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Abstract
Investigation of a wool measurement device for determining the

mean diameter of a sample consisting of multiple wool fibers

D. Spangenberg

Supervisors: Dr. Johan Burger and Prof. Hubertus von Bergmann

Co-Supervisor: Prof. Willem Jacobus Perold

Department of Electrical and Electronic Engineering in collaboration with the Department of

Physics

Thesis: MScEng (Electronic Engineering)

March 2012

In the wool trade the mean diameter of wool is a primary indicator of wool qual-

ity. It is currently standard practice for a wool grower to send samples to a lab-

oratory for classification before and after shearing. The devices used to make

measurements on samples are often big and bulky and sensitive to the environ-

ment, thus they are not ideally suited for on site testing. A brief discussion of

the industry is given with background information on existing devices as well as

information about organic fibres in general.

We test an experimental device which has the potential to be robust and com-

pact based on the Fourier optical principle. Two initial designs are considered

and the transmission design is further developed into a working system. The

working system is evaluated in a sample measurement experiment. In our sam-

ple measurement experiment we determine the mean diameter of a set of samples

which has been analysed by an external testing body such that the measurements

could be compared.
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Uittreksel
’n Ondersoek na die navorsing en ontwikkeling van ’n

meetinstrument om die gemiddelde dikte van veelvoudige

wolhaar vesels te bepaal

(“Wool measurement: An Investigation into Research & Development”)

D. Spangenberg

Supervisors: Dr. Johan Burger and Prof. Hubertus von Bergmann

Co-Supervisor: Prof. Willem Jacobus Perold

Department of Electrical and Electronic Engineering in collaboration with the Department of

Physics

Tesis: MScIng (Elektroniese Ingenieurswese)

Maart 2012

In die wol bedryf word die gemiddelde diameter van wol as ’n primêre kwaliteitin-

deks gebruik. Dit is tans gebruiklik om wol monsters na ’n laboratorium te stuur

vir klassifikasie voor en na die skape geskeer word. Die toestel wat gebruik word

om die wol monsters te klassifiseer is geneig om groot, lomp en sensitief vir die

omgewing te wees en is sodoende nie ideaal vir veld gebruik nie. ’n Kort uit-

leg van die industrie word gegee tesame met agtergrond inligting van bestaande

toestelle asook agtergrond oor organiese vesels in die algemeen.

Ons toets ’n eksperimentele toestel wat potensieel kompak en aanpasbaar kan

wees en gebaseer is op die Fourier optiese prinsiep. Twee aanvanklike ontwerpe

word oorweeg en eindelik word die transmissie ontwerp verder ontwikkel tot ’n

werkende sisteem. Die sisteem word geëvalueer in ’n monster meting eksperi-

ment. In die monster meting eksperiment bepaal ons die gemiddelde diameter

van ’n stel monsters waarvan die gemiddelde diameter deur ’n eksterne liggaam

bepaal is om sodoende die metings te kan vergelyk.
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1Introduction
1.1 Motivation

This thesis is based on the study of a potential method to determine specific prop-

erties of wool. We will be looking at a Fourier optical system to determine the

mean diameter of wool fibres. In this thesis the challenge will be to determine the

obstacles in building a Fourier optical system which must meet specific demands

in terms of measurement range and physical size. Many different devices exist to

determine the properties of wool. Standardized techniques to measure the prop-

erties of wool are enforced by the International Wool Trade Organisation (IWTO)

who evaluates devices and determine set procedures to follow when measure-

ments are made with said devices to ensure a uniform standard across the market.

The measurement technique we will look at could potentially be adopted by the

IWTO for wool classification purposes or potentially it could be developed into a

hand held device which farmers could use for breeding purposes or possibly to

classify wool prior to shearing.

1.2 Research Objectives

The main objective of this thesis is to investigate a potential method which could

be used to determine the mean thickness of a random sample of wool fibres, out-

lining all the difficulties encountered. This project aims to experimentally prove

that a device could be built to determine the mean thickness of a random sample

of wool by means of the Fourier optical principle. We further wish to verify resul-

tant measurements obtained by the device from a single wool sample set against

measurements from a laboratory certified by the IWTO on the same wool sample

set.

1
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CHAPTER 1. INTRODUCTION 2

1.3 Thesis Outline

Chapter One serves as an introduction.

Chapter Two serves as a literature study giving background theory related to

light and its application in this thesis.

Chapter Three serves as a literature study which gives an overview of the wool

industry and wool measurement techniques.

Chapter Four is dedicated to theoretically finding and solving design parameters

in order to design a Fourier optical system.

Chapter Five is dedicated to the testing of the Fourier optical systems developed

in Chapter Four and finding solutions to practical problems encountered in

order to have a working experimental Fourier optical setup.

Chapter Six is dedicated to defining the system parameters and defining the

method used to do pattern analysis and all required parameters which are

needed to do the pattern analysis.

Chapter Seven is dedicated to determine comparative results between our Fourier

optical system and samples obtained from an external laboratory.

Chapter Eight serves as a conclusion considering the results from the compara-

tive sample experiment and discusses future development and the possible

market segments within which such a device could compete.
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2The properties of light
This chapter will serve as the foundation of theory describing and explaining the

principles upon which Fourier optics is based. As such we will look at the impli-

cations of linear time invariance on wave theory and how it is applied to electro-

magnetic theory. From electromagnetic theory we highlight the applicability of

the ray which is widely used in geometric optics. The ray is then applied to geo-

metric optics and extrapolated to demonstrate the working of Fourier optics and

give insight into aberrations. Diffraction is then discussed in order to describe

how electromagnetic waves are affected by obstructions and finally we examine

specific simplifications which is applicable to the theory for our application.

2.1 Linear time invariant systems

Linear time invariant systems allow one to break input functions and output solu-

tions modified by a system into a set of simple base functions which could easily

be individually analysed. In this section we will define systems in general and

define and discuss what linear time invariance means and how it applies to the

wave equation. The discussion follows from Gaskill [13]1.

2.1.1 Systems

Let’s first look at systems, linearity and time invariance and discuss the implica-

tions thereof.

A system transforms a function or set of functions into a new set of func-

tions such that for a given set of input functions { f1(x), f2(x), .., fn(x)} one has

a corresponding set of output functions {g1(x), g2(x), ..., gn(x)} through the S{}
1Gaskill [13] on page 135

3
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CHAPTER 2. THE PROPERTIES OF LIGHT 4

operator, thus

S{ fi(x)} = gi(x), i = 1, 2, ..., n, . (2.1)

It is not immediately obvious from the notation of Eq. (2.1) what is meant by

a system. The following example gives a better understanding of the concept,

d2

dx2
gi(x) + Kgi(x) = fi(x). (2.2)

The function fi(x) acts as a forcing function and the function gi(x) is the solution

and the output. We will refer to the input and output functions as input and

output signals in the following sections.

2.1.2 Linearity

A system S{ f (x)} is said to be linear if for the given input signals f1(x) and f2(x)

if the following property holds,

S{a1 f1(x) + a2 f2(x)} = a1g1(x) + a2g2(x). (2.3)

Linearity implies that an input signal could be split into the sum of a set of

signals which could each be individually processed by the system to give a resul-

tant set of output solutions, the sum of which is the solution of the original input

signal.

2.1.3 Time invariance

A system S{ f (x)} is said to be time or shift invariant if given

S{ f (x)} = g(x) (2.4)

then

S{ f (x− x0)} = g(x− x0). (2.5)

Time invariance implies that the response of a system to a signal would be the

same regardless of when that signal is applied to the system.
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CHAPTER 2. THE PROPERTIES OF LIGHT 5

2.1.4 Waves in the framework of systems

In this section we will show that waves are linear time invariant systems. In

order to do so we view the wave equation as a system. Consider the generic

wave equation,

∇2ψ− 1

v2

∂2

∂t2
ψ = 0 (2.6)

where

∇2 = The Laplacian operator in Cartesian coordinates

v = The wave velocity

t = Time

ψ = The function describing the wave.

The Laplacian operator ∇2 is defined as,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.7)

One can view Eq. (2.6) in terms of a system as follows

S{ψ(x, t)} = 0 = f (x, t). (2.8)

With the system as defined by Eq. (2.8) it can be shown that any solution to

the wave function is linear and time invariant.

Given two equations describing waves

∇2ψ1 −
1

v2

∂2

∂t2
ψ1 = 0 = f1 (2.9)

∇2ψ2 −
1

v2

∂2

∂t2
ψ2 = 0 = f2. (2.10)

one can add them together to find,

∇2(ψ1 + ψ2)−
1

v2

∂2

∂t2
(ψ1 + ψ2) = f1 + f2 = 0. (2.11)

Thus the generic wave equation, Eq. (2.6), is linear as illustrated by Eq. (2.11).

In the same way it can be shown that Eq. (2.6) is time invariant, since the right
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CHAPTER 2. THE PROPERTIES OF LIGHT 6

hand side of Eq. (2.6) is zero the time invariant property is directly implied, thus

∇2ψ(x + φ, t)− 1

v2

∂2

∂t2
ψ(x + φ, t) = f (x + φ, t) = 0 (2.12)

∇2ψ(x, t + φ)− 1

v2

∂2

∂t2
ψ(x, t + φ) = f (x, t + φ) = 0. (2.13)

As demonstrated the wave equation is a linear time invariant system. Fourier

theory could be used to break up any input to such a system into the sum of

sinusoidal functions with varying phase frequency and amplitude each of which

could easily be analysed giving a resultant set of output signals which can simply

be added together to find the output solution.

It has to be noted that a wave disturbance has both a temporal and spatial

dependence, see Fig. 2.1. In terms of Fourier theory this implies that the signal

can be seen as the sum of it’s temporal frequency components and the sum of it’s

spatial frequency components.

Figure 2.1: An exaggerated disturbance signal split up into it’s temporal and
spatial components. The intensity A along each wave front is constant and con-
forms to the temporal signal

In terms of the temporal frequency components it is simple to understand, as

the signal is viewed only in terms of time and amplitude. It should be understood

that the time axis of the temporal signal is always perpendicular to the wave front.

From the above statement it is apparent that spatial frequency components

does not refer to temporal frequency. The spatial geometry of the system is con-

sidered and the signal is broken down into a set of plane waves each propagating

at different angles, this is referred to as the angular spectrum. The angular spec-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. THE PROPERTIES OF LIGHT 7

trum will be discussed in more detail in Section 2.5.2.

This implies that for each temporal frequency component there exist a spatial

frequency spectrum and the sum of all of these determines the final resultant

disturbance.

2.1.5 The complex wave function

Since linear time invariance implies through Fourier theory that any wave signal

is the sum of sinusoidal waves with varying frequency and phases, let’s consider

the general sinusoidal wave. The following follows from Goodman [2]2 modified

only slightly such that we consider waves in general. The equation for any single

frequency wave disturbance at a position P and time t is

u (P, t) = U (P) cos [2πvt + φ (P)] (2.14)

where

U (P) = The amplitude modulation as a function of position

v = The frequency of the disturbance

t = Time

φ (P) = Position dependant phase contribution.

Rewriting (2.14) in complex notation one finds

uc (P, t) = U (P) e−jφ(P)e−j2πvt (2.15)

where

u (P, t) = < [uc (P, t)] . (2.16)

One can substitute Eq. (2.15) into the wave equation, Eq. (2.17),

∇2u− 1

c2

∂2u

∂t2
= 0 (2.17)

where ∇2 is the Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.18)

2Goodman [2] on page 33
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and if one defines

k =
2π

λ
(2.19)

and

Uc = U (P) e−jφ(P) (2.20)

then it can be seen that the complex disturbance Uc must satisfy the time-independent

equation

(
∇2 + k2

)
Uc = 0 (2.21)

where

c = The speed of light

Uc = The complex disturbance at P

k = The wave number.

See Appendix A.1 for a more detailed derivation of Eq. (2.21). Eq. (2.21) is

known as the Helmholtz equation. The complex disturbance of any monochro-

matic wave source must satisfy such a relation, linear time invariance is implied

through the wave equation. The Helmholtz equation affords a simpler method

to view complex wave disturbances and will serve as a useful starting point for

further derivations and discussions.

2.2 Light as electromagnetic radiation

In the previous sections waves in general had been discussed, in this section it

will be shown that electromagnetic radiation conforms to the wave equations

through Maxwell’s equations. Maxwell’s equations which describe electromag-

netic phenomenon are very generally defined, thus it helps to be able to restrict

the set of solutions to the specific application. In optics the spectrum of electro-

magnetic radiation which applies is referred to as ‘light’ and roughly spans the

visible and near visible range of the electromagnetic spectrum. In the applica-

tion of optics in this thesis we limit the discussion to electromagnetic radiation

through homogenous, isotropic dielectric materials. In this section we define

these properties and look at the resultant application with regard to Maxwell’s
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equations.

In material sciences the word homogenous is used to imply uniformity of

the materials density properties, see Hibbeler [14]3. In terms of light and optics

the word implies uniformity with respect to optical properties of a medium as is

indicated by the following statement from Carlson [15]4 with respect to light rays,

“In homogeneous media, these rays travel in straight lines, independent of each other”.

A material is said to be isotropic, “when it’s physical properties at each point are

independent of direction”, Born and Wolf [16]5.

Materials with negligibly small specific conductivity are insulators also re-

ferred to as dielectrics, see Born and Wolf [16]6. A detailed discussion of how

electromagnetic waves propagates through a dielectric material is beyond the

scope of this thesis. One only needs to understand that certain dielectric materials

such as glass allows electromagnetic waves of certain wavelengths to propagate

through it at a lower velocity.

2.2.1 Maxwell’s equations for light

Since light is electromagnetic radiation one can use Maxwell’s equations to find

the wave equations for the electric as well as the magnetic fields. The derivation

follows from Carlson [15]7

Given the time-dependant form of Maxwell’s equations,

∇× E = −∂B

∂t
(2.22)

∇×H = J +
∂D

∂t
(2.23)

∇ ·D = $ (2.24)

∇ · B = 0 (2.25)

3Hibbeler [14] on page 248
4Carlson [15] on page 6
5Born and Wolf [16] on page 3
6Born and Wolf [16] on page 3
7Carlson [15] on page 2
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where

E = The electric field

H = The magnetic vector

D = Electric flux density

B = The magnetic induction

J = Current density

$ = Free electric charge density.

From Born and Wolf [16]8, if the medium of interest is isotropic and at rest one

can define

J = σE (2.26)

D = εE (2.27)

B = µH (2.28)

where

σ = Specific conductivity

ε = Dielectric constant

µ = Magnetic permeability.

If one further asserts that the medium in question is source free then $ and J

are zero. Further assuming a time harmonic solution of the form e−j2πvt one can

simplify Eq. (2.22) to Eq. (2.25) by substitution of Eq. (2.26) to Eq. (2.28) to find

∇× E = j2πvµH (2.29)

∇×H = −j2πvεE (2.30)

∇ · E = 0 (2.31)

∇ ·H = 0 (2.32)

where

v = The frequency also referred to as the optical frequency.

8Born and Wolf [16] on page 3
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For the purpose of the discussion let’s define

ω = 2πv. (2.33)

One can now rewrite Eq. (2.29) by substituting Eq. (2.33) and taking the di-

vergence on both sides

∇×∇× E = jωµ(∇×H) (2.34)

and substitute Eq. (2.30) into Eq. (2.34) to find

∇×∇× E = ω2µεE. (2.35)

From the identity for an arbitrary vector function F given as

∇×∇× F = ∇(∇ · F)−∇2F (2.36)

one can manipulate Eq. (2.35) by substitution of Eq. (2.31) and application of the

identity given in Eq. (2.36) to find,

∇2E + ω2µεE = 0. (2.37)

In a similar fashion we can find

∇2H + ω2µεH = 0. (2.38)

Carlson [15]9 defines k as the propagation vector and defines

k2 = ω2µε. (2.39)

It is know that,

vp =
1√
µε

(2.40)

where

vp = The velocity of propagation

9Carlson [15] on page 4
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and that,

λ =
2π

ω
vp (2.41)

thus one can substitute Eq. (2.40) into Eq. (2.39) and substitute Eq. (2.41) into the

resultant equation to find,

k2 =

(
2π

λ

)2

. (2.42)

It can be seen that Eq. (2.42) is the square of the wave number as previously

defined by Eq. (2.19).

If one substitutes Eq. (2.39) into Eq. (2.37) and Eq. (2.38) one finds,

(
∇2 + k2

)
E = 0 (2.43)

(
∇2 + k2

)
H = 0. (2.44)

The resultant equations, given by Eq. (2.43) and Eq. (2.44), are in the form of the

Helmholtz equation for both the E and H fields.

Both Eq. (2.43) and Eq. (2.44) result in a rule which any electromagnetic dis-

turbance propagating through free space must obey.

As is shown in Section 2.1.4 any disturbance which conforms to the wave

equation is linear and time invariant thus enabling us to view electromagnetic

radiation as a linear combination of functions to which Fourier theory applies.

2.2.2 Optical paths and rays

In classical optics the ray was used mainly to estimate the position and scaling

properties of an optical system. In the previous section it was shown that both the

E and the H fields conform to the complex wave equation and are therefore LTI

systems. Thus a light source could be broken up into an infinite number of point

sources and further the wave front of each point source can be viewed as the sum

of an infinite number of infinitely small areas across the surface of the wave front.

If a wave front is divided into an infinite number of infinitely small areas, each

of these areas could be represented by a plane wave. In an isotropic homogenous

dielectric medium, a ray is defined as the optical path perpendicularly through

the centre of such a small section of the wave front, see Hecht [1]10. From this

10Hecht [1] on page 85
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definition it is apparent that the ray is a powerful and accurate tool if used within

this context and that it conforms to Maxwell’s equations.

Solutions and calculations are easily found and performed for plane waves

using electromagnetic theory. By viewing a ray as the optical path normal to a

small section of a planar wave front one can calculate the law of refraction across

boundaries for such a planar wave. The law of reflection and refraction derived

from electromagnetic principles then becomes as given in Hecht [1]11.

In the case of reflection the angle of propagation of a ray, as defined in Fig. 2.2,

is described by

θi = θr (2.45)

where

θi = Angle between the interface normal and the incident plane wave

θr = Angle between the interface normal and the reflected plane wave.

With respect to refraction the angle of propagation of a ray, as defined in Fig.

2.2, is described by

ni sin θi = nt sin θt (2.46)

where

ni = Refractive index of medium before the interface

nt = Refractive index of medium after the interface

θt = Angle between the interface normal and the transmitted plane wave.

Eq. (2.46) is known as Snell’s law of refraction.

The amplitude scaling factors for the electric field can also be calculated for

11Hecht [1] on page 92
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Figure 2.2: Plane waves incident on the boundary between two homogeneous,
isotropic, loss less dielectric media from Hecht [1]

plane waves as is done by Hecht [1]12. These are given as

r⊥ = −sin(θi − θt)

sin(θi + θt)
(2.47)

r‖ = +
tan(θi − θt)

tan(θi + θt)
(2.48)

t⊥ = +
2 sin θt cos θi

sin(θi + θt)
(2.49)

t‖ = +
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)
(2.50)

where

r⊥ = Amplitude reflection coefficient for E perpendicular to plane of incidence

t⊥ = Amplitude transmission coefficient for E perpendicular to plane of inci-

dence

r‖ = Amplitude reflection coefficient for E parallel to the plane of incidence

t‖ = Amplitude transmission coefficient for E parallel to the plane of incidence.

12Hecht [1] on page 94
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In our optical system reflection is either planned or unwanted. The trans-

mission equations are therefore of academic interest only. Generally one can use

anti-reflection coatings in order to minimise unwanted reflections.

The E and the H fields are coupled via Maxwell’s equations making calcula-

tions complicated. Fortunately work done by Silver [17] shows that under certain

conditions one can view the E field as a scalar component thereby ignoring the

coupling imposed by Maxwell’s equations. The conditions under which this sim-

plification is valid, referred to in the following sections as the scalar conditions, are

as follows

1. The diffracting aperture is large with respect to the wavelength of the inci-

dent light.

2. The diffracted fields are not observed close to the aperture.

Work done in this thesis is in accordance with the scalar conditions.

2.3 Geometric optics

Geometric optics in the classic sense is concerned with imaging systems relying

primarily on ray tracing as a tool to determine position and scaling properties of

optical systems. The computational complexity which results when tracing rays

through an optical system gave rise to simplified models of lenses which can be

used to estimate the imaging properties of simple optical systems quickly. The

simplifications allows us to gain qualitative insight into Fourier optical phenom-

ena.

In this section we will traverse through the simplifications which leads to the

ideal model for a lensing system and show how such a lensing system performs

an optical Fourier transform.

2.3.1 Basic concepts in optics

In order to follow the discussions related to geometric optics we define some

arbitrary terms related to optics. We will restrict definitions to those which are

relevant to the terms and concepts in this thesis.

A perfect optical system is capable of forming a perfect image. Deviation from

the perfect model is referred to as aberrations. If the aberrations calculated from

the optical geometry is smaller than the limitations imposed by diffraction then
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a system is said to be diffraction limited. Diffraction will be discussed in more

detail in Section 2.5.

The optical axis could be viewed as a ray which goes through the centre of the

optical system or optical systems undeviated except in special cases such as beam

splitters and mirrors which serve to redirect or split the optical axis.

The optical centre of an optical system is defined as the point at which an

undeviated ray crosses the optical axis while traversing the optical system. It is

implicitly defined that such a ray must not be parallel to the optical axis and must

be travelling in a plane perpendicular to the optical axis.

Any ray travelling through the optical centre of an optical system is referred

to as the principle ray. If such a ray traverses a single lens in air then it’s entrance

angle and exit angles will be equal, see Hecht [1]13.

Focal length is defined as the distance between the intersection point on the

x-axis of a ray parallel to the optical axis traversing through an optical system

and the optical centre of the optical system. It is implicitly defined that rays can

be extended in the forward and backward direction to find the focal length.

A spherical lens is made of a material with a specific index of refraction bound

by two spherical surfaces with finite or infinite diameter. The definition of an

aspheric lens is similar except any or both of it’s surfaces could be described by

an aspheric equation.

2.3.2 The first order approximation in optics

First order geometric optics is based on the assertion that one only considers the

case where rays are incident with small angles on the optical surfaces. This leads

to the simplification of Snell’s law of refraction, which gives rise to thin lens the-

ory. Further assumptions allows us to approximate thick lenses as thin lenses. As

computing power became readily available, the need for first order approxima-

tions of Snell’s law or indeed any approximation faded. The following statement

by Hecht [1]14 is made in reference to the design of systems of optical lenses, “The

advent of computerized lens design requires a certain shift in emphasis - there is litttle

need to do what a computer can do better”. Our focus with regard to the first order

approximation is not on the simplification of the ray tracing process but rather to

gain insight into the Fourier optical properties of a lens.

13Hecht [1] on page 211
14Hecht [1] on page 211. I take the spelling of “litttle” to be correct in the context used, on the

grounds of Figure 3.37 on page 71 in Hecht [1] (see Appendix D), and to be interpreted as such:
The more t’s you add the smaller the quantity implied
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2.3.3 Snell’s law under the first order approximation

Let’s examine the effect of simplification of Snell’s law specifically with respect

to thin lenses in the first order approximation. In Fourier optics one is concerned

mainly with the effect of optical elements on the angular spectrum of light. As

such we will focus our discussion here in this regard.

Let’s start by finding the relationship between the slope of a ray entering and

exiting a thin lens.

Consider the series expansion for the arbitrary function sin ϕ and cos ϕ

sin ϕ = ϕ− ϕ3

3!
+

ϕ5

5!
− ϕ7

7!
+

ϕ9

9!
· · · (2.51)

cos ϕ = 1− ϕ2

2!
+

ϕ4

4!
− ϕ6

6!
+

ϕ8

8!
· · · (2.52)

where

ϕ = An arbitrary angle.

For small values of ϕ one can simplify Eq. (2.51) and Eq. (2.52) to

sin ϕ ∼= ϕ (2.53)

cos ϕ ∼= 1. (2.54)

From the definition of tan ϕ = sin ϕ/ cos ϕ one can write

tan ϕ ∼= ϕ. (2.55)

Any ray for which the approximations of Eq. (2.53), Eq. (2.54) and Eq. (2.55)

are accurate is defined as a paraxial ray and further the region where paraxial

rays originating from a point on the optical axis are incident upon a lens are de-

fined as the paraxial region. These definitions hold for small angles, the degree

of which must be such that the performance of a lens in it’s paraxial region must

be diffraction limited.

One can now use Eq. (2.53) and simplify Snells law, Eq. (2.46), to

n1θ1
∼= n2θ2 (2.56)
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where

n1 = The refractive index of the first medium

n2 = The refractive index of the second medium

θ1 = The angle of incidence before the interface

θ2 = The angle of incidence after the interface.

Figure 2.3: Schematic of a thin lens with u denoting gradient and n denoting
refractive index

With reference to the first surface of refraction in Fig. 2.3 and the simplified

form of the equations given by Eq. (2.53), Eq. (2.54), Eq. (2.55) and Eq. (2.56), one

can define the following functions

u2 = θb − α1 (2.57)

θa = α1 + u1 (2.58)

θb =
na

nl
θa (2.59)

where, from Fig. 2.3

u1 = The ray gradient before the lens

u2 = The ray gradient inside the lens

α1 = The angle between the optical axis and an interface normal line with the

first interface

na = The index of refraction of air

nl = The index of refraction of the lens
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θa = The angle between the ray before the lens and the interface normal line with

the first interface

θb = The angle between the ray inside the lens and the interface normal line with

the first interface.

Substituting Eq. (2.58) into Eq. (2.59) and the resultant equation into Eq. (2.57)

one finds

u2 =
na

nl
(α1 + u1)− α1. (2.60)

One can repeat the process for the second surface of refraction in Fig. 2.3 to

find

u3 = α2 −
nl

na
(α2 − u2) (2.61)

where, from Fig. 2.3,

u3 = The ray gradient after the lens

α2 = The angle between the optical axis and an interface normal line with the

second interface

θm = The angle between the ray inside the lens and the interface normal line with

the second interface

θn = The angle between the ray after the lens and the interface normal line with

the second interface.

Substituting Eq. (2.60) into Eq. (2.61) and simplifying one finds

u3 =

(
1− nl

na

)
(α1 + α2) + u1. (2.62)

One can further simplify Eq. (2.62) by assuming that the height at which the

ray enters a thin lens is approximately the height at which the ray exits the lens,

thus

y1
∼= y2 = yh (2.63)

where, from Fig. 2.3,

y1 = The height position on the lens of the ray entering the lens

y2 = The height position on the lens of the ray exiting the lens

yh = The approximate height of the ray entering and exiting the lens.
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For small values for α1 and α2 one can use the approximation in Eq. (2.54) to

find

α1 = tan−1

(
yh

R1 cos α1

)
∼= yh

R1

α2 = tan−1

(
yh

−R2 cos α2

)
∼= yh

−R2

(2.64)

where, from Fig. 2.3,

R1 = The radius of curvature of the first lens surface

R2 = The radius of curvature of the second lens surface.

Substituting the relations in Eq. (2.64) into Eq. (2.62) one finds

u3 =

(
1− nl

na

)(
1

R1
− 1

R2

)
yh + u1. (2.65)

The resultant equation, given as Eq. (2.65), is free from the clutter of the angles

introduced by refraction and allows one to predict the gradient of a ray exiting a

thin lens, if the gradient of the ray entering the lens is known, the position where

the ray enters the lens, the indexes of refraction and both radii of curvature.

