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Summary 
 

Dichloro-diphenyl-trichloroethane (DDT) was extensively used in agriculture pest control and 

is still used for indoor residual spraying to control malaria. The lipophylicity of DDT and its 

breakdown product dichloro-diphenyl-dichloroethylene (DDE) dictates that they associate 

with membranes, lipids and hydrophobic proteins in the biological environment. Their poor 

degradable nature causes DDT and DDE to persist for decades in the environment and in 

individuals who are or were in contact with the pesticide. In many countries the synchronised 

resistance of the mosquito vector to insecticides and the malaria parasite towards antimalarial 

drugs led to a drastic rise in malaria cases and to malaria epidemics. This study assesses the 

influence of low level exposure of DDT and DDE on chloroquine (CQ) resistance of the dire 

human malaria parasite, Plasmodium falciparum. 

The in vitro activity of p,p’-DDT and p,p’-DDE towards blood stages of chloroquine sensitive 

(CQS) P. falciparum D10 and chloroquine resistant (CQR) P. falciparum Dd2 was 

determined using two complementary in vitro assays (Malstat and SYBR Green 1). The 50% 

inhibition concentrations (IC50s) of p,p’-DDT and p,p’-DDE were found to be ±14 to 38 µM 

(5-12 μg/mL) and highly similar towards  CQS and CQR P. falciparum strains. This result 

indicated that the proteins involved in CQ resistance have no effect on the activity of the 

insecticide DDT and it breakdown product DDE.  

In order to assess the influence of DDT and DDE on CQ activity, in vitro fixed ratio drug 

combination assays were performed, as well as isobologram analysis. We found that CQ 

works in synergy with p,p’-DDT and p,p’-DDE against CQS P. falciparum D10. However, 

both p,p’-DDT and p,p’-DDE were antagonistic toward CQ activity in CQR P. falciparum 

Dd2. This indicated that p,p’-DDT and p,p’-DDE do have an effect on CQ resistance or on 

the action of CQ via a target other than hemozoin polymerization. The observation of 

reciprocal synergism of p,p’-DDT and p,p’-DDE with CQ against CQS D10 and antagonism 

against CQR Dd2 strain is highly significant and strongly indicates selection of CQ resistant 

strains in the presence of p,p’-DDT and p,p’-DDE. People who have low levels of circulating 

DDE and/or DDT could be at a high risk of contracting CQR malaria. However, medium term 

(nine days) DDE exposure of CQS P. falciparum D10 did not induce resistance, as no 

significant change in activity of CQ, p,p’-DDT and p,p’-DDE towards blood stages the CQS 

strain was observed. This exposure was, however, shorter than expected for a malaria 

infection and would be addressed in future studies.   
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From our results on the interaction of CQ with p,p’-DDT and p,p’-DDE, it was important to 

assess the residual DDT and DDE variable and how much of residual p,p’-DDT and/or p,p’-

DDE would enter into or remain in the different compartments (the RPMI media, erythrocytes 

and infected erythrocytes) over time. In combination with liquid-liquid extraction, we 

developed a sensitive GC-MS analyses method and a novel HPLC-UV analysis method for 

measuring DDT and DDE levels in malaria culturing blood and media. Whilst the HPLC-UV 

method was relatively cheaper, faster, and effective in determining high DDT and DDE 

concentrations, the optimised GC-MS method proved to be effective in detecting levels as 

low as 78 pg/mL (ppt) DDE and 7.8 ng/mL (ppb) DDT in biological media. Using both the 

HPLC and GC-MS methods we observed that malaria parasites influence distribution of the 

compounds between the erythrocytic and media fractions. P. falciparum D10 infection at 

±10% parasitemia lead to must faster equilibration (less than 8 hours) between compartments. 

Equimolar distribution of p,p’-DDE was observed, but the parasites lead to trapping of the 

largest fraction of p,p’-DDT in the erythrocyte compartment. These results indicate that a 

substantial amount would reach the intra-erythrocytic parasite and could influence the 

parasite directly, possibly leading to either synergistic or antagonistic drug interactions.  

This study is the first to illustrate the “good and bad” of the insecticide DDT in terms of CQ 

resistance and sensitivity toward the human malaria parasite P. falciparum. These results will 

hopefully have an important influence on how future policies on malaria control and 

treatment particularly in endemic areas will be addressed and could also have an impact on 

the anti-malarial drug discovery approach. 
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Opsomming 
 

Dichlorodifenieltrichloroetaan (DDT) is op groot skaal in landbouplaagbeheer gebruik en 

word nog steeds gebruik vir binnenshuise oppervlakbespuiting om malaria te beheer. Die 

lipofilisiteit van DDT en sy afbraakproduk dichlorodifenieldichloroetileen (DDE) dikteer dat 

hulle met membrane, lipiede en hidrofobiese proteïene in die biologiese omgewing 

assosieer. Stadige afbraak veroorsaak dat DDT en DDE vir dekades in die omgewing 

agterbly, asook in individue wat in kontak is, of was met die insekdoder. In baie lande het 

gesinkroniseerde weerstand van die muskietvektor teenoor insekdoders en die malariaparasiet 

teenoor antimalariamiddels gelei tot 'n drastiese styging in malariagevalle en tot malaria-

epidemies. In hierdie studie word die invloed van lae vlak blootstelling van DDT en DDE op 

chlorokien (CQ) weerstand van die mens malariaparasiet, Plasmodium falciparum, 

geëvalueer. 

Die in vitro aktiwiteit van p,p'-DDT en p,p'-DDE teenoor die bloedstadia van chlorokien- 

sensitiewe (CQS) P. falciparum D10 en chlorokien-weerstandbiedende (CQW) P. falciparum 

Dd2 is bepaal deur gebruik te maak van twee komplementêre in vitro toetse (Malstat en 

SYBR Groen toetse). Die 50% inhibisie konsentrasies (IC50s) van p,p'-DDT en p,p'-DDE is 

bepaal as ±14 to 38 µM (5-12 μg/mL) en was hoogs vergelykbaar tussen CQS en CQW P. 

falciparum stamme. Hierdie resultaat het aangedui dat die proteïene betrokke by CQ 

weerstand geen effek op die aktiwiteit van die insekdoder DDT en die afbraakproduk DDE 

het nie. 

Om die invloed van DDT en DDE op CQ aktiwiteit te evalueer, is die aktiwiteit van 

kombinasies van die verbindings in vaste verhoudings getoets, tesame met isobologram 

ontleding. Ons het gevind dat CQ sinergisties saam met p, p'-DDT en p, p'-DDE teen CQS P. 

falciparum D10 werk. Daarteenoor het beide p, p'-DDT en p, p'-DDE antagonistiese werking 

getoon teenoor CQ aktiwiteit met CQW P. falciparum Dd2 as teiken. Dit het aangedui dat 

p,p'-DDT en p, p'-DDE wel 'n invloed op CQ weerstand het of ‘n aktiwiteit van CQ, anders as 

hemozoin polimerisasie, beïnvloed. Die waarneming van resiproke sinergisme en 

antagonisme van p, p'-DDT en p, p'-DDE in kombinasie met CQ teenoor die CQS D10 en 

CQW DD2 stamme respektiewelik, is hoogs betekenisvol en dui op seleksie van CQ-

weerstandige stamme in die teenwoordigheid van p, p'- DDT en p, p'-DDE. Mense wat lae 

vlakke van sirkulerende DDE/DDT het, het dus 'n hoër risiko om CQW malaria te kry.  
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Verder is gevind dat medium termyn (nege dae) DDE blootstelling van CQS P. falciparum 

D10 nie weerstand nie veroorsaak nie, want geen beduidende verandering in die aktiwiteit 

van CQ, p,p'-DDT en p,p'-DDE teenoor die bloed stadiums van die CQS stam is waargeneem 

nie. Hierdie blootstelling is egter korter as in 'n malaria-infeksie en sal verder bestudeer word 

in toekomstige studies. 

Vanuit die interaksie resultate van CQ met p, p'-DDT en p, p'-DDE was dit belangrik om die 

residuele DDT en DDE veranderlike te evalueer, asook die distribusie van p,p'-DDT en p,p'-

DDE tussen die verskillende kompartemente (die kultuurmedium, eritrosiete en geïnfekteerde 

rooibloedselle) oor verloop van tyd. In kombinasie met vloeistof-vloeistof ekstraksie, het ons 

'n sensitiewe GC-MS en nuwe HPLC-UV analisemetode ontwikkel vir die meet van DDT en 

DDE-vlakke in bloed (normale en geïnfekteerde eritrosiete) en die kultuurmedium. Terwyl 

die HPLC-UV metode relatief goedkoper, vinniger en effektief in die bepaling van hoë DDT 

en DDE-konsentrasies is, was die geoptimaliseerde GC-MS metode doeltreffend in die 

opsporing van vlakke so laag as 78 pg/mL (dpt) DDE en 7.8 ng/mL (dpb) DDT in biologiese 

media. Met behulp van beide die HPLC-UV en GC-MS metodes is waargeneem dat die 

malariaparasiet die ekwilibrasie van die verbindings tussen die eritrosiet- en media 

kompartemente beïnvloed. P. falciparum D10 infeksie met ± 10% parasitemia lei tot vinniger 

ekwilibrasie (minder as 8 uur) tussen die kompartemente. Ekwimolêre verspreiding van p,p'-

DDE is waargeneem, maar die parasiete het die grooste fraksie van p,p'-DDT in die eritrosiet 

kompartement vasgevang. Hierdie resultate wys dat 'n aansienlike fraksie die intra-

eritrositiese parasiet kan bereik en sodoende die parasiet direk kan beïnvloed en moontlik kan 

lei tot sinergistiese of antagonistiese middel interaksies. 

Hierdie studie is die eerste om die "goed en sleg" van die insekdoder DDT in terme van CQ 

weerstand en sensitiwiteit teenoor die menslike malariaparasiet P. falciparum te 

illustreer. Hierdie resultate sal hopelik 'n belangrike invloed hê op die toekomstige beleid oor 

die beheer van malaria en behandeling, veral in endemiese gebiede, en mag ook 'n impak hê 

op die antimalariamiddel navorsing. 
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Preface 
The coincidental resistance of malaria parasites to antimalarial drugs and insecticides to the 

mosquito vector has led to a drastic increase in the number of cases and deaths by malaria in 

several countries. The resistance towards these small organic molecules in the malaria 

parasite has been linked to membrane transporter proteins that confer resistance by expelling 

the drug from the target environment. In Plasmodium falciparum, CQ resistance has been 

mapped onto mutations in the genes coding for the P. falciparum CQ resistance transporter 

protein (PfCRT) and multidrug resistant protein (PfMDR-1), as has been the case with other 

antimalarial drugs. The resultant multiple resistance profile of some of the transporters 

indicated that they can accommodate a wide spectrum of organic molecules, many of which 

contain a phenyl-chloride moiety. The insecticide dichloro–diphenyl-trichloroethane (DDT) 

and its major break down product dichloro-diphenyl-dichloroethylene (DDE) have two such 

moieties. A question of whether organochlorines such as DDT and DDE can place selective 

pressure on possibly the more resistant malaria strains that can cope with DDT and/or DDE 

was raised. Could the selection for malaria strains that can pump the slightly more polar DDE 

out of the cytoplasm into the food vacuole or even out of the parasite into the erythrocytic 

cytoplasm lead to associated broad spectrum resistance? 

We hypothesize that lypophilic DDT and DDE may associate primarily with membranes; 

however degradation of DDT may cause the parasite to respond in a way that may lead to 

resistance towards non-related drugs. Similar scenarios are also possible for other small 

organic aromatic or heterocyclic compounds such as other pesticides, food dyes, detergents 

and preservatives that may be abundant in an infected individual’s blood. 

In this pilot study we report the investigation of the influence of DDT and DDE on CQ 

resistance in P. falciparum. The overall goal of this MSc project was to assess if low levels of 

the insecticide DDT and its metabolite DDE have an influence in the selection of Plasmodium 

falciparum strains resistant to conventional antimalarial prophylactics. The following 

objectives were set to achieve this goal: 

• Development of an HPLC-UV method and sensitive GC-MS method to determine the 

levels of DDT and/or DDE in blood and malaria culture medium, as well as in P. 

falciparum infected culture samples (Chapter 2); 
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• Determining the in vitro influence of DDT and DDE on the viability of P. falciparum 

(CQR and CQS strains) using standard complementary dose-response assays (Malstat and 

SYBR Green 1 assays) (Chapter 3); 

• Assessing the influence of DDT and DDE exposure on CQ resistance (Chapter 4): 

− by determining the in vitro drug interactions of DDT and DDE in combination with 

CQ on viability of P. falciparum CQR and CQS strains,  

− growing the P. falciparum CQR and CQS strains at inhibitory levels of DDE and 

determining CQ sensitivity 

− determining the DDE and DDT distribution in malaria cultures (RPMI medium vs 

infected erythrocyte and erythrocytes) grown in the presence of DDE using 

appropriate methods developed in Chapter 2. 

In Chapter 1, an overview of the impact of antimalarial drugs and insecticides in malaria 

control is given. The next three chapters address each of the experimental objectives as 

described above, with the results obtained in each case fully discussed. These chapters were 

written in the form of articles for ease in future publication. Repetition was inevitable; 

however, it was kept to a minimum. The final chapter, Chapter 5, summarises the most 

important results and conclusions in this study. 
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CHAPTER 1 

Literature Review: Impact of antimalarial drugs and insecticides 

 on malaria control 

1.1 Malaria background 
Malaria is one of the leading infectious diseases in sub-Saharan Africa which mostly affects 

children and the vulnerable in a society (WHO 2010a, WHO 2010b).  The humid climate in the 

region promotes breeding and development of the mosquito vector and its parasite respectively 

(Odebayo and Krettli 2011). The parasitic infection in humans is caused by transmission of the 

Plasmodium species by an infected Anopheline mosquito through a mosquito bite to an 

uninfected individual (Bray and Garnham, 1982; Hay et al., 2004).  

There are five major Plasmodium species that affect humans which are P. falciparum, P. vivax, 

P. malariae P. ovale and P. knowlesi (Greenwood et al., 2008). P. knowelsi was most recently 

found to also affect humans and reported to be potentially life threatening (Cox-Singh et al., 

2008). All five species together led to the occurrence of roughly 225 million cases annually 

worldwide in 2009, resulting in 781 000 recorded deaths (WHO 2010a). P. falciparum and P. 

vivax infections cause the majority of malaria cases (Guerin et al., 2002). Whilst malaria caused 

by P. falciparum is most prevalent globally and particularly in Africa, P. vivax malaria is mostly 

found in Asia and South America (Bray and Garnham 1982; Price et al., 2007; Guerin et al., 

2002). 

Although malaria was successfully eradicated in most parts of the world, particularly subtropical 

regions, in the 1950s, the disease is re-emerging. Failure to control the disease through effective 

vector control and treatment regimes has therefore resulted in an increase in cases and deaths 

from malaria infection (Guerin et al., 2002; WHO 2010a). The international community is 

therefore urged to ensure sufficient and predictable global funding to meet malaria control 

targets set as part of the drive to reach the health-related Millennium Development Goals by 

2015 (WHO 2010a). The World Health Assembly and Roll Back Malaria Partnership aim to 

reduce the numbers of cases and deaths recorded in 2000 by 75% or more by 2015 (WHO 

2010a). Policies and strategies for malaria control set for 2015 are therefore aimed at reaching all 
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persons at risk for malaria with insecticide-treated mosquito bed nets, indoor residual spraying, 

providing laboratory-based diagnosis for suspected cases of malaria, and effective treatment of 

all confirmed cases (WHO 2010a). 

This chapter will focus on the currently employed and future malaria vector control and 

treatment strategies.  

1.2 Malaria life cycle 
As summarized in Figure 1.1, the human malaria parasite has two hosts, the mosquito and the 

human body. The malaria life cycle begins when a Plasmodium infected female Anopheles 

mosquito takes a blood meal from an uninfected human through a bite, and inoculates 

sporozoites into the host during the process (Amina et al., 2010). These sporozoites infect the 

human liver cells where they then mature into schizonts before being ruptured and released as 

merozoites (Ejigiri and Sinni 2009). The parasites multiply asexualy, and the merozoites invade 

the red blood cells otherwise known as erythrocytes (Prudencio et al., 2006). Ring stage parasites 

mature into trophozoites, then schizonts which mature to form separate merozoites. The rupture 

of the erythrocyte releases merozoites for the cycle to repeat itself again in the erythrocyte 

(Bannister et al., 2000). It takes 48 hours to 72 hours for reinvasion of another erythrocyte in P. 

falciparum and P. malariae respectively (Amina et al., 2010). Some of the parasites develop into 

gametocytes (Amina et al., 2010). 

Male and female gametocytes are ingested by the mosquito during a blood meal. (Baton and 

Ranford-Cartwright 2005; Mueller et al., 2010). The parasites multiply in the mosquito in a cycle 

known as the sporogonic cycle. The male gametocytes penetrate the female gametocytes in the 

mosquito’s stomach, forming zygotes. These zygotes become motile and elongated (ookinetes), 

and invade the mid-gut of the mosquito where they develop into oocysts. The oocysts grow, 

rapture and release sporozoites which go to the mosquito’s salivary glands before being 

inoculated into a new human host and the cycle starting all over again (Baton and Ranford-

Cartwright 2005, Mueller et al., 2010). 
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Figure 1.1 Malaria parasite life cycles in human and mosquito hosts. The diagram was obtained 
from the Center for Disease Control and Prevention, 
http://www.dpd.cdc.gov/dpdx/HTML/Malaria.htm 

1.3 Malaria control and treatment 
It has been reported that few African countries have been able to rapidly scale up malaria 

diagnostic testing at national level, allowing for the implementation of timely and accurate 

surveillance of the disease (WHO 2010a). 

Over the years, different strategies have been implemented in a bid to fight against malaria. 

Amongst these strategies are control measures, aimed at the exclusion of new illnesses and 

deaths caused by malaria without necessarily blocking spread of the disease. Another strategy is 

aimed at eliminating malaria and stopping the spread of the disease in a smaller area such as in a 

single country. Eradication is the last strategy which involves total elimination of the disease on 

a global level (Greenwood 2008).  
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Malaria was successfully controlled and eliminated in other parts of the world such as Western 

Europe and the United States of America (USA) in the first half of the 20th century (Amina et al., 

2010). The World Health Organisation (WHO) then launched a Global Malaria Eradication 

Program (GMEP) for the first time in 1955 as a result of the previously recorded success in 

Western Europe and the USA (Spielman et al., 1993). The agricultural insecticide, dichloro-

diphenyl-trichloroethane (DDT) was successfully used for agricultural pest control worldwide 

(Hay et al., 2004) and it had already been used successfully in other parts of the world to 

eradicate the malaria. DDT was then employed to prevent transmission of the disease via its 

mosquito vector in areas still affected by this disease. To complement the DDT in malaria 

eradication, chloroquine (CQ) was used as the major drug in the malaria treatment program (Hay 

et al., 2004). This strategy was initially successful; however, drug and insecticide resistance then 

emerged resulting in a spike in malaria cases and deaths (Najera et al., 2011; Trape 2001; and 

Clyde and Shute 1957). Unfortunately, sub-Saharan Africa was not included in this initial 

eradication program, therefore this contributed to the spread and major prevalence of the disease 

in this part of the world (WHO 2010a).  

As a background to our study on DDT and CQ in the malaria parasite sensitivity and resistance, 

malaria control using antimalarial drug treatment, mosquito vector control using insecticides, 

other methods used to control malaria, as well as drug and insecticide resistance, are discussed 

further in following sections of this chapter. 

1.3.1 Malaria control 

1.3.1.1 Vaccine development 

Genetically modified vaccines to prevent transmission of malaria have been and are still under 

investigation to minimise infection and death of children by the disease (Greenwood et al., 

2008). Vaccines currently under development are placed in three categories based on the stage of 

infection. Pre-erythrocytic stage vaccines, most of which were already abandoned in clinical 

trials because of their short lasting immunity, function by preventing infection to the human 

hosts and thus later progression to the disease (Stoute et al., 1997; Bojang et al., 2001). Asexual 

blood stage vaccines act by preventing the disease but not the infection, for example VAR2CSA 

which has the unfortunate side effect of binding placental chondroitinsulphate in pregnant 
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women (Gill et al., 2009). Transmission blocking vaccines, for which studies are still underway, 

help to reduce transmission of the parasite in the community without necessarily directly 

protecting the vaccinated individual (Greenwood et al., 2008). 

1.3.1.2 Transgenic mosquitoes 

As a result of previous failures of existing methods in malaria vector and parasite control due to 

continued emergence of drug and insecticide resistance respectively, and renewed efforts to find 

an effective vaccine, genetically modified mosquitoes (GMM) were then investigated and 

developed in another effort to fight against malaria. These transgenic mosquitoes would either 

reduce vector population sizes or replace existing vectors with those unable to transmit the 

disease (Marshal and Tailor 2009). Mosquitoes that confer resistance to rodent malaria have 

already been successfully engineered although more research still needs to be done since 

transgenic mosquitoes may become the future in malaria control and eradication (Ito et al., 

2002). However, the global and even local release of transgenic mosquitoes is hampered because 

of the controversial nature of GM strategies.  

1.3.2 Current status of antimalarial drug treatment 

1.3.2.1 Antimalarial drug treatment 

There are currently seven classes of antimalarial drugs, based on their chemical structures, being 

used as prophylactics and to treat malaria (Amina et al., 2010). One of the most widely used 

classes is the 4-aminoquinonines which have been shown to inhibit hemozoin polymerization in 

the parasite food vacuole by forming complexes with ferriprotoporphirine IX. Chloroquine (CQ) 

and amidaquine fall within this class of drugs, and are the most frequently used (O’Neill et al., 

2006).  

The second class, the arylaminoalcohols, also inhibit hemozoin formation outside the food 

vacuole by preventing entry of hemoglobin into the digestive vacuole. Quinine and mefloquine 

are the most commonly used drugs in this class which is characteristic of its chirality (Amina et 

al., 2010). These drugs are generally administered in racemate form (Amina et al., 2010). 

Combinations of quinine with tetracycline, doxycycline or clyindamycin, and mefloquine with 

artesunate are usually recommended for a more pronounced effect on the parasite (Brocks and 

Mehvar 2003).  
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Antifolates fall in a third class of drugs that inhibits biosynthesis of tetrahydrofolate (Yuthavong 

et al., 2006). This class includes the sulphonamides, sulphadoxine and sulphonedapsone, that 

inhibit dihydropteroate synthase whilst others such as pyrimethamine, cycloguanil and 

chlorcycloguanil inhibit dihydrofolate reductase. Combinations within this class led to 

sulphadoxine-pyrimethramine treatments that were used to replace CQ treatment after CQ 

resistance emerged in the 1960’s.  

Primaquine is the only drug in the 8-aminoquinolines class studied thus far that inhibits the 

pentose phosphate cycle in liver (sexual and pre-erythrocytic) stage parasites (Amina et al., 

2010). It is used to treat both P. falciparum and P. vivax malaria (Vale et al., 2009), and is 

currently one of the few drugs used to treat liver stage malaria.  

Proguanil and atovaquone lie within the class of “inhibitors of the respiratory chain”. These 

drugs act by inhibiting the mitochondrial electron transport chain in treating uncomplicated P. 

falciparum malaria (Sabchareon et al., 1998). Antibiotics such as clyndamicin and doxycycline 

inhibit prokaryote-like protein biosynthesis resulting in weakened parasite maturation (Stanway 

et al., 2009).  

One of the most recent drug classes that entered the global arena of malaria drugs is the 

artemisinins. Although the mechanism of action of artemisinins is not yet well understood, they 

are known to inhibit the endoplasmic reticulum of the P. falciparum adenosine triphosphatase 

calcium pump (PfATP-6) and also target food vacuole proteins (Amina et al., 2010). Most 

countries in endemic areas now have adopted artemisinin combination treatments (ACTs) as a 

strategy to limit resistance (Whitty et al., 2008). Artemether and artesunate are amongst the most 

common derivatives in clinical use in this class of drugs. They are both modified from the 

hemiacetale form of artemisinin, dihydroartemisinin (Mercer 2009).  

