L, consisting of 1 085

observations, was used to build the classification tree, d(Xi). The rules describing the

classification tree are as follows, with the confidence measure given in brackets:

1. IF x2 > 3.5 and x5 ≤ 283.965 THEN legitimate (99.9%)

2. IF x2 ≤ 3.5 THEN fraudulent (100%)

3. IF x2 > 3.5 and x5 > 283.965 THEN fraudulent (100%).

Rule 2 shows that fraudulent subscribers make calls of total daily duration less than or

equal to 3.5 seconds. This rule is able to detect dealer fraud, of which examples are shown

in Table 6.2, MSISDN 2777990001 to 27779990009. Rule 3 attempts to detect subscription

fraud, identified by calls with a daily duration of more than 3.5 seconds and a daily charge

of more than R283.97. Rule 1 classifies the remaining subscribers as legitimate.

Applying these rules to the learning sample L results in one misclassification. The

V -fold cross-validation method, as defined in §2.1, was employed to estimate the accuracy

of the classification tree. The observations in L were randomly partitioned into V = 5

subsets of approximately equal size. The test sample estimates for the rates of misclassi-

fication, using L \ Lv to obtain the classifier d(v) and Lv to estimate the accuracy of the

classifier, v ∈ {1, . . . , 5}, were calculated as Rc(d
(1)) = 0

219
, Rc(d

(2)) = 2
216

, Rc(d
(3)) = 1

217
,

Rc(d
(4)) = 0

218
and Rc(d

(5)) = 1
215

. The proportion misclassified by classification tree d

is therefore estimated as Rc(d) = 4
1085

. The classification quality may be inspected in

more detail via a confusion matrix, comparing the observed response variables yi with the

responses generated by the classification tree ŷi. The confusion matrix, given in Table
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MSISDN Call Summed Max Stddev Summed Max Sttdev Fraud

Count Call Call Call Call Call Call Ind

Duration Duration Duration Charge Charge Charge

27772530985 1.286 121 102.714 14.186 3.586 3.586 0.192 0

27774435191 26 55282 3590 953.23 3847.53 403.92 67.823 1

27772534709 2.889 108.889 54.611 12.149 9.528 3.986 0.581 0

27772535924 3.115 119.065 64.496 17.074 6.975 3.481 0.925 0

27772543718 2.31 122034 83.414 21.392 5.954 4.111 1.148 0

27772546298 3.11 135.937 73.307 19.538 6.331 4.385 1.787 0

27772546299 8 20900 3511 1030.603 3108.67 1252.11 420.112 1

27774435192 5.222 254.333 104.556 35.012 10.272 3.372 0.905 1

27776794646 1.767 50.163 28.605 3.683 1.62 0.68 0.148 0

27776794649 3.436 107.939 58.558 18.037 3.262 1.93 0.633 0

27776794650 10.458 322.516 68.632 27.551 11.908 3.786 1.07 0

27776794683 2.176 191.627 122.824 27.023 5.436 3.548 0.584 0

27776794684 7.466 377.733 123.116 37.08 12.577 3.839 1.174 0

27776794685 4.012 195 104.919 35.318 5.176 2.862 0.902 0

27776794693 4.784 244.275 134.127 40.475 4.804 2.88 0.585 0

27774435190 1 4 4 0 0 0 0 0

27779990001 1 3 3 0 0 0 0 1

27779990002 1 3 3 0 0 0 0 1

27779990003 1 3 3 0 0 0 0 1

27779990004 1 3 3 0 0 0 0 1

27779990005 1 3 3 0 0 0 0 1

27779990006 1 3 3 0 0 0 0 1

27779990007 1 3 3 0 0 0 0 1

27779990008 1 3 3 0 0 0 0 1

27779990009 1 3 3 0 0 0 0 1

Table 6.2: Extract from daily subscriber statistics with call duration measured in

seconds and call change measured in Rands.

ŷi

0 1 Errors

0 1 000 0 0
yi

1 1 84 1

Errors 1 0

Table 6.3: Classification tree confusion matrix indicating 1 false negative.

6.3, indicates one false negative, where the observed response indicates fraud, but the

classification tree indicates the observation as legitimate subscriber behaviour. This false

negative is caused by MSISDN 27774435192 shown in Table 6.2, describing a subscriber

with average daily call duration 254.333s and call charge R10.272. This behaviour is

classified as legitimate behaviour by the rules derived from the classification tree.

The ability of this method to detect fraud may be demonstrated by applying the

classification tree to the unseen set of daily statistics on a fraudulent subscriber’s account,

given in Table 6.4. Rule 3 derived from the classification tree classifies this subscriber’s

behaviour as potential fraud.
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x1 x2 x3 x4 x5 x6 x7

7 21900 3591 1130.673 3158.77 1292.21 520.582

Table 6.4: Daily statistics on the account of fraudulent subscriber 27895500021 with

call count (x1) 7, total call duration (x2) 21 900s, maximum call duration (x3) 3 591s,

call duration standard deviation (x4) 1 130.673s, total call charge (x5) R3 158.77,

maximum call charge (x6) R1 292.21 and call charge standard deviation (x7) R520.582.

6.2 Artificial Neural Networks

A feed-forward neural network may be used to represent an arbitrary non-linear relation-

ship, provided that observations exist exemplifying relationships as input-output pairs. In

this section a three-layer feed-forward neural network was used, based on the paradigm of

supervised learning, to learn a discriminative function able to classify subscribers, using

summary statistics.

The same set of data (an excerpt of which is given in Table 6.2) was used here as

the set used for training the classification tree in §6.1. The data set contains the average

daily call count per subscriber, as well as the maximum daily call duration and call charge,

the total daily call duration and call charge, and the daily call duration and call charge

standard deviation, as listed in Table 6.1.

The feed-forward neural network used here to predict fraudulent and legitimate be-

haviour (see Appendix A.2 for a description of the computer programs), consists of M = 7

input units, one input unit for each explanatory input variable, H = 3 hidden units, and

O = 1 binary output unit. The artificial neural network was trained using the daily sub-

scriber statistics, as given in Table 6.2. Optimised prediction was achieved during training

with a neural network of 3 hidden units, and 5 000 repeated trials, using the standard

backpropagation algorithm as defined in §2.4.2. A sigmoidal activation function was used,

as given in (2.16). The resultant neural network is shown in Figure 6.1. Applying the set

of 1 085 observations to the neural network resulted in 3 misclassifications. These 3 mis-

ŷi

0 1 Errors

0 999 1 1
yi

1 2 83 2

Errors 2 1

Table 6.5: Artificial neural network confusion matrix indicating 2 false negatives and 1

false positive.
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Figure 6.1: Feed-forward neural network with M = 7 input units, H = 3 hidden units,

and O = 1 binary output unit. The weights from input node j to hidden node k, wkj,

were found to be: w11 = 7.415 59, w12 = −0.588 319, w13 = 14.141 9, w14 =

−3.549 39, w15 = −0.270 243, w16 = 0.564 485, w17 = −0.489 127, w21 =

−11.346 9, w22 = 0.139 34, w23 = −24.132 7, w24 = 7.050 1, w25 = 1.315 41, w26 =

1.052 06, w27 = 1.181 82 w31 = 12.616 5, w32 = 0.429 472, w33 = 27.266 2, w34 =

−7.677 85, w35 = −1.721 47, w36 = −1.286 99, and, w37 = −0.714 687. The weights

from hidden node k to output node q, Wqk are as follows:

W11 = −13.527 8, W12 = 24.287 2, and, W13 = −25.673 9.

classifications may be categorised into 2 false negatives and 1 false positive, as indicated

by the confusion matrix in Table 6.5. The false positive caused by MSISDN 27774435190

in Table 6.2 is an observation with similar characteristics as those signifying dealer fraud

(see Table 6.2, MSISDN 27779990001 to 27779990009). The opposite may be said of

the two false negatives, shown in Table 6.2 as MSISDN 27774435191 and 27774435192.

They show characteristics similar to legitimate observations. This again confirms that

fraudulent behaviour on one account may be quite legitimate for another.

The ability of this method to detect fraud may be demonstrated by applying the

artificial neural network to the unseen set of daily statistics on a subscriber’s account

exibiting characteristics similar to those found in dealer fraud cases, given in Table 6.6.

The artificial neural network classified this subscriber’s behaviour as potential fraud.
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x1 x2 x3 x4 x5 x6 x7

1 4 4 0 0.24 0.24 0

Table 6.6: Daily statistics on the account of fraudulent subscriber 27895500053 with

call count (x1) 1, total call duration (x2) 4s, maximum call duration (x3) 4s, call

duration standard deviation (x4) 0s, total call charge (x5) R0.24, maximum call charge

(x6) R0.24 and call charge standard deviation (x7) R0.

6.3 Bayesian Decision Making

Another classification method, applying supervised learning, is the naive Bayesian classi-

fier. This method uses a probabilistic approach when classifying observations into fraud-

ulent and legitimate behaviour, as described in §2.5.

The same set of data (an excerpt of which is given in Table 6.2) than was used for

training the artificial neural network in §6.2, and the decision tree in §6.1 was used again

for the derivation of the naive Bayesian classifier. The data set consists of the avarage

daily call count per subscriber, as well as the maximum daily call duration and call

charge, the total daily call duration and call charge, and the daily call duration and

call charge standard deviation, as listed in Table 6.1. The Bayesian decision making

method used in this section is a naive Bayesian classification, as described in §2.5.1,

with measurement vector Xi, and response variables yi. The response variables yi of the

observations fall into one of two classes, C1 or C2, belonging to C, indicating call behaviour

as fraudulent or legitimate. The naive Bayesian classifier assigns class membership in C
to each measurement vector Xi in X . The learning sample L, consisting of N = 1 085

observations, was used to form the classifier (see Appendix A.3 for a description of the

computer programs). The class prior probabilities, P [Ci], and the conditional probabilities

of the explanatory variables, P [x1i|Ci], P [x2i|Ci], . . . , P [x7i|Ci], were estimated from the

learning sample L, and the results may be found in Table 6.7. The prior probabilities P [Ci]

were estimated as P [Ci] = Ni

N
, where Ni is the number of observations in L belonging to

class Ci, and N is the total number of observations in L. The conditional probabilities of

the explanatory variables are given as normal probability distributions, N(µ, σ2), where

µ is the expected value and σ2 is the variance.

Applying the naive Bayesian classifier to the learning sample L resulted in 96 misclas-

sifications, consisting of 15 false positives and 81 false negatives. The confusion matrix

provided in Table 6.8, comparing the observed response variables yi with the response

variables generated by the naive Bayesian classifier ŷi, may be used as an indication of

the quality of the naive Bayesian classifier. From the confusion matrix it is clear that

the naive Bayesian classifier does not perform well with the particular set of observations
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Classifier
Probabilities C1 C2

P [Ci] 0.921 7 0.078 3

P [x1|Ci] N(7.005 5, 108.173) N(1.567 3, 9.134 9)

P [x2|Ci] N(449.858, 306 372) N(1 367.49, 0.000 000 6)

P [x3|Ci] N(168.062, 18 109.9) N(131.124, 403 741)

P [x4|Ci] N(46.920 3, 1 709.01) N(25.8 966, 25 113.8)

P [x5|Ci] N(11.631 9, 136.553) N(255.637, 0.000 003)

P [x6|Ci] N(4.356 6, 8.307 9) N(36.726, 38 972.2)

P [x7|Ci] N(1.139 3, 0.734 4) N(8.8 708, 3 452.77)

Table 6.7: Probabilities obtained by the naive Bayesian classifier.