One can further simplify Eq. (2.65) by defining the focal length of a thin lens

as the distance from the optical centre of the lens to the position where a plane

wave would be focused. The rays of a plane wave would be parallel to the optical

axis, therefore u1 = 0 and from Eq. (2.65) one can calculate the gradient at which

the ray exits the thin lens u3. From the simple line equation y = mx + c one can

calculate the focal length f by noting m = u3 and y = 0 when x = f and thus

write an expression as

0 =

(
1− nl

na

)(
1

R1
− 1

R2

)
yh f + yh (2.66)

where

f = The focal length of the lens.

One can rearrange Eq. (2.66) to find,

−1

f
=

(
1− nl

na

)(
1

R1
− 1

R2

)
. (2.67)
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Substituting Eq. (2.67) into Eq. (2.65) one finds

u3 = u1 −
yh

f
. (2.68)

The resulting equation, given in Eq. (2.68), neatly describes the modification

in gradient of a ray incident on a thin lens at a position yh from the optical axis,

but it does not give immediate insight into the working of Fourier optics.

In Fourier optics we are interested how light interferes after a lens. It is known

that a plane wave front translates to a set of parallel rays and that in an ideal opti-

cal system a plane wave would be focused to a diffraction limited spot. To inves-

tigate, let’s take any two rays which are parallel, thus representing a plane wave,

but not parallel with the optical axis and derive an expression for their point of

intersection. If this is known we can calculate the resultant effect of interference.

Figure 2.4: Geometry of parallel rays through a thin lens. Note only the perpen-
dicular plane through the optical axis is indicated representing the lens and the
heights of the intersection points with the lens plane.

With reference to Fig. 2.4, one can define the two rays in terms of the standard

line equation y = mx + c after passing through the thin lens by substituting m =

u3 from Eq. (2.68) and defining each as entering the thin lens at h1, h2 respectively

to find,

y1 =

(
u− h1

f

)
x + h1 (2.69)

y2 =

(
u− h2

f

)
x + h2. (2.70)

When equating Eq. (2.69) and Eq. (2.70) to find their intersection with respect
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to the x-axis, denoted by the symbol x = x1 and simplifying we find,

x1 = f . (2.71)

One can now find the position where they intersect with respect to the y-axis,

denoted by the symbol d, by substitution of Eq. (2.71) into Eq. (2.69) or Eq. (2.70)

to find

d = u f (2.72)

where, from Fig. 2.4

d = The position above the optical axis

u = The gradient of the ray before the lens

f = The focal length of the lens.

This neatly implies that in the first order approximation of a thin lens, there is

a linear one to one relationship between the focus position (x1, d) and the angles

of incoming plane waves. It further implies these points to lie on a plane at x =

x1 = f . If we further take into consideration phase addition caused by the path

length of rays in the first order approximation of a thin lens we can show that

the resultant output at the focal plane of the thin lens is a Fourier transform, see

Appendix A.3, Eq. (A.28). The resultant function found is

f (u) = KA

ˆ ∞

−∞

f (y)ej 2π
λ yudy (2.73)

Even though this is an approximation it indicates ideal behaviour, therefore

one can conceptually view a lens as such bearing in mind it will not perform

perfectly like this. The difference between the first order approximation and the

actual situation is known as aberrations. In Section 2.4 we take a more critical

look at aberrations in the Fourier optical regime.

2.4 Aberrations and Fourier optics

A wave front error could be calculated for each point on the focal plane. It is

known that a perfect optical system would transform light from each point at the

focal plane into a plane wave. One can use ray tracing to determine the difference
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between the ideal Optical Path Length (OPL) and the resultant OPL from the

optical system as is illustrated in Fig. 2.5.

Figure 2.5: Wave front error calculation of an Fourier optical system.

The wavefront error for each point could therefore be described by the the

following equation

derr = dact − dref (2.74)

where

derr = The calculated wave front error

dref = The OPL to the geometric reference flat

dact = The OPL to the actual wavefront.

When looking at Fourier optical systems such as the general one illustrated in

Fig. 2.5, one has to think in terms of how such a system transforms the input mask

according to angle at the Fourier optical plane. In this view the wave front error

is translated to an angular error and it becomes apparent that even for seemingly

large wave front errors, in the order of 5λ, the angular error is still negligibly

small. Wave front curvature further results in a slight weighting effect as rays

are always perpendicular to the wave front. This weighting is due a spreading of

the position from where rays originate at the aperture, but once again the effect

is small if the wave front error is small. The resultant effect is loss of pattern

definition the same as with imaging.
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2.5 Diffraction theory

Thus far we have shown how the ideal lens performs a Fourier transform, we

also discussed briefly how deviation from the ideal could be viewed and how it

affects the end result. Diffraction theory completes the picture in the sense that

it explains what happens before the aperture and why one is able to view the

aperture as a source in itself despite it only being illuminated by a source.

In this section we will give a brief historical view of the development of diffrac-

tion theory which follows loosely from Goodman [2]15. We will then take a look

at the mathematical formulation of diffraction theory, the angular spectrum and

a more formal approach to the lens as a Fourier optical system.

In simple terms, light not propagating according to rectilinear lines as pre-

dicted by reflection or refraction is viewed as diffraction. The existence of diffrac-

tion phenomena was first observed experimentally by Grimaldi in 1665. In the

experiment Grimaldi placed a light source in front of a screen. The corpuscular

theory of light at the time predicted a sharply defined shadow, but the experiment

showed a shadow which was not sharply defined.

In 1678 Christian Huygens produced a theory which partially explained the

diffraction phenomenon. He theorised that one could construct the wave front at

any position by taking the envelope of an infinite number off sources placed on

the known wave front as is illustrated in Fig. 2.6.

Figure 2.6: Construction of the Huygens envelope from Goodman [2]

In 1818 Augustin Jean Fresnel expanded on the theory of Huygens by tak-

ing the phase contribution into account thereby taking interference into account

and making some arbitrary assumptions about the initial phases of the secondary

15Goodman [2] on page 30
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sources. The theory of Huygens and Fresnel was later proven mathematically by

Gustav Kirchoff in 1882. Kirchoff made some assumptions in his mathematical

formulation which were proven inconsistent, respectively, by Poincaré in 1892

and Sommerfeld in 1894.

It has to be noted that both the Huygens-Fresnel and Rayleigh-Sommerfeld

diffraction theories treat light as a scalar phenomenon thereby neglecting the cou-

pling of the electric and magnetic fields through Maxwell’s equations. It has been

shown that results from experiments are accurate if the scalar conditions are met,

see Section 2.2.1.

2.5.1 Mathematical theory

The mathematical derivations from Goodman [2]16 gives the reader insight into

the analysis of diffraction phenomena and serves as a basis for Fourier optical

theory with application to light and optics.

Green’s theorem is central in the derivation of both the Fresnel-Kirchhoff diffrac-

tion formula and the Rayleigh-Sommerfeld diffraction formula. The different so-

lutions resulting from a different choice of Green’s functions for each.

From Goodman [2]17, Green’s theorem in general states: Let Uc(P) and Gc(P)

be any two complex-valued functions of position, and let S be a closed surface surrounding

a volume V. If Uc, Gc and their first and second partial derivatives are single valued and

continuous within and on S, then we have:

˚

V

(
Gc∇2Uc −Uc∇2Gc

)
dv =

¨

S

(
Gc

∂Uc

∂n
−Uc

∂Gc

∂n

)
ds (2.75)

where ∂
∂n signifies a partial derivative in the outward normal direction at each point on S.

In the context of this thesis we have,

Uc = A complex disturbance at an observation point in space

Gc = An arbitrary choice of Green’s function

V = Denotes the volume of integration

S = Denotes a surface enclosing the volume of integration.

16Goodman [2] on page 33
17Goodman [2] on page 34
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2.5.1.1 The integral theorem of Helmholtz and Kirchhoff

The integral theorem of Helmholtz and Kirchhoff describes the disturbance at

an observation point in terms of the boundary conditions for a chosen Green’s

function and is an important step in further derivations.

Goodman [2]18 shows how to derive an expression for the observed distur-

bance at a point P0. With reference to Fig. 2.7, one can define Uc as the distur-

bance at an observation point P0. Application of Green’s theorem and choosing a

Green’s function Gc at an arbitrary point P1 one finds

Gc (P1) =
exp (jkr01)

r01
(2.76)

where

Gc = the chosen Green’s function

r01 = the length of the vector r̄01 between the points P1 and P0.

Figure 2.7: Cross section through closed volume of integration. Surfaces indi-
cated by S and Sε, from Goodman [2]

Due to the continuity requirement with respect to the volume of integration,

the geometry is divided as shown in Fig. 2.7. The discontinuity at P0 is excluded

by enclosing it in a sphere of radius ε. Mathematically this results in a new vol-

ume of integration given by

Sa = S + Sε (2.77)

18Goodman [2] on page 33
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where, from Fig. 2.7,

Sa = The newly defined total volume

S = The new definition of the volume without Sε

Sε = The definition of the excluded volume.

An expanding spherical wave Gc satisfies the Helmholtz equation (2.21). Not-

ing that the disturbance Uc must also satisfy the Helmholtz equation (2.21) one

has

(
∇2 + k2

)
Uc = 0 (2.78)

(
∇2 + k2

)
Gc = 0. (2.79)

If one multiplies Eq. (2.78) by Gc and Eq. (2.79) by Uc and subtract the result

one finds

Gc∇U2
c −Uc∇G2

c = 0. (2.80)

Eq. (2.80) can now be substituted into Eq. (2.75) for the surface area as defined

in Eq. (2.77) to give

−
¨

Sε

(
Gc

∂Uc

∂n
−Uc

∂Gc

∂n

)
ds =

¨

S

(
Gc

∂Uc

∂n
−Uc

∂Gc

∂n

)
ds. (2.81)

Now one can find a solution to the left hand side of Eq. (2.81) by solving for

the limit where ε approaches zero as

¨

Sε

(
Gc

∂Uc

∂n
−Uc

∂Gc

∂n

)
ds = −4πUc (P0) (2.82)

where

P0 = The observation point.

If one substitutes Eq. (2.82) into Eq. (2.81) and rearrange one finds

Uc (P0) =
1

4π

¨

S

(
∂Uc

∂n
Gc −Uc

∂Gc

∂n

)
ds. (2.83)
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The result given in Eq. (2.83) is known as the integral theorem of Helmholtz

and Kirchhoff and is used in the further development of diffraction theory as it

expresses any arbitrary point P0 in terms of the boundary values of a wave on

any closed surface surrounding said wave.

2.5.1.2 Fresnel-Kirchhoff and Rayleigh-Sommerfeld diffraction

Diffraction integrals such as the Fresnel-Kirchhoff and Rayleigh-Sommerfeld could

be derived by solving Eq. (2.83) for the geometry given in Fig. 2.8, also referred

to as the z half space as space is split where x = 0 and y = 0 in the plane of an

aperture. In Fig. 2.8 the integral solution Eq. (2.83) is split into two surfaces, a

spherical dome which is connected to a plane parallel to the surface of the aper-

ture. Thus Eq. (2.83) becomes

Uc (P0) =
1

4π

¨

S1+S2

(
∂Uc

∂n
Gc −Uc

∂Gc

∂n

)
ds. (2.84)

Figure 2.8: Diffraction geometry with diffracting aperture, from Goodman [2]

Let’s define Gc as

Gc =
exp(jkr01)

r01
. (2.85)

On the surface S2 the chosen Green’s function, as given in Eq. (2.85), is given
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by

Gc =
exp(jkR)

R
. (2.86)

If one takes the normal derivative where the angle between the normal on the

surface S2 and the vector r̄01 is zero, one has

∂Gc

∂n
=

(
jk− 1

R

)
exp(jkR)

R
∼= jkGc (2.87)

where the latter approximation holds for sufficiently large R. One can rewrite the

integral over S2 as

1

4π

¨

S2

[
∂Uc

∂n
Gc−Uc(jkGc)

]
ds =

ˆ

Ω

Gc

(
∂Uc

∂n
− jkUc

)
R2dω. (2.88)

If one looks at Eq. (2.88) it can be seen that the quantity |RGc| is uniformly

bounded on S2

|RGc| = | exp(jkR)| = 1.

Therefore if

lim
R→∞

R

(
∂Uc

∂n
− jkUc

)
= 0 (2.89)

then the integral in Eq. (2.88) of the surface S2 will contribute zero to Eq. (2.84)

which means only the surface S1 contributes to the observation point at P0. Now

Eq. (2.84) can be simplified to

Uc(P0) =
1

4π

¨

S1

(
∂Uc

∂n
Gc −Uc

∂Gc

∂n

)
ds. (2.90)

The relation given in Eq. (2.89) is known as the Sommerfeld radiation condi-

tion. If we consider that the aperture will be illuminated by a linear combination

of spherical disturbances we can be confident that the requirement given by Eq.

(2.89) will be satisfied.

The resultant equation, given as Eq. (2.90), means one only needs to integrate

over the surface S1 and this is central to both Fresnel-Kirchhoff and Rayleigh-

Sommerfeld diffraction theories.
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Fresnel-Kirchhoff diffraction

With reference to Fig. 2.8, the aperture is opaque except for the open area. Kirch-

hoff made the following assumptions with respect to the aperture and screen:

• The field across the surface Σ and its derivative are the same as they would

be if no aperture were present.

• On the portion of the surface S1 which lies in the shadow behind the aper-

ture the contribution of the field and its derivative is zero.

These two assumptions allows one to neglect the effect of the boundaries of

the aperture and it further simplifies the integral over the surface S1 such that it

needs only be applied over the opening in the aperture denoted by Σ on Fig. 2.8.

Thus Eq. (2.90) simplifies to

Uc(P0) =
1

4π

¨

Σ

(
∂Uc

∂n
Gc −Uc

∂Gc

∂n

)
ds. (2.91)

If one takes the normal derivative for the disturbance Gc as given in Eq. (2.85)

at a point P1 inside the opening as illustrated in Fig. 2.9 then the derivative could

be written as

∂Gc(P1)

∂n
= cos(n̄, r̄01)

(
jk− 1

r01

)
exp(jkr01)

r01
. (2.92)

If one further assumes r01 to be many wavelengths the following condition

holds k� 1
r01

and Eq. (2.92) could be approximated by

∂Gc(P1)

∂n
∼= jk cos(n̄, r̄01)

exp(jkr01)

r01
. (2.93)

Substituting Eq. (2.93) into Eq. (2.91) one finds

Uc(P0) =
1

4π

¨

Σ

exp(jkr01)

r01

[
∂Uc

∂n
− jkUc cos(n̄, r̄01)

]
ds. (2.94)

Now consider Fig. 2.9, if one defines

Uc(P1) =
A exp(jkr21)

r21
(2.95)
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and take the derivative in a similar fashion to the disturbance Gc at a point in

the opening of the aperture, P1, again making the assertion that k � 1
r21

then one

finds

∂Uc(P1)

∂n
∼= jk cos(n̄, r̄21)

exp(jkr21)

r21
. (2.96)

Substituting Eq. (2.95) and Eq. (2.96) into Eq. (2.94) one finds

Uc(P0) =
A

jλ

¨

Σ

exp[jk(r21 + r01)]

r01r21

[
cos(n̄, r̄01)− cos(n̄, r̄21)

2

]
ds. (2.97)

The result relates the observable disturbance at point P0 to the source dis-

turbance at P2 as the sum of the secondary sources in the opening of the aper-

ture. The resultant relation given by Eq. (2.97) is known as the Fresnel-Kirchhoff

diffraction equation. It is interesting to note that Eq. (2.97) is symmetric, ie. the

source could be the sink and the sink the source.

Figure 2.9: Point source illumination of a plane screen, from Goodman [2]

One can rewrite Eq. (2.97) in a simplified form. Let’s define

Uca =
1

jλ

[
A exp(jkr21)

r21

] [
cos(n̄, r̄01)− cos(n̄, r̄21)

2

]
. (2.98)

Now one can rewrite (2.97) as

Uc(P0) =

¨

Σ

Uca(P1)
exp(jkr01)

r01
ds. (2.99)
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With reference to Eq. (2.98)
cos(n̄,r̄01)−cos(n̄,r̄21)

2 is the obliquity factor.

It is interesting to note that the choice of Green’s function to arrive at the

Fresnel-Kirchhoff diffraction formula Eq. (2.97) leads to the assumption that on

the surface of the aperture excluding the opening the disturbance Uc and it’s

derivative ∂Uc
∂n is both zero, but this implies that the function must be zero every-

where. This is a mathematical inconsistency. The Rayleigh-Sommerfeld choice

of Green’s function removes this inconsistency and following the same logic it

can be shown that a combination of two similar choices of Green’s functions as

used by Rayleigh-Sommerfeld will give a result equivalent to the Fresnel Kirchoff

solution.

Rayleigh-Sommerfeld diffraction

The difference between the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld diffrac-

tion theories lies therein that the second assumption made in the derivation of

Fresnel-Kirchhoff’s diffraction theory, namely that both the function and it’s deriva-

tive must be zero on the boundary directly behind the aperture, is eliminated by

the choice of a Green’s function such that this is affected.

Given a geometry as illustrated in Fig. 2.10 and considering again the function

in Eq. (2.90), then for a given Green’s function

Gcφ-(P1) =
exp(jkr01)

r01
− exp(jkr̃01)

r̃01
(2.100)

if the derivative is taken one finds

∂Gcφ-

∂n
= cos(n̄, r̄01)

(
jk− 1

r01

)
exp(jkr01)

r01

− cos(n̄,˜̄r01)

(
jk− 1

r̃01

)
exp(jkr̃01)

r̃01
. (2.101)

Recognising that P̃0 is a reflection of P0 one can write

r01 = r̃01 (2.102)

cos(n̄, r̄01) = − cos(n̄,˜̄r01). (2.103)

Substituting Eq. (2.102) and Eq. (2.103) into Eq. (2.100) and Eq. (2.101) one

finds

Gcφ- = 0 (2.104)
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Figure 2.10: Rayleigh-Sommerfeld formulation of diffraction. Note that the
points P̃0 is a reflection of point P0. Goodman [2]

and

∂Gcφ-

∂n
= 2 cos(n̄, r̄01)

(
jk− 1

r01

)
exp(jkr01)

r01
. (2.105)

Substituting Eq. (2.104) and Eq. (2.105) into Eq. (2.90) by noting that Gc =

Gcφ− and ∂Gc
∂n =

∂Gcφ-

∂n one finds

Uc(P0) =
1

2π

¨

S1

Uc(P1)
exp(jkr01)

r01
cos(n̄, r̄01)

(
jk− 1

r01

)
ds. (2.106)

Once again noting that k � 1
r01

and noting that the boundary conditions on

the surface S1 need only be applied to Uc one can rewrite Eq. (2.106) as

Uc(P0) =
1

jλ

¨

Σ

Uc(P1)
exp(jkr01)

r01
cos(n̄, r̄01)ds. (2.107)

Now one can describe Uc(P1) in terms of a point source disturbance at P2 as

Uc(P1) =
A exp(jkr21)

r21
(2.108)

and substitute Eq. (2.108) into Eq. (2.106) to find

Uc(P0) =
A

jλ

¨

Σ

exp(jk [r01 + r21])

r01r21
cos(n̄, r̄01)ds. (2.109)
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The resultant equation given by Eq. (2.109) is known as the Rayleigh-Sommerfeld

diffraction theorem. One can rewrite Eq. (2.109) in a simplified form by defining

Uca = Uc(P1) cos(n̄, r̄01)

=
A exp(jkr21)

r21
cos(n̄, r̄01)

(2.110)

and substitute Eq. (2.110) into Eq. (2.109) to find

Uc(P0) =
1

jλ

¨

Σ

Uca(P1)
exp(jkr01)

r01
ds. (2.111)

With reference to Eq. (2.110), cos(n̄, r̄01) is the obliquity factor.

Another solution for the Rayleigh-Sommerfeld diffraction formulation could

be calculated by taking the Green’s function at P1 to be the sum of two in phase

wave functions mirrored across the z = 0 plane, see Appendix A.2. The resulting

solution is then given by

Uc(P0) = − A

jλ

¨

Σ

exp(jk [r01 + r21])

r01r21
cos(n̄, r̄21)ds. (2.112)

If one looks at the results for Fresnel-Kirchhoff diffraction with reference to

Eq. (2.98), Eq. (2.99) and Rayleigh-Sommerfeld diffraction with reference to Eq.

(2.110), Eq. (2.111) it can be seen that these equations only differ in their obliquity

factors.

It is interesting to note that if one were to apply the linearity principle and

take the disturbance at P0 to be due to two point sources a and b placed a small

distance ε apart centred about P2 with their respective intensities half and one

further asserts that for the one source we take the in phase solution of the Green’s

function Eq. (2.112) and for the other source we take the out of phase solution of

the Green’s function Eq. (2.109), then the resultant disturbance must be the sum

of the two as illustrated in Fig. 2.11. The resultant equation is,

Uc(P0) =
1

2

A

jλ

¨

Σ

exp(jk [r01 + r21a])

r01r21a
cos(n̄, r̄01)ds

− 1

2

A

jλ

¨

Σ

exp(jk [r01 + r21b])

r01r21b
cos(n̄, r̄21b)ds. (2.113)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. THE PROPERTIES OF LIGHT 35

Figure 2.11: Rayleigh-Sommerfeld formulation of diffraction with two sources
of half intensity centred about point P2. Note that the points P̃0 is a reflection of
point P0

Now letting ε approach zero one finds

lim
ε→0

r21b = r21a = r21. (2.114)

Substitution of Eq. (2.114) into Eq. (2.113) and simplifying yields

lim
ε→0

Uc(P0) =
A

jλ

¨

Σ

exp(jk [r01 + r21])

r01r21

[
cos(n̄, r̄01)− cos(n̄, r̄21)

2

]
ds (2.115)

which is the same as the result of Fresnel-Kirchhoff diffraction solution as

given by Eq. (2.97).

2.5.2 The angular spectrum

From Fourier theory it is known that one can break any signal into it’s spectral

components by taking it’s Fourier transform. The following follows from Good-

man [2]19.

In a Cartesian co-ordinate system if one has a known plane wave disturbance

at the plane z = 0 then one can take the Fourier transform by substitution of the

known function Uc(x, y, 0) into the following equation,

A0c( fX, fY) =

∞̈

−∞

Uc(x, y, 0) exp [−j2π( fXx + fYy)] dxdy (2.116)

19Goodman [2] on page 49
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where

Uc(x, y, 0) = The wave function at the z = 0 plane

A0c = The angular spectrum at the input mask

( fX, fY) = Spectral co-ordinate

(x, y) = Spatial co-ordinate.

If one has the spectrum of a function then one can reconstruct the original

input function with the inverse Fourier transform by substitution of the spectrum

A0c into the following equation,

Uc(x, y, 0) =

∞̈

−∞

A0c( fX, fY) exp [j2π( fXx + fYy)] d fXd fY. (2.117)

By noting that the general equation for the propagation of a plane wave with

direction cosines (α, β, γ) is 20

Bc(x, y, z) = exp

[
j
2π

λ
(αx + βy + γz)

]
(2.118)

with the direction cosines defined as

α = λ fX

β = λ fY

γ =
√

1− (λ fX)2 − (λ fY)2

(2.119)

one can rewrite Eq. (2.116) as

A0c

(
α

λ
,

β

λ

)
=

∞̈

−∞

Uc(x, y, 0) exp

[
−j2π

(
α

λ
x +

β

λ
y

)]
dxdy. (2.120)

The resultant equation, given as Eq. (2.120), is referred to as the angular spec-

trum.

Let’s look at the angular spectrum at a distance z from the origin. Rewriting

20See Section A.4 for additional information about the given definition of the plane wave and
interpretation of the direction cosines (α, β, γ).
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the relation, given by Eq. (2.117), by taking the distance z into account one finds

Uc(x, y, z) =

∞̈

−∞

Ac

(
α

λ
,

β

λ
, z

)
exp

[
j2π(

α

λ
x +

β

λ
y)

]
d

α

λ
d

β

λ
. (2.121)

From Goodman [2]21 we see that by substituting the inverse Fourier trans-

form, given by Eq. (2.121), into the Helmholtz equation, given by Eq. (2.21), one

can find an arbitrary solution for Ac

(
α
λ ,

β
λ , z
)

given as

Ac

(
α

λ
,

β

λ
, z

)
= A0c

(
α

λ
,

β

λ

)
exp

(
j
2π

λ
z
√

1− α2 − β2

)
. (2.122)

If one substitutes Eq. (2.122) into the inverse Fourier transform given by Eq.

(2.121) one finds the complete solution for angular spectral propagation given by

Uc(x, y, z) =

∞̈

−∞

A0c

(
α

λ
,

β

λ

)
exp

(
j
2π

λ
z
√

1− α2 − β2

)

exp

[
j2π(

α

λ
x +

β

λ
y)

]
d

α

λ
d

β

λ
. (2.123)

The transfer function due to propagation in the z direction thus being

Hc

(
α

λ
,

β

λ

)
= exp

(
j
2π

λ
z
√

1− α2 − β2

)
. (2.124)

It is of interest that under certain conditions the angular spectrum could be

imaged at an image plane and the light from this image plane could be collected

and refocused to form the original image again. This allows us to easily do simple

types of exclusion filtering in the plane where the angular spectrum is imaged.

2.5.3 The Fresnel and Fraunhofer regions

Certain approximations can be made which hold under defined conditions, these

approximations make it possible to numerically calculate solutions to diffraction

problems with more ease. The following section follows loosely from Goodman

[2]22.

21Goodman [2] on page 50
22Goodman [2] on page 57
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When viewing the diffraction formulas of either Fresnel-Kirchhoff, given by

Eq. (2.97), or Rayleigh-Sommerfeld, given by Eq. (2.112), for the case of a near

planar wave incident upon the origin of the z half space and observing the re-

sultant field a distance away from the source one can approximate the obliquity

factors, cos(n̄, r̄01) and cos(n̄,r̄01)−cos(n̄,r̄21)
2 , of both equations to be approximately

equal to one. According to Goodman [2]23 this approximation is accurate to

within 5 % for angles smaller than 18°. The obliquity factors being the only dif-

ference between the two functions an approximation which applies to both Eq.

(2.97) and Eq. (2.112) can be written as

Uc(P0) =
A

jλ

¨

Σ

exp(jk [r01 + r21])

r01r21
ds. (2.125)

The initial assertion was that the incident light is near planar, thus one can

split these functions into a source function and observed function for Eq. (2.125)

as follows

Uc(P0) =
A

jλ

¨

Σ

exp(jkr01)

r01

exp(jkr21)

r21
ds. (2.126)

If the source is a near planar wave one can view the geometry as illustrated in

Fig. 2.12.

With respect to the geometry illustrated in Fig. 2.12 one can rewrite Eq. (2.126)

as

Uc(x0, y0) =
A

jλ

¨

Σ

Uc(x1, y1)
exp(jkr01)

r01
dx1dy1 (2.127)

with r01 defined as

r01 =
√

z2 + (x0 − x1)2 + (y0 − y1)2. (2.128)

One can further define, keeping in mind the simplification to the obliquity

factor, the transfer function

hc(x0, y0; x1, y1) ∼=
1

jλ

exp(jkr01)

r01
. (2.129)

23Goodman [2] on page 58

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. THE PROPERTIES OF LIGHT 39

Figure 2.12: Diffraction geometry for a approximately planar wave incident on
the aperture from Goodman [2]

Now simplifying Eq. (2.129) under the small angle approximation, thus r01
∼=

z one finds

hc(x0, y0; x1, y1) ∼=
1

jλz
exp(jkr01). (2.130)

With these simplifications one can rewrite Eq. (2.127) as

Uc(x0, y0) =

¨

Σ

hc(x0, y0; x1, y1)Uc(x1, y1)dx1dy1. (2.131)

The Fresnel and Fraunhoffer approximations are used to simplify the transfer

function, hc, and will be explained in the following section.