As reviewed by Schlitzer (2008), several new antimalarial drugs and drug combinations are 

under investigation (Schlitzer 2008). Piperaquine-dihydroartemisinin and pyronaridine-

artesunate combinations and tafenoquine (a primaquine derivative) are in the advanced stages of 

clinical trial studies. Clinical data is already available for azithromycin, pafuramidine, 

fosmidomycin and dapsone-chlorproguanil-artesunate new trial drugs (Amina et al., 2010). T3, 
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AQ-13, ferroquine and tert-butyl-isoquine are amongst the new drugs beginning clinical 

evaluation. Artemisone, OZ-277 and GW844520 on the other hand have been dropped out due to 

bioavailability in malaria patients being only a third of the values obtained with healthy 

volunteers for OZ-277, and unexpected cardiotoxicity being observed in dogs with GW844520 

use (Schlitzer 2008; Amina et al., 2010). Although antimalarial drug research is very active, 

there is an urgent need for new drugs as resistance to all the current drugs in clinical use have 

already been observed as discussed below. 

1.3.2.2 Antimalarial drug resistance 

Amongst the factors resulting in antimalarial drug resistance are, the parasite mutation rate, the 

overall parasite load, the strength of the drug chosen for treatment, compliance to the treatment, 

and the fitness costs associated with resistance mutations (Petersen et al., 2011). In vitro studies 

on Southeast Asia isolates showed an accelerated resistance to multiple drugs (ARMD) 

phenotype in which a very high mutation rate facilitates adaptation of the parasite to a changed 

environment as a result of changing drug selection pressures (Sniegowski et al., 2000; Rathod et 

al., 1997). The observation of the emergence of resistance to new drugs in Southeast Asia is 

linked to possible association with the AMRD phenotype (Rathod et al., 1997). 

Since the emergence of CQ resistance, the use of CQ against P. falciparum parasites has been 

greatly minimized (Hayton and Su 2008). CQ has remained effective against other Plasmodium 

strains. However, CQ resistance in P. vivax strains has recently been reported in South Eastern 

Asia (Baird et al., 2007). Amodiaquine has effectively been used as an alternative to low CQ 

resistant (CQR) parasites although amodiaquine resistance has also been noted in several parts of 

Asia (O’Neill et al., 2006; Sa et al., 2009). Resistance to CQ and other drugs within its class is 

conferred to by mutation of the P. falciparum chloroquine resistance transporter (PfCRT) gene 

which lies on the membrane of the parasite’s food vacuole. The “pump” acts by expelling the 

drug(s) out of the digestive vacuole, thus preventing the formation of CQ-heme complexes and 

eventual toxic build up of heme in the vacuole which is supposed to aid in the killing of the 

parasite (Amina et al., 2010). As a way of overcoming CQ resistance in P. falciparum strains 

sulphadoxine-pyrimethramine combination therapy was used to replace CQ (Yuthavong et al., 

2006). 
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Although little is known about the tertiary structure of PfCRT, bioinformatics analysis has 

predicted it to be in the drug/metabolite transporter family with 10 transmembrane domains, with 

both the C- and N- termini facing the cytosolic side of the organelle (Martin and Kirk 2004). 

Amino acids, weak bases and positively charged organic ions are amongst some of the substrates 

of the drug/metabolite transporter family (Martin and Kirk 2004). The K76T (Lys76 to Thr76) 

mutation in PfCRT confers CQ resistance by removing a positively charged residue from the 

transmembrane domain 1 in a putative pore, and replacing it with an uncharged amino acid 

providing a route for the diprotonated CQ to escape the digestive vacuole (Martin and Kirk 

2004).  

The P. falciparum multidrug resistance protein-1 (PfMDR-1) membrane associated transport 

protein is responsible for drug resistance in the arylaminoalcohols class of antimalarial drugs 

(Amina et al., 2010). This “pump” allows entry of arylaminoalcohols into the digestive vacuole 

where they are ineffective. It is found in Asian countries where resistance to mefloquine and 

quinine is mostly experienced (Pickard et al., 2003). The PfMDR-1 has also been linked to CQ 

resistance in Africa, and a functional relationship between PfCRT and PfMDR-1 proteins has 

been suggested (Hastings 2006; Barnes et al., 1992; Osman et al., 2007). Cross resistance 

between CQ and amodiaquine has been reported and linked to both the PfCRT and PfMDR-1 

proteins (Sa 2009; Petersen et al., 2011). 

The PfMDR-1, like PfCRT also sits on the digestive vacuole membrane of the parasite (Cowman 

et al., 1991). It was originally identified using a candidate gene approach. A gene encoding an 

ATP binding cassette (ABC), with 12 helices across the membrane and C- and N- termini 

expected to extrude into the cytosol, was identified (Foote et al., 1989; Durasingh and Cowman 

2005). PfMDR-1 pumps drugs into the digestive vacuole, diverting them from their target sites in 

the cytoplasm (Duraisingh and Cowman 2005).  

A third transporter protein associated with drug resistance is the multidrug resistance associated 

protein (PfMRP) which belongs to the ABC transporter family (Klokouzas et al., 2004). It is, 

however, not a major determinant in resistance, but modifies drug responses (Raj et al., 2009). It 

was hypothesized that it works in collaboration with other transporters to expel drugs and other 

metabolites from the parasite (Raj et al., 2009). 
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Multiple mutations in the P. falciparum dihydrofolate reductase (PfDHFR) gene cause resistance 

in the antifolate class (Amina et al., 2010). The triple mutant form is inactive for pyrimethamine 

though it is sensitive for chlorcycloquanil. Dihydrofolate inhibitors have on the other hand been 

shown to be ineffective against the quadruple mutant form of antifolates (Hankins et al., 2001).  

Artemisinin resistance is linked to mutation in the P. falciparum ATP-6 (PfATP-6) gene 

(Jambou et al., 2005). Higher doses of primaquine have been reported to overcome artemisinin 

resistance which was reported to occur under very rare circumstances (Bunnag et al., 1994). 

Most antimalarial drugs are now being administered in combination with each other, all having 

different target mechanisms within the parasite, to decrease the emergence of drug resistance 

(Petersen et al., 2011). Atovaquone-proguanil (AP) combinations have been used with success to 

reduce emerging resistance to inhibitors of the respiratory chain (Sabchareon et al., 1998) and no 

AP resistant strains have been identified as yet (Amina et al., 2010).  

Ultimately, only artemisinin based combinations with drugs from other classes have proven to be 

most reliable and recommended for treatments (Amina et al., 2010). Currently, ACTs being used 

are artemether with lumefantrine (Co-artem), dihyroartemisinin with piperaquine and, artesunate 

in combination with mefloquine, amodiaquine, pyronaridine, and sulphadoxine-pyrimethramine, 

respectively (WHO 2010a).    

1.3.3 Current status of malaria vector control 

1.3.3.1 Malaria vector control 

Based on the WHO Pesticides Evaluation Scheme (WHOPES), there are currently four classes of 

insecticides available for indoor residual spraying (IRS) programmes in malaria control (Walker 

et al., 2003). These are carbamates, organochlorines, organophosphates and pyrethroids (Walker 

et al., 2003). Most new malaria control interventions are however focusing on pyrethroids since 

they are the only class of insecticides approved by the WHOPES for long lasting insecticide 

treated bednets (LLITN) (Zaim et al., 2000). Because of the major risk of pyrethroid resistance 

by the mosquito, this may have detrimental effects on malaria control activities particularly in 

West and Southern Africa (WHO 2005; Pinto et al., 2007; Hargreaves et al., 2000; Casimiro et 

al., 2006).  
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Insecticide treated bednets (ITNs) and indoor residual spraying (IRS) programs have been, and 

are currently being used as strategic means to control the Anopheline mosquito vector (Guyatt et 

al., 2002). According to the World Malaria Report 2010, ITNs that were set to be distributed in 

sub-Saharan Africa between 2008 and 2010 were meant to protect 578 million people. However, 

only10% of the 765 million African population at risk of malaria infection was protected from 

malaria infection through IRS in 2009 alone (WHO 2010a). 

Pyrethroids which are also used internationally as agricultural pesticides replaced dichloro–

diphenyl-trichloroethane (DDT) in the 1990’s in some countries (Ranson et al., 2011).  

Previously DDT was used successfully in malaria control programs for IRS and continues to be 

used in other parts of the world where it is approved by the WHO (Spielman et al., 1993, Walker 

e al 2003). Pyrethroids are also being increasingly deployed for IRS programmes in Africa (Zaim 

et al., 2000). Both DDT and pyrethroids have the same mechanism of action against the 

mosquito (Ranson et al., 2011). These insecticides both act by targeting a sodium gated channel 

involved in neuronal signal transmission in the mosquito (Ranson et al., 2011). Closing of the 

sodium gated channel is delayed due to insecticide binding, leading to prolonged action 

potential, thereby resulting in repetitive neuron firing, paralysis and eventual death of the 

mosquito (Ranson et al., 2011). The risk of resistance to both types of insecticides is therefore 

increased by virtue of them having the same mechanism of action (Davies et al., 2008). 

New strategies are therefore being advanced to overcome the insecticide resistance (Amina et al., 

2010). The mosquito’s molecular biology and the biochemistry of the blood it sucks from the 

human host are being studied to facilitate in the identification of specific attractant and repellent 

molecules (Amina et al., 2010). Broad based analysis of the mosquito and parasite genome are 

also being studied to gain a better insight into the mechanisms of parasite development in the 

mosquito (Greenwood et al., 2008). 

1.3.3.2 Insecticide resistance 

There are essentially five types of insecticide resistance mechanisms as described by Ranson et 

al. (2011). Target site resistance which is as a result of changes in the insecticide target site by 

“non-silent point mutations” is described below for DDT and pyrethroids. Metabolic resistance is 

caused by over-expression of enzymes resulting in an alteration of the enzyme’s affinity for the 
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insecticide (Ranson et al., 2011). Cytochrome P450 enzymes are primarily responsible for 

pyrethroid metabolism in insects, 111 such enzymes of which are found in Anopheles gambiae 

(An. gambiae) (Feyereisen 2005; Ranson et al., 2002). Three possible P450 genes were found to 

be repeatedly expressed in pyrethroid resistant An. gambiae mosquito populations (Djouaka 

2008; Muller et al., 2007; Muller et al., 2008). Modifications in the mosquitoes’ cuticles 

resulting in reduced penetration of the insecticide causes cuticular resistance (Ranson et al., 

2011). Behavioural resistance is as a result of changes in the mosquito’s behaviour which causes 

the mosquito to minimise or avoid toxic effects because of contact with the insecticides (Ranson 

et al., 2011). Cross resistance, which may also occur between insecticides from different classes, 

occurs when two different insecticides have their resistance conferred to through the same 

resistance mechanism (Ranson et al., 2011). Target site and metabolic resistance mechanisms 

have, however, been the most attributed to insecticide resistance in malaria control (Ranson et 

al., 2011).  

Resistance to DDT and pyrethroids is conferred in the mosquito, to genetic mutations on the 

knock down resistance (kdr) gene (Matinez-Torrez et al., 1998). This has also been described as 

a result of cross resistance caused by the similar mechanisms of action and resistance of both 

types of insecticides (Williamson et al., 1996). Resistance to DDT and pyrethroids emerged as a 

result of extensive use of the compounds in agriculture (Davari et al., 2007). Pyrethroid resistant 

mosquitoes, Anopheles funestus (An. funestus) and An. gambiae, have been reported in some 

regions of Africa (Hargreaves et al., 2000; Girod et al., 2006).  

Mozambique and South Africa are good examples of countries that showed direct failure of 

pyrethroid use to control malaria as a result of resistance to the insecticide (Ranson et al., 2011). 

Within four years of replacing DDT with the pyrethroid, deltamethrin, for IRS in the Kwa-Zulu 

Natal Province of South Africa, the number of cases and deaths by malaria increased four times 

between 1996 and the year 2000 (Brooke et al., 2001). Previously eradicated An. funestus re-

emerged in South Africa and was found to survive in pyrethroid sprayed houses. This coincided 

with pyrethroid resistance being discovered in 1999. Through bioassays, the An. funestus species 

was found to be resistant to pyrethroids, but remained susceptible to DDT (Hargreaves et al., 

2000). DDT was then reintroduced in South Africa in the year 2000 and this was followed by an 
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immediate and pronounced decline of 91 % in the number of cases and deaths by malaria 

(Maharaj et al., 2005). Co-artem drugs and artemisinin combination therapy (ACT) were also 

introduced in the Kwa-Zulu Natal and Mpumalanga provinces of South Africa, respectively, 

helping to decrease the cases and deaths by malaria (O’Meara et al., 2010).  Figure 1.2 from the 

South African Department of Health, shows the antimalarial drug-insecticide relationship used in 

relation to the number of cases and deaths by malaria in the country from 1971 to 2007. 

 

Figure 1.2 A descriptive relationship between antimalarial drugs and use of insecticides in 
controlling the number of cases and deaths by malaria in South Africa. This graph 
was adapted from the Department of Health, South Africa 
(http://www.doh.gov.za/docs/reports/2007/malaria/part1.pdf) 

1.3.4 Antimalarial drugs and insecticides synergy in malaria control 

The major aspects of the GMEP involved the use of chloroquine (CQ) as an antimalarial drug 

and dichloro-diphenyl-trichloroethane or DDT as an insecticide for vector control (Hay et al., 

2004). This combination led to major successes in some parts of the world especially the 

developed countries that had sufficient resources to make the program a success (Petersen et al., 

2011). In the 1960’s however, CQ resistance emerged as a result of mutations in the P. 

falciparum CQ resistance transporter (PfCRT) gene, spreading to different parts of the world 
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(Hayton and Su 2008). DDT resistant mosquitoes also emerged leading to an increase in the 

number of cases and deaths by malaria (Najera et al., 2011; Trape 2001; Clyde and Shute 1957). 

As a result of the “failure” of the program to eradicate malaria from the world, the GMEP was 

then abandoned in 1969 (Amina et al., 2010). 

Alternative antimalarial treatment in the form of sulphadoxine-pyrimethramine was then used to 

replace CQ, but unfortunately, mutated P. falciparum dihydrofolate reductase alleles conferring 

pyrimethamine resistance then emerged again (Hayton and Su 2008). Delivery of artemisinin 

derivative drug-based treatments and improvement of insecticide-based measures were then 

prompted as a way of finding new tools to control malaria (Amina et al., 2010).  

1.4 Dichloro-diphenyl-trichloroethane  
1.4.1 The rise and fall of DDT  

From being the most utilised pesticide and insecticide all over the world during the World War II 

era, to being a disaster to wildlife and the environment, DDT fell from its miracle rankings and 

was banned because of widespread environmental contamination and links to death of wildlife, 

as well as possible detrimental human health effects. 

The use of DDT was banned in the 1970’s in most parts of the world due to the detrimental 

effects caused by the organochlorine compound on the environment and possible negative effects 

on humans (Leber and Benya 1994; Dunlap 1981). The decision was informed after studies in 

the United States of America (USA) where extensive use of DDT was practiced through 

particularly agriculture and malaria vector control, showed that severe persistent environmental 

contamination occurred as a result of continued use of DDT (Walker et al., 2003). Publication of 

Rachel Carson’s Silent Spring in 1962 showed the negative effects of DDT on wildlife and 

prompted public concern on the safety of the compound in the environment (Walker 2003). 

Adverse human health effects associated with DDT have also been reported to date (Beard 

2006). Amongst these are reproductive disorders and abnormalities, impaired bone mineral 

function, endocrine conditions, hormonally sensitive cancers, pancreatic, and other cancers, 

neurological impairments, and suppressed immune function, as discussed further by Beard 

(2006). 
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With compliance from 91 countries worldwide, the Stockholm Convention on Persistent Organic 

Pollutants in 2001 listed DDT as one of the 12 toxic chemicals to be eventually eliminated from 

the world (UNEP, 2002). However, as a result of DDTs successful use in eradicating the disease 

in other parts of the world during the GMEP era, the WHO listed it as one of the 12 insecticides 

for use only in vector control through IRS programs, particularly in malaria endemic and 

pandemic areas of the world such as sub-Saharan Africa (WHO 2007; Rogan and Chen 2005). 

DDT was then reintroduced in other countries such as South Africa and had a tremendous impact 

in malaria control as described earlier (Jaga and Dharmani 2003). 

1.4.2 DDT and its metabolites 

Regular DDT preparations consist mainly of p,p′, o,p′ and  o,o′ isomers which are metabolized 

by the liver into dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-acetate (DDA), and 

dichloro-diphenyl-dichloroethylene (DDE) (Figure 1.3). DDD, the o,p′ derivative of DDT (De 

Francia et al., 2006), and DDE accumulate in fat tissue, whereas DDA is eliminated in urine and 

bile (Kitamura et al., 2002) .  

DDT and its major metabolite DDE, are however highly lipophilic in nature and persist for 

decades in all forms of life and the environment (Leber and Benya 1994; Spear 1999). DDE is 

reported to have a long half life of 7 to 11 years, but DDT and DDE concentrations in humans 

are believed to increase with age (Smith 2001; Wolff et al., 2000). In humans, DDT and DDE 

bioaccumulate mainly in the adipose tissue and to a lesser extent in breast milk and the 

bloodstream (Smith 1991; Ahlborg et al., 1995). DDT has been calculated to be eliminated from 

a human host after roughly 10 to 20 years, whilst DDE can stay in a human for as long as they 

live (Turusov et al., 2002).  
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Figure 1.3 Degradation of DDT into its metabolites (De Francia et al., 2006). 

1.4.3 DDT and DDE exposure in human tissue   

High levels of human exposure to DDT and DDE through diet have been recorded (Jaga and 

Dharmani 2003). DDE, which is highly stable and non-biodegradable is found in much higher 

concentrations in human tissue and tends to persist longer (Rogan and Chen 2005). 

Generally, the concentrations of DDT and its metabolites have been seen to decrease with 

decrease in DDT use and production (Rogan and Chen 2005). DDT concentrations in human 

tissues, however, remain high in areas where it has continued to be used such as some Asian 

countries, Africa, Mexico, Central and South America (Rogan and Chen 2005). Levels of DDT 

exposure and bioaccumulation in human tissue are discussed by Jaga and Dharmani 2003. It was 

challenging to make direct comparisons of DDT and DDE levels in human tissues between 

countries because of the different methods of detection and analysis of the compounds used, 

characteristics of exposure to DDT, studied groups and periods of study (Jaga and Dharmani 

2003). Although blood serum concentrations are much lower than adipose tissue concentrations 

in humans, they give a reliable and good indication on the levels of exposure and/or 

contamination (Jaga and Dharmani 2003). 

In South Africa for example, a median DDE concentration range in breast milk of between 5.2 

and 7.7 µg/g was recorded in women from continuously sprayed areas compared to a median 

range of between 0.4 and 0.6 µg/g in women from areas of the same country where spraying with 

DDT was stopped (Bouwman et al., 1990). Most recently, DDT and DDE blood serum 

concentrations were determined in the rural Limpopo province of South Africa where people 
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were exposed to DDT through IRS. The sum of the mean of DDT was found to be 7.3 µg/g of 

lipid in serum (Van Dyk et al., 2010). Mean blood serum concentrations of DDE in the DDT 

sprayed areas in another South African study were 103 ± 85 µg/L (ppb) compared to unsprayed 

areas where the value was much lower, 6 ± 7 µg/L (Bouwman et al., 1991). Countries that have 

continued DDT use have recorded high DDT:DDE concentration ratios of close to 100 % 

compared to 2-20 % recorded in Europe and or the USA where use of DDT has been since 

stopped (Jaga and Dhamani 2003).  Whilst high DDT:DDE ratios indicate chronic but ongoing 

exposure to DDT, a low ratio shows high environmental persistence and ongoing 

bioaccumulation (Attaran and Maharaj 2000).  

A geometric total mean of 104.48 µg/g DDT was recorded for DDT sprayers in a Mexican study. 

These individuals were regularly exposed to DDT through IRS (Attaran and Maharaj 2000). In 

non-exposed individuals in the general populations in USA, Finland and Canada, the residual 

DDT was much lower (< 1 µg/g) in adipose tissue (Jaga and Dhamani 2003). The p,p’-DDE 

blood serum concentrations in DDT sprayers in another study was found to be 188 µg/L (118 

ppb) (Yanez et al., 2002). Low level exposure of DDT and DDE in the developed world is as a 

result of the previously global use of DDT and its persistence in the environment (Jaga and 

Dharmani 2003). 

1.4.4 Relationship between CQ and DDT 

As is evidenced in several reports described earlier, CQ resistance only evolved after increased 

and probably uncontrolled exposure to the drug (Amina et al., 2010). The resultant multiple 

resistance profiles of some of the mutated transporters indicated that they can accommodate a 

broad spectrum of organic molecules (Amina et al., 2010). Many of the compounds 

accommodated contain a phenyl-chloride moiety. CQ, amodiaquine, lumerfantrine, 

pyrimethamine, proguanil and cycloguanil are some of the antimalarial drugs from the different 

classes of drugs (Amina et al., 2010) that have this moiety. DDT and its major metabolite 

dichlorodiphenyldichloroethylene (DDE) contain two such moieties and can possibly be 

accommodated by the transporters (Figures 1.3 and 1.4). There has been no published study to 

our knowledge to determine the correlation between CQ and DDT/ DDE in terms of malaria 

Stellenbosch University  http://scholar.sun.ac.za



1‐17 

 

parasite sensitivity and resistance or the direct effect(s) of DDT and DDE on erythrocytic stages 

of P. falciparium or any other malaria strains. 

 

Figure 1.4 Structural correlation between DDT and CQ 

The overall goal of this project is to assess if exposure to DDT and DDE has an influence on the 

selection of P. falciparum strains resistant to chloroquine. Based on the background on levels of 

DDT and DDE exposure in the environment and in humans described above, it is therefore 

highly likely that there may be persistent low levels of the compounds in the malaria parasite as 

well that could aid in resistance selection.  
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CHAPTER 2 

Development of analytical methods for the determination of p,p’-DDT and p,p’-

DDE in biological media  

2.1 Introduction 
Polychlorinated biphenyls (PCBs) and organochlorinated pesticides (OCPs) represent two of 

nine groups of organochlorinated compounds that were the subjects of the Stockholm 

Convention on Persistent Organic Pollutants (POPs) (UNEP, 2010). At the convention, a call 

was made for urgent global actions to reduce and eliminate releases of these compounds (UNEP, 

2010).  

Although dichloro-diphenyl-trichloroethane (DDT) was part of the list of POPs, it however 

continues to be used as the only organochlorine pesticide recommended by the World Health 

Organisation (WHO) for indoor residual spraying (IRS) to control malaria in several African and 

Asian countries where the disease is still endemic (UNEP, 2010; WHO, 2006). The Stockholm 

Convention allows the production and use of DDT for disease vector control only, provided that 

no safe, effective and affordable alternatives are locally available (UNEP, 2010). It was in 2006 

that the World Health Organization (WHO) and the United States of America Agency for 

International Development (USAID) endorsed indoor DDT spraying to control malaria (WHO, 

2006).  

PCBs and OCPs enter the human body via the food chain or by respiration (Ballschmiter and 

Wittlinger, 1991; Ner´ın et al., 1992). They have been detected in human tissues such as blood, 

(Burse et al., 1990; Rosell et al., 1993; Llu et al., 1994; Bucholski et al., 1996; Kanja et al., 

1992), breast milk (Alawi et al., 1992; Bordet et al., 1993), fat (Bucholski et al., 1996; Kanja et 

al., 1992; Armishaw and Millar, 1993; Rivas et al., 1997; Unger et al., 1984) and urine 

(Martínez Vidal et al., 1998).  