ŷi

0 1 Errors

0 985 15 15
yi

1 81 4 81

Errors 81 15

Table 6.8: Naive Bayesian classifier confusion matrix indicating 15 false positives and

81 false negatives.

used here.

The probability distributions (see Table 6.7) derived from the learning sample L shows

the difference in fraudulent and legitimate subscriber behaviour, especially when looking

more closely at explanatory variabels x2 and x5, indicating the subscriber’s average daily

call duration and charge, respectively. It may be seen that the mean values of both x2

and x5 are much larger for fraudulent subscribers, indicating that fraudulent subscribers

spend more time making calls than legitimate subscribers, and as a result of this, are

charged more.

The ability of this method to detect fraud may be demonstrated by applying the naive

Bayesian classifier to the unseen set of daily statistics on a fraudulent subscriber’s account,

given in Table 6.9. The naive Bayesian classifier classified this subscriber’s behaviour as

potential fraud.

6.4 Cluster Analysis

Cluster analysis is conceptually simple, but computationally very expensive to perform.

Therefore it was decided to reduce the number of observations described in §5.2. Ob-

servations, consisting of mobile originating call data records, were reduced by taking a
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x1 x2 x3 x4 x5 x6 x7

26 55282 3590 953.23 3847.53 403.92 67.823

Table 6.9: Daily statistics on the account of fraudulent subscriber 27895500921 with

call count (x1) 26, total call duration (x2) 55 282s, maximum call duration (x3) 3 590s,

call duration standard deviation (x4) 953.23s, total call charge (x5) R3 847.53, maximum

call charge (x6) R403 and call charge standard deviation (x7) R67.823.

random 10% sample on the 1 000 available subscribers, resulting in a data set containing

90 distinct subscribers, with a total of 82 072 observations. Cluster analysis was per-

formed on a training sample of this sample, consisting of a random 10% sample of the

82 072 observations, in turn resulting in 8 024 observations.

Agglomerative hierarchical clustering was implemented by coding the methods de-

scribed in §2.6.2) in C (see Appendix A.4 for a listing of the computer code). Gower’s

general similarity coefficient was used to compute the initial similarity matrix, D = {dik}.
McQuitty’s similarity analysis (see §2.6.1) was then employed to merge the two most sim-

ilar observations, and to compute the similarity between the newly formed cluster and

the remaining clusters, updating the similarity matrix with this value. Cluster analysis

was finally performed on the unnormalised explanatory variables Xi = (x1i, x2i, . . . , x7i),

with Gower’s general similarity coefficient normalising the variables to within the range

[0.0, 1.0]. The clustering process started with 8 024 initial clusters, each one containing

a single observation. During each iteration of the clustering process the two most simi-

lar clusters were merged into one cluster, continuing with this process until the distance

between the most similar clusters was found to be less than 0.8. The clustering process

terminated after 8 013 iterations, with 11 clusters remaining, namely C = (C1, . . . , C11).

The observations were updated with the identifier of the cluster to which they belong.

Table 6.10 is a representation of the resulting clusters, indicating the number of obser-

vations contained in each final cluster, and the similarity measure between the clusters

merged to form that final cluster.

Each subscriber, mk, (k = 1, . . . , 90), was subsequently assigned a profile, expressed

as a series of 11 probabilities, Pmk
= (P [C1|mk], . . . , P [C11|mk]), indicating the probabil-

ity of each cluster containing observations belonging to subscriber mk. The conditional

probability P [Cj|mk] was estimated by

P [Cj|mk] =
NCj

Nmk

,

where Nmk
is the number of observations made on subscribermk, and NCj

is the number of

observations clustered into cluster Cj, belonging to mk. The subscriber profiles calculated

as part of the clustering process may be found in Table 6.12. Classification was performed,
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Number of Maximum
Cluster observations Similarity

01 2 0.920 766

02 2 0.969 116

03 1 740 0.900 460

04 592 0.898 096

05 883 0.897 611

06 858 0.888 704

07 874 0.888 395

08 2 0.856 904

09 1 1

10 1 1

11 3 069 0.945 159

Table 6.10: Results of the clustering procedure, indicating the number of observations

grouped into each cluster and the similarity measure between the final two clusters

merged to form this cluster.

using the cluster identifier as response variable, and Xi = (x1i, x2i, . . . , x7i) as explanatory

variables, to derive eight rules, d(Xi), i = 1, 2, . . . 8, predicting the cluster identifier. The

classification tree algorithm in the computer program Statistica was employed to perform

this part of the analysis, using the chi-square measure to determine goodness of fit, and

estimating the prior probabilities. The resuling classification tree is shown in Figure 6.2.

The following eight rules were extracted from the classification tree:

• IF x5 > 5 711.5 THEN cluster08,

• IF x5 ≤ 5 771.5 AND x7 > 1 710.5 THEN cluster02,

• IF x5 ≤ 5 771.5 AND x7 ≤ 1 710.5 AND x3 = 1 AND x2 ≤ 68 THEN cluster07,

• IF x5 ≤ 5 771.5 AND x7 ≤ 1 710.5 AND x3 = 1 AND x2 > 68 AND x4 > 623 THEN

cluster05,

• IF x5 ≤ 5 771.5 AND x7 ≤ 1 710.5 AND x3 = 1 AND x2 > 68 AND x4 ≤ 623 THEN

cluster11,

• IF x5 ≤ 5 771.5 AND x7 ≤ 1 710.5 AND x3 = 0 AND x2 ≤ 68 THEN cluster06,

• IF x5 ≤ 5 771.5 AND x7 ≤ 1 710.5 AND x3 = 0 AND x2 > 68 AND x4 > 623 THEN

cluster04, AND

• IF x5 ≤ 5 771.5 AND x7 ≤ 1 710.5 AND x3 = 0 AND x2 > 68 AND x4 ≤ 623 THEN

cluster03.
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To estimate the the accuracy of d(Xi), i = 1, 2, . . . 8, a second independent random 10%

test sample was taken, consisting of 8 161 observations from the same population as the

one from which the training sample was extracted. The test sample was clustered using

the rules d(Xi), i = 1, 2, . . . 8, and the results compared to the clustered training sample,

resulting in 18, out of a total of 8 161 observations, clustered into clusters not featuring

in the particular subscriber’s profile.

Figure 6.2: The classification tree applied to the clustered observations, deriving rules

to predict cluster membership. This classification tree terminated with 8 terminal nodes,

each terminal node assiged to one of the observed clusters.

The classification tree given in Figure 6.2 divides subscribers into a number of be-

haviour groups. The most significant variable in the classification tree is x5, call distance,

dividing subscribers into those making long distance international calls and those mak-

ing national calls and international calls to other African countries. Cluster08 contains

international calls with a distance of more than 5 771.5 km, with 4 observations fitting

that profile. The next variable dividing subscribers is x7, call duration. Cluster02 con-

tains 4 observations of calls made to destinations less than or equal to 5 771.5 km from

South Africa (Johannesburg), lasting more than 1 710.5 seconds. Variable x3 divides
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subscribers further into those making calls during peak and off-peak rating periods. Clus-

ter06, containing 859 observations, and cluster07, containing 874 observations, describe

similar behaviour, except that observations in cluster06 represent calls during off-peak

rating periods and cluster07 during peak rating periods. Variable x2, namely subscriber

tariff, divides subscribers into prepaid and postpaid customers, where the subscription

tariff paid by prepaid subscriber is less than or equal to R68. Observations contained in

cluster06 may be described as calls being made by prepaid subscribers during off-peak

rating periods, with duration less than or equal to 1 710.5 seconds to destinations not

further than 5 771.5 km from South Africa. Cluster03 contains 1 740 observations of calls

made by postpaid subscribers in the proximity of cell sites less than or equal to 623 km

from Johannesburg during off-peak rating periods, with duration less than or equal to

1 710.5 seconds and to a destination less than or equal to 5 771.5 km from South Africa.

Cluster04 describes similar behaviour as cluster03 with the exception that observations

in this cluster represent calls in the proximity of cell sites more than 623 km from Jo-

hannesburg. The only difference between cluster11 and cluster03 is that observations in

cluster11 represent calls during peak rating periods, while observations contained in clus-

ter03 represent calls during off-peak rating periods. This is also the behaviour difference

between observations contained in cluster04 and cluster05.

It is unlikely that any subscriber will belong to only one of these clusters, as may be

seen in Table 6.12, which contains each sampled subscribers’ probabilities of belonging

to specific clusters. For example, the behaviour of subscriber mk = 27896704693 may be

described by the probability distribution

Pmk
= (0.00, 0.00, 0.00, 0.00, 0.00, 0.56, 0.44, 0.00, 0.00, 0.00, 0.00),

indicating that the probability of this subscriber belonging to cluster06 is 56% and be-

longing to cluster07 is 44%. On further investigation of the probability distributions in

Table 6.12 it was found that variable x3 is (with most observations) the reason why sub-

scribers are divided between cluster06 and cluster07 (P [C6|C7] = 0.95, P [C7|C6] = 1.0),

cluster03 and cluster11 (P [C3|C11] = 0.92, P [C11|C3] = 0.97), and cluster04 and cluster05

(P [C4|C5] = 0.9, P [C5|C4] = 1.0). Variable x3 may therefore be removed to simplify the

set of rules classifying subscribers into different behaviour groups.

The clusters to which each subscriber belongs and the subscribers’ probability distri-

butions may be of aid in the fraud detection process in more than one way. Dividing

subscribers into different behaviour groups may be useful in defining different fraud de-

tection rules for different groups, customised to the types of subscriber contained in them.

The rules used to classify subscribers into different behaviour groups may further be used

to define threshold values for each group, identifying uncharacteristic behaviour for mem-

bers of that group, indicating possible fraud. Most fraud management systems group

subscribers according to behaviour, but based on the product the subscriber is subscribed
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to, assuming that the subscriber’s product is an indication of his/her behaviour. The

rules derived from the classification tree in Figure 6.2 may also be used to classify new

observations into one of the 11 clusters. Observations clustered into clusters not typi-

cal for the subscriber, may be identified as possible fraudulent activity, and marked for

further investigation.