2.5.3.1 The Fresnel approximation

The Fresnel approximation is made by taking into account the binomial expan-

sion of the square root

√
1 + b = 1 +

1

2
b− 1

8
b2 + · · · |b| < 1. (2.132)
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Rewriting r01 given in Eq. (2.128) as

r01 = z

√

1 +

(
x0 − x1

z

)2

+

(
y0 − y1

z

)2

(2.133)

one can use Eq. (2.132) to approximate Eq. (2.133), by taking only the linear

component into account, as

r01
∼= z

[
1 +

1

2

(
x0 − x1

z

)2

+
1

2

(
y0 − y1

z

)2
]

. (2.134)

In the case when z is large enough for the approximation given in Eq. (2.134)

to be accurate, the observer is said to be in the region of Fresnel diffraction which

is defined as

z3 � π

4λ

[
(x0 − x1)

2 + (y0 − y1)
2
]2

max
. (2.135)

If one looks at the validity condition for the Fresnel approximation given in

Eq. (2.135), it can be seen that for small values of z the region where the observa-

tion would be valid is small. The requirement given in Eq. (2.135) as stated for

the validity of the Fresnel approximation does not need to be applied as strictly.

The approximation is applied to a superposition integral of a complex exponen-

tial function. As such it is only required that the phase contribution due to the

higher order terms to be negligibly small. By noting that the wave number k is

very large and subsequently the quantity k
2z would be very large for small val-

ues of z where the condition given by Eq. (2.135) would fail, the quadratic phase

factor contribution due to the approximation would oscillate rapidly and thus

the primary contribution would arise from points near (x1 = x0, y1 = y0) where

phases are not rapidly changing. Accepting the validity of this approximation

one can express the superposition integral as

Uc(x0, y0) =
exp(jkz)

jλz
∞̈

−∞

Uc(x1, y1) exp

{
j

k

2z

[
(x0 − x1)

2 − (y0 − y1)
2
]}

dx1dy1 (2.136)
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or alternatively expanding the quadratic terms one has

Uc(x0, y0) =
exp(jkz)

jλz
exp

[
j

k

2z
(x0

2 + y0
2)

] ∞̈

−∞

Uc(x1, y1)

exp

[
j

k

2z
(x1

2 + y1
2)

]
exp

[
−j

2π

λz
(x0x1 + y0y1)

]
dx1dy1. (2.137)

The Fresnel approximation is applicable from an observation plane which is

within a few wavelengths from the aperture to infinity.

2.5.3.2 The Fraunhofer approximation

The Fraunhofer approximation is made for large values of z such that the follow-

ing condition holds,

z � k(x1
2 + y1

2)max

2
. (2.138)

When this condition is satisfied the quadratic phase factor could be approxi-

mated by one, and the superposition integral becomes

Uc(x0, y0) = exp(jkz) exp

[
j

k

2z
(x0

2 + y0
2)

]

∞̈

−∞

Uc(x1, y1) exp

[
−j

2π

λz
(x0x1 + y0y1)

]
dx1dy1. (2.139)

The requirement as stated by Eq. (2.138) can be imposing, for example if one

has a 2.5 cm aperture the requirement for z would be z � 1600 meters for plane

wave illumination of the aperture.

2.5.4 Fourier transformation by lenses

From Goodman [2]24 one can see that the paraxial approximations are used in

order to describe the phase modification introduced by a lens. In the following

development the index of refraction before and after the lens is taken as na = 1.

The development starts by describing the phase delay of a wave front passing

24Goodman [2] on page 80
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through a lens as

φ(x, y) = kn M (x, y) + k[M0 − M (x, y)]. (2.140)

One can express Eq. (2.140) as a multiplicative phase transformation as fol-

lows

tlc(x, y) = exp[jk M0] exp[jk(n − 1) M (x, y)]. (2.141)

The phase transformation equation given by Eq. (2.141) allows one to write

an expression for the field immediately behind the lens as

U′c(x, y) = tlc(x, y)Ulc(x, y). (2.142)

Now deriving an equation describing the thickness of the lens by making the

paraxial approximation one finds

M (x, y) = M0 −
x2 + y2

2

(
1

R1
− 1

R2

)
. (2.143)

Through the paraxial approximation the focal length can be derived as is done

for Eq. (2.67) and thus the focal length can be defined as, again note that na = 1,

1

f
= (n− 1)

(
1

R1
− 1

R2

)
. (2.144)

Substitution of Eq. (2.143) and Eq. (2.144) into the multiplicative phase trans-

formation equation, given as Eq. (2.141), one finds a simplified expression for the

phase transformation affected by a thin lens as

tlc(x, y) = exp[jkn M0] exp

[
−j

k

2 f
(x2 + y2)

]
. (2.145)

With this background information it is possible to derive expressions for the

case where an object is placed before a lens, against a lens and after a lens as

illustrated in Fig. 2.13, Fig. 2.14 and Fig. 2.15.

One can now write the expressions by application of the Fresnel superposition

integral, given as Eq. (2.137), to the phase transformation equation, given as Eq.

(2.145), to find an expression for each case.
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Figure 2.13: Object placed before the
lens, from Goodman [2]

Figure 2.14: Object placed against the
lens, from Goodman [2]

Figure 2.15: Object placed after the lens,
from Goodman [2]

By noting that it is field intensity that is observed at the focal plane one can

neglect any phase which is not part of the superposition integral as it does not

have an effect on the measured intensity. The following equations from Good-

man [2]25 therefore omit the constant phase factor in the phase transformation

equation, given by Eq. (2.145), in the subsequent derivation.

When the object is placed in front of the lens deep within the Fresnel diffrac-

tion region one can approximate the aperture for which light travelling in the

same direction would be added together at an image point at the focal plane, the

effect of light not being included in the superposition integral due to its travel-

ling direction and it’s point of origin being such that it misses the lens aperture.

P(x, y) is the pupil function which is the projection of the lens aperture onto the

object plane centred about the co-ordinates (xo = − do
f xf, yo = − do

f yf) as is illus-

trated in Fig. 2.16. This effect is known as vignetting.

With reference to Fig. 2.13 the equation for a field at the focal plane for a thin

25Goodman [2] starting from page 83
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Figure 2.16: Vignetting of the object, from Goodman [2]

lens with the object placed in front of the lens is given as

Ufc(xf, yf) =
A exp

[
j k

2 f

(
1− do

f

)
(xf

2 + yf
2)
]

jλ f
∞̈

−∞

toc(x, y)P

(
xo +

do

f
xf, yo +

do

f
yf

)
exp

[
−j

2π

λ f
(xoxf + yoyf)

]
dxodyo (2.146)

where

toc = The input mask function

P(x, y) = The pupil function.

With reference to Fig. 2.14 the equation for a field at the focal plane for a thin

lens with the object placed against the lens is given as

Ufc(xf, yf) =
A exp

[
j k

2 f (xf
2 + yf

2)
]

jλ f
∞̈

−∞

toc(xo, yo) exp

[
−j

2π

λ f
(xoxf + yoyf)

]
dxodyo. (2.147)

If the object is placed behind the lens as illustrated in Fig. 2.15 the pupil func-
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tion is again approximated geometrically by projecting the lens aperture with a

cone of rays towards the focal point on the optical axis. If the object is completely

within this cone of rays the pupil function could be neglected. With reference to

Fig. 2.15 the equation for a field at the focal plane for a thin lens with the object

placed after the lens is given as

Ufc(xf, yf) =
A exp

[
j k

2 f (xf
2 + yf

2)
]

jλd

f

d
∞̈

−∞

toc(x, y)P

(
xo

f

d
, yo

f

d

)
exp

[
−j

2π

λd
(xoxf + yoyf)

]
dxodyo. (2.148)

2.6 Simplification of theory for specific application

If we take into consideration our Fourier optical application then we note that

we will be using a sensor to detect the resultant light intensity at the observation

plane, the intensity is given by

I(xf, yf) = |Uc(xf, yf)|2 , (2.149)

with the resultant effect that we can neglect all phase contributions which do not

form part of the superposition integral. If we further note that we are interested

only in the relative intensity of the output field then we can replace the amplitude

scaling factor with a single constant. As for the purposes of this thesis we rewrite

the Fresnel approximation, given in Eq. (2.137), as

Uc(xf, yf) = K

∞̈

−∞

Uc(xo, yo) exp

[
j

k

2z
(x1

2 + y1
2)

]

exp

[
−j

2π

λz
(x0x1 + y0y1)

]
dx1dy1. (2.150)

If we rewrite the lens equations given as Eq. (2.146), Eq. (2.147) and Eq. (2.148)

with the simplifications we can make due to measuring the intensity and being

only interested in relative intensities, we can simplify these to:
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1. For the object placed before the lens as in Fig. 2.13,

Ufc(xf, yf) = K1

∞̈

−∞

toc(x, y)P

(
xo +

do

f
xf, yo +

do

f
yf

)
exp

[
−j

2π

λ f
(xoxf + yoyf)

]
dxodyo

(2.151)

2. For the object placed against the lens as in Fig. 2.14,

Ufc(xf, yf) = K2

∞̈

−∞

toc(xo, yo) exp

[
−j

2π

λ f
(xoxf + yoyf)

]
dxodyo (2.152)

3. For the object placed after the lens as in Fig. 2.15,

Ufc(xf, yf) = K3

∞̈

−∞

toc(x, y)P

(
xo

f

d
, yo

f

d

)
exp

[
−j

2π

λd
(xoxf + yoyf)

]
dxodyo (2.153)

Another consequence of our specific application allows us to simplify the

Fresnel-Kirchhoff and Rayleigh-Sommerfeld diffraction formulas, given by Eq.

(2.97) and Eq. (2.109) respectively as explained below.

With reference to Fig. 2.12, if we consider a Fourier optical system with a near

planar wave front at the input mask with the resultant obstruction such that the

small angle approximation holds then we can approximate the obliquity factors

as unity. We further note that we can describe the input mask Σ as a function

which is defined over the aperture as tc(P1). The resultant equation found is

Uc(P0) = Kb

∞̈

−∞

tc(P1)

r01
exp(jkr01)ds. (2.154)

In Eq. (2.154) the optical path length r01 acts mainly as a phase modifier and

to a negligible extent as an amplitude modifier. This implies that we only need

to take into account the interference effect due to the difference in path length

between all points at the input plane to determine the resultant amplitude at a

point at the observation plane. This principle is still valid if a lens is inserted

between the aperture and the observation plane, with the added requirement of
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having the ability to determine the relevant optical path lengths. This allows us to

use ray tracing to determine the location where plane waves would interfere after

passing through a lens which in turn could be used to determine the position of

maxima and minima of resultant diffraction patterns caused by an aperture.
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3The measurement of animal hair �bre
In this chapter we look at the properties of animal hair fibre with the main focus

on wool, we will briefly discuss experimental methods to measure fibre diameter

that had been tried, give a brief overview of the classification of wool in a trade

context, give an overview of devices currently in use and finally discuss in more

detail previous attempts to build devices based on the diffraction principle.

3.1 Animal hair fibre

In this section background information is given on animal hair fibres. Animal

hair fibres is a large subject area. We will focus on information which is relevant

to the proposed measurement device. In terms of the device under development,

we are interested in those properties of animal hair fibres which could affect the

measurement of mean diameter of said fibres. We will focus on the following

properties, the range of diameters for which the device must be operable, the

shape of the fibres and their transparency related properties with the main focus

specifically on wool fibres as the device is intended for use in the wool industry,

but could easily be used to measure other types of animal hair fibres.

As the main focus will be on wool let’s take a brief look at the definition of

the term wool. The definition of the term wool varies in the literature. Dic [18]

defines wool as: “the outer coat of sheep, yaks, etc, which consists of short curly hairs”

and Dic [19] defines wool as: “the fine, soft, curly hair that forms the fleece of sheep

and certain other animals, characterized by minute, overlapping surface scales that give

it its felting property”. D’Arcy [20]1 makes the following statement in reference to

the hair of mammals, “In a general sense they are all hair fibres, but those grown by

sheep are referred to as ‘wool’ ”.

These statements overlap in their definition of wool but none can be viewed

as absolutely clear, correct and definitive. The word woolly is derived from the
1D’Arcy [20] on page 69

48
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word wool and can be used as an adjective to imply fuzzy, unclear or disorgan-

ised separately or combined, see Dic [21]. It is only fitting then that in itself the

definition of wool is woolly. For the purposes of this thesis we use the term wool

defined as that hair fibre which is grown by sheep.

3.1.1 Mean fibre diameter

It is intuitive that the characteristics of a type or sample of animal hair fibre deter-

mines for which application it is most suited. The most prominent characteristic

of hair fibre is mean diameter as it determines both the feel and strength of the

resultant product produced from said fibre.

The importance of mean fibre diameter is acknowledged throughout the lit-

erature. Hill [22] states “In animal husbandry no one can hold to attain more than

a fair success with sheep if he is not able to distinguish degrees of fineness with accu-

racy”, Burns [23] states “Diameter, This was one of the first characters of wool to be

measured”, Fairbanks [24] states “The diameter of the wool fibre has commanded the

interest and attention of wool technicians for many years” and Stobart et al. [25] states

that “fibre diameter is recognized as the most important dimensional character of raw

wool”. Clearly mean diameter is a very important attribute of wool. Looking fur-

ther in the literature the reason becomes clear, Dunlop and McMahon [26] states

“Fibre diameter is recognized as the most important physical attribute of raw apparel

wool in terms of the fabric into which it may be processed” and McNicholas and Curtis

[27] states “The average diameter of wool is a dominant dimensional characteristic of

the material immediately affecting its value for manufacturing purposes”. Thus, fibre

diameter determines the application and price of wool.

3.1.2 The diameter range of animal hair fibre

In general the diameter of wool for textile purposes ranges roughly between

20µm up to 40µm, see Simpson et al. [28]2. These results are supported in a re-

port on the trial of wool measurement systems by Baxter [29]. In this trial samples

from four countries were measured and the mean fibre diameter ranged between

16 − 36µm. In another study a comparative test between two instruments were

done on the entire South-African clip and wools were measured ranging between

16 − 31µm, see Heath et al. [30].

2Simpson et al. [28] on page 80
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The minimum and maximum fibre diameters are important design parame-

ters for any system intended to measure fibre diameter. Let’s look in more detail

at the upper and lower limits of fibre diameter.

3.1.2.1 Minimum fibre diameter

Towards the specialised end of the market we find super fine wool, cashmere

hair fibre, musk-ox qiviut hair fibre and vicuña hair fibre. Let’s take a brief look

at each of these in terms of fibre diameter.

• Superfine wool: It is reported in ASW [31] that the winner of the Loro Piana

World Cup Challenge in 2009 produced 96 kg of wool with mean diameter

of 11.5µm. In a report on a comparative study between measurement re-

sults of the OFDA and Laserscan instrument Baxter [32] discusses the lower

limit of wool fibre diameter. Baxter [32] reported that fibres of 5µm had

been reported to have been measured. It was not certain if these measure-

ments were valid. In order to gain certainty on this matter, Baxter [33] did a

study where two independent samples of super fine wool were tested with

the OFDA2000 system and showed fibres measured with diameter in the

5µm range. These samples were then sent to two independent laborato-

ries who validated these measurements using an electron microscope and

confirmed the existence of 5µm fibres.

• Cashmere fibre: The cashmere fibre is shorn from a type of goat and the

fibre is very fine, see von Bergen [34]. In an article by Tonin et al. [35] meth-

ods to identify fibres from protected species of goat had been investigated.

Cashmere was studied in comparison with two other types of rare goat fi-

bres. In this study by Tonin et al. [35], the mean diameter of cashmere was

observed to be 13.9µm with a standard deviation of 2.8µm.

• Musk-Ox fibre: Musk-Ox are found in Canada and Greenland and produce

a very fine fibre during winter time known as qiviut, see von Bergen [36].

In a sample measured by von Bergen [36] he reports the mean width of

the middle part of the fine musk-ox fibres to be 15.28µm and in a more

recent article with a bigger sampling base of musk-ox fibres Rowell et al.

[37] measured the mean fibre thickness for the qiviut hairs of the musk-ox

to be between 16.5µm and 18.2µm with a standard deviation of ± 5µm.
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• Vicuña fibre: The Vicuña is a very rare wild camelid found in the Andes in

Peru, Ecuador and Bolivia, see von Bergen [38]. A sample was measured to

determine it’s fineness and was found to be 13.55µm, see von Bergen [38].

From the above discussion it is clear that the verified minimum fibre diameter

is 5µm, this limit is very rarely encountered and certainly never as a the mean

diameter, thus we can conclude that a more practical lower limit, for mean fibre

diameter, in the specialist fine fibre market would be 10µm based on the 11.5µm

result by ASW [31]. If one were to consider only the normal production market

one could set the minimum limit at 15µm based on the studies by Baxter [29] and

Heath et al. [30].

3.1.2.2 Maximum fibre diameter

Fibres used in clothing textiles are limited in maximum diameter by the fibres

ability to cause a prickle sensation on the skin. Boos et al. [39] reports that the

cause of the prickle sensation is due to the ability of fibres with sufficient girth to

activate the nerve ends of the skin. Boos et al. [39] further states that studies have

shown that wool and acrylic fibres with diameters greater than 30µm can cause

discomfort in knitted goods.

Wool and fibres used for carpets, however, are not limited in this respect and

the average diameter for carpet wools is roughly 40µm, see D’Arcy [20]3.

The above discussion seems to indicate an upper limit of 40µm, yet measure-

ment devices such as the OFDA, see Baxter and Brims [40], have a measure-

ment range of 5− 125µm and the laserscan device has an operating range of

5− 150µm according to Glass [41].

3.1.3 The physical properties of animal hair fibres

The basic structure for all hair fibres are the same consisting of an external cuticle

layer and an internal core of splinter like corticle cells, see D’Arcy [20]4. The

detailed chemical composition of wool and other animal hair fibres is beyond the

scope of this thesis.

Wool is a fibre consisting of up to 90 % keratin. Keratins can be found in skin,

nails, claws, hair, horn, feathers and scales, see Cardamone et al. [42].

3D’Arcy [20] on page 53
4D’Arcy [20] on page 69
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The corticle cells of wool are divided between the paracortex and the ortho-

cortex and this is thought to cause the natural curvature of wool known as crimp,

see Simpson et al. [28]5.

The cuticular scales in wool fibres are more highly developed in comparison

with hair fibre from other mammals and the scales all point in the same direction

giving the wool it’s felting capacity, see D’Arcy [20]6.

The cross sectional shape of wool fibres are varied, illustrated in Fig. 3.1. The

cross section of merino fibres are mostly slightly elliptical, however the cross sec-

tional shape of wool fibres can be round, elliptical, bean shaped, ovoid and other

shapes exhibiting concavities, see Sommerville [43].

(a) Fine fineness wool
magnified x500

(b) Medium fineness wool
magnified x500

(c) Coarse fineness wool
magnified x500

Figure 3.1: Cross section view of wool with different fineness from von Bergen and
Krauss [3]

Along the length of the fibre the scales give them a serrated appearance which

is more prominent in wool fibres than in other animal hair.

Fig. 3.2(a) shows the jagged structure of wool fibres. In Fig. 3.2(b) oil and dirt

particles are clearly visible on the greasy wool sample.

(a) Clean fibre at x2700 magnification (b) Greasy fibre at x1700 magnification

Figure 3.2: Electron micrographs of fibres from Perich et al. [4]

3.1.4 Scattering and diffractive properties of animal hair fibres

Lundberg [44] measured and documented the light scattering properties of large

fibres for light at normal incidence. In his experiment he used gold wire, nylon,

5Simpson et al. [28] on page 70
6D’Arcy [20] on page 79
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Dacron and glass. Lundberg [44] found scattering of the gold wire to be in good

agreement with predictions by the Fraunhofer diffraction equation. He did how-

ever not find good agreement for the dielectric fibres and speculated that it could

be due to the geometry or a varying refractive index or possibly both. Animal hair

fibre do not behave like dielectric fibres as was found by Lynch and Thomas [45].

The authors investigated the optical diffraction pattern of phosphor bronze wire,

wool, hair, jute and filaments of nylon, terylene and glass and concluded that

the hair, wool and jute fibres are optically uniform and that their diffraction pro-

files result from their geometrical shape. This conclusion by Lynch and Thomas

[45] indicated that the diameter of wool and animal fibres could be determined

by diffraction methods and reawakened research into devices operating on these

principles.

3.2 The statistics of wool fibre measurement

Fibre diameter is classified in terms of it’s statistical mean and its standard devi-

ation. Measurement accuracy is determined by the 95 % Confidence Limit (CL)

and is used to evaluate the performance of a measurement device.

Some devices determine the mean and the standard deviation by taking a

fixed number of samples and analysing the data, while others determine the

mean empirically as an output parameter. In this thesis we will only look at basic

statistic background in order to have insight into wool measurement.

3.2.1 The mean and the variance of a sample

The mean and variance of a sample are basic statistical properties for a random

variable X. In the case of instruments which takes N discrete samples the mean

can be determined by

X̄ =
1

N

N

∑
i=1

xi (3.1)

and the variance by,

σ2 =
1

N

N

∑
i=1

xi
2− X̄2 (3.2)
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where

X̄ = The mean of the sample

N = The number of samples

xi = The i’th sample in the sample set

i = An index

σ2 = The variance.

3.2.2 The confidence limit

Wool measurement devices must be accurate. The 95 % CL is an indication of

measurement accuracy as it gives us a sampling interval within which there is a

95 % chance that another measurement of the same number of samples will fall.

If the variance and the number of samples taken in order to obtain a mean

for a sample is known then one can simply use the relation from Appendix A.5,

(A.40),

σmean =
σ√
N

(3.3)

where

σmean = Average standard deviation

σ = Standard deviation

to find the variance and Standard Deviation (SD) of the mean.

The central limit theorem is applied to calculate confidence intervals, from

Peebles [46]7 we have

WN =
1√
N σ

N

∑
i=1

(xi − x̄) (3.4)

where

x̄ = The true mean which we do not know.

Substituting Eq. (3.1) and Eq. (3.3) into Eq. (3.4) one can define a new random

7Peebles [46] on page 125
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variable W

W =
X̄− x̄

σmean
. (3.5)

From the normal distribution one can solve for w,

0.95 = P(−w ≤ W ≤ w) (3.6)

to find

0.95 = P(−1.96 ≤ W ≤ 1.96). (3.7)

Substituting Eq. (3.5) into Eq. (3.7) and simplifying one finds the 95 % Confi-

dence Interval as

0.95 = P(X̄ − 1.96 σmean ≤ W ≤ X̄ + 1.96 σmean). (3.8)

If one assumes the random variable W to have a normal distribution, which is

a valid assumption through the Central Limit Theorem, one can find an expres-

sion for the 95 % CL as

CL95% = ±1.96 σmean . (3.9)

3.3 Fibre diameter measurement in the past

Over the years different methods have been used in the laboratory to measure

fibre diameter. The following is a list of said methods and the date when they

had been reported as an indication of a time line.

• The microscope: It is reported in the literature that Daubenton measured the

diameter of wool fibres as early as 1777 using a microscope see Burns [23],

Burns [47] and Buchanan and Bolin [48]. The microscope was later used

in many different setups most notably of these the projection microscope,

which would project a sample onto a screen from where measurements are

made.

• The principle of diffraction: McNicholas and Curtis [27] reports that Thomas

Young measured fibre diameter as early as 1824 using diffraction with a de-

vice he called the eriometer.
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• The micrometer calliper: In 1924 Koehler [49] studied the differences be-

tween measurements made by microscope and measurements made by mi-

crometer calliper and found that the micrometer calliper proved to be an

accurate instrument for the measurement of wool fibres.

• Gravimetry: From 1932 as reported by Sommerville [50], gravimetry had

been used to class wool by weighing a specific number of fibres of specific

length and expressing the mean fibre fineness as the weight of a standard

length of fibre. In later years the relationship between mass, volume and

density was used to determine mean fibre diameter of a sample of known

quantity, weight and length of fibre, see Sommerville [50].

• Porosity: Devices based on this principle measures the mean diameter of

wool fibres by utilising the relationship which exists between the flow and

pressure of air as it flows through a specific mass and volume of wool fibres,

see Sommerville [51]. Studies to utilise this principle had started in 1940, see

Sommerville [5].

• Sedimentomitry: The rate of settlement of particles in a fluid can be used

to calculate the Stokes Diameter of the particles. This value is then used to

calculate the actual diameter of the wool fibres. The first work using this

principle was done in 1948, see Sommerville [52].

• Harmonics: In 1952 Buchanan and Bolin [48] investigated a device which

made use of harmonic wave principles to measure mean fibre diameter. A

fibre of known length and density would be tensioned to a known tension

in front of a sound source of variable frequency. The frequency would be

varied until a standing wave is observed on the fibre, enabling one to calcu-

late the fibre diameter, see Sommerville [53].

• Photometry: The term photometry is an umbrella term which is used when-

ever measured modification of light intensity is used as an indicator to

quantify some arbitrary effect. A device was developed in 1957 which op-

erated as follows: A light source illuminates a sensor which measures the

intensity of the light. If a fibre is inserted in the beam a change in intensity

is measured which is proportional to the area of the obstructed light, see

Sommerville [9].

• Conductomitry: Change in conductivity of a conductive liquid is propor-

tional to the displacement by immersed wool fibres. The volume of dis-

placement is thus determined and if the length of fibre is known the diame-
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ter can be calculated. Experiments was done using this principle from 1962

to 1969, see Sommerville [54].

• Radioactive isotopes: The possible use of radioactive isotopes to measure

wool fibre diameter was identified in 1963. Wool is placed inside a radioac-

tive solvent. The radio active solvent covers the surface area of the wool.

The wool is then removed and dissolved in another solution which now

contains an amount of radioactive solvent proportional to the surface area

of the wool. If the volume of the wool is known the mean diameter can be

determined, see Sommerville [55].

• Image analysis: Starting in 1970 work was done to automate the projection

microscope. As computer processing power increased and computers be-

came more readily available, image processing by computer became plau-

sible.

The devices developed after 1970 have been accepted and accredited and are

still in use today even though some are being phased out. These devices will be

dealt with in Section 3.5.

3.4 The classification of wool

In the early days, around the 1930’s, people were trained in wool discrimination.

They were employed by wool buyers and sellers. No objective measurement tech-

nique was available which was rapid and economical enough to serve the market,

see McNicholas and Curtis [27].

These wool discriminators could by sight estimate the mean fibre diameter of

wool. This ability was looked at in a rather matter of fact fashion as illustrated by

the following quote from Hill [22] “For any one who has good average vision, judging

the fineness of wool is no more difficult than judging the size of trees. Both are a matter

of practice and based on comparisons with known standards of size”.

