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Abstract 

 

Introduction: The anthracyclines (ACs), daunorubicin (DNR) and doxorubicin (DXR) 

are two of the most effective drugs known for the treatment of systemic neoplasms 

and solid tumours. However, their clinical use is often hampered by their dose-

dependent cumulative cardiotoxicity, which leads to irreversible and fatal drug-

induced congestive heart failure. The mechanism by which ACs induces heart 

damage is not fully understood. Recent reports have indicated that DXR activates 

autophagy and ubiquitin proteasome-mediated degradation of specific transcription 

factors, however, no reports exists on the effect of ACs on the E3 ubiquitin ligases, 

MuRF-1 and MAFbx. The aim of the first part of the study was therefore to 

investigate the effect of DNR treatment on the protein and organelle degradation 

systems in the heart and to elucidate the signalling mechanisms involved.  

 

Although this model was ideal in allowing the investigation of the signalling pathways 

which are affected by DNR, it did not allow for further exploration or manipulation of 

signalling pathways that may be of potential benefit in this context. The in vitro model 

was therefore used to validate the hypothesis that increased autophagy alleviates 

AC-induced cardiotoxicity and delays the onset of cardiomyocyte death. The aims for 

the second part of the study were (i) to characterize the effect of DXR in H9C2 cells, 

(ii) to determine whether the induction/inhibition of autophagy in combination with 

DXR alleviates cytotoxicity and (iii) to investigate the influence of 

increased/decreased autophagy in combination with DXR on reactive oxygen 

species (ROS) production, mitochondrial function, endoplasmic reticulum (ER) stress 

and the ubiquitin proteasome pathway. In the final part of this study, an in vivo model 

was used to assess the potential benefit of autophagy in a novel GFP-LC-3 tumour 

bearing mouse model of acute DXR-induced cardiotoxicity. 

 

Material and Methods: Adult rats were divided into two groups where one group 

received six intraperitoneal injections of 2 mg/kg DNR on alternate days and the 

other group received saline injections as control. Hearts were excised and perfused 
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on a working heart system the day after the last injection and freeze clamped for 

biochemical analysis.  

 

H9C2s were cultured and treated with Bafilomycin A1 (10 nM, inhibitor of autophagy) 

for 6 hrs, Rapamycin (50 µM, inducer of autophagy) for 24 hrs, DXR (3 µM) for 24 

hrs or a combination of these drugs. Following treatment, cells were harvested and 

assessed for cell death, proteolytic activity and oxidative stress using western 

blotting, fluorescence microscopy and flow cytometry. 

 

In the final phase of the study, twenty-four female mice were injected at 8 weeks with 

a mouse breast cancer cell line (EO771) and after observation of tumour growth, 

animals were either treated with one injection (i.p.) of Rapamycin (4 mg/kg), two 

injections (i.p.) of DXR (10 mg/kg) or a combination of the two drugs. After the 

experimental protocol, mice were terminated and their hearts were rapidly excised. 

The hearts were divided cross-sectionally and utilized for biochemical and 

histological analyses. 

 

Results and Discussion: DNR treatment significantly attenuated myocardial 

function and increased apoptosis in the ex vivo heart model. DNR-induced cardiac 

cytotoxicity was associated with the upregulation of two E3 ubiquitin ligases, MuRF-1 

and MAFbx as well as a significant increase in two markers of autophagy, beclin-1 

and LC-3. These changes observed in the heart were also associated with 

attenuation of the PI3-kinase/Akt signalling pathway. 

 

The augmentation of autophagy with rapamycin before DXR treatment significantly 

reduced cell death in the in vitro model. Indeed, rapamycin treatment demonstrated 

to be a vital survival mechanism for acute DXR-induced cardiotoxicity as it 

decreased cellular ROS production, improved mitochondrial function and prevented 

nuclear translocation of DXR. Moreover, these changes in cardiomyocytes were also 

associated with a reduction in the ubiquitin-proteasome pathway (UPP). 
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In the final part of this study, a novel tumour bearing GFP-LC3 mouse model was 

developed to confirm the results obtained in the in vitro study. It was demonstrated 

that acute DXR-induced cardiotoxicity resulted in increased apoptosis, the inhibition 

of autophagy and increased proteolysis via the UPP. These findings were associated 

with a reduction in body weight and cardiomyocyte cross-sectional area. The 

cardiotoxic effects of DXR were substantially reduced when autophagy was induced 

with rapamycin. Taken together, our data strongly indicates that it is possible to 

attenuate the cardiotoxic effects of doxorubicin in cancer patients by carefully 

controlling the levels of autophagy using rapamycin as adjuvant therapy. 
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Uittreksel 