The ability of this method to detect fraud on a subscriber’s account may be demon-

strated by artificially creating a fraudulent call not fitting the subscriber’s behaviour

profile. The behaviour of subscriber mk = 27893200574 is described by the probability

distribution

Pmk
= (0.00, 0.00, 0.65, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.35)

in Table 6.12, indicating that 65% of the observations for this subscriber belong to clus-

ter03 and 35% to cluster11. The classification tree in Figure 6.2 indicates that cluster03

and cluster11 describe the behaviour of subscribers making calls to destinations (x5) less

than or equal to 5 771.5km from South Africa (Johannesburg), with call duration (x7)

less than or equal to 1 710.5s, paying a subscription tariff (x2) greater than R68 and that

calls are made in the proximity of cells less than or equal to 623km from Johannesburg,

during both peak and off-peak (x3) rating periods. A typical call classified as potential

fraud for this subscriber’s account is given in Table 6.11.

x1 x2 x3 x4 x5 x6 x7

0 135 1 0 11541 24.26 60

Table 6.11: Typical fraudulent call on the account of subscriber 27893200574 with

prepaid indicator (x1) 0, subscriber tariff (x2) R135, peak indicator (x3) 1, cell location

(x4) 0km, call distance (x5) 11 541km, call charge (x6) R24.26 and call duration (x7) 60s.

The classification tree in Figure 6.2 classified this call into cluster08, which is not in
the behaviour profile of subscriber 27893200574.

mk Pmk
= (P [C1|mk], . . . , P [C11|mk]) Nmk

27892546298 (0.00, 0.00, 0.00, 0.00, 0.00, 0.49, 0.51, 0.00, 0.00, 0.00, 0.00) 41

27892572436 (0.00, 0.00, 0.00, 0.00, 0.00, 0.84, 0.16, 0.00, 0.00, 0.00, 0.00) 37

27892585425 (0.00, 0.00, 0.00, 0.00, 0.00, 0.50, 0.50, 0.00, 0.00, 0.00, 0.00) 4

27892585436 (0.00, 0.00, 0.00, 0.00, 0.00, 0.33, 0.67, 0.00, 0.00, 0.00, 0.00) 6

27892585531 (0.00, 0.00, 0.00, 0.00, 0.00, 0.51, 0.49, 0.00, 0.00, 0.00, 0.00) 57

27892585584 (0.00, 0.00, 0.00, 0.00, 0.00, 0.27, 0.73, 0.00, 0.00, 0.00, 0.00) 102

27892585621 (0.00, 0.00, 0.00, 0.00, 0.00, 0.70, 0.30, 0.00, 0.00, 0.00, 0.00) 30

27892585774 (0.00, 0.00, 0.00, 0.00, 0.00, 0.62, 0.38, 0.00, 0.00, 0.00, 0.00) 26

27892585886 (0.00, 0.00, 0.00, 0.00, 0.00, 0.40, 0.60, 0.00, 0.00, 0.00, 0.00) 10

27892585944 (0.00, 0.00, 0.00, 0.00, 0.00, 0.49, 0.51, 0.00, 0.00, 0.00, 0.00) 72

Continued on next page
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mk Pmk
= (P [C1|mk], . . . , P [C11|mk]) Nmk

27892585961 (0.00, 0.00, 0.00, 0.00, 0.00, 0.18, 0.82, 0.00, 0.00, 0.00, 0.00) 17

27892586344 (0.00, 0.00, 0.00, 0.00, 0.00, 0.58, 0.42, 0.00, 0.00, 0.00, 0.00) 19

27892586351 (0.00, 0.00, 0.00, 0.00, 0.00, 0.17, 0.83, 0.00, 0.00, 0.00, 0.00) 35

27892586373 (0.00, 0.00, 0.00, 0.00, 0.00, 0.13, 0.63, 0.25, 0.00, 0.00, 0.00) 8

27896704693 (0.00, 0.00, 0.00, 0.00, 0.00, 0.56, 0.44, 0.00, 0.00, 0.00, 0.00) 160

27896714116 (0.00, 0.00, 0.00, 0.00, 0.00, 0.60, 0.40, 0.00, 0.00, 0.00, 0.00) 5

27896714643 (0.00, 0.00, 0.00, 0.00, 0.00, 0.47, 0.53, 0.00, 0.00, 0.00, 0.00) 19

27896718832 (0.00, 0.00, 0.00, 0.00, 0.00, 0.36, 0.64, 0.00, 0.00, 0.00, 0.00) 70

27896718871 (0.00, 0.00, 0.00, 0.00, 0.00, 0.80, 0.20, 0.00, 0.00, 0.00, 0.00) 54

27896724028 (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00) 1

27896724638 (0.00, 0.00, 0.00, 0.00, 0.00, 0.31, 0.69, 0.00, 0.00, 0.00, 0.00) 26

27896733463 (0.00, 0.00, 0.00, 0.00, 0.00, 0.22, 0.78, 0.00, 0.00, 0.00, 0.00) 23

27896738904 (0.00, 0.00, 0.00, 0.00, 0.00, 0.72, 0.28, 0.00, 0.00, 0.00, 0.00) 79

27896748848 (0.00, 0.00, 0.00, 0.00, 0.00, 0.38, 0.63, 0.00, 0.00, 0.00, 0.00) 32

27896754119 (0.00, 0.00, 0.00, 0.00, 0.00, 0.14, 0.86, 0.00, 0.00, 0.00, 0.00) 36

27896758844 (0.00, 0.00, 0.00, 0.00, 0.00, 0.67, 0.33, 0.00, 0.00, 0.00, 0.00) 146

27896759059 (0.00, 0.00, 0.00, 0.00, 0.00, 0.20, 0.80, 0.00, 0.00, 0.00, 0.00) 40

27896763474 (0.00, 0.00, 0.00, 0.00, 0.00, 0.51, 0.49, 0.00, 0.00, 0.00, 0.00) 118

27896764568 (0.00, 0.00, 0.00, 0.00, 0.00, 0.41, 0.59, 0.00, 0.00, 0.00, 0.00) 17

27896764599 (0.00, 0.00, 0.00, 0.00, 0.00, 0.20, 0.80, 0.00, 0.00, 0.00, 0.00) 5

27896764616 (0.00, 0.00, 0.00, 0.00, 0.00, 0.53, 0.42, 0.00, 0.00, 0.00, 0.05) 19

27896764646 (0.00, 0.00, 0.00, 0.00, 0.00, 0.14, 0.86, 0.00, 0.00, 0.00, 0.00) 36

27896774610 (0.00, 0.00, 0.00, 0.00, 0.00, 0.33, 0.67, 0.00, 0.00, 0.00, 0.00) 6

27896774626 (0.00, 0.00, 0.00, 0.00, 0.00, 0.53, 0.47, 0.00, 0.00, 0.00, 0.00) 109

27896774647 (0.00, 0.00, 0.00, 0.00, 0.00, 0.35, 0.65, 0.00, 0.00, 0.00, 0.00) 17

27896779228 (0.00, 0.00, 0.00, 0.00, 0.00, 0.10, 0.90, 0.00, 0.00, 0.00, 0.00) 50

27896784113 (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00) 7

27896788838 (0.00, 0.00, 0.00, 0.00, 0.00, 0.91, 0.09, 0.00, 0.00, 0.00, 0.00) 82

27896788883 (0.00, 0.00, 0.00, 0.00, 0.00, 0.60, 0.40, 0.00, 0.00, 0.00, 0.00) 58

27896788904 (0.00, 0.00, 0.00, 0.00, 0.00, 0.39, 0.61, 0.00, 0.00, 0.00, 0.00) 51

27896789050 (0.00, 0.00, 0.00, 0.00, 0.00, 0.40, 0.60, 0.00, 0.00, 0.00, 0.00) 5

27893200009 (0.00, 0.00, 0.01, 0.25, 0.72, 0.00, 0.00, 0.00, 0.00, 0.00, 0.02) 97

27893200076 (0.00, 0.00, 0.00, 0.63, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01) 68

27893200110 (0.00, 0.00, 0.56, 0.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.43) 70

27893200114 (0.00, 0.00, 0.16, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.84) 139

27893200117 (0.00, 0.00, 0.02, 0.53, 0.44, 0.00, 0.00, 0.00, 0.00, 0.00, 0.02) 55

27893200143 (0.00, 0.00, 0.39, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.61) 57

27893200148 (0.00, 0.00, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.40) 20

27893200216 (0.00, 0.00, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.65) 533

27893200227 (0.00, 0.00, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.75) 129

27893200244 (0.00, 0.00, 0.38, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.62) 259

27893200254 (0.00, 0.00, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.40) 20

27893200270 (0.00, 0.00, 0.00, 0.28, 0.71, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01) 138

Continued on next page
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mk Pmk
= (P [C1|mk], . . . , P [C11|mk]) Nmk

27893200280 (0.00, 0.00, 0.41, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.59) 502

27893200327 (0.00, 0.00, 0.65, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.35) 72

27893200331 (0.00, 0.00, 0.85, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.15) 34

27893200338 (0.00, 0.00, 0.33, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.67) 288

27893200364 (0.00, 0.00, 0.26, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.74) 74

27893200391 (0.00, 0.00, 0.00, 0.30, 0.70, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 326

27893200395 (0.00, 0.00, 0.00, 0.40, 0.60, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 391

27893200495 (0.00, 0.00, 0.38, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.63) 544

27893200506 (0.00, 0.00, 0.46, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.54) 50

27893200519 (0.00, 0.00, 0.94, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.06) 52

27893200526 (0.00, 0.00, 0.00, 0.10, 0.86, 0.00, 0.00, 0.00, 0.05, 0.00, 0.00) 21

27893200549 (0.00, 0.00, 0.00, 0.73, 0.27, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 26

27893200562 (0.02, 0.00, 0.17, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.81) 101

27893200574 (0.00, 0.00, 0.65, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.35) 110

27893200576 (0.00, 0.00, 0.25, 0.00, 0.03, 0.00, 0.00, 0.00, 0.00, 0.00, 0.72) 60

27893200599 (0.00, 0.00, 0.65, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.35) 46

27893200621 (0.00, 0.00, 0.41, 0.56, 0.03, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 32

27893200660 (0.00, 0.00, 0.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.68) 198

27893200665 (0.00, 0.00, 0.37, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.63) 126

27893200671 (0.00, 0.00, 0.00, 0.52, 0.48, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 33

27893200674 (0.00, 0.00, 0.01, 0.52, 0.43, 0.00, 0.00, 0.00, 0.00, 0.00, 0.04) 83

27893200680 (0.00, 0.00, 0.00, 0.88, 0.13, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 8

27893200706 (0.00, 0.00, 0.21, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.79) 28

27893200711 (0.00, 0.00, 0.00, 0.88, 0.13, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 16

27893200767 (0.00, 0.00, 0.48, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.52) 50

27893200811 (0.00, 0.00, 0.28, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.72) 90

27893200907 (0.00, 0.00, 0.52, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.48) 33

27893200929 (0.00, 0.00, 0.00, 0.94, 0.06, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 34

27893200993 (0.00, 0.00, 0.38, 0.08, 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, 0.44) 39

27893201006 (0.00, 0.05, 0.00, 0.60, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 43

27893201010 (0.00, 0.00, 0.44, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.56) 52

27893201054 (0.00, 0.00, 0.83, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.17) 41

27893201068 (0.00, 0.00, 0.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.68) 254

27893201082 (0.00, 0.00, 0.35, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.65) 46

27893201098 (0.00, 0.00, 0.19, 0.01, 0.03, 0.00, 0.00, 0.00, 0.00, 0.00, 0.77) 648

27893201162 (0.00, 0.00, 0.33, 0.03, 0.07, 0.00, 0.00, 0.00, 0.00, 0.00, 0.57) 67

27893201164 (0.00, 0.00, 0.00, 0.16, 0.84, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 86

Table 6.12: Probability profiles indicating the probability distribu-
tion of each subscriber’s call data observations between the different
behaviour groups or clusters.
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6.5 Outlier Analysis

In this section outlier analysis is applied (see Appendix A.5 for a listing of the computer

code) to the population of legitimate call data records defined in §5.2. The observations

in the population are normalised, using min–max normalisation, as described in (5.1),

scaling the variables to within the range [0.0, 1.0].

