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Abstract

Very Large Scale Integration (VLSI) of the Rapid Single Flux Quantum (RSFQ)

superconducting logic family is researched. Insight into the design methodologies used

for large-scale digital systems and related logistics are reviewed. A brief overview of

basic RSFQ logic gates with in mind their application in a cell based layout scheme

suited for RSFQ is given. A standard cell model is then proposed, incorporating these

cells, on which, a library of low temperature superconducting (LTS) cells are laid out.

Research is made into computer techniques for storing and manipulating large-scale

circuit netlists. On this base, a method of technology mapping Boolean circuits to an

RSFQ equivalent is achieved. Placements on-chip are made, optimized for minimum net

length, routed and exported to a popular electronic mask format. Finally, the convergent

technology fields of solid state cooling and high-temperature superconducting electronics

(HTS) are investigated. This leads to a proposal for a low profile, low cost, HTS

cryopackaging concept.
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Opsomming

Grootskaalse integrasie (VLSI) van die "Rapid Single Flux Quantum" (RSFQ)

supergeleidende familie van logiese hekke word uiteengesit. Insig in die ontwerpmetodes

vir grootskaaIse digitale stelsels en verwante aspekte word ondersoek. 'n Kort oorsig van

basiese RSFQ logiese hekke word gegee, met hulle toepassing in 'n uitlegskema wat

geskik is vir RSFQ. 'n Standaard sel model, wat bogenoemde selle insluit, word

voorgestel en 'n selbiblioteek word uitgele vir lae temperatuur supergeleidende bane.

Ondersoek word ingestel na die manipulasie van die beskrywing van elektroniese bane en

'n manier om logiese Boolese baanbeskrywings om te skakel na fisiese RSFQ bane. Die

fisiese plasing van selle word bespreek ten einde die verbindingslengte tussen selle te

minimeer. Die finale uitleg word omgeskakel na 'n staandaard elektroniese formaat vir

baanuitlegte. Die konvergerende tegnologievelde van "soliede toestand" verkoeling en

hoe-temperatuur supergeleidende elektroniese bane word bespreek. Ten slotte word 'n

nuwe tipe, lae profiel en lae koste kriogeniese verpakking voorgestel.
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Chapter 1

Introduction

Rapid Single Flux Quantum (RSFQ) is a superconducting family of logic that can

realize circuits that switch in the sub-terahertz range and beyond [6][35]. Here, the

prospect and implementation thereof is researched and discussed in a manner that is not

limited to a single fabrication process, i.e. Hypres, but a broader range that could include

high temperature superconducting (HTS) circuits as well.

VLSI stands for very large scale integration and refers to integrated circuits that

contain more than 105 basic transistors or Josephson junctions. The type of circuits

designed can be general-purpose integrated circuits like microprocessors, digital signal

processors and memories.

A method for automating the layout of an RSFQ VLSI circuit is proposed and

then developed, since purposefully written programmes performing this function, as of

yet, are scarce. Before the methods and procedures for such a programme are covered,

Chapter 1 reviews standard design techniques, methodologies and present logistic

problems facing RSFQ. Chapter 2 develops from a raw library of RSFQ elements, a

formal standard logic cell cast into which these elements are arranged. In Chapter 3, the

netlist concept and data structures needed to manipulate large circuits in computer

memory are developed from literature on the topic. Here, an RSFQ mapper is

implemented to technology map a Boolean netlist to an RSFQ equivalent. Placement

algorithms are then researched and tested in Chapter 4. Global and local routing
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procedures are developed in Chapter 5. Results of the algorithms employed are tested for

three circuits and documented in Chapter 6. Then, in Chapter 7 new improvements in

solid-state cooling are discussed with the potential to overcome the biggest hurdle to the

implementation of RSFQ circuits.

The object of this thesis is to widen the pathway that leads to achieving the

combination of RSFQ and VLSI. Many commercially available software packages exist

that perform this task. It is hoped that the work undertaken here will contribute to this

body of work at some later point in time.
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1.1 Overview of VLSI design issues

In designing complex VLSI circuits from a given specification, primarily, the

following are optimized for [1]:

• Area - Minimization of the circuit area is critical as it increases the yield of a circuit.

The yield is the percentage of correct circuits on a chip. In addition, the ability to fit a

circuit on fewer chips, leads to a more economical design.

• Speed - An increase in speed improves the attractiveness of a chip. Increasing the

speed usually implies an increase in area due to parallelism. The design process

should always consider the trade-off between area and speed.

• Power Dissipation - Although RSFQ logic elements dissipate considerably less

power than transistor type elements, the level of power dissipation must be

considered, especially since cooling at cryogenic temperatures becomes increasingly

difficult.

• Design time - The design of an integrated circuit is an economic activity. A design

satisfying a set of specifications should be available as soon as possible. CAD tools

help to shorten the design time considerably as does the use of semi custom design.

• Testability - As a significant percentage of chips fabricated are expected to be

defective, all of them have to be tested before being used in a product. It is important

that a chip is easily testable as testing equipment is costly. This asks for the

minimization of the time spent to test a single chip. Increasing the testability of a chip

usually increases its area.

Two concepts that are helpful in the design of complex circuits are hierarchy and

abstraction [1][8][26] and [3]. Hierarchy is used to describe a circuit over different levels

of abstraction. Abstraction hides details of higher and lower levels (see figure 1.1). The

use of abstraction allows for the reasoning out of a limited number of interacting parts at

each level in a hierarchy. Each part is itself composed of interacting subparts at a lower

level of abstraction. This decomposition continues until the basic building blocks (i.e.

Josephson junctions) of a VLSI circuit are reached.
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lSI Level of Abstraction

2nd Level of Abstraction

rd3 Level of Abstraction

Figure 1.1. Hierarchy and Abstraction

1.2. The Design Domains

A hierarchy and abstraction model is insufficient to properly describe the VLSI

design process. There is a consensus to distinguish three design domains, each with its

own hierarchy. These being:

• The behavioral domain - This looks at a design from the perspective of a black box.

A design with several junctions can be described by means of expressions in Boolean

algebra or truth tables. At a higher, register-transfer-level (RTL) [13l, a circuit is seen

as sequential logic consisting of memory elements (registers) and functions that

compute the next state given the current memory state. The highest behavioral

descriptions are algorithms that don't even refer to the hardware that will realize the

computation described.

• The structural domain - The circuit is seen from a position of sub circuits. A

description in this domain gives information on the sub circuits used and the ways in

which they are interconnected. Each of these sub circuits has a description in the

behavioral domain.
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• The physical domain - A VLSI circuit always has to be realized on a chip, which is

essentially two-dimensional. The physical domain gives information on how the

subparts in the structural domain are located on a two-dimensional plane.

These three domains and their hierarchies can be visualized on a Y chart as

depicted in figure 1.2. Each axis represents a design domain and the level of abstraction

decreases from the outside to the center [I].

Behavioral Domain Structural Domain

System

Algorithms

Register transfers
Logic

Transfer functions

Processors
ALU's, RAM, etc.

Cells, AND's, NDRO's, etc.
Junctions

Junction layout

Cell layout

Module layout

Floorplans

Physical partitions

Physical Domain

Figure 1.2. Y Chart adapted for Josephson junction type, large-scale circuits
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1.3. Design Hierarchy

The Y-Chart can also be broken into a design hierarchy (see figure 1.3), allowing

the chip designer to work on different levels of the same problem.

Algorithmic and System Design-------------------------

Structural and Logic Design

Junction Level Design

Layout Design

Figure 1.3. Design Hierarchy

1.3.1. Algorithmic and System Design

At the early stages of design, there is a need to formalize the specifications. The

designer will work with the initial algorithm using a hardware description language

(HDL) [I3j, allowing for a natural description of hardware [I ][8]. Using a formal HDL to

describe a circuit removes ambiguity from a specification that could be found in a natural

language description, like English.

The HDL description can be used for design simulation and synthesis to generate

an equivalent version of the circuit on a lower level using standard logic building blocks.

Other forms of capturing the behavioral description of a circuit also includejinite

state machines (FSM.s), which are useful in control-dominated applications [I]. However,
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most of these available tools convert the graphic information to equivalent HOL

languages [I].

1.3.2. Structural and Logic Design

The complete design of a circuit can sometimes not be achieved by a high-level

description alone. The quality of the circuits produced may be unacceptable. In this case,

a schematic editor is used [1][8]. This CAD tool uses a graphic user interface to

manipulate hierarchical blocks that can be expanded to lower-levels. The lowest levels

consist of logic gates and latches. This tool also allows for simulation of the circuit.

In general, large libraries of distinct logic gates are available for realization of

digital circuitry [I ][8]. Logic synthesis algorithms do not deal with this library directly;

instead, an abstract circuit representation is used at the early stages of synthesis. Once an

estimate circuit is found to satisfy certain optimization constraints, the circuit is

converted using library cells by a technology-mapping tool.

1.3.3. Junction-Level Design

Josephson junctions create the logic gates in RSFQ [6] and COSL [II]

technology. At this level, to create these gates, a complete set of tools is needed, which

are mostly simulation tools [I]. Simulations take place on the switch level (functional

level), timing level (timing delay) and circuit level (nonlinear SPICE models).

For a full custom design it is important to be able to be able extract the circuit

from its primarily 20 layout.

1.3.4. Layout Design

There are many different layout tools available to handle the editing of a

multilayered, 20 circuit mask. In essence, the layout problem consists of sub blocks of a

design that has a list of interconnections to be made [I]. These sub blocks are rectangles
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with terminals on their perimeter to which wires connect. The problem is to compose a

layout of an entire integrated circuit.

Completed mask designs can be exported to popular formats like CIF, GDSII and

DXF. Such mask files can then be sent to an integrated circuit foundry for fabrication.

1.4. VLSI Design Flow in Computer Aided Design Packages

The development of integrated circuits (/Cs) is broken down into nine distinct

steps [8], called the design flow as seen in figure 1.4. Each step involves specific

algorithms and processes that are described below.

1. Design Entry - This relates to the graphic user interface (GUI) level of the CAD

software tool package. Various tools are used that include text editors, schematic

capturers, symbol libraries, simulation graphs, and message feedback windows

among others.

2. Logic Synthesis - A netlist is produced from an HDL or schematic entry

description defined in step I. An HDL behavioral description is transformed into

a structural equivalent, through a process of synthesis. A schematic entry is

structural in nature already.

3. System Partitioning - For large systems where one netlist cannot fit onto a given

IC area, the netlist is partitioned minimizing the number of interconnecting wires.

There are many partitioning algorithms available. The Kernighan-Lin is one of the

most popular with many derivatives - it is reviewed in chapter 4.

4. Prelayout Simulation - A useful tool for a circuit design is the ability to

preliminary test a circuit netlist before implementing the lengthy layout process

(steps 5 to 7). This saves time, considering that for circuits that are VLSI in nature

optimum layout placements could take hours, if not days to complete.
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Start

Post layout

Circuit
Extraction

Figure 1.4. Application Specific Integrated Circuit Design Flow [8].

5. Floorplanning - The designed primary blocks of a large circuit contain logic

gates in the order of thousands that are arranged according to requirements. CAD

tools have been developed to automate the step and generally attempt to minimize

interconnecting wire lengths or congestion.

6. Placement - The exact placement of cells in the primary blocks are decided here.

There is a host of optimization techniques available that either attempt to

minimize interconnecting wire length or area and maximize circuit speed. In this

thesis, we implement simulated annealing and genetic algorithms to achieve these

goals.
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7. Routing - Connections are made between placed cells from step 6. Once a

preliminary placement is made, the layout is first globally, then locally or detailed

routed. The two sub-steps employ different algorithms.

8. Extraction - Circuit parameters are extracted from physical layout and sent to a

simulation tool in step 9. This step is useful to the circuit designer in that it helps

to verify whether placement will work according to initial specification.

9. Postlayout Simulation - This final step involves performing simulations with

various waveform test beds. These tested waveforms can be compared with those

in step 4 as to how the physical manifestation of a circuit changes its timing.

These steps are generally followed as per the flow diagram in figure 1.4. It should

be noted that there are two design cycles.
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1.5. Economics of Superconducting Electronics

An important consideration is the present cost penalty for using cryoelectronics as

opposed to room-temperate alternatives in implementing an electronic circuit. The rapid

adoption of superconductors is presently hampered by the high price of the cooling units

required to reach cryogenic temperatures. A road map for the superconducting electronics

[9] has been established similar to the semiconductor equivalent [10], both highlighting

the same issue.

The problem IS made apparent when a cooling unit for low temperature

superconductors (LTS) presently would cost in the order of $30,000 [30); for high

temperature superconductors (HTS) this would be in the region of $10,000 [31].

Presently, LTS Nb/AlOJNb [16] is the most advanced RSFQ technology to date

with integration scales approaching the sub-micron region [32]. HTS on a sub-micron

scale is thought to be something of the future [33]. However, the cost of fabricating a

VLSI LTS or HTS Ie is considered negligible in comparison to the peripheral cooling

and packaging needed.

This thesis addresses this problem in a later chapter by highlighting advancements

made in the field of solid state cooling [23][27], particularly thermoelectrics. By making

use of nano-scale fabrication, a new breed of solid state cooling is made available based

on concepts that have been known since 1821.

So as not to lose sight of a wider scope of emerging technologies that compete

with RSFQ, the reader is urged to refer to [10].
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Chapter 2

Library of Superconducting Logic

Components

A library of LTS RSFQ logic cells are presented that have the ability to produce

digital switches that operate at sub-terahertz speeds [6] [7]. The object of this chapter is

to provide an overview of the basic nature and ability of RSFQ circuits without too much

detail. Individual circuit SPICE models are available in Appendix B [4].

A differentiation is made between a basic logic circuit and a standard logic cell

with respect to RSFQ. A basic logic circuit is an implementation of building blocks

required for the general concept of RSFQ; standard logic cells, however, develop from

the former to create a structured means of arranging such circuits on a large scale.

For a deeper understanding of the physical principles and design issues of RSFQ

circuits, the reader is encouraged to refer to [6], [2], [7], [II] and [16].

2.1. RSFQ Basic Logic Circuits

The circuits below are optimized for high yield and are tested using Monte Carlo

Analysis [4]. The basic principle of RSFQ was made widely known by Likharev et al. [6]

and tested to have operating speeds as high as 770GHz [7]. The pulses used in these

circuits adhere to the integral below.
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2.2. Standard Logic Cell Template

For an organized method of arranging the physical layout of the above logic cells,

a standard cell [8J template is used. This serves as a mold wherein the physical logic

function of a superconductive RSFQ cell is arranged to convention.