 

Inleiding: Die antrasikliene (AC’s), daunorubisien (DNR) en doksorubisien (DKS), is 

twee van die mees effektiewe AC wat bekend is vir die behandeling van sistemiese 

neoplasmas en soliede tumore. Hulle kliniese gebruik word egter deur dosis 

afhanklike kumulatiewe kardiotoksisiteit benadeel, wat tot onomkeerbare en dodelike 

kongestiewe hartversaking kan lei. Die meganisme waardeur AC’s hartversaking kan 

veroorsaak, word nog nie ten volle verstaan nie. Onlangse navorsing het aangetoon 

dat DKS autofagie en die ubikwitienproteosoom-bemiddelde degradasie van 

spesifieke transkripsie faktore aktiveer. Daar is egter geen literatuur wat die effek 

van AC’s op die E3-ubikwitienligases, MuRF-1 en MAFbx beskryfnie. Die doel van 

hierdie eerste afdeling van die studie is om die effek van DNR behandeling op die 

proteïen- en organel degradasie sisteme in die hart te ondersoek en om van die 

betrokke seinmeganismes te bepaal.  

 

Alhoewel hierdie model ideaal is om sommige seinweë wat deur DNR geaffekteer 

word, te ondersoek, kon seinoordragpaaie wat potensieël voordelig in hierdie 

konteks is, nie in bg. model gemanipuleer word nie. Die in vitro model is gebruik om 

die hipotese dat verhoogde outofagie AC-geïnduseerde kardiotoksisiteit verlaag en 

sodoende seldood verminder, te bevestig. Die doel van hierdie afdeling van die 

studie was: (i) om die effek van DKS op H9C2 selle te karakteriseer, (ii) om te bepaal 

of die induksie/inhibisie van outofagie in kombinasie met DKS kardiotoksisiteit 

verbeter (iii) om die invloed van verhoogde/verlaagde outofagie in kombinasie met 

DKS op reaktiwe suurstof species (ROS), mitokondriale funksie, endoplasmiese 

retikulum (ER) stress en die ubikwitienproteosoompad te ondersoek. In die finale 

deel van hierdie studie, is ‘n in vivo model gebruik om die moontlike voordelige effek 

van verhoogde outofagie in ‘n GFP-LC-3 tumor-draende muismodel met akute DKS-

geïnduseerde kardiotoksisiteit, ondersoek. 

 

Materiaal en Metodes: Volwasse rotte is in twee groepe verdeel waar een groep 

ses intraperitoneale inspuitings van 2 mg/kg DNR op afwissellende dae ontvang het 
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en die andergroep as ‘n kontrole, ‘n soutoplossing gekry het. Die harte is verwyder 

en geperfuseer op ‘n werkende hartsisteem een dag na die laaste inspuiting en 

gevriesklamp vir biochemiese analises. 

 

H9C2 selle is vir 6 uurgekweek en behandel met Bafilomisien A1 (10 nM, ‘n autofagie 

inhibitor), 24 uur met Rapamisien (50 µM, ‘n autofagie induseerder), 24 uur met DKS 

(3 µM) of ‘n kombinasie van hierdie middels. Na behandeling is selle ge-oes vir 

analises in seldood, proteolitiese aktiwiteit en oksidatiewe stress deur van westelike 

kladtegniek, fluoresensie mikroskopie en vloeisitometrie gebruik te maak.  

 

In die finale fase van hierdie studie is vier en twintig, agt weke oue wyfie muise 

ingespuit met ‘n muisborskankersellyn (E0771) en is tumorgroei waargeneem; die 

diere is of behandel met een rapamisien inspuiting (i.p) (4 mg/kg), of twee DKS 

inspuitings (i.p.) (10 mg/kg) of ‘n kombinasie van die twee middels. Na die 

eksperimentele protokol, is die muise van kant gemaak en hulle harte vinnig 

verwyder. Die harte is in twee verdeel en gebruik vir biochemiese- en histologiese 

analises.  