The Mahalanobis distance, denoted by D2, is a measure of distance between two points

in the space defined by two or more correlated variables, and is used to identify outliers

amongst the multivariate observations, as described in §2.7. This distance measure is

computed as

D2(X,X) = (X−X)
′
Σ−1(X−X), (6.1)

where Σ is the covariance matrix for the explanatory variables, X is the vector of explana-
tory variables for all observations in the population, and X is the vector of corresponding
means, taken over all observations in the population. The covariance matrix for explana-
tory variables x1,x2, . . . ,x7 is given by

V ar(x1) Cov(x1,x2) Cov(x1,x3) Cov(x1,x4) Cov(x1,x5) Cov(x1,x6) Cov(x1,x7)
Cov(x2,x1) V ar(x2) Cov(x2,x3) Cov(x2,x4) Cov(x2,x5) Cov(x2,x6) Cov(x2,x7)
Cov(x3,x1) Cov(x3,x2) V ar(x3) Cov(x3,x4) Cov(x3,x5) Cov(x3,x6) Cov(x3,x7)
Cov(x4,x1) Cov(x4,x2) Cov(x4,x3) V ar(x4) Cov(x4,x5) Cov(x4,x6) Cov(x4,x7)
Cov(x5,x1) Cov(x5,x2) Cov(x5,x3) Cov(x5,x4) V ar(x5) Cov(x5,x6) Cov(x5,x7)
Cov(x6,x1) Cov(x6,x2) Cov(x6,x3) Cov(x6,x4) Cov(x6,x5) V ar(x6) Cov(x6,x7)
Cov(x7,x1) Cov(x7,x2) Cov(x7,x3) Cov(x7,x4) Cov(x7,x5) Cov(x7,x6) V ar(x7)


,

where V ar(xi) = 1
N

∑N
i=1(xi − x)2 and Cov(xi, yi) = 1

N

∑N
i=1(xi − x)(yi − y). The Ma-

halanobis distance, applied to the population of call data observations, ranges between
1.37252 and 8.53905. For this data set Σ is given by

Σ =



0.1877000 –110.69643 –0.0283600 –34.448540 0.1307730 0.0321130 –3.3819600
–110.69643 134209.36 32.944430 6393.8992 –442.68969 –166.72483 –2174.2793
–0.0283600 32.944443 0.2391700 11.059560 –0.3183500 0.1246200 –3.4062900
–34.448540 6393.8992 11.059560 164345.64 –242.54293 56.346180 2612.8225
0.1307700 –442.68969 –0.3183600 –242.54293 41858.556 80.932910 582.86200
0.0321100 –166.72483 0.1246300 56.346180 80.932910 9.0715300 298.06640

–3.3819600 –2174.2793 –3.406290 2612.8224 582.86200 298.06640 15128.952


and hence Σ−1 may be computed as

Σ−1 =



11.142434 0.009157 0.015224 0.001923 0.000014 0.006562 0.003348
0.009157 0.000015 –0.001431 0.000001 –0.000001 0.000424 –0.000006
0.015224 –0.001431 4.685169 –0.000259 0.000586 –0.349019 0.007751
0.001923 0.000001 –0.000259 0.000006 0.000000 –0.000003 –0.000000
0.000014 –0.000001 0.000586 0.000000 0.000025 –0.000600 0.000011
0.006562 0.000424 –0.349019 –0.000003 –0.000600 0.362768 –0.007140
0.003348 –0.000005 0.007751 –0.000000 0.000011 –0.007140 0.000208


.
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It is clear, from the 11 observations with the largest Mahalanobis distance measures

listed in Table 6.13 (identified in Table 6.13 by column heading D2), that the explana-

tory variables x5 (Call Distance), x6 (Call Charge) and x7 (Call Duration) contribute

significantly to the outlier status in the Mahalanobis sense. Explanatory variable x4 (Cell

Location) also contributed to the Mahalanobis distance, but not as significantly as the

others. Figure 6.3 places the 11 observations with the largest Mahalanobis distance mea-

D2 x1 x2 x3 x4 x5 x6 x7

8.53905122 1 1 0 0 8669 332.28 923

8.18852204 1 1 0 0 8045 169.2 470

8.07769403 1 1 0 0 9079 102.24 426

8.05717768 1 1 0 1265 0 88.35 3365

8.05532172 1 1 0 159 0 86.34 1439

8.04577755 1 1 0 159 0 79.44 1324

8.04259353 1 1 0 1265 6308 75 290

8.04204735 1 1 0 1265 8363 75 292

8.04157582 1 1 0 300 11526 77.04 321

8.02879972 1 1 0 442 2464 65.52 182

8.02631010 1 1 0 0 980 65 780

Table 6.13: The explanatory variables x1 (Prepaid Indicator), x2 (Subscriber Tariff in

Rands), x3 (Peak Indicator), x4 (Cell Location in kilometers), x5 (Call Distance in

kilometers), x6 (Call Charge in Rands) and x7 (Call Duration in seconds), of the 11

legitimate observations with the largest Mahalanobis distance measures.

sures (identified by the symbol �) in context with the remaining observations (identified

by the •), and confirms that explanatory variables x5 (Call Distance), x6 (Call Charge)

and x7 (Call Duration) contribute significantly to the Mahalanobis distance measure.

Since the population of observations corresponds to normal behaviour, the maximum

Mahalanobis distance may be used to set a threshold value. The Mahalanobis distance

between new observations and the population mean may be compared to the threshold

value, and identified as an outlier when exceeding this value. Outliers may indicate fraud-

ulent behaviour, as seen in Figure 6.4, where the symbols © and � indicate legitimate

observations with Mahalanobis distance less than 8.026 310 1 and greater than 8.026 31,

respectively. The symbol N is used in Figure 6.4 to indicate fraudulent observations.

Implementing the Mahalanobis distance 8.53905 (the largest Mahalanobis distance

measure on the legitimate observations) as threshold value resulted in 10 observations

being identified as outliers. All of these outliers happen to be fraudulent observations,

but the remaining 165 fraudulent observations were not identified as outliers. This is a

well known phenomenon, indicating that fraudulent behaviour on one account may be

legitimate for another.
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Figure 6.3: Legitimate observations with the largest Mahalanobis distance measures in

context with the remaining observations. Variable x5 is measured in kilometers, x6 in

Rands and x7 in seconds.

The ability of this method to detect fraud may be demonstrated by calculating the

Mahalanobis distance between the unseen fraudulent call data record, given in Table 6.14,

and the population mean. The calculated Mahalanobis distance of 8.69021 exceeds the

outlier threshold value of 8.53905, identifying this call data record as potential fraud.

x1 x2 x3 x4 x5 x6 x7

1 1 0 0 8045 1251 3120

Table 6.14: Typical fraudulent call on the account of subscriber 27555588856 with

prepaid indicator (x1) 1, subscriber tariff (x2) R1, peak indicator (x3) 0, cell location

(x4) 0km, call distance (x5) 8 045km, call charge (x6) R1 251 and call duration (x7)

3 120s.

6.6 Association Rule Mining

Association rule mining is a powerful method for so-called market basket analysis, which

aims at detecting regularities in the behaviour of customers of supermarkets, telecommu-
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Figure 6.4: Fraudulent observations in context with the legitimate observations given in

Figure 6.3. Variable x5 is measured in kilometers, x6 in Rands and x7 in seconds.

nication companies and the like, as explained in §2.8. With the induction of association

rules one tries to find sets of products or services that are frequently bought together,

so that, from the presence of certain products, one may infer (with a high probability)

that certain other products are also present [6]. In this section the Apriori algorithm (see

§2.8.2) is used for mining frequent item sets (see Appendix A.6 for a description of the

computer programs) in each subscriber’s set of call data records, in an attempt to derive

a unique fingerprint (signature) for each subscriber, describing the subscriber’s behaviour

on the network. Comparing a fingerprint of a suspected subscriber with the fingerprints

of proved fraudsters may help identify fraudsters who are using a new identity.

The original form of the data set provided by the network operator was used for

association rule mining. To reduce the complexity of the data and the number of obser-

vations, only mobile originating call data records were used in this process. Continuous

attributes were categorised to aid in the process of finding frequent item sets. The at-

tributes call charge and call duration were binned, reducing the number of distinct values
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that these attributes may attain, whilst retaining their original distribution. The attribute

call charge was binned into 15 bins and each bin’s boundaries were selected to retain the

attribute’s original distribution. Histograms were used and to test different bin bound-

aries and numbers of bins against the attribute’s original distribution. The bin boundaries

chosen for this attribute are shown in Table 6.15, and the corresponding histograms are

shown in Figure 6.5. The same method was used to bin the attribute call duration into

Bin Boundary Observation
Bin (Rands) Count

01 [0; 0.3] 247 347

02 (0.3; 1] 239 278

03 (1; 2] 196 154

04 (2; 3] 108 550

05 (3; 4] 39 606

06 (4; 5] 19 879

07 (5; 6] 17 014

08 (6; 8] 14 778

09 (8; 10] 9 174

10 (10; 12] 4 926

11 (12; 15] 4 036

12 (15; 20] 3 277

13 (20; 50] 3 261

14 (50; 100] 246

15 (100;∞) 26

Table 6.15: Call charge bin boundaries, measured in Rands.

10 bins. The bin boundaries chosen for this attribute are shown in Table 6.16 and the

corresponding histograms are shown in Figure 6.6. The attribute call date, indicating

the date and time at which each call was made, was replaced by two attributes derived

from it, named call day and call hour, indicating the day of the week and the hour of

the day during which the call was made. An attribute other party number, indicating

the number dialled, was also included in the set of data to be used for association rule

mining, as well as an attribute derived from other party number, named call destination,

indicating the country of call destination. The attributes location area code and cell id,

indicating the location of the subscriber when a call was made, was also included in the

data set.

Each subscriber’s set of call data records were separated from the remaining observa-

tions in the population. The Apriori algorithm was applied to the subscriber’s set of call

data records, with minimum support threshold set to 10%, and the minimum number of

items allowed per item set to 1. Association rules were not generated from the frequent

item sets, but each frequent item set was instead associated with the subscriber to which
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Figure 6.5: Variable call charge binned.

the call data records (used to build the frequent item sets) belong. The subscriber’s

frequent item sets were used to construct a fingerprint, which may be used to identify

uniquely the subscriber on the network, based on the subscriber’s call behaviour.