These compounds have also been detected in the environment, and trace amounts have been 

detected in our nutrition (Howe et al., 1990), thus posing a risk of causing adverse human health 

effects (López et al., 2007). Recent reports have raised the suspicion DDT and its metabolites 
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may be carcinogenic and mutagenic (Gonçalves and Alpendurada et al., 2002; Ye et al., 2006). 

These compounds have long half-lives as well as lipophilic properties which assist in their 

accumulation in adipose tissues (Garrido Frenich et al., 2000).  

To estimate the potential health risk of these PCBs, OCPs and their metabolites, biological 

monitoring has been done in epidemiological studies, specifically in human blood (Cruz et al., 

2003; Axmon et al., 2004; Bates et al., 2004; Apostoli et al., 2005). However, it has been argued 

that human blood serum does not provide as good an indicator as adipose tissue for monitoring 

organochlorine residues. Adipose tissue contains most of the lipophilic contaminants; it is 

therefore useful to also analyse recent or acute exposure in tissue biopsies and assessing the 

distribution of OCPs and PCBs (Moreno Frías et al., 2004).  

Taking into consideration the clear difficulties in attaining human fat tissue samples to assess 

exposure to PCBs and other OCPs, blood is one of the most accessible media for ascertaining 

residual levels of OCPs. Blood is also the ideal medium for body burden estimation as close 

correlations between the concentrations of these compounds in blood and fat can be obtained 

(Garrido Frenich et al., 2000). Monitoring levels of DDT and its metabolites in blood and 

malaria culturing RPMI media in this study, however, was required to determine the contaminant 

variable in blood and malaria culture media. 

In order to determine low concentration levels of these pesticides in biological media, efficient 

extraction and sample purification techniques, together with a final chromatographic 

determination are required (Martı´nez Vidal et al., 2000a). Liquid–liquid extraction (LLE) 

(Najam et al., 1999 and Rogers et al., 2004) or solid-phase extraction (SPE) by columns (Conka 

et al., 2005), C18 cartridges or disks (Pitarch et al., 2003; Covaci and Schepens, 2001) have been 

used to successfully extract PCBs and OCs from blood serum. Most of the reported procedures 

require subsequent clean up steps to eliminate interferences from the co-extracted bulk fatty 

matrix material. The laborious and time-consuming clean-up steps give cleaner extracts, but due 

to losses eventually lead to higher detection limits. Also, the risk of analytical error increases 

because of the incorporation of more steps in the sample preparation (López et al., 2007). 
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Solid phase microextraction (SPME) has most recently become a replacement for LLE and SPE. 

This method does not require solvents, but instead can be carried out directly from the liquid 

phase or from headspace (HS) over the liquid samples. It involves fewer steps and less sample 

handling (Pawliszyn, 1997). Only a few studies have been reported using SPME or HS-SPME 

for OCP determination in human serum (López et al., 2001; Beltran et al., 2001). Since it is 

difficult to directly determine the residual levels of pollutants in environmental samples with 

instrumental analysis due to their presence in minute levels, a sample pre-treatment procedure is 

necessary (Zhou Q et al., 2009). Thus far, sample pre-treatment methods for DDT and its main 

metabolites, such as solid phase extraction (Zhou Q et al., 2006; Zhou Q et al., 2007), solid 

phase microextraction (SPME) (Carvalho et al., 2008; Campillo et al., 2007), microwave-

assisted extraction (Ji et al., 2007) and liquid phase microextraction (LPME) (Basheer et al., 

2003) have been developed.  

In studies conducted by Moreno Frías et al. (2004)  the OCP and PCB containing sample extracts 

were cleaned by high performance liquid chromatography (HPLC), after liquid–liquid or solid–

liquid extraction, and the first HPLC fraction was analysed by gas chromatography (GC) linked 

mass spectrometry (MS). Alternatively, after sample extraction and/or clean-up, the samples 

could be analyzed using capillary gas chromatography (GC) with an electron capture detector 

(ECD) (Najam et al., 1999; Rogers et al., 2004; Conka et al., 2005; Covaci and Schepens, 2001), 

mass spectrometry (MS) detection (Pitarch et al., 2003; Covaci and Schepens, 2001), high-

resolution mass spectrometry with isotope-dilution quantification (IDHRMS) (Barr et al., 2003; 

Focant et al., 2004) or isotope dilution time-of-flight mass spectrometry (IDTOFMS) (Focant et 

al., 2004).  GC-ECD has been the method of choice for analyses of PCBs and OCPs in human 

media (Luotamo et al., 1991; Sannino et al., 1996; Bennett et al., 1997; Rivas et al., 2001; Burse 

et al., 1990; Rosell et al., 1993; Bucholski et al., 1996; Rivas et al., 1997; Duarte-Davidson et 

al., 1991; Voogt et al., 1994). However, the high sensitivity of GC contrasts with the low 

specificity and lack of identification power of the ECD.  

Retention time based identifications and determinations of pollutants, such as used with 

standalone HPLC and GC, are not regarded as being sufficient in current studies of such nature. 

Instead, tandem mass spectrometry (MS/MS) is used to confirm the presence of individual 
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contaminants (Garrido Frenich et al., 2000; Martínez Vidal et al., 2000b; Moreno Frias et al., 

2001). GC linked mass spectrometry (GC-MS) with negative chemical ionization (NCI) (Rosen, 

1987) is a selective approach particularly suitable for confirming the presence of 

organochlorinated compounds in environmental samples (Garrido Frenich et al., 2000). 

Electronic impact (EI) spectra usually contain sufficient structurally related fragment ions to 

allow absolute identification and, with the estimated uncertainty, ensure reliable results, to 

confirm the presence or absence of specific compounds in the analysis of biological samples 

(Martínez Vidal et al., 2002).  

Several methods have of late been developed for the determination of DDT and its metabolites in 

environmental samples. Gas chromatography with electron capture detection (GC–ECD) (Zadora 

and Grochowalski, 2008; Hussen et al., 2007), HPLC with UV detection (Zhou Y et al., 2006; 

De Francia et al.,  2006) and GC or HPLC–mass spectrometry (Valsamaki et al., 2006; Baugros 

et al., 2008) are amongst some of the mainly used analytical techniques.  

GC–MS and HPLC–MS instrumentation are very expensive and the running costs are relatively 

high for general OCP and PCB analyses (Zhou Q et al., 2009). Although not the ultimate 

analytical technique, GC is generally used in OCP and PCB analyses. HPLC analysis is an 

alternative to GC analysis and an important tool for monitoring plasma levels of DDT and its 

metabolites (Zhou Q et al., 2009; Inouye et al., 1987; Benecke et al., 1987). Due to its stable 

sensitivity for DDT toxicokinetic studies, HPLC-UV has also been used for quantification of 

p,p’-DDT and p,p’-DDE in rat plasma, liver and brain (Tomiyama et al., 2000). 

GC-MS has nowadays become the analytical tool for confirmatory analysis (Balinova, 1996). 

After separation the MS detection can confirm the correct mass and fragments that are generated 

in the MS or during MS/MS, provides information for structural clarification, which can be 

helpful in identifying unknown compounds (Garrido Frenich et al., 2000). GC-MS with an ion 

trap capability improves selectivity in the analysis of mixtures and therefore can lower detection 

limits by eliminating or minimizing chemical interferences (March and Tood, 1995, McLafferty, 

1983; Busch et al., 1988; Lee et al., 1997; Pablos-Espada et al., 1999; Mart´ınez Vidal et al., 
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2000). This results in higher analytical sensitivity than single-stage MS analyses (Pablos-Espada 

et al., 1999; Mart´ınez Vidal et al., 2000b; Johnson and Tost, 1985).  

Chusaksri and colleagues (2006) proposed an MS fragmentation pattern for 2,4’- and 4,4’- DDT, 

DDD and DDE derivatives by using the positive ionisation mode for detection. After the capture 

of an electron, a stable carbocation is produced. As is depicted in Figure 2.1, it is proposed that 

the loss of the CHCl2 radical from 2,4’- or 4,4’-DDD, and CCl3 from 2,4’- or 4,4’- DDE then 

leads to the formation of a stable benzylic carbocation. Daughter ions with mass/charge (m/z) 

values of 200 and 165 are formed respectively as a result of the loss of one or two more chlorines 

(Chusaksri et al., 2006). 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 MS fragmentation pathway for 2,4’-DDD, 4,4’-DDD, 2,4’-DDT, and 4,4’-DDT as 
proposed by Chusaksri et al. (2006). 

In this study, a new HPLC-UV method that measures DDT and DDE levels in human blood and 

modified RPMI media used for malaria culturing is described. Analyses were performed on 

spiked biological samples to determine the recovery efficiency and analytical sensitivity of the 

method. Procedures are described for the simultaneous determination of trace levels of DDT and 

DDE in biological media using a comparison of three analytical methods, GC-MS in split mode, 

GC-MS in splitless mode, and HPLC-UV.   

p,p’-DDT and p,p’-DDE were selected for analysis since p,p’-DDT is the isomeric form of 
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and Pleil 2002). Determination was carried out using two GC-MS methods based on that of Al-

Saleh et al., 2002 and a novel HPLC-UV method developed for this study. These 

chromatographic methods were developed taking into account the criteria established for the 

validation of routine quantitative analytical compounds (Dobson et al., 1990; Shah et al., 1992; 

Van Pelt et al., 1998).  

The limitations and advantages of using GC-MS or HPLC-UV techniques that avoid the use of 

clean-up steps for quantitative and qualitative analyses of blood serum and RPMI media samples 

are compared and discussed. This work mainly focuses on obtaining a convenient method for the 

simultaneous determination of the DDT and DDE in serum/blood/media using LLE-GC-MS and 

LLE-HPLC-UV methods.  GC-MS and HPLC-UV methods were evaluated with respect to the 

analytical figures of merit required for routine analysis, (Shah et al., 1992; Dobson et al., 1990; 

Bennett et al., 1997) such as linearity, limits of detection (LOD), quantification limits (LOQ), 

quality control (QC) standards, and recovery experiments.  

2.2 Methods 

2.2.1 Sample collection 

As a pilot study, samples of left over anonymous blood donated by the Western Cape blood bank 

in South Africa, or alternatively, blood from the researcher conducting this study were used for 

analysis. No ethical clearance was therefore required to allow use of these blood samples for 

analysis.  

The blood was drawn into 4.5 mL glass vacutainer tubes containing sodium citrate (Na- citrate) 

to prevent blood clotting. Extracted samples were stored at 4-8 ºC until required for analysis, at 

most for 5 days.  

2.2.2 Drying and storage of reagents and products 

All chemicals and reagents used in this study including p,p’-DDT, p,p’-DDE were purchased 

from Sigma-Aldrich (Steinheim, Germany) unless otherwise stated. These reagents together with 

evaporated extracts prepared from the extraction processes as described in Sections 2.2.5 and 

2.2.6 were stored at room temperature except for RPMI 1640, albumax II and gentamycin that 

were stored at 4 ºC.  
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To avoid detergent contamination of the samples through the glassware, after the regular wash, 

the glassware was then rinsed three times with distilled water, three times with 60% ethanol, then 

another three times with analytical grade water (Rautenbach,1999).  

A Millipore Milli Q® water system (Milford, USA) was used to prepare the analytical grade 

water by filtering it from a reverse osmosis plant. The glassware was then placed in an oven to 

dry at temperatures ranging between 110ºC and 140ºC, and then pyrolised at 565-570ºC for 45 

minutes to ensure organic-free and clean glassware (Rautenbach, 1999). 

2.2.3 Analytical weighing of p,p’-DDT and p,p’-DDE 

Using an analytical weighing procedure developed in our laboratory, a six digit analytical 

weighing balance was used to determine the weights of p,p’-DDT and p,p’-DDE at very high 

levels of precision and accuracy.  

The glass vials, cleaned as described in Section 2.2.2, were first labelled using a diamond-tip 

glass marker. The vials were then dried in an oven at 120 ºC for 20 minutes to remove moisture 

before being placed in a vacuum desiccator for another 20 minutes where the vials were left to 

cool.  

For weighing, the vials were transferred directly into the six digit analytical weighing balance 

chamber which was kept dry by placing glass vials with phosphorous pentoxide (Sigma-Aldrich) 

as a drying agent into the chamber beforehand. Also, tongs were used to handle the vials to be 

weighed instead of bare fingers as finger prints would also affect the analytical determination of 

the vial and sample weights.  

The process of drying the vials in the oven for 20 minutes, putting them in the desiccator for 

another 20 minutes and then checking the weight of the vials was repeated at least three times 

and the weights were recorded to six decimal places. Vial weights were then averaged to 

establish the final vial weight.  

p,p’-DDT and p,p’-DDE were each weighed separately by placing the compounds into the vials 

and  taking at least three separate measurements of the vials and their contents within 0.000050 g 

error. The masses were averaged and the final mass of the vials and their contents established. 

The analytically weighed compounds in the vials were then labelled and capped, then sealed with 
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parafilm around the neck of the cap and placed in a desiccator at room temperature until required 

for use. 

2.2.4 Preparation of solutions of p,p’-DDT and p,p’-DDE 

Hamilton glass pipettes and pyrolised glass vials were used throughout solution preparation of 

p,p’-DDT and p,p’-DDE to prevent loss of the compounds through use of plastic tips and tubes 

due to the hydrophobic nature of the compounds. 

Initial spiked solutions and standard solutions of each of the compounds were prepared by 

dissolving the respective analytically weighed samples of each of p,p’-DDT and p,p’-DDE as 

described in Section 2.2.3, first in an appropriate volume of  HPLC grade methanol (Romil Ltd, 

Cambridge, UK) to obtain 5.00 mg/mL stock solutions, then in GC grade dichloromethane 

(Sigma-Aldrich) to the specific concentrations of 5.00 and 10.0 µg/mL (parts per million or ppm) 

for GC-MS analysis. For HPLC analysis, all samples were prepared in HPLC grade methanol 

regardless of their concentrations.  

2.2.5 Extraction and analysis of p,p’-DDT and p,p’-DDE spiked in human blood and RPMI 

media 

The extraction protocol used in this study was based on a slight modification of that used by Liu 

and Pleil (2002). All samples were prepared and run at least in triplicate unless otherwise stated. 

Hexane (Merck, RSA) or hexane:ethyl acetate (BDH Chemicals Ltd, Poole, England ) (4:1, v/v) 

extracting solvents were used as extraction blank controls. Unextracted p,p’-DDT and p,p’-DDE 

spiked solvents were used as the extraction positive controls in which percentage recovery of the 

p,p’-DDT and/or p,p’-DDE in the solvent would be assumed to be 100 % since none of the 

compounds are lost .  

Aldrin (200 µg/mL in iso-octane) used as internal standard at a concentration of 10 ppm was 

added to all samples analysed by the GC-MS method 2, described in Section 2.2.8. Aliquots 

(4.50 or 9.00 µL) of the 5.00 mg/mL stock solutions of p,p’-DDT and/or p,p’-DDE prepared as 

described in Section 2.2.4 were mixed with 1.50 mL human blood or RPMI media followed by 

the addition of 1.5 mL MilliQ water to achieve spiked sample concentrations of 5 ppm or 10 

ppm, respectively, in a 4.50 mL extraction solvent volume.   

Stellenbosch University  http://scholar.sun.ac.za



2‐9 

 

Sodium chloride (0.500 g NaCl) was then added to each sample to saturate the blood or media 

solutions. The NaCl also lead to the lysis of the erythrocytes in the blood samples. The resulting 

solutions were extracted with 3.00 mL extraction solvent by vortexing for 5 minutes to ensure 

extraction of the compounds from the biological media into the organic solvent. An Eppendorf 

Centrifuge 5702 with a swing-bucket rotor type A-8-17 at 1600 xg for 30 minutes was used to 

aid the separation of layers into the biological media (blood, RPMI media) layer and the organic 

solvent layer. After separation of the organic phase (top layer, organic solvent with DDT and/or 

DDE) from the aqueous phase (bottom layer, biological medium), the aqueous phase was then 

extracted again using the same procedure as described above with 1.50 mL of extraction solvent. 

The organic extracts were then combined and dried by the addition of 0.200 g anhydrous sodium 

sulphate (Merck Ltd, UK) such that sodium sulphate crystals no longer clumped together, to get 

rid of any traces of water.  

Before adding the anhydrous sodium sulphate to the combined extracts, empty test tubes were 

weighed and reweighed after the addition of the combined organic extracts. This was done to 

calculate the volume of extraction solvent that was retained after the extraction procedure as 

there may have been some solvent losses during the extraction procedure (1.00 mL hexane: ethyl 

acetate 4:1 v/v ~ 0.70 g). This would therefore assist in accounting for volumetric or p,p’-DDT 

and/or p,p’-DDE recovery errors.  

The anhydrous extracts were then transferred into clean glass vials upon which these solutions 

were then evaporated under N2 flow to total dryness until required for analysis. The dried 

residues (evaporated hexane or hexane: ethyl acetate (4:1, v/v) extracts) were kept at room 

temperature until required for analysis. To concentrate the samples so that the compounds p,p’-

DDT and p,p’-DDE could be easily visualised and identified, the dried extracts were then 

reconstituted in only 450.0 or 900.0 µL GC grade dichloromethane or HPLC grade methanol on 

the day of the GC-MS or HPLC analysis, respectively, to achieve analysis concentrations of for 

example 50 and/or 25 ppm, respectively, in the spiked samples. Where possible, samples were 

analysed the day after the extraction to prevent losses of the compounds in the biological media 

due to long periods of storage. However, remaining extract samples already reconstituted in 

solvent that were not analysed were stored in tightly sealed vials at 4ºC. 
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2.2.6 Extraction and analysis of DDT and DDE in unspiked human blood and RPMI media 

To determine the DDT and/or DDE contaminant variables in biological media samples, 

background levels of the compounds in the various blood (packed erythrocytes or whole blood) 

and malaria culturing RPMI media were assessed.  

Extraction of the compounds was carried out in a similar fashion as described in Section 2.2.5, 

expect that the samples were not spiked with solutions of p,p’-DDT or p,p’- DDE. Each 

extraction and analysis was done at least in triplicate unless otherwise stated. The blank 

experiment control, 1.500 mL analytical grade water was extracted using the same method as 

above. 

2.2.7 HPLC analysis 

The extracts were prepared using the exact sample extraction and preparation protocols described 

in Sections 2.2.5 and 2.2.6. The reconstitution solvent was 90 % HPLC grade methanol which 

was also used to prepare the standard solutions of p,p’-DDT and p,p’-DDE, as well as to 

reconstitute the evaporated extracts before HPLC analysis.  

Based on the HPLC method developed in our laboratory as described below, a 50.0 µL aliquot of 

all blank (unspiked) samples was injected into the HPLC system so as to be able to identify any 

trace amounts of DDT and/or DDE in the blank samples if present. Meanwhile, an injection 

volume of 10.0 µL was used for all p,p’-DDT and p,p’-DDE spiked samples as well as standard 

solutions. 

Reverse phase HPLC was used to analyse and quantify the samples. A Nova-Pak® C18 HPLC 

column (5 µm particle size, 60 Å pore size 150 mm x 3.9 mm) was used with a chromatography 

system consisting of two Waters 510 pumps, Millennium32 software control system, Waters 

Model 440 detector and a WISP 712 sample processor. The chromatographic separation was 

monitored at 254 nm using a Waters Model 440 UV-detector. Linear and non-linear gradients 

were created using eluant A (0.1 % triflouroacetic acid (TFA) in MilliQ water) and eluant B (90 

% acetonitrile (ACN) from Romil Ltd and 10 % eluant A).  

Eluants A and B were filtered using 0.45 µm HLPV filters to remove any residual particulate 

thus protecting the HPLC system and column from blockage by dirt particles. Eluants were 
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degassed by sonication for 20 minutes prior to use. The optimised HPLC method used in this 

study is described in Table 2.1 at a flow rate of 1.0 mL/min. The gradient program was 

specifically developed for the separation of p,p’-DDT and p,p’-DDE, as well as separation of the 

two compounds from compounds in the biological media that absorbs light at 254 nm. Acquired 

data was processed and reviewed using the Millennium32 software package. 

Table 2.1 Optimised gradient program used for the chromatography of p,p’-DDT and p,p’-DDE. 

Time (min) Flow rate 
(mL/min) % A % B Comment 

0 1.0 40 60 Initial gradient 
4 1.0 0 100 Isocratic separation of  
14 1.0 0 100 DDT, DDE 
15 1.0 40 60 Regeneration and  
20 1.0 40 60 equilibration 

2.2.8 GC-MS method 1  

The first GC-MS analysis was used in split mode to confirm the identity of the eluting 

compounds. Solvent extracts were analysed for levels of p,p’-DDT and p,p’-DDE using a Waters 

GCT Premier instrument with an HP5 column of 30 m length, 0.25 mm internal diameter and 

0.25 µm film thickness. The GC-MS method used was based on the method described by Al-

Saleh et al. (2002). The mass spectrometer was operated in electron-impact (EI) ionization mode 

with electron impact energy of 70eV. The injector temperature was 250 ºC and the transfer line 

was kept at 250 ºC. Helium, the carrier gas, had a flow rate of 1 mL/min. The split ratio used was 

1:5.  

The oven temperature ramps involved initially maintaining the column oven temperature at 80 ºC 

for 1.2 minutes after injection, then programming it at 30 ºC/min to 170 ºC and holding for 4 

minutes before moving to 225 ºC at 2.5 ºC/min, holding for another 3 minutes at 275 ºC at 30 

ºC/min before reaching 300 ºC at 30 ºC/min in the final ramp.  

The samples were analysed using a full scanning mass range of 50 to 450 m/z (perfluorotri-N-

butylamine as mass reference) through which spectra were attained and background compounds 

found. Quantification was performed using selected ion monitoring (SIM) mode in which 
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individual ions for each of the selected compounds, p,p’-DDT and p,p’-DDE were monitored. 

MassLynx V4.0 (Micromass Ltd.) software was used for data analysis. 

2.2.9 GC-MS method 2 

A second GC-MS analysis method (GC-MS2) in splitless mode was used to improve the limit of 

detection (LOD) and limit of quantification (LOQ) values so as to be able to detect low levels of 

p,p’- DDE and p,p’-DDT by optimising the previously used method described in Section 2.2.8. 

The sample run time was reduced to 20 minutes and samples with a much lower p,p’- DDE and 

p,p’-DDT concentration,  ≤ 10 ppm (parts per million), were analysed.  

Modifications were made to the initial GC-MS method 1 described in Section 2.2.8. A Waters 

GCT equipped with CTC CombiPAL autosampler, and an HP5 column similar to that used for 

the GC-MS1 analysis was used. The injector temperature was changed to 300 ºC. A 2 µL 

injection volume was used in splitless mode. The oven temperature programme involved holding 

the column for 5 minutes at an initial temperature of 100 ºC. The oven temperature ramps then 

changed to 170 ºC at 30 ºC/min. The temperature was held at 170 ºC for 4 minutes before going 

up to the final temperature of 320 ºC at 30 ºC/min, where again the temperature was held for 5 

minutes. The scan time was 0.15 minutes with an inter-scan delay of 0.05 min. 

A 10 ppm spike of aldrin solution (200 µg/mL in iso-octane) was used as internal standard in all 

samples prepared for GC-MS method 2 analyses to compensate for the injection error and 

improve repeatability of results.  

2.2.10 Recovery 

This set of experiments was done to establish the extraction efficiency of the compounds from 

the biological media. Recovery of p,p’-DDT and p,p’-DDE from the blood and media samples 

was determined by dividing the blood and media samples into three equal portions of 1.500 mL 

each in which one of the three samples was unspiked (blank) and the other two portions were 

spiked with standard solutions of 5.00 ppm or 10.0 ppm each p,p’-DDT and/or p,p’-DDE.  