From 1922 teaching and training methods to develop this ability was under

active development. The article by Hill [22] suggested an improved training sys-

tem whereby a student could be taught how to class wool wherein he states “I

have found that it takes the average student less than one-half an hour to measure 100

fibres. An hour a day for three or four months can be profitably spent in this kind of work

if the student wants to specialize in the fineness of wool”. Hill [22] suggested a training

system where students would use micrometer callipers to practice their ability to
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estimate wool fibre thickness. In 1927 Burns [56] expanded on this training to

allow among other things students to develop the ability to estimate the mean

fibre diameter of a sample of wool to within five tenths of a ten-thousandth of an

inch, which is roughly within 1.27µm. Simpson et al. [28]8 states “For fine wool

products, where wool mean fibre diameter is a critical parameter, these assessment experts

were capable of discriminating readily between 18, 20 and 22 micron wools, and more

often than not their subjective assessments correlated with laboratory measurements to

within a fraction of a micron”.

Fantastic as this may seem the subjective nature of this classification system

would always be undesirable. In some cases such as breeding programmes aimed

at increasing the fineness of wool, the need for better accuracy was especially

important as is evident from this quote by Hardy [57] “In a carefully organized

breeding program such inaccuracies in eye judgment are a great handicap to progress.

One mistake may introduce, into a flock, variations which will require several generations

to correct”.

The wool discriminators of old did not only include an estimate of mean fibre

diameter but also style which their clients believed to be a superior indication

of wool quality, Simpson et al. [28]9. In an article dated 1933, Wilson [58] stated

“Units of expression applied to individual fibres are excellent as far as they go, but they do

not yield sufficient information”. Wilson [58] speculated that this could be the reason

for the apathy of manufacturers towards research in the field of wool production.

There were several hurdles to overcome before objective measurement sys-

tems would replace the subjective measurement system. The biggest of which

had been, how to interpret data from measurements into useful information and

developing systems which could reliably and rapidly extract such data. The

IWTO (International Wool Trade Organisation) worked toward this end. Dur-

ing this time development was slow and it was not until around 1970 that the

shift towards objective measurement occurred. Simpson et al. [28]10 states “This

is an enormous transformation that has mainly been affected since 1970, after which time

the means for improved testing and their ratification by IWTO have come to dominate

wool marketing”.

The IWTO works towards standardisation of wool measurement and classifi-

cation techniques. In order to achieve this each property of wool to be measured

and quantified has to be done according to guidelines provided by the IWTO

8Simpson et al. [28] on page 6
9Simpson et al. [28] on page 6

10Simpson et al. [28] on page 6
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on machines accredited with IWTO approval in order for the classification to

be IWTO accredited. Further the IWTO co-ordinates the continuous testing and

evaluation of all accredited test methods by means of round trials, see Marler

and Harig [12]. In these round trials the same samples are used to compare the

different measurement systems, as such measurement and sample preparation

techniques are constantly under active development.

The IWTO publishes the IWTO SPECIFICATIONS referred to by the IWTO as

the “Red Book”. The IWTO states that “IWTO Specifications include all test methods

and draft test methods developed within the Committees of IWTO for the measurement

of wool fibre, yarn and fabric properties” see IWT [59]. The IWTO also publishes

the IWTO ARBITRATION AGREEMENT referred to by the IWTO as the “Blue

Book”. The IWTO states that “The Blue Book is the basis for the conditions under

which most of the world wool trade conducts its business“ see IWT [59].

3.5 Current wool measurement devices

From the list of available IWTO test specifications one can see that there exists

a wide variety of test specifications documenting the procedures and conditions

according to which tests must be performed in order for results to be certifiable.

At the date of writing this thesis no draft test methods were available for the

measurement of mean fibre diameter and the distribution of mean fibre diameter,

thus no new instruments were in the process of being evaluated. The following is

a list of available IWTO test specifications to measure and classify fibres in terms

of mean fibre diameter and fibre diameter distribution.

• Method of Test for the Determination of the Mean Diameter of Wool Fibres

in Combed Sliver using the Airflow Apparatus, see IWTO [60].

• Determination by the Airflow Method of the Mean Fibre Diameter of Core

Samples of Raw Wool, see IWTO [61].

• Method of Determining Fibre Diameter Distribution Parameters and Per-

centage of Medullated Fibres in Wool and other Animal Fibres by the Pro-

jection Microscope, see IWTO [62].

• Measurement of the Mean and Distribution of Fibre Diameter Using the

Sirolan-Laserscan Fibre Diameter Analyser, see IWTO [63].

• Measurement of the Mean and Distribution of Fibre Diameter of Wool using

an Optical Fibre Diameter Analyser (OFDA), see IWTO [64].
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• Determination Of Fibre Length, Length Distribution, Mean Fibre Diameter

And Fibre Diameter Distribution Of Wool Top & Slivers By The Ofda4000,

see IWTO [65].

From the list of available test methods it is apparent that the following devices

are accredited by the IWTO to classify wool:

• The projection microscope

• The airflow device

• The laserscan device

• The Optical Fibre Diameter Analyser (OFDA) range of devices

The difference in measurement accuracy stated as the 95 % CL is very small

between these devices as listed in Table 3.1.

Table 3.1: 95 % CL for the accredited devices from Mar-

ler and Harig [12]

Mean fibre diameter Method 95 % CL

20µm Airflow ±0.03µm

Laserscan ±0.05µm

OFDA ±0.06µm

Projection Microscope ±0.09µm

35µm Airflow ±0.08µm

Laserscan ±0.14µm

OFDA ±0.15µm

Projection Microscope ±0.16µm

In the following sections we will look at the principle of operation of each

device listed in more detail.

3.5.1 The projection microscope

The projection microscope as the name implies uses optics to enlarge and project

a sample onto a screen with a magnification factor of 500. This method can be

used to obtain the mean fibre diameter as well as the distribution of mean fibre

diameter. The projected image is analysed by a trained operator who takes mea-

surements by hand. This method of measurement is considered to be a direct
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measurement of fibre diameter, as it is a measure of the actual fibre image and

not the effect of the fibre on some tangible stimulus. Accordingly the projection

microscope is regarded as the reference method by the IWTO, see Sommerville

[66].

3.5.1.1 Projection microscope methodology

A sample is prepared by cutting fibres into lengths not shorter than 800µm and

placing them on a slide. The slide is then viewed in transmission mode by pro-

jecting the sample onto a screen, see Sommerville [66]. The ideal scale of the

projected image is said to be 500 : 1. The large magnification means the operator

needs to take care in focusing the projected image for each measurement. Di-

rect measurements of the transverse diameter of the fibres are made and scaled

down from the projected image. Each measurement is classified into one of forty

or more class intervals separated by 2µm boundaries. The mean and standard

deviation of the mean can thus be determined, see Sommerville [66].

3.5.1.2 The projection microscope in overview

The hand measurement required by this device can be tedious and the big mag-

nification can cause focusing difficulties. In order to have reliable measurements

the measurement procedure requires two operators to measure at least 300 snip-

pets each, see Sommerville [66].

The time consuming nature of this method makes it impractical for large scale

fibre classification, as such it is only used in order to verify new measurement

systems as a reference test.

3.5.2 The airflow device

The airflow device measures the pressure drop across a known mass of fibres

packed in a chamber. D’Arcy [20]11 describes it like this “When a current of air

is passed through a mass of fibres packed in a chamber with perforated ends the ratio of

airflow to differential pressure is primarily determined by the total surface area of the

fibres”.

The first detailed report of measurement of wool using the flow of air was by

Cassie [67] in 1942. Since then a lot of work was done to bring theory and practice

together. A test standard specification by the IWTO for the WIRA (Wool Indus-

tries Research Association) airflow device was released in 1960. This prepared

11D’Arcy [20] on page 189
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the ground work for the device which has since become the de facto standard

for wool classification, see Sommerville [5]. It is only in recent years that alterna-

tive technologies started to overtake the airflow apparatus along with the rise in

market awareness of variation of mean fibre diameter.

In the following section we will first look at the theory behind the airflow

device and then at the implemented device in order to give the reader a good

conceptual grasp of the airflow system for wool fibre measurement. We will not

go into minute details as the subject area is beyond the scope of this thesis.

3.5.2.1 The airflow device from a theoretical perspective

The theory of the flow of air through a porous bed containing wool fibres is ex-

trapolated from Poiseuille’s law which describes the flow of fluids through capil-

laries, see Sommerville [5].

In this model the porous bed consists of a fixed volume through which air

can flow freely. How such a system could be realised will be looked at in Section

3.5.2.2.

The derivation follows from Sommerville [5]. Given the equation for flow

through a porous bed of fibres,

Q = Kb
Ac

Lc

ε3

(1− ε)2
∆Pd2 (3.10)

where

Q = the flow rate of air

Kb = an experimentally determined constant

Ac = the area of the porous bed

Lc = the depth of the porous bed

ε = the porosity of the fibres inside a porous bed

∆P = the pressure difference across the porous bed with fibres

d = the mean diameter of the wool

with porosity defined as

ε =
Vc−Vm

Vc
(3.11)
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where

Vc = the volume of the porous bed

Vm = the volume of the fibres contained in the porous bed.

If one recognises that

Vm =
m

ρ
(3.12)

where

m = the mass of an object consisting of a substance, in this case wool

ρ = the density of a substance, in this case wool

then by substituting Eq. (3.12) into Eq. (3.11), Eq. (3.11) could be rewritten as

ε = 1− m

ρVc
. (3.13)

Looking at Eq. (3.13) one can see that the porosity of wool could be held at a

constant value by compressing a known mass of wool fibres into a fixed volume.

It can now be seen that the variables Ac, Lc and ε could be maintained con-

stant simply by deciding on fixed dimensions for the chamber wherein the fibre

plug will be placed and a practical weight for the fibre plug which would fix the

porosity given by Eq. (3.13) and therefore Eq. (3.10) could be rewritten as

Q = Kc∆Pd2 (3.14)

where

Kc = an experimentally determined constant which includes the contribution of

Ac, Lc and ε .

From Eq. (3.14) it can be seen that the mean diameter of wool could be determined

by fixing the flow of air through a porous bed containing fibres and measuring

the drop in pressure across the bed, or by keeping the pressure constant across a

porous bed containing wool fibres and measuring the flow of air through the bed.

The results for the model in described by Eq. (3.10) do not take into account

the variation of diameter of the fibres. Anderson and Warburton [68] demon-
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strated the relationship given by Eq. (3.15) by taking the effect of variation of

diameter along and between fibres into account by defining

d = d
(

1 + C2
)

(3.15)

where

d = true mean fibre diameter

C = the fractional coefficient of variation in d.

In terms of Eq. (3.15), since the coefficient of variation is unknown, the device is

calibrated with an assumed value for C.

3.5.2.2 The functioning of the airflow device

The device is assembled as illustrated in Fig. 3.3. A vacuum pump is connected

to a flow control valve (2). The flow control valve (2) is connected to the end of a

flow meter (5). The other end of the flow meter (5) is connected to one end of a

constant volume chamber (1). The other end of the constant volume chamber (1)

is connected to the top end of a fluid reservoir (4). The bottom end of the fluid

reservoir (4) is connected to a manometer (6). All the parts are connected by pipes

and tubes (7, 8, 9, 10, 3).

The functioning of the device is as follows. The vacuum pump creates a vac-

uum in front of the flow control valve (2). The device is operated by slowly open-

ing the flow control valve (2). This will cause air to flow through the top opening

(12) of the constant volume chamber (1) and through the porous bed (13) through

the system towards the vacuum pump. The flow of air is created by a vacuum

inside the constant volume chamber (1). The pressure inside the constant volume

chamber (1) causes the level of the manometer (6) to drop in relation to the vac-

uum. The flow control valve (2) is opened until the liquid level in the manometer

(6) corresponds to a predetermined fixed point (z). The height of the rotameter

(11) in the flow meter (5) is then measured as (y) and used to determine the mean

diameter of the wool fibres in the porous bed with constant volume (13).

3.5.2.3 The airflow device in overview

This is an indirect method for measurement of wool fibre diameter and the device

has to be calibrated against a sample with known fibre diameter. The intrinsic

dependence on the surface area of the fibres means this device is not suitable for
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Figure 3.3: Schematic of the WIRA airflow device from Sommerville [5]

all wool types such as medullated fibres, see Sommerville [9], as the hollow centre

of said fibres increases the surface area of the fibres altering the measurements.

The device assumes a fixed value for the coefficient of variation for diame-

ter and this can lead to inaccurate measurements in the case where the actual

coefficient of variation for the diameter is markedly different from the assumed

coefficient of variation of diameter. These errors are small, but even so could be

commercially significant.

The industry has become very aware of the benefits of a measurement of the

variation in fibre diameter. The inability of the airflow device to measure the

distribution of fibre diameter is the biggest drawback of this device.

3.5.3 The laserscan device

The laserscan device measures the amount of light occluded by a fibre, through

scattering, when it passes through a beam of light, see Lynch and Michie [7].

The laserscan is the primary means of classification of wool in Australia to-

day. The original patent, from which the modern day laserscan device was de-

rived, was lodged by Lynch and Michie [6] in 1973 and accepted in 1976. The

CSIRO (Commonwealth Scientific and Research Organization) developed and

constructed the device based on the patent by Lynch and Michie [6]. The de-

vice as built by the CSIRO is referred to as the Fibre Fineness Distribution Anal-

yser (FFDA) or alternatively as the Fibre Distribution Analyser (FDA), see Som-

merville [9].
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Development on the device continued in order to resolve issues with it’s per-

formance. By 1989 most problems have been identified which led to the develop-

ment of an improved device, the Sirolan™Laserscan, see Sommerville [9]. Evalu-

ation of the device commenced and in 1995 the IWTO published a test specifica-

tion for the device, see Sommerville and Teasdale [69]. With most of the technical

issues solved, the improved device was patented in 1996 by Cantrall et al. [8].

We will first look at the theoretical model on which the functioning of the

laser scan device is based, then at the original device by Lynch and Michie [6]

and finally at the modern day laserscan device as patented by Cantrall et al. [8].

3.5.3.1 The theory behind the laserscan device

The theory of diameter prediction by the occlusion of light is based on the fol-

lowing model. If one assumes a parallel beam of equal irradiance and a perfect

projected shadow of the fibre on the sensing area, then the relationship between

the area of the shadow of a fibre of specific width and the diameter of the beam

can be expressed by

A =
D2

2

[
sin−1

(
d

D

)
+

d

D

√
1− d2

D2

]
(3.16)

where

A = the area of the beam which is occluded by the fibre snippet

D = the diameter of the beam

d = the diameter of the fibre snippet

as illustrated in Fig. 3.4, see Lynch and Michie [7].

If d < D/6 then Eq. (3.16) is almost linear according to Lynch and Michie [7].

This is a very simplified model ignoring the complex nature of electromag-

netic waves. According to Glass [41], a detailed look into the problem would

require one to solve Maxwell’s equations.

Fortunately the scattering object is large in comparison to the wavelength of

the scattered light thus the scalar conditions are satisfied and diffraction is the

dominant phenomenon. As such the deviation from the theoretic model can be

predicted by diffraction theory.

From the patent by Cantrall et al. [8] one finds the physical dimensions for the

device which did not change markedly from the first device. As such the pinhole
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Figure 3.4: An infinite rectangle crossing a circle with it’s centerline through the
centre of the circle, the width of the rectangle is much exaggerated for clarity

is located within the Fresnel region of diffraction of the laser source and is fol-

lowed by the flow cell which is located in the resultant Fresnel diffraction pattern

again within the Fresnel region. The detector is again within the Fresnel region of

the resultant beam passing through the flow cell. Thus the measured diffraction

pattern on the sensor is due to a double Fresnel diffracted input as described by

Glass [41]. This makes theoretical calculations difficult, but in principle it would

be possible to determine a calibration curve with a set of samples of predeter-

mined diameter to calibrate the device empirically, see Sommerville [9].

Glass [41] studied the theoretical effect of fibre curvature in the range of 160µm

to 600µm on the measurement of fibre snippets with the laserscan device. The

findings by Glass [41] predict measurement errors for extremely curved fibres

with the laserscan device. Glass [41] did however report that in a typical wool

sample the occurrence of such extremely curved fibres are sufficiently small to be

neglected.

3.5.3.2 The Fibre Fineness Distribution Analyser

Lynch and Michie [6] describes their invention as follows: “This invention con-

cerns the measurement of diameter of fibrous material, for example wool, by an optical

shadowing technique”.

In Fig. 3.5 the FFDA device as patented by Lynch and Michie [6] is illustrated.

The FFDA device measures fibre snippets by submerging said fibre snippets (2) in

a liquid, the fibre snippets (2) are then carried by the liquid in suspension through

a conduit (8) with two transparent walls (6) forming a flow cell (3). A light beam

source (11) is setup such that the light beam (10) penetrates the flow cell (3) and
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terminates on a split electric sensor (14, 15) on the other side of the flow cell (3).

Electrodes along the sides of the flow cell (7) and parallel to the beam could be

used to align and elongate the fibres (2) such that they perpendicularly cross the

light beam. The amount of shadow cast by the fibre snippet (2) is then measured

as the difference in light beam intensity, which is related to the shadow of the

fibre snippet (2), by an electro-optical sensor (12). The electro-optical sensor is

split into two sections (14, 15) which is used to discriminate between correct and

incorrect measurements by monitoring the difference in measured signal between

the sensors. The measured signal by the electro-optical sensor (12) is used to

calculate the diameter of the fibre snippet (2).

Figure 3.5: The schematic of the FFDA device from Lynch and Michie [6]

Lynch and Michie [6] acknowledged the need for the device to be able to detect

if a measurement is acceptable. The following situations where a measurement

would be unacceptable were identified.

• A fibre snippet could partially cross the beam with the end of the fibre snip-

pet present in the beam, see Fig. 3.6, or a piece of dirt could cross the beam,

see Fig. 3.7.

• More than one fibre snippet could cross the beam as illustrated in Fig. 3.8.

The proposed system of discrimination between partial fibre crossings of the

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. THE MEASUREMENT OF ANIMAL HAIR FIBRE 69

beam, see Fig. 3.6, was to use a split electronic detector, indicated in Fig. 3.6,

Fig. 3.7, Fig. 3.8 by zones A and B. If the measured difference in signal by the two

halves of the split electronic detector were less than 10 % the measurement would

be accepted as correct. In the same way the split detector would also be able to

invalidate the measurement of a dirt particle crossing the beam, see Fig. 3.7.

In the event of more than one fibre crossing the beam, see Fig. 3.8, Lynch

and Michie [6] suggested that if the solution of fibres in the carrier fluid was

dilute enough the probability of more than one fibre crossing the beam would be

negligible.

Figure 3.6: A fibre passing the beam
partially. Zones A and B indicates the
corresponding zones on the electronic
sensor, from Lynch and Michie [7]

Figure 3.7: A piece of dirt moving past
the light beam. Zones A and B indicates
the corresponding zones on the elec-
tronic sensor, from Lynch and Michie [7]

Figure 3.8: Two fibres moving past the
light beam. Zones A and B indicates the
corresponding zones on the electronic
sensor, from Lynch and Michie [7]

Figure 3.9: The detectable double peak
of the detected area in time as the fibres
in (a) moves past the sensor, from Lynch
and Michie [7]

Thus far we have looked at the FFDA as described in the patent by Lynch

and Michie [6]. The patent was written in such a way as to be unambiguous in

principle yet ambiguous in implementation. As such the patent does not contain
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specific detail with regard to the elements that are used to realise the device.

Without going into the precise detail of the device, let’s look at some key as-

pects related to its implementation. As mentioned earlier the practical imple-

mentation of the device was done by the CSIRO. In Fig. 3.10 the basic setup of

the device is illustrated. The light source is a laser beam with diameter 1 mm. The

laser source beam is incident on a circular 200µm pin hole. The resultant beam

is circularly symmetric and slowly diverging. A part of the beam is split off by

a beam splitter to monitor and control the intensity of the beam. The transmit-

ted beam then passes through the flow cell where the beam diameter is approx-

imately 300µm and terminates on the split electronic photo sensing device. The

photo sensing device is placed in the far field of the laser beam such that only the

central lobe of the resultant diffraction pattern caused by the pinhole, is incident

on the sensor.

Figure 3.10: The schematic of the FFDA device as implemented by the CSIRO
from Lynch and Michie [7]

From 1983 to 1989 the FFDA device was under development and scrutiny.

During this period several modifications were made to the device. There were

many practical problems that needed to be solved. These were related to the

transporting liquid, the orientation of the fibre when the beam is intersected, the

effectiveness of discriminating between valid and invalid fibre measurements,

the stability of the electro-optics, sample preparation and calibration methods for

the device, see Sommerville [9].

During this phase of development two issues in particular lead to the revision

of the original device, see Sommerville [9].
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• It was found that the split electro-optic sensor system for rejecting readings

was not accurate enough.

If a fibre varies more than 30 % in diameter in less than the beam diam-

eter this would give an unequal reading on the split electro-optic sensor

and result in the measurement being rejected despite being correct. It was

found that fibres that had not completely crossed the light beam had been

accepted instead of being rejected, see Sommerville [9]. If fibre snippets did

not cross the beam in its entirety, such as when it is parallel to the flow of the

fluid when moving through the beam off centre, an erroneous measurement

would result.

• It was found that in practice the probability of occurrence of two fibres

crossing the laser beam at the same time was significant.

Originally in the early years of the development of the device a system that

would monitor the measured signal for multiple peaks was devised, see

Fig. 3.9, however it was found to be of insufficient accuracy as this system

would not be able to invalidate a measurement if the fibres were very close

or in contact when crossing the laser beam, see Sommerville [9].

The resulting patent by Cantrall et al. [8] along with the practical solution of all

the practical problems encountered during the development phase of the device

lead to the modern day laserscan device.

3.5.3.3 The modern day laserscan device

Years of research and development with regard to the occlusion of a laser beam

by fibres in order to determine the diameter of said fibres lead to the patent by

Cantrall et al. [8]. The patent by Cantrall et al. [8] consists of two possible de-

vice setups to measure the diameter of a sample of fibre snippets with a common

system to determine the correctness of the fibre measurement signal. These de-

vice setups consist of an improved FFDA and a system which in essence does the

same as the FFDA but achieves this with the use of fibre-optics. In the following

sections we will look at the improved FFDA and the fibre-optics based FFDA.

The improved FFDA

The following is a description of the device with reference to Fig. 3.11 based on

the patent by Cantrall et al. [8]. The device can be broken into three functional
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parts. One part to determine the diameter of a fibre snippet, a part to monitor

beam intensity and a part to do measurement validation.

The detection of diameter by the device is affected as follows. A He-Ne laser

(101) illuminates a pinhole (102). The expanding beam with it’s diameter mod-

ified, exiting the pinhole (102) is split by a beam splitter (103). The transmitted

beam passes through a flow cell (105) where the beam can interact with a fibre

snippet submerged in a slurry flowing through the flow cell (105). The beam is

then split by another beam splitter (104). The transmitted beam is terminated on

a detector (118) which is connected to a processor (110). The processor (110) mon-

itoring the light intensity of the source is electrically connected to the computer

(115). The processor (110) calculates the diameter of snippets interacting with the

beam in the flow cell (105) according to the attenuation measured by the detector

(118) and the value is sent to the computer (115) to be validated and stored.

Fluctuations of the beam intensity is taken into account as follows. The in-

tensity of the split off beam by the beam splitter (103) is measured by a reference

detector (109). This intensity is fed back to the processor (110) which uses the

measurement to adapt readings made by the optical detector (118) accordingly.

Measurement correctness is affected as follows. The split off beam by beam

splitter (104) is imaged by a microscope objective (106) onto the face plane (107) of

an optical fibre bundle (108) which is connected to a photo diode detector (112).

The photo diode detector is connected electrically to processor/timer (113). The

processor/timer (113) is connected to both the computer (115) and the processor

(110). The signals from the optical fibre bundle (108) is processed by the proces-

sor/timer (113) to determine if the measurement detected by the optical detector

(118) is correct.

Data communication and feedback signals are affected by electrical lines (111,

114, 116, 117, 119, 120).

The measurement correctness discriminator operates in the following way

with reference to Fig. 3.12. The material crossing the laser beam is imaged onto

an fibre optic bundle. The fibre optic bundle is divided into segments each of

which is connected to a sensor in such a way that electronics are able to detect

when a wool snippet crosses the axis of the beam as well as the relative position

of the wool snippet with respect to the outside radius of the beam. In doing so

this device is able to detect if a wool snippet intersects the beam entirely, if dirt

intersects the beam and it is able to detect whether or not multiple wool snippets

intersects the beam, see Sommerville [9].
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Figure 3.11: The schematic of the laserscan device from Cantrall et al. [8]

Figure 3.12: Conceptual illustration of the fibre optic discriminator from Som-
merville [9]

The fibre-optic based FFDA

The fibre-optic based FFDA operates as follows with reference to Fig. 3.13 and

the patent by Cantrall et al. [8]. As the device is functionally the same but is

implemented using fibre optics, the device can be divided into four functional

parts. One part to determine the diameter of a fibre snippet, a part to monitor

beam intensity, a part to do measurement validation and a part to do calibration.

Measurement of a fibre snippet is affected as follows. A laser diode (201) is

used as the source and injects light into the core of a single mode fibre (202) which

is connected to a single mode coupler (209) with three ports. One port (205) is

connected to a single mode fibre (207). The light exiting from this fibre (207) is

collimated by a collimating lens (219). The light emerging from the collimating

lens (219) is incident on a flow cell (220) where the laser light could interact with
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a fibre snippet. The light emerging from the flow cell (220) is incident on a partial

mirror (221) which reflects light back through the flow cell (220) and some of

this light is injected into the fibre end (208) by the collimating lens (219). The

returning light is measured by a photo diode (216) and this signal is processed by

a computer (218) to determine the mean diameter of the snippet.

The laser diode source intensity is controlled as follows. Some of the light

from the laser diode (201) is fed back to a photo diode (211). The photo diode

(211) is connected to a processor (213) which uses the signal and holds the power

output of the source laser diode (201) constant.

Measurement validity is affected as follows. Some of the light which inter-

acted with a fibre snippet in the flow cell (220) is transmitted by the partial mirror

(221). This light is focused by a lens (222) onto the end plane (223) of a fibre op-

tic bundle (224) forming a diffraction pattern caused by the fibre in the flow cell

(220). The fibre optic bundle is connected to a neural network (225). The neural

network (225) discriminates between correct and incorrect measurements. The

neural network (225) is connected to the computer (218) where the measurement

is marked accordingly.

A calibration curve for the device is determined as follows. The computer

(218) signals the mechanical stage (228) to translate a sample carrier (229) through

the beam. The sample on the sample carrier (229) consists of typically wires with

known diameters in the range of 5µm to 200µm and as each moves through the

beam the calibration curve is determined.

A single mode coupler (209) is used to split and redirect portions of the light

to the different parts of the setup via single mode fibres (202, 207, 210, 215) con-

nected to ports (203, 204, 205, 206). Electrical communication, feedback and con-

troll is affected via electrical lines (212, 214, 217, 226, 227).

3.5.3.4 The laserscan device in overview

After the initial development of the device by Lynch and Michie [6] the device

was plagued by anomalies in measurement according to Sommerville [9]. These

were finally resolved and after refinement of the device it was adopted as the

primary testing method for Australian wools, see Sommerville [9].

The device is sensitive to temperature and due to the temperature control

equipment that it needs to operate it is physically bulky. As such it is only suited

for laboratory purposes.
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Figure 3.13: The schematic of the fibre optic implementation of the laserscan
device from Cantrall et al. [8]

The laserscan device provides both the mean and the standard deviation of a

sample of wool. The latter putting it ahead of the airflow device for classification.