Standard Cell

Vdd Width

ern
/

x
E-<
;::J

Josephson~nction
0

CIrCUit tail 0
E-<
;::J
0

/

cell abnrrent box (AB)

Vckl
Figure 2.2.1. Standard Cell Layout

Inputs enter on the left or west orientation, while outputs exit on the right or east

orientation. Special ports are considered the supply voltage Vdd and global pulse clock,

CLK. The Standard Cell Width is a fixed quantity throughout a physical Iibrary, and the

Standard Cell Height varies according to individual cell layouts.
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o
f-
:Jo

vua.; cue;
Figure 2.2.2. Standard Logic Cell containing Basic Logic Circuit

The contents of a physical cell will contain the circuit arrangement as seen in figure

2.2.2. For each standard logic cell a splitter cell must be included to repeat the clock

signal CLKn to the special output port CLKoll!. The incoming Vdd.; supplies the basic

logic circuits bias voltage and couples to the special output port Vddoll!. In this fashion, it

can be seen that these standard logic cells can be stacked one on top of the other.
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2.3. An RSFQ Cell Based Integrated Circuit (CBIC)

The process proposed in figure 2.3., comprises rows of the above defined standard

logic cells stacked one on top of the other. At the top, Row End Cells or terminator cells

supply the Vdd and CLK signals to the rows. A power cell may be included to increase the

strength of the supply voltage at a determined position in the rows. Routing of the cells

will take place on the Metal 1 and Metal 2 layers of a multi-layered fabrication process

with connections made between layers with a via. A spacer cell of arbitrary height may

be used to adjust positions of cells in a specified row. A feedthrough cell allows for

spacing for routing between rows.

No Connection ~ Metal2 (M2)

Metal) (M)) ------1J ~"" Connection

Figure 2.3. Cell based layout of standard logic cells.

Later chapters will be concerned with the automation of the arrangement of such a

layout scheme. In conventional semiconductor layout strategies [8][ I], the orientation of

the standard logic cells is usually made in the horizontal plane. For the sake of

consistency with a superconducting programmable gate array layout method [5], a

vertical orientation was chosen.
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Table 2.5. Parameters for Cells

Standard Static Power Actual Minimum DC bias Latency

Logic Consumption Dimensions Layout [mY] (Clock to

Cell [).lW] [urn] Area Output)

[~lm2] [ps]

RSFQ AND-gate 7.26 215 x 193 41495 2.6 35

RSFQ OR-gate 2.31 215 x 170 36550 2.6 5.5

RSFQ NOT-gate 2.16 215 x 100 21 500 2.6 21

RSFQ XOR-gate 2.00 215 x 100 21 500 2.6 12

RSFQ Splitter-gate 3.10 215 x 70 15050 2.6 10*

Row End/ 2.61 215 x 70 15050 2.6 22*

Terminator

*Asynchronous device latency (input-to-output)

2.S. Impedance Matching of Transmission Lines

The impedance matching of a superconducting line should be considered when

interfacing the ports of a logic cell to a transmission line. The inductance calculation

programme SLINE [28] is a useful tool in calculating, particularly, superconducting

transmission line widths.

The width of a routing track, again, is specified in the technology mapping file

general section (see Appendix C). Depending on the fabrication process being used, the

design engineer will have to simulate using a transmission line model to find out what

width of routing will be required to match ports of the standard cells employed.
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Chapter 3

Netlists and Data Structures

To manually keep track of thousands of logic cells at a time is impossible for a

design engineer who may have only months to complete a design. By using a computer to

layout a VLSI circuit, tasks can be automated, tracked and simulated in a substantially

reduced amount of time. In this chapter, a model for representing an electronic circuit in

the memory of a computer is developed. In a later section of this chapter, a

technology mapping step from Boolean logic to equivalent RSFQ is made.

Technology
§C

Mapping
File

§3.1. §3.3 §4 §5

EDIF Netlist RSFQ

Extraction Logic Placement Routing Export___. -. Mapper -. -. -. i

CDSII

:~acemi;1
i Report j
'-......._-_ .._---_.,./

",.,..-------- <,

k _

i Routing!
i I, Report ,
"------'../

Export-
\. Report
'---._ .

Figure 3.1 System overview
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To integrate the previously developed layout scheme with existing electronic

design methodologies the system below is proposed (see figure 3.1). This strategy accepts

an Electronic Data Interchange Format ASCII file as input and processes it through what

is termed the layout process, to export a physical mask to the GDSII format file. There

are five distinct steps involved, namely: Netlist Extraction, RSFQ Logic Mapper,

Placement, Routing and Export. Each of these issues is dealt with in various programme

units written in Borland Delphi 6 [36].

3.1. Netlist Extraction

A means to store a structural circuit description and manipulate it using computer

algorithms is the cornerstone to an EDA tool. This problem is often dealt with in industry

and is well documented[I][8][26].

In tackling the RSFQ layout problem, the fact that entire design methodologies

exist for conventional semiconductor type logic was considered. Instead of "reinventing

the wheel" much effort was spent on implementing only what was needed. Adherence to

industry standards was taken by support of the Electronic Data Interchange Format

EDIF format [14].

To solve the RSFQ layout problem is to transform a semiconductor logic type

netlist description to a physical layout that comprises an equivalent RSFQ

implementation.

In order to achieve this, a review of the applicable algorithms, mathematical

constructs and data structure is summarized in the following sections.

3.1.1. Four Basic Graph Types

Before starting with actual netlist data structure definitions, a more simplistic

approach is required. Graph theory is used to describe, on an abstract level, the netlist

concept.
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Graphs describe a set of objects and how they are connected to each other [I]. A

graph is represented by a set of vertexes and edges G(V, E). Figure 3.1.1. (a) shows an

example graph where V = {VI, V2, V3, V4} and E = {e" e: e3, e4}. A directed graph is

sometimes useful in the description of a graph where in this instance, edges ek have an

added directional component to describe an endpoint Vk see figure 3.1.1 (b).

V3
(a) (b)

Figure 3.1.1. (a) Example Graph (b) Directed Graph

Graphs can be extended to have edges carry a weight term, Wk. This is analogous

to a road map problem where vertexes represent cities; edges the connecting roads and

the weight the length of these roads. This type of graph is called an edge-weighted graph.

In some instances, it may be necessary to associate a weight with a vertex resulting in a

vertex-weighted graph.

3.2. Data Structures to Represent Cell-Port-Net Graphs

The choice of a suitable data structure in the implementation of a graph algorithm

IS important in that it may directly affect the computational effort required solving a

given problem. In the case of the RSFQ layout problem, vertexes become cells and edges

become nets. Added to the basic definition of a cell is the need for ports. In a Pascal type

expression, we describe these basic object structures in Figure 3.2.1
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type PCel1 = <T'Cell;
PNet = /\TNet;
PPort = /\TPort;

TCel1 = object(TDynamicUnit)
Ports: PPort;

end;

TNet = object(TDynamicUnit)
PortPtr : TPortPtrDynam icList;

end;

TPort = object(TDynamicUnit)
ConnectedNet : PNet;

end;

Figure 3.2.1. Data structure for the representation of a Cell-Port-Net Graph

A netlist object is then used to hold the Cell-Port-Net structures in figure 3.2.2. A

netlist object can represent either a master cell or an actual netlist. A master cell is a

fundamental building block, such as an AND or OR gate. A netlist is a collection of cells,

nets and hierarchical ports.

type PNetlist = /\TNetlist;
TNetlist = object(UDynamicUnit)

Cells: PCellsDynamicList;
Nets: PNetDynamicList;
Ports: PPortDynamicList;

end;

Figure 3.2.2. Data Structure for the representation of a Netlist structure

The data structure symbols used to represent these objects are summarized in

figure 3.2.3. The dots represent a pointer reference to the respective netlist objects. A

cross through a dot implies a null reference, or generally the end of a list.
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A dynamic linked list unit was developed (see Appendix 0.13) to handle the

memory allocation of these netlist, and other, objects. This was chosen over simply

allocating arrays of netlist objects, due to the need for 105 or more netlist objects to be

allocated in memory at a single time. Linked lists are generally slow in the time it takes to

process a list of N nodes. The order of complexity is reduced by the introduction of

hashed linked lists (see Appendix 0.13.3).

rceu TNet TPort
UCel1 UNet UPort

[fJName 53 Name 53 Name
Ports PortPtr ConnectedNet
Next Next Next

(a) (b) (c) (d)

TNetlist

Cells •Nets •Ports •Next •~

Figure 3.2.3. The visualization of the Cell-Port-Net and Netlist structures

A basic example circuit, named ABasicNetlist, can be seen In figure 3.2.4,

containing three arbitrary cells, 7 nets, and 5 hierarchical ports. In an EOA design

environment, this circuit in turn could be represented by a "black box" with five ports

which exemplifies the prior mentioned concept of hierarchy and abstraction.

n,
a

b n7

C3 e

c

d
ABasicNetlist

Figure 3.2.4. An Example Circuit (7 Nets, 5 Ports and 3 Cells)

The way in which ABasicNetlist is represented in internal memory of a computer

is graphically depicted in figure 3.2.5.
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The netlist is built by extracting the following data

• All embedded libraries, with their

• Master cells and their port declarations

• Cells containing netlist data with reference to master cells

• Reference to the target design cell

For a more in-depth look into the procedures used to extract the netlist, please refer to

Appendix 0.4.
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3.4. RSFQ Logic Mapping

The extracted netlist is now mapped to an equivalent RSFQ netlist. In essence,

this process transforms a semiconductor type Boolean logic circuit structure into an

RSFQ equivalent. The mapping process is three fold: map Boolean cells to RSFQ

equivalents, remove redundant cells and remove fan-out nets.

3.4.1. Map Cells to Technology

In the technology mapping file (see Appendix C), one is allowed to configure

exact details of how the mapping process performs a one-to-one mapping of logic gates

(see figure 3.4.1).

Physical dimensions, port names, port positions and references to the mask

structures in a mask library are also mapped.

Special allowance is made for special ports, namely Vdd.; VddoU{, CLKin and

CLKou, located at the top and bottom edges of a standard cell, for which no equivalent

exists in a Boolean logic gate.

±D- ____. 6
tL> ____. D
±JLY- ____. b
Figure 3.4.1. One-to-one mapping

Stellenbosch University http://scholar.sun.ac.za



52

3.4.2. Remove redundant cells

Certain cells in a netlist are redundant. Examples include single input AND and

OR gates as well as DELA Y cells (see figure 3.4.2). In the mapping process, these are cut

from the netlist as they are likely residues from a synthesis process but an RSFQ

equivalent cell would be meaningless.

The netlist is scanned for cells that meet this description and they are removed by

the following algorithm

1. Locate redundant cell.

2. Add each outgoing net connection to the incoming net.

3. Remove references from both the incoming and outgoing nets to the redundant

cell.

4. Remove the redundant cell belonging to the netlist.

Delay

In Net Out Net

Cut •
•
•

•
Figure 3.4.2. Redundant Cell Removal

The exact implementation of this algorithm is documented in Appendix D.S.I.
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3.4.3. Remove fan-outs

Fan-outs have to be replaced by RSFQ splitter cell networks (see figure 3.4.3).

For every splitter added to a fan-out network a delay will be brought into the timing of

the netlist. It is advisable to carefully consider the design of a circuit where a large fan-

out is required. The algorithm used to implement the creation of an RSFQ equivalent to a

fan-out network is:

I. Locate a net that has a fan-out.

2. Locate the fan-out input port.

3. Create a L1LO stack with the first entry containing the port found in step 2.

4. Create a new instance of a splitter cell and add it to the netl ist.

5. Add a new net that connects the first port on the stack to the input of the new

splitter and add it to the netlist.

6. Pop the port used in step 5.

7. Add the two output ports of the newly created splitter to the end of the port

stack.

8. Repeat from step 4 until the required number of splitters have been created.

9. With the remaining ports on the stack, connect them to the original fan-out

output ports.

10. Finally, remove the net found in step I from the netl ist.

The implementation of this algorithm is covered in Appendix D.5.2. and is tested

in Chapter 6.2.

3.3.4. Other mapping issues

Tristate® buffers and bus networks were considered In the mapping process.

However, because an equivalent in RSFQ could not easily be found, an automated

process for this type of mapping was omitted. A design engineer would still have the

ability to layout combinational and sequential logic circuits, though.

Stellenbosch University http://scholar.sun.ac.za



54

-

Output Ports

Input Port -
-

Figure 3.4.3. Mapping of a fan-out net to an equivalent splitter network

Now that an RSFQ netlist can be represented in the memory of a computer in a

structured form, placement optimization and routing can be performed.
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Chapter 4

Placement

The physical positioning of a large number of standard logic cells are optimized.

This is an important step in solving the VLSI problem. Many optimization techniques

exist [I ][8][26]. Three are presented here. Two mayor categories of placement algorithms

exist: constructive and iterative placement.

A constructive placement uses a min-cut algorithm or eigenvalue method. The

min-cut uses successive partitioning of a netlist and then places the partitioned bins

accordingly. Iterative placement involves an incremental improvement of an initial

random arrangement and attempt to achieve the following goals [8]:

I. Minimize the total estimated interconnect length

2. Meet the timing requirements for critical nets

3. Minimize the interconnect congestion

4.1. Min-Cut Partitioning

Using the min-cut partitioning algorithm, a circuit is split into two sub circuits of

near equal size while minimizing the number of nets that are connected to both sub

circuits, The two sub circuits will each be placed in separate halves of the layout.
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Depending on the cut being horizontal or vertical, the sub circuits are placed in upper and

lower or left and right halves. It is assumed that, due to the fact that the number of nets

crossing from one half to the other has been minimized, the number of long wires

crossing from the halves have been reduced as well. We call this type of partitioning

bipartitioning [I].

The bipartitioning is recursively applied until the partitioned sub circuits contain a

specified minimum number of cells. Figure 4.1 has a three-stage bipartitioning of a given

netlist.

The min-cut partitioning has two important tasks: to partition a graph and assign

the partitions to their relative layout positions. Another factor to this algorithm is the

ability to work with parts that already have a fixed position like inputs and outputs on the

periphery of a chip.