One blank solvent sample and two solvent samples spiked with p,p’-DDT and p,p’-DDE each in 

the same concentrations as in blood and media, were used to determine the theoretical 100 % 

recovery. These solvent samples were not extracted (positive controls), thereby allowing the 
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assumption of full recovery of the p,p’-DDT and p,p’-DDE being 100 % in the spiked solvent. 

4.50 mL solvent was spiked with 4.50 µL or 9.00 µL of the 5mg/mL stock solutions of p,p’-DDT 

and/or p,p’-DDE to achieve concentrations of 1, 5 and 10 ppm respectively. The solution was 

dried by a stream of N2 flow then reconstituted in 4.50, 0.450 or 0.900 mL dichloromethane or 

90 % HPLC grade methanol, and analysed using the same GC-MS and HPLC-UV 

methodologies described above in Sections 2.2.7, 2.2.8 and 2.2.9, respectively.  

The percentage recovery of the compounds in the biological media was determined by using the 

peak area (PA) obtained for the p,p’-DDT and/or p,p’-DDE spiked in blood and RPMI media in 

relation to the peak areas of p,p’-DDT and/or p,p’-DDE in solvent, respectively, and was 

calculated using the equation below. DDx represents p,p’-DDT or p,p’-DDE. 

Equation2.1:                        

                                       

 

2.2.11 Standard curves 

Standard curves of doubling dilution series of 100 ppm to 7.8 ppb for HPLC-UV and 10 ppm to 

78 ppt for GC-MS were set up to assist in quantification of the data. Standard solutions of p,p’-

DDT and p,p’-DDE were serially diluted in GC grade dichloromethane or HPLC grade methanol 

depending on the method of analysis.  

Each of the standard solutions was prepared in triplicate from three different separately prepared 

stock solutions for the two GC-MS and one HPLC-UV analyses. For HPLC-UV analysis, the 

standard solutions were prepared in 90% HPLC grade methanol. GC grade dichloromethane was 

used to prepare standard solutions for the GC-MS analyses. 

The peak area of each eluted compound was determined and correlated with the different p,p’-

DDT and p,p’-DDE concentrations in µg/mL (ppm) injected on the GC-MS and HPLC systems. 

To analyse the relationship between the compound concentrations and peak areas, linear 

regression analysis was done using Prism 4 (GraphPad Software, San Diego, CA, USA). The 

parts of the standard curve that adhere to 95% confidence intervals as well as residual errors 
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within 10% error were used to derive the linear equation for calculation of sample 

concentrations. 

The limit of detection (LOD) was defined as the lowest standard concentration within the range 

on the standard curve, of p,p’-DDT and p,p’-DDE where the compounds could still be detected 

above the background. The limit of quantification (LOQ) was defined as the lowest standard 

concentration on the calibration curve at which the compound concentrations were most reliably 

obtained within the linear section and 95 % confidence interval, as well as within 10% residual 

error. 

Spiking of the solvent was repeated each time spiked blood or media samples were extracted to 

make certain of repeatability of results, and for statistical purposes. 

2.3 Results and Discussion 

2.3.1.1 HPLC separation of p,p’-DDT and p,p’-DDE 

In the initial development of the HPLC-UV method, several elution gradients and solvent 

compositions were attempted to try and separate p,p’-DDT and p,p’-DDE. First, an isocratic 

mode was used to separate the compounds with 90% ACN flowing at 1.00 mL/minute. p,p’-DDT 

and p,p’-DDE both eluted too early (1.95 and 2.18 minutes) with the polar  compounds 

absorbing at 254 nm (results not shown).  

The mobile phase was then changed by addition of TFA and using different ratios of eluants A 

(0.1% TFA in MilliQ water) and B (90% ACN + 10% eluant A). We started with 50 % each of 

both solvents from 0-3 minutes. The solvent composition then changed to 25 % A and 75 % B 

from 3 to 10 minutes and eluant A was increased to 100 % between 10 to 14 minutes. p,p’-DDT 

and p,p’-DDE were resolved and eluted after roughly 7 and 9 minutes respectively (results not 

shown). However the peaks were broad and they co-eluted with other unidentified peaks of 

possibly polar compounds, at the respective retention time regions.  

A third attempt was made by starting with 50:50 eluants A:B solvent ratio and then the running a 

linear gradient from 4-10 minutes to 75% eluant B, followed by a gradient  to 100 % B between 

10 and 14 minutes. This method produced a good separation of the compounds with narrow, 
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sharp peaks. p,p’-DDT and p,p’-DDE eluted at 10.1 and 10.5 minutes, respectively (results not 

shown). The peaks, however, eluted very closely and also co-eluted with contaminant peaks. 

The final attempt in the method optimisation entailed running the gradient from 40 to 100% 

eluant B from 4 to 14 minutes. This method also produced a good separation of the compounds 

with narrow, sharp peaks. Chromatographic HPLC separation of p,p’-DDT and p,p’-DDE are 

shown in Figure 2.2, with retention times 9.4 and 9.8 minutes, respectively, over a 20 minute 

chromatographic run (Figure 2.2).  
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Figure 2.2  Typical HPLC chromatograms of standard solution of p,p’-DDT and p,p’-DDE 
(90:10 ppm mixture), blood and blood spiked with 5 ppm p,p’-DDT, respectively. 
The chromatographic method is described in Section 2.2.7.  
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Both p,p’-DDT and p,p’-DDE were completely resolved from each other and UV visible 

contaminants using the optimised method. Based on the elution profile, most polar contaminating 

compounds eluted in the first few minutes of the run whilst the more hydrophobic contaminants 

eluted well after the target compounds p,p’-DDT and p,p’-DDE.  

No apparent interfering or co-eluting peaks with similar retention times were found in the 

chromatograms of blank water and solvent samples although some interference or residual p,p’-

DDT and p,p’-DDE were evident in blood, RPMI media and 2 % haematocrit cultures. 

The described cost effective optimised HPLC-UV method (Section 2.2.7, Table 2.1) with liquid-

liquid extraction that was developed as an alternative to the much more expensive GC-MS 

method proved to be efficient for simultaneously separating and quantifying p,p’-DDT and p,p’-

DDE without an extra purification step.  

2.3.1.2 GC-MS separation and identification of p,p’-DDT and p,p’-DDE 

Combined with liquid-liquid extraction, a GC-MS method was necessary for the identification 

during separation and quantification of p,p’-DDT and p,p’-DDE. The selected-ion monitoring 

(SIM) for p,p’-DDT and p,p’-DDE respectively, as shown in Table 2.2, was used to carry out 

quantitative analyses and confirmation of the compounds’ identities at the specific retention time 

regions as determined by the chromatography of the DDT and DDE standards. Confirmation of 

the compounds’ identities using the GC-MS methods was based on the detection of the 

molecular ion, two or three distinct fragment ions, as well as matching the chromatographic 

retention time to that of the standard for each analyte. A GC-MS library search was also used to 

confirm the identity of the compounds by comparing the obtained fragmentation profiles of the 

compounds to those in the library.  

Figure 2.3 shows the fragmentation patterns of p,p’-DDT and p,p’-DDE standard solutions, in 

which the selected ions for the GC-MS methods are indicated with arrows. The standard 

solutions of the analytes were prepared as described in Section 2.2.4. The two ions used for the 

detection of p,p’-DDT were 235 and 237, whilst the three ions used for p,p’-DDE detection were 

246, 248 and 318 for both GC-MS methods, respectively.  
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The original GC-MS method (GC-MS method 1) was run over 35 minutes using a 5:1 split (0.2 

of 1.0 µL injected on column) to limit column contamination. Separation was obtained with the 

retention times at 20.74 minutes and 25.70 minutes for p,p’-DDE and p,p’-DDT, respectively 

(Figure 2.4). However, we observed that blood spiked with 5 ppm p,p’-DDT showed 

degradation of the compound into its main metabolites, DDD and DDE. A similar pattern was 

observed for the standard samples that were not extracted (Figure 2.4).  
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Figure 2.3 Fragmentation patterns for p,p’-DDT and p,p’-DDE. MS was used to monitor the 
quantification ions with m/z 235 and 237 for p,p’-DDT and m/z 246, 248 and 318 for 
p,p’-DDE as shown by the fragmentation patterns. 
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Table 2.2 p,p’-DDT and p,p’-DDE identification in blood and RPMI media studied with GC-MS 
as shown by the optimized chromatograms in Figure 2.3.  

Compounds tR (min) Monitored ions (m/z) 
p,p’-DDT 25.70 235 + 237 
p,p’-DDE 20.74 246 + 248 + 318 

              tR = retention time in minutes 

The DDT breakdown was an indication of the harshness of the GC-MS process and was an 

unwanted process as DDT must remain intact for identification and quantification. The more 

stable p,p’-DDE, however, remained intact under the same conditions.  

The chromatogram (Figure 2.4) of unspiked blood showed a small peak at the retention time for 

p,p’-DDE which was expected to be identified as DDE, since the blood used for this analysis was 

donated by an individual who may have been at some point in their life exposed to DDT either as 

part of malaria control or in its use as a pesticide in agriculture or both. The peak was, however, 

identified as a long hydrocarbon chain although there was some doubt as to this conclusion since 

GC-MS method 1 had not been optimized to detect low levels of the compounds in the biological 

media. The levels in the blood may have been lower than the limit of detection (LOD).  

GC analysis requires the optimization of injection conditions which is essential in method 

development (Tuinstra et al., 1985; Lang, 1992). Although on-column injection has also been 

used, most GC applications for PCB and OCP analysis have employed split/splitless injection 

systems. In as much as on-column injection avoids artefacts associated with heated split/splitless 

systems (that is, degradation of labile compounds), it requires pure extracts to avoid matrix 

effects (Lang, 1992).  

In the “split mode” injection in our GC-MS method 1 analysis, only 0.2 µL of the original 1.0 µL 

injection is introduced onto the column. This permits the analysis of complex samples, because it 

limits the contamination on the column. However, this volume was deemed insufficient to enable 

accurate determination of either DDT and/or DDE in the samples.  
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Figure 2.4 GC-MS method 1 chromatograms of p,p’-DDT and p,p’-DDE standards, blood 
(packed erythrocytes), 5 ppm p,p’-DDT spiked blood and 5 ppm p,p’-DDE spiked 
blood. The chromatograms were obtained using GC-MS method 1 described in 
Section 2.2.8.  
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In the GC-MS method 2 a higher injection volume of 2.0 µL in split less mode was used, as our 

three times liquid extraction of samples limited the contamination of the column. The 

chromatographic run in the GC-MS method 2 was optimised to be much shorter with p,p’-DDE 

and p,p’-DDT eluting at 13.65 minutes and 14.30 minutes respectively (Figure 2.5). Aldrin 

eluted at 12.65 minutes. We were unable to overcome or limit the DDT degradation in the 

optimised GC-MS method. This was not the case with the HPLC-UV method in which DDT 

remained intact as shown in Figure 2.2.  

 

Figure 2.5 GC-MS method 2 chromatograms of a standard mixture of 5 ppm p,p’-DDT and p,p’-
DDE, RPMI medium spiked with 5 ppm p,p’-DDT and p,p’-DDE and unspiked 
RPMI medium. The chromatograms were obtained using optimized conditions 
described in Section 2.2.9.  

The DDE and DDD peaks in the unextracted p,p’-DDT standard samples (Figure 2.5) were, 

however,  ±36% smaller than those in the extracted spiked modified RPMI media used for 

malaria culturing. The biological RPMI media showed background levels of DDE which were 

added to the spiked concentration and thereby leading to a slightly higher concentration being 
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detected during GC-MS analysis (Figure 2.5). The complex media could also have protected 

DDT from degrading as observed for the standards in the GC-MS. 

Although background levels of a variety of non-target compounds were found when hexane-

ethyl acetate (4:1, v/v) was used as the extraction solvent, this solvent combination was more 

aggressive than hexane, yielding higher recoveries of the compounds as further described in 

Section 2.3.2.  

2.3.2 Recovery efficiency study 

The extraction efficiency of p,p’-DDT and p,p’-DDE from human blood and malaria culturing 

RPMI media was assessed with our analytical methods in a recovery efficiency study in which 

the biological samples were spiked with specific amounts of p,p’-DDT and p,p’-DDE. Initially 

the recovery of DDT and DDE was <50% because of the use of plastic pipette tips in the volume 

measurement and transfer of samples. When the use of plastic was eliminated from all the steps 

in preparation and extraction the recovery yields from most of the media were consistently above 

90%. The peak area of each analyte, using the two GC-MS methods and the HPLC-UV method, 

was compared to a standard curve. The percentage recovery was calculated based on Equation 

2.1 and summarised in Table 2.3 for the two GC-MS methods and HPLC-UV method. 

Table 2.3  Absolute recoveries of p,p’-DDT and p,p’-DDE in blood and RPMI media by GC-
MS and HPLC-UV analyses (n represents number of repeats). 

Compound Spiked  
Sample 

% Recovery±SD 
GC-MS  

Method 1 (n)

% Recovery±SD  
GC-MS 

 Method 2 (n) 

% Recovery±SD 
HPLC-UV (n) 

p,p’-DDT Blood 99.99 ± 11.6 (6) nd 91.9 ± 6.50 (8) 

RPMI media 86.6 ± 3.9 (2) nd 103 ± 7.53 (7) 

 
2% haematocrit in 

media nd nd 104± 5.67 (7) 

Water 92.4 ± 14.7 (4) nd 106 ± 10.9 (7) 

p,p’-DDE Blood 89.1 ± 14.6 (6) 113 ± 12.3 (10) 88.2 ± 8.00 (8) 

RPMI media 109 ± 17.7 (2) 114 ± 4.88 (5) 96.1 ± 5.00 (7) 

 
2% haematocrit in 

media nd 113 ± 10.9 (5) 93.5 ± 6.52 (7) 

Water 91.0 ± 18.7 (4) 100.0 ± 7.18 (5) 96.9 ± 4.92 (8) 
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The first attempts to extract p,p’-DDT and p,p’-DDE from blood and media samples involved 

using hexane as the extraction solvent. The extraction efficiencies using hexane or hexane: ethyl 

acetate (4:1, v/v) as extraction solvents showed that the latter yielded the best recovery of p,p’-

DDT and p,p’-DDE from the biological media. Findings from Liu and Pleil (2002) also showed 

that the recoveries from hexane: ethyl acetate (4:1, v/v) extractions were better than the hexane 

extractions. Plasticisers in the form of phthalates were identified with GS-MS as a major group 

of interfering compounds in media/blood containing AlbumaxTM, probably originating from the 

preparation itself or from the caps of the blood vacutainer tubes, as these were the only source of 

plastic available. To minimise these interferences, all glassware was pyrolysed before use as 

described in Section 2.2.2. 

According to the HPLC analysis of the different extracted samples the absolute recovery for 

p,p’-DDT was between 92 and 106%  and that of p,p’-DDE between 88 and 97% (Table 2.3). 

This improved on the DDT and DDE recovery of 60 to 85% and 67 to 99%, respectively, 

reported in literature (De Francia et al., 2006). The recovery from blood samples was improved 

from 82% to 94% for p,p’-DDT and from  82% to 91% for p,p’-DDE when the blood was 

extracted three times. This extra extraction step for p,p’-DDT and p,p’-DDE was deemed 

necessary because DDT and DDE could interact with the lipids in blood and the AlbumaxTM 

containing bovine albumin in the malaria culturing media.  

For assessing recovery with GC-MS, RPMI media adapted for growing malaria cultures, was 

spiked with 5 ppm of p,p’-DDT and p,p’-DDE and extracted with hexane: ethyl acetate (4:1, v/v) 

before being analysed. The influence of AlbumaxTM (a serum albumin substitute) and RPMI 

alone was also assessed. A higher percentage recovery than expected (109 ± 17.7 %) of p,p’-

DDE from the RPMI media was found indicating the possibility of residual p,p’-DDE in one of 

the media components. p,p’-DDT spiked RPMI media gave slightly lower recoveries of 86.6 ± 

3.9 % indicating possible interaction of p,p’-DDT with the lipid rich AlbumaxTM thus making its 

extraction from the media more difficult. Since AlbumaxTM, a constituent of modified RPMI 

media, is extracted from bovine serum in cows from New Zealand where DDT pesticide 

agriculture was practiced until ban of the insecticide in the country (Shivaramaiah et al., 2002), 

there was a very strong possibility of background levels of DDT and/or DDE in the media. 
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The GC-MS analyses of the different extracted samples showed absolute recovery for p,p’-DDT 

between 87 and 100%  and that of p,p’-DDE between 91 and 113% (Table 2.3). This correlated 

well with p,p’-DDT and p,p’-DDE recoveries of 67.8 to 106.6% and 98.3 to 110.0%, 

respectively, reported in literature (Liu and Pliel 2002; Al-Saleh et al., 2005). The second GC-

MS method showed improved variations (lower standard deviation, <10%, and % coefficient of 

variation (% CV) of 4 to10%) in the percentage recoveries of p,p’-DDE from the biological 

samples except for in blood where the %CV was 11%. The p,p’-DDE percentage recovery itself 

increased from 89 % to 113 % in the GC-MS method 2 analysis possibly because of the varying 

levels of DDT and/or DDE found in the blood donated from the blood bank from the different 

donor batches received each week. 

The recovery of p,p’-DDT was consistently higher with a smaller error (<10 % CV) as detected 

by HPLC (except for p,p’-DDT from water) compared to GC-MS method 1 analysis (Table 2.3). 

This could be due to the breakdown of DDT in the GC-MS and/or interfering compounds in the 

HPLC analyses. Alternatively, the 12-16% higher recovery from the media and blood than the 

recovery from water, as detected with HPLC, could be due to residual p,p’-DDT. The observed 

p,p’-DDE recoveries were generally higher using GC-MS method 2 analysis compared to HPLC 

analysis as shown in Table 2.3. This lower detection using HPLC could be due to slight loss of 

detector linearity at higher p,p’-DDE concentrations. Alternatively, the 13-14% higher recovery 

from the media and blood than the recovery from water, as detected with the more sensitive GC-

MS method 2, could be due to residual p,p’-DDE in samples. These, however, are slight 

variations which may have been due to volumetric errors encountered during the LLE step 

described in Section 2.2.5. 

2.3.3 Evaluation of HPLC-UV and GC-MS methods for DDT and DDE quantification  

GC-MS and HPLC-UV derived standard curves for p,p’-DDT and p,p’-DDE were set up for the 

quantitative determination of the compounds in the biological media as described in Section 

2.2.11.  

2.3.3.1 HPLC-UV standard curves for DDT and DDE quantification 

The peak areas of p,p’-DDT and/or p,p’-DDE obtained with our optimised HPLC-UV method 

showed for a standard solution of equal concentrations of p,p’-DDT and p,p’-DDE, that p,p’-
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DDE had a much greater absorption intensity at 254 nm which almost overshadowed the peak 

for  p,p’-DDT. This indicated that our sensitivity for p,p’-DDE is expected to be higher than that 

of p,p’-DDT. We therefore adjusted the standard curve ranges accordingly. Linear calibration 

curves for p,p’-DDT and p,p’-DDE were obtained over the concentration range 78 ppb to 100 

ppm for p,p’-DDT and 7.8 ppb  to 50 ppm for p,p’-DDE (Figure 2.6 and Table 2.4). These 

standard solutions were prepared from three different stock solutions each for p,p’-DDT and 

p,p’-DDE. The correlation coefficients (R2) for the linear calibration curves were ≥0.999, thus 

giving repeatable best fit lines within 95 % confidence interval without use of an internal 

standard. The residuals for these fits over the whole range, using unweighted regression analysis, 

showed between 0.4% and 9.2%  residual error for up to 1.563 ppm, but only 2-6% CV over the 

whole concentration ranges for both p,p’-DDT and p,p’-DDE. The biggest error in terms of the 

95 % confidence interval was observed below 1.563 ppm for both p,p’-DDT and p,p’-DDE 

(Figure 2.5 A, B and D) if a linear fit over the whole concentration range was considered. Using 

unweighted regression analysis the LOQ for both compounds was 1.563 ppm.  However, we 

found bias towards the high concentrations in these unweighted linear curves and could improve 

the LOQ by approximately 200 times to 7.8 ppb for DDE by fitting 1/Y2 weighted regression 

line (Figure. 2.5 B and D). Similarly, the LOQ improved by approximately 20 times to 78 ppb 

for DDT by weighted  fitting (Figure. 2.5 B and C).The limit of detection of p,p’-DDT and p,p’-

DDE in pure samples was found to be 78 ppb  and 7.8 ppb respectively. The repeatability of the 

HPLC analysis of DDT and DDE was very good and calibration curves from one set of analyses 

to the next remained with the average %CV for DDE at 2.4% and that of DDT at 6.4% over three 

standard curve repeats (results not shown).  The summary for the regression analysis is given in 

Table 2.4 and the graphical representations are given in Figure 2.6. 
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Figure 2.6  Standard curves for p,p’-DDT and p,p’-DDE obtained with the HPLC-UV method. 
(A) shows the linear regression line though the triplicate repeats of the p,p’-DDT and 
p,p’-DDE calibration curves. In graph B the y axes is converted to log10 scale to 
show the error at lower concentrations, as depicted by 95% confidence interval 
(vertical lines) at the lower concentrations. The linear regression line in graphs were 
fitted with (B) and without (A, B) weighing with 1/Y2 to minimise relative square 
distances. In graphs C and D the prediction of accuracy using the regression line 
equations (B) is depicted respectively for the p,p’-DDT and p,p’-DDE calibration 
curves. All standard curves were analysed as described in Section 2.2.7. Mean ± 
SEM for three determinations is shown for each data point in B, C and D. 
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Table 2.4 Summary of data calculated for fitting of standard curves for p,p’-DDT and p,p’-DDE 
from HPLC-UV analysis of standard concentration ranges (described in Section 
2.3.3.1).  

Compound Linear regression 
equations from fits to 
standard conc. ranges 

R2 LOQ LOD 

 Unweighted    
p,p’-DDT y =  1446x + 449.8     0.9997   1.56 ppm   78 ppb 
p,p’-DDE y = 28628x + 4759    0.9999 1.56 ppm 7.8 ppb 

 Weighted with 1/Y2    
p,p’-DDT y = 1521x + 16.97 0.9965     78 ppb 78 ppb 
p,p’-DDE y = 31396x + 51.98 0.9879 7.8 ppb 7.8 ppb 

2.3.3.2 GC-MS standard curves for DDT and DDE quantification 

In a similar fashion to the linear calibration curves obtained with HPLC-UV, the peak areas over 

the concentration range of 28 ppb to 45 ppm of p,p’-DDT and p,p’-DDE were obtained using 

GC-MS method 1. Repeatability within one set of triplicate samples was poor at 100 ppm 

(results not shown), specifically for p,p’-DDE, most probably due to overloading of the column. 

Calibration curves were then set from 28 ppb to 45 ppm and gave reasonably good fits at R2 

=0.999 for p,p’-DDT and 0.971 for p,p’-DDE (Figure 2.7).   

 

 

 

 

 

 

 

Figure 2.7 Standard curves for p,p’-DDT and p,p’-DDE obtained with GC-MS method 1. Graph 
(A) shows the linear regression line though the triplicate repeat of the DDT and DDE 
calibration curves. (B) The graph with axis converted to log10 scale to show the error, 
as depicted by 95% confidence interval (vertical lines) at the lower concentrations.   
Standard solutions (0.156-25 ppm) of each of the compounds were prepared in GC 
grade dichloromethane and analysed using conditions described in Section 2.2.8. 
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However, the error in terms of the 95 % confidence interval and residuals limited the LOQ to 5.7 

ppm for p,p’-DDT and 2.8 ppm for p,p’-DDE (Figure 2.7). The lowest concentration at which 

each of the compounds could be detected (LOD) was approximately 1.4 ppm for p,p’-DDT and 

28 ppb for p,p’-DDE. The repeatability of specifically the DDT standard curves was 

questionable and we also found about 1 to 15 ppm DDE (depending on the [DDT] in standard) in 

the DDT calibration analysis runs (results not shown).  