3.5.4 Optical fibre diameter analyser (OFDA)

The OFDA range of systems are automated versions of the projection microscope.

As processing power became more readily available, direct image analysis by

computer became possible. Baxter et al. [70] described the design and develop-

ment of the OFDA device.

In 1991 a draft test method was submitted based on the OFDA device. After

round trials were conducted it was accepted as a TME (Test Method under Eval-

uation) by the IWTO. It was, however, not accepted as standard draft test method

due to the difference in measured standard deviation in comparison with the pro-

jection microscope. Development and inter-laboratory testing of the device con-

tinued and in 1995 the OFDA 100 received an IWTO test specification IWTO-47,

see Sommerville [71].

The initial device was called the OFDA 100, it’s follower up the OFDA 2000

and the latest edition to the range of devices is the OFDA 4000 device, each subse-

quent device with technical improvements and a longer list of measurable wool

attributes, see Sommerville [71], Baxter [72] and Baxter and Brims [73].
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3.5.4.1 The functioning of the OFDA range of devices

These devices uses an optical imaging sensing device which is mounted on a mi-

croscope and connected to a computer. The computer has software which enables

it to analyse the image from the imaging sensor. A mechanical translation stage

is responsible for the movement of a sample of wool mounted between plates on

the translation stage, such that multiple measurements of the sample could be

made by image acquisition and processing, see Sommerville [71].

3.5.4.2 An overview of the OFDA range of systems

The devices in the OFDA range are able to measure a long list of wool attributes

including mean fibre diameter and the distribution of the mean. As the device

consists of a microscope with mechanical translation stage connected to a com-

puter, the size of the device shrank along with the computer. The device is not as

sensitive to it’s external environment in comparison to it’s counterpart the Laser-

scan, but it is dust sensitive. The increased robustness makes it suitable for on

site testing in a small mobile laboratory.

3.6 History of devices based on the diffraction

principle

The diffraction principle of light shows potential as a fast method to determine

the mean diameter of wool and animal hair fibres. Several methods have been

used in the past utilising the diffraction principle all failing due to the eye of the

operator forming an integral part of the instrument causing difficulties with some

operators, see McNicholas and Curtis [27], Matthew [10], Boshoff and Kruger

[11] and David and Connell [74]. We hope to solve this problem with modern

technology by replacing the eye of the operator with an electronic sensing device.

Matthew [10] and McNicholas and Curtis [27] reports that Thomas Young in-

vented and built the eriometer in 1824 which could measure fibre diameter by

utilising the diffraction principle. Young called his instrument the ‘eriometer’

based on the ancient Greek for wool being ‘erio’, see Wik [75].

The devices by Matthew [10], McNicholas and Curtis [27] and Boshoff and

Kruger [11] were based on the original eriometer by Young. All three of these

devices use the eye as an integral part of the instrument. This introduces an

element of subjectivity to these devices and difficulty of operation with some

operators.
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The difference between these early devices are as follows. The devices by

Matthew [10] and McNicholas and Curtis [27] were based on a rectangular light

source and a parallel arrangement of fibres whereas the device by Boshoff and

Kruger [11], called the Mikronmeter, was based on a circular light source and a

random arrangement of the fibres in the sample. In the following sections we

describe the eriometer based devices and the Mikronmeter in more detail.

3.6.1 The functioning of the eriometer

Several devices have been based on the eriometer which was devised by Young

in 1824. Matthew [10] describes the basic principle of the eriometer device as

follows. The device would consist of a slit source of white light which is viewed

through an aperture some distance away. A sample of parallel fibres is placed

across the aperture parallel to the slit. When the source is viewed with the eye,

the fibres cause a diffraction pattern extending parallel to the length of the slit

and perpendicularly away from the slit. Through diffraction theory a relation

between the fibre width and the spacing of the diffraction pattern exists.

The basic geometry of these devices is illustrated in Fig. 3.14. The angle θn

is the angle at which the diffraction minima are observed, with n denoting the

order of the maximum or minimum. The position where they are observed in the

shadow of the source screen is denoted by Sn.

Figure 3.14: A conceptual schematic of the eriometer.

From the geometry of Fig. 3.14 one can see that the lens of the eye performs an

optical Fourier transform with the input transparency or object placed approxi-

mately against the lens. As the eye is sensitive only to light intensity we can use

the simplified form of the equation for an optical Fourier transform with the in-
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put against the lens as given by Eq. (2.152). If the input function is an infinitely

long obstruction of width d then from Fourier theory it is known that one can

view the function as an infinitely long slit of width d noting that the zero order

component of the transform will have a very high intensity corresponding to the

total integration area. In optics this inversion of an input mask is referred to as

Babinets principle.

Let’s assume for now that all the elements extend infinitely along the length

coordinate such that one can write Eq. (2.152) as

f (xf) = K2

ˆ
d
2

− d
2

f (xo) exp

(
−j

2π

λ f
xoxf

)
dxo (3.17)

where

d = The width of the infinitely long slit

f = The focal distance of the optical system

λ = The average wavelength

xo = The coordinate in the plane of the fibres

xf = The coordinate in the image plane of the eye

K2 = Arbitrary constant.

If f (xo) is a plane wave with fixed amplitude then the solution is

f (xf) = dK2A sinc

(
2π

λ f

d

2
xf

)
(3.18)

where

A = The amplitude.

Eq. (3.18) is applied to the geometry as illustrated in Fig. 3.15.

Now solving for the position of the zero’s or the maxima of the function f (xf)

is possible. The position of the maxima can be found by differentiating the func-

tion and finding the position of the zero’s. As such one has

xfn|zero =
nλ f

d
(3.19)

xfn|max =
(n + 0.43)λ f

d
(3.20)
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Figure 3.15: The geometry of the eriometer.

where

xfn|zero = The location of the n’th zero

xfn|max = The location of the n’th maxima.

With reference to Fig. 3.15, if one projects the principle ray back towards the

light source plane, then it is known that the gradient of such a ray in the thin lens

approximation is simply m = xfn
f = nλ

d . Now the coordinate in the plane of the

light source is Sn = mD = nλD
d . Thus one can substitute this result into Eq. (3.19)

and Eq. (3.20) to find the position of the projected zero’s and maxima in the plane

of the source as,

Sn|zero =
Dnλ

d
(3.21)

Sn|max =
(n + 0.43)Dλ

d
. (3.22)

where

Sn|zero = The location of the n’th projected zero

Sn|max = The location of the n’th projected maximum.

In all these instruments the sample consists of more than a single fibre. From

Fourier theory it is known that as long as the distance between the fibres is greater

than the fibre diameter the additional fibres would serve only to increase the in-
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tensity of the pattern.

In the instruments based on a slit light source, the view aperture and the hu-

man eye are dimensionally limited, yet the ratio of length to width is such that

these limits are small enough to ignore and the system input sample could be

seen as infinite along the length but finite in width, thus the initial approximation

to arrive at Eq. (3.17) is valid.

If a sample is inserted at the view aperture then the observed diffraction pat-

tern by the eye is seen as a projection onto the plane of the light source. The

spacing between the zero’s and the maxima can then be determined and used in

conjunction with Eq. (3.21) and Eq. (3.22) to determine the mean diameter of the

sample.

The different systems vary only in the mechanical way that the parameter Sn

is determined. As the eye is sensitive to light intensity, the zero’s are observed

as the positions where the intensity is a minimum and the maxima are observed

as positions where the intensity is a maximum. Ewles [76] used a fixed reference

point on the plane of the source slit which is then aligned with the first projected

maximum or minimum by varying the distance between the source and the eye.

Matthew [10] used a split slit light source and then aligned the first maximum

or minimum of the projected diffraction pattern of one source with the other. In

order to achieve this he used a micrometer screw to translate the slit sources rela-

tive to each other, the resultant diffraction pattern is illustrated by Fig. 3.16. Very

similarly McNicholas and Curtis [27] used a micrometer screw to translate the

edges of the slit relative to the stationary slit until they align with the maximum

of the projected diffraction pattern on the source plane.

Figure 3.16: The diffraction pattern observed by the split source system, from
Matthew [10]

These devices functioned fairly well, but were operator sensitive and limited

in sample size by the effective aperture of the eye. Variation of fibre diameter

would cause a spreading of the projected diffraction pattern and made accurate
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measurements generally more difficult.

3.6.2 The Mikronmeter

The Mikronmeter by Boshoff and Kruger [11] is in essence based on the eriometer

by Young, only it allows for any orientation of the fibres. The resultant diffraction

pattern being the sum of the individual contributions from each fibre tends to

form a circular disc projected on the source plane.

The basic construction of the Mikronmeter is illustrated in Fig. 3.17. With

reference to Fig. 3.17, on the source plane which is a blackened Perspex disc (F) a

ring is made in the opaque material such that a ring of light is visible on the plane

(F) at the light source. A sample is placed in the sample holder (D) and the inner

tube (E) and outer tube (C) can be slid to change the distance between the eye

at the sample holder (D) and the source plane (F) where the diffraction rings are

projected. The diffraction rings are then positioned such that the first minimum

of the diffraction pattern and the light ring on the Perspex disc (F) coincide. The

mean diameter of the fibres could then be read from the scale (J) by noting the

position of the pointer (B).

Figure 3.17: Cross-sectional view of mikronmeter from Boshoff and Kruger [11]
with: A - micro-switch; B - pointer; C - outer tube; D - sample holder; E - in-
ner tube; F - blackened perspex disc; G - diffusing window; H - light bulb; I -
batteries; J - scale

The initial testing of the Mikronmeter was positive, indicating a 95 % confi-

dence limit of ± 0.9µm even though Boshoff and Kruger [11] found that some

operators had difficulty operating the device. In a more extensive trial of the in-

strument, David and Connell [74] confirmed that it was not uncommon for an

operator to be unable to use the device satisfactorily and further found the 95 %

confidence limit from their trials to be ± 2µm. The poor accuracy and difficulties

some operators experienced with the device is said to be the reason why the de-

vice never gained ground in the market, despite being the only hand held device

capable of on-farm measurement, see Sommerville [51].
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4Design considerations
The system designed during this project is based on the same principle as the

Mikronmeter which uses a sample of randomly oriented fibres. A key factor in

the randomly orientated fibre sample is the amount of useful data contained in

such a sample. The sample size and density determines the statistical number

of measurements that can be made. The number of measurements in turn de-

termines the deviation of the mean and the 95 % Confidence Limit, see Section

3.2.

One can intuitively see that a sample which is completely covered with fibres

contains no discernable fibre diameter information whereas an empty sample also

contains none. We are interested in what happens in between these extreme con-

ditions. As such we will analyse sample density in order to find the relation

between sample density and the obtainable diameter data from such a sample.

If the importance of sample density is understood we move on to the initial

design and selection of components.

4.1 Sample density analysis

Let’s refer to a sample area as a two dimensional flat area onto which fibres are per-

fectly projected. It is intuitive that sample density, which refers to the percentage

of the sample area covered by fibres, is a key contributing factor to the number of

samples which statistically could be measured on such a sample area. If more fi-

bres are introduced to a sample at random positions and orientations the sample

density increases. As sample density increases so too does the amount of fibre

crossings. It is intuitive that fibre width information cannot be extracted from

these crossings, as such we want to understand the relationship between sample

density and extractable fibre thickness information.

The simplest way to do this is to view the sample in terms of area. Let’s subdi-

vide the sample into the following areas, the total fibre area, the measurable fibre

82
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area and the non-measurable fibre area. The total fibre area can be defined as the

area of a sample which is occluded by fibres, which when normalised to the total

area gives us the sample density. In order to define the measurable fibre area of a

sample, let’s first look at the measurable fibre area of a single fibre. It is intuitive

that the measurable area of a fibre refers to those parts of a fibre which can be

measured perpendicularly across, See Fig. 4.1. The same rule applies to a sample

where there are multiple fibres, in which case we have to additionally omit the

areas where fibres cross. Normalising the measurable fibre area with respect to

the total area gives us the measurable density of the sample. The non-measurable

fibre area refers to the areas where the fibres cannot be measured perpendicularly

across and is the difference between the total fibre area and the measurable fi-

bre area, which when normalised with respect to the total area is referred to as

the non-measurable density of a sample. Let’s refer collectively to the three density

parameters as the measurability properties.

Figure 4.1: Fibre shape with the measurable fibre area etched

It is our goal to determine the general relationship between sample size and

density and how that affects the measurability properties of a sample and further

to find a reference on which to calculations could be based.

4.1.1 Defining the model for the analysis

In order to define a model to do the analysis we need to approximate fibres such

that we can generate approximate sample areas on a computer. Let’s first look at

a strand of wool in terms of it’s diameter and shape, see Section 3.1.3.

1. One can expect to see a surface pattern on the fibre surface causing a small

variation in thickness along the fibre.

2. A fibre varies slightly in thickness from root to tip.
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3. The cross sectional shape of a fibre can be circular, elliptical or even bean

shaped. If such a fibre is twisted along it’s axis it’s observed diameter will

vary.

4. Fibres have curvature along their length.

5. Fibres within a sample vary in diameter.

To implement a model with the properties above would be very time consum-

ing and slow in computation when generating such complex sample areas. Cer-

tain approximations can be made in order to simplify the model with negligible

impact on the resultant measurability properties but major impact on develop-

ment and computational time. The approximations below can be made due to

the averaging process which naturally occurs when working with areas.

1. The variation in thickness due to the surface pattern is small and the fibre

can be taken as smooth if it is understood that the new diameter of the

smooth surface is the mean diameter.

2. The variation from root to tip is small enough to neglect if one considers

that it will only effect the mean thickness.

3. The shape of the cross section is near circular enough to ignore the variation

which a twist in such a fibre will introduce.

4. The diameter of the average fibre curl is many orders of magnitude larger

than the fibre diameter and is therefore negligible. If one takes a fibre as

straight this would not have an effect on the measurability properties, yet

the fibre count for a fixed fibre density would differ as it would take more

straight fibres to cover the same area compared to the number of curved

fibres needed to cover the same area of a sample. Thus one can approximate

fibres as straight if it is understood that the number of fibres is not a literal

quantity.

5. The variation between fibres is small enough to be ignored if it is under-

stood that this effect is combined into the mean.

From these assumptions one can define a simplified sample area as a set of ran-

domly orientated and positioned rectangular shapes with fixed width crossing a

square bounded area with fixed height, see Fig. 4.2. Such a rectangular shape is

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. DESIGN CONSIDERATIONS 85

Figure 4.2: A sample area consisting of fibre shapes of width d bounded inside a
bounding area of width and height w, with the perpendicularly measurable area
hashed

representative of a fibre, thus for the purpose of this analysis let’s refer to such a

rectangular shape crossing the bounding area as a fibre shape.

If one places many fibre shapes onto a sample area, such a simplified sample

area can be approximated on the computer as matrix referred to as a matrix sample.

In such a matrix sample a fibre shape is not smooth but pixelated and is referred

to as a matrix fibre shape.

One can generate matrix samples such that perpendicularly measurable area’s

have a value of one, crossings have a value of bigger than one and the rest has a

zero value. This would make it possible to determine the measurability proper-

ties of the matrix sample. In order to find the sample density of a matrix sample

one needs only count all the cells with a value bigger than zero and divide by the

total number of cells. Similarly the measurable density could be extracted from

a matrix sample by counting the number of cells equal to one and dividing by

the total number of cells. The non-measurable density could be found by calcu-

lating the difference between the sample density and the measurable density or

could be extracted from the matrix sample by counting the number of cells with

a value greater than one and dividing by the total number of cells. As such the

relationship between these areas, if two of the areas are known, is given by

Dt = Dm + Dn (4.1)
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where

Dt = Total fibre area.

Dm = Total measurable fibre area.

Dn = Total non-measurable fibre area.

If matrices are used to approximate sample areas one needs to consider the

implications of the discrete nature of a matrix due to the finite number of cells

therein. This causes the sample area to become pixelated, see Fig. 4.3. To mini-

mize the pixelation one can increase the size of the matrix. The bigger the matrix,

the more computer memory and computation time is required thus, the increase

in matrix size is subject to hardware and computational ability of the computer

used.

Figure 4.3: Pixilation effect

4.1.2 Generating a matrix sample

Generation of a matrix sample would require that one places the matrix on a

Cartesian co-ordinate system with its indices whole numbers, referred to as the

matrix bounded area. In order to generate a matrix sample one needs to place ma-

trix fibre shapes on a matrix bounded area. Each matrix fibre shape can be com-

pletely characterized in terms of it’s centre position co-ordinate (x, y), it’s orien-

tation θ and it’s width d. Let’s refer to a matrix fibre shape with random position

and orientation as a random matrix fibre shape. The length of the random matrix

fibre shape is negligible because it is a constant value chosen to be large enough

such that the matrix fibre shape will always reach across the matrix bounded area.
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A matrix sample can be characterized by the number of random matrix fibre

shapes it contains as n, the width of the random matrix fibre shapes d, and the

width of the matrix bounded area w. Thus every matrix sample is a function of

n, d and w and contains information related to it’s measurability properties in the

value of it’s cells.

4.1.2.1 Generating matrix fibre shapes

In order to generate matrix samples one needs to generate a set of random matrix

fibre shapes each of which is then processed in order to be divided into segments

which correspond to each individual matrix fibre shapes measurability proper-

ties.

A matrix fibre shape has a centre line which determines it position and ori-

entation referred to as the fibre centre line. On the fibre centre line perpendicular

line sections of fixed length d are placed each centred on the fibre centre line, let’s

refer to these line sections as linelets. A continuous fibre shape of width d would

then consist of an infinite number of linelets with length d spaced an infinitely

small distance apart.

One needs to ensure that any matrix fibre shape incorporated into a matrix

sample crosses the entire matrix sample regardless of its position and orientation,

thus the centre line is placed within the matrix bounded area with a length greater

than the diagonal length of the matrix bounded area in order to ensure it crosses

the entire matrix bounded area.

If one projects a fibre shape onto a matrix the number of cells is finite, thus

only a finite number of linelets, spaced such that the distance between the linelets

does not allow any cell within the matrix fibre shape to be omitted, are needed.

Each linelet is used to calculate the co-ordinates of the matrix cells which it crosses

within the matrix bound area, referred to as the linelet co-ordinates. The fibre shape

co-ordinates is then defined as the sum of the linelet co-ordinates.

In order to generate a random matrix fibre shape of width d, a random posi-

tion co-ordinate must be generated within the matrix bound area and a random

orientation between zero and π. Linelets of length d are then used to calculate

the fibre shape co-ordinates. The fibre shape co-ordinates can be used to create a

matrix with the cells corresponding to the co-ordinates given a value of one and

the rest of the cells a value of zero.

If one has a matrix sample one can determine the measurability properties of

each element in the set of random matrix shapes by creating a new matrix sam-
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ple which consists of all the random matrix fibre shapes except the one under

scrutiny, referred to as the exception matrix. Let’s call the random matrix fibre un-

der scrutiny the test fibre matrix and the set of linelets which comprises the test

fibre matrix as the test linelets. One can compare the test fibre matrix to the excep-

tion matrix by using the test linelet co-ordinates of the test fibre matrix to sepa-

rate it into it’s measurability properties. This is done by checking each of the test

linelet co-ordinates of a test linelet to see if any of the corresponding co-ordinates

in the exception matrix has a value greater than zero. If it does this indicates the

linelet overlaps with another random matrix fibre shape. Depending on the result

a corresponding value of one for no overlap or two for overlap is assigned to all

cells in the test linelet co-ordinate set. This is done for all test linelets making up

the test fibre matrix. After repeating the process for all elements in the set of ran-

dom matrix fibre shapes the resultant set of test fibre matrices are added together

to give the random matrix sample separated into it’s measurability properties.

See Fig. 4.4.
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Figure 4.4: Matrix sample with matrix fibre shapes used to illustrate how linelets
are used to find the measurable and non-measurable areas of a matrix fibre
shape

4.1.2.2 Finding matrix co-ordinates for a line

In order to calculate the matrix indices one can create a function which calculates

the co-ordinates of a line centred at some random co-ordinate at some random
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orientation. This line must be sufficiently long to cross the matrix bounded area.

The function returns the co-ordinates of steps along this line starting at the centre

and stepping outwards up to a specified value. These steps are calculated along

either the x or y axis depending on which axis the line has the smallest gradient

difference with, referred to here as the nearest axis. This ensures that at least ev-

ery step size cell falls within a matrix cell co-ordinate. If for example a step size

of 2 is chosen then one knows the returned selection of cell co-ordinates will be

spaced two cells apart along the nearest axis. If a step size of 1 is chosen one

knows all cells will be adjoining and a chosen step size of 0.5 would return co-

ordinates always perpendicularly adjoining, see Fig. 4.5. Once these co-ordinates

are obtained one can use the same function and generate co-ordinates perpen-

dicularly to the centre line to calculate the linelets. In order to be sure no matrix

co-ordinates are missed we chose a step size of 0.5 to ensure a solid matrix fibre

shape, see Fig. 4.4.
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Figure 4.5: Matrix lines with different step sizes

4.1.3 Analysis of random matrix samples

Using the techniques described above one is able to generate random matrix sam-

ples as illustrated in Fig. 4.6. Every random matrix sample can be reduced to it’s

measurability properties by normalising the respective areas, see Fig. 4.6(b) and

4.6(c), with respect to the total area.

As such one can generate a set of random matrix samples such that each sub-

sequent random matrix sample has more random fibre shapes. One can then plot

the measurability properties of the resultant random matrix sample set as illus-

trated in Fig. 4.7. Due to the random method used to generate the matrix sample

areas one expects the measurability properties to have some variance.

One can deduce from Fig. 4.7 that results can be described by the following
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(a) Total area (b) Measurable area (c) Non-measurable area

Figure 4.6: Example of a random matrix sample, 500 pixels wide with fibre sam-
ple’s 30 pixels in width, split into it’s respective measurability areas
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Figure 4.7: Example of measurability properties calculated for a set of random
matrix samples by increasing the number of matrix fibre shapes

family of functions,

Dt = 1− exp(−k1x) (4.2)

Dm = x exp(−k2x). (4.3)

It is intuitive that

x ∝
nd

w
(4.4)
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where

n = Number of matrix fibre shapes

d = The thickness of the matrix fibre shapes

w = The width of the matrix sample area.

Now one can substitute Eq. (4.4) into Eq. (4.3) and by noting that due to

pixelation the actual value of d will vary as d + ∆d one finds,

Dt = 1− exp

[
−k1

n(d + ∆d)

w

]
(4.5)

Dm =
n(d + ∆d)

w
exp

[
−k2

n(d + ∆d)

w

]
. (4.6)

This allows us to find a relation for k1 by fitting Eq. (4.5) to a number of data

sets with arbitrary chosen width and fibre shape thickness. Due to the variance

we take the mean of multiple samples for each point on the resultant measurabil-

ity property graphs. Table 4.1 shows the data sets chosen and the resultant values

for k1 and ∆d.

Table 4.1: Resultant fits from data sets for the total area

of a matrix sample.

Width Fibre shape thickness Points averaged k1 ∆d

300 10 25 1 0.6

500 10 25 1 0.6

850 15 15 1 0.3

1000 30 15 1 0

The same method is used to find k2 and again ∆d. The results are listed in

Table 4.2.

Table 4.2: Resultant fits from data sets for the measur-

able area of a matrix sample.

Width Fibre shape thickness Points averaged k2 ∆d

300 10 25 ln(0.2) 0.6

500 10 25 ln(0.2) 0.6

850 15 15 ln(0.2) 0.3

1000 30 15 ln(0.2) 0
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Using this method we find k1 to be unity and k2 to be ln(0.2), thus we only

need to adapt ∆d for each of our arbitrary data sets. For each result the error

value was within 1 %. An example of the resultant fit is illustrated in Fig. 4.8
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Figure 4.8: Example of the calculated fit for the measurability properties indi-
cated by the solid lines. The sample size is 500, the fibre shape thickness is 10
and the mean of 25 random matrix samples is used to calculate each point on
the graph.

From the tables, Table 4.1 and Table 4.2, it is apparent that the constants k1 and

k2 do not vary with n, d and w, thus we can substitute the values into (4.6) to find,

Dt = 1− exp

[
−n(d + ∆d)

w

]

Dm =
n(d + ∆d)

w
exp

[
− ln(0.2)

n(d + ∆d)

w

]
.

(4.7)

Further it is intuitive that any random sample, which is not approximated by

a matrix, must be linearly scalable. This implies that one can adapt the measur-

ability property equations given by Eq. (4.7) by substituting all d values with kd

and all w values with kw such that k is a scaling factor. Further it is intuitive that

the matrix approximation will become non pixelated if the matrix sample area is

taken as infinite such as is the case when the scaling factor approaches infinity.
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One can substitute the scaling functions into Eq. (4.7) and solve for k→ ∞ to find

Dt = lim
k→∞

1− exp

(
−nd

w

)

Dm = lim
k→∞

nd

w
0.2−

nd
w

Dn = Dt − Dm.

(4.8)

The resultant equations, given by Eq. (4.8), are continuous and are no longer

bound to the matrix environment. We are therefore able to use these equations to

make predictions about the properties of simplified sample areas. As simplified

sample areas are an approximation for wool covering a square aperture we are

able to gain insight into the relation between sample density and the measurabil-

ity properties of a sample.

4.1.4 Discussion of sample size analysis

The equations estimating the measurability properties given by Eq. (4.8) have

useful implications. The zero order transmitted light after passing through a sam-

ple placed in the path of the light will be attenuated in intensity proportional to

the obstructed area of the sample which is related to the sample density. Thus the

light intensity before and after a random sample of fibres could be used to esti-

mate the measurability properties of the sample. In the model the beam intensity

profile is not considered, intuitively we assume the main effect of the beam inten-

sity profile would be to affect the effective sample area.

From the equations describing the measurability properties given by Eq. (4.8),

it is seen that a constant point exists where the measurable area is equal to the

non-measurable area referred to as the 50 % point. The value for a relative vari-

able x = nd
w at the point of optimal measurability can be found from the measur-

ability property equations given by Eq. (4.8) by reading from a graphical plot the

x value where Dm = Dn. The expected value of the area density at this position

could then be found from the relation Dt = Dn + Dm.

If one normalises the measurable sample density and non-measurable sample

density equations with respect to the sample density for a relative x = nd
w the
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measurable area and the non-measurable area of the fibre shapes are found as

Dsm =
x 0.2x

1− exp(−x)

Dsn = 1− x 0.2x

1− exp(−x)

(4.9)

where

Dsm = The normalised measurable area of the fibre shapes

Dsn = The normalised non-measurable area of the fibre shapes.

If one plots the resultant equations given by Eq. (4.9) the 50 % point where

the measurable and non-measurable normalised fibre shape areas intersect can

clearly be seen, see Fig. 4.9. The 50 % point occurs where x = 0.6108 which will

be refered to as x50%.
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Figure 4.9: The percentage of sample area which is measurable and non-
measurable plotted against a relative x = nd

w .

As stated earlier the measurability properties of a sample could be obtained

by measuring the attenuation of the zero order before and after a sample is placed

in the path of the beam. At the 50 % point the beam will be attenuated by a factor

of Dt(x50%) = 0.46 and the sample’s measurability will be optimised under the

assumed condition of an equal random distribution of fibres across the sample

area.