The population of observations contains 504 call data records for subscriber 279899155,

which constitude calls originating from the subscriber’s handset. Table 6.17 shows the

frequent item sets, I, contained in the fingerprint of subscriber 279899155, the probability

of the item set occurring among the subscriber’s call data records, denoted by P [I|mk],

and the probability of the item set occurring in the entire population of call data records,

P [I]. Focusing on the attribute call charge, the fingerprint indicates that 10% of the

subscriber’s calls cost between R3.00 and R4.00, 11.6% between R2.00 and R3.00, 31.0%

between R1.00 and R2.00, and 22.9% between R0.30 and R1.00. The attribute values

for call day shows that 20.5% of the subscriber’s calls were made on Tuesdays, 11.2% on

Wednesdays or Thursdays, 13.3% on Sundays, 20.3% on Fridays, and 24.8% on Saturdays.

The subscriber’s fingerprint also indicates that 11.2% of the subscriber’s calls were made

to number 631726426, and 99.2% were made to numbers located within the borders of

South Africa. The values of the attribute location area indicate that 99.5% of the sub-

scriber’s calls were made while the subscriber was in area 401 (Port Elizabeth and the

surrounding area). Attribute cell id, identifying the cell closest to the subscriber when

making a call, indicates that 11.9% of the calls made by the subscriber, were made in

close proximity to cell 20402 (UITENHAGE 2), and 30.9% were made in close proximity to

cell 26252 (TOREGO 2). Focusing on the values attained by the attribute call duration,

the fingerprint indicates that 14.0% of the subscriber’s calls last between 120s and 300s,
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Bin Boundary Observation
Bin (Seconds) Count

01 [0; 30] 422 325

02 (30; 60] 220 048

03 (60; 120] 153 047

04 (120; 300] 85 934

05 (300; 600] 18 424

06 (600; 1 200] 6 124

07 (1 200; 1 800] 1 112

08 (1 800; 2 400] 324

09 (2 400; 3 000] 126

10 (3 000;∞) 88

Table 6.16: Call duration bin boundaries, measured in seconds.

21.7% between 60s and 120s, 19.7% between 30s and 60s, and 37.6% between 0s and 30s.

Comparing P [I|mk] to P [I] in Table 6.17 provides important insight into the subscriber’s

behaviour in relation to that of other subscribers on the network. The subscriber in

question behaves similar to other subscribers in the network, when comparing attributes

call charge, call duration, call day and call destination. However, the behaviour of the

subscriber with respect to the attributes other party, location area and cell id differs sig-

nificantly from the behaviour of other subscribers, and may be used to distinguish this

subscriber from others.

In the telecommunications industry, behaviour profiling on subscriber/account level is

widely used by modern fraud detection and management tools. When a fraudulent sub-

scriber is identified, the fraud analyst typically stores the subscriber’s behaviour profile,

taken from the subscriber’s call data records. The fraud detection system then com-

pares the fingerprint of the fraudulent subscriber to the behaviour profiles of all other

subscribers, and generates a list of possible fraudulent subscribers, with a measure indi-

cating the difference in behaviour between the fraudulent and suspected subscriber. The

fraud analyst may then typically choose a list of suspected fraudulent subscribers to be

investigated.

The fraud analyst may choose the fingerprint of subscriber m1 = 279899155, given

in Table 6.17, as a fraud indicator. Many measures exist, and more may be developed,

with the ability of calculating the difference between subscriber behaviour profiles. For

illustrative purposes the Euclidean distance measure was choosen. Table 6.18 compares

the fingerprint of fraudster m1 = 279899155 with the fingerprints of two potential fraud-

ulent subscribers, m2 = 27982145 and m3 = 27985684. The Euclidean distance between

fraudster m1 and potential fraudster m2 is calculated as 1.730 977, between fraudster m1

and potential fraudster m3 as 0.374 476, and between potential fraudsters m2 and m3 as
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Figure 6.6: Variable call duration binned.

1.765 743. Subscriber m3 therefore exhibits similar behaviour to that of the known fraud-

ster under the Euclidean distance metric, and may be marked for further investigation.

6.7 Chapter Summary

Well-known data mining methods (described in Chapter 2) were applied in this chapter to

the set of call data records provided by a South African cellular network operator. Classi-

fication techniques making use of supervised learning were applied, building models with

the ability to classify unseen call data observations as fraudulent or legitimate. Applying

a sample of call data observations to the classification tree described in §6.1 resulted in

1 misclassification. Applying the same sample of call data observations to the artificial

neural network described in §6.2 resulted in 3 misclassifications. The Bayesian classifier

described in §6.3 was tested making use of the same method used to test the classification

tree and artificial neural network, and resulted in 96 misclassifications. Cluster analy-

sis and classification trees were combined in §6.4 to construct a method with the ability

to cluster subscribers into behaviour groups and predict group membership on unseen

call data observations. Observations classified into groups not fitting the subscriber’s be-

haviour were identified as potential fraud. Outlier analysis using the Mahalanobis distance

measure was applied in §6.5 on a set of legitimate call data observations. The maximum

Mahalanobis distance was taken as a threshold value and new observations exceeding this

value were identified as possible fraudulent activity. Association rule mining was applied
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Frequent Item Set (I) P [I|mk] P [I]

call charge = 5 10.0% 4.36%

call day = 3 10.5% 14.27%

other party = 631726426 11.2% 0.01%

call day = 4 11.2% 13.53%

call day = 5 11.2% 13.80%

call charge = 4 11.6% 11.96%

cell id = 20402 11.9% 0.06%

call day = 1 13.3% 12.72%

call duration = 4 14.0% 9.47%

call duration = 2 19.7% 24.25%

call day = 6 20.3% 15.79%

call duration = 3 21.7% 16.86%

call charge = 2 22.9% 26.37%

call day = 7 24.8% 16.33%

cell id = 26252 30.9% 0.08%

call charge = 3 31.0% 21.61%

call duration = 1 37.6% 46.53%

call destination = SouthAfrica 99.2% 99.88%

location area = 401 99.5% 4.97%

Table 6.17: Fingerprint for subscriber 279899155 given as the probabilities (P [I|mk]) of

the frequent item sets (I) occurring among the subscriber’s (mk) call data records.

to the data in §6.6, building subscriber fingerprints from the frequent item sets identified

by the Apriori algorithm. Fraud detection was achieved by comparing the fingerprint of a

known fraudster to the behaviour profiles of all other subscribers, identifying subscribers

displaying similar behaviour as potential fraudsters.
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Frequent Item Set (I) P [I|m2] P [I|m3] P [I|m1]

call day = 1 0.0% 16.9% 13.3%

call day = 2 13.4% 0.0% 0.0%

call day = 3 26.4% 10.4% 10.5%

call day = 4 18.2% 13.4% 11.2%

call day = 5 16.1% 14.9% 11.2%

call day = 6 0.0% 20.1% 20.3%

call day = 7 10.6% 21.4% 24.8%

call charge = 1 0.0% 20.4% 0.0%

call charge = 2 0.0% 23.9% 22.9%

call charge = 3 18.8% 22.4% 31.0%

call charge = 4 14.4% 0.0% 11.6%

call charge = 5 11.6% 0.0% 10.0%

call charge = 6 20.9% 0.0% 0.0%

call duration = 1 27.4% 55.7% 37.6%

call duration = 2 25.3% 17.4% 19.7%

call duration = 3 24.0% 18.9% 21.7%

call duration = 4 16.8% 0.0% 14.0%

location area = 133 100.0% 0.0% 0.0%

location area = 401 0.0% 99.5% 99.5%

cell id = 20402 0.0% 10.2% 11.9%

cell id = 26252 0.0% 22.9% 30.9%

cell id = 53250 42.8% 0.0% 0.0%

cell id = 55210 43.2% 0.0% 0.0%

other party = 631726426 0.0% 16.4% 11.2%

other party = 9933156689555 17.5% 0.0% 0.0%

call destination = France 33.6% 0.0% 0.0%

call destination = SouthAfrica 65.4% 97.5% 99.2%

Table 6.18: Fingerprints for subscribers m2 = 27982145, m3 = 27985684 and

m1 = 29899155 given as the probabilities (P [I|mk]) of frequent item sets (I) occurring

among the subscriber’s (mk) call data records.



Chapter 7

Conclusion

This chapter consists of three sections. In the first (§7.1) a brief summary of the work

contained in this thesis is given, in the second (§7.2) an appraisal of the fraud detection

methods employed in Chapter 6 is given, while in the third (§7.3) possible improvements

to the work presented in this study as well as some ideas with respect to further work

are outlined. Modern fraud management systems make use of proprietary data mining

techniques and proclaim the capability to detect most types of telecommunications fraud.

This chapter closes with a design for a comprehensive fraud detection model suggested by

the author, implementing a combination of data mining techniques and with the ability

of outperforming models based on a single data mining methodology.

7.1 Thesis Summary

Apart from the introductory chapter, in which fraud detection in telecommunication net-

works was introduced and the problem description and thesis objectives were given, and

the current chapter (the conclusion), this thesis comprises a further five chapters.

Well-known data mining methodologies used in this thesis for data exploration, the

building of user behaviour profiles and the detection of fraud were described in Chapter

2. Linear and logistic regression were discussed in the context of data exploration and

variable selection, and a comparison was drawn between these two methods. Decision

trees, artificial neural networks and Bayesian classification techniques were studied as

examples of data mining techniques able to learn from classified observations and with the

ability to predict the response value of unseen observations. Data mining methodologies

with the capacity to learn from observations, but without a known response, were also

studied, including the methods of cluster analysis, outlier analysis and association rule

mining.

The focus of Chapter 3 was on the cellular telecommunications industry. The ar-

chitecture of a cellular telecommunications network was described, providing the reader
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with an understanding of the different components in such a network. Background on

the operation of a cellular telecommunications network was provided, and the flow of

data through such a network was described, starting at the point in time when a call is

placed until the time that it is charged. A separate section was devoted to a discussion on

methods typically used by fraudsters to defraud cellular network operators. The chapter

closed with three elements required in a successful fraud management strategy: fraud

prevention, fraud detection and fraud deterrence.

Chapter 4 contains a brief overview of fraud detection literature available, paying

particular attention to fraud detection methods employed in cellular telecommunications

networks. The fraud detection literature items described in Chapter 4 were categorised

according to their ability to detect fraud in real-time or at fixed points in time. The

concept of customer behaviour profiles, also called account signatures, was introduced

and methods traditionally used to build and maintain such profiles were described.

Chapter 5 opened with a description of the data collection process and definitions of

the different attributes comprising each call data record. The introduction into this data

set of artificially created call data records indicating fraudulent behaviour was motivated.

The necessary preparation of the data for use in data mining techniques was described.

New attributes were derived from the collected call data and added to the data set.

Insight into the most important characteristics of the data set was provided by applying

regression techniques as part of the forward variable selection method.

The data set described in Chapter 5 was further transformed in Chapter 6, as dictated

by the data mining method applied to it, in the sense that the number of records were

reduced into sets of statistics and certain attributes were binned. The techniques of

classification trees , artificial neural networks, Bayesian classifiers, cluster analysis, outlier

analysis and association rule mining were applied to the transformed data. The results

emanating from these applications were described, and the suitability of these methods

to be used in the fraud detection process was discussed.