The LOQ and LOD of DDE and DDT, as well as the repeatability on different days were deemed 

insufficient for our studies. ‘Unknown’ concentration determinations using the standard curves 

by GC-MS method 1 could not be reliably determined. Only 0.2 µL of the original 1.0 µL 

injection was analysed due to “split mode” injection. We were therefore unable to determine 

background levels of the compounds in the unspiked samples. We, however, were confident that 

the sensitivity could be improved at least 10 times with a full injection, although this analysis 

mode could entail an extra purification step of the blood and culture samples. 

Results from previous studies where standard curves for p,p’- DDE and p,p’-DDT were 

constructed with splitless injection and in some cases with an internal standard, good best fit 

lines with R2 values as high as 0.996-1.000 (Liu and Pleil, 2002;  Al-Saleh et al., 2002; Guardino 

et al., 1996) were obtained. Detection ranges using GC-ECD for separation and GC-MS for 

identification of these compounds were 0.3 pg instrument detection limit (IDL) and 0.06 µg/L 

(or 60 ppt) whole blood method detection limit (MDL) for p,p’-DDE, and 0.7 pg IDL and 0.04 

µg/L (or 40 ppt) whole blood for p,p’-DDT (Guardino et al., 1996). 

To optimise the GC-MS analysis further, the concentration range of both p,p’-DDT and p,p’-

DDE was lowered to between 78 ppt and 10 ppm (Figure 2.8 and Table 2.5), and aldrin was 

included as internal standard (GC-MS method 2). The standard solutions were prepared from 

three different stock solutions each of p,p’-DDE and p,p’-DDT. The LOD for p,p’-DDT was 

found to be 7.8 ppb. However, in light of the fact that the GC-MS method leads to DDT 

breakdown it was decided to focus this calibration and quantification study on p,p’-DDE.  
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Figure 2.8 Standard curve for p,p’-DDE obtained with GC-MS method 2. A shows the linear 
regression line through the triplicate repeat of the DDE calibration curve. In B, the 
graph axes are converted to log10 scale to show the errors at low concentrations, as 
depicted by 95% confidence interval (vertical lines).  The linear regression line in 
graphs were fitted with (B) and without (A, B) weighing with 1/Y2 to minimise 
relative square distances. In graphs C and D the prediction of accuracy using the 
regression line equations (B) is depicted for the p,p’-DDE calibration curves. All 
standard curves were analysed as described in Section 2.2.9. Mean ± SEM for three 
determinations is shown for each data point in B. 
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analysis, the LOQ and LOD of p,p’-DDE for both analyses were the same at 78 ppb and 78 ppt, 

respectively, as shown in Figure 2.6 and Table 2.5. This result was comparable to those of 

Guardino et al. (1996) and the LOD and LOQ drastically improved (refer to Table 2.7 under 

conclusions).  

Analysis results show that the GC-MS method 2 is a significantly improved detection method for 

p,p’-DDT and p,p’-DDE and quantification method for low levels of p,p’-DDE compared to the 

GC-MS method 1. Repeatability was also improved with aldrin as internal standard, and analyses 

data were found to be comparable to that obtained in the HPLC-UV analyses.  

Table 2.5  Summary of data calculated for fitting p,p’-DDE standard curves from GC-MS 
method 2 analysis of standard concentration ranges (described in Section 2.3.3.2) 
using aldrin as an internal standard. 

Compound Linear regression equations from fits 
to standard conc. ranges 

R2 LOQ LOD 

 Unweighted    
p,p’-DDE y = 13.69x - 0.04287    0.9955 78 ppb 78 ppt 
 Weighted with 1/Y2    
p,p’-DDE  y = 12.99x - 0.2040 0.9991 78 ppb 78 ppt 
 

2.3.4 Quantitative p,p’-DDT and p,p’-DDE determination in blood and culture media  

The quantitative assessment of p,p’-DDT and p,p’-DDE in human blood (packed erythrocytes or 

whole blood) and RPMI media was done with the three analytical methods.  Since DDT breaks 

down into DDE and DDD, and DDE does not further break down but bioaccumulates in the 

body’s lipid layers, it was expected that notable levels of  DDT and/or DDE would be detected 

depending on how recently the individuals were exposed or to what levels of DDT they were 

exposed. As most of the blood was obtained from the Western Cape Blood bank it was expected 

to detect the compounds since most of the blood samples were donated by South Africans. South 

Africa used DDT as a pesticide in agriculture and/or for IRS to control malaria during at least the 

past three decades (Sadasivaiah et al., 2007). Our new HPLC method indicated the presence of 

DDT and/or DDE levels in certain blood samples as well as RPMI media containing Albumax™. 

Positive identification and quantitation was done using the GC-MS method 2. The results are 

given in Table 2.7.   
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Background DDT and DDE could not be detected in any of the biological media that was 

reconstituted to the original extraction solvent volume (4.5 or 6.0 mL) using the GC-MS method 

2 analysis (results not shown). Concentrating the dried extracts of the biological samples by 

reconstituting them in 900 µL solvent to give 5 times concentrated samples enabled us to detect 

the compounds with the optimised GC-MS method 2. Therefore the increased injection volume 

to 2 µL with the new GC-MS method 2 compared to 0.2 µL with the GC-MS method 1 improved 

detection of our compounds in the concentrated samples. The sensitivity of the GC-MS method 

for DDE allowed for the lower detection limits compared to the HPLC-UV method. The use of 

concentrated samples and the higher volume injection technique employed for samples analysed 

by the HPLC-UV and GC-MS (splitless) method 2 allowed the detection of DDT and DDE 

(Table 2.7). 

With the optimised GC-MS method 2 we were able to detect lower levels of DDE in biological 

samples than the HPLC-UV method (Table 2.7).  

Table 2.6 Quantitative DDT and DDE determination in blood and culture media using the 
HPLC-UV and GC-MS methods as described in Sections 2.2.7 and 2.2.9 
respectively.  

 p,p’-DDT Mean conc.  
(ppm) ± SD (n)

p,p’-DDE Mean conc.  
(ppb) ± SD (n) 

Sample HPLC-UV GC-MS  
method 2 

HPLC-UV GC-MS  
method 2 

Blood donor 1 1.1 ± 0.6 (9) Trace (6) Trace (9) 70 ± 37 (6) 
Blood donor 2 not detected (4) Trace (7) not detected (4) Trace (4) 
RPMI media 2.5 ± 0.8 (7) Trace (7) Trace (7) 134 ± 39 (7) 

2 % haematocrit 2.1 ± 1.1 (7) not detected (5) Trace (7) not detected (5) 

The DDE level observed in the blood of  donor 1 and one of the batches of donated blood 

received from the blood bank (254 ± 39 ppb (3)) correlated with the study of Bouwman et al. 

(1991) showing that the mean blood serum concentrations of DDE in the DDT sprayed areas is 

103 ± 85 ppb. Trace or previously undetectable levels of DDT were also recorded with the 

optimised GC-MS method 2. The higher concentrations recorded for DDT using the HPLC-UV 

could have been false readings as a result of biological interference. As was previously 

discussed, the GC-MS method caused degradation of DDT possibly due to the high temperatures 
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used for analysis. The already low levels of DDT in the biological media were therefore possibly 

degraded during analysis leaving DDT levels lower than the limit of detection of 7.8 ppb which 

could explain why we were unable to quantify the compound in the biological media. Results of 

the determined levels using the two methods for detection are summarised in Table 2.6. 

2.4 Conclusions 
This study proposes two optimised analytical methods using either HPLC-UV or GC-MS for the 

determination of different concentration levels of DDT and DDE in blood and malaria culturing 

RPMI media. Using a cheap, easy and fast liquid-liquid extraction protocol with hexane-ethyl 

acetate (4:1, v/v) solvent, DDT and DDE were successfully detected and quantified in the 

biological media. Residual levels of the compounds as a result of previous exposure to DDT 

were detected with the HPLC-UV and optimized GC-MS method 2. GC-MS, although more 

costly, was chosen mainly to confirm the identity of the compounds and to detect low levels of 

the compounds that could not be identified using the HPLC-UV method. A comparative 

summary of quantitation and detection limits of the three methods used in this study is given in 

Table 2.7.  

Table 2.7   Comparison of the three analytical methods used for determination of p,p’-DDT and 
p,p’-DDE in blood and malaria culturing media as described in Sections 2.2.7 and 
2.2.8 and 2.2.9  respectively.  

Analysis 
method  p,p’-DDT p,p’-DDE Comments 

HPLC LOD 78 ppb 7.8 ppb Cheap and fast method suitable for 
analysis of DDT and/or DDE in blood and 
malaria culturing media in this study.  LOQ 1.56 ppm* 

78 ppb** 
1.56 ppm*
7.8 ppb**

GC-MS 
method 1 LOD 1.4 ppm 28 ppb Method for analysis of amounts above 5 

ppm DDT and DDE in complex biological 
samples, and identification of unknown 
compounds.  LOQ 5.7 ppm 2.8 ppm 

GC-MS  
method 2 LOD 7.8 ppb 78 ppt Suitable for the detection of low levels of 

DDT and DDE, quantification of low DDE 
levels and identification of unknown 
compounds.  LOQ nd 78 ppb 

* unweighted regression analyses; **weighted regression analyses; nd - not determined 
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The next chapters (Chapter 3 and 4) of this study involve investigating the biological 

implications of DDT and/or DDE on Plasmodium falciparum chloroquine resistant and sensitive 

strains. It was therefore imperative for us to develop optimised methods of analysis to determine 

the DDT and/or DDE contaminant variables in the different compartments of the malaria culture 

made up of the packed red blood cells, RPMI media and the parasite. The HPLC method and 

optimised GC-MS method 2 will be revisited and used to determine low levels of DDT and DDE 

in the three different compartments (media, erythrocyte and parasite) in Chapter 4, while the 

direct influence of DDT and DDE on parasite viability will be assed in Chapter 3. 
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CHAPTER 3 

Anti-malarial activity of p,p’-DDT and p,p’-DDE  towards chloroquine sensitive 

and chloroquine resistant strains of Plasmodium falciparum 

3.1 Introduction 
Resistance to conventional antimalarial drugs and insecticides that has emerged over the years 

has made it the more important to find alternative drugs with different targets, particularly for 

malaria endemic areas of the world (Ridley, 2002). Insecticides are major contaminants of the 

environment, with animals and humans being at a high risk of exposure (Noedl et al., 2003). It is 

therefore imperative to investigate the influence of or role played by chemical compounds, 

particularly current or previously used insecticides, on the resistance or sensitivity of the already 

existing antimalarial drugs towards Plasmodium falciparum (P. falciparum) for drug 

development purposes.  

There are currently several methods that have been developed and are used to assess the effects 

of drugs and chemicals on the viability of P. falciparum parasites (Izumiyama et al., 2009). 

Traditional in vivo methods that measure parasite clearance as sensitivity or three degrees of RI, 

RII and RIII resistance, have since been replaced by new in vitro methods further described 

below (WHO, 1973; Makler et al 1993; Druilhe et al., 2001; Noedl et al., 2002). Qualitative and 

quantitative assessments of red blood cell smears with a microscope through parasite counts have 

also been used but proved to be time consuming, tiring and subjective (Izumiyama et al., 2009).  

In 1978, Rieckman developed the original WHO (World Health Organisation) in vitro micro-

technique defining the minimum inhibitory concentration (MIC) of malaria parasites from 

clinical isolates (Rieckman et al., 1978; Bacon et al., 2007). This method was developed to 

perform in vitro assays in field conditions, with analysis mainly involving labour-intensive 

examination of post-culture thick blood smears (Rieckman et al., 1978). Desjardins and 

colleagues in 1979 then modified the method by measuring the incorporation of radioactive 3H-

hypoxanthine in the growing parasites, and shifting the emphasis of the final estimate of drug 

susceptibility to 50 % growth inhibition concentration (IC50) defined as the x-value (log of drug 

concentration) of the halfway response between the top and bottom plateaus of the dose response 
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curves (Desjardins et al., 1979; Du Toit and Rautenbach, 2000). This radioactive-based method 

has now become the standard measure of in vitro drug susceptibility of antimalarial compounds 

(Bacon et al., 2007). Colorimetric based incorporation of thymidine analogue, 

bromodeoxyuridine, in parasite deoxyribonucleic acid (DNA) has also been used as described by 

Doi et al. (1988). By pulse-labelling the cells with bromodeoxyuridine, those cells synthesising 

DNA then incorporate bromodeoxyuridine into their DNA (Doi et al., 1988). Elabbadi et al. 

(1992) developed a method in which radioactive ethanolamine incorporation in phopsholipids is 

measured for the in vitro assessment of antimalarial activity by the general microdilution 

technique. A large variety of drugs can be tested using radioactive assays since longer and 

variable incubation times are allowed. Although these assays are faster than the traditional 

parasite counts due to the high degree of automation and effective in accurately monitoring the in 

vitro effects of a wide range of antimalarial drugs, even on field isolates, they require relatively 

high parasite densities of 0.5% (Noedl et al., 2003). They may also be difficult to use in the 

malaria endemic areas which are mostly resource poor, since these assays have high running 

costs (Basco, 2007). Specialised disposal systems, well trained personnel, heavy and expensive 

equipment which is difficult to maintain in tropical areas are required when using the dangerous 

radioactive material (Druihle et al., 2001; Desjardins et al., 1979; Doi et al., 1988). Several other 

precursors such as palmitate, serine, choline, inositol and isoleucine have also been used in the 

radioactive assays (Noedl et al., 2003). As the use of radioactivity in drug assessment assay has 

inherent safety and cost implications, alternative methods and subsequent modifications were 

then developed to continuously improve on methods for quantifying parasite growth labour-, 

time-, cost-, and quality-wise. Colorimetric detection of parasite lactate dehydrogenase (pLDH) 

activity (Makler and Hinrichs, 1993; Noedl et al., 2003; Ashahi et al., 2005; Druihle et al., 2001) 

is a widely used method in antimalarial drug discovery research. The Malstat assay which 

requires an initial parasitemia of between 1-2%, measures pLDH enzymatic activity through 

colorimetric detection of reduced APAD (3-acetyl pyridine adenine dinucleotide), which in turn 

reduces blue tetrazolium (nitro blue tetrazolium chloride; refer to Section 3.2.7.1) to form a blue 

formazan product that can then be measured by spectrophotometry (Basco et al., 1995) as 

summarised in Figure 3.1. APAD is an analogue of host NAD (nicotinamide adenine 

dinucleotide), the basis from which the Malstat assay was developed, thus making it a highly 
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specific assay (Makler et al., 1993). Although the widely used Malstat assay gives reliable and 

reproducible IC50 determinations of compounds in P. falciparum parasites, it has been found to 

be too insensitive for field application (Noedl et al., 2003). A more sensitive assay which 

measures pLDH levels using specific monoclonal antibodies in what is referred to as the double-

site enzyme-linked LDH immunodetection (DELI) assay was therefore developed (Druihle et al., 

2001; Piper et al., 1999). The DELI assay can be used in field applications and the assay results 

are comparable with those obtained for radioactive assays (Noedl et al., 2003). Limited supplies 

of the monoclonal antibodies have, however, limited the further validation and application of the 

assay (Noedl et al., 2003).   

 

 

 

 

 

 

 

Figure 3.1 A diagram showing the Malstat reaction for detecting parasite lactate 
dehydrogenase. The chemical structure for the tetrazolium dye is shown on the right. 

An enzyme linked immunosorbent assay (ELISA) methodology involved in the detection of 

parasite specific enzyme, histidine rich protein II (HRP2),  was developed from an initial HRP2 

assay (Noedl H et al., 2002, and Noedl H et al., 2005). Parasite growth and development of the 

HRP2 assay is measured by the production of HRP2 in a simple, commercially available double-

site ELISA test kit (Noedl H et al., 2003). The HRP2 assay is roughly 10 times more sensitive 

than the radioactive assays, and it requires less complicated equipment. Slow acting drugs can 

also be tested because of the long incubation periods of 48 to 72 hours (Noedl H et al., 2003). 

Since the HRP2 assay was relatively expensive, a cheaper and more generic antigen capture 

HRP2 ELISA assay was developed. Two commercial monoclonal antibodies are used for this 

APAD+ Formazan (blue)

DiaphorasepLDH 

Tetrazolium (Nitro 
blue tetrazolium 
chloride; yellow 
crystalline powder)  

APADH 
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drug sensitivity test with cheaper alternative test kits compared to the one enzyme specific 

antigen used in the initial HRP2 assay (Noedl H et al., 2005). DNA staining with fluorescent 

based SYBR Green 1 (Figure 3.2), Pico green or YOYO-1 dyes have been successfully used in 

several studies. Fluorescent nucleic acid intercalating dyes are used in the measurement of in 

vitro malaria growth inhibition. Since mature erythrocytes do not have RNA and DNA, the dyes 

bind specifically to malaria DNA in any erythrocytic stage of parasite development. The dyes, 

however, preferably bind to the double stranded DNA, compared to the single stranded RNA.  

(Bennett TN et al., 2004; Smilkstein M et al., 2004; Bacon DJ et al., 2007; Johnson JD et al., 

2007, and Rason MA et al., 2008; Quashie et al., 2006; Corbette et al., 2004). Although initial 

experiments with the fluorescence-based assays required complex, multistep protocols, they are 

accurate, reliable and cheaper than the radioactive and antibody-based assays, as well as easy to 

perform, mostly requiring one step in the plate before obtaining the results. These assays have 

also been improving of late and are used in high-throughput screening (Co et al., 2010). The 

SYBR Green 1 assay makes in vitro drug sensitivity testing more affordable for researchers in 

malaria endemic countries, as this assay is significantly cheaper than most other assays discussed 

above (Bacon et al., 2007; Kaddouri et al., 2006; Smilkstein et al., 2004). The study by Rason 

and others (2008) reiterates the reliability of the SYBR Green 1 method for easy, fast, cheap and 

simple to use in vitro assessments of P. falciparum parasites (Rason et al., 2008).  

 

 

 

 

 

 

Figure 3.2 Structure of parasite DNA binding SYBR Green 1 dye used in the fluorometric 
detection of parasite DNA in the SYBR Green 1 assay as further described in Section 
3.2.7.2.  
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Although flow cytometery (FCM) analysis using the different fluorescence DNA intercalating 

dyes has not become a popular method of analysis used, it has proved to be useful in analysing 

blood stage parasites and to be highly comparable with other methods such as microscopy, 

hypoxathine uptake and pLDH assays (Janse and Vianen, 1994; Jouin et al., 1995; Persson et al., 

2008; Persson et al., 2006; Bergmann-Leitner et al., 2006; Sanchez et al., 2007; Contreras et al., 

2004; Shi et al., 1999). Malaria is detected in each cell by using flow cytometry which yields 

information on forward scatter, which is relative to size, and side scatter, which is relative to 

granularity, and fluorescence, with minimal time and effort. The dyes used in FCM are cheap. 

The method has been shown to be sensitive and specific to as low as 0.002-0.003% parasitemia, 

and as a reliable means to conduct drug sensitivity assays (Co et al., 2010). The equipment is, 

however, expensive and non portable although low cost, compact and simpler flow cytometers 

that are practical for field use are becoming available as a result of recent innovations (Co et al., 

2010). Most recently, Ku et al., (2011) introduced quantum dots as a new tool for use in 

antimalarial drug assays, and from there developed a rapid and efficient assay to screen 

antimalarial compounds. PEGylated-cationic quantum dots, which are fluorescent nanocrystals, 

are used as probes to directly label P. falciparum infected erythrocytes with late stage parasites 

in an immunofluorescence antimalarial drug-screening assay. Apart from being suitable for high-

throughput screening, this method only requires an incubation period of 24 hours and shows 50% 

improved sensitivity compared to the pLDH assay in detecting drug efficacy within a malaria 

parasite cycle (Ku et al., 2011). 

It may at times be extremely difficult to compare drug IC50 values directly from laboratory to 

laboratory due to the many variations in protocol details (Basco, 2004). To overcome this 

challenge, standardised culture systems and quality controls are recommended (Basco, 2003). 

Choosing a particular assay appropriate for particular laboratory settings and maintaining 

consistency in the assay method goes a long way in giving reproducible results (Bacon et al., 

2007). We therefore decided to make use of two complementary assays in this study, the parasite 

lactate dehydrogenase (Malstat) assay and the SYBR Green 1 assay, to determine the in vitro 

antimalarial activities of dichloro-diphenyl-trichloroethane (p,p’-DDT) and dichloro-diphenyl-

dichloroethylene (p,p’-DDE) towards chloroquine sensitive (CQS) P. falciparum D10 and 

chloroquine resistant (CQR) P. falciparum Dd2 strains respectively.  
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Although CQ resistance only evolved after exposure to the drug, the resultant multiple resistance 

profiles of some of the mutated transporters, as described in Chapter 1, indicated that they can 

accommodate a wide spectrum of organic molecules, many of which contain a phenyl-chloride 

moiety. DDT and its major metabolite DDE contain two such moieties (Figure 3.3) and could 

possibly be accommodated by these transporters.  

Figure 3.3 Chemical structures of DDT, DDE and CQ. 

In this study, the activity of p,p’-DDT and p,p’-DDE on CQS and CQR P. falciparum is 

determined to assess if resistance towards CQ is a  factor in their activity or inactivity. There is 

no published study, to our knowledge, on the effect of DDT and DDE on erythrocytic stages of 

P. falciparum or any other malaria strains as the pesticide has only been known to act against the 

mosquito vector and not the malaria parasite. As is discussed in Chapters 2 and 4 it is highly 

likely that there are persistent low levels of DDT and/or DDE present in the malaria vector and 

the human host due to the long half lives and weak biodegradable nature of these compounds. 

Therefore, the question of whether the presence of such aromatic organochlorides places 

selective pressure on malaria strains, possibly the more resistant strains that can cope with DDT 

and/or DDE arises. Here we report the first part of a two part study to address the research 

question. 

3.2 Methods and materials 

3.2.1 Antimalarial drugs used in this study 

Chloroquine diphosphate salt (CQ, Mr 515.87), p,p’-DDT (Mr 354.49), p,p’-DDE (Mr 318.03) 

and all reagents used in this study were purchased from Sigma-Aldrich (Steinheim, Germany) for 

use in the in vitro tests unless otherwise stated. All three compounds/drugs were analytically 
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weighed as described in Section 2.2.3 of Chapter 2 and stored in a desiccator at room 

temperature until required for use.  

Stock solutions of the analytically weighed p,p’-DDT and p,p’-DDE were prepared a day before 

conducting the assays in a minimum amount of filtered HPLC grade methanol to achieve a final  

concentration of 5.00 mg/mL for each of the compounds.  

The stock solutions were diluted to 1.00 mg/mL in complete RPMI media. Eight doubling 

dilutions of p,p’-DDT and p,p’-DDE in complete RPMI medium (1.00 mg/mL to 7.80 µg/mL) 

were prepared in glass vials cleaned, as described in Section 2.2.3 of Chapter 2, a day before 

conducting the dose-response assays and stored at 4°C until required. The solutions were 

prepared in RPMI media so as to reduce the amount of methanol to less than 2% in the malaria 

cultures to prevent exposure of the parasites to high methanol concentrations.  

CQ stock solutions were prepared in analytical quality water (deionised water filtered through a 

MilliQTM system from Millipore-Waters) to starting concentrations of 5.00 µg/mL. Aliquots of 

1.00 µg/mL or 5.00 µg/mL of the CQ stock solution were stored in Eppendorf tubes at 4°C. 

Doubling dilution solutions (1.00 µg/mL to 7.80 ng/mL) were then prepared from the 1.00 

µg/mL stock solution in analytical quality water in dilution plates on the day of the dose 

response assay for D10 parasites. A fivefold higher concentration range was used for the CQR 

strains (Dd2 and D10r).  