The min-cut partitioning IS a top-down approach where an entire circuit is

decomposed, while another placement strategy, known as clustering, is a bottom-up

approach.

88 88
88 88

Figure 4.1. Partitioning example
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4.1.1. The Kernighan-Lin Partitioning Algorithm

Many versions of the partitioning problem exist and there are many algorithms for

each version, such as the following by Kernighan and Lin in 1970 [1][26]. The model

takes a undirected graph G(V, E) which has 2n vertices (IYI=2n). Each edge (a, b) E E has

a weight Yab. The problem is to find two sets A and B, with A u B = Y, A n B = 0 and

IAI = IBI = n, that minimizes the cut cost: (4.1 )

»,
(a,b)EAx8

The principle of the algorithm is to start with an initial partition consisting of sets

A ° and BO,which will in general not have a minimum cost. Iteratively, subsets of both sets

are isolated and interchanged. In the mth iteration, we will denote XITIto be the set isolated

from A ITI-Iand ylTI to be the set isolated from BITI-I.The new sets AITIand BITIare then

obtained as follows:
(4.2)

Alii = (Alii-I \ XIII) U ylll

Bill = (BII1-1 \ ylll) U XIII

This continues until no improvement in the cut cost is possible. For a non-optimal

partition set A and B, there exists no X and Y that will lead to an optimum solution in one

pass, or step. Identifying these subsets is particularly difficult so subsets X" and v" are

found so that an optimum solution is found over more than one pass. Reportedly, the

number of passes needed to find a optimum solution does not need to be more than 4.

To construct sets x" and ylTI the internal and external costs for vertices in the sets

AITI-Iand BITI-1are found.

(4.3)
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The external cost for vertex a E Am-I is a measure of the pull that the vertex experiences

from the vertices in Bm-I. Similarly, the external cost E, as well as the internal costs Ia and

Ib can be defined:

(4.4)

(4.5)

(4.6)

The difference between internal and external costs gives an indication about the

desirability to move the vertex. A positive value indicates a move to the opposite set,

while a negative shows a preference to leave the vertex in the current set. The di fferences

for the vertices in both the sets are given by Da and Db:

(4.7)

The gain in cut cost, fl, resulting from an interchange can then be expressed as:

(4.8)

This placement technique was reviewed and implemented. However, it proved to

be ineffective and cumbersome due to the nature in which cells would have to be

recursively sub partitioned while still making allowance for interconnecting partitions.
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4.2. Iterative Placement Improvements

The basis of the iterative placement improvement is a grid (see figure 4.2) that

holds a preliminary position of an arrangement of cells to be optimized. By using a grid

of pointer references to cells in a netlist, the algorithms employed can keep track of

arrangements. Upon finding an optimal arrangement during a run, the programme can

save the grid state for later recall.

.....

=: CI C7 CI3 CI9 C2j =t
........ .......

C2 C8 Cu C20 C26
,..... .....................

C3 C9 C is C21 C27
.................

C4 CIO CI6 Cn C28
.................

Cj Cll Cn C23
f····················

C6 CI2 CI8 C24

•........ 0 ••••• ..

Figure 4.2. Initial Placement of an example 28 cell netlist with 4 Ports (2 Inputs and 2

Outputs).

Two methods for optimizing total net length are considered, namely genetic and

simulation annealing. The total net length is calculated for all nets E, input port i and

output}, as

.l)Xai - Xa) + (Yai - Ya)
aEE

(4.9)

Only two calculations are needed per net since an RSFQ net can legally only have

two connection points. This is based on the Manhattan distance algorithm [I ][8].
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An optimization technique is introduced, by use of genetic algorithms. The

method works with a fully specified solution f, in a set of feasible solutions F [I].

Simultaneously the algorithm keeps track of a set P of feasible solutions called the

population. Using an iterative search process, the current population p(k) is replaced by

the next one p(k+J) using a procedure that is characteristic for genetic algorithms.

A feasible solution /k+J) [; r":" is generated from two feasible solutions /k) and

s". called the parents of the child, that are selected from p(k). /k+ I) is generated by

inheriting parts of its solution properties from one parent and the other from a second

parent under the operation called crossover (see figure 4.2.1).

First parentfk)

Second Parent gk)

First childfk+l)

Second Child 1'-1)

Figure 4.2.1. The Genetic Algorithm Generation Principle - Crossover

The operation assumes that a solution/k) is represented by a string of values of a set

length n, known as a chromosome. The chromosomes of a solution/k) represent positions

of cells in a solution.

The algorithm starts with a set of randomly generated solutions in the population.

Parents are then selected to crossover based on afitness test, which in this case is the total

interconnecting net length. A mutation can be introduced to improve results that is
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realized by randomly swapping a determined percentage of chromosomes in a solution

r:
This process is repeated until the new population has reached maximum size. Upon

this, the old population bin is destroyed and replaced by the new offspring. Again, this

process is repeated until the allowed number of generations is found. [I] [26].

The genetic algorithm was tested using a moderate sized finite state machine

circuit, FSM. Numerous tests where conducted to gauge the performance of the

optimization technique. The results are summarized in table 4.2.1 and figure 4.2.2 and

4.2.3. A mutation factor of I% was chosen to improve results.

Table 4.2.1. Genetic Algorithm Test Cases (Mutation Factor = 1%)

FSM (cells=67, nets =105) Results

Sample Population Mutation Best Result Time

Size Factor [%] Total Net [s]

Length

[!-un]

I 10 I 100830 II

2 20 I 94122 18

3 50 I 89729 42

4 100 I 85057 85

5 200 I 78543 199

6 300 I 76132 322

7 400 I 77593 593

8 500 I 72856 868
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Figure 4.2.3 plots the progress of the genetic optimization over the generations. In

general, this technique is random since it starts from a randomly generated population

pool. A larger population size leads to a greater optimization.

For the actual implemented genetic algorithm, refer to appendix 0.6.1.

4.2.2. Simulated Annealing

Simulated Annealing takes an existing solution and then makes successive

changes in a series of random moves[I][8][26]. An energy function determines whether a

trial move is accepted or rejected. Minimums in the energy function correspond to a

possible solution and the best solution is the global minimum.

Several interchange or iterative exchange methods exist and determine the

random moves in a solution, namely [8]:

I. Pairwise interchange

2. Force-directed interchange

3. Force-directed relaxation

4. Force-directed pairwise relaxation

Normally only pairs of cells are interchanged by picking a source cell to be

swapped with a destination cell. The pain-vise-interchange algorithm follows these steps:

1. Select the source logic cell at random

2. Try all other logic cells in turn as the destination

3. Use a measurement method to decide whether to accept an interchange

4. Repeat process from l.

The neighborhood exchange algorithm (see figure 4.2.4) is a modification of the

pairwise interchange algorithm where the destination cells are in a neighborhood of cells

the distance e away of the source cell.
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C5 C6 C7 Cs

C9 CIO CII CI2

C/3 CI4 C15 CI6

£=1

CI C2 C3 C4

C5 C6 C7 Cs

C9 CIO CII CI2

C/3 Cf4 CI5 CI6
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£=2

CI C2 C3 C,

C5 C6 C7 Cs

C9 CIO CII CI2

C/3 CI4 CI5 CI6

Figure 4.2.4. (a) Pairwise Interchange (b) I-Neighborhood of module I (c) 2-

Neighborhood of module 2.

The pairwise-interchange algorithm with the neighbourhood exchange algorithm

was chosen as the simulated annealing algorithm. Its implementation is found in appendix

0.6.2.

(!).....
::l.....ro.....
(!)

0.
E
(!)

r

Initial Temperature

Figure 4.2.5. Cooling Schedule for Simulated Annealing Algorithm

The temperature value of the system is used (see figure 4.2.5) to moderate the

likeliness that a swap will take place. A cooling schedule sets the speed in which the

system cools. The temperature of the next iteration is based on the current temperature

multiplied by the cooling schedule. As the temperature of the system approaches zero,

Time or Iterations
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the simulated annealing algorithm becomes greedy in that it only makes interchanges that

directly result in a minimization of net length.

Table 4.2.2. Simulated Annealing Test Cases varied with Neighbourhood Size (c)

FSM (cells=67, nets =105) Results

Sample e Initial Cooling Best Result

Temperatue Schedule Total Net

Length

[J.-lIn]

1 1 1000 0.99 99793

2 2 1000 0.99 96548

3 3 1000 0.99 91226

4 4 1000 0.99 87401

5 5 1000 0.99 93438

6 6 1000 0.99 91903

7 7 1000 0.99 90035
..Note: The grid Oil which the opttnusatton ts taking place IS 7.....7.

Table 4.2.2. tests the simulated annealing algorithm for different neighbourhood

sizes where the optimum size of a 7x7 cell grid is c = 4. The initial temperature and

cooling schedule are kept constant through these tests.
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Chapter 5

Global and Local Routing

After the placement phase, the routing step can commence. On the outset, the

problem appears complex, but this is simplified by subdividing it into two stages, namely

global routing and local or detailed routing [8]. An intermediate step is needed as an

adjustment between the two stages. Considered part of the global routing stage, cells and

feedthroughs are repositioned according to their physical sizes and net routings through

feedthroughs.

5.1. Global Routing

The global routing does not make any connections but lays a path for the detailed

router to handle. Before global routing, the cells need to be in the optimized arrangement

on the cell grid. Afeedthrough grid is created (see figure 5.1) to assist the global router in

keeping track of paths used to route a particular net uniquely identified by an id.

Each net is taken in turn and the shortest path calculated by assigning the net to

the closest feedthroughs along a direct routing path. A sequential routing is performed,

where congestion of channels isn't taken into account. Alternatively, an order-

independent routing will take into account the congestion of particular channels and

assign accordingly.
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Figure 5.2. View of top left corner of placement after repositioning. Note that cell

heights, feedthrough net assignments and channels dimensions have been taken into

account.

Channels for local or detailed routing are now inserted between columns. In the

channel creation process, the columns are again scanned and ports from the cells and

feedthroughs inserted into channel port lists. Each of these POtts has the unique id used in

the routing process.

The implementations for the global routing algorithm are omitted in Appendix D,

since it being mundane and lengthy in nature.

Improvements of the global routing can be made by including an iterative cycle that

will make decisions concerning the routing through particular feedthroughs based on a

minimization of channel congestions and other appl icable factors.
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5.2. Local or Detailed Routing

The routing of a channel is the last step needed in completing the layout problem.

The channels to be routed are defined by a rectangular region with rows of terminals

identified by a unique id along its top and bottom sides [26], [I] and [8] (see figure 5.3).

For conformity with the literature, the channel is viewed in the horizontal orientation.

Column 2 3

k

4 5 6 7

m p

Trunk

n c n n
~IL ~~ ~~

I
- I"-- -,

t--,

~r ~r ~r\
v

~m p k

Track

Branch

Figure 5.3. Channel, terminals (ports), trunks and branches viewed horizontally

There are many channel routing algorithms available [1][8][26]. Here we adopt

the left-edge algorithm on which most channel router algorithms are based. This

algorithm is suited for a two-layer routing, using one layer for trunks and the other for

branches (see figure 5.3).

The left-edge algorithm proceeds as follows.

I. Sort the nets accord ing to the leftmost edges of the nets horizontal segment

2. Assign the first net on the list to the first free track

3. Assign the next net on the list, which will fit, to the track

4. Repeat the process from step 3 until no more nets will fit in the current track.

5. Repeat steps 2-4 until all nets have been assigned to tracks

6. Connect the net segments to the top and bottom of the channel
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The implementation of this algorithm can be found in Appendix (0.7). Here an

improvement on the left-edge algorithm is made in that before assigning a trunk to a

position, the trunks still to be assigned are scanned to ensure that a conflict doesn't arise.

If two trunks compete for the same column, then an assessment is made as to which trunk

should be placed first in the above algorithm.

An improvement to this algorithm can be the inclusion for adding a dog-leg [1] when

two trunks compete, on both ends, for routing two in two channels.

Stellenbosch University http://scholar.sun.ac.za



73

6.1. Small Scale Test Circuit

A very small circuit was chosen to prove the effectiveness of the written software.

This circuit has 4 cells, 9 nets, 5 input and2 output ports (see figure 6.1.1.). Included will

be the need for a splitter to be added on the net connected to port D.

AND2 1
A

B

C

D

E
AND2 3

Figure 6.1.1. Small Scale Test Circuit with one fan-out connected to port D.

The layout for this circuit took approximately 10 seconds to complete. An

intensive optimization wasn't necessary since we are more interested here in layout

correctness, On close inspection of figure 6.1.2., the 5 input ports are located on the left

side and the 2 output ports on the right side on the layout. A single spl itter cell was added

along with 3 terminators and 3 feedthroughs. The routing width was chosen at oum with

a routing gap of Sum,
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Chapter 7

Solid State Cooling

Since the discovery of superconductivity in 1911 by Heike Kamerl ingh Onnes [2],

thousands of superconducting materials have been found. The transition temperatures and

dates of discovery are given for some of the more important ones Figure 7.1.

Collectively, the materials with transition temperatures above 23.2 K are referred to as

high-temperature superconductors (HTS). The metallic superconductors are usually

called low-temperature superconductors (LTS). Here a brief investigation is made into

how high temperature superconducting electronics can be packaged and cooled at a lower

cost.

60

IlgB~I:CI:CU\O\

TI"Ba:C;I,'( 'lI.~OH'

1411

YBa:Cu,O~.,

La-Ha-('u-O

I ~fJ

1(J1l

1900 Iq~n l'l~'l l(jh(\

Ycar
I QX(I ~O(l(J

Figure 7.1. Transition temperatures of some important superconductors.
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Thermoelectric coolers have been known to cool electronic components to 145K

[17] using only cascaded BbTe3 n-type and p-type materials and 128K using a Bi2Te3 and

BiSb materials [20]. An improved minimum temperature needs to be found below 70K in

order to realize solid state cooled HTS RSFQ VLSI digital systems. The literature

suggests the RSFQ may operate as high as 40K [24], although typical Josephson junction

characteristics have been demonstrated at 70K [25].

7.1 Thermoelectric Cooling

The thermoelectric cooler is based on the Peltier effect which states that when an

electrical current flows across a junction between two different materials, heat must be

continuously added or subtracted at the junction to keep the temperature constant. The

heat is proportional to the current flow and it's sign changes when the current is reversed.