Three classification methods applying supervised learning were presented in Chapter

6. The first classification method applied to the set of observations was classification

trees. The number of records in the data set were reduced to one set of daily statistics for

each subscriber. The classification tree provided a set of rules that may be used to detect

fraud at the end of each daily period. The performance of the classification tree was

tested by using the derived rules to classify a set of observations. The confusion matrix,

indicating the inherent ability of the classification tree to distinguish between fraudulent

and legitimate behaviour, indicated that the classification tree fits the set of observations

well with only 1 observation out of a total of 1 085 observations being misclassified.

The second classification method applied was artificial neural networks, learning from

the same set of data used to train the classification tree. The result of classifying ob-
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servations using the artificial neural network was that 3 observations out of a total 1 085

observations were misclassified.

The final classification method applied was Bayesian classifiers, learning from the

same set of data used to train the classification tree and artificial neural network. The

confusion matrix, indicating the ability of the Bayesian classifier to distinguish between

fraudulent and legitimate behaviour, indicated that the Bayesian classifier did not fit the

particular set of observations well, with 96 observations out of a total 1 085 observations

misclassified.

Three data mining methods applying unsupervised learning were presented in Chapter

2 and applied to call data in Chapter 6. Cluster analysis was performed on a learning

sample, and rules predicting cluster membership derived by constructing a classification

tree on the clustered observations. The classification tree indicated that it was well-

suited for predicting cluster membership with only 18 misclassifications when applied to

test sample of 8 161 observations.

The ability of the derived classification tree to assign unseen legitimate call data

records to a cluster fitting the subscriber’s profile was tested and the results analysed.

The identification of fraudulent activity when new observations are clustered into clusters

not typical for the subscriber was discussed. Cluster analysis was identified as a good

method for grouping subscribers into behaviour profiles.

Outlier analysis using the Mahalanobis distance measure was applied to the population

of normalised legitimate call data records. The observations with largest Mahalanobis

distance are provided in Table 6.13. The maximum Mahalanobis distance was taken as

a threshold value and new observations exceeding this value were identified as possible

fraudulent activity.

Finally, the Apriori algorithm, used for mining frequent item sets in association rule

mining, was applied to each subscriber’s set of call data records in an attempt to derive

a unique fingerprint for each. The use of fingerprinting to identify fraudulent behaviour,

comparing the fingerprint of the fraudulent subscriber to the behaviour profiles of all other

subscribers in an attempt to identify possible fraudulent subscribers, was discussed, and

found to be a feasible technique for creating subscriber behaviour profiles.

7.2 Appraisal of Fraud Detection Methods

The classification tree constructed in §6.1 was described by a set of three rules, which

resulted in one misclassification when applied to the same data set used as the learning

sample, indicating a good fit on the training sample. However, applying these rules to

a larger sample (of 109 592 observations) of daily subscriber statistics results in a very

large number of misclassifications, with the confusion matrix given in Table 7.1. The
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ŷi

0 1 Errors

0 107 576 1 923 1 923
yi

1 9 84 9

Errors 9 1 923

Table 7.1: Confusion matrix of the classification tree constructed in Chapter 6 applied

to a more representative test sample of 109 592 observations. The classification tree

misclassified 1 932 observations, including 1 923 false positives and 9 false negatives.

majority of these misclassifications (1 919 false positives) are as a result of the second rule

describing the classification tree in §6.1, indicating that fraudulent subscribers make calls

of total daily duration less than or equal to 3.5 seconds. This rule may fit the behaviour

of a small number of subscribers, but for the majority of subscribers, making calls with

a daily duration of less than or equal to 3.5 seconds does not signify fraud, as indicated

by the confusion matrix in Table 7.1. The artificial neural network and Bayes classifier

derived from the learning sample in Chapter 6 were also applied to the larger test sample

with similar results given by the confusion matrices in Tables 7.2 and 7.3 respectively.

ŷi

0 1 Errors

0 106 955 2 544 2 544
yi

1 13 80 13

Errors 13 2 544

Table 7.2: Confusion matrix of the artificial neural network constructed in Chapter 6

applied to a more representative test sample of 109 592 observations. The artificial

neural network misclassified 2 557 observations, including 2 544 false positives and 13

false negatives.

The models created by the classification techniques applied in Chapter 6 are not able to

distinguish between different subscribers, which may be the reason for the large number

of misclassifications. This confirms the statement made in the introduction of this thesis;

that callers are dissimilar, so that calls appearing to be fraud for one account, may seem

to be expected behaviour for other accounts. Fraud detection must therefore be tailored

to each account’s own activity. Classification methods may play an important role in

the fraud detection process, but not as stand-alone fraud detection techniques, given the

large number of misclassifications when applied to an unseen data set. In §6.4 the ability

of classification trees to describe training data with a set of rules was instrumental in
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ŷi

0 1 Errors

0 102 220 7 279 7 279
yi

1 89 4 89

Errors 89 7 279

Table 7.3: Confusion matrix of the Bayes classifier constructed in Chapter 6 applied to

a more representative test sample of 109 592 observations. The Bayes classifier

misclassified 7 368 observations, including 7 279 false positives and 89 false negatives.

dividing new observations into different behaviour groups (clusters). Classification trees

may also play an important role in guiding fraud analysts when defining fraud detection

rules in rule-based fraud detection systems. The ability of artificial neural networks and

Bayesian classifiers to learn the behaviour of known fraudulent subscribers in order to

detect similar behaviour may be used to confirm fraud and assign fraud probability to

subscribers suspected of being defrauded.

The ability of cluster analysis to discover natural groupings in observations, based

on the similarities between them, makes it ideal for use in behaviour profiling. Based

on the method of cluster analysis (and combined with other data mining methods) a

fraud detection technique may be developed with the ability of real-time fraud detection.

In §6.4 a classification tree was constructed on the clustered observations and the rules

describing the classification tree were used to assign new call data records to behaviour-

fitting clusters. Call data records classified into clusters not typical for the subscriber

may be identified as possible fraudulent activity.

The outlier analysis in §6.5 applied the Mahalanobis distance measure to all call data

observations without distinguishing between the subscribers generating these observa-

tions. This technique was unable to detect the majority of fraudulent call data observa-

tions with only 10 fraudulent observations detected out of a total of 175. However, outlier

analysis may be tailored to each subscriber’s own activity, thereby defining a threshold

value fitting the subscriber’s behaviour. Outlier analysis is another technique with the

ability to detect fraud in real-time, because it evaluates the outlier-status of individual

call data observations.

In §6.6 the Apriori algorithm’s frequent item sets were used in an attempt to derive

a fingerprint unique to each subscriber. The subscriber’s fingerprint is a summary of

behaviour during a certain time period. This technique may be used to create fingerprints

of known fraudsters and search for similar fingerprints as an indication of fraud. Another

application of this technique may be to detect changes in user behaviour by comparing

each subscriber’s fingerprint based on long-term historical behaviour with the subscriber’s
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fingerprint based on recent short-term behaviour. Statistical scoring methods may also

be developed for computing the difference between two fingerprints: the higher such a

score the greater the behaviour change and the more suspicious the subscriber’s account.

7.3 Possible Further Work

In view of the revenue loss experienced by cellular network operators due to telecommuni-

cations fraud, it would be valuable to research real-time fraud detection techniques with

the ability to detect fraud accurately from the first call made by a subscriber.

An area of potential study is to evaluate the use of hybrid techniques in fraud detection.

Such a technique was discussed in §6.4, combining cluster analysis and classification trees

to group subscribers based on their past behaviour and predict group membership of

unseen observations. Another option would be to construct group-specific classification

trees, learning from the classified observations in that behaviour group. The derived

group-specific rules may then be used to classify unseen call data observations for the

subscribers belonging to that behaviour group as fraudulent or legitimate. Classification

trees may be replaced with a different classification method, like Bayesian classifiers or

artificial neural networks.

Another area of potential study is the creation of meaningful initial behaviour profiles

for new subscribers so that fraud detection techniques may be applied from the first call

data record. One way to achieve this is to segment the behaviour profiles for existing

subscribers based on information available in the first one or few calls for a subscriber.

Subscriber behaviour may change over time demanding a technique to keep the sub-

scriber’s behaviour profile current, which is another area of potential study. A tech-

nique capable of detecting temporal changes was mentioned in §4.2.1, using exponentially

weighted moving averaging for updating the subscriber behaviour profile with each new

call data record.

Suggestion as to a Comprehensive Fraud Detection Model

It is advisable that fraud management systems employ a large number of different fraud

detection techniques, each one contributing towards estimating a subscriber’s overall fraud

probability. Modern fraud management systems make use of proprietary data mining

techniques and proclaim the capability to detect most types of telecommunications fraud.

The author suggests, in Figure 7.1, such a combination of data mining techniques that may

be used to build a comprehensive fraud detection model that is capable of outperforming

models based on a single data mining methodology. The fraud detection model suggested

in Figure 7.1 comprises four logical areas: data input (A), fraud detection (B), alarm

analysis and case creation (C), and detection model adaptations (D).
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Figure 7.1: Suggested architechture for a comprehensive fraud detection model

implementing a combination of data mining techniques, detection rules and threshold

values.

The network profile of each subscriber, indicating the subscriber’s status and provi-

sioned services in the cellular network, as well as call data records, serve as input to the

suggested fraud detection model (Figure 7.1 A).

A combination of fraud detection methods (Figure 7.1 B) may be applied to the in-

put data, each one with the ability to generate alarms and contribute to the subscriber’s

fraud probability. The fraud detection techniques employed to detect fraud include tech-

niques based on classification trees (described in §2.1 and applied in §6.1), artificial neural

networks (described in §2.4 and applied in §6.2), cluster analysis (described in §2.6 and

applied in §6.4), outlier analysis (described in §2.7 and applied in §6.5) and association

rule mining (described in §2.8 and applied in §6.6). The ability to construct fraud de-
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tection models using rules and threshold values may be included as an additional fraud

detection technique.

Hybrid fraud detection techniques, employing cluster analysis and classification trees,

may be used to cluster subscribers into behaviour groups, using subscribers’ available call

data records to define behaviour clusters. New subscribers may be assigned to initial

clusters describing the behaviour expected by these subscribers. A classification tree may

be used to assign new call data records to behaviour-fitting clusters. Call data records

classified into clusters not typical for subscribers may then raise an alarm.

The method of outlier analysis may be applied to subscribers’ available call data

records, using maximum Mahalanobis distances to determine threshold values. The Ma-

halanobis distances between new call data records and subscribers’ call data population

means may be calculated and alarms may be raised when the Mahalanobis distances are

greater than the threshold values set for these subscribers.

The frequent item set procedure, implemented as part of the Apriori algorithm in

association rule mining, may be used to create fingerprints for subscribers, based on

available call data records. At the end of each profiling period new fingerprints may be

created, describing recent calling behaviour, and may be compared with the subscribers’

saved fingerprints. A significant change in behaviour should result in an alarm being

raised. Functionality to label fingerprints of known fraudsters may be provided to fraud

analysts (Figure 7.1 E). Fingerprints similar to the fingerprints of labelled fraudsters may

be used to raise additional alarms.

The ability to construct fraud detection rules and define threshold values may be

included by means of a classification tree, constructed on call data records belonging to

cases resolved as fraudulent or legitimate, as the source of potential rules. Call data

records may then be validated against the rules and threshold values and alarms may be

raised when rules are matched or threshold values exceeded.