3.2.2 Blood samples in malaria parasite culturing 

For culturing, we used packs of 300 mL donated whole blood stored in 63.0 mL citrate 

phosphate dextrose anticoagulant from the Western Cape Blood services (or National Health 

Laboratory Services in South Africa), containing enriched erythrocyte fraction in 100 mL saline-

adenine-glucose-mannitol red blood cell preservation solution. This additive solution also lowers 

the red blood cell (RBC) unit haematocrit (0.6±0.1 L), and stores for up to 42 days. Fresh 

erythrocyte enriched blood, however, was obtained fortnightly as it was observed that P. 

falciparum cultures do not grow as well on older erythrocytes. The erythrocytic fraction from A+ 

blood group was routinely used for the P. falciparum parasite culturing, except when stated 

otherwise. For culturing purposes, all blood samples were washed twice in RPMI culture media 
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by centrifuging at 1300×g for 5 minutes per wash, and removing the plasma and buffy coats, if 

present.  

Blood used for all sets of experiments in this study was completely anonymous left over human 

blood complying with relevant legislation. There was therefore no breach of ethics or approval 

required. Alternatively the researcher involved in this study used her own blood, drawn by 

qualified medical personnel, for analysis and culturing purposes.  

3.2.3 Parasite culturing and enrichment 

Culture derived asexual erythrocytic stage P. falciparum parasites, namely, CQS P. falciparum 

D10 and CQR P. falciparum Dd2, were kindly provided by Prof. Peter Smith from the University 

of Cape Town, Division of Pharmacology.  

The cultures were initiated from glycerol stocks preserved first in liquid nitrogen then stored at  

-80°C as described in Section 3.2.6. Using the methods of Trager and Jensen (1976), and 

Lambros and Vanderberg (1979), the parasites were maintained in a synchronised continuous 

culture.  

After the parasites were thawed, they were resuspended in 10.4 g RPMI 1640 medium 

supplemented with 4 g glucose, 6 g HEPES, 5 g albumax II, 0.4 g hypoxanthine (first dissolved 

in 1 mL sodium hydroxide before adding to the media), 50 mg gentamicin and 2.1 g sodium 

bicarbonate all made up in 1 L analytical quality water (Cranmer et al., 1997; Trager and Jensen, 

1976). The media was set to a pH of 7.2-7.3, filter sterilized using a 0.22 µm filter and stored at 

4°C in a sterile bottle, previously autoclaved twice.  All the chemicals used to prepare the media 

were purchased from Sigma-Aldrich (Steinheim, Germany).  

The cultures were maintained in sterile red standard cap 250 mL Cellstar tissue culture flasks 

(Greiner Bio-One GmbH, Germany) in a total volume of 50 mL medium, and incubated at 37°C 

under a gas mixture of 3% O2, 4% CO2, and 93% N2, without shaking.  

A 3-4% haematocrit was maintained for all cultures grown under the above mentioned 

conditions. Fresh uninfected erythrocytes were added every two days and the RPMI media 

refreshed daily until approximately 5-15% parasitemia was reached. The parasites were grown 
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continuously, but not for more than 3 months from one starter culture to prevent genetic 

alteration.  Cultures with high parasitemia (>10%) were either frozen away in glycerol stocks at  

-80°C to maintain culture collection  or used for dose response assays. 

3.2.4 In vitro synchronisation of ring stage parasites 

For the in vitro synchronisation (Lambros and Vanderberg, 1979) of ring stage parasites, 10.0 

mL of filter sterilised 5% D-sorbitol solution was added to pelleted erythrocytes under sterile 

conditions, and the mixture was carefully mixed by inversion of the falcon tube. The mixture 

was incubated at 37°C for 5 minutes, sedimented at 750×g for 3 minutes, and the erythrocytes 

were resuspended in RPMI medium and returned to the flask before being flushed with the gas 

mixture as described in Section 3.2.3.  

3.2.5 Parasite counts using Giemsa staining 

To assess the asexual stage the parasites, a drop of sedimented erythrocytes from the culture was 

picked up using an autoclaved Pasteur pipette and placed onto a microscope slide. A smear was 

prepared using a second slide. The smear was allowed to dry before being fixed onto the slide by 

immersing the slide briefly in ethanol and again allowing it to dry.  

DNA interchelator Giemsa stain mixture from Sigma-Aldrich (Giemsa stain diluted 

approximately 1:10 in phosphate-buffered saline, pH 7.2) was used to cover the fixed blood 

smear for 2-5 minutes to stain the parasite DNA. The stain was washed off with water and air 

dried before viewing it under oil immersion at the 100× objective lens under the microscope 

(Reilly   et al., 1997).  

Parasitemia was calculated by counting the number of parasites in the infected erythrocytes in 

relation to the normal erythrocytes and it was expressed as a percentage. The percentage 

parasitemia of at least three different positions on the slide was calculated, and the average of the 

three percentages taken as the final % parasitemia. 

3.2.6 Freezing and thawing of malaria parasites 

Only ring stage parasites were frozen as their erythrocyte host membranes are more robust. The 

parasites were frozen away at a high parasitemia greater than or equal to 10% according to the 

method by Diggs et al. (1975).  
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Glycerol medium in which the parasites were frozen was prepared by first dissolving 1.6 g 

sodium lactate, 30 mg potassium chloride, 1.38 g sodium hydrogen phosphate and 57 g glycerol 

(AnalaR grade, BDH Chemicals Ltd) in about 30 mL analytical quality water, setting the pH to 

6.8, then making up the solution to 100 mL with analytical quality water before filter sterilising 

the medium with a 0.22 µm filter.  

The volume ratio of packed erythrocytes to glycerolyte medium required is 3:5. One volume 

glycerolyte medium was added drop wise onto the pellet using a sterile syringe while constantly 

swirling the tube under sterile conditions. The mixture was allowed to stand for 5 minutes, and 

the remaining glycerolyte medium was then added slowly while swirling. The mixture was 

aliquoted (2 mL each) into sterile Cryo.s PP tubes (Greiner Bio-One GmbH, Germany) and 

stored at -80ºC. The tubes containing the parasites in glycerol stock solutions were first 

transferred to liquid nitrogen briefly before being stored in -80 ºC until they were required for 

use. 

To thaw the parasites, three solutions were each made up in analytical quality water. Solution A 

consisting of 12 % NaCl, solution B containing 1.8 % NaCl, and solution C with 0.9 % NaCl 

plus 0.2 % glucose (Diggs et al., 1975). All three solutions were filter sterilized using a 0.22 µm 

filter and stored at 4-8 ºC until required for use. The cells were first thawed in the Cryo.s PP 

tubes at 37 ºC in a water bath before being transferred to a sterile 50 mL centrifuge tube under 

sterile conditions in a laminar flow cabinet. To gradually reduce the osmotic potential of the 

thawed freezer stock, the parasites in glycerol stock solutions were diluted in solution A to a 

volume ratio of stock to solution A of 5:1. Solution A was added drop wise using a sterile 

syringe while swirling and was allowed to stand for 5 minutes before slowly adding 10 mL of 

solution B. The mixture was then centrifuged for 5 minutes at 400×g. The supernatant was 

aspirated using a vacuum source and 10 mL of solution C was slowly added to the pellet with 

gentle swirling. Again, the mixture was centrifuged for 5 minutes at 400×g, the supernatant 

aspirated, and the pellet washed with 20 mL media before spinning for another 5 minutes at 

400×g (Diggs et al., 1975).  
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The parasite containing pellet was reintroduced into culture with complete media and gassing as 

described in the culturing procedure in Section 3.2.3. At this stage, the culture was left for 3-4 

days at 37ºC without changing the medium to allow the parasites in culture to recover. 

3.2.7 Parasite viability and dose response assays  

After being thawed, the cultured parasites were generally grown for about 10 to 14 days until the 

parasitemia reached roughly 5 to15% and the parasites had adapted well enough to be used for 

the drug sensitivity assays.  

Once the well synchronized parasites in young trophozoite stage reached 5-10 %, the infected 

erythrocytes were centrifuged at 750×g for 3 minutes. The supernatant was aspirated and an 

aliquot of the infected erythrocytes was diluted in fresh uninfected erythrocytes before being 

suspended in RPMI medium to achieve a final 2% parasitemia and 2% haematocrit suspension. 

The level of parasitemia of an aliquot of a stock culture was measured by light microscopy 

following Giemsa staining as described above in Section 3.2.5.  

Dose response assays were then carried out as described by Desjardins and colleagues (1979). 

Using sterile untreated 96-well flat bottom polystyrene microtiter plates from NUNC (Denmark) 

90 µL of the 2% parasitemia and 2% haematocrit suspension in early trophozoite stage was 

added to each of the wells (Rautenbach et al., 2007; Wiehart et al., 2006).  

An aliquot of 10 µL per well of the drugs prepared from the serial dilutions as described in 

Section 3.2.1 were added in triplicate to achieve a final volume of 100 µL in each well 

(Rautenbach et al., 2007; Wiehart et al., 2006). The drugs were therefore diluted tenfold in the 

total 100 µL of culture to achieve the desired final concentrations for the drugs in the CQS and 

CQR strains.  

Assay blanks or background were calculated from wells that received erythrocytes with 2% 

parasitemia plus 10 µL of 200 µg/mL gramicidin S (GS, Mr 1140.6) (Rautenbach et al., 2007). 

Infected erythrocytes without the drug added were used as the growth controls for the assay. 

Growth in the presence of drug solvents was determined from wells that received the 2 % 

haematocrit, 2 % parasitemia suspension with 10 µL of analytical quality water or 2 % methanol, 

neither of which caused parasite growth inhibition (results not shown).  
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The plates were placed in a sealed desiccator used as the incubation chamber that had been 

thoroughly sterilised with isopropanol and left overnight under direct UV light before being used 

the following day. After the plates were placed in the incubation chamber, it was flushed for 5-10 

min with the gas mixture consisting of 3% O2, 4% CO2, and 93% N. The chamber was then 

sealed and the plates were incubated at 37°C for 48 hours.  

After the 48 hour incubation period, the plates were directly frozen at -20°C, until development 

by Malstat (lactate dehydrogenase activity) and SYBR Green 1 ([DNA]) assays. The dose 

response assays were all carried out at least in triplicate using the same culture on the same day 

(technical repeats). Similar experiments were repeated on at least three different days with a 

different culture under the same conditions (biological repeats) to check the reproducibility of 

results.   

3.2.7.1 Colorimetric detection of parasite lactate dehydrogenase using the Malstat Assay 

After the 48 hour incubation of the plates at 37°C and freezing away at -20°C the plates were 

thawed at room temperature. The parasite lactate dehydrogenase assay adapted from Gomez et 

al. (1997) was used.  

Malstat solution was prepared from 200 µL Triton X-100 (BDH Laboratory Supplies, Poole, 

England), 2 g L-lactic acid as substrate, 0.66 g Tris-HCl buffer (from Boehringer Mannheim,or 

Roche, ) and 0.011 g of 3-acetylpyridine adenine dinucleotide (APAD) as coenzyme, in 100 mL 

analytical quality water. The solution was set to a pH of 9.0 (Nkhoma S et al., 2007). A second 

solution, NBT/PES solution consisting of 1.96 mM nitro blue tetrazolium (NBT) and 0.24 mM 

phenazine ethosulfate (PES) was used to initiate the lactate dehydrogenase reaction. This 

solution was stored in an aluminium foil covered falcon tube at 4-8 °C until required. 

Aliquots of 100 µL Malstat solutions were pipetted into untreated 96-well flat bottom 

polystyrene microtiter plates (Greiner Bio-One GmbH, Germany). The thawed haemolysed 

suspensions in each of the wells in the dose response assay plate were mixed by pipetting the 

suspensions up and down. An aliquot of 15 µL of the haemolysed suspensions were then added 

to the 100 µL Malstat solution, followed by 25 µL NBT/PES solution to initiate the lactate 

dehydrogenase reaction.   
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After the contents of each well were properly mixed, the plates were then incubated at room 

temperature in the dark for 30 minutes. The reduced form of APAD formation was measured by 

colorimetric determination at 650 nm using a Model 680 Microplate reader from Biorad.  

Air bubble interferences were avoided by gently blowing on the plate with a hairdryer to get rid 

of all air bubbles in the wells. All the chemicals used for preparation of reagents were purchased 

from Sigma-Aldrich (Steinheim, Germany) unless otherwise stated. 

3.2.7.2 Fluorescent detection of parasite DNA using the SYBR Green 1 Assay 

Following incubation, the dose response assay plates were frozen and stored at –20°C until the 

SYBR Green I assay was performed using the procedure described by Bennett and colleagues 

(2004).  

The plates were thawed at room temperature and each sample was mixed by pipetting up and 

down using a multipipette until the thawed culture was well mixed. Aliquots (90 μL) of the 

mixed culture were transferred to a black 96-well sterile NUNC flat bottom 

LumiNunc/FluoroNunc microplate which aids in reducing fluorescence cross talk between wells 

thereby improving assay reproducibility. 

A solution of SYBR Green I, diluted to a 20× concentration in a phenol red free complete 

medium was prepared. The solution was prepared by adding 100 µL of the original SYBR Green 

I nucleic acid gel stain, which according to the manufacturer’s instructions was 10 000× 

concentrated in dimethyl sulphoxide (DMSO), to 50 mL lysis buffer. The lysis buffer consisted 

of 20 mM TRIS hydrochloride (pH 7.5) and 5 mM EDTA to give the desired 20× concentration 

of the SYBR Green I solution according to the manufacturer’s instructions. The SYBR Green I 

solution was stored in an aluminium foil covered falcon tube at 4-8°C until required for use. 

The SYBR Green I solution was then added to each well by use of a volume equal to 10 % of the 

final liquid volume in the well (Bennett et al., 2004) to start the reaction. Therefore, 90 µL of the 

culture was transferred into a black 96-well plate, followed by the addition of 10 µL of the 20× 

SYBR Green I solution in lysis buffer.  The contents of each well were properly mixed and the 

plates were covered in aluminium foil and incubated 37°C for 30 minutes in the dark to develop 

since the SYBR Green I dye is sensitive to light.  
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The SYBR Green I dye fluorescence emission at 521 nm was measured from the plates at an 

excitation wavelength of 490 nm using a Varioskan  plate reader utilising SkanIt Software 2.4.1. 

Air bubble interferences in the wells were avoided as described above. 

3.2.8 Data processing 

Total growth was determined from wells that received only the 2% haematocrit, 2% parasitemia 

culture with 10 µL of analytical quality water or ≤ 2% methanol which was shown to have no 

measureable effect on parasite viability. Background absorption of fluorescence was calculated 

from wells that received the infected erythrocytes plus 10 µL of 200 µg/mL GS. The absorption 

values recorded in each well containing the drug were converted to percentage inhibition as 

described by Rautenbach et al. (2006) using the following: 

Equation 3.1: 

backgroundofAbsorptionAveragewellsgrowthofAbsorptionAverage
backgroundofAbsorptionAveragewellofAbsorptioninhibitiongrowth

−
−×

−=
)(100100%

 

For the SYBR Green fluorescence assays the absorption values in Equation 3.1 were substituted 

with the measured SYBR Green 1 dye fluorescence. 

Non-linear regression of Graphpad Prism 4.0 (Graphpad Software, San Diego, USA) was used to 

analyse all dose response data obtained from the Malstat and SYBR Green 1 assays. Sigmoidal 

dose response curves with variable slope were fitted to each of all data sets as described by Du 

Toit and Rautenbach (2000)  and Rautenbach et al. (2006) using 

Equation 3.2: 

                    slopeActivityIC
bottomtopbottomY ×+

−+
=

50log101
)(

 

The mean values for each data set points without weighting were considered for curve fitting. 

The 50 % growth inhibitory concentration (IC50) was then calculated from on the x-value (log of 

drug concentration) of the halfway response between the top and bottom plateaus of the dose 

response curves. The experiments were performed at least in triplicate at each concentration for 

each of the compounds against the target cells. 
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3.3 Results and discussion 

3.3.1 Comparison of Malstat and SYBR Green 1 assays 

Both the Malstat and SYBR Green 1 assays gave comparable dose response and inhibition 

parameter results for GS and CQ towards P. falciparum D10 cultures (Figures 3.4A and B). Both 

assays were highly repeatable and the sigmoidal dose response curves constructed using 

Equation 3.2 were with R2>0.99 and residual error falling between -5 and 2.5% (Figure 3.4).  

   

 

 

 

 

  

 

 

 

 

 

Figure 3.4 Combined dose-response curves obtained with trophozoite infected red blood cells as 
measured after 48 hours. Percentage growth inhibition was determined using 
colorimetric based Malstat assay and parasite DNA fluorescence detection using the 
SYBR Green 1 assay. P. falciparum CQS D10 infected cells were treated with serial 
dilutions of GS (A) and CQ (B). The graph under each dose response graph shows 
the residuals for the sigmoidal line fits which were used to determine inhibition 
parameters. The mean of 24-28 determinations for the Malstat assay (6-7 biological 
repeats) and 15-18 (5-6 biological repeats) for the SYBR Green 1 assay of each data 
point is shown with error bars indicating the 95% confidence interval (CI).  
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However, the individual repeats, encompassing technical and biological repeats of the SYBR 

Green 1 assay compared to the Malstat assay were more prone to error as can be seen by the 

generally larger 95% CI (Figure 3.4). This is most probably due to the difference between the 

two assays. The SYBR Green 1 dye binds to DNA from any source and fluorescence is 

measured. Any contamination DNA from the environment, differences in DNA concentration 

between parasite stages and compounds that may quench fluorescence or fluoresce themselves 

will influence the result (Co et al., 2010). Presence of haemoglobin which has a wide absorption 

spectrum has also been known to possibly interfere with the emission of SYBR Green 1 in the 

fluorescence based assay (Co et al., 2010). The Malstat assay is highly specific for the parasite 

lactate dehydrogenase (pLDH), but can also be prone to error in cultures that are desynchronized, 

as the ring stages have less pLDH activity than the trophozoite and shizont stages (Makler et al., 

1993a; Makler et al., 1993b). The difference between the two assays at low CQ concentrations 

resulting in a lower “bottom” indicating higher growth as determined by the SYBR Green 1 

assay compared to that of the Malstat assay may have been due to the nature of the assays as 

described above.  

Neither of the two assays showed that CQ reached a 100% inhibition of parasite growth and in 

all of the assays with CQ as inhibiting drug an inhibition plateau was reached between 75 and 

90% growth inhibition (Figure 3.4). This could be due to the selection and survival of persistent 

or CQ resistant parasites during the assay period. 

Comparison of the IC50 inhibition parameter from the individual biological repeats and different 

assays again showed the SYBR Green assay gave more variable data with both GS and CQ as 

antimalarial compounds, if the 95% CI are used as the repeatability indicator. (Figure 3.5). With 

the acquisition of fresh blood for our cultures and assays, blood donors change every 14 days, to 

which some of the intra assay variability could be attributed. 

The SYBR Green 1 assay is strongly recommended by some researchers for in vitro assays in 

research laboratories of malaria endemic areas (Bacon et al., 2007; Kaddouri et al., 2006; 

Smilkstein et al., 2004). This assay proved to be a technically easier assay, but more prone to 

error. From the above arguments on the repeatability, errors and subtle differences we have 
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observed between the two assays, we decided to employ both assays in our studies to determine 

the inhibition parameters and parasite survival in the presence of , p,p’-DDT and p,p’-DDE. 

 

 

 

 

 

 

 

Figure 3.5 Bar-graph showing the comparison between the IC50s determined over a period of at 
least two years using the two assays and two test compounds. The number above 
each bar represents the biological repeats and the error bar the 95% CI 

3.3.2 Effect of Sorbitol on activity of CQ in PfD10 

In order to ensure that the assays are conducted on synchronised cultures the parasite cultures 

were synchronised with D-sorbitol. Only rings survived the synchronisation procedure since their 

membranes are more robust. Trophozoites and schizonts were destroyed by the sorbitol induced 

lysis (Diggs et al., 1975). 

During the run of this project an unexpected increase in CQ inhibition parameters was observed 

for some of our cultures, while the inhibition parameter against GS remained within the expected 

range. D-Sorbitol synchronised CQS D10 cultures, synchronised every cycle (48 hours) for 

roughly 2 months, showed reduced CQ activity resulting in a roughly 2 to 3.5 times increase in 

the CQ IC50. A progressive shift in the CQ dose response curve to the right in relation to an 

unstressed culture synchronised once a week indicated possible resistance (refer to Figure 3.8 

below). The parasite culture from this sorbitol synchronisation regimen remained stable in terms 

of CQ resistance and was named P. falciparum D10r. Frequent synchronisation could have led to 

the selection of more CQ resistant parasites which continued to be cultured.  
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We also found that a 1000 fold lower concentration than used in the synchronisation, namely  

0.5 mg/mL sorbitol almost totally antagonised the activity of 0.025 to 1 μg/mL CQ towards the 

D10 strain (Figure 3.6). There was no significant difference in percentage inhibition between 0.5 

mg/mL D-sorbitol alone and in combination with 48 nM (25 ng/mL) CQ. This combination gave 

approximately the same percentage inhibition at which 12.5 ng/mL CQ alone inhibits growth of 

the D10 strain, indicating a >50% loss of activity (Figure 3.6). At higher concentrations of 97 

and 194 nM (50 and 100 ng/mL) CQ, even more pronounced antagonism was observed in the 

presence of 0.5 mg/mL D-sorbitol, with a significant activity loss of ±55% and ±65% 

respectively. The CQ activity could not be regained even at 1.9 µM (1 μg/mL) in the presence of 

0.5 mg/mL sorbitol (results not shown). This indicated that the 0.5 mg/mL sorbitol supports 

parasite growth at high CQ concentrations of up to 1.9 µM (1000 ng/mL) CQ and may assist in 

the selection of CQ-resistant parasites with 2-3 fold reduced CQ (Figure 3.8). 

 

 

 

 

 

 

Figure 3.6 Comparison of percentage growth inhibition of D10 strain at different concentrations 
of CQ with or without 0.5 mg/mL D-sorbitol as measured after 48 hours using the 
Malstat assay. The mean of 9-18 repeats for the sorbitol exposed parasites and 24 
repeats for the parasite exposed to CQ alone and standard error with the mean (SEM) 
is shown for each data point. Statistical analysis was done with Bonferroni post test 
using a 2-Way ANOVA analysis of the data.  
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3.3.3 Assay quality control using GS towards P. falciparum CQR and CQS strains 

In order to assess if culture and assay conditions remained constant for each group of assays, the 

activity of GS was also determined against all three strains.  GS was used as an assay indicator 

compound due to its selective haemolytic activity towards trophozoite infected erythrocytes 

(Rautenbach et al., 2007). As all our assays were done with synchronized parasites in the 

trophozoite stage, it was expected that GS IC50 would be similar for all the three P. falciparum 

strains. GS showed high activity against all the strains, with all three strains giving similar IC50s 

ranging from 1.2 -1.5 µM (Figure 3.7 and Table 3.1). These values correlate well with the GS 

IC50 values reported in literature (Rautenbach et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 P. falciparum D10, D10r and Dd2 infected cells treated with serial dilutions of GS. 
Graphs A and B show the GS activity against the three strains determined using the 
Malstat (top graph) and SYBR Green 1 (bottom graph) assays, respectively. The 
average of at least 16 to 28 determinations (4 to 8 biological repeats) of each data 
point is shown with error bars depicting SEM.  
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If the GS IC50 remained within a narrow error limit for a specific group of dose response assays, 

this confirmed that assay conditions in terms of erythrocyte concentration and parasitemia were 

comparable between assays and strains.  