(7.1 )

where q is the rate at which heat is absorbed at the junction when the current fob

passes from material a to b with 71:ab being the Peltier coefficient.

For a small voltage difference between two junctions, the Seebeck voltage,

discovered in 1821, is found to be linearly proportional to the temperature difference.

This is related to the Peltier coefficient by

(7.2)

where Qab is the Seebeck coefficient and T is the temperature at the junction.

Figure 7.2 gives a schematic diagram of a Peltier effect heat pump.

The coefficient of performance (COP) of this device is defined by the amount of

heat removed divided by the input electrical power.

(7.3)
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I· L ·1

n
I r;

P

·X
Figure 7.2. Simple thermoelectric cooler with branches nand p.

Three effects, namely the Peltier effect, Joule heating and thermal conduction,

according to the following relation, determine the rate of heat removal from the cold

reservoir

(7.4)

where I is the applied current, R is the total resistance of the arms a and b, K is

their thermal conductance and flT=Th - Te. The applied voltage is given by

V = QflT+IR (7.5)

from which the input power is

P = VI - (QflT + IR)I (7.6)

where the first term is the Seebeck voltage term. The maximization of the

Coefficient of Performance COP (equation 7.3), reveals devices using couples with a

high value of Zab defined by

(7.7)

deliver the optimum performance. The Zab parameter is called the figure of merit

for the couple abo The figure of merit for a single thermoelectric material is defined as

Z = Q2 /(pK) (7.8)
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which is also written as the dimensionless figure of merit as,

ZT

(7.9)

Experimental ZT Results

1.0

0.8

SiGe

0.6

0.4

CuNi

0.2

0.0 L-.------==---'--~_----'-_~--'-_~_'__~ _ _.__~ _ __'__~____'

o 200 800 1200 14001000400 600

Figure 7.3. ZT parameters for various known thermoelectric materials[ 18], pre 1995.

Temperature (K)

Therefore, materials with a high Seebeck coefficient, a low resistivity and a low

thermal conductivity are good candidates for application in thermoelectric devices. Figure

7.3 shows a plot ZT values over a wide temperature range for well-known thermoelectric

materials pre 1995. It can also be shown that Z is high for materials with a high A-factor

where

(7.10)

!l is the carrier mobility, Kph is the lattice component of the thermal conductivity,

m· is the density of states effective mass and mo the electronic mass.
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The heat pumping rate and COP of a couple is shown as a function of current in

figure 7.4. Note that the maximum heat pumping rate qmax is much larger than the heat

pumping rate at qcopat the maximum COP.

Coefficient of Performance
(COP)

Figure 7.4. Variation of the coefficient of performance and heat pumping rate with

current for a thermoelectric couple operating between given temperatures with fixed

shape factors [17].

"" Heat Pumping Rate

o Current

Above, the definition of the COP (equation 7.3) was given as

¢ = q I P = (QTJ - 12R I 2 - K!1T) I(Q1!1T + /2 R) (7.11 )

The current at which the COP ¢ is a maximum is found by maximizing ¢ with

respect to I. This results in a current
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leop = QI1T /(R(OJ -1)) (7.12)

and a maximum ¢ of

(7.13)

where

OJ = (1 + ZT)112 (7.14)

T is the average temperature (T, + Tc)/2 and Z is defined in equation 7.7.

The factor (TJI1T) is the thermodynamic COP of a reversible Carnot cycle [17].

The second factor represents the irreversible heat conduction along the arms and the Joule

loss.

The maximum heat-pumping rate is given by

(7.15)

and the maximum temperature difference is found to be

T = _!_ ZT 211 max c
2

(7.16)

The lowest temperature on the cold face is determined using the equation

T,min = ((1 + 2Z~, ) 112 - 1)/ Z (7.17)
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7.1.2. Fabrication of Thermoelectric Coolers

Conducting
Straps

~ Heat Reservoir

Thermoelectric
materials

Thermal conductive
electrical insulator

Conducting
Straps

Cold Reservoir

Figure 7.5. A single stage thermoelectric cooler

For N identical couples in series, the applied voltage is Vn = NV, the current In =

1, power input P; = NP, coefficient of performance COP ¢ n = ¢ and heat load qn = Nq,

where V, L P, ¢ and q refer to the same quantities as for a single couple. Hence, the

major advantage found here would be the increased amount of heat able to be removed

from a cold reservoir.

7.1.3. Multistage Thermoelectric Units

Equation 7.17 shows that the maximum temperature difference that can be

reached using a single-stage thermoelectric refrigerator is related to the figure of merit.

Greater temperature differences are achieved using multistage cooling [23].

The coefficient of performance of an n-stage cascade is calculated assuming that

each stage operates over (fh-Tc)/n, where Ti, is the hot side of the first junction, T; is the

cold side of the nth junction. It is assumed as an approximation that the coefficient of

performance ¢' for each stage is equal to n(¢! + 1/2) -1/2 where ¢! is the coefficient of

performance of a single stage working over the whole temperature range [23].
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7.1.4. Heat Sink Choice

The temperature different, T2 - T" across an element with a thermal resistance O

IS

(7.20)

where P is the thermal power through the unit [19]. Temperature difference is the

electrical analog of voltage, and power or heat flow is the electrical analog of current.

For a device, the maximum temperature is given by Tjmax. By definition, the

thermal resistance between the case and heat sink is e case-snk and between the heat sink

and ambient is e snk-amb- The temperature between the device and the ambient can now be

written as follows, when a heat sink is used.

T2 - t; = P(ocase=snk + e.l'I1k-omh ) (7.21)

The maximum safe power dissipation in a device is a function of:

TJ,max - Tamb

Pd,max = e +e
case=snk snk=amb

(7.22)

The size of the heat sink becomes an issue if e becomes less than I and air

cooling needs to be employed. With air-cooling, e can be reduced to 0.2 °C/W [17].

This implies that for a elegant packaging solution, Pd.maxmust be less than lOOW.

7.1.5. Future of Thermoelectric Materials

New thin-film superlattice materials are presently being invented and developed

[18][22][ 12] with higher figures of merit than what has previously been attainable (see

figure 7.7). The enhancement of these materials has allow for the potential to heat pump

up to 700 Wcm-2 and localized cooling that occurs 23,000 times faster than with bulk

materials [21].

The breakthrough occurs when a bulk thermoelectric material is arranged in a thin

film, nanometer layered, superlattice. Due to the fact that the figure of merit, ZT (see
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Table 7.1. Component List
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Component Source Cost Availability

Fan Force

convection

cooling of heat-

sink

Electronic

wholesalers

Medium Very High

Heat Sink

to environment

Dissipates heat Electronic

wholesalers

Low Very High

Casing

vacuum sealed USA

magnetic

shielding

MIlMetal® MIlMetal®, Low High

Opto-coupling Optically isolate Electronic

cryogenic MCM wholesalers

from room-

temperature

environment.

Low Very High

Microchip(s) HTS

Application

Specific

Integrated

Circuit (ASIC)

Star

Cryoel ectron ics

High Very Low,

custom made

Multiple Chip Cryogenic Unknown

Module (MCM) module to hold

microchips.

Medium Very Low,

custom made

Thin-film

Thermoelectrics

New thin-film RTI (Research High cost to Very Low,

thermoelectric Triangle

for cooling to Institute),

cryogenic

temperatures

License

set up process, custom made

materials low
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Chapter 8

Conclusion

The aim of this thesis was to develop software and research hardware that would

allow for the realization of ultra high-speed Rapid Single Flux Quantum on a Very Large

Scale of Integration. However, this would have little value if it were not a feasible

undertaking.

The speed at which users of the technology will process information in the future

will no doubt be awesome. Upon maturation, processor clock speeds reaching the sub-

terahertz region should become the order of the day. All this without consideration of

what possibilities quantum computing holds.

Sub-micron levels of fabrication are beginning to become commercially available

for LTS and HTS through companies like Hypres and Star Cryoelectronics, respectively.

The drive to HTS will see superconducting electronics being adopted by the larger

consumer market. Here superconductors are sure to converge with other technologies like

thermoelectrics and low profile cryopackaging technologies.

It is believed [29] that semiconducting electronics won't be able to exceed the

10GHz barrier due to delays incurred on interconnects by the resistance capacitance (RC)

time constant. The resistance of a superconductor is zero and thus the fundamental

limiting factor on its interconnecting delays is the speed of light.
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Appendix B

SPICE Library

The SPICE library used to perform the simulations of the RSFQ cells is included

here. They have been modified for use with JSIM freeware SPICE simulator. These

belong to the University of Stell en bosch SPICE library, developed by Coenrad Fourie [4]

and optimised using specialised optimization software; tested using Monte Carlo

simulations. The library includes the rsfq_jtl, rsfq_div, rsfq_dro, rsfq_merge, rsfq_and,

rsfq_or, rsfq_dc-sfq_conv and the rsfq_xor cells.

* A=8 9=B 4=Vdd
.subckt rsfq_jtl 8 9 4
BO2 Ojjl area=0.25
BI I Ojjl area=0.25
La 6 5 1.98p
L1620.132p
L2 7 I 0.132p
L3 8 6 1.98p
L43 5 0.132p
L5 79 1.98p
L65 71.98p
RO 4 314.3
R1021.03
R2101.03
.ends suny _jtl

L2 10 I 0.053p
L38 II 0.132p
L4530.053p
L5 5 8 1.16p
L6 74 1.98p
L7 791.64p
L8 10 12 1.98p
L99 10 1.64p
RO 0 6 O.71
RI 300.61
R2 /I 28.36
R3 I 0 O.71
.ends n,fq_div

RI 100.863
R2 5 3 30
R3 43 0.72
R42 I 0.72
.ends rsfq _dro

* 5=A 4=B 12=C 2=Vdd
.subckt rsfq_div 54 122
BO 6 Ojjl area=0.251
BI 3 Ojjl area=0.355
B2 I 0jj I area=0.251
La 67 0.053p
LI 98 0.053p

* 4=A 2=R 6=F 5=Vdd
.subckt rsfq_dro 4 2 6 5
BO30 jj I area=0.245
BI I Ojj1 area=0.27
B2 4 3 jj I area=0.245
B3 2 I jj I area=O.27
La 3 I 8.474p
LI 16 3.l7p
RO301.47

* 9=B 4=C 13=A 7=Vdd
.subckt rsfq_merge 94 13 7
BO8 6jjl area=O.225
BI 9 IOjjl area=0.25
B2 5 6jjl area=0.225
B3 4 Jjjl area=O.25
B42 I jjl area=D.25
La 100 0.026p
LI 12/1 D.13p
L261/ O.21p
L3 3 0 0.026p
L4 98 0.66p
L5 45 0.66p
L62 13 2p
L71122.64p
L8 I OO.026p
RO 7129.8
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Rl 861
R29 100.94
R3 561
R4 4 30.94
R521 0.71
.ends rsfq_merge

* A=15 B=5 F=20 Clk=10
Vdd=6
.subckt rsfq_and 15 5 20 10 6
BO 7 9 jj 1 area=0.170
Bl 8 Ojjl area=0.41
BI04 1jjl area=0.25
B2 14 17jj 1 area=0.25
B3 13 16jjl area=0.275
B4 15 14jjl area=0.25
B5 11 13jj 1 area=0.275
B6 12 9jj 1 area=0.170
B7 18 3jjl area=0.275
B85 4 jjl area=0.25
B93 2jjl area=0.275
L0980.1p
LI 17 0 0. 026p
LIO 10 0.026p
L2 160 0.026p
L3 1413 8.5p
L413123.2p
L5 198 0.026p
L6 8 20 4p
L73 73.2p
L8 4 3 8.5p
L92 00.026p
RO 791.1
R1800.78
RI06430
R11 54 0.7
R12 320.85
R13 4 1 1.45
R2 14 17 1.45

R313 160.85
R4 1113 0.7
R561430
R6 15 14 0.7
R71291.1
R86 1920
R91830.7
XO rsfq_div 10 11 186
.ends rsfq_and

* rsfq_or A=1 B=2 F=3
Clk=4 Vdd=5
.subckt rsfq_or 1 2345
XO rsfq_merge I 265
XI rsfq_dro 6 4 35
RO5 311
BO3 Ojjl area=0.25
Rl 301.04
*X2 rsfq_jtl 735
.ends rsfq_or

* 16=SINUin 18=SQFout
10=Vdd
.subcki rsfq_dc-sfq_conv 16
1810
BO8 7jj 1 area=0.171
Bl 6 2jjl area=0.245
B2 4 5 jj I area=0.148
B3 3 1jj 1 area=0.171
LO 15 4 1.27p
LI 73 0.29p
LIO 20 0.13p
LIII00.18p
L2 5 3 0.69p
L3 1615 3.35p
L4 158 1.29p
L59 17 0.08p
L66 18 2.11p
L7 17 6 1. 74p

101

L8 717 1.13p
L94 03.59p
R0871.39
Rl 62 0.76
R2 1096.42
R3451.37
R4311.12
.ends rsfq_dc-sfq _conv

* 6=A 4=B I=F 5=CLK
22=Vdd
.subckt rsfq_xor 6 4 I 522
BO 9 7jj 1 area=0.171
B18 2jjl area=0.171
B23 10)jl area=0.193
B3 10 Ojjl area=0.171
B4 6 7jj I area=0.245
B5 7 0jj 1 area=0.171
B65 10jjl area=0.221
B7 4 2jjl area=0.245
B82 O)jl area=0.171
LO 912 5.07p
LI 123 0.4p
L2 812 5.07p
L3 1014. 75p
R0970.87
RI 820.87
RIO 3 100.98
Rll 1001.32
R2 42 0.71
R36 7 O.71
R4 11 911.6
R5221123.1
R611 8 /1.6
R7700.87
R85 100.75
R92 00.87
.ends rsfq_xor
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Appendix C

Technology Mapping File

A Technology Mapping File is used in specifying lower level parameters used in

the layout process. This file provides the mapping information from the input EDIF

netlist to RSFQ.