 

Resultate en Bespreking: DNR behandeling het kardiale funksie betekenisvol 

verswak en apoptose in die hart verhoog. DNR-geïnduseerde kardiotoksisiteit is 

geassosieer met die opregulering van E3-ligases, MuRF-1 en MAFbx en het ook ‘n 

betekenisvolle toename in twee outofagie merkers, beclin-1 en LC-3 veroorsaak. 

Hierdie veranderinge wat in die hart waargeneem is, is ook geassosieer met ‘n 

onderdrukking van die PI3-kinase/Akt seinweg.  

 

Die toename in outofagie met rapamisien voor DKS behandeling het seldood in die 

vorm van apoptose betekenisvol verlaag. Daarmee saam het verhoogde outofagie ‘n 

noodsaaklike oorlewings meganisme vir akute DKS-geïnduseerde kardiotoksisiteit 

gedemonstreer. Die rede hiervoor is dat dit ROS produksie verlaag het, 

mitokondriale funksie verbeter het en DKS translokasie vanuit die sitoplasma tot 
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binne die nukleus verhoed het. Hierdie veranderinge in kardiomiosiete is ook met ‘n 

afname in die ubikwitienproteosoomseinweg (EPS) geassosieer.  

 

In die finale deel van hierdie studie, is ‘n nuwe tumor-draende muismodel ontwikkel 

om die resultate wat in die in vitro studie gekry is, te bevestig. Daar is bewys dat 

akute DKS-geïnduseerde kardiomiotoksisiteit aanleiding gegee het tot verhoogde 

apoptose, outofagie inhibisie en verhoogde proteolise via die EPS. Hierdie 

bevindinge is geassosieer met ‘n verlaging in liggaamsgewig en kardiomiosiet 

dwarssnit area. Die kardiotoksiese effekte van DKS is insiggewend verminder as 

autofagiege ïnduseer is met rapamisien. Om saam te vat: Ons data bevestig dat dit 

moontlik is om die kardiotoksiese effekte van DKS in kanker pasiënte te verminder 

deur outofagie vlakke te monitor en te kontroleer deur middel van rapamisien 

behandeling as bykomende terapie. 
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Chapter 1 
 

Literature Overview 

 

1.1: Introduction 

 

Heart failure is clinically a complex syndrome with a number of causes. Despite 

aggressive treatment, heart failure leads to substantial morbidity and mortality, and is 

increasing in most parts of the world (Hunt et al, 2005). The prevention of heart 

failure is therefore a very important clinical and public health priority. Due to this 

condition being costly, disabling and potentially lethal, there is a need for novel 

adjuvant therapies that act in ways unlike those currently established therapies. 

 

Since their introduction in the early 1960s, drugs of the anthracycline (AC) group, in 

particular doxorubicin (DXR, Adriamycin) and daunorubicin (DNR), have made 

significant advances in the improvement of cancer treatment (Singal et al, 1997; 

Barrett-Lee et al, 2009; Tokarska-Schlattner et al, 2006). These drugs are considered 

the most effective and extensively used potent anti-cancer agents for the treatment of 

a wide variety of soft and solid human malignancies (Di Marco et al, 1969). This 

optimism however quickly faded when it became evident that their clinical utility is 

limited by their cumulative, dose-dependent progressive myocardial damage 

(cardiotoxicity) that may lead to irreversible heart failure (HF), a reduced quality of life 

or even death (Lefrak et al, 1973; Swain et al, 2003; O’Shaughnessy et al, 2002). 

Although the methods for detecting and treating cancer have improved, and the 

survival rate of cancer patients increased, the side effects of cancer adjuvant therapy 

remains clinically relevant. Cardiotoxicity induced by ACs is dose-related, with the 

incidence of complications increasing with each subsequent dose (Lefrak et al, 1973; 

Von Huff et al, 1977).  

 

Rigorous studies on AC-induced cardiotoxicity have been conducted and literature 

has provided several mechanisms for their mode of action. However, no consensus 

currently exists on optimal treatment for adverse cardiac effects in patients with 

advanced breast cancer. This review discusses current concepts about the 
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pathophysiology of AC-induced cardiotoxicity, the possible signalling pathways 

involved and different approaches for its reduction. Although this manuscript revisits 

an area of research that has been extensively studied, very little attention has been 

paid to the role of AC-induced cardiotoxicity and proteolytic pathways of the cell, 

which include autophagy and the ubiquitin proteasome pathway. As both pathways 

have been implicated to play a role in this context, this may pave the way to identify 

protective mechanisms that may be exploited for treating or preventing AC-induced 

cardiotoxicity. 