As noted earlier the number of fibres n is a count of straight fibre shapes which
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will yield a different result to curved fibre shapes. It does, however, give us a

relative indication of the number of fibre shapes which could be contained in a

sample of a given size. An equivalent relative number of fibre shapes at the 50 %

point could be derived from the relative equation x = nd
w as,

n50% =
x50%w

d
(4.10)

where

x50% = A constant value where Dm = Dn

n50% = The equivalent relative number of fibres at x = x50%.

By noting that w is the square root of the area for a square sample shape and

that the properties are related to area, one can write Eq. (4.10) more generally as

n50% =
x50%

√
A

d
(4.11)

where

A = The area of the sample.

In practice the measurement method primarily determines the number of sam-

ples taken. For example in the OFDA range of devices, the cross section of fibres

is measured at random positions. It is possible that the same fibre is measured

multiple times. One can take the average of this occurrence and obtain a constant

with which to multiply the relative number of samples. In an ideal Fourier optical

system all information regarding the sample could be retrieved and one would

have a different constant with which to multiply the relative number of samples.

As such a system could be evaluated to find it’s measurement efficiency.

4.2 The optical system

During the design the of the optical system the sample size has to be maximised

for a fixed maximum pattern size. The pattern size is determined by the dimen-

sions of the Charge Coupled Device (CCD) based camera. The sample is located

at the sample plane and the Fourier optical pattern is located at the observation

plane. The relationship between the sample plane and the observation plane is

determined by the Fourier optical properties of lenses, specifically the relation-
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ship between the dimensions of the input sample at the input plane and the di-

mensions of the Fourier optical pattern at the output plane.

The basic Fourier optical system is illustrated in Fig. 4.10. The complete source

consists of a primary source, a beam expander and a pinhole filter. The sampling

space is where the fibre sample is inserted and the Fourier optical system which

is represented by a single lens performs the Fourier optical transformation which

is detected at the Fourier plane.

Figure 4.10: Schematic view of the basic optical system.

The size of the Fourier pattern is inversely proportional to the wavelength

and the focal length of the lens. The active area of a CCD camera is generally

small with respect to the size required for a Fourier optical pattern. Therefore a

lens with a short focal length is required. One can further decrease the size of

the potential Fourier optical pattern by using as long a wavelength of light as

is possible while still meeting the scalar conditions. One is also limited by the

availability of equipment capable of functioning at the chosen wavelength.

One needs to keep in mind that the output dimensions are inversely propor-

tional to the input dimensions as a result of the optical Fourier transform and

thus a CCD camera with high resolution is preferred for maximum discrimina-

tion ability.

The source is related to the sample area by the requirement that it must be

able to fully illuminate the sample area. A further constraint is that it must do so

with a nearly flat wave front.

With all these constraints we had to select components while keeping in mind

they must be such that they could form part of other experiments in the future.

This is primarily a financial consideration due to the expensive nature of optical

components.

The prototype developed is considered the first device in a design cycle. On

the basic level it remained to be proven that an optical Fourier setup could be

made to work within the very limiting design parameters.
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A light source with a similar wavelength to that of a HeNe laser was chosen

as there are many HeNe lasers available should one need to verify some aspect

of the proposed device requiring a high precision beam with near ideal proper-

ties. As such the chosen wavelength is ± 632 nm. The chosen wavelength sat-

isfies all design conditions, it is a long wavelength, within the visible range and

there are Laser Diodes available with good quality beams in this range. The laser

diode selected was the Hitachi HL6343G/44G with a typical output wavelength

of 635 nm, low beam ellipticity with the aspect ratio given as typically 1.2 and

an optical output power of 10 mW. Driving current is given as 0− 35 mA with a

maximum of 45 mA.

A CCD camera was selected with good sensitivity at the chosen wavelength,

reasonably high resolution, a large sensor area and overall good scientific perfor-

mance as the device would later form part of other setups. The device selected

was the Pixelink PL-A741 CCD camera.

As the dimensions of the sensor area is known one can calculate the focal

length needed such that the optical diffraction pattern that results from the min-

imum diameter fibre will fit onto the sensor area of the CCD camera. The data

sheet of the CCD camera supplies it’s dimensions as 8.576 mm by 6.912 mm.

With the minimum diameter of fibre and the dimensions of the sensor area of

the CCD camera known, one can calculate a focal length for the Fourier optical

system. It is known that the positions of the minima of the Fourier optical pattern

is equivalent for a disc and a random sample of wool if the diameter of the disc is

the same as the mean diameter of the wool. Thus from Appendix A.7 we can use

Eq. (A.64) with ro = rs, simplify and rewrite with f as the subject to find,

f =
rsd

nλ
(4.12)

where

f = Focal length

d = The diameter of the disc

n = Number of intensity minima starting from the origin

rs = The co-ordinate on the sensor area at a distance from the origin.

From the discussion in Section 3.1.2 it is known that a mean fibre diameter

of 10µm is very rare, thus one can take this as the lower limit. If one position

the resultant Fourier optical pattern in the centre of the sensor area of the CCD
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camera then rs is 3.46 mm. If one wants to observe the entire first lobe of the

resultant Fourier optical pattern on the sensor area of the CCD camera then one

must choose n as 2. This is quite a strict requirement as we only need to be able

to detect the first zero, thus n could be anything between 1.1 and 2. The value 1.1

is chosen to be arbitrarily larger than 1 as a value of 1 would mean the first zero

would be right on the edge of the active area of the CCD which could complicate

detection. For the purposes of the design we chose n as between 1.1 and 2. The

minimum and maximum focal lengths are calculated as,

fmin =
3.456× 10−3 · 10× 10−6

2 · 635× 10−9

= 27.24× 10−3

fmax =
3.456× 10−3 · 10× 10−6

1.1 · 635× 10−9

= 49.53× 10−3 .

We find that the required focal distance f of our optical system must be less

than 27.2 mm or less than 49.5 mm.

The primary lens was chosen such that it could perform the Fourier optical

transform by itself as one could always add additional lenses to decrease or in-

crease the focal length of the final optical system. Lenses come in standard sizes

of 0.5 ”, 1 ” and 2 ”. The shorter the focal distance of a standard spherical lens, the

bigger and the larger the aberrations become as the lens needs to be thicker with

surfaces with small radii of curvature to accomplish the short focal length. Thus

the sample area which one would like to be as large as possible is limited by the

possible size of the lens due to aberrations. Fortunately special spherical lenses

are available with reduced aberrations and short focal lengths. The chosen lens

is the Precision Asphere 47731 (from the 2006 catalogue of Edmund Optics) and

have a focal length of 31.25 mm and a diameter of 25.2 mm.

For the chosen lens if we assume the area at the sampling space to be scaled

by a scaling factor of 0.6 due to the effect on the effective area by the shape of the

intensity of the beam then we can calculate the relative number of fibre shapes,

with Eq. (4.11), for the sampling space at the 50 % point for 30µm fibres as,

n50% =
0.61 ·

√
0.6 · (12.5× 10−3 )2 · π

30× 10−6

= 349.
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The resultant number of 349 equivalent fibre shapes gives us a relative indication

of number of samples for a measurement and is certainly a large enough number

if one considers that 300 measurements must be taken per sample when measure-

ments are made with the projection microscope.

In order to illuminate the sample area one needs to collimate, filter and expand

the light from the source. The collimated beam must be expanded and spatially

filtered. As a spatial filter consists of focusing a beam through a pinhole, one

is able to combine the spatial filter and the beam expander. As such the beam

expander consists of two convex lenses, the first focuses light through a pinhole

and the second then collimates the expanded beam. The required beam diameter

at the sample determine the lens parameters of the beam expander.

The specification of the laser diode lists a possible beam divergence of up to

25°, thus one can calculate the maximum possible required numerical aperture of

the collimating lens as,

NA = nair sin θ

= 1 · sin(25°)

= 0.42 .

A collimating lens with a numerical aperture of 0.55 and effective diameter

of 4.95 mm with an anti-reflection coating in the near infrared spectral range was

chosen. A parameter file for the lens was obtained in the format of the software

OSLO from the retailer of the lens. From the software we can find a more accurate

estimate for the Effective Focal Length (EFL) of the lens as the lens was originally

designed at a wavelength of 720 nm. The software reports the EFL of the lens to

be 4.47 mm when used with a wavelength of 635 nm.

One can calculate the beam diameter for the light collimated by the collimat-

ing lens from the known beam divergence of the laser diode. One can use Eq.

(A.50) from Appendix A.6 to calculate the beam diameter and when considering

that the beam will be spatially filtered we approximate M2 as one to find,

di-min = 2 · 4.47× 10−3

1
tan(17°)

= 2.73× 10−3

di-max = 2 · 4.47× 10−3

1
tan(25°)

= 4.17× 10−3 .
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Thus the source beam diameter is calculated to be between 2.73 mm and 4.17 mm.

The next part of the optical setup is the combined beam expander and pin-

hole filter. The beam expander must introduce as little as possible deformation

to the wave front at the sampling space. With this in mind high performance

lenses must be chosen. Let’s first look at the beam expander as it determines the

required lens before the pinhole filter. The expansion ratio of the beam is deter-

mined by the focal lengths of the lens pair which constitutes the beam expander

and is given by

Mx =
f2

f1
(4.13)

where

Mx = Expansion ratio of the beam incident on lens one

f1 = Focal length of the first lens

f2 = Focal length of the second lens.

The relation in describing the magnification of beam diameter given by Eq.

(4.13) assumes the beam to start from the source, be incident on the first lens and

then on the second lens.

One would like to keep the optical setup as short as possible. This requires

the use of lenses with short focal lengths, therefore the f/# of the lenses must be

small. The f/# is the ratio of the effective diameter of a lens to the focal length

of the lens. Standard lens performance decreases as the f/# of the lens becomes

smaller. This is not a problem for the first lens as one can use an aspheric lens

to be sure the pinhole filter performs optimally, thus only the second lens need

to be considered. In order to have good lens performance and limit the size of

the optical setup a lens with f/# of three was chosen. This is a small f/# and as a

standard lens would not perform well enough we selected an achromatic doublet

with focal length of 75 mm and diameter of 25 mm. In order to know the required

focal length of the first lens in the beam expander one must first calculate the
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required beam expansion.

Mx-min =
25× 10−3

2.73× 10−3

= 9.16

Mx-max =
25× 10−3

4.17× 10−3

= 5.995

The magnification formula Eq. (4.13) can be used to calculate the required

focal lengths of the objective in front of the pinhole filter as,

fmin =
75× 10−3

9.16

= 8.19× 10−3

fmax =
75× 10−3

5.995

= 12.51× 10−3 .

To satisfy all the requirements an aspheric lens with a focal length of 11 mm

was selected and placed before the pinhole. This choice allows one to easily re-

place the achromatic doublet at the sampling space with a lens with focal length

of 100 mm if one needs a bigger beam expansion ratio, allowing the minimum

diameter beam to be sufficiently expanded. The diameter of the aspheric lens be-

fore the pinhole is 5.5 mm. If the beam before the beam expander is the maximum

diameter, the collimating lens would be over illuminated to an acceptable degree

with this lens choice.

The collimated light from the laser diode must be focused through a pinhole

by the aspheric lens chosen. The size of the pinhole is determined by the param-

eters of the beam expander which consists of the chosen lens pair. The objective

required by the beam expansion has a diameter of 5.5 mm and an EFL of 11 mm.

The beam diameter was calculated to be between 2.73 mm and 4.17 mm, thus one

can calculate the required size of the pinhole filter using Eq. (A.60) from Ap-
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pendix A.6 as

d1 = 4 · 635× 10−9 · 11× 10−3

π · 2.73× 10−3

= 3.26× 10−6

d2 = 4 · 635× 10−9 · 11× 10−3

π · 4.17× 10−3

= 2.13× 10−6 .

At the time when we ordered the pinholes the final design of the setup was

not complete. As such we selected pinholes on the basis of the approximate lens

that we would use before the pinhole. The lens was estimated to have a diameter

of 5 mm and a focal length of 15 mm. The pinhole diameter can be calculated

for such a lens using Eq. (A.59) from Appendix A.6. If one chooses a value for

the cutoff constants such that neither lens nor pinhole will be overfilled such as

Nl = Np = 3√
2

then we can calculate the size of the pinhole as,

Wp =
2NpNlλ f

πWl

Wp =
2 · 3√

2
· 3√

2
· 635× 10−9 · 15× 10−3

π · 5× 10−3

= 5.46× 10−6 .

In theory the smaller the pinhole, the better the resultant beam quality would

be. One has to take into account however that it gets increasingly difficult to focus

the beam through smaller pinholes and the intensity of the beam is attenuated.

A range of pinholes was therefore ordered with diameters 5µm, 8µm and 10µm

with the knowledge that smaller pinholes are available if needed.

In order to design the Fourier optical system a ray tracing program written in

Matlab, see Appendix B, was used which gives flexibility in data analysis which

commercial software does not necessarily give at a much lower price. The main

optical element to perform the Fourier optical transform has been selected as an

aspheric lens with a diameter of 25.2 mm and a focal length of 31.25 mm.

We also considered the possibility of obtaining the optical Fourier transform

of the sample in reflection. Such a system would be more compact. The modified

setup is illustrated in Fig. 4.11. For this purpose we purchased a beam splitter

block (Thorlabs CM1-BS1) which is polarization insensitive.
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Figure 4.11: Schematic view of the optical system for observing the Fourier
transform in both transmission and reflection

4.2.1 Positioning of elements

In order to determine the accurate positions of the optical elements the developed

ray tracing software was used to calculate the intersection position of converging

bundles of rays.

The method we used was to trace a set of parallel rays through the optical

element and determine it’s focal point by locating the geometrical waist where

the set of rays converge as is illustrated in Fig. 4.12.

(a) Overview (b) Magnified view of the geometrical
waist

Figure 4.12: Example illustrating how the geometric waist is determined.

In Fig. 4.13 and Fig. 4.14 the focal positions calculated by means of ray tracing

are indicated.

The exact positioning is not a requirement for all components except for the

pinhole. In order to position the pinhole with micron precision a X-Y translation

stage in combination with a z-axis mount piece is used.

Positioning the elements to the precise positions in practice would be very
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Figure 4.13: Schematic of the transmission optical setup with the positions of
elements indicated.
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Figure 4.14: Schematic of the reflection optical setup with the positions of ele-
ments indicated.

difficult and time consuming or alternatively very expensive. Taking into account

that one only needs a collimated beam at the sample space allows us to position

elements such that the required function of each stage of the setup is attained.

For example, the collimating lens after the laser diode is moved backwards or

forward until the resultant beam is more or less collimated. The lens before the

pinhole filter is then adjusted such that it focuses the light through the pinhole

and we then position the doublet after the pinhole filter such that a collimated

beam at the sampling space results.
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5The Fourier optical setup
In this Chapter the initial evaluation of both the transmission optical setup and

the reflection optical setup as described in Chapter 4.2 is discussed. The problems

encountered are discussed and possible solutions. A modified design where the

solutions are applied is then discussed where the problems encountered with the

initial design of the transmission optical setup are solved.

5.1 Light source

Assembling the light source, it was found that the 8µm pinhole was adequate for

the purpose of filtering. The expanded beam slightly overfilled the 75 mm diam-

eter achromatic doublet, giving a beam of sufficient diameter. All experiments

were performed using the source in this configuration.

5.2 Evaluation of the transmission setup

The CCD camera was placed at the Fourier plane of the transmission setup and a

sample held between two glass plates in the sampling space. Two problems were

identified with this arrangement:

• It was apparent that the slides holding the sample caused additional noise

in the system.

• The intensity of the zero order of the pattern was many orders of magnitude

greater than that of the side lobes as can be seen on Fig. 5.1.

Solving the problem of the additional system noise caused by reflections from

the slides turned out to be quite simple. If the slides are a necessity in the system

one possible solution would be to use anti reflection coated slides and placing

105
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(a) Low intensity illumination. (b) High intensity illumination with the
zero order peak located to the side of the
CCD sensing area.

Figure 5.1: Images captured with the CCD camera using the transmission optical
setup with the same fibre sample inserted into the sampling space illustrating
the resultant images from different intensity illumination.

them at angles such that the zero order reflection of the source is diverted away

from the sensing area. However placing the sample between slides complicates

the operation of the device and the slides do not contribute to the measurement

other than to hold the fibre sample in position. This can just as easily be done by

hand thus the glass slides can be removed. The sample is then suspended in mid

air, see Fig. 5.2.

Figure 5.2: Image of the wool sample suspended in mid air.

In practice the implication is that one would have an opening in the device and

the operator inserts the ends of a sample into the opening to take a measurement.

The second problem is that of the intensity of the zero order light which is

many orders of magnitude larger than that of the pattern causing light to be re-

flected back into the system as well as saturating the CCD camera. It was clear

that the zero order light had to be removed or diverted.
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It was confirmed that removal of the zero order light would improve pattern

definition in a crude experiment. In this experiment a lens with a focal length of

75 mm was used to perform the Fourier optical transform. A screen was placed

at the focal plane of the lens which had a hole at the position of the zero order of

the pattern. A hand held camera was used to photograph the resultant pattern

which formed on the screen. The resultant image is illustrated in Fig. 5.3.

Figure 5.3: Image of the resultant Fourier optical pattern on a screen with a hole
for the zero order light to pass through taken with a hand held camera.

In the resultant image the pattern is discernable with the naked eye. It was

then concluded that removal of the zero order would make pattern analysis pos-

sible with the equipment available. Let’s define any system which removes the

zero order light from a Fourier optical system as a zero order filter. In Section 5.4

we will describe the application of a zero order filter to the transmission optical

setup.

5.3 Evaluation of the reflection setup

The CCD camera was placed in the Fourier plane of the reflection optical setup.

A sample was placed between the sampling plates and inserted into the sampling

space. The resultant images for a clear sample and a sample with wool are shown

in Fig. 5.4.

A lot of noise was observed and further investigation showed that the beam

splitter block caused a double beam reflection effect. Looking at the observed

pattern obtained with a sample, Fig. 5.4(a), it can be seen that reflected light

causes serious degradation of the observable pattern. If one removes the sample

two focal spots can clearly be observed, see Fig 5.4(b). We verified that the two
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focal spots were caused by the beam splitter block by shining a collimated laser

beam through it without any other optical elements present and observed a dou-

ble beam emerging from its reflection. This result lead to the conclusion that the

particular beam splitter block was not suited for the application.

(a) A random sample present at the
sampling space.

(b) No sample present at the sampling
space.

Figure 5.4: Images captured with the CCD camera using the reflection optical
setup, with a fibre sample present and without a fibre sample present at the
sampling space.

Further investigation into the possible application of the reflection principle

was put aside. Several key issues will need to be looked at critically if this possi-

bility is to be investigated in the future.

• Light incident on wool or animal hair fibre is reflected by the surface of

the fibre. It is therefore intuitive that the shape of the fibre would greatly

influence the way light originating from different points on the fibre surface

interferes at the focal plane.

• The intensities of reflections from the optical elements in the system must

be sufficiently small such that the pattern could be easily distinguished if a

pattern is formed in reflection.

5.4 The revised transmission setup

In this Section we will discuss possible zero order filters and show how we ap-

plied such a zero order filter to the transmission optical setup.

Application of a zero order filter requires removal of the zero order light be-

fore or at the CCD camera. Since the latter option is impractical we decided to

remove the zero order light before the CCD. To remove the zero order light from

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. THE FOURIER OPTICAL SETUP 109

the diffracted light emerging from the sampling space we focus the light at a pre-

liminary Fourier optical plane and block or deflect the zero order light by placing

an opaque or a reflecting spot at the position of the zero order light. Let’s refer

to an opaque spot which blocks the zero order light as a zero order blocker and a

reflector which can deflect the zero order light away in an off-axis direction as a

zero order reflector.

Each option has it’s own advantages. The zero order blocker is cheap and

relatively simple to implement. The advantage of using a zero order reflector is

that the intensity of the zero order light could be measured and compared with

the source beam intensity to determine the density of the sample using the sample

density model discussed in Section 4.1.

The zero order reflector was ruled out as it would have to be specially man-

ufactured which would be costly and time consuming. Instead we opted for the

zero order blocker option by placing an opaque spot in the path of the zero order

light effectively removing it from the pattern observed at the CCD camera.

The size of the zero order filter is restrained by a minimum and a maximum

value. If the size of the zero order filter is below the minimum then the zero

order filter will no longer remove all the zero order light and some light will pass

the filter to reach the CCD camera. If the size of the zero order filter is above

the maximum value the filter would start to obstruct relevant data points on the

pattern image observed by the CCD camera to an extent which would make it

difficult or impossible to evaluate the captured pattern image.

The minimum diameter of the zero order filter is determined by a combination

of factors, chief among these, the beam diameter, the focal length of the lens and

the lens performance. If the lens performance is diffraction limited, the minimum

value would be in the region of 10µm as we are imaging the pinhole filter with

a one to one ratio. This value only serves to give us an idea of the minimum re-

quired diameter of the zero order filter. Since such a small diameter is practically

difficult to implement and the size of the central lobe for the maximum diameter

fibre will be larger than the minimum zero order filter diameter, thereby satisfy-

ing the minimum requirement, we rather use the size of the central lobe for the

maximum diameter fibre to determine the size of the zero order filter.

It is known that the bigger the fibre diameter the smaller the spacing between

the minima will be on the resultant image pattern and therefore the smaller the

central lobe of the resultant pattern. Since one is not allowed to obstruct an area

bigger than the smallest possible central lobe of the image pattern, the maximum
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size of the zero order filter is determined by the maximum fibre diameter.

The pattern image which is obtained from a random sample of wool or animal

hair fibre is equivalent to the pattern observed for a disc with the same diameter

as the mean diameter of the fibres. The solution to find the position of the n’th

minimum for a disc inserted into the sampling space of a Fourier optical system

is given by Eq. (A.64) in Appendix A.7 from which we can write,

xf =
nλ f

d
(5.1)

where

xf = The distance from the pattern centre to the nth minimum of the pattern

d = The diameter of the disc

f = The focal length of the optical system

n = Indicates the nth minima in the resultant pattern.

The size of the zero order filter can be calculated from the relation, given by

Eq. (5.1), by choosing an arbitrary maximum fibre diameter value of 125µm and

calculating the position of the first pattern minimum as the limiting radius,

xf =
nλ f

d

=
1 · 635× 10−9 · 75× 10−3

125× 10−6

= 381× 10−6

Thus the required maximum radius is 381µm making the maximum diameter

of the zero order blocker 762µm. In the experiment we expected to measure

fibres up to a maximum of 40µm, thus for the purposes of the experiment we

simply took a transparency and put a dot of paint on it with a fine paint brush

approximately half a millimeter in diameter knowing if needed we could refine

the zero order blocker.

With the use of the ray tracing software and available optics we assembled

a revised optical setup which would be able to perform the filtering. The re-

vised transmission optical setup is illustrated in Fig. 5.5. The effective focal

lengths of the lenses are (A) 75 mm, (B) 100 mm, (C) 100 mm, (D) 200 mm and

(E) 31.25 mm and the diameters are (A) 25 mm, (B) 25 mm, (C) 50 mm, (D) 50 mm

and (E) 25.2 mm. With reference to the first or only curved surface of the lenses
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their positions are (A) 0 mm, (B) 90 mm, (C) 120 mm, (D) 150 mm and (E) 180 mm

and the zero order blocker is located at 75.3 mm.

0 50 100 150 200

−20

0

20
Zero order filter

Position of CCD

Image plane

A B C D E

Figure 5.5: Schematic of the revised transmission setup.

The elements were positioned such that we were able to place the CCD camera

in the image plane as well as at the Fourier optical plane as can be seen in Fig. 5.5.

(a) Without the zero order filter in posi-
tion.

(b) With the zero order filter in position.

Figure 5.6: Images captured with the CCD camera at the image plane of the
transmission optical setup using a sample consisting of a paper with a hole and
an acrylic fibre placed across it illustrating the effect when the zero order filter
is present or not.

The effect of the zero order filter is neatly demonstrated in Fig. 5.6 by showing

an image without the filter in position, see Fig. 5.6(a), and an image with the filter

in position, see Fig. 5.6(b).

Placing the CCD camera at the Fourier optical plane and inserting a random

sample of wool into the sampling space with the zero order blocker in position,

we obtained the resultant image as illustrated in Fig. 5.7. One can clearly see the

ring structure on the captured pattern image with the naked eye.

Obtaining a Fourier optical pattern with the transmission optical setup was

a success. We will refer to the resultant pattern obtained by placing a sample

into the sampling space as a fibre pattern image. In the following chapters we will

describe how we can extract the mean diameter from a fibre pattern image.
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Figure 5.7: The fibre pattern image obtained for a sample of wool inserted into
the sample space of the revised transmission setup with the zero order blocker
in position.
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6Quanti�cation of the system
In this Chapter we explain how to determine the parameters of the Fourier optical

system and we discuss how to analyse the fibre pattern image obtained from said

system.

6.1 System parameters

Parameterising the system refers to the process of gathering all the unknown pa-

rameters of the Fourier optical system which one needs in order to analyse a fibre

pattern image.

In order to analyse a fibre pattern image, the following parameters are needed,

referred to as the system parameters:

• The effective focal length of the Fourier optical system.

• The centre co-ordinate of the fibre pattern image.

• The static background image for an empty sample space.

In the following sections we discuss each of these in more detail.

6.1.1 Determining the effective focal length of the system

The adapted optical arrangement is a Fourier optical system with some unde-

termined focal length. It is possible to calculate the effective focal length of the

system but this yields a theoretical result. We need an experimental method to

determine the effective focal length of the system in an way which could be au-

tomated to allow the device to be calibrated automatically without the need of

input from the operator.

In order to achieve this we insert a sample with a known mean diameter such

as a wire, into the sampling space. It is known that the spacing between the

113
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minima or the period of the minima of the resultant fibre pattern image is equal

to the distance between the centre of the fibre pattern image and the first minima.

Further it is known that the position of the minima is the same for a disc with a

diameter equal to the mean diameter of a fibre sample. The relation between the

positions of the minima for a disc is given by Eq. (A.64) from Appendix A.7.

Manipulation of Eq. (A.64) by substituting xf = T and n = 1 and solving for

f gives,

f =
Td

λ
(6.1)

where

T = The period in meter of the recurring minima.

Inserting a wire of known diameter into the input of the system one can deter-

mine the spacing between the minima of the resultant fibre pattern image. From

this spacing one can calculate the effective focal length of the system by means

of Eq. (6.1). The method used to determine the spacing of the minima of a fibre

pattern image is looked at in detail in Section 6.2.

6.1.2 Determining the centre co-ordinates of the pattern

A fibre pattern image captured by the CCD camera for any input at the sampling

space will always be centred about the optical axis of the system. We therefore

need a method to find the centre of the fibre pattern image experimentally which

could be automated.

The procedure used in our experiment is as follows. Adjust the output of

the laser diode to a very low level and remove the zero order blocker. Increase

the output intensity of the laser diode until a tiny spot can be seen on the CCD

camera. Capture and store this image. This image, referred to as a centre image, is

used to determine the centre co-ordinates of the Fourier optical system and any

subsequent fibre pattern images, see Fig. 6.1.

When determining the centroid of an image, the non zero static background

tends to shift the co-ordinate found. One can counter this effect by setting the

value for all static noise below a cutoff threshold to zero. In our case the focal spot

on the centre image saturates the CCD camera, thus the cutoff threshold could be

chosen such that it is 80 % of the maximum intensity of the fibre pattern image.
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The centroid of the image can then be accurately calculated as the resultant co-

ordinates are not shifted by the static background noise.