[General}

Standard Width = 215

RouteWidth = 6

RouteSpace = 6

Gamma = 7

CLKpos = 185

VDDpos = 43

ViaLayer = 3

HorzLayer = 6

VertLayer = 1

VddLayer = 10

[RSFQSPLITTER}

Inputs = 1

Outputs = 2

Height = 70

Inl Pos = 43

Inl Name = 'INI'

Outl Pos = 12

Out] Name = 'YI'

* General
* Width of the standard cell

* Width of the routing tracks

* Distance between routing tracks

* Distance between adjacent tracks in the same channel

* Position ofCLK special port in the horizontal plane

* Position of VDD special port in the horizontal plane

* Layer number in GDSlI file for via, i.e. /I b

* Layer number in GDSII file for Horizontal routing

* Layer number in GDSIlfilefor Vertical routing

* Layer number in GDSIlfilefor Vdd routing

* RSFQ SPLITTER

* Number of Inputs

* Number of Outputs

* Standard Cell Height

* Input Position of Inl

* Name of Port Inl

* Output Position of Out 1

* Name of Port Out]
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Out2 Pos=51
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* Output Position of Out2

Out2 Name = 'Y2' * Name of Port Out2

GDSStruct=SPLT 100 26* GDSII Struct

[TERMINATOR}

Inputs = I

Outputs = I

Height = 70

Inl Pas = 5

Inl Name = 'Vddin'

Outl Pas = 5

Outl_Name = 'Vddrep'

GDSStruct=TERM 100 26

[AND I}

Inputs = I

Outputs = I

Height = 50

Inl Pas = 25

Inl Name = 'INI'

Outl Pas = 25

Out I Name = 'Y'

GDSStruct=

[AND2}

Inputs = 2

Outputs = I

Height = 170

Inl Pas = 30

In2 Pas = 152

Inl Name = 'INI'

In2 Name = 'IN2'

Out I Pas = 143

Out! Name = 'Y'

GDSStnlct=AND2 100 26

* TERMINATOR CELL

* REDUNDANT I INPUT AND CELL

* No GDS/I Structure exists for ANDI

* TWO-INPUT AND CELL
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[AND3}

Inputs = 3

Outputs = I

Height = 300

Inl Pas = 50

In2 Pas = 150

In3 Pas = 250

Inl Name = 'INI'

In2 Name = 'IN2'

In3 Name = 'IN3'

Out! Name = 'Y'

Outl Pas = 150

GDSStruct=AND3 100 26

* THREE INPUT AND CELL"

[AND4}

Inputs = 4

Outputs = I

Height = 430

Inl Pas = 100

In2 Pas = 200

In3 Pas = 300

In4 Pas = 400

Inl Name = 'IN/'

In2 Name = 'IN2'

In3 Name = 'IN3'

In4 Name = 'IN4'

Out! Pas = 150

Out! Name = 'Y'

GDSStruct=AND4 100 26

* FOUR INPUT AND CELL
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[DELAY}

Inputs = 1

Outputs = 1

Height = 50

InI Pas = 25

InI Name = 'INI'

Out/ Pas = 25

Outl Name = 'Y'

GDSStruct=

[DFF}

Inputs = 4

Outputs = 1

Height = 100

InI Pas = 20

In2 Pas = 40

In3 Pas = 60

In4 Pas = 80

InI Name = 'D'

In2 Name = 'CLK'

In3 Name = 'CLRN'

1114Name = 'PRN'

Outl Pas = 50

Outl jName = 'Q'

GDSStruct=DFF 100 26

[INV}

Inputs = I

Outputs = I

Height = 100

InI Pas = 79

Inl Name = 'INI'

Outl Pas = 85

Out I Name = 'Y'

GDSStruct=INV 100 26
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* REDUNDANT ONE INPUT DELA Y CELL

* D-TYPE FLIP FLOP"

* INVERTER CELL
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[OR2}

Inputs = 2

Outputs = I

Height = 92

Inl Pas = 38

In2 Pas = 74

Inl Name = 'INI'

In2 Name = 'IN2'

Out! Pas = 73

Out! Name = ')"

GDSStruct=OR2 100 26

[OR3}

Inputs = 3

Outputs = I

Height = 120

InI Pas = 30

In2 Pas = 60

In3 Pas = 90

Inl Name = 'INI'

In2 Name = 'IN2'

In3 Name = 'IN3'

Out! Pas = 60

Out I Name = 'Y'

GDSStruct=OR3 100 26

[OR4}

Inputs = 4

Outputs = I

Height = 150

Inl Pas = 30

In2 Pas = 60

In3 Pas = 90

In4 Pas = 120

Inl Name = 'INI'

In2 Name = 'IN2'
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* FOUR INPUT OR CELL

* THREE INPUT OR CELL

* FOUR INPUT OR CELL
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In3 Name = 'IN3'

In4 Name = 'IN4'

Out! Pas = 75

Out] Name = 'Y'

GDSStruct=OR4 100 26

{OR6}

Inputs = 6

Outputs = I

Height = 240

lnl Pas = 20

In2 Pas = 60

In3 Pas = lOa
In4 Pas = 140

In5 Pas = 180

In6 Pas = 220

ln l Name = 'INI'

In2 Name = 'IN2'

In3 Name = 'IN3'

In4 Name = 'IN4'

In5 Name = 'IN5'

In6 Name = 'IN6'

Outl Pas = 120

Out I Name = 'Y'

GDSStruct=OR6 too 26

{TRIBUF}

Inputs = 2

Outputs = I

Height = 40

lnl Pas = 10

In2 Pas = 30

Inl Name = 'INI'

In2 Name = '0£'

Out l Pas = 50

Out I Name = 'Y'

GDSStruct=TRlBUF lao 26
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* SIX INPUT OR CELL

* TRIBUF"
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[XOR2]

Inputs = 2

Outputs = I

Height = 100

Inl Pas = 37

In2 Pas = 55

Ini Name = 'INI'

In2 Name = 'IN2'

Outl Pas = 84

Outl Name = 'r"

GDSStruct=XOR2 100 26

* TWO iNPUT XOR CELL

(#) Not yet implemented in RSFQ
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Structure of RSFQ Layout Programme
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UGUI-
Graphic User
Interface §D.l

I

UProcessthread -
Coordinating Thread §D. 2

UMessageWnd -
Message Window

I

UGlobal- Global
Variables §D 3

)

UEDIF - Electronic Data
Interchange Format

Converter §D.4

UGlobalEdit - Global
Variable Editor

UMapper - Maps Boolean
logic to RSFQ equivalent §D.5

UNetlistLayout -
Placement and Global

Routing §D. 6

UChannelRouter -
Feedthroughs and 1\

Channelrouters §D. 7 I ..
UGDS - GDS]] Writer §D.8 ~

I .... Layout complete

UDynamicUnit - Linked
List §D.13

I
I 1 j_

UCell- Cell object §D.9 UNet - Net objec t§D.l 0 UPort - Port object §D.l 1

UNetlist - Netlist object
§D.12

Figure D.I. RSFQ VLSI software programme overview of units denoted as Uxxxx.
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Appendix D.2. Process Thread - UProcessThread.pas

The Execute procedure of the process thread controls the automation of circuit

layout. Not included here are the routines for handling graphic interface synchronization

such as WriteMessage and SetGauge. The thread allows the user to operate the GUI after

executing the compile command, since the thread is made a background process.

procedure TProcessThread.Execute;
II This is the heart of the process thread. By using data that has been passed
II from the GUT the thread operates
var aLibrary : PLibrary;
begin
WriteMessage('Project' + GIobals.ProjectName, pr_Medium);
EDIF.Create(Globals.EDIFFilename);
II Test ifnetlist has been loaded from EDIF file
if EDIF.BuildSuccess and (EDIF.DesignNetlist <> nil) then
begin
WriteMessage('Testing Netlist Integrity', pr_Medium);
if EDIF.DesignNetlist.TestIntegrity then
begin
WriteMessage('lntegrity Test PASSED', pr_Medium);
aLibrary := EDIF.Libraries.GetFromName(,AL TERA');
if aLibrary <> nil then
begin
MapToRSFQ(aLibrary, EDIF.DesignNetlist);

WriteMessage('Floorplanning', pr_Medium);
Synchronize(SyncFloorplan);
SetGauge(gg_Floor, 100);

PNetl istLayout(ED IF .DesignNetl ist). Layout;
PlacementView.DrawPlacement(PNetlistLayout(EDIF.DesignNetlist));

end else
WriteMessage(,Library AL TERA not found', pr_Critical);

end else
WriteMessage('Integrity test FAILED', pr_ Critical);

end else
WriteMessage(,EDIF Netlist has not been loaded from file yet. Please specify

in Options.', pr_critical);
GUI.ProcessStarted := False;
end;
end.
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Appendix D.3. Globals Variables - UGlobals.pas

The project file is a file of type TGlobalVariables. These variables are specified

between the UGlobalEdit dialogue box, the Mapper file and run time programme

decisions.

type TGlobalVariables = record

Valid: Boolean; II Specifies whether globals are valid

ProjectFileName,
ProjectName : String[255];
LibraryName : String[255];
EOIFFilename : String[255];
ExportFilename : String[255];

II Filename of the project
II Name of the project
II LibraryFilename
II Import EOIF Filename
II Export GOSII Filename

OptimizeTech : (GeneticAlg, Simulated); II Optimization technique?
Genetic: TGeneticOpt; II Technique parameters
Simulated: TSimulatedOpt;

CostFunction : (Area, Longest, AreaLongest); II Cost Function

Standard Width, StandardHeight : Real; II Placement Grid cell dimensions

Preplacement : record II Floorplan variables
GridSize: Real;
NetWidth, NetHeight : Real; II Preplacement width and height

end;

Mapping: record II Technology mapping detail
MappingFilename : String[255];

end;

Routing: record II Routing detail
Gamma: Real; II Length before next track in channel
Algorithm: (LeftEdge, Oynam); II Routing algorithm used
RouteWidth, RouteSpace : Real; II Track width and spacing between

end;

end;
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Appendix D.4. Electronic Data Interchange Format Importing

- UEDIF.pas

In order to develop a portable platform from which to process the RSFQ YLSI

design problem, the need to import and export Electronic Data Interchange Format

(EDIF) data is necessary. Since many YHDL compiler programmes allow for the export

of EDIF, it immediately allows the use of description languages.

The EDIF version 2 0 0 is described here and the algorithms developed to extract

netlist information. The most important feature added to EDIF 3 0 0 is the ability to

handle buses, bus rippers, and buses across schematic pages. EDIF 4 0 0 includes new

extensions for PCB and multichip module (MCM) data. A complete description of the

EDIF format is held by the Electronic Industries Association (EIA) [14J.

ediffile

edifversion 2 0 0

keyword Map

Figure B.2. FSM EDIF Example
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procedure ExtractNetConnections(NetNode : TTreeNode; aNet : PNet);

This procedure extracts net connections Net NetXXX I
given a net node. The "joined" node is

~seen as a dummy node. The "portRef' joined l
node can have a child node "instanceRef' --j port Ref portXXX l
which refers to a cell instance within the

~instanceRef cellinstanceXXX Icurrent netlist. If the "portkef" child node
is omitted, it implies that the port belongs --j portRefportYYY I
to a interface port of the netl ist

~instanceRef cellinstanceyyyl

procedure ExtractNets(ContentsNode : TTreeNode; aNetlist : PnetlistLayout)

I contents I
Given a netlist node, this procedure
extracts the nets to aNetlist. The form of H I
the net node is The nets are declared Hnet netXXX I
after the cell instance nodes. A rename lonode can be included.

~ net (rename netYYY "netzzz")l

lo
l

procedure ExtractCellRef(InstanceNode : TTreeNode; aCe II : PCell)

This procedure extracts the cell that is to instance cellinstancexxxl

be referenced to by an instance node. The 4viewref viewYYY Ireference is found and the passed aCells
NetlistRefassigned to the netlist. 4cellref cellrefZZZ

procedure ExtractInstances(ContentsNode : TTreeNode; aNetlist : PNetlistLayout)

I contents I

Given a netlist node, this procedure
H instance cellinstanceXXX I

extracts the cell instances to aNetlist H instance (rename cellinstanceYYY "newnameyyy")l

H I
H instance cellinstanceZZZ I
y I
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procedure ExtractContents(NetlistNode : TTreeNode; aNetlist : PNetlistLayout)

Icell MasterCellName I
H celltype GENERIC I

This scans the netlist or cell declaration H_ Ifor a contents node, and if it has one it H view viewXXX Iextracts the cell instances and net
connections. H_viewtype NETLIST I

H interface I
H contents I

procedure ExtractPortType(PortNode : TTreeNode; var aPortType : TPortType)

I interface I
H port portxxx I

This procedure extracts the type of port 4direction INPUTattached to the interface node I
H port portYYY I4direction OUTPUT I
H I

procedure ExtractPorts(lnterfaceNode : TTreeNode; aNetlist : PNetlistLayout)

I interface I
Given a netlist or cell view tree node, this
procedure extracts the interface port H port portXXX I
information. H port (rename portYYY "portZZZ") I

y I
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procedure Extractlnterface(NetlistNode : TTreeNode; aNetlist : PnetlistLayout)

Given a netlist or cell tree node, this Icell MasterCellName I
procedure finds the view node, then the
interface. It then extracts the ports from H celltype GENERIC I
the interface node H I

Y view viewXXX I
Y viewtype NETLIST I
--{interface I
Y contents I

procedure ExtractNetlists(LibraryNode : TTreeNode; aLibrary : Plibrary)

Given a library tree node, this procedure
scans through the library and extracts the
cell or netlist information

procedure ExtractLibrary(EDIFTree : TTreeNodes)

This scans the first level of the EDIF Tree
in search of libraries and extracts them.

procedure GetDesignNetlist(EDIFTree : TTreeNodes);

Get the reference to the design netlist

function TEDIF.OpenEDIF(Filename : String; Tree: TTreeNodes) : Boolean;

This is the coordinating procedure that
will:

1. Read the EDIF from a file
2. Extract the read fi Ie into the tree Tree

Below are extracts from the UEDIF unit file for the source code to the above

procedures. A full source code listing would be too lengthy, approximately 814 lines.
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procedure ExtractNetConnections(NetNode : TTreeNode; aNet .'PNet};

II This procedure extracts net connections given a net node. The form of the
II net node is
II
II NetNode NetXXX
II
II
II
II
II
II
II

1- joined
1- portRef PortXXX
1 1- instanceRef cellinstanceXXX

1- portRef PortZZZ

II The 'joined" node is seen as a dummy node. The ''portRej'' node can have a child
II node "instanceRef' which refers to a cell instance within the current netlist.
II If the ''portRef' child node is omitted, it implies that the port belongs to
II a interface port of the netlist

var Joinedblode, PortRejNode, InstanceRejNode .' Tlreeblode;
al'ort: PPort,'
aCeli : rc-u,
PortRefStr .'String,'

begin
II Locate dummy node, 'joined"
Joinedblode .'= FindFirstChildWith(NetNode, 'joined'),'
if Joinedblode <> nil then
begin
II Locate first ''portRef' child
PortRejNode = FindFirstChildWith(loinedNode, 'portref');
while PortRejNode < > nil do
begin
II Get the name of the port to reference
PortRefStr.'= GetNodeData(PortRejNode},'
II Find out whether this ''portRef' node has a "instanceRef' node
InstanceRejNode .'= FindFirstChildWith(PortRejNode, 'instanceref');
if InstanceRejNode = nil then
begin
II This implies that the port is internal to the given netlist
aPort: = Currentbletlist.Portlnterface. GetFromName(PortRefStr} "

end else
begin
II This imples that the port is referenced by a netlist
aCeli

CurrentNetlist. Cells. GetFromName(GetNodeData(InstanceRejNode}} "
aPort: = aCeW'. GetPort(PortRefStr} "

end,'
II Before adding the port to the net, test whether we are
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II referencing the same port
if (aPort <> nil) then
if (PortRefStr = aPort.Name) then
begin
II Add the port to the net
aNet.A ddPort(aPort)

end
else
MessageDlg(,Error: ExtractNetConnections on Net ' + aNet.Name, mtError,

[mbOkj,O)
else

MessageDlg('Error: ExtractNetConnections on Net ' + aNet.Name, mtError,
[mbOkj,O);

II Search for the next sibling to match "portref"
PortRefNode := FindNextSiblingFrom(PortRefNode. GetNextSibling, 'portref);

end;
end;

end;

procedure ExtractNets(ContentsNode : TTreeNode; aNetlist : PNetlistLayout);
II Given a netlist node, this procedure extracts the nets to aNetlist.
II Theform of the net node is
II
II contents
II
II
II
II
II
II
II
II

1- net netXXX - ...
1- net (rename netYYY "comment'') - ...