 

The purpose of this review is therefore to classify AC-induced cardiotoxicity and to 

discuss the mechanisms involved in its induction. Secondly, it aims to clarify the role 

of apoptosis and necrosis in the pathogenesis of AC-induced cardiotoxicity. Finally, 

this review aims to discuss the role of autophagy and the ubiquitin-proteasome 

pathway, both of which are vital proteolytic systems, in the context of AC-induced 

cardiotoxicity. It is hoped that this review contributes to a better understanding of the 

different roles that these pathways play in this context. This may shed new light on 

the role of the proteolytic systems as a potential avenue to advance current treatment 

regimens. 

 

1.2: Classification of AC toxicity 

 

The effects of AC toxicity on the cardiovascular system can be categorized as acute, 

chronic and late-onset (delayed). Many studies have also reported subclinical 

cardiotoxicity in addition to the observed clinical toxicity which manifests as chronic 

heart failure (CHF). Studies conducted by Zuppinger et al (2007) and Vergely et al 

(2007) have indicated an assortment in the occurrence of both clinical and subclinical 

cardiotoxicity after AC administration.  

 

1.2.1: Acute cardiotoxicity 

 

Acute and sub-acute cardiotoxicity are rare and independent of the AC dose 

administered. They are classified by asymptomatic electrocardiographic (ECG) 

changes, transient arrhythmias, tachycardia, hypotension and myocarditis (Barrett-

Lee et al, 2009; Singal et al, 1997; Tokarska-Schlattner et al, 2006). These 

abnormalities are usually minor and can occur during or immediately after AC 
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treatment. The acute effects of AC administration are generally not considered a 

cause for major concern because they are reversible; they resolve unexpectedly 

and/or are clinically manageable (Steinberg et al, 1987). The measurement of 

plasma concentrations of cardiac tropin I (TnI), a regulatory protein that initiates 

contractile activity in the myocardium, is a sensitive technique used to detect acute 

myocardial injury. A powerful and specific biochemical marker of left ventricular 

damage and inadequate cardiac output is indicated by elevated levels of TnI 

immediately after a high dose of AC (Cardinale et al, 2002; Schimmel et al, 2004). 

This method can also be used as a predictor of the development of ventricular 

dysfunction (Cardinale et al, 2000). Additionally, troponin T (TnT) has also been 

implicated in the diagnosis and prognosis of cardiomyocyte damage. Evidence 

supporting this has been found in studies where both children and adults have 

previously been treated with ACs. Although promising results have been obtained in 

children, the studies conducted in adults have been contradictory (Lipshultz et al, 

1997; Sparano et al, 2002). 

 

1.2.2: Chronic cardiotoxicity 

 

In contrast, chronic AC-cardiotoxicity, which can manifest months or years after 

treatment, is clinically the most detrimental type of toxicity, as it is dose-dependent. 

This type of toxicity ultimately leads to irreversible cardiomyopathic changes with a 

grim prognosis for affected patients (Horenstein et al, 2000; Elliot, 2006). Typical, 

clinical characteristics of chronic AC cardiotixicity include an excessive decline in 

blood pressure and ejection fraction, a distinctly increased heart rate and ventricular 

dilation with subsequent failure (Lefrak et al, 1973). Additionally, literature indicates 

that cardiomyopathy induced by chemotherapeutic agents can be classified by 

specific ultrastructural pathology. Cardiac biopsies from affected patients feature 

atrophic cells resulting in smaller diameters (3-6 µ) as well as cytoplasmic 

vacuolization caused by dilation (Buja et al, 1973). The ultrastructural changes can 

be quantified using the “Billingham scale” in order to determine the severity of heart 

damage (Bristow, 1982). In a long term prospective study by Von Hoff and 

colleagues (1979), a total cumulative dose was identified as the major risk factor for 

the development of CHF, with the risk increasing with each subsequent dose. The 

total dose was determined to be a cumulative percentage of 3% for patients who 

received a total cumulative dose  
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of 400 mg/m2, 7% for 550 mg/m2 and 18% for 700 mg/m2 of ACs (Figure 1). In 

addition, a similar study has shown that a dose of 850-1000 mg/m2 induces an 

increase of CHF over a 5 year period from 11% at 1 year to 14% after 2 years and 

20% after 5 years (Jensen et al, 2002). These estimations are debatable as the 

proportion of patients developing AC-induced CHF is said to be approximately 26% 

(Swain et al, 2003).  