Alarms generated by the fraud detection techniques (Figure 7.1 B) may serve as input

to the alarm analysis area of the fraud detection model (Figure 7.1 C). The generated

alarms may then be analysed by the alarm analysis engine and fraud cases may be created

when the number and severity of alarms on subscribers exceed defined threshold values.

An artificial neural network, constructed from fraud cases resolved as fraudulent or le-

gitimate, may be used to assign fraud probabilities to cases. Fraud analysts should be

able to investigate cases further (manually) and resolve them as fraudulent or legitimate,

based on experience.

The data mining models implemented may be kept up to date with changes in sub-

scriber behaviour by means of updating behaviour profiles, adjusting threshold values

and revising classification models (Figure 7.1 D). Only legitimate call data records should

be employed in updating subscriber behaviour profiles used in cluster analysis and asso-
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ciation rule mining, and threshold values defined as part of outlier analysis. Call data

records raising alarms on cases resolved as legitimate behaviour should also be employed

in adjusting behaviour profiles on legitimate subscribers. Classification techniques, in-

cluding classification trees and artificial neural networks, may be revised based on call

data records on resolved cases.
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Appendix A

Computer Programs

This appendix is devoted to providing the reader access to most of the computer programs

that were used to prepare the data and apply the data mining techniques. Most of the

computer programs used in this thesis were downloaded from Christian Borgelt’s webpages

[5] and are available on the attached compact disk. These programs were executed on a

personal computer with one 2.4GHz central processing unit, 1Gb random access memory

and a Microsoft Windows 2000 operating system.

Instructions on how to construct classification trees, artification neural networks, naive

Bayesian classifiers and association rules using the software available on the attached com-

pact disk are provided in §§A.1, A.2, A.3 and A.6, respectively. A C++ routine imple-

menting cluster analysis is provided in §A.4. An Oracle PL/SQL routine calculating the

Mahalanobis distance between observations is provided in §A.5. SPSS 13.0 for Windows

and Statistica 6.0 were used for statistical analysis of the data and variable selection. The

data set used in this thesis is available in the directory \Data\ on the compact disc.

A.1 Classification Tree

The C++ implementation of the decision tree algorithm [5] (described in §2.1) was used

to construct and execute a classification tree on the available classified observations. The

decision tree program executables, source code and helpfile may be found on the attached

compact disk, in the directory \DTrees\.

The domain file construction program determining the domains of observation attributes and is invoked

as follows:

dom.exe [options] [-d|-h hdrfile] tabfile domfile

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

domfile file to write domain descriptions to
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The possible options are:

-s sort domains alphabetically (default: order of appearance)

-S sort domains numerically/alphabetically

-a automatic type determination (default: all symbolic)

-i do not print intervals for numeric attributes

-l# output line length (default: no limit)

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-u# unknown value characters (default: "?")

-n number of tuple occurrences in last field

-d use default header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

The decision tree construction program is invoked as follows:

dti.exe [options] domfile [-d|-h hdrfile] tabfile dtfile

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

dtfile file to write induced decision/regression tree to

domfile file containing domain descriptions

The possible options are:

-c# target attribute name (default: last attribute)

-q# balance class frequencies (weight tuples)

l: lower, b: boost, s: shift tuple weights

-e# attribute selection measure (default: infgr/rmse)

-! print a list of available attribute selection measures

-z# sensitivity parameter (default: 0)

(for measures wdiff, bdm, bdmod, rdlen1, rdlen2)

-p# prior (positive value) or equivalent sample size (negative value)

(for measures bdm, bdmod)

-i# minimal value of the selection measure (default: no limit)

-w do not weight measure with fraction of known values

-t# maximal height of the tree (default: no limit)

-m# minimal number of tuples in two branches (default: 2)

-s try to form subsets on symbolic attributes

-l# output line length (default: no limit)

-a align values of test attributes (default: do not align)

-v print relative frequencies (in percent)

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-u# unknown value characters (default: "?")

-n number of tuple occurrences in last field

-d use default header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)
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The decision tree execution program is invoked as follows:

dtx.exe [options] dtfile [-d|-h hdrfile] tabfile [outfile]

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

outfile file to write output table to (optional)

dtfile file containing decision/regression tree description

The possible options are:

-p# prediction field name (default: dt)

-s# support field name (default: no support field)

-c# confidence field name (default: no confidence field)

-a align fields (default: do not align)

-w do not write field names to output file

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-u# unknown value characters (default: "?")

-n number of tuple occurrences in last field

-d use default header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

The decision tree rule extraction program is invoked as follows:

dtr.exe [options] dtfile rsfile

The normal arguments are:

dtfile file containing decision/regression tree description

rsfile file to write rule set description to

The possible options are:

-s print support of a rule

-c print confidence of a rule

-d print only one condition per line

-l# output line length (default: no limit)

(# always means a number, a letter, or a string that specifies the parameter of the option.)

A.2 Artificial Neural Network

The C++ implementation of the multilayer perceptron algorithm [5] (described in §2.4)

was used to construct and execute a neural network on the available classified observations.

The neural network program executables, source code and helpfile may be found on the

attached compact disk, in the directory \NeuralNetwork\.

The domain file construction program determining the domains of observation attributes and is invoked
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as follows:

dom.exe [options] [-d|-h hdrfile] tabfile domfile

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

domfile file to write domain descriptions to

The possible options are:

-s sort domains alphabetically (default: order of appearance)

-S sort domains numerically/alphabetically

-a automatic type determination (default: all symbolic)

-i do not print intervals for numeric attributes

-l# output line length (default: no limit)

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-u# unknown value characters (default: "?")

-n number of tuple occurrences in last field

-d use default header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

The neural network training program is invoked as follows:

mlpt.exe [options] domfile [-d|-h hdrfile] tabfile mlpfile

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

mlpfile file to write multilayer perceptron to

domfile file containing domain descriptions

The possible options are:

-o# output/target attribute name (default: last attribute)

-c#:#.. number of units per hidden layer (default: no hidden layer)

-x# expansion factor for output ranges (default: 1)

-w# initial weight range (default: 1)

-a# weight update method (default: 0)

-! print a list of available weight update methods

-t# learning rate (default: 0.2)

-z#:# minimal and maximal change/learning rate (default: 1e-006:16)

-g#:# growth and shrink factor (default: 1.2:0.5)

-i# flat spot elimination (default: 0)

-m# momentum coefficient (default: 0)

-y# weight decay factor (default: 0)

-j# range for weight jogging (default: 0)

-T# error for termination (default: 0)

-e# maximum number of training epochs (default: 1000)

-k# patterns between two weight updates (default: 1)

(0: update at the end of each epoch)

-v# verbose output (print sse every # epochs)
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-q do not normalize input value ranges

-s do not shuffle patterns between epochs

-S# seed value for random number generation (default: time)

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-l# output line length (default: no limit)

(and maybe a pretrained network)

-d use default header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

The neural network execution program is invoked as follows:

mlpx.exe [options] mlpfile [-d|-h hdrfile] tabfile [outfile]

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

outfile file to write output table to (optional)

mlpfile file to read multilayer perceptron from

The possible options are:

-p# prediction field name (default: nn)

-c# confidence field name (default: no confidence field)

-x print extended confidence information

-a align fields (default: do not align)

-w do not write field names to output file

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-d use default header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

A.3 Naive Bayesian Classification

The C++ implementation of the naive Bayesian classification algorithm [5] (described

in §2.5) was used to construct and execute a naive Bayesian classifier on the available

classified observations. The Bayesian classifier program executables and source code may

be found on the attached compact disk, in the directory \Bayes\.

The domain file construction program determining the domains of observation attributes and is invoked

as follows:

dom.exe [options] [-d|-h hdrfile] tabfile domfile

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)
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domfile file to write domain descriptions to

The possible options are:

-s sort domains alphabetically (default: order of appearance)

-S sort domains numerically/alphabetically

-a automatic type determination (default: all symbolic)

-i do not print intervals for numeric attributes

-l# output line length (default: no limit)

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-u# unknown value characters (default: "?")

-n number of tuple occurrences in last field

-d use default header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

The Bayesian classifier construction program is invoked as follows:

bci.exe [options] domfile [-d|-h hdrfile] tabfile bcfile

The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

bcfile file to write Bayes classifier to

domfile file containing domain descriptions

The possible options are:

-F induce a full Bayes classifier (default: naive Bayes)

-c# class field name (default: last field)

-w# balance class frequencies (weight tuples)

l: lower, b: boost, s: shift weights

-s# simplify classifier (naive Bayes only)

a: by adding, r: by removing attributes

-L# Laplace correction (default: 0)

-t distribute tuple weight for unknown values

-m use maximum likelihood estimate for the variance

-p print relative frequencies (in percent)

-l# output line length (default: no limit)

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-u# unknown value characters (default: "?")

-n number of tuple occurrences in last field

-d use default table header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

The Bayesian classifier execution program is invoked as follows:

bcx.exe [options] bcfile [-d|-h hdrfile] tabfile [outfile]
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The normal arguments are:

hdrfile file containing table header (field names)

tabfile table file to read (field names in first record)

outfile file to write output table to (optional)

bcfile file containing classifier description

The possible options are:

-c# classification field name (default: bc)

-p# confidence/probability field name (default: no confidence output)

-L# Laplace correction (default: as specified in classifier)

-v/V (do not) distribute tuple weight for unknown values

-m/M (do not) use maximum likelihood estimate for the variance

-a align fields (default: do not align)

-w do not write field names to the output file

-b/f/r# blank characters, field and record separators

(default: " \t\r", " \t", "\n")

-u# unknown value characters (default: "?")

-n number of tuple occurrences in last field

-d use default table header (field names = field numbers)

-h read table header (field names) from hdrfile

(# always means a number, a letter, or a string that specifies the parameter of the option.)

A.4 Cluster Analalysis

The section of code provided below uses Gower’s general similarity coefficient given in

(2.22) to populate an initial similarity matrix D = {dik}. McQuitty’s similarity analysis

(see §2.6.1) was then employed to merge the two most similar observations, and to compute

the similarity between the newly formed cluster and the remaining clusters, updating the

similarity matrix with this value. The source code may be found on the attached compact

disk, in the directory \Cluster\.