1- net netZZZ - ...

II The nets are declared after the cell instance nodes. A rename node can
II be included

var NetNode, RenameNode : TTreeNode;
Net: PNet;
NodeName : String;

begin
II Find the first "net" node off ContentsNode
NetNode := FindFirstChildWith(ContentsNode, 'net');
while NetNode <> nil do
begin
NodeName:= GetNodeData(NetNode);
II Test whether a rename node is present
if Trim (NodeName) = "then
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begin
II If so, extract the renamenode
RenameNode := FindFirstChildWith(NetNode, 'rename');
if RenameNode <> nil then
NodeName := GetRenameName(RenameNode)

else
begin
MessageDlg(,Error: ExtractNets', mtError, [mliOk], 0);
NodeName:= 'ERROR: Name notfound';

end;
end;

II Create a new net entity with Nodename
Net := New(PNet, Create(NodeName));
II Add the net the passed Netlist Nets list
aNetlist. Nets. AddNode (Net) ;
II Extract the connections the this net has to cell instances
ExtractNetConnections(NetNode, Net);
II Search for the next net node
NetNode := FindNextSiblingFrom(NetNode.GetNextSibling, 'net');

end;
end;

procedure ExtractCellRef(lnstanceNode : TTreeNode; aCell : PCell);
II This procedure extracts the cell that is to be referenced to by an
II instance node. The reference isfound and the passed aCell's
II NetlistRef assigned to the netlist. Theform of the instance node is
II
II instance cellinstanceXXX
II 1- viewrefviewYYY
II 1- cellref cellrejZZZ

var ViewRejNode, CellRejNode : TTreeNode;
CellRejStr : String;
NetlistRef: PNetlist;

begin
II Locate "viewref" and "cellref' nodes
ViewRejNode := FindFirstChildWith(lnstanceNode, 'viewrej');
CellRejNode := FindFirstChildWith(ViewRejNode, 'cellref);
ifCellRejNode <> nil then
begin
II Extract the reference to the cell/netlist
CellRejStr := GetNodeData (CellRejNode) ;
NetlistRef: = CurrentLibrary.Netlists. GetFromName(CellRejStr);
II Test whether the netlistlcell was found
if NetlistRef <> nil then
aCell.SetMasterCell(NetlistRej)
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else
Message Dlgt'Error: ExtractCellRef, mtError, [mbOkj, 0);

end else
II lfthe cell instance is not to be referenced by any netlist,
II set the cells netlist to nil
aCell.SetMasterCell(nil);

end;

procedure ExtractInstances(ContentsNode .' TTreeNode; aNetlist .'PNetlistLayout);
II Given a netlist node, this procedure extracts the cell instances to aNetlist
II Theform of the contents node is
II
II
II
II
II
II
II 1- instance cellinstZZZ
var InstanceNode, RenameNode .' TTreeNode;

Celllnstance .'PCell;
Rawkename, InstanceName .' String;

begin
II Locate the instance node
InstanceNode .'= FindFirstChildWith(ContentsNode, 'instance');
while InstanceNode <> nil do
begin
II Extract the instance name
InstanceName .'= GetNodeData(InstanceNode);
II Test whether a rename node is present
if Trim (InstanceName) = " then
begin
II Locate rename node
RenameNode .'= FindFirstChildWith(InstanceNode, 'rename');
if RenameNode <> nil then
begin
II Extract the node name

Contents
1- instance cellinstXXX
1- instance (rename cellinstYYYY "comment")

RawRename .> GetNodeData(RenameNode);
InstanceName .> Copy(RawRename, 1, Pos(#32, RawRename)-l);

end
else
Message Dlgt'Error: Extractlnstances', mtError, [mbOkj, 0);

end;
II Create a new cell instance
CellInstance =New(PCell, Create(lnstanceName));
II Add the cell instance to the passes netlist
aNetlist. Cells. AddNode (CellInstance) ;
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II Extract the netlist that this cell references
ExtractCellRef(InstanceNode, Cellinstance);
II Search for the next instance
InstanceNode := FindNextSiblingFrom(InstanceNode. GetNextSibling, 'instance,);

end;
end;

procedure ExtractContents(NetlistNode : TTreeNode; aNetlist : PNetlistLayout);
II This scans the netlist/cell declaration for a contents node, and if it has
II one it extracts the cell instances and net connections. The cellinetlist node
II has the form:
II
II
II
II
II
II
II
II
II -- contents
var ViewNode, ContentsNode : TTreeNode;
begin
II Find the view node
ViewNode := FindFirstChildWith(NetlistNode, 'view);
if ViewNode <> nil then
begin
II Find the contents node
ConlentsNode := FindFirstChildWith(ViewNode, 'contents),'
if ContentsNode <> nil then
begin
II Extract the cell instance and net information
Extractinstances(ContentsNode, aNetList);
ExtractNets(ContentsNode, aNetList) "

cell cellname
1- celltype GENERIC
1- vie'w viewXXX'

1- viewtype NETLIST
1- interface
1 I-port ...

end;
end;

end;

procedure ExtractPortType(PortNode : Tlreeblode, val' aPortType : TPortType);
II This procedure extracts the type of port. The implementation here is
II
II
II
II
II port portYYY
II - 1- direction OUTPUT
II

port portXXX'
1 1- direction INPUT
1
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var PortTypeNode : TTreeNode;
Str : String;

begin
II Locate the direction node
PortTypeNode := FindFirstChildWith(PortNode, 'direction');
if PortTypeNode < > nil then
begin
II Retrieve the direction value
Str:= Trim (UpperCase (GetNodeData (Port Typelvodejt);
II Determine the port type
ifStr = 'INPUT' then aPortType := pt_HierIn else
ifStr = 'OUTPUT' then aPortType:= pt HierOut else
II If the type can't be found, report an error
MessageDlg(,Error: ExtractPortType - Invalid type', mtError, [mbOkj, OJ,'

end else
begin
II If the direction wasn't found report an error
MessageDlg(,Error: ExtractPortType - No type found, set to pi None', mtError,

[mbOkj, OJ,'
aPortType := ptNone;

end;
end;

procedure Extractl'ortsilnterfacelvode : Tlreeblode; aNetlist : Plvetlistl.ayout);
II Given a cellinetlist view tree node, this procedure extracts the interface port
II information. The interface node take the following form
II
II
II
II
II
II

interface
1- port portXXX
1- port (rename portYYY ''portZZZ'')

var PortNode, Rename Node : Tlreeblode;
NewPort: PPort,'
PortStr: String,'
aPortType : Tl'ort'Iype,

begin
PortNode := FindFirstChildWith(InterfaceNode, 'port'),'
while PortNode <> nil do
begin
II Extract port node
if PortNode <> nil then
begin
RenameNode := FindFirstChildWith(PortNode, 'rename');
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if RenameNode < > nil then
begin
PortStr:= GetRenameName(RenameNode);

end else
begin
PortStr := GetNodeData(PortNode);

end;
II Extract port type from port node
ExtractPo rt Type (PortNode, aPortType);
II Create a new port
NewPort := New(PPort, Create (PortStr, nil, aPortType));
II and ammend it to the Portlnterface list
aNetList.PortInterface.AddNode(NewPort);
PortNode := FindNextSiblingFrom(PortNode. GetNextSibling, 'port');

end;
end;

end;

procedure ExtractlnterfacetNetlistblode : TTreeNode; aNetlist : PNetlistLayout);
II Given a cellinetlist tree node, this procedure finds the view node, then the
II interface. It then extracts the ports from the interface node
var ViewNode, InterfaceNode : TTreeNode;

aPort: PPort;
begin
ViewNode := FindFirstChildWith(NetlistNode, 'view');
if ViewNode <> nil then
begin
InterfaceNode := FindFirstChildWith(ViewNode, 'interface ');
if InterfaceNode <> nil then
begin
ExtractPorts(InterfaceNode, aNetList);

II Add special ports
II Add Clkln, ClkOut and Vddin and Vddout ports
IlaNetlist.PortInterface.AddNode(New(PPort, Createt'Vddin',

pt _Special)));
IlaNetlist.PortInterface.AddNode(New(PPort, Createi'Vddout',

pt_Special)));
IIaNetlist. PortInterface.AddNode (New(P Port, Create ('CLKin "

pt_Special)));
IlaNetlist.PortInteljace.AddNode(New(PPort, Createi'Cl.Kout',

pt_Special)));

aNetlist,

aNetlist,

aNe tlist,

aNetlist,

aNetlist. Vddin:= New(PPort, Createt'Vddin', aNetlist, pt Vddin));
aNetlist. Vddout := New(PPort, Createi'Vddout', aNetlist, pt Vddouu);
aNetlist.CLKin := New(PPort, Create(,CLKin', aNetlist, pt CLKin)),·
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aNetlist.CLKout:= New(PPort, Create('CLKout', aNetlist, pt_CLKout));
end;

end;
end;

procedure ExtractNetlists(LibraryNode : TTreeNode; al.ibrary : Pl.ibrary);
II Given a library tree node, this procedure scans through the library and
II extracts the cell/netlist information
var NetListNode : TTreeNode;
NewNetlist: PNetlistLayout;

begin
NetListNode := FindFirstChildWith(LibraryNode, 'cell');
while NetListNode <> nil do
begin
II Create a new netlist
NewNetList := New(PNetlistLayout, Create(GetNodeData(NetListNode)));
II Assign this net list to the CurrentNetlist
CurrentNetlist := NewNetlist;
II Add the netlist to the current library
aLibrary.AddNetlist(NewNetList);
II Extract the netlist's interface
ExtractInterface(NetListNode, NewNetList);
II Extract the netlist's contents
ExtractContents(NetlistNode, NewNetList);
II Search for next celiinetlist
NetlistNode := FindNextSiblingFrom(NetlistNode. GetNextSibling, 'cell');
end;
II Reset CurrentNetlist
CurrentNetlist := nil;

end;

procedure ExtractLibrQly(EDIFTree : TTreeNodes);
II This scans the first level of the EDIF Tree in search of libraries and
II extracts them
var ChildNode, LibraryNode : TTreeNode;
NewLibrary: PLibrary;

begin
II Find the child of the edif tree
ChildNode := EDIFTree.ltem[Oj;
II Locate the first library within the EDIFTree
LibraryNode := FindFirstChildWith(ChildNode, 'Library');
while LibraryNode <> nil do
begin
II Create a new library
NewLibrary := New(PLibrary, Create(GetNodeData(LibraryNode)));
II Set the current library to the newly created one
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Currentl.ibrary .'= New Library;
II Add the newly created library to the libraries list
Libraries.AddNode(NewLibrary);
II Extract the netlists of the library
WriteMessage('Extracting Library' + NewLibrary.Name, pr_Mediul11);
ExtractNetlists(LibraryNode, NewLibrary);
II Search for the next library in the EDIFTree
LibraryNode .'= FindNextSiblingFrom(LibraryNode.getNextSibling, 'library');

end;
II Reset CurrentLibrary
CurrentLibrary .'= nil;

end;

procedure GetDesignNetlist(EDIFTree .' TTreeNodes);
var DesignNode, NetlistRejNode, LibraryRejNode .' TTreeNode;

abletlist : PNetlist;
begin
aNetlist .'= nil;
DesignNode .> FindFirstChildWith(EDIFTree.ltem[Oj, 'design');
if DesignNode <> nil then
begin
NetlistRejNode = FindFirstChildWith(DesignNode, 'cellref');
if NetlistRejNode <> nil then
begin
LibraryRejNode .'= FindFirstChildWith(NetlistRejNode, 'libraryref'),
if LibraryRejNode <> nil then
begin
aNetlist

GetLibraryFromName(GetNodeData(LibraryRejNode)) 1\.Netlists .GetFromName(GetNod
eData(NetlistRejNode));

end;
end;

end;

if aNetlist <> nil then
DesignNetlist .'= aNetList

else
MessageDlgt'Error: GetDesignNetlist - Design not found', mtError, [mbOkj, 0);

end;

begin
II Clear the library dynamic list
Libraries. RemoveAll;
II Extract libraries from the EDIFTree
WriteMessage(,Extracting Libraries', pr _Medium);
ExtraetLibrary(EDIFTree) ;
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GetDesignNetlist(EDIFTree) ;
if DesignNetlist <> nil then
begin
with Designbletlist': do
WriteMessage('Retrieving Target Netlist (' + lnt ToStr(Ce lls.Count) + ' Cells and' +