 

 

Figure 1: Cumulative probability of developing AC-induced congestive heart failure plotted against total 

cumulative dose of AC (doxorubicin) in all patients who received the drug. Reproduced from Shan, 1996. 

 

1.2.3: Delayed cardiotoxicity 

 

Late-onset/delayed cardiotoxicity may also be dose related. It occurs years or even 

decades after AC exposure. It has been suggested to occur in patients who have 

been exposed to ACs as children, or in patients who present with a thin-walled 

ventricle that operates against an elevated systolic wall stress (Leandro et al, 1994). 

This stagnant state of compensation over a number of years clinically manifests as 

late-onset AC-induced cardiac dysfunction. Cardiovascular stressors such as 

surgery, pregnancy, weight-lifting and acute-viral infection are plausible triggers for 

late-onset AC-induced cardiotoxicity (Sereno et al, 2008; Ali et al, 1994).  

 

Various hypotheses highlighting potential mechanisms and/or targets of ACs have 

been suggested to clarify AC-induced cardiotoxicity, but none of these have been 

considered fulfilling. This has lead to the definition of AC-induced cardiotoxicity as a 
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multifactoral process that eventually induces cardiomyocyte death as the terminal 

downstream event (Minotti et al, 2004). Additionally, drug-associated cardiotoxicity, 

as defined by the cardiac review committee (Cardiac Review and Evaluation 

Committee - CREC) includes one or more of the following: (i) in terms of 

cardiomyopathy, a decrease in left ventricular ejection fraction (LVEF), either globally 

or more severely in the septum; (ii) signs and symptoms of heart failure (HF), such as 

tachycardia and/or S3 gallop, (iii) a decrease in LVEF that is equal to or greater than 

10% but less that 55% without associated signs and symptoms of HF or a decrease 

in LVEF that is less than or equal to 5% but less that 55% with associated signs and 

symptoms of HF (Seidman et al, 2002).  

 

1.3: Mechanisms of AC-induced cardiotoxicity 

 

Despite its well-documented cardiotoxic effects, the glycosidic AC antibiotics, DXR 

and DNR (Figure 2), are important antineoplastic agents because of their high anti-

tumor efficacy in most types of cancers. The activity of these agents against rapidly 

dividing cells is mediated by their ability to intercalate into cell DNA base pairs or to 

form toxic DNA-drug cross-links, thereby interfering with cell division and thus 

triggering cell death (Gewirtz, 1999). Being chemically unstable in an acidic 

environment, ACs cannot be taken orally. ACs have a half-life of longer than 24 

hours and, after biotransformation in the liver, they are excreted in the bile (Balis et 

al, 1993). The mechanisms by which ACs lead to toxicity include (i) the formation of 

free reactive oxygen radicals, (ii) direct DNA damage and/or interference with DNA 

repair and (iii) activation of immune reactions involving antigen-presenting cells in the 

myocardium (Zhang et al, 1993). The cytotoxic action by ACs involves, in addition to 

its effects on nucleic acids and cellular membranes, the cytoskeleton of tumor cells 

and cardiomyocytes (Molinari et al, 1990). Cytoskeletal changes comprise the 

decrease in the density of myofibrillar bundles (Jaenke, 1974), modifications on the 

Z-disc structure of the sarcomere as well as the disorder and depolimerization of 

actin filaments (Lewis et al, 1986; Billingham et al, 1978). These detrimental 

transformations may be induced by the potent inhibitory effect of ACs on cardiac 

muscle gene expression for myosin light chain 2, troponin, α-actin and the M-isoform 

of creatine kinase in vivo (Ito et al, 1990). 
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Figure 2: Chemical structures of Doxorubicin (DXR) and Daunorubicin (DNR). Both anthracyclines are 

identical in structure with the exception that DXR entails a hydroxyl (OH) group whereas DNR entails a methyl 

(CH3) group. 