3.3.4 Activity of CQ, p,p’-DDT and p,p’-DDE towards P. falciparum CQR and CQS strains 

Parasite inhibitory concentrations (IC50) of CQ were observed to be from 38-40 nM with both the 

Malstat and SYBR Green 1 assays in P. falciparum D10 (Figure 3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 P. falciparum D10, D10r and Dd2 infected cells treated with serial dilutions of CQ. 
Graphs A and B show the activity of CQ towards the three strains determined using 
the Malstat and SYBR Green 1 assays, respectively. The average of at least 6-24 
determinations (2-8 biological repeats) of each data point is shown with error bars 
depicting standard error with the mean (SEM).  
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was observed to be 277-298 nM for IC50 (Table 3.1) which was also comparable to those values 

reported in literature (Graziose et al., 2011). The sorbitol influenced D10r parasites had an IC50 

of 98-132 nM.  While the IC50s for CQ in the 3 strains were significantly different (P<0.001) 

with that of Dd2>D10r>D10 (Table 3.1), the IC50s were comparable (P>0.05) with the two 

assays. Based on the mode of action of CQ in the parasite, high accumulation of CQ into the 

food vacuole of CQS D10 strain allows CQ to effectively kill the parasites (Petersen et al., 

2011). Effective expulsion of the CQ from the vacuole or its limited ability to enter the food 

vacuole to target the parasites probably led to the higher IC50s observed for D10r and CQR Dd2 

strains. P. falciparum CQ resistance is generally the consequence of a decrease in accumulation 

of CQ in the parasite vacuole and linked to the expression of two membrane bound transporters, 

namely PfCRT and PfMDR-1 (Petersen et al., 2011). 

Table 3.1 Summary of the in vitro antimalarial activity parameters of CQ, p,p’-DDT, p,p’-DDE 
and GS towards P. falciparum determined by the Malstat (top value) and SYBR 
Green 1 (bottom value) assays.  

 P. falciparum strain 
         D10          D10r                     Dd2 

Compound  
(conc. unit) IC50±SEM (n) IC50±SEM (n) IC50±SEM (n) 

GS  (μM; 
µg/mL) 

1.37±0.2; 1.56±0.3 (8) 

1.46±0.3; 1.67±0.4 (7) 

1.49±0.09; 1.70±0.1 (4) 

1.18±0.03; 1.35±0.03 (2) 

1.26±0.09; 1.44±0.1 (6) 

1.17±0.2; 1.33±0.2 (5) 

CQ (nM; 
ng/mL) 

40.0±3.4; 20.6±1.8  (12) 

38.9±4.9; 20.1±2.5 (5)  
132±23; 68.1±11.9 (3)* 

98.0±0.14; 50.6±0.1 (2)* 

277±18; 143±9.3 (6)* 

298 ±19; 154±9.8 (5)* 

p,p’-DDT  
(μM; ppm) 

22.8±4.4; 8.09±1.6 (9) 

28.1±3.9; 9.96±1.4 (10) 

19.3±0.08; 6.86±0.03 (3)# 

13.7±1.3; 4.84±0.46 (2) # 

23.2±3.4; 8.23±1.2 (6) # 

31.9±16.1; 11.3±5.7 (5) # 

p,p’-DDE  
(μM; ppm) 

36.2±7.9; 11.5±2.5 (7) 

31.5±5.0; 10.0±1.6 (8) 

20.3±0.66; 6.46±0.21 (3) # 

24.4±1.4; 7.75±0.43 (2) # 

22.9±3.1; 7.29±0.99 (6) # 

27.4±7.6; 8.7±2.4 (5) # 

n = number of independent experiments/biological repeats performed at least in triplicate technical repeats for each 
of the compounds; ppm = concentration in parts per million or µg/mL;  
*P<0.001 for CQ IC50 compared to activity towards D10 strain, #P>0.05 for p,p’-DDT and p,p’-DDE IC50 compared 
to activity towards D10 strain 

Using both the Malstat and SYBR Green 1 assays described in Sections 3.2.7.1 and 3.2.7.2 

respectively, the in vitro IC50 values of p,p’-DDT and p,p’-DDE in the CQS Plasmodium 
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falciparum D10 and CQR Dd2 strains were determined for the first time to our knowledge 

(Figure 3.9, Table 3.1).  

 p,p’-DDT and p,p’-DDE had equally high activity towards all three strains. Their IC50s were in 

the range of 22-28 µM and 31-36 µM, respectively towards D10 parasites, 13-19 µM and 20-24 

µM respectively against D10r parasites, and 23-31 µM and 22-27 µM, respectively towards the 

Dd2 parasites (Table 3.1). Although lower IC50 and ICmax values were recorded towards the CQR 

strains the differences were not significant (P>0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 P. falciparum D10, D10r and Dd2 infected cells treated with serial dilutions of p,p’-
DDT and p,p’-DDE. Graphs A and B show the activity of p,p’-DDT in the 3 strains 
determined using the Malstat and SYBR Green 1 assays, respectively. Graphs C and 
D show the p,p’-DDE activity against the 3 strains also determined using the Malstat 
and SYBR Green 1 assays, respectively. The average of at least 8-30 determinations 
(2-10 biological repeats) determinations of each data point is shown.  
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This is the first study to our knowledge to assess the activity of p,p’-DDT and p,p’-DDE towards 

Plasmodia and in particular resistant P. falciparum. The comparable activity of p,p’-DDT and 

p,p’-DDE towards all three strains indicates that CQ resistance does not affect the activity of 

these compounds. This may mean that these chlorinated compounds do not enter the food 

vacuole as is the case with CQ or that they are not pumped out of the vacuole once entered. The 

extra chloride moiety on DDT also did not lead to a significant difference between the 

antiplasmodial activity of DDT and DDE. However, DDE is chemically more stable than DDT 

(Rogan and Chen 2005) and DDT seemed more prone to aggregation in stock solutions.  

3.4 Conclusions 

Based on the general experience of using both the Malstat and SYBR Green 1 assays for the in 

vitro drug assays, both assays proved to be simple and straightforward to use. The IC50s obtained 

for all compounds tested were comparable for both assays (Table 3.1). The reagents used to 

make up the assay solutions were affordable. The specialised fluorescence spectrometer and 

specific black plates used for the SYBR Green 1 assay were, however, more costly than the assay 

plates and ordinary multi plate reader used for the Malstat method. 

As part of the assay development, it was established that frequent sorbitol stress may influence 

the activity of CQ towards CQS D10 strains. Genetic studies to check for the presence and 

expression of the resistance gene(s) in the D10r parasites are, however, set for the future. 

In this study, we were able to successfully determine the in vitro antimalarial activities of p,p’-

DDT and p,p’-DDE for the first time against P. falciparum CQS D10 and CQR Dd2 strains. 

Comparable activity of ±14-38 µM (5-12 ppm or µg/mL) was observed for the three strains, 

which indicates that CQ resistance does not influence the activity of p,p’-DDT and p,p’-DDE  

towards P. falciparum strains.  Individuals that are highly exposed to DDT may have blood 

circulating levels of DDT and/or its breakdown product DDE of between 103 ± 85 ppb 

(Bouwmann et al., 1991). It has been shown for the first time, that based on the IC50s of 14-38 

µM (5-12 ppm) for p,p’-DDT (normally used to kill the mosquito vector) and p,p’-DDE against a 

very high parasitemia of 2%, these individuals could actually be protected from P. falciparum 

malaria infections, which normally entails 10-100x lower parasitemia. The effect or influence of 
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persistent low level exposure of DDT and/or DDE detected in blood on the activity of CQ in the 

CQS D10 parasites will therefore also be discussed in Chapter 4. 

These results take us a step closer to determining the influence of these chlorinated compounds 

on the resistance or sensitivity of P. falciparum towards CQ. It is therefore important to 

understand the in vitro chemotherapeutic interactions between CQ and DDT and/or DDE during 

malaria infection and whether or not there is a link between these compounds to CQ resistance. 

This will be addressed in Chapter 4 through drug combination assays.  

Assessing whether other insecticides also have similar activities would also assist in determining 

if exposure to the insecticides may have an influence on antimalarial drug resistance or 

sensitivity. In vivo mice models (P. berghei) could also be used in future studies to assess the 

effects of DDT, DDE and other pesticides on the in vivo CQ efficacy. However, this study 

focuses on the understanding the mode of activity of DDT and DDE on the malaria parasite in 

infected human erythrocytes, as little information is known at present. We will report on the 

effect of exposure of cultures to DDE, and DDT/DDE in combination with CQ on the activity of 

CQ against CQS and COR strains in Chapter 4.  
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CHAPTER 4 

In vitro antimalarial drug interactions between chloroquine and the insecticide 

p,p’-DDT and its breakdown product p,p’-DDE   

4.1 Introduction 
The major aspects of the Global Malaria Eradication Program (GMEP) launched by the World 

Health Organisation (WHO) in 1955 involved the use of chloroquine (CQ) as an antimalarial 

drug and dichloro-diphenyl-trichloroethane (DDT) as an insecticide for vector control (Hay et 

al., 2004). This combination led to major successes in the eradication of malaria in some parts of 

the world especially the developed countries that had sufficient resources to make the program a 

success (Petersen et al., 2011). Drug and insecticide resistance, however, emerged resulting in a 

spike in malaria cases and deaths (Najera et al., 2011; Trape 2001; and Clyde and Shute 1957).  

CQ resistance emerged as a result of mutations in the Plasmodium falciparum CQ resistance 

transporter (PfCRT) gene, which lies on the membrane of the parasite’s food vacuole, spreading 

to different parts of the world (Hayton and Su 2008). The “pump” acts by expelling the drug(s) 

from the digestive vacuole, thus preventing the formation of CQ-heme complexes and eventual 

toxic build up of heme in the vacuole which is proposed to aid in the killing of the parasite 

(Amina et al., 2010). The emergence of multidrug-resistant P. falciparum prompted the need to 

use combinations of antimalarial drugs, preferably those with different modes of action, to either 

increase drug efficacy or prevent/slow antimalarial drug resistance (White 1998). The P. 

falciparum multidrug resistance-1 (PfMDR-1) protein has also been linked to CQ resistance in 

Africa, and a functional relationship between PfCRT and PfMDR-1 proteins has been suggested 

(Hastings 2006; Barnes et al., 1992; Osman et al., 2007). Several mutations such as the K76T 

mutation in PfCRT, as further described in Section 1.3.2.2 of Chapter 1, lead to CQ resistance 

(Martin and Kirk 2004). The resultant multiple resistance profiles of some of the mutated 

transporters indicated that they can accommodate a broad spectrum of organic molecules (Amina 

et al., 2010).  

Many of the compounds accommodated by the PfCRT and PfMDR-1 proteins contain a phenyl-

chloride moiety. CQ, like DDT and its major metabolite dichloro-diphenyl-dichloroethylene 
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(DDE) contain such moieties, with the latter containing two each, and can possibly be 

accommodated by the transporters thus influencing CQ resistance. There, however, has been no 

study to our knowledge that has been published to determine the effects and/or subsequently the 

mechanism of action of DDT and DDE on erythrocytic stages of P. falciparium or any other 

malaria strains.  

The lipophylicity of DDT and DDE dictates that they associate with membranes, lipids, and 

hydrophobic proteins in biological media. To influence the malaria parasite directly, the DDT 

and/or DDE must reach the intra-erythrocytic malaria parasite. Again, there are, however, no 

published studies describing the interactions of CQ and DDT or DDE against the intra-

erythrocytic malaria parasite. However, in a recent study a synthetic 2-hydroxydiphenyl ether 

with antimicrobial properties found in several detergents named triclosan, was found to have in 

vitro and in vivo antimalarial activity against blood stage P. falciparum CQ sensitive and CQ 

resistant parasites (Surolia and Surolia, 2001; Mishra et al., 2007). Triclosan shares some 

structural properties with DDT and inhibits the Fabl enzyme involved in the conversion of acyl 

carrier protein, crotonyl-ACP, into butyryl-ACP in the P. falciparum fatty acid biosynthesis II 

(FAS II) pathway. This pathway, which is not found in humans, is seen as a potentially attractive 

target for antimalarial drugs (Surolia and Surolia, 2001; Mishra et al., 2007). The structural 

similarity (Figure 4.1) between triclosan, DDT and DDE may provide a possible clue to the 

mechanism of action of DDT and DDE against the intra-erythrocytic malaria parasite.  

The World Health Organisation recommends a combination of drugs that act on different 

parasite targets, and have favourable pharmacokinetic profiles for malaria treatment (He et al., 

2010). Despite the controversial association of DDT and its metabolites to adverse human health 

and environmental effects due to their long elimination half-lives (Turusov et al., 2002), this 

study will attempt to elucidate the positive and negative influences of residual levels of the 

compounds in malaria control and may assist in justifying the reintroduction of the insecticide in 

malaria-endemic parts of sub-Saharan Africa. We will present our investigation on the in vitro 

interactions of DDT and DDE with CQ against CQ sensitive D10 and CQ resistant Dd2 P. 

falciparim strains and the influence of the malaria parasite on the distribution of DDT and DDE 

in P. falciparum malaria cultures.  
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Figure 4.1 Chemical structures of the insecticide DDT, its breakdown product DDE, the 
antimalarial drug CQ and Triclosan, an antibacterial compound found in common 
household items.  

4.2 Methods and materials 

4.2.1 Antimalarial drugs in this study 

Chloroquine diphosphate salt (CQ, Mr 515.87), p,p’-DDT (Mr 354.49), p,p’-DDE (Mr 318.03) 

purchased from Sigma-Aldrich (Steinheim, Germany) were used for this study. Initial stock 

solutions of each of the compounds were prepared as described in Section 3.2.1 of Chapter 3 for 

the CQS D10 and CQR Dd2 strains. 

4.2.2 In vitro P. falciparum cell culturing 

Laboratory grown P. falciparum CQS D10 and CQR Dd2 were maintained in continuous culture 

that was enriched, synchronised and stored as described in Sections 3.2.2 to 3.2.6 of Chapter 3. 

4.2.3 Antimalarial activity of CQ in combination with p,p’-DDT and p,p’-DDE 

To determine the in vitro drug-drug interactions of the compounds in the parasites, the activities 

of CQ in combination with p,p’-DDT or p,p’-DDE towards the CQS D10 and CQR Dd2 

parasites were determined. A technique adapted from Chawira and Warhust (1987) in which 

fixed ratios of predetermined concentrations required to inhibit parasite growth by 50% (IC50) 

was used to determine the interaction of two drugs.  

The combination assay was done using 2% hematocrit, 2% parasitemia cultures as described in 

Section 3.2.7 of Chapter 3. The drug combination solutions were serially diluted in RPMI media 

DDT DDE 

CQ 
Triclosan 
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in pyrolysed glass vials cleaned as described in Section 2.2.2 of Chapter2, using Hamilton glass 

syringes for volume measurement the previous day, and were stored at 4°C until required on the 

next day for the assays.  

Using mass:mass ratios, combinations of CQ:p,p’-DDT and CQ:p,p’-DDE were prepared for the 

CQS and CQR parasite strains. The ratios of CQ to p,p’-DDT or p,p’-DDE were in ng/mL (nM 

or ppb) to µg/mL (µM or ppm) respectively. Therefore, from a highest concentration of  100 

ng/mL CQ and 100 µg/mL p,p’-DDT or p,p’-DDE in the dilution range, the mass:mass drug 

combination ratios were 1:0, 0.075:25, 0.050:50, 0.025:75 and 0:1 respectively for CQS parasites 

(D10 strain). The highest concentrations in the dilution range for the CQR parasites (Dd2 strain) 

were 500 ng/L CQ and 100 µg/mL p,p’-DDT or p,p’-DDE, therefore the combination ratios were 

1:0, 0.375:25, 0.250:50, 0.125:75, and 0:1 respectively. The total volume for each of the 

combined drug solutions prepared was 100 µL. 

Eight serial doubling dilutions were prepared with the highest concentrations of the series being 

those indicated in the combination ratios. Separate solutions of each of the drugs (CQ, p,p’-DDT 

and p,p’-DDE) were used as controls for the experiment. GS at 20 μg/mL and drug solvents were 

used to determine the assay background and parasite growth respectively as described in Section 

3.2.7 of Chapter 3. 

4.2.4 In vitro parasite growth inhibition assays 

To determine the parasite viability (Sections 3.2.7, Chapter 3) of each of the two strains (D10 

and Dd2) after exposure of the parasites to the different drug combinations of CQ:p,p’-DDT and 

CQ:p,p’-DDE, dose response assays using the Malstat and SYBR Green 1 assays as described in 

Section 3.2.7.1 and 3.2.7.2 respectively of Chapter 3 were done. 

4.2.5 Data analysis of in vitro drug–drug interactions 

IC50 values were determined for all three ratios as well as for the drugs independently using both 

assays. Isobolograms were then constructed using Graphpad Prism® 4.0 (GraphPad Software 

Inc.) based on the fractional inhibition concentrations (FICs) calculated to present the mean IC50 

values of the drug combinations as ratios, as described in Sections 4.2.8 and 4.2.9. At least three 
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technical repeats and three biological repeats were performed for each combination experiment 

for statistical purposes and to check the reproducibility of results. 

4.2.6 Determination of fractional inhibition concentrations  

Two fractional inhibition concentration (FIC) values, one for CQ and the other for p,p’-DDT or 

p,p’-DDE, were calculated separately for each of the five drug combination ratios by using the 

50% inhibitory concentrations (IC50s) of each of the two combined drugs.  

The FIC for each drug combination was calculated using 

Equation 4.1:  FICdrug in combination = IC50
CQ + DDx(drug in combination)/IC50(drug alone)                                      

In Equations 4.1 (and 4.2 below), DDx represents p,p’-DDT or p,p’-DDE. The FIC of CQ or 

DDx is calculated as the ratio of the IC50 of CQ in combination with p,p’-DDT/p,p’-DDE to the 

IC50 of CQ or DDx alone that gives the same effect. The FICs of CQ (FICCQ) and p,p’-DDT or 

p,p’-DDE (FICDDx) were calculated for each combination, and isobolograms were plotted as 

described by Bell (2005). 

Adapted from Odds (2003), the FICindex was calculated as the sum of FICs of CQ and p,p’-DDT 

and/or p,p’-DDE using 

Equation 4.2: FICindex = FICCQ + FICDDx 

FICindex was used to determine the correlation between CQ and p,p’-DDT/p,p’-DDE so as to 

classify the combinations as either being synergistic, antagonistic or additive, with FICindex 

values less than 1, more than 1 or equal to 1, respectively (Bell 2005; Berenbaum, 1978). For 

conservative interpretation, the cut off values were FICindex ≤ 0.5 for absolute synergism, 

1>FICindex>0.5 for slight synergism, FICindex = 1 for additive activity, non-interactive to 

slight/moderate antagonism at 1< FICindex < 4, or absolute antagonism with FICindex ≥ 4 (Odds 

2003; Gupta et al., 2002; Bell 2005). 

4.2.7 Isobologram construction 

With the FICindex data giving a numerical indication of the drug combination interactions, 

graphical representation in the form of isobolograms was also used to interpret the possible 
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different interactions of the drugs (Odds, 2003; Gupta et al., 2002; Bell, 2005). Data points of 

each combination ratio in relation to the FICs were plotted and examined.  

As described by Bell (2005), the shapes of the lines plotted from the FIC data were interpreted as 

either being synergistic (concave; points below the dotted line), additive to non-interactive 

(linear; points on or near the dotted line) or antagonistic (convex; or points above the dotted line) 

based on the combinations of the two drugs as described in Figure 4.3. The strength of either 

synergism or antagonism would be indicated by how much the respective curves deviate from 

the line of additivity.  

4.2.8 Assessment of p,p’-DDE exposure on CQ resistance or sensitivity 

CQS D10 parasites cultured as described in Section 3.2.3 of Chapter 3 were grown for nine days 

using modified culture media containing 10 ppm p,p’-DDE. Cultures (10 mL) were maintained 

on a daily basis and a small sample (200 μL) was taken each day for analysis. Unmodified media 

was then used to culture the parasites to a parasitemia  ≥ 10%, and the sensitivity of the parasites 

against CQ, p,p’-DDT and p,p’-DDE was then assessed as previously described in Sections 

3.2.5, 3.2.7.1 and 3.2.7.2 of Chapter 3 using parasite counts, the Malstat and SYBR Green 1 

assays respectively.  

4.2.9 Compartment distribution of p,p’-DDT and p,p’-DDE in P. falciparum cultures 

p,p’-DDT and p,p’-DDE distribution in the malaria cultures was determined to assess how much 

of residual p,p’-DDT and/or p,p’-DDE would enter the different compartments (the RPMI media 

and packed erythrocytes) over time. The distribution between CQS D10 parasitised packed 

erythrocytes and RPMI media was also assessed to determine whether the parasites would have 

an influence on the distribution of the drugs between the compartments. 

The biological media (packed erythrocytes plus RPMI media) was spiked with 5ppm p,p’-DDT 

and/or p,p’-DDE. The spiked samples were then incubated at 37 ºC at different time intervals (0, 

1, 2, 4, 8, 16 and 24 hours) before being extracted using the method described in Sections 2.2.5 

of Chapter 2. Samples were prepared at least in duplicate for statistical purposes.  

After the incubation period, the biological media was then separated into two compartments of 

packed uninfected erythrocytes and RPMI media by being centrifuged at 750×g for 3 minutes. 
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Each compartment was then extracted as described above. Residual levels of p,p’-DDT and p,p’-

DDE in each compartment were then determined using GC-MS and HPLC-UV analysis methods 

as described previously in Sections 2.2.7, 2.2.8 and 2.2.9 of Chapter 2. Unspiked packed 

erythrocytes and RPMI media mixtures were used as the experimental controls, and were 

extracted (Sections 2.2.6 of Chapter 2) and analysed in the same manner as described for the 

p,p’-DDT and p,p’-DDE spiked samples.  

The CQS D10 cultures (≥ 10% parasitemia in ring stage) spiked with 5 ppm p,p’-DDT and p,p’-

DDE were separated into parasitised packed erythrocytes and RPMI media by centrifuging at 

750×g for 3 minutes. Residual levels of the compounds were extracted and analysed in both the 

RPMI media and the parasitised erythrocytes using GC-MS and HPLC-UV analysis methods 

after exposure to the compounds at different time intervals and extraction (methodology 

described in Chapter 2). Unspiked D10 parasitised erythrocytes and RPMI media mixtures were 

used as the experimental controls. 

4.3 Results and Discussion 

4.3.1 In vitro antimalarial activity of CQ in combination with p,p’-DDT and p,p’-DDE  

As part of assessing the influence of DDT and DDE exposure on chloroquine resistance, the in 

vitro antimalarial activities of CQ: p,p’-DDT and CQ: p,p’-DDE  drug combinations were 

determined. The activity of the compounds in combination would in turn lead to determination of 

the in vitro drug-drug interactions of the compounds in the CQS and CQR parasites of P. 

falciparum and possibly provide a clue towards the mechanism of action of especially DDT and 

DDE since several drug combination studies are used for elucidation of drug mode of action 

(Bell 2005). The fixed ratio technique adapted from Chawira and Warhust (1987) and the 

checkerboard method described by Odds (2003) have been widely used to assess antimalarial 

drug interactions (Fivelman et al., 2004; Bell 2005). Both methods depend on the 

predetermination of the IC50s of the combination drugs. 

The IC50 values of the drug combinations were determined with normal dose response assays as 

described in Chapter 3. Representative dose responses with the CQ sensitive strain, P. 
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falciparum D10 as the combination drug target are shown in Figure 4.2. Similar trends for both 

strains were observed with the Malstat and SYBR Green 1 assays (results not shown). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Representative dose response graphs of the different drug combinations in terms of 
the CQ against CQS Plasmodium falciparum D10 parasites. Assays were developed 
using the Malstat assay and each data point represents the mean of triplicate 
determinations with standard error of the mean (SEM). 