IntToStr(Nets. Count) + ' nets)', pr _Medium);
II Return a successful message
ResultMsg := 'EDIF information extracted';
BuildEDIF := True;

end else
begin
II Return an unsuccessful message
ResultMsg := 'EDIF information corrupt';
BuildEDIF:= False;

end;
end;

function TEDIF. GetLibraryFromName(aLibraryName : String) : PLibrary;
II Returns a library in the EDIF given its name
begin
GetLibraryFromName := PLibrary(Libraries.GetFromName(aLibraryName));

end;

function TEDIF. OpenEDIF(Filename : String; Tree: TTreeNodes) : Boolean;
II This is the coordinating procedure that will:
II 1. Read the EDIF from ajile
II 2. Extract the read file into the tree Tree
var R : String;
begin
II Return false by default
OpenEDIF:= False;
II Execute commands
if LoadEDIF(Filename) then
if BuildEDIFTree(Tree, R) then
II Return true if successful
OpenEDIF:= True,'

end,'

Stellenbosch University http://scholar.sun.ac.za



128

Appendix D.S. RSFQ Logic Mapper - UMapper.pas

Appendix D.S.I. Remove Delay Instances AND!, OR! and DELAY

procedure RemoveDelays;
II Removes delay cells
var aCell : PCell;

inNet, outNet : PNet;
aPortPtr : PPortPtr;
PortIn, PortOut : PPort;
aPort: PPort;
s : String;
EraseCells : TCellDynamicList;
EraseNets : TNetDynamicList;

begin
II Scan through netlist
while TheNetlist.Cells.ForEach(aCell) do
II Identify DELA Y cells
begin
s := PNetlist(aCeII.MasterCell).Name;
if (s = 'DELA Y') or (s = 'AND I') or (s = 'OR I') then
begin
II Search for input/output ports and nets
PortIn := aCeII.Ports.GetFromName(,IN 1');
PortOut := aCeII.Ports.GetFromName(,Y');
inNet := Portln.Connected_Net;
outNet := PortOut.Connected _Net;

II Add outNet output connections to inNet
while outNet.PortList.ForEach(aPortPtr) do
begin
case aPortPtr.Port.PortType of
pt_Out:;
pt_HierIn:
pt_In, pt_HierOut:
begin
II Add output connections to inNet.
inNet.AddPort(aPortPtr.Port);
aPortPtr.Port.Connected_Net := inNet;

end;
end;

end;
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Appendix D.S. RSFQ Logic Mapper - UMapper.pas

Appendix D.S.!' Remove Delay Instances AND!, OR! and DELAY

procedure RemoveDelays;
II Removes delay cells
var aCel1 : PCel!;

inNet, outNet : PNet;
aPortPtr : PP0l1Ptr;
Portln, PortOut : PPort;
aPort: PPort;
s : String;
EraseCel!s : TCellDynamicList;
EraseNets : TNetDynamicList;

begin
II Scan through netl ist
while TheNetlist.Cells.ForEach(aCell) do
II Identify DELA Y cells
begin
s := PNetlist(aCeII.MasterCell).Name;
if (s = 'DELA Y') or (s = 'AND I') or (s = 'OR I ') then
begin
II Search for input/output ports and nets
PortIn := aCeII.Ports.GetFromName('IN I ');
PortOut := aCeII.Ports.GetFromName('Y');
inNet := PortIn.Connected_Net;
outNet := PortOut.Connected _Net;

II Add outNet output connections to inNet
while outNet.PortList.ForEach(aPortPtr) do
begin
case aPortPtr.Port.PortType of
pt_ Out:;
pt_HierIn:
pt_In, pt_HierOut:
begin
II Add output connections to inNet.
inNet.AddPort(aPortPtr.Port);
aPortPtr.Port.Connected _Net := inNet;

end;
end;

end;
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II Remove PortIn from inNet
inNet.PortList.RemovePort(PortIn);

II Remove instance of DELA Y cell
TheNetlist.Cells.Remove(aCell);

II Remove outNet
TheNetl ist.Nets.Remove( outNet);

end;
end;

end;

Appendix D.S.2. Remove Fan-out

procedure RemoveFanout;
II Scans through the netl ist and removes fanout nets

procedure RemoveFanoutOnNet(aNet : PNet);
I I Adds spl itters to the netlsit
var i, j, k, FanOutCount : Integer;

aSplitter: PCell;
PortS tack : Array of PPort;
INI, YI, Y2: PPort;
aPortPtr : PPortPtr;
FanPort, aPort: PPort;
newNet : PNet;
s : string;

begin
II Calculate number of splitters needed
FanoutCount := aNet.PortList.Count - I;

II Find the fanout port
FanPort := nil;
while aNet.PortList.ForEach(aPortPtr) do
with aPortPtr.Port'" do
if (PortType = pt_ Out) or (PortType = pt_ Hierln) then
FanPort := aPortPtr.Port;

II Error testing
if FanPort <> nil then
begin
II FANO UT REM 0 VA L ALGO RITH M -------------------------------------------------

II Create stack and add driver port
SetLength(PortStack, I);
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PortStack[O] := FanPort;

II CREATE FANOUT NETWORK WITHOUT FANOUT NETS--------------------

i := O;j := 0;
while j < FanOutCount-I do
begin
II Initialise
INI := Nil; YI := nil; Y2 := nil;

II Create and add next splitter
AddSplitterInstance(aNet.Name + '_' + IntToStr(j), aSplitter, fN I, Y I, Y2);
inc(j);

II Connect new splitter with a net
newNet := New(PNet, Create(aNet.Name + '_S' + [ntToStr(i)));

II Find first available port on the stack
aPort := PortStack[O];

II Add this port and the INI of recently created splitter instance
newNet.AddPort(aPort);
newNet.AddPort(fN I);

II Specify connected nets
aPort.Connected _Net := newNet;
IN I.Connected_Net := newNet;

II Add the net to the netlist
TheNetlist.AddNet(newNet);

II Remove the topmost port from port stack non-destructively
for k := 0 to Length(PortStack)-l do
PortStack[k] := PortStack[k+ I];

Setlength(PortStack, Length(PortStack)-I);

II Add output ports Y I and Y2 to stack
SetLength(PortStack, Length(PortStack)+ 2);
PortStack[Length(PortStack)-2] := Y I;
PortStack[Length(PortStack)-I] := Y2;

II Increment global counter
inc(i);

end;
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II CONNECT PORT TO FANOUT NETWORK ---------------------------------------
k:= 0;
while aNet.PortList.ForEach(aPortPtr) do
with aPortPtr.Port" do
if (PortType = pt_In) or (PortType = pt_HierOut) then
begin
II Create connecting fanout net
newNet := New(PNet, Create(aNet.Name + '_SF' + IntToStr(k)));

II Add ports to nets
newNet.AddPort(aPortPtr.Port);
newNet.Add Port(PPort(PortStack[k]));

II Connect ports via a net
Connected_Net := newNet;

II Add the net to the netlist
TheNetlist.Nets.AddNode(newNet);

inc(k);
end;

II Destroy PortStack
SetLength(PortStack, 0);

end;

II Remove original fanout net - it has been replaced
TheNetlist.Nets.Remove(aNet);

end;

II REMOVEF ANOUT MAIN PROCEDURE ---------------------------------------------------
var aNet : PNet;

begin
II Scan netlist for all nets
while TheNetlist.Nets.ForEach(aNet) do
begin
II Target nets that have a fanout, i.e. net count> 2
if aNet.PortList.Count > 2 then
begin
II Add splitters to aNet
RemoveFanOutOnNet(aNet);

end;
end;

end;
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Appendix D.6. Netlist Layout - UNetlistLayout.pas

Appendix D.6.1.Genetic Algorithm

procedure TNetlistLayout.Genetic(Population_Size, TotalGenerations : Integer);
II This procedure uses Genetic Optimization to minimize the total interconnecting
II net length of a given layout.

var i, j, Generation: Integer;
Population, NewPopulation : TDynamicList;
newPheno, oldPheno, aPhenoUnit,
ParentI, Parent2, Child, BestSolution, Result: PPhenoUnit;
BestCost: Real;
aNode: PDynamicNode;
Longest: Real;

begin
II Randomize
Randomize;

II Create population data structures
Population.Create;

III Randomly fill the population pool
for i := I to Population_Size do
begin
II Randomly generate the phenotype data
CreateRandomPhenotype( aPhenoU nit);

II Calculate the cost
PhenoCost( aPheno Un it);

II Add the new pheno to the population group
Population.AddNode(aPhenoUnit);

end;

II Create a result pheno unit
CreateRandomPhenotype(Result);
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II Make the initial best cost very high
BestCost := 1e 12;

for Generation := 1 to TotalGenerations do
begin
II Create population data structures
NewPopulation.Create;

for i := 1 to Population_Size do
begin
II Select the best parents within the population pool
ParentI := SelectParent(Population);
Parent2 := SelectParent(Population);
II Perfrom an ordered cross over to get next generation
Child := OrderedCrossOver(Parent 1, Parent2);
II Mutate the child
MutatePheno(Child);
II Add the new best child to the new population pool
NewPopulation.AddNode(Child);

end;

II Clear the "old" population pool
Population. Destroy;
Population. Create;

II Transfer the new population to the "old" population pool
while NewPopulation.ForEach(aNode) do
begin
oldPheno := PPhenoUnit(aNode);
newPheno := New(PPhenoUnit, Create(oldPheno.Name));
newPheno.Cost := oldPheno.Cost;
newPheno.Phenotype := oldPheno.Phenotype;
Population.AddNode(newPheno );

end;

NewPopulation.Destroy;

II Find the best solution
BestSolution := SelectBest(Population);

II Test whether the best solution beats the best from previous generations
if BestSolution.Cost < BestCost then
begin
PhenoCost(BestSol uti on);
Longest := LongestNetConnection;



Result? := Bestxolutiorr";
BestCost := BestSolution.Cost;

end;
end;

II Netlist to the best result
PhenoCost(Result);

ResultantPheno := Result";

end;

Appendix D.6.2. Simulated Annealling Algorithm

proced ure TNetlistLayout.S imu latedAnneal ing;

var e, i, j, k, I, srchwdth, SourceCol, SourceRow, DestCol, DestRow : Integer;
Done: Boolean;
InitialPI, BestPI, Temp: Real;

begin

Randomize;

II Initialise
CurrentTemperature := Globals.Simulated.StartTemp;
i:= O;j := 0;
e := Globals.Simulated.NeighbourSize;
srchwdth := 2*e + 1;

InitialPI := 1e30;
BestPI := InitialPI;

II Main simulated annealling loop
while CurrentTemperature > 0.1· do
begin
i:= 0;
while i < Cells.Count do
begin
SourceCol := i mod GridColumns; SourceRow := i div GridColumns;
j := 0;
Done := False;
while U < srchwdth*srchwdth) and not Done do
begin
DestCol := SourceCol - e + j mod srchwdth;
DestRow := SourceRow - e + j div srchwdth;
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if (DestCol >= 0) and (DestCol <= GridColumns) and
(DestRow >= 0) and (DestRow <= GridRows) and not
((DestCol = SourceCol) and (DestRow = Source Row)) then

begin

if Accept(SourceCol, SourceRow, DestCol, DestRow) then
begin
Swap(SourceCol, SourceRow, DestCol, DestRow);
Done := True;

end;
end;

inctj);
end;

inc(i);

Temp := NetlistArea;

if Temp < BestPI then
begin

BestGrid := Grid;
BestPI := Temp;

end;
end;

end;



Appendix D.7. Channel Router - Left Edge Algorithm-

UChannelRouter.pas

proced ure TChanneIRouter.LeftEndAlgorithm;
var f: TConstraint;

i, j : Integer;
V : Boolean;
D, Gamma: Real;

begin
II Minimum distance between tracks in same column
Gamma := Globals.Routing.Gamma;

D:= Gamma;

AddConstraints;
SetLength(ChanneISolution, 0);

while Length(Constraints) > 0 do
begin
II Find first net
i := FindConstraintAfter( -I e 12);
while (Length(Constraints) > 0) and (i >= 0) do
begin
II Scan to see if there are any constraints in the other direction
V := false; j := 0;
while U <= Length(Constraints)-I) and not V do
begin
ifj <> i then

V := ((abs(Constraints[i].Min - ConstraintsU].Min)<D) and
((Constraints[i].MinSide = Right) and (Constraints[j].MinSide = Left)))
or
((abs(Constraints[i].Max - Constraints[j].Max)<D) and
((Constraints[i].MaxSide = Right) and (ConstraintsU].MaxSide = Left)))
or
((abs(Constraints[i].Max - ConstraintsU].Min)<D) and
((Constraints[i].MaxSide = Right) and (ConstraintsU].MinSide = Left)))
or
((abs(Constraints[i].Min - ConstraintsU].Max)<D) and
((Constraints[i].MinSide = Right) and (ConstraintsU].MaxSide = Left)));
inctj);

end;
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f:= Constraints[i];

if not V then
begin
II Add track to solution
SetLength(RowSolution, Length(RowSolution)+ I);
RowSolution[High(RowSolution)] := f;
RemoveConstrai nt(i);
i := FindConstraintAfter(f.Max + Gamma);

end else
II Otherwise search for next track
i:= i+l;

end;
SetLength(ChanneISolution, Length(ChanneISolution)+ 1);
ChanneISolution[High(ChanneISolution)] := RowSolution;
SetLength(RowSolution,O);

end;
Width (Length(ChanneISolution)+ 1) * (Globals.Routing.Route Width +

Globals.Routing.RouteSpace);
end;
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Appendix D.8. GDSII Writer - UGDS.pas

unit UGOS;

interface

uses UOynamicUnit, SysUtils, Math;