//Loop through the available observations in the data set

for (k=0;k<i;k++)

{

//Calculate similarity matrix only for entries below the diagonal to avoid performing the same similarity

//calculation twice.

for (l=0;l<=k;l++)

{

//Initialise the similarity measure

dist = 0.0;

//No need to calculate the similarity between observation k and k.

if (l<k)

{

//Calculate the similarity between categorical explanatory variables

//in observations k and l where l <> k

if (strcmp(prepaid_ind[k],prepaid_ind[l])==0)

dist = dist+1.0;

if (strcmp(peak_ind[k],peak_ind[l])==0)

dist = dist+1.0;
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//Calculate the similarity between ordinal and continuous explanatory variables in observations

//k and l where l <> k

dist = dist + (1.0 - (fabs(atof(call_duration[k]) - atof(call_duration[l])))/v_call_duration_range) +

(1.0 - (fabs(atof(call_charge[k]) - atof(call_charge[l])))/v_call_charge_range) +

(1.0 - (fabs(atof(tariff_ind[k]) - atof(tariff_ind[l])))/v_tariff_range) +

(1.0 - (fabs(atof(location_ind[k]) - atof(location_ind[l])))/v_location_range) +

(1.0 - (fabs(atof(terminating_ind[k]) - atof(terminating_ind[l])))/v_terminating_range);

//Calculate the average similarity across 7 explanatory variables

dist = dist / 7.0;

}

//update entry [k][l] of the similarity matrix with the calculated similarity between

//observations k and l

sprintf(buffer,"%.4f",dist);

strcpy(matrix[k][l],buffer);

}

}

//Use the similarity matrix calculated above and start merging most similar observations into clusters

//Initialise the matrix of clusters

for (m=0;m<i;m++)

{

clusters[m].distance = 0;

clusters[m].deleted = 0;

sprintf(clusters[m].clustid,"%d",m);

clusters[m].clustcount = 1;

sprintf(clusters[m].clustid_concat,"%d",m);

}

//Loop

for(;;)

{

//Find the two most similar observations or cluster of observations

for (m=0;m<i;m++)

{

for (n=0;n<=m;n++)

{

if (atof(matrix[m][n])>max)

{

max = atof(matrix[m][n]);

c1 = m;

c2 = n;

}

}

}

//Terminate clustering process once the terminating condition has been reached

if (max < v_stop_cluster)

break;

//Number of observations in cluster 1

n_c1 = clusters[c1].clustcount;

//Number of observations in cluster 2

n_c2 = clusters[c2].clustcount;

//Similarity coefficient between cluster 1 and 2

d_c12 = max;

max = 0;

//Calculate the similarity between newly formed cluster 12 and all other clusters

for (r=0;r<c1;r++)
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{

if(clusters[r].deleted == 0)

{

n_cr = clusters[r].clustcount;

d_c1r = atof(matrix[c1][r]);

if (c2>=r)

d_c2r = atof(matrix[c2][r]);

else

d_c2r = atof(matrix[r][c2]);

d_c12r = (((double)n_cr+(double)n_c1)/((double)n_cr+(double)n_c1+(double)n_c2))*d_c1r +

(((double)n_cr+(double)n_c2)/((double)n_cr+(double)n_c1+(double)n_c2))*d_c2r -

(((double)n_cr)/((double)n_cr+(double)n_c1+(double)n_c2))*d_c12;

sprintf(buffer,"%.4f",d_c12r);

strcpy(matrix[c1][r],buffer);

}

}

//Calculate the similarity between newly formed cluster 12 and all other clusters

for (r=c1+1;r<i;r++)

{

if(clusters[r].deleted == 0)

{

n_cr = clusters[r].clustcount;

d_c1r = atof(matrix[r][c1]);

d_c2r = atof(matrix[r][c2]);

d_c12r = (((double)n_cr+(double)n_c1)/((double)n_cr+(double)n_c1+(double)n_c2))*d_c1r +

(((double)n_cr+(double)n_c2)/((double)n_cr+(double)n_c1+(double)n_c2))*d_c2r -

(((double)n_cr)/((double)n_cr+(double)n_c1+(double)n_c2))*d_c12;

sprintf(buffer,"%.4f",d_c12r);

strcpy(matrix[r][c1],buffer);

}

}

//Update the similarity matrix by removing similarity measures between the

//merged and other clusters

for (r=c2;r<i;r++)

{

strcpy(matrix[r][c2],"0.0000");

}

for (r=0;r<=c2;r++)

{

strcpy(matrix[c2][r],"0.0000");

}

//Delete cluster 2 and add newly formed cluster and cluster 1

clusters[c1].distance = d_c12;

clusters[c2].deleted = 1;

clusters[c1].clustcount = clusters[c1].clustcount + clusters[c2].clustcount;

strcat(clusters[c1].clustid_concat,",");

strcat(clusters[c1].clustid_concat,clusters[c2].clustid_concat);

}
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A.5 Outlier Analysis

The following Oracle PL/SQL procedure calculates the Mahalanobis distance (described

in §2.7) given as

D2(X,X) = (X−X)
′
Σ−1(X−X),

where Σ is the covariance matrix for the explanatory variables, X is the vector of explana-

tory variables for all observations in the population, and X is the vector of corresponding

means, taken over all observations in the population. The source code may be found on

the attached compact disk, in the directory \Outlier\.

/*Declare variables*/

v_prepaid_ind NUMBER;

v_subscriber_tariff NUMBER;

v_peak_ind NUMBER;

v_cell_location NUMBER;

v_other_party NUMBER;

v_charge NUMBER;

v_duration NUMBER;

x_1 NUMBER;

x_2 NUMBER;

x_3 NUMBER;

x_4 NUMBER;

x_5 NUMBER;

x_6 NUMBER;

x_7 NUMBER;

v_mahalanobis NUMBER;

BEGIN

/*Loop though the normalised legitimate observations and calculate the Mahalanobis distance

between the observation and population mean*/

FOR i IN 1..v_max_observation_id LOOP

/*Calculate the difference between the explanatory variables values and the population mean*/

SELECT A.prepaid_ind - v_prepaid_ind_mean,

A.subscriber_numerated_tariff - v_numerated_tariff_mean,

A.peak_ind - v_peak_ind_mean,

A.cell_location_numerated - v_location_numerated_mean,

A.other_party_country_numerated - v_country_numerated_mean,

A.call_charge - v_call_charge_mean,

A.call_duration - v_call_duratio_mean

INTO v_prepaid_ind,

v_subscriber_tariff,

v_peak_ind,

v_cell_location,

v_other_party,

v_charge,

v_duration

FROM normalised_data_set A

WHERE A.observation_id = i;

BEGIN

/*Multiply the vector of differences between the explanatory variables values and the population mean

with the inverse covariance matrix*/

x_1 := (v_prepaid_ind*v_inv_covar_11)+(v_subscriber_tariff*v_inv_covar_12)+(v_peak_ind*v_inv_covar_13)+

(v_cell_location*v_inv_covar_14)+(v_other_party*v_inv_covar_15)+(v_charge*v_inv_covar_16)+
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(v_duration*v_inv_covar_17);

x_2 := (v_prepaid_ind*v_inv_covar_21)+(v_subscriber_tariff*v_inv_covar_22)+(v_peak_ind*v_inv_covar_23)+

(v_cell_location*v_inv_covar_24)+(v_other_party*v_inv_covar_25)+(v_charge*v_inv_covar_26)+

(v_duration*v_inv_covar_27);

x_3 := (v_prepaid_ind*v_inv_covar_31)+(v_subscriber_tariff*v_inv_covar_32)+(v_peak_ind*v_inv_covar_33)+

(v_cell_location*v_inv_covar_34)+(v_other_party*v_inv_covar_35)+(v_charge*-v_inv_covar_36)+

(v_duration*v_inv_covar_37);

x_4 := (v_prepaid_ind*v_inv_covar_41)+(v_subscriber_tariff*v_inv_covar_42)+(v_peak_ind*v_inv_covar_43)+

(v_cell_location*v_inv_covar_44)+(v_other_party*v_inv_covar_45)+(v_charge*v_inv_covar_46)+

(v_duration*v_inv_covar_47);

x_5 := (v_prepaid_ind*v_inv_covar_51)+(v_subscriber_tariff*v_inv_covar_52)+(v_peak_ind*v_inv_covar_53)+

(v_cell_location*v_inv_covar_54)+(v_other_party*v_inv_covar_55)+(v_charge*v_inv_covar_56)+

(v_duration*v_inv_covar_57);

x_6 := (v_prepaid_ind*v_inv_covar_61)+(v_subscriber_tariff*v_inv_covar_62)+(v_peak_ind*v_inv_covar_63)+

(v_cell_location*v_inv_covar_64)+(v_other_party*v_inv_covar_65)+(v_charge*v_inv_covar_66)+

(v_duration*v_inv_covar_67);

x_7 := (v_prepaid_ind*v_inv_covar_71)+(v_subscriber_tariff*v_inv_covar_72)+(v_peak_ind*v_inv_covar_73)+

(v_cell_location*v_inv_covar_74)+(v_other_party*v_inv_covar_75)+(v_charge*v_inv_covar_76)+

(v_duration*v_inv_covar_77);

/*Multiply the previous result with the transposed vector of differences between the

explanatory variables values and the population mean to obtain the Mahalanobis distance*/

v_mahalanobis := v_prepaid_ind*x_1 + v_subscriber_tariff*x_2 + v_peak_ind*x_3 + v_cell_location*x_4 +

v_other_party*x_5 + v_charge*x_6 + v_duration*x_7;

/*Insert the Mahalanobis distance of each observation into the database table*/

INSERT

INTO data_set_mahalanobis (

observation_id,

mahalanobis)

VALUES(i,

v_mahalanobis);

END;

END LOOP;

COMMIT;

A.6 Association Rule Mining

The C++ implementation of the Apriori algorithm [5] (described in §2.8) was used to

mine for frequent item sets among the explanatory variables of the observations. The

Apriori program executable, source code and a helpfile may be found on the attached

compact disk, in the directory \Apriori\.

The Apriori program is invoked as follows:

apriori.exe [options] infile outfile [appfile]

The normal arguments are:

infile file to read transactions from

outfile file to write association rules / frequent item sets to

appfile file stating item appearances (optional)

The possible options are:
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-t# target type (default: association rules)

(s: itemsets, c: closed itemsets, m: maximal itemsets,

r: association rules, h: association hyperedges)

-m# minimal number of items per set/rule/hyperedge (default: 1)

-n# maximal number of items per set/rule/hyperedge (default: 5)

-s# minimal support of a set/rule/hyperedge (default: 10%)

-S# minimal support of a set/rule/hyperedge (default: 100%)

-c# minimal confidence of a rule/hyperedge (default: 80%)

-o use original definition of the support of a rule (body & head)

-k# item separator for output (default: " ")

-p# output format for support/confidence (default: "%.1f%%")

-x extended support output (print both rule support types)

-a print absolute support (number of transactions)

-y print lift value (confidence divided by prior)

-e# additional rule evaluation measure (default: none)

-! print a list of additional rule evaluation measures

-d# minimal value of additional evaluation measure (default: 10%)

-v print value of additional rule evaluation measure

-g write output in scanable form (quote certain characters)

-l do not load transactions into memory (work on input file)

-q# sort items w.r.t. their frequency (default: 1)

(1: ascending, -1: descending, 0: do not sort,

2: ascending, -2: descending w.r.t. transaction size sum)

-u# filter unused items from transactions (default: 0.5)

(0: do not filter items w.r.t. usage in item sets,

<0: fraction of removed items for filtering,

>0: take execution times ratio into account)

-h do not organize transactions as a prefix tree

-j use quicksort to sort the transactions (default: heapsort)

-z minimize memory usage (default: maximize speed)

-i# ignore records starting with characters in the given string

-b/f/r# blank characters, field and record separators (default: " \t\r", " \t", "\n")

(# always means a number, a letter, or a string that specifies the parameter of the option.)