Figure 6.1: Example of a centre image.

6.1.3 Determining the static background noise

Image quality of a captured sample pattern can be improved by removal of static

background noise. The light intensity is adjusted to a fixed level where one is

able to capture a sample image. In theory if the zero order blocker is perfectly

absorbing one should capture a uniformly dark image consisting of only static

background noise. Let’s refer to the image obtained when the zero order blocker

is in position with an empty sample space as a null image. Such a null image

can be captured and subtracted from the captured fibre pattern image. It has to

be understood that the source light intensity must be held constant during the

process of capturing the null image and the fibre pattern image.

In our experimental setup the zero order blocker was not completely absorb-

ing since it was made by placing of a dot of blue paint on a piece of transparency.

We argued that should we find the performance to be poor we could easily im-

prove on the filter by using a more absorbing colour of paint and using a different

brush to get a better spot size. We did, however, not need to modify the filter as

the noise from our zero order blocker was found to be within manageable levels.

The following is a brief description of the side effects of the zero order blocker.

Some of the sharply focused light on the zero order blocker scatters backwards

through the system illuminating the metal plate of the pinhole filter. The Fourier

plane where the CCD camera is located images the pinhole filter and the zero

order blocker. The result is that we can see the pinhole filter as well as the zero
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order blocker imaged on the CCD at the Fourier optical plane. The intensity of

the null image with the pinhole filter visible due to back reflection from the zero

order blocker was, however, low and static. The image quality of the fibre pattern

images obtained was improved by subtracting the null image as is illustrated in

Fig. 6.2. It has to be noted that the light scattering backwards through the system

will be attenuated by the sample and will therefore not be exactly the same as the

null image. The difference in intensity between the null image and the pinhole

filter due to attenuation by the sample would cause a step to be observed when

analysing the pattern. No such step was observed and we therefore conclude that

the attenuation due to the sample is negligibly small.

The scattered light from the zero order filter will illuminate the sample causing

it to scatter light forward through the system and leading to additional unwanted

light reaching the CCD camera. This forward scattered light will have a low in-

tensity and an even distribution and its effect will therefore be negligible as long

as its intensity is low in comparison with that of the pattern.

(a) Image before subtracting the con-
stant background image.

(b) Image after subtracting the constant
background image.

Figure 6.2: Image of the resultant Fourier optical pattern for a 60µm wire in a
loop shape inserted in the sampling space of the transmission optical setup. The
images shows the effect of removal of the constant noise background image.

6.1.4 Sampling procedure

From the preceeding discussion, the steps that must be taken before measuring

and analysing samples for the transmission experimental setup are as follows:

• Position the optical components approximately as indicated in Fig. 5.5. It

does not need to be very precise as the system will be parameterized exactly

in the next steps.
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• Capture and store the centre image and calculate the centre of any potential

fibre pattern image for the current position of the CCD camera.

• Set the output power of the laser diode to a level which allows us to capture

Fourier optical patterns for a sample inserted in the sampling space.

• Capture and store the null image.

• Determine the focal length of the optical system.

If these parameters have been determined we are ready to analyse a fibre pat-

tern image in order to determine the mean diameter of a sample.

6.2 Sample analysis

Sample analysis describes the steps which are taken to determine the spacing of

the minima in a fibre pattern image. These are then used to calculate either the

effective focal length of the Fourier optical system or the mean diameter of the

sample if the system parameters are known.

The method used to determine the focal length of the system differs from the

method used to determine the mean diameter of a fibre sample due to pattern

quality, more specifically the number of clearly visible minima in the fibre pattern

image. We will first look at the basic processing which is common to the deter-

mining of the systems effective focal length and the mean diameter of a sample.

We then look at the specific processing required to determine the spacing of the

minima for each of these individually.

6.2.1 Basic pattern processing

In order to simplify the procedure to analyse a fibre pattern image the following

steps are performed1.

• Load the fibre pattern image in a matrix referred to as a pattern matrix.

• Transform the pattern matrix into a vector referred to as a pattern vector.

• Improve the pattern vector through fixed scaling and filtering.

1It has to be noted that we are only interested in the position of features in the subsequent
graphs and therefore the scale of the y-axis is not important.
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To transform the pattern matrix into a pattern vector the radius between each

cell co-ordinate and the centre of the pattern matrix is calculated. The radius is

used as the index in the pattern vector to store the mean value of all cells within

the pattern matrix located at an equal radius. To do this the number of values

added to each index in the pattern vector is counted and stored in a counter array.

When the totals for the pattern vector have been added up the pattern vector is

divided by the number of values as indicated by the counter array for each index.

Fig. 6.3 shows an example of the resultant pattern vector extracted from the fibre

pattern image in Fig. 6.2(b).

0 100 200 300 400 500

Number of pixels

Figure 6.3: Graph of the pattern vector for the fibre pattern image of Fig. 6.2(b) .

Since we are looking at intensity what we see is the result from |E|2. Each fibre

section causes a pattern resembling a sinc2x function which is perpendicular to

the angle of the fibre section at the sampling space. If one has many fibres then

the sum of all these will give a pattern resembling a circularly symmetric sinc2x

function. Noise or unwanted signal is caused by the fibre crossings and will cause

the pattern to lose definition. Since a sinc2x function is by definition sin2 x
x2 the

clarity of the pattern can be improved by multiplying the pattern vector by x2,

referred to as the scaled pattern vector. Fig. 6.4 shows an example of the scaled

pattern vector for Fig. 6.3.

Up to this point the procedure to determine the minima spacing of the cali-

bration wire of known thickness and a fibre sample is the same. In the following

sections we will look separately at how one can further analyse the scaled pattern

vector for a fibre sample and a wire of known thickness to determine the spacing

of the minima.
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0 100 200 300 400 500

Number of pixels

Figure 6.4: Graph of the scaled pattern vector from the pattern vector in Fig. 6.3.

6.2.1.1 Pattern analysis for a wire of known diameter

In order to determine the spacing between the minima of the scaled pattern vec-

tor which results when one inserts a wire of known diameter into the sampling

space one must first differentiate the scaled pattern vector. Differentiating simpli-

fies determining the dominant spectral component in the scaled pattern vector as

the process of differentiating acts to suppress the slow varying spectral compo-

nents and to magnify faster varying spectral components. Fig. 6.5 illustrates the

differentiated scaled pattern vector of the pattern vector illustrated in Fig. 6.4.

0 100 200 300 400 500

0

Number of pixels

Figure 6.5: Graph of the differentiated scaled pattern vector illustrated in Fig.
6.4.

The signal quality of the differentiated scaled pattern vector for a wire of

known thickness is good enough such that the Fourier transform could simply
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be used to determine its dominant spectral component. This can be accurately

achieved by zero padding the differentiated scaled pattern vector to approxi-

mately ten times it’s original length in order for the Fourier transform to be inter-

polated. Fig. 6.6 shows the Fourier transform of the padded differentiated scaled

pattern vector for the vector in Fig. 6.5.

−1000 −84 0 84 1000

Amplitude of shifted DFFT data points

 

 

Original FFT

Dominant component only

Figure 6.6: Discrete padded Fourier transform of the differentiated scaled pat-
tern vector of Fig. 6.5.

The dominant frequency component can easily be determined from a graph

such as the one in Fig. 6.6 by finding the index of the maximum valued element in

the vector. Having the index of the dominant spectral component Xp it is known

from discrete Fourier theory that the period of the dominant spectral component

can be found by,

Tp =
N

Xp
(6.2)

where

Tp = The period of the dominant spectral component in unit pixel.

Xp = The dominant spectral component.

N = The number of elements in the padded shifted DFT.

The pattern matrix results in a vector with indices in pixel units. The pixel

units can be converted to meter by,

da = wpixdpix (6.3)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. QUANTIFICATION OF THE SYSTEM 121

where

da = Distance in meter

dpix = Distance in unit pixels

wpix = The width of the pixels of the CCD camera.

Eq. (6.3) can now be used by noting that dpix = Tp and the distance found is

the recurring period of the minima in meter, thus T = da. Now substituting Eq.

(6.2) into Eq. (6.3) and solving for T one finds

T =
Nwpix

Xp
. (6.4)

The period of recurring minima found with Eq. (6.4) could then be substi-

tuted into Eq. (6.1) to determine an expression for the effective focal length of the

Fourier optical system as,

f =
Nwpixd

λXp
. (6.5)

With Eq. (6.5) one is able to calculate the effective focal length of a Fourier

optical system from the resultant pattern matrix of a wire of known diameter. A

computer program was developed which is capable of doing the image pattern

analysis in order to determine the effective focal length of the system, see the code

listing C.7 in Appendix C.3.

6.2.1.2 Pattern analysis of a fibre sample

The pattern matrix obtained when inserting a fibre sample into the sampling

space of the system will not be defined as clearly as that of a wire of known thick-

ness. If wool and animal hair fibres with small diameters are measured there will

generally be only one minimum visible, due to the inverse relationship between

fibre diameter and Fourier optical pattern size. As such one cannot reliably use a

Fourier transform to determine its position as had been done for a wire of known

diameter in Section 6.2.1.1. Instead we developed a method which differs from

the method used for a wire of known diameter, which could reliably extract the

position of the first minimum from the resultant sample pattern of a fibre sample.

In order to determine the location of the first minimum of the scaled pattern

vector for a random fibre sample a differentiation technique can be used. In a
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Cartesian co-ordinate system it is known that, if a function is differentiated, the

positions of the maxima and minima are located at the positions on the x-axis

where the differentiated function crosses the x-axis, referred to as the zero cross-

ings. To determine if a zero crossing is a maximum or a minimum we look at the

gradient of the differentiated function at that point. If the differentiated function

has a positive gradient we know it is a minimum and if it has a negative gradient

we know it is a maximum.

The scaled pattern vector obtained from the pattern matrix is not smooth. If

such a signal is differentiated the differentiation acts to suppress slow spectral

components and to amplify fast spectral components which could result in er-

roneous zero crossings. Thus the scaled sample vector should be as smooth as

possible such that the differentiated signal could be processed to locate the first

minimum of the scaled pattern vector. As such a filter can be applied. Since cer-

tain filters can introduce additional minima into a signal which could complicate

determining the spacing between them, a type of filter is chosen which does not

have the property of introducing unwanted minima into the signal. We chose

to use a spectral sinc filter. A spectral sinc filter is simple to implement as it

translates to a convolution of the temporal signal with a rect function.

The equation to determine the width of a rect function in the temporal do-

main, which translates to a sinc function in the spectral domain, is given in Ap-

pendix A.8 as,

Tf =
N sinc−1(kf)

πXp
(6.6)

where

Tf = The period of the minima of a spectral sinc filter

kf = The attenuation value at the attenuation frequency

Xp = The attenuation frequency

N = The number of elements in the vector.

The width of a rect function to be convolved with the signal in the temporal

domain is equal to the period of the minima of the sinc function in the spectral

domain. Thus the equation given by, Eq. (6.6), can be used to determine the width

of a rect function which if convolved with the scaled pattern vector is equivalent

to application of a sinc filter in the spectral domain. The maximum fibre diam-

eter would result in a pattern vector with the shortest period due to the inverse
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relation between sampling and Fourier optical space. We would like to relate the

maximum fibre diameter to the width of an applicable sinc filter in order to be

sure we do not filter our scaled pattern vector such that we are unable to deter-

mine the location of its first minimum in the case of a fibre sample of maximum

diameter.

For any given fibre sample, the spacing of the minima for the resultant pattern

matrix can be calculated if the position of the first minimum is known, thus one

can rewrite Eq. (5.1) with T as the subject and n = 1 to find

T =
λ f

d
. (6.7)

Eq. (6.7) can be used to calculate the period of the dominant spectral compo-

nent for a disc with known diameter inserted into the sampling space and one can

calculate the period of the dominant spectral component if the data is in discrete

vector format using Eq. (6.4). Thus setting Eq. (6.7) equal to Eq. (6.4) and solving

for the dominant frequency component in discrete space Xp one finds

Xp =
Nd

wpixλ f
. (6.8)

Now substituting Eq. (6.8) into Eq. (6.6) and solving for the period of the zero

crossings of the spectral sinc filter Tf one finds

Tf =
sinc−1(kf)λ f

wpixπd
. (6.9)

The width of the block function with which one must convolve the scaled

sample vector is equal to Tf, thus one could easily calculate the required width of

a spectral sinc filter by defining its attenuation properties using Eq. (6.9).

We define our primary filter such that it must attenuate the dominant spectral

component of the scaled sample vector by a factor of no more than 0.5 for the

maximum fibre diameter. Substituting the solution for sinc−1(0.5) (see Eq. (A.75)

in Appendix A.8) into Eq. (6.9) one finds

wfp =
0.6λ f

wpixd
(6.10)
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where

wfp = The width of the required primary rect function in pixel units.

After application of the primary filter to the scaled pattern vector the we found

that the resultant vector still exhibits noise when differentiated, see Fig. 6.7(a).

Thus we apply a spectrally wider sinc filter such that it does not affect the slow

varying spectral components but filters out faster varying ones. We choose this

filter such that it attenuates the dominant spectral component by a factor of no

more than 0.9. Substituting the solution to sinc−1(0.9) (see Eq. (A.75) in Ap-

pendix A.8) into Eq. (6.9) one finds

wfs =
0.25λ f

wpixd
(6.11)

where

wfs = The width of the required secondary rect function in pixel units.

We will refer to this filter as the secondary filter. We apply this filter twice with

a resulting attenuation of the dominant spectral component of no more than 0.81.

The result is effectively a sinc2 filter. An example of the resultant differentiated

signal is illustrated in Fig. 6.7(b).

100 200 300 400 500

0

Number of pixels

(a) Application of the primary filter.

100 200 300 400 500

0

Number of pixels

(b) Application of the primary and sec-
ondary filters.

Figure 6.7: Example of a differentiated scaled pattern vector for different stages
of filtering.

The final filtered differentiated scaled pattern vector can then be used to de-

termine the position of the first minimum of the pattern vector in pixel units. This

gives us the spacing of the pattern minima which is inversely proportional to the
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mean diameter of the fibre sample.

In the application of the program we have found the zero order blocker would

sometimes introduce false minima into the differentiated signal which must be

ignored. For this reason a mask was used which allows us to ignore the data

points near the origin of the pattern vector. The size of the mask is determined by

the size of the zero order blocker in the pattern vector which in turn is determined

by the biggest mean diameter fibre sample. From this one can determine the

location of the first minimum in order to know the maximum size of the mask.

For a disc of equivalent diameter, as given by Eq. (A.65) in Appendix A.7, the

period of the minima is equal to the location of the first minimum, thus one can

use Eq. (6.7) to determine the position of the first minimum. One then has to

scale the value to pixel units using Eq. (6.3) and by setting Wmask = T in Eq. (6.7),

Wmask = da in Eq. (6.3) and manipulating one finds

Wmask =
λ f

dawpix
. (6.12)

The resultant equation, given by Eq. (6.12), is used to calculate width of the mask

which is used to ignore possible erroneous data points in the scaled pattern vec-

tor.

After the filters and the mask is applied to the scaled pattern vector we are

able to determine location of the first minimum by differentiating and finding

the first zero crossing with a positive gradient. The method we used to do this

linearly interpolates the data point below the axis and above the axis such that

the zero crossing position is very accurately determined. The position of the first

minimum is equal to the period of the minima of the scaled pattern vector from

which one can derive the mean diameter of a sample. One can now derive an

equation relating the period of the minima in the scaled pattern vector to the

mean fibre diameter of the sample. The equation for a Fourier optical system

relating a disc as input to the pattern spacing between its minima is given by

Eq. (A.65) (see Appendix A.8). The determined period of the minima must be

converted from the scaled pattern vector to meters using Eq. (6.3) before one can

substitute it into Eq. (A.65). Thus setting da = T and dpix = Tp in Eq. (6.3) and

substituting the result into Eq. (A.65) and solving for d one finds

d =
λ f

Tpwpix
. (6.13)

A program was written and used to determine the spacing between the min-
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ima of the pattern matrix, see the code listing C.6 in Appendix C.3. Having found

the spacing between the minima using the program one can insert it into Eq.

(6.13) to calculate the mean diameter of the fibre. Fig. 6.8 shows an example of

the first minimum found for a random wool sample.

(a) Image with the static background re-
moved.

0 177.1899 300 450

Number of pixels

 

 

Smoothed sample vector

Position of first minimum

(b) Smoothed differentiated pattern vec-
tor with the first minimum as detected
indicated.

Figure 6.8: Processing of a wool sample to detect the first minimum.

The interpolation techniques used in determining the effective focal length

and the position of zero crossings and consequently mean fibre diameter is such

that the system is limited only by sample noise and possibly aberrations. If aber-

rations introduces a non-linear effect on measurements one could determine a

calibration curve for a range of sample diameters to solve the problem.
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7Sample measurement experiment
In this Chapter we will determine the system parameters for the Fourier optical

system as used in our experimental setup. We will then discuss the experiment

done which allowed us to compare measurements made with our system to those

made by an independent laboratory.

7.1 Calculation of actual system parameters

In the previous chapters we have developed the theory which allows us to param-

eterise our system. This requires determining the system parameters as described

in Section 6.1 and calculating the limits of the filters and the mask which will be

used to analyse a pattern vector from a fibre sample as described in Section 6.2.1.2.

7.1.1 System parameters

The system parameters consist of the effective focal length of the system, the co-

ordinates of the optical centre of the system on the CCD camera and the static

background for each sample. Before a pattern image can be analysed the optical

centre of the image must be determined and the optical system adjusted such that

a pattern image can be obtained. A single centre image which is applicable to all

pattern images taken in the experiment was stored and a null image was stored

for each sample. The optical centre of the system is determined from the cen-

tre image, thus the centre co-ordinates are effectively contained within the centre

image. Each pattern image is improved by subtracting the null image relevant to

that sample from the pattern image. Thus having a centre image and a null im-

age for each pattern image one only needs to determine the effective focal length

of the system in order to have a parameterised system. Of course the filter pa-

rameters needs to be calculated, but this is done only once for the device and is

fixed.

127
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A copper wire was used with a diameter of 60µm bent into a loop shape to

determine the effective focal length of the system. The focal length was found

by processing the resultant pattern image using the developed code (see listing

C.7 in Appendix C.3) to determine the dominant frequency component Xp and

substituting the value found into Eq. (6.5). We found the dominant frequency

component located at Xp = 82.795 and calculated the focal length as,

f =
Nwpd

λXp

=
5000 · 6.7× 10−6 · 60× 10−6

635× 10−9 · 82.795

= 38.2× 10−3 .

The effective focal length of the system was found to be 38.2 mm.

7.1.2 Filter parameters

The analysis of the resultant pattern vector obtained for a fibre sample needs to

be filtered as explained in Section 6.2.1.2. It is known that the width of the filter is

determined by the biggest diameter fibre sample which one would like to be able

to measure. We chose the maximum diameter to be 125µm.

Inserting the chosen maximum into Eq. (6.10) to determine the width of a rect

function for the primary filter which must be convolved with the scaled sample

vector one finds

wfp =
0.6λ f

wpd

=
0.6 · 635× 10−9 · 38.2× 10−3

6.7× 10−6 · 125× 10−6

= 17

In the same way the width of a rect function for our secondary filter is deter-

mined as

wfs =
0.25λ f

wpd

=
0.25 · 635× 10−9 · 38.2× 10−3

6.7× 10−6 · 125× 10−6

= 7
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Thus we know we must not exceed a width of 17 pixel units for the primary filter

and 7 pixel units for the secondary filter if they are to have the correct attenuation

properties.

Thus we chose,

wfp = 15

wfs = 7

In order to be sure we do not get incorrect results due to erroneous minima

introduced into the scaled pattern vector by the zero order filter we ignore min-

ima found according to a mask which starts at the origin and extends to a width

limited again by the thickest diameter fibre sample we would like to be able to

measure.

We insert a thickest diameter value of 125µm into Eq. (6.12) to find,

Wmask =
λ f

dawp

=
635× 10−9 · 38.2312× 10−3

125× 10−6 · 6.7× 10−6

= 29

The width of the mask is chosen as

Wmask = 29

All the required parameters are now known for the system and we are able

to perform our experiment. During the setup of the experiment we found that

apart from the complete source as illustrated in Fig. 4.10, the position of the

elements are not sensitive to exact placement to such an extent that we could

move elements 1 mm backwards or forwards as long as we maintained the CCD

camera at the focal plane and the zero order blocker in position to remove the zero

order light. Of course if the position of the elements change one must determine

the effective focal length of the system again.

7.2 Experiment

At this point we have established a method which allows us to analyse a sample

without the need of hand selecting values, thus we are able to automatically anal-
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yse a set of samples. We only need to capture the relevant images. We received a

sample set of wools from Cape Mohair and Wool which had been analysed with

the OFDA 2000.

The samples had already been prepared to be analysed by the OFDA 2000, as

such the wool is clean. The minimum of sample preparation was done during

the capturing of the images. Each sample was simply, with its ends spread out

slightly, inserted into the sample space of the transmission optical setup. It has to

be noted that this procedure only takes a small part of the entire sample into con-

sideration. The resultant images were saved in files corresponding to the sample

number as indicated on the measurement sheets from the OFDA 2000 system.

Having determined the parameters of the system, the program developed was

used to do the sample analysis, see Appendix C.2. The resultant data is illustrated

in Fig. 7.1.
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Figure 7.1: Comparison of OFDA 2000 measurements to the measurements of
the transmission Fourier optical setup.

The acquired results are surprisingly good for the comparatively simple ex-

perimental setup taking into consideration that the sampling technique used only

takes a small section of the entire sample into consideration. Fig. 7.1 clearly

shows that there is a definite very close correlation between the data sets with an

average absolute difference of 0.69µm for the particular sample set.
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8Conclusion
A functioning system for measuring fibre diameters of wool samples which utilises

the principle of Fourier optics was developed and tested during this thesis. The

system was assembled in the form of an experimental table top setup. The resul-

tant data obtained from a comparison with wool samples measured with one of

the current standard techniques, the OFDA 2000 system, shows very close corre-

lation with the developed system. The developed system works in principle and

shows good potential for further development. The advantages of the device is its

ability to rapidly make measurements, its relative compactness and robustness.

It is clear from the literature study that all instruments to be used in the pro-

cess of wool certification must comply to certain stringent standards. The viabil-

ity of the present instrument can, therefore, only be evaluated by collaborating

with a faction of the IWTO. One particular requirement to be able to compete in

the laboratory setting, is the ability of a device to determine not only the mean

but also the variation of the mean. Since we now understand the relationship

between sample density and measurability and we know that there exists a rela-

tionship between clarity of definition of a pattern and the variation of the mean,

see Edmunds [77], further research in this avenue could be done. If the device

could be developed to successfully determine the variation then combined with

the rapid measurement rate such a device would be very competitive in the lab-

oratory market segment.

It could also be possible to fill a niche market segment. At present wool sam-

ples from specific areas on sheep are sent to be analysed by a certified laboratory

for shearing purposes by the farmers before the wool is shorn. A hand held de-

vice performing well enough to replace this step by direct measurement on the

farm would potentially have a big market. It is here that the present instrument

could certainly find its application.
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AMathematical derivations
A.1 The Helmholtz equation

The Helmhotz equation can be derived with the functions as defined in Section

2.1.5.

Given

uc (P, t) = Uc (P) e−j2πvt (A.1)

where

Uc (P) = U (P) e−jφ(P). (A.2)

Now consider the wave equation

∇2u− 1

c2

∂2u

∂t2
= 0 (A.3)

where ∇2 is the Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (A.4)
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Substituting Eq. (A.1) into Eq. (A.3) one finds

∇2Uc (P) e−j2πvt =
1

c2

∂2

∂t2
Uc (P) e−j2πvt (A.5)

e−j2πvt∇2Uc (P) =
−j2πv

c2
Uc (P)

∂

∂t
e−j2πvt (A.6)

e−j2πvt∇2Uc (P) = −
(

2πv

c

)2

Uc (P) e−j2πvt (A.7)

(
∇2 +

(
2πv

c

)2
)

Uc (P) = 0 (A.8)

now given

k =
2πv

c
=

2π

λ
(A.9)

and substituting Eq. (A.9) into Eq. (A.8) one finds

(
∇2 + k2

)
Uc (P) = 0 (A.10)

which is known as the Helmholtz equation.

A.2 Solution to the diffraction problem using an

in-phase Green’s function

The in-phase solution to the Rayleigh-Sommerfeld integral as defined in Section

2.5.1.2 can be derived in a similiar fashion to the out of phase solution by choosing

an in-phase Green’s function. Given

Uc(P0) =
1

4π

¨

S

(
∂Uc

∂n
Gc −Uc

∂Gc

∂n

)
ds (A.11)

and taking the Green’s function as

Gcφ+ =
exp(jkr01)

r01
+

exp(jkr̃01)

r̃01
. (A.12)
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The derivative of Gcφ+ is

∂Gcφ+

∂n
= cos(n̄, r̄01)

(
jk− 1

r01

)
exp(jkr01)

r01

+ cos(n̄,˜̄r01)

(
jk− 1

r̃01

)
exp(jkr̃01)

r̃01
. (A.13)

Now taking the following into account

r01 = r̃01 (A.14)

cos(n̄, r̄01) = − cos(n̄,˜̄r01) (A.15)

by substituting Eq. (A.14) and Eq. (A.15) into Eq. (A.12) and Eq. (A.13) one finds

Gcφ+ =
2 exp(jkr01)

r01
(A.16)

∂Gcφ+

∂n
= 0. (A.17)

Substituting Eq. (A.16) and Eq. (A.17) into Eq. (A.11) and taking the boundary

conditions into account one finds

Uc(P0) =
1

4π

¨

Σ

2 exp(jkr01)

r01

∂Uc

∂n
ds. (A.18)

If one assumes the aperture is illuminated by a single spherical wave then

Uc(P1) =
A exp(jkr21)

r21
(A.19)

Now taking the derivative of Eq. (A.19) one finds

∂Uc

∂n
= A cos(n̄, r̄21)

(
jk− 1

r21

)
exp(jkr21)

r21
. (A.20)

Given that k� 1
r21

one can simplify Eq. (A.20) to find

∂Uc

∂n
∼= jkA cos(n̄, r̄21)

exp(jkr21)

r21
. (A.21)
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Substituting Eq. (A.21) into Eq. (A.18) one finds

Uc(P0) = −
A

jλ

¨

Σ

exp(jkr01)

r01

exp(jkr21)

r21
cos(n̄, r̄21)ds

= − A

jλ

¨

Σ

exp(jk [r01 + r21])

r01r21
cos(n̄, r̄21)ds

(A.22)

which is the in-phase solution of the Rayleigh-Sommerfeld diffraction theorem.

A.3 The thin lens as a Fourier optical system

Consider Fig. A.1. Given a thin lens and a hypothetical input function at the y

plane as indicated. It is known that a plane wave traveling through a thin lens

will be focused at a point ( f , d). If one considers that the transformation of the

thin lens is such as to produce a perfectly spherical wave front which converges

to the point ( f , d) then the inverse must be true, that a point source located at

a point ( f , d) would generate perfectly spherical wave fronts which would be

transformed by a thin lens into perfect planar waves.

Figure A.1: Geometry of a thin lens optical system

Again working in the first order approximation, one has

sin θ ∼= θ

cos θ ∼= 1

tan θ ∼= θ

tan−1 θ ∼= θ.