II GOS Format record constants

const
gds_HEAOER = $0002; II 2-byte integer
gds_BGNLIB = $0102; 1112 2-byte integers
gds_LIBNAME = $0206; II ASCII string
gds_REFLIBS = $1F06; II 2 45-character ASCII strings
gds_FONTS = $2006; 114 44-character ASCII strings
gdS_ATTRTABLE = $2306; II 44-character ASCrr string
gds_GENERATIONS = $2202; II 2-byte integer
gds_FORMAT = $3602; II 2-byte integer
gds_MASK = $3706; II ASCII string
gds_ENOMASKS = $3800; II No data
gds_ UNITS = $0305; II 2 8-byte floats

gds_ENDLlB
gds_BGNSTR
gds_STRNAME
gds_ENOSTR

gds_BOUNOARY
gds_PATH
gds_SREF
gds_AREF
gds_TEXT
gds_NODE
gds_BOX
gds_ENOEL

gds_ELFLAGS
gds_PLEX
gds_LAYER
gds_OATATYPE
gds_XY
gds_PATHTYPE
gds_ WIDTH

= $0400; II No data
= $0502; II 12 2-byte integers
= $0606; II Up to 32-characters ASCII string
= $0700; II No data

= $0800; II No data
= $0900; II No data
= $OAOO;II No data
= $OBOO;II No data
= $OCOO;II No data
= $1500; II No data
= $2000; II No data
= $1100; II End of element

= $260 I; II 2-byte integer
= $2F03; II 4-byte integer
= $0002; II 2-byte integers
= $OE02; II 2-byte integer
= $1003; II Up to 200 4-byte integer pairs
= $2102; II 2-byte integer
= $OF03; II 4-byte integer



gds_SNAME = $1206; II Up to 32-character ASCII string
gds_STRANS = $IA01; II 2-byte integer
gds_MAG = $IB05; II 8-byte float
gds_ANGLE = $1COS; II 8-byte float
gds_COLROW = $1302; 112 2-byte integers
gds_TEXTTYPE = $1602; II 2-byte integer
gds_PRESENTA nON = $1701; II 2-byte integer
gds_ASCII = $1906; II Up to 512-character string
gds_NODETYPE = $2A02; II 2-byte integer
gds_BOXTYPE = $2E02; II 2-byte integer

type TByteArray = array of byte;

TGDSRec = record
RecLength : Word;
RecType : Word;
Data : Array of Byte;

end;

PGDSElement = I''TGDSElement;
TGDSElement = object(TDynamicNode)
RecType: Word;
Data: Array of Byte;
constructor Create;

end;

TGDSElementDynamicList = object(TDynamicList)
function ForEach(var aGDSElement : PGDSElement) : Boolean; virtual;
function GetFromName(aName : String) : PGDSElement; virtual;
end;

PGDSStruct = I\TGDSStruct;
TGDSStruct = object(TDynamicNode)
Elements: TGDSElementDynamicList;
constructor Create(aName : String);
procedure Rectangle(XI, YI, X2, Y2: Real; Layer: Word);
procedure Reference(RefName : String; X, Y : Real);
procedure Path(XI, YI, X2, Y2 : Real; Width: Real; Layer: Word);
destructor Destroy;

end;

TGDSHeader = object(TDynamicNode)
HeaderElements : TGDSElementDynamicList;

end;

139



140

TGDSStructDynamicList = object(TDynamicList)
function ForEach(var aGDSStruct : PGDSStruct) : Boolean; virtual;
function GetFromName(aName : String) : PGDSStruct; virtual;

end;

PGDSWriter = /\TGDSWriter;
TGDSWriter = object
GDSLibrary :TGDSStructDynamicList;

LibraryF, OutputF : File of Byte;

constructor Create(LibraryFilename, OutputFilename : String);
function CreateNewStruct(aName : String) : PGDSStruct;

function ReadGDSRec(var GDSRec : TGDSRec) : Boolean;

function WriteStructToOutput(aStruct: PGDSStruct) : Boolean;
procedure WriteGDSRec(GDSRec : TGDSRec);

destructor Destroy;

end;
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Appendix D.9. Cell Object - UCell.pas

type PCel1 = <T'Celf
TCell = object(TDynamicNode)
II Cell Variables
MasterCel1 : Pointer;
Ports: TPortDynamicList;
CeIIX, CellY : Real;
Owner: Pointer;

II Reference to a master cell
II List of input and output ports
II The cells X, Y coordinates
II Netlist that owns the cell, used in partitioning

Clkin, Clkout,
Vddin, Vddout : PPort;
Tag: Integer;

II CLK and Vdd special ports

II Used in genetic optimisation

II Cell Methods
constructor Create(CellName : String); II Create a new cell
procedure AddPort(aPort : PPort); II Add a port to port list
function GetPort(PortName : String) : PP0I1; II Find port
procedure SetMasterCell(Master : Pointer); II Set master cell
destructor Destroy; II Destroy cell

end;

TCellDynamicList = object(THashDynamicList)
function GetFromName(aName : String) : PCell;
function ForEach(var aCel1 : PCell) : Boolean;

end;



Appendix D.IO Net Object - UNet.pas

type PPortPtr = I\TPortPtr;
TPortPtr = object(TDynamicNode)
Port: PPort; II Port that is referenced
constructor Create;
destructor Destroy;

end;

TPortPtrDynamicList = object(TDynamicList)
function RemovePort(aPort : PPort) : Boolean;
function ForEach(var aPortPtr : PPortPtr) : Boolean; virtual;
function GetFromName(aName : String) : PPortPtr; virtual;

end;

II Define the net structure

type PNet = I\TNet;
TNet = object(TDynamicNode)
PortList : TPortPtrDynamicList; II List of PortPtr's

constructor Create(aNetName : String);
procedure AddPort(aPort : PPort);
procedure SimpleDraw(Canvas : TCanvas);
procedure Draw(Canvas : TCanvas);

function GetNetLength : real; II Return the total net length
function GetLongestConnection : Real; II Return longest net connection
destructor Destroy;

end;

type PNetDynamicList = I\TNetDynamicList;
TNetDynamicList = object(THashDynamicList)
function GetFromName(aName : String) : PNet;
function ForEach(var aNet : PNet) : Boolean;

end;
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Appendix D. 11 Port Object - UPort.pas

type PPort = /\TPort;
TPort = object(TDynamicNode)

II Port Variables
Parent: Pointer;
Connected_Net: Pointer;
Id : Integer;
Orientation: TOrientation;
Orient_ Offset : Real;
PortType : TPortType;
PortX, PortY : Real;
Partition: Pointer;
SPICEPort : Integer;

II Pointer to parent cell
II Pointer to connected net
II An integer 10 used in routing
II Port orientation to parent cell
II Offset according to orientation
II Type of Port
II Coords relative to parent cell
II Parent's parent
II Index to SPICE port

II Port Methods
constructor Create(aPortName : String; aParent Pointer; aPortType

TPortType);
function IsPort(aPortName: String) : Boolean;
procedure GetPortCoords(var AbsPortX, AbsPortY : Real);
procedure Draw(Canvas : TCanvas);
function IsReceiverPort : Boolean;
function IsOriverPort : Boolean;
function IsSpecial : Boolean;

destructor Destroy;
end;

TPortDynamicList = object(TOynamicList)
function ForEach(var aPort: PPort) : Boolean; virtual;
function GetFromName(aName : String) : PPort; virtual;

end;
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Appendix D.12. Netlist Object - UNetlist.pas

unit UNetlist;

interface

uses UNet, UPort, UCell, UDynamicUnit, Graphics, Classes, Math, UGDS,
SysUtils;

type PNetlist = I\TNetlist;
TNetlist = object(TDynamicNode)
II Variables
Cells: TCellDynamicList;
Nets : TNetDynamicList;
Portlnterface : TPortDynamicList;

II Cells contained in netlist
II Nets
II Interface Ports

Clkin, Clkout, Vddin, Vddout : PPort; II Special ports

NetlistWidth, NetlistHeight : Real; II Netlist Dimensions in micrometres
GDSStructName, II Reference to the GDS physical equivalent
SPICEStructName : String; II Reference to the SPIE structurename

II Methods
constructor Create(aNetlistName : String);
function AddCell(aCell : PCell) : Boolean;
function AddNet(aNet: PNet) : Boolean;
function Testlntegrity: Boolean;
function TotalNetlength : Real;
function LongestNetConnection: Real;
destructor Destroy;

end;
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Appendix D.13. Dynamic Lists - UDynamicUnit.pas

In order to handle vast collections of data, a unit was written to allow the dynamic

memory allocation of data nodes in a list. The binary tree method was considered due to

its improved searching speed. It was found that the added complexity is unnecessary

since hashed linked lists could decrease the search order of complexity by a satisfactory

factor.

Appendix 0.13.1. Dynamic Nodes

At the center of the dynamic list unit is a dynamic node. Figure 0.13.1 declares it

as an object that has inheritance properties to be adopted by cell, net, port and other

object types. It contains two variables, one to hold the name identity of the node, the

other to reference the next node in a list.

type PDynamicNode = /\TDynamicNode
TDynamicNode = object
Name: String;
Next: PDynamicUnit;

end:

(a)

TDynamicNode
Next Pointer

(b)

Figure 0.13.1. Object Pascal declaration ofTDynamicNode (a) and its graphic
representation (b)

Method Name Description Order of
Complexity

Create Initializes the dynamic node. Must be called before 1
attempting to add it to a list.

Destroy Destroys the contents of the node. 1

Table 0.13.1. : TDynamicNode Methods
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Appendix D.13.2. Dynamic Lists

The dynamic nodes are handled by a dynamic list object. This object has methods

that facilitate the manipulation of a node list, referenced by its List variable (see Figure

D.13.2.). List points to the first dynamic node in the list. The following nodes are located

by referencing the next pointers of these nodes (See figure D.13.2.c)

type PDynamicList = ATDynamicList;
TDynamicList = object
List: PDynamicNode;
constructor Create;
procedure AddNode(aNode : PDynamicNode);
procedure AddNodeAtEnd(aNode : PDynamicNode);
function Remove(aNode : PDynamicNode) : Boolean;
function RemoveAll : Boolean;
function Index(i : Integer) : PDynamicNode;
function Count: Integer;
function Getlndex(aNode : PDynamicNode) : Integer;
function GetFromName(aName : String) : PDynamicNode;
function ForEach(var aNode: PDynamicNode) : Boolean;
destructor Destroy;

end;
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Figure D.13.2. Pascal declaration of TDynamicList (a), its graphic representation (b),
and an example dynamic list with dynamic nodes (c)
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Method Name Description Order of
Complexity

Create Initializes the dynamic list and must be called before 1
attempting to manipulate a list.

AddNode Adds a node to the beginning of the list (FIFO). Order of 1
complexity is 1.

AddNodeAtEnd Adds a node to the end of the list (LIFO). 1
Remove Removes the sQ_ecified node. N
RemoveAl1 Removes all nodes from the list, but does not deallocate N

nodes.
Getlndex Scans the Iist and returns the index of a node.

N
Note: Has no meaning in a hashed list

GetFromName Scans the list and returns a pointer reference to the N
specified node.

ForEach Scans through a list sequentially and returns the next
node in the list. N

usage:

while aDynamicList.ForEach(aDynamicNode) do
begin

aDynamicNode.Name := ....
end;

Note: A For Each procedure cannot be used inside itself.
Destroy Destroys list by calling each nodes destroy method. N

Table 0.13.2. : TDynamicList Methods
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Appendix D.13.3. Hashed Dynamic Lists

In order to decrease the order of complexity of the seach method, GetFromName,

a hashing object is decended from the dynamic list object and contains a "hash list" of

dynamic lists. The hashing function works by taking the sum of the ASCII values of the

desired node name to locate its hash list. In this manner the order of complexity is

decrease by the number of hash Iists (H).

THashDynamicList

TDynamicList

1• I ~rnl---*l~rn
Dynamic Nodes

Hashing
Function

Figure D.13.3. A hashed dynamic list making use of a hashing function to decrease the
order of complexity by a factor of H.
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TDynamicList and THashDyanmicList

Method Name Description Order of
Complexity

Create(Hashsize) Initialises a hashed dynamic list ofH lists. Must be I
called before attempting to manipulate a hashed list.

AddNode Adds a node to the beginning of the list (FIFO). Order I
of complexity is 1.

AddN odeA tEnd Adds a node to the end of the list (LIFO). I
Remove Removes the specified node. N
RemoveAll Removes all nodes from the list, but does not deallocate N

nodes.
Getlndex Scans the list and returns the index of a node.

N
Note: Has no meaning in a hashed list

GetFromName Scans the list and returns a pointer reference to the NIHashsize
specified node.

ForEach Scans through a list sequentially and returns the next
node in the list. N

usage:

while aDynamicList.ForEach(aDynamicNode) do
begin

aDynamicNode.Name := ....
end;

Note: A ForEach procedure cannot be used inside
itself.

Destroy Destroys list by calling each nodes destroy method. N

Table D.13.3. : THashDynamicList Methods
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unit UDynamicUnit;

interface

type PDynamicNode = I''TDynamicNode;
TDynamicNode = object
Name: String;
Next: PDynamicNode;
constructor Create(aName : String);
destructor Destroy;

end;

type PDynamicList = I\TDynamicList;
TDynamicList = object

List: PDynamicNode; II Holds the pointer to the first DynamicNode

constructor Create;

procedure AddNode(aNode : PDynamicNode);
procedure AddNodeAtEnd(aNode : PDynamicNode);
function Remove(aNode : PDynamicNode) : Boolean;
function RemoveAl1 : Boolean;
function Index(i : Integer) : PDynamicNode;
function Count: Integer;
function Getlndex(aNode : PDynamicNode) : Integer;

function GetFromName(aName : String) : PDynamicNode;
function ForEach(var aNode: PDynamicNode) : Boolean;

destructor Destroy;

private

Last: PDynamicNode; II Holds the pointer to the last DynamicNode in a list

NodeCount : Integer;
ForEachFlag : Boolean;

end;

II Holds the count of nodes in a list
II Holds the state of a ForEach loop

THashDynamicList = object(TDynamicList)

constructor Create(HashSize : Integer);

procedure AddNode(aNode : PDynamicNode);
procedure AddNodeAtEnd(aNode : PDynamicNode);
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function Remove(aNode : PDynamicNode) : Boolean;
function RemoveAII : Boolean;
function Index(i : Integer) : PDynamicNode;
function Count: Integer;
function GetFromName(aName : String) : PDynamicNode;
function GetIndex(aNode : PDynamicNode) : Integer;
function ForEach(var aNode: PDynamicNode) : Boolean;
function GetHashList(Name : String) : PDynamicList;
destructor Destroy;

private

HashList : Array of PDynamicList;

HashMod : Integer;
HashForEach : Boolean;
CurrentForEach : Integer;

end;