 

The main role player suggested to contribute to AC-induced cardiotoxicity is oxidative 

stress generated during intracellular metabolism (Vander Heide et al, 2007; 

Schimmel et al, 2004; Shan et al, 1996). ACs induce the generation of oxygen 

derived free radicals via two key pathways: a non-enzymatic pathway which makes 

use of iron (Fe2+) and the enzymatic pathway which operates via the mitochondrial 

respiratory chain (Figure 3). The non-enzymatic pathway begins with one electron 

being reduced off an AC molecule to produce an AC semiquion radical by a reduced 

flavoenzyme such as NADPH-cytochrome-P450 reductase. Reduced AC semiquion 

radicals bind to iron to form an AC-iron free radical complex. This newly formed 

complex reduces oxygen to form superoxide and to restore the AC. The superoxide 

is thus dismutated into hydrogen peroxide (H2O2) and oxygen (Rajagopalan et al, 

1988). Iron is a vital cofactor in the production of many toxic free-radical species that 

catalyze the Haber-Weiss reaction (O.-
2 + H2O2 → HO. + O2 + HO-) (Kehrer, 2000). 

This has led to numerous experimental systems to study iron chelation as an 

approach to circumvent the generation of free radicals. In this regard, dexrazoxane 

(Zynecard, Cardioxane) has been found to be a promising agent able to inhibit the 

production of free radicals due to the iron-chelating effect on intracellular iron (Swain 

et al, 1997; Speyer et al, 1988). Even though dexrazoxane can be dispensed 

intravenously and often in doses 10-fold that of ACs, leukopenia has appeared as a 

side effect of this drug (Hochster et al, 1995), thus rendering it less suitable. 

 

Doxorubicin 

 

Daunorubicin 
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Figure 3: Distinction between the cardiotoxic (green blocks) and antitumor (red blocks) mechanisms of action of 

anthracyclines (ACs). Abbreviations: CHF – Congestive Heart Failure. Modified from Singal et al, 1997. 

 

1.3.1: Role of mitochondria in the mechanism leading to AC-induced cardiotoxicity 

 

Abnormal mitochondria are one of the earliest and most prominent 

histomorphological features of acute AC-induced cardiomyopathy (Rosenhoff et al, 

1975). ACs have a high affinity for cardiolipin, a crucial phospholipid first isolated 

form cardiac tissue, which is enriched in the inner mitochondrial membrane (Nicolay 

et al, 1984; Cheneval et al, 1985). This high affinity allows ACs to concentrate within 

the myocytes (Goormaghtigh et al, 1990). A study conducted by Nicolay et al (1986) 

has illustrated that intracellular AC distribution can be monitored through auto-

fluorescence microscopy. This technique has produced positive results by 

demonstrating that ACs accumulate within the mitochondria as well as in the nucleus 

of the cell. However, the specific mechanism by which this occurs remains to be  

fully elucidated. Possible explanations for this phenomenon include sustained free 

radical production due to respiratory chain defects caused by AC-induced 

mitochondrial damage and the release of cytochrome-c from impaired mitochondria 

which essentially leads to cardiomyocyte apoptosis (Vander Heide et al, 2007). 

Mitochondria thus play a major role in the action of ACs, predominantly with regard to 

cardiotoxicity. Another important aspect in AC-induced cardiotoxicity is that 

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | CHAPTER 1  8 

 

mitochondrial permeability transition provoked by oxidative stress, is thought to 

trigger several responses depending on the severity of oxidative damage: (i) mild 

oxidative damage stimulates mitophagy, the selective degradation of mitochondria 

through autophagy, as a survival or death pathway (Lemasters et al, 1998; Kissova 

et al, 2004; Tal et al, 2007; Priault et al, 2005); (ii) moderate oxidative damage 

induces apoptosis after mitochondrial membrane permealization and the release of 

cytochrome-c; and (iii) substantial oxidative damage results in necrotic cell death due 

to ATP depletion.  

 

The accumulation of ROS within the mitochondria can also initiate additional 

mitochondrial ROS release which adds to the already elevated oxidative stress in the 

cell (Suzuki et al, 2001). Adult myocytes are terminally differentiated cells which are 

highly susceptible to oxidative stress due to their high oxidative metabolism and 

reasonably inferior antioxidant defenses compared to many other organs (Doroshow 

et al, 1980). Indeed, studies in cultured cardiomyocytes suggest that antioxidants 

such as trolox, 5-aminosalicyclic acid, aminofostine or α-phenyl-tert-butyl nitrone, 

administered before AC treatment, reduces the