(A.23)
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From Fig. A.1 with application of Eq. (A.23) one has

tan u ∼= u ∼= θ. (A.24)

Now consider w as the difference in distance a ray with gradient u travels with

respect to the ray originating at the origin of the axis with gradient u,

w = y sin θ ∼= yu. (A.25)

Rewriting (A.25) in terms of wavelength φ one finds

φ =
2π

λ
yu. (A.26)

The difference between path lengths r1 and r2 for two parallel rays from two

points on the y-axis to the corresponding point of convergence ( f , d) is approxi-

mately the same. Further one can assume that within the paraxial approximation

the path length between any ray from the input plane y to the focal plane f is the

same. Attenuation due to path length is therefore a constant factor referred to as

KA.

Now calculating the interference at any point ( f , d) as the sum of all the par-

allel rays from the input plane y to any point on the focal plane by taking their

phase into account one finds

f (u) = KA

ˆ ∞

−∞

f (y)ejφdy. (A.27)

Substituting Eq. (A.26) into Eq. (A.27) one finds

f (u) = KA

ˆ ∞

−∞

f (y)ej 2π
λ yudy. (A.28)

The resultant equation is one dimensional, and can be easily expanded to two

dimensions by defining φ as

φ =
2π

λ
(yuy + xux). (A.29)

Now the input function could be defined on the (xi, yi) plane as f (xi, yi) and

substituting the relation ux = xo
f , uy = yo

f thereby defining a coordinate on the
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output plane as (xo, yo) one finds

f (xo, yo) = KA

¨ ∞

−∞

f (xi, yi)e
j 2π

λ f (yiyo+xixo)dxidyi. (A.30)

From Eq. (A.28) it is clear that the ideal thin lens performs a Fourier transfor-

mation.

A.4 The plane wave

In order to understand better the definition of a plane wave in Cartesian co-

ordinates let’s consider the two dimensional case1 as illustrated in Fig. A.2.

Figure A.2: A line in two dimensional Cartesian co-ordinates

The line in Fig. A.2 in Cartesian co-ordinates can be defined by the equation,

n · r = d. (A.31)

With this in mind a plane wave can be defined as illustrated in Fig. A.3 by

B(x, y) = exp

[
j
2π

λ
(αx + βy)

]
. (A.32)

From Fig. A.3 it is clear that

n2 = 1 = α2 + β2. (A.33)

1For background regarding vector calculus see Zill and Cullen [78]
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Figure A.3: Plane waves in two dimensional Cartesian co-ordinates

Now expanding this to three dimensions one finds

B(x, y, z) = exp

[
j
2π

λ
(αx + βy + γz)

]
(A.34)

1 = α2 + β2 + γ2. (A.35)

Eq. (A.35) can now be rewritten as

γ =
√

1− α2 − β2 (A.36)

A.5 Variation of the mean

Given a random variable X of which the variance σ is known. If N samples are

taken of X then the mean is determined by

X̄ =
1

N

N

∑
i=1

Xi. (A.37)

Thus if var(Y) is a function which determines the variance of a random vari-

able Y then one can write the variance of the mean given by Eq. (A.37) as follows

σ2
mean = var(X̄) = var

(
1

N

N

∑
i=1

Xi

)

=
1

N2

N

∑
i=1

var(Xi).

(A.38)
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Since the variance of the sample is given and is constant, irrelevant of sample

size, one can substitute σ2 into Eq. (A.38) to find

σ2
mean = var(X̄) =

1

N2

N

∑
i=1

σ

=
σ2

N
.

(A.39)

Taking the square root of Eq. (A.39) one finds

σmean =
σ√
N

. (A.40)

A.6 Gaussian beam calculations

The equation describing the radius of the Gaussian laser beam a distance z from

the origin is given by, see Brooker [79]2

w(z) = w0

√

1 +

[
z

zR

]2

(A.41)

where

w(z) = The radius of a Gaussian beam at a distance z from the origin

w0 = The radius of the waist at the origin

z = The distance from the origin along the axis of the beam

zR = The Rayleigh range about the origin of the beam.

The Raleigh range is where the wave front of the beam is no longer approxi-

mately spherical and where the waist of the Gaussian beam begins to form, and

is given as

zR =
πw0

2

λ
. (A.42)

The ratio of actual beam diameter to ideal beam diameter is referred to by M2

2Brooker [79] on page 154
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and is incorporated into Eq. (A.41) describing the beam radius as follows

w(z) = w0

√

1 +

[
M2

z

zR

]2

(A.43)

where

M2 = The beam quality factor.

From Eq. (A.43) which describes beam diameter we can derive an equation

for the beam divergence as follows

lim
z→∞

w(z) = M2w0
z

zR
. (A.44)

Substituting (A.42) into (A.44) one finds

lim
z→∞

w(z) = M2 zλ

πw0
. (A.45)

Now taking the derivative of Eq. (A.45) one finds

lim
z→∞

d

dz
w(z) = M2 λ

πw0
. (A.46)

Noting that the derivative is equal to tan θ one can write

tan θ = M2 λ

πw0
(A.47)

and finally rewriting Eq. (A.47) with θ as the subject of the equation to find the

equation for the divergence of a Gaussian laser beam as,

θ = tan−1

(
M2 λ

πw0

)
(A.48)

∼= M2 λ

πw0
(A.49)

where Eq. (A.49) is an approximation which holds for small values of M2 λ
πw0

.

If the angle at which a Gaussian beam diverges is known and the focal length

to a lens which collimates the beam is known then one can calculate the beam

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX A. MATHEMATICAL DERIVATIONS 142

diameter after the lens as

wl = f tan θM2 (A.50)

where

wl = The collimated
1

e
beam radius.

The diameter of the waist can be found with the simple relation

dl = 2 wl (A.51)

where

dl = The collimated
1

e
beam daimeter.

The beam waist for a Gaussian beam can be calculated using Fourier optical

theory. A Gaussian beam is illustrated in Fig. A.4.

Figure A.4: Gaussian beam waist

From Fourier theory the general scaling property of the Fourier transform of

a function is, see Peebles [46]3

f
(x

α

)
F←→ |α|F (αω) (A.52)

and the Fourier transform of a Gaussian function is, see Peebles [46]4

exp

(
− x2

2σ2

)
F←→ σ

√
2π exp

(
−σ2ω2

2

)
. (A.53)

3Peebles [46] on page 426
4Peebles [46] on page 434
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In Fourier optics the resultant output can be scaled to meters by the relation

ω =
2π

λ f
xo (A.54)

where

xo = The co-ordinate in the lens plane

f = The focal length of the lens

thus the scaled optical Fourier transform of a Gaussian function becomes

exp

(
− x2

i

2σ2
i

)
F←→ σ

√
2π exp


−

σ2
i

[
2π
λ f xo

]2

2


 (A.55)

where

xo = The co-ordinate in the focal plane

σi = The Gaussian beam radius before the lens.

From Eq. (A.55) the Gaussian radius of the waist can be determined as

σo =
λ f

2πσi
(A.56)

where

σo = The Gaussian beam radius at the focal plane.

Defining the Gaussian beam diameter in terms of the the cutoff diameter in

front of the lens one can write

Wl

2
= Nlσi (A.57)

where

Wl = Cutoff diameter before the lens

Nl = The lens cutoff constant.

The lens cutoff constant can be chosen such that the beam is affected as little
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as possible by the diameter of the lens.

If one focuses a Gaussian beam through a pinhole then the diameter of the

pinhole can be defined as follows

Wp

2
= Npσo (A.58)

where

Wp = Cutoff diameter at the focal plane

Np = The pinhole cutoff constant.

With the pinhole diameter defined as given by Eq. (A.58) we can choose the

pinhole cutoff constant such that most of the beam energy passes through the

pinhole.

Now we can manipulate and substitute Eq. (A.58) and Eq. (A.57) into Eq.

(A.56) to find a general expression which relates lens diameter to pinhole diame-

ter as

Wp =
2NpNlλ f

πWl
(A.59)

If one wants to calculate the 1
e waist diameter for a beam passing through a

lens one can use Eq. (A.59) by choosing Np = Nl =
√

2. This choice for the cutoff

constants will have the result such that Wl
2 = wl and

Wp

2 = wp and substitution of

these into Eq. (A.59) results in

wp =
λ f

πwl
(A.60)

where

wl = The
1

e
beam radius before the lens

wp = The
1

e
beam radius at the focus

which describes the relation between the 1
e beam radius at the lens and at the

focal plane.
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A.7 The Fourier optical pattern for a disc sample

The Fourier optical pattern for a mask toc(x, y) placed in front of a Fourier optical

system where one measures only intensity and are only interested in the position

of features on the resultant pattern as explained in Section 2.5.4 is given by

Ufc(xf, yf) = K
∞̈

−∞

toc(x, y)P

(
xo +

do

f
xf, yo +

do

f
yf

)
exp

[
−j

2π

λ f
(xoxf + yoyf)

]
dxodyo. (A.61)

Assuming the mask is small enough such that the pupil function could be

ignored then the function becomes the same as that for a sample placed against

the lens. Further assuming rotational symmetry one can rewrite Eq. (A.61) as

Ufc(rf) = K

∞̈

−∞

toc(ro) exp

[
−j

2π

λ f
rorf

]
dro. (A.62)

For a disc of diameter d at the input of the Fourier optical system one can

calculate the resultant pattern at the output of the system using Eq. (A.62) as

Ufc(rf) = sinc

(
roπd

λ f

)
(A.63)

Consider the intensity of the pattern which results from Eq. (A.63) then the

minima are given by

roπd

λ f
= nπ. (A.64)

From Fourier theory it is known that the diameter of the disc is proportional to

the spacing of the minima. It is also known that the position of the first minimum

is equal to the spacing between the minima thus one can find an expression to de-

termine the diameter of the disc and the focal length of the system by substituting

T = ro and n = 1 into Eq. (A.64) to find

d =
λ f

T
(A.65)

f =
Td

λ
. (A.66)
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A.8 The spectral sinc filter

Let’s first define a spectral sinc filter as a sinc function which is multiplied with

the spectrum of some arbitrary signal. One can derive the width of a rect function

which must be convolved with the temporal signal to have the same effect as the

multiplication of the signal spectrum with a sinc function.

Let’s define the spectral sinc filter such that it attenuates a specific spectral

component in the spectral domain by a specified amount.

It is known from Fourier theory that the spacing between the spectral zeros of

a sinc(X) function can be used to determine the width of the rect(x) function in

the temporal domain.

Let’s define the rect
(

x
w

)
function as

rect
( x

w

)
=





1, for − w
2 < x <

w
2

0, elsewhere.
(A.67)

Starting from the spectral domain one can write an expression for an arbitrary

sinc function which will serve to attenuate an arbitrary chosen spectral frequency

Xf by a chosen factor kf due to being scaled in it’s width by a constant a,

sinc

(
Xf

a

)
= kf. (A.68)

Using Eq. (A.68) one can solve for a to find,

a =
Xf

sinc−1(kf)
. (A.69)

Now an expression for the spectral sinc filter with the required attenuation

properties can be written as

F(X) = sinc

[
X sinc−1(kf)

Xf

]
(A.70)

From Fourier theory it is known that the width of the resultant rect function

when performing an inverse Fourier transform on a sinc function is inversely

proportional to the spacing between the zeros of the sinc function. It is also

known that the spacing between the zeros of a sinc function is equal to the dis-

tance from the origin to the first zero of the sinc function, thus from Eq. (A.70)
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we can calculate the spacing of zeros by finding the position of the first zero at

X = Xs where n = 1,

Xs sinc−1(kf)

Xf
=nπ

⇒ Xs =
πXf

sinc−1(kf)
.

(A.71)

Now one can determine the width of a rect function that would result from

the inverse discrete Fourier transform, given

Ts =
N

Xs
(A.72)

and substituting Eq. (A.71) into Eq. (A.72) one finds

Ts =
N sinc−1(kf)

πXf
. (A.73)

One can use Eq. (A.73) to calculate the width of a rect function in discrete

space which must be convolved with the temporal signal in order to have the

correct spectral attenuation. Rewriting Eq. (A.73) with w as defined in Eq.(A.67)

one finds

w = Ts. (A.74)

For the purposes of this thesis we have determined from a graph the following

values for the inverse sinc function,

sinc−1(0.5) = 0.6034π

sinc−1(0.9) = 0.2504π
(A.75)
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BRay Tracer
The ray tracing program was implemented in Matlab. In this appendix we de-

scribe the basic data types used and give a list of the functions and describe their

functionality.

B.1 Data types

The following is a descriptive list of the data types used.

ray - An array containing the position and angle of a ray.

base element - A set of parameters which defines an optical element without fix-

ing it’s position and orientation.

element - An element is a collection of arrays each of which contains the parame-

ters describing the surface shape, it’s position and orientation for each sur-

face which makes up an optical element.

trace data - A collection of arrays containing the position of intersection for a ray

passing through a collection of elements as well as the index of refraction for

each section and the propagation angle of the ray.

B.2 Functions

The following is a list of functions and their descriptions.

elements - Globally defines a collection of base elements with correct index of re-

fraction for the wavelength 635 nm. The index of refraction was obtained

from OSLO Lite Software.

148
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create_element - Uses base optical element data such as is defined by the “el-

ements” procedure to generate elements located at specified positions and

orientations through the following functions:

define_zemax_apcx - Generates the element data set for a Plano convex spheric

or aspheric lens for a specified position and orientation.

define_beam_split - Generates the element data set for a beam splitter plate

for a specified position and orientation.

define_beam_split_box - Generates the element data set for a beam splitter

box for a specified position and orientation.

define_achromat - Generates the element data set for an achromat lens for a

specified position and orientation.

define_zemax_adcx - Generates the element data set for a double convex

spheric or aspheric lens for a specified position and orientation.

genray_array_th - Generates a specified number of parallel rays equally spaced

within a specified width with their origins centered about a specified point

at a specified orientation.

genray_point - Generates a specified number of rays originating from a specified

point. The rays are spread out in a cone of a specified angle and the centre

of the cone is aimed at a specified angle.

genrays - Generates rays originating from a specified point traveling at angles

calculated for the zero field orders of the far field diffraction pattern for a

slit of given width. The number of rays depends on the specified number of

orders.

genrays_tpt - Generates a set of rays corresponding to a given set of angles such

that each ray in the set starts at a specified position on the x-axis and passes

through a specified point.

draw_element - Draws an optical element according to its defined element data

set on a Cartesian axis.

draw_elements - Draws a set of optical elements according to their respective

element data set definitions.

draw_plane - Base function to draw a plane as defined in an element data set.
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draw_zemax - Base function to draw a spheric or aspheric surface as defined in

an element data set.

draw_rays - Draws a set of rays extending each up to a specified length.

ray_trace_I - Generates trace data for a specified set of rays through a specified

collection of elements.

ray_trace_esurf_I - Generates trace data for a specified collection of elements up

to a specified element and a specified surface within the element. The func-

tion additionally generates rays as reflected by the specified surface of the

element.

plot_rays_xstop - Draws trace data and extends the data to end at a specified po-

sition on the x-axis.

plot_rays_ystop - Draws trace data and extends the data to end at a specified

position on the y-axis.

plot_rays_esurf - Draws trace data up to a specified surface and element.

find_best_waist - Generates the co-ordinates of a line across the minimum point

of convergence for specified trace data.

ray_cross - Calculates the intersection points of a ray crossing an element.
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CPattern analysis code
In this appendix the functions used to analyse a pattern image is listed with a

brief description of the parameters for each function.

C.1 Example code to analyse a pattern image

The following code listing C.1 is a code example of the commands used to deter-

mine the effective focal length from a sample pattern with known diameter. The

functions used are listed in Appendix C.2.

Listing C.1: Matlab code example to determine the effective focal length from the pattern

image of a sample with known diameter.

d i r e c t o r y = ’ . . \ . . \ F i n a l Experiments\exper\ ’ ;

[ cx , cy ] = get_cx_cy ( [ d i r e c t o r y ’ 60um Wire ’ ] , ’ cen ’ ) ;

im_pat = double ( imread ( [ d i r e c t o r y ’ 60um Wire\60um 1 4 . 5mA.bmp ’

] ) ) ;

im_nul = double ( imread ( [ d i r e c t o r y ’ 60um Wire\60um 1 4 . 5mA

nowool .bmp ’ ] ) ) ;

im_cen = double ( imread ( [ d i r e c t o r y ’ 60um Wire\cen .bmp ’ ] ) ) ;

f = analyse_fixed_pat ( im_cen , im_nul , im_pat , 635 e−9, 60e−6,

6 . 7 e−6) ;

The following code listing C.2 is a code example of the commands used to

determine the mean diameter of a sample pattern from a random sample of wool.

Listing C.2: Matlab code example to determine the diameter of a sample.

d i r e c t o r y = ’ . . \ . . \ Eksperimente\Experiment 18 − Image a n a l y s i s

\thre e images\ ’ ;

im_cen = double ( imread ( [ d i r e c t o r y ’ th in 1 3 . 7mA cen .bmp ’ ] ) ) ;

im_nul = double ( imread ( [ d i r e c t o r y ’ th in 1 3 . 7mA nowool ’ ’ .bmp ’

] ) ) ;
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im_pat = double ( imread ( [ d i r e c t o r y ’ th in 1 3 . 7mA’ ’ .bmp ’ ] ) ) ;

d = analyse_sample_pat ( im_cen , im_null , im_pat , 635 e−9,

37.6827896512936 e−003 , 6 . 7 e−6) ;

C.2 Example of code used to process the final

experiment

If the effective focal length of the system has been determined we can use the

following code to process a batch of pattern images. The functions used assume

a file name with the following format: a prefix ’back’ followed by the sample

number, in the case of the null image there is no suffix and in the case of the

pattern image a suffix of ’a’. A single centre image is shared between all samples

named ’cen.bmp’.

The following code listing C.3 starts the batch processing of the experiment.

Listing C.3: Matlab code example to evoke the batch processing of the final experiment.

dias_a = proc_exper ( ’ . . \ . . \ F i n a l Experiments\exper ’ ,

38.2312055921414 e−003 , 635e−9, 6 . 7 e−6) ;

The following is a code listing of the following two functions C.4 and C.5

which does the batch processing of the pattern images.

Listing C.4: Matlab code to analyse a sample set.

function dias = proc_exper ( d ire c tory , f , lambda , pix_W )

%d i r e c t o r y − The l o c a t i o n o f t h e b a t c h o f p a t t e r n images

%f − The e f f e c t i v e f o c a l l e n g t h o f t h e sys t em

%lambda − The wave l en gth o f t h e l i g h t s o u r c e

%pix_W − The width o f a CCD p i x e l

%d i a s − The r e t u r n e d a r r a y o f d i a m e t e r s f o r t h e b a t c h o f

% p a t t e r n images

min_count = 0 ;

fo r n = 1 : 1 5 ;

t r y

disp ( [ ’ curre nt sample number : ’ num2str ( n ) ] ) ;

[ im_cen , im_null , im_pat ] = load_back ( d ire c tory , n ) ;

d ias ( n−min_count ) = analyse_sample_pat ( im_cen , im_null ,

im_pat , lambda , f , pix_W ) ;

catch
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disp ( [ ’ There i s no sample number ( ’ num2str ( n ) ’ )

ignoring . . . ’ ] ) ;

min_count = min_count + 1 ;

end ;

end ;

Listing C.5: Matlab code to load an image set for a sample set.

function [ im_cen , im_null , im_pat ] = load_back ( d ire c tory ,

back_nr )

%d i r e c t o r y − The l o c a t i o n o f t h e b a t c h o f p a t t e r n images

%back_n r − The number in t h e b a t c h t o l o a d

%im_cen − The r e t u r n e d c e n t r e image

%im_n u l l − The r e t u r n e d n u l l image

%im_pat − The r e t u r n e d p a t t e r n image

im_pat = double ( imread ( [ d i r e c t o r y ’\back ’ num2str ( back_nr ) ’ a .

bmp ’ ] ) ) ;

im_null = double ( imread ( [ d i r e c t o r y ’\back ’ num2str ( back_nr ) ’ .

bmp ’ ] ) ) ;

im_cen = double ( imread ( [ d i r e c t o r y ’\cen .bmp ’ ] ) ) ;

C.3 Pattern image analysis functions

Listing C.6: Matlab code to analyse the image pattern and return the mean diameter.

function [ dia ] = analyse_sample_pat ( im_cen , im_null , im_pat ,

lambda , f , pix_W )

%im_cen − Cen tre image

%im_n u l l − Null image

%im_pat − P a t t e r n image o f t h e sample

%lambda − The wave l en gth o f t h e l i g h t s o u r c e

%f − The e f f e c t i v e f o c a l l e n g t h o f t h e sys t em

%pix_W − The width o f a p i x e l on t h e CCD camera

%d i a − The r e t u r n e d mean d i a m e t e r o f t h e sample

[ cx , cy ] = find_center ( im_cen ) ;

im = im_pat − im_null ;

s _ve ct = sample2vect_xy ( im , cx , cy ) ;

s _ v e c t _ s c a l e = s _ve ct . * [ 1 : length ( s _ve ct ) ] . ^ 2 ;

s _ v e c t _ s c a l e = smoothen ( s _ v e c t _ s c a l e , 8 ) ;

s _ v e c t _ s c a l e = smoothen ( s _ v e c t _ s c a l e , 3 ) ;
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s _ v e c t _ s c a l e = smoothen ( s _ v e c t _ s c a l e , 3 ) ;

t z e r = imgetzeros ( s _ v e c t _ s c a l e , [ zeros ( 1 , 2 8 ) ] , 1 ) ;

pos = t z e r ( 1 ) ;

pos_mm = pos * pix_W ;

dia = lambda * f / pos_mm ;

Listing C.7: Matlab code to analyse the image pattern and return the effective focal

length.

function [ f , pos ] = analyse_fixed_pat ( im_cen , im_null , im_pat ,

lambda , W, pix_W )

%im_cen − Cen tre image

%im_n u l l − Null image

%im_pat − P a t t e r n image o f t h e sample

%lambda − The wave l en gth o f t h e l i g h t s o u r c e

%W − The mean d i a m e t e r o f t h e sample

%pix_W − The width o f a p i x e l on t h e CCD camera

%f − The r e t u r n e d e f f e c t i v e f o c a l l e n g t h o f t h e sys t em

%pos − The r e t u r n e d p o s i t i o n o f t h e f i r s t minima in t h e

% p a t t e r n v e c t o r

[ cx , cy ] = find_center ( im_cen ) ;

im = im_pat − im_null ;

s _ve ct = sample2vect_xy ( im , cx , cy ) ;

s _ v e c t _ s c a l e = s _ve ct . * [ 1 : length ( s _ve ct ) ] . ^ 2 ;

d _ s _ v e c t _ s c a l e = d i f f ( s _ v e c t _ s c a l e ) ;

VECT = abs ( f f t s h i f t ( f f t ( d _s _ve ct_s ca le , 5 0 0 0 ) ) ) ;

index = −2500:2500−1;

[ v , i ] = max (VECT) ;

minima_1 = 5000/ abs ( index ( i ) ) * pix_W ;

pos = 5000/ abs ( index ( i ) ) ;

f = minima_1 * W / lambda ;

Listing C.8: Matlab code to find the centre of a centre image.

function [ cx , cy ] = find_center ( im )

%im − The c e n t r e image

%cx − The r e t u r n e d c e n t r e o f t h e image on t h e x−a x i s

%cy − The r e t u r n e d c e n t r e o f t h e image on thy y−a x i s

I = find ( im<200) ;

im2 = im ;

im2 ( I ) = 0 ;
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[ cx , cy ] = expected_2D ( im2 ) ;

Listing C.9: Matlab code to find the centroid of an image.

function [ ex , ey ] = expected_2D ( im )

%im − The c e n t r e image

%ex − The r e t u r n e d c e n t r e o f t h e image on t h e x−a x i s

%ey − The r e t u r n e d c e n t r e o f t h e image on t h e y−a x i s

[ i j ] = s ize ( im ) ;

by = 0 ;

bx = 0 ;

a = 0 ;

fo r m = 1 : i

fo r n = 1 : j

by = by+m*im (m, n ) ;

bx = bx+n* im (m, n ) ;

a = a+im (m, n ) ;

end

end

ey = by / a ;

ex = bx / a ;

Listing C.10: Matlab code to convert a pattern image to a pattern vector.

function [ values ] = sample2vect_xy (A, x , y )

%A − The p a t t e r n image

%x − The c e n t r e o f t h e p a t t e r n image on t h e x−a x i s

%y − The c e n t r e o f t h e p a t t e r n image on t h e y−a x i s

%v a l u e s − The r e t u r n e d p a t t e r n v e c t o r

[ i j ] = s ize (A) ;

values = zeros ( 1 , round ( min ( [ x y ] ) )−1) ;

ncount = zeros ( 1 , round ( min ( [ x y ] ) )−1) ;

fo r n = 1 : i

fo r m = 1 : j

dst = sq rt ( ( n−y ) ^2 + (m−x ) ^2 ) ;

pos = round ( dst +1) ;

i f pos <= min ( [ x y ] )

t r y

values ( pos ) = values ( pos ) + A( n ,m) ;

ncount ( pos ) = ncount ( pos ) + 1 ;

catch
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values2 = [ values 0 ] ;

ncount2 = [ ncount 0 ] ;

values = values2 ;

ncount = ncount2 ;

values ( pos ) = values ( pos ) + A( n ,m) ;

ncount ( pos ) = ncount ( pos ) + 1 ;

end

end ;

end ;

end ;

I = ( ncount == 0) ;

ncount ( I ) = 1 ;

values = values ./ ncount ;

Listing C.11: Matlab code to find the position of the zeros of a vector.

function [ zero ] = imgetzeros ( vect , mask , grad )

%v e c t − The v e c t o r which must be p r o c e s s e d t o f i n d i t s z e r o

% c r o s s i n g s

%mask − A mask which a l l o w s us t o i g n o r e c e r t a i n a r e a s o f

% t h e v e c t o r

%grad − A v a l u e o f 1 r e t u r n s z e r o c r o s s i n g s where t h e

% g r a d i e n t i s b i g g e r than zero , a v a l u e o f −1 r e t u r n s

% z e r o c r o s s i n g s where t h e g r a d i e n t i s s m a l l e r than

% z e r o and a v a l u e o f 0 r e t u r n s b o t h .

dvect = d i f f ( ve ct ) ;

D = s ize ( dvect ) ;

count = 0 ;

i f length ( mask ) < length ( ve ct )

mask = [ mask ones ( 1 , abs ( length ( mask )−length ( ve ct ) ) ) ] ;

end ;

fo r n = 1 :D( 2 )−1

i f mask ( n ) == 1

i f grad == 0 || grad == −1

i f ( ( dvect ( n ) > 0) && ( dvect ( n+1) <0) ) || ( dvect ( n

) == 0)

count = count + 1 ;

zero ( count ) = ( dvect ( n+1) *n − dvect ( n ) *(1+ n ) )

/( dvect ( n+1) − dvect ( n ) ) + 0 . 5 ;

end

end ;
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i f grad == 0 || grad == 1

i f ( ( dvect ( n+1) > 0) && ( dvect ( n ) <0) ) || ( dvect ( n

) == 0)

count = count + 1 ;

zero ( count ) = ( dvect ( n+1) *n − dvect ( n ) *(1+ n ) )

/( dvect ( n+1) − dvect ( n ) ) + 0 . 5 ;

end

end ;

end ;

end
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Figure D.1: Scan of Figure 3.37 on page 71 from Hecht [1]
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