FIC values were calculated from the IC50s obtained with the different drug combinations directed 

towards the sensitive D10 and resistant Dd2 P. falciparum parasite strains. We constructed 

isobolograms (Figure 4.3) in order to assess the effect that the drugs have on each other’s 

activity. Slight synergistic trends (concave shaped graph below the line of additivity) were 

observed with both p,p’-DDT and p,p’-DDE in combination with CQ towards the CQS D10 

strain (Figure 4.3). However,  the complete opposite trends were found for both p,p’-DDT and 

p,p’-DDE in combination with CQ  towards the CQR Dd2 strain which showed moderate 
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antagonistic trends (convex shaped graph above the line of additivity) with both compounds 

(Bell 2005; Berenbaum 1978). 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Isobolograms depicting the in vitro drug interaction between CQ and p,p’-DDT (A) or 
CQ and p,p’- DDE (B) towards P. falciparum CQS D10 and CQR Dd2 strains. The 
FIC values were derived from at least 3 independent experiments done at least in 
triplicate for each drug combination concentration in each set and determined using 
the Malstat assay. SEM is shown for each averaged data point. 

To further investigate the effect of the drug combinations in the above finding, we calculated 

FICindexes using data from both the Malstat and SYBR Green 1 assays (Table 4.1). The calculated 

FICindex parameters from both assays correlated well with each other and with our previous 

assessment using the isobolograms. When the results are not clear cut and the FICindex values are 

either just below 1 or just above 1, this leaves some doubt as to whether the drug combinations 

are significantly synergistic or antagonistic. Therefore we opted to use more conservative cut off 

values with FICindex ≤ 0.5 for absolute synergism, slight synergism at 1 > FICindex > 0.5, additive 

activity at FICindex = 1, non-interactive to slight/moderate antagonism at 1 < FICindex< 4 (adapted 

from Odds 2003; Gupta et al., 2002; Bell 2005). Using these FIC index limits, our FICindex 

results show a slight/moderate antagonism between CQ and p,p’-DDT and p,p’-DDE for the CQ 

resistant Dd2 strain and slight synergism for CQ sensitive D10 strain.  

The synergistic effect observed in the D10 strain may have been as a result of increased 

effectiveness of CQ and p,p’-DDT or p,p’-DDE collectively working in combination at different 
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target sites in the malaria cultures. CQ targets the intra-erythrocytic parasite directly, specifically 

via the hemozoin polymerization in the food vacuole (O'Neill et al., 2006), while the target(s) of 

p,p’-DDT and p,p’-DDE are yet to be elucidated. However, the antagonism observed with the 

Dd2 parasites, may suggest that p,p’-DDT and p,p’-DDE have an effect on CQ resistance or the 

action of CQ on a target other than hemozoin polymerization. 

Table 4.1 Summary of the FICs and calculated FIC index to describe the in vitro drug interaction 
between CQ and p,p’-DDT or p,p’-DDE in different combinations against P. 
falciparum D10 and Dd2 parasite strains.  The top parameters in each row were 
determined using the Malstat assay and the bottom value with the SYBR Green 1 
assay. N depicts the number of biological repeats, and DDx depicts p,p’-DDT or p,p’-
DDE . Each biological repeat was done using at least triplicate technical repeats. 

Drug 
Combination 

ratio 
CQ:DDx  

CQ FIC DDT FIC CQ:DDT 
FICindex (n) CQ FIC DDE FIC CQ:DDE 

FICindex 

P. falciparum D10 (CQ sensitive)

0.075:25 
0.38±0.03 0.37±0.10 0.75±0.13(5) 0.49±0.03 0.40±0.08 0.89±0.11 (5) 
0.50±0.04 0.46±0.09 0.96±0.13(5) 0.50±0.03 0.43±0.07 0.93±0.10 (5) 

0.050:50 
0.21±0.01 0.59±0.16 0.80±0.17(5) 0.24±0.02 0.59±0.12 0.83±0.14 (5) 
0.27±0.02 0.62±0.19 0.89±0.21(5) 0.34±0.03 0.68±0.10 1.02±0.13 (5) 

0.025:75 
0.07±0.00 0.61±0.17 0.68±0.18(5) 0.12±0.04 0.57±0.09 0.69±0.13 (4) 
0.10±0.02 0.67±0.20 0.77±0.22(5) 0.16±0.04 0.63±0.08 0.79±0.12 (4) 

P. falciparum Dd2 (CQ resistant) 

0.375:25 
0.71±0.01 0.55±0.09 1.26±0.10 (3) 0.65±0.02 0.87±0.10 1.52±0.12 (3) 
0.80±0.02 0.52±0.12 1.32±0.14 (3) 0.68±0.01 0.95±0.12 1.63±0.13 (3) 

0.250:50 
0.42±0.01 0.98±0.16 1.40±0.17 (3) 0.29±0.01 1.19±0.13 1.48±0.14 (3) 
0.60±0.02 1.00±0.19 1.60±0.21 (3) 0.28±0.04 1.08±0.20 1.36±0.24 (3) 

0.125:75 
0.16±0.01 1.11±0.09 1.27±0.10 (3) 0.09±0.01 1.05±0.04 1.14±0.05 (3) 
0.25±0.03 1.27±0.15 1.52±0.18 (3) 0.15±0.03 0.98±0.11 1.13±0.14 (3) 

 

4.3.2 Assessment of DDT and DDE exposure on CQ resistance or sensitivity 

As DDT and DDE may reside for prolonged periods in the blood they may, apart from the 

antagonistic or synergistic actions on CQ, have an effect on the malaria parasite.  We compared 

parasite sensitivity towards CQ for parasites adapted in blood from three different donors with 

different levels of residual blood DDT and/or DDE as determined by the HPLC-UV and GC-MS 
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methods discussed in Chapter 2. Donor 1 may have 1-2 ppm whilst Donor 2 had trace amounts 

of circulating DDT and/or DDE (lower than the GC-MS and HPLC-UV instrument detection 

limits) (Table 2.6 of Chapter 2). Donor 3 CQ was used as the control group since no DDT or 

DDE was detected in the blood. 

Although the determined IC50 values of CQ toward the CQS D10 strain grown in the blood of the 

three donors was comparable (Figure 4.4), it was unclear whether the difference in dose response 

curves concerning their tops and the shifts to the right was due to a donor effect or 

resistance/antagonism due to low level exposure to DDT and/or DDE, or are a result of both. The 

donor effect for example could entail differences in the blood lipid content, age of the respective 

red blood cells or other cellular differences and residual drugs that may interfere with CQ action 

or parasite growth. 

 

 

 

 

 

 

Figure 4.4 Comparison of the CQ activity against CQS P. falciparum D10 parasites grown in 
blood from three different donors. Assays were developed using the Malstat assay 
and each data point represents the mean of triplicate determination with SEM 

A comparison of inhibition at 48 nM (25 ng/mL) CQ showed significant difference (P < 0.05) 

between donors 1 and 2. At this concentration, only about 50 % growth inhibition of the parasite 

was achieved with donor 1 blood compared to slightly over 70 % parasite growth inhibition with 

donor 2 blood as shown in Figure 4.5. 

To determine if there is a longer term effect of p,p’-DDE, the major breakdown product of p,p’-

DDT, on the parasite’s response to CQ, CQS D10 parasites were grown for nine days in the three 
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different sets of donated blood and maintained in modified culturing media containing 10 ppm 

p,p’-DDE. As seen above, donor blood could affect CQ sensitivity (Figures 4.4 and 4.5), as well 

as have a major effect on the growth rate of the parasite (Figure 4.6). 

 

 

 

 

 

 

 

Figure 4.5 Comparison of the difference in 48 nM (25 ng/mL) CQ inhibitions towards P. 
falciarum D10 parasites between blood from 3 donor sets with differing levels of 
residual DDT and/or DDE, determined using the Malstat Assay. 

From our studies it was clear that the parasites adapted better in the blood of some donors than 

others, with donor 3>2>1 (Figure 4.6). The rapid fall in parasitemia within five days in the blood 

of donor 3 indicate a rapid selective killing of fast growing parasites. Although the initial 

parasitemia differed for the different blood donors, approximately 3% of the parasites survived in 

each case. Therefore, regardless of the donor blood, growing the parasites in the presence of 10 

ppm p,p’-DDE led to the emergence of persistent slow growing cultures (Figure 4.6). This may 

partly explain the above results (Figure 4.5) with parasites grown in donor 1 blood being less 

sensitive. The parasites that survived the p,p’-DDE exposure were re-cultured to roughly 10% 

parasitemia in the absence of p,p’-DDE in the blood of donor 3. The CQ, p,p’-DDT and p,p’-

DDE sensitivity of the parasites was assessed as previously described in Chapter 3. Based on the 

IC50s obtained and compared to those previously obtained before exposure of the CQS D10 

parasites to the 10 ppm p,p’-DDE (Chapter 3), there was no significant change in the activities of 

CQ, p,p’-DDT and p,p’-DDE against the re-cultivated parasites (Figure 4.7).   
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Figure 4.6 Survival of P. falciparum D10 grown in the presence of 10 ppm p,p’-DDE over 9 
days of exposure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 CQ induced dose reponse of P. falciparum CQS D10 infected cells that survived the 
nine day exposure to 10 ppm p,p’-DDE. Percentage growth inhibition induced by CQ 
(A), DDT (B) and DDE (C) was determined using the colorimetric based Malstat 
assay. The average of determinations of each data point from four technical and two 
biological repeats each are shown with SEM. IC50s were calculated from the 
sigmoidal dose response curves generated from the different data points.  
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The activity of p,p’-DDT and p,p’-DDE  in terms of IC50 values remained similar to those 

determined before exposure to 10 ppm p,p’-DDE (Figure 4.7). This suggested that persistent 

slow growing parasites that survive after exposure to DDT and/or DDE in the human host still 

remain sensitive to CQ, p,p’-DDT and p,p’-DDE at the same level of potency as would in an 

individual not exposed to DDT and/or DDE. These results indicated that the persistent parasites 

did not acquire resistance against any one of the three compounds during the nine day exposure 

to 10 ppm p,p’-DDE. 

4.3.3 p,p’-DDT and p,p’-DDE distribution in P. falciparum D10 cultures 

As it was clear from our results on the combination of CQ with p,p’-DDT and/or p,p’-DDE that 

the compounds act slightly synergistic against the CQS D10 strain it was important to assess how 

much of residual p,p’-DDT and/or p,p’-DDE would enter into or remain in the different 

compartments (the RPMI media, erythrocytes and infected erythrocytes) over time. CQS D10 

parasitised erythrocytes were used to assess if the presence of the parasites would at all influence 

the distribution of the drugs between the compartments. The distribution of the compounds 

between the compartments could give an indication if the compounds are pumped into or out of 

the parasite, trapped in the erythrocyte compartment and if it is a slow or fast equilibrium 

between compartments. In future studies in which we intend to determine how much of the DDT 

and/or DDE eventually enter the intra-erythrocytic parasite if any, and what concentration levels 

are present to either antagonise CQ in the resistant strains or work in synergy to fight malaria 

infection in CQS strains so as to enable effective dosage of CQ in the malaria infected patients. 

The GC-MS and HPLC-UV analysis gave comparable trends in the distribution observed with 

both analysis methods (refer to Figures 4.8 and 4.9). There was, however, some discrepancy in 

that 5-20% higher levels of p,p’-DDT and p,p’-DDE was detected with GC-MS in the 

erythrocytic compartment corresponding with similar lower levels in the medium. This 

difference may be due to background interference in our HPLC method.  

Our initial observation was that the 24 hour exposure period of the biological media containing 

infected erythrocytes to p,p’-DDT and p,p’-DDE allows enough time for the compounds to reach 

equimolar distribution between the different compartments (results not shown). This distribution 
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is probably due to binding of the hydrophobic compounds to the lipophylic membranes and 

proteins with hydrophobic pockets in the media or cytoplasm.  

As is shown in Figures 4.8 and 4.9, there was a high initial erythrocyte association in the absence 

of infected erythrocytes and an almost equimolar distribution of the initial 5 ppm p,p’-DDT 

between the erythrocytes and RPMI medium after 16 hours. This gave a strong indication that a 

substantial amount of each of the compounds could eventually reach the intra-erythrocytic 

malaria parasite since at least 50% of the compound is associated with the erythrocyte 

compartment.  

 

 

 

 

 

 

 

 

 

Figure 4.8 Distribution of p,p’-DDT over 16 hours of exposure between erythrocytes 
(blood/infected blood) and RPMI media (media/infected media). The distribution 
profiles were determined by A) HPLC-UV and B) GC-MS analysis with 2-5 
biological repeats for each time point and were shown with error bars indicating 
SEM.  

The slow equilibrium between the uninfected erythrocytes and media may have been due to the 

fact that after initial spiking of the biological media, p,p’-DDT and p,p’-DDE bound more to the 

surface lipids of the red blood cells then slowly equilibrated back into the RPMI media, possibly 

binding to albumin until almost equimolar levels were reached in both compartments.  
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The high initial erythrocyte association was even more pronounced in the presence of D10 

infected erythrocytes indicating that the parasite infected erythrocytes may initially associate 

even better with p,p’-DDE and p,p’-DDT. The compartment equilibrium for both p,p’-DDT and 

p,p’-DDE was reached at a much faster rate in the cultures with ±10% initial parasitemia 

(Figures 4.8 and 4.9). This may be due to the increased permeability of the infected erythrocyte 

membrane (Kirk 2001). However, the compartmental distribution of p,p’-DDT differed 

significantly from that of p,p’-DDE, which also reached equimolar distribution between the two 

compartments. The D10 parasites appear to cause trapping of p,p’-DDT in the erythrocyte 

compartment with very little of this compound being release from the erythrocytic compartment. 

We observed a 30-50% higher amount of p,p’-DDT that was retained in the erythrocytic fraction 

of the D10 infected cultures.  

 

 

 

 

 

 

 

 

 

Figure 4.9 Distribution of p,p’-DDE over 16 hours of exposure between erythrocytes 
(blood/infected blood) and RPMI media (media/infected media). The distribution 
profiles were determined by A) HPLC-UV and B) GC-MS analysis with 2-5 
biological repeats for each time point and were shown with error bars indicating 
SEM.  
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4.4 Conclusions 
When the potency of two or more drugs combined in an assay of antimalarial activity is either 

higher or lower than would have been expected from the individual activities, synergy and 

antagonism, respectively, are obtained. The drugs may or may not interact physically to produce 

these effects. However, usually it is the influence of the activity of the one drug that affects that 

of the other in the combination whilst acting on the respective target sites. The existence and 

strength of drug interactions may therefore provide information on what the individual drugs do 

in the cells (Bell 2005). 

We found slight synergistic activity between CQ and p,p’-DDT or p,p’-DDE towards the CQ 

sensitive D10 strain and notable antagonism towards the CQ resistant Dd2 strain. It may be that 

the two compounds act antagonistically and enhance resistance indirectly by competing for the 

same target, possibly a non-vacuolar target, or by stimulation of the CQ transporter in the food 

vacuole. The synergy, however, may be due to different target sites of CQ and DDT or DDE 

allowing for effective killing of the parasites. The observation of reciprocal synergism of p,p’-

DDT and p,p’-DDE with CQ against CQS D10 and antagonism against CQR Dd2 strain is highly 

significant and strongly indicates selection of CQ resistant strains in the presence of p,p’-DDT 

and p,p’-DDE. People who have low levels of circulating DDE and/or DDT could be at higher 

risk to contract CQR malaria. 

On the rationale for malaria combination therapy White (1998), however, argues that although 

certain drug combinations show antagonism in vitro, the effects are generally small and there is 

no evidence that this translates into a reduced in vivo effect. Triclosan was shown to potently 

inhibit P. falciparum in vitro and in an in vivo mouse model (Surolia and Surolia 2001). Since 

we hypothesise that DDT and DDE may share the same mechanism of action with triclosan 

because of the structural similarities, then they may also be equally potent when the drug 

combinations with CQ are introduced to an in vivo model. However, it is important to first 

explore their mechanism(s) of action and compare it/them with that of triclosan in future studies. 

Persistent growing parasites exposed to 31.4 µM (10 ppm) p,p’-DDE for nine days did not 

acquire resistance against CQ, p,p’-DDT or p,p’-DDE therefore this may be reflective of what 

can be expected in the in vivo studies. Future work will, however, involve exposure of the D10 

Stellenbosch University  http://scholar.sun.ac.za



4‐18 

 

strain to 10 ppm DDT for the nine days or more, and of both DDT and DDE on CQR Dd2s. 

Resistance markers will then be assessed to determine if DDT and/or DDE have an influence on 

strain mutation or adaptation. 

The distribution study gave a strong indication that DDT and/or DDE will eventually reach the 

intra-erythrocytic malaria parasites since some of the compounds had already reached the 

erythrocyte itself. The parasites were shown to trap DDT for longer than DDE before the 

compounds are distributed between the different compartments. Compartment distribution within 

the CQS cultures was done with the aim of eventually determining how much (if any) of DDT 

and DDE would eventually enter the malaria parasite itself. These future studies will give an 

indication of what concentration of DDT or DDE in the parasite could have an in vivo effect that 

may compromise the treatment of malaria patients previously exposed to DDT. This study will 

also be followed up in future work with assessment of how the CQR cultures influence the 

compartment distribution if at all. Optimised GC-MS and HPLC-UV methods used and 

developed in Chapter 2 will be used to determine the DDT and DDE levels in the parasites.  
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CHAPTER 5 

Conclusions 

The overall goal of this study was to assess if low levels of DDT and/or DDE, circulating in 

blood of people exposed to these insecticides, have activity on the asexual blood stages of  

Plasmodium falciparum and if this exposure could lead to the selection of P. falciparum strains 

resistant to chloroquine.  

The initial determination of background levels of DDT and DDE in blood and malaria culturing 

media, to assess the contaminant variable, was successfully conducted with the development and 

optimisation of an HPLC-UV and two GC-MS analysis methods (Chapter 2). Good recoveries of 

the DDT and DDE were obtained from biological samples (blood and malaria culture RPMI 

media) and were consistently above 86% for both DDT and DDE as determined with our three 

analyses methods. Although an effective and reproducible HPLC-UV analysis method was 

successfully developed for the determination of high concentrations of DDT (up to 100 ppm) and 

DDE (up to 50 ppm) in the biological media, low concentrations could not be accurately 

determined as there was possible biological interference that could result in false higher levels 

detected in the blank biological samples compared to GC-MS methods. An optimised and more 

sensitive GC-MS method, however, proved to be more effective in determining lower 

concentrations (≤ 1 ppm) of DDT and DDE with LOD of 7.8 ppb and 78 ppt for DDT and DDE, 

respectively, compared to 78 ppb and 7.8 ppb, respectively, with the HPLC-UV method. DDT, 

however, disintegrated into DDE and DDD with this method, which was not observed with the 

HPLC-UV method, possibly due to high column temperatures.  

We determined the effect of 2.2 to 282 and 314 µM (0.78 to 100 ppm) of p,p’-DDT and p,p’-

DDE respectively, on the viability of CQS and CQR strains of P. falciparum (Chapter 3). We 

were able to achieve comparable results with two in vitro drug assays (Malstat and SYBR 

Green). p,p’-DDT and p,p’-DDE were tested at relatively high  parasitemia of 2%, which relates 

to a serious malaria infection and they exhibited in vitro IC50s towards a 2% culture of P. 

falciparum CQS D10 and CQR Dd2 strains of between 5 to 12 ppm or  ± 14 to 38 μM (Chapter 

3).  
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This is the first study in which it has been illustrated that low levels of the insecticide DDT and 

its major metabolite, DDE, could offer protection against blood stages of P. falciparum malaria. 

Although it has been argued that in vitro studies do not always give a true indication or 

correlation of what to expect with in vivo studies (White 1998), it remains a possibility that this 

activity could translate to in vivo activity. Previously exposed individuals with low levels of 

DDT and/or DDE circulating in their bloodstream may actually be protected against malaria 

infection. Future studies would include the in vivo effects of DDT and DDE in a P. berghei 

mouse model. 

The actual targets of DDT and DDE were not established and will be addressed in future studies. 

We, however, hypothesize that these compounds may have a similar target to an analogous 

compound, triclosan. Triclosan was shown to have antimalarial activity in vivo and in vitro by 

inhibiting enoyl-ACP reductase of P. falciparum (Surolia and Surolia, 2001). Triclosan, 

however, was not available to us at the time of conducting the experiments thus could not be 

used for comparative studies with DDT and DDE.  

Further positive evidence for the protective role of DDT and DDE is described in Chapter 4. 

Drug combination studies showed that CQ with DDT and CQ with DDE worked slightly 

synergistically at different combination ratios in the killing of CQ sensitive D10 strain. Although 

exposure of the parasites to 10 ppm DDE for 9 days showed a possible selection for consistently 

slow growing parasites, this, however, did not significantly affect the sensitivity of CQ in 

parasite killing. These results show a possible positive impact of residual levels of DDT and 

DDE in the blood of malaria infected patients when treated with the conventional antimalarial 

drug CQ. However, we also found some disturbing results concerning the CQ resistant strain 

Dd2 in that antagonism was shown for both DDT and DDE in combination with CQ, indicating 

that DDT and DDE could assist in selecting CQ resistant strains. This latter finding may explain 

the sudden coincidental rise of CQ resistance after the DDT spaying was terminated in certain 

areas. 

In order to further probe the influence of DDT and DDE on the malaria parasites, we assessed 

the distribution of the compounds between media and normal/infected erythrocytes (Chapter 4). 

The lypophylic nature of DDT and DDE would probably dictate that they associate more with 
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hydrophobic environments such as membranes, lipids, membrane proteins and proteins with 

hydrophobic pockets (i.e albumin), than aqueous media such as culture media and cytoplasm. In 

infected cultures it was observed that the D10 parasites enhanced the distribution equilibrium of 

DDT and DDE between the erythrocytes and RPMI media. DDE reached to almost equimolar 

levels after 8 hours exposure while this distribution was much slower in culture with normal 

erythrocytes. However, 30-50% more DDT than DDE remained in the infected erythrocyte 

fraction giving a strong indication that a major fraction of DDT and a large fraction of DDE may 

eventually end up in the intra-erythrocytic parasite. These results may partially explain the slight 

synergism that was found between DDT/DDE and CQ against the CQ sensitive D10 strain. In 

future studies we will assess the distribution of DDT and DDE using the CQ resistant strain Dd2, 

as well as other sensitive and resistant strains. This will hopefully assist in the elucidation of the 

antagonism between CQ and DDT/DDE towards the CQ resistant Dd2 strain. Using the 

appropriately optimised analysis methods (Chapter 2) as well as radioactively labelled 

compounds, we also intend to determine how much of the DDT and/or DDE eventually end up in 

the parasite itself in relation with CQ. We will also include in this study an investigation on the 

influence of DDE and DDT on the proteins such as the PfCRT and PfMDR-1 (refer to Chapter 

1), that are involved in the resistance to CQ and other analogous antimalarial drugs.  

Overall, this study opens new doors for future research on malaria control strategies and drug 

discovery. These results highlighting the “good and bad” of DDT in terms of the malaria parasite 

may aid in the development of optimal antimalarial treatment policies in high prevalence malaria 

countries in which policies against the use of DDT are pushed forward and questions on whether 

the benefits of continued DDT use outweigh its detrimental effects to the environment and to 

human health arise.  

As antimalarial drug and insecticide resistance remain obstacles in controlling malaria (Guerin et 

al., 2002), more studies need to be done and possible drug combinations that have different 

target sites explored, to slow down the development of antimalarial drug resistance (White 

2008). The correlation between DDT and/or DDE and resistance to other antimalarial drugs 

needs to be investigated as there may also be similar interactions as those with CQ and DDT and 

DDE. The future studies also need to address the influence of structurally similar aromatic 
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compounds, organochlorine or organophosphate insecticides used for indoor residual spraying, 

and pyrethroids used in insecticide treated bed nets that may enter an infected individual’s blood 

on the different classes of conventional antimalarial prophylactics. 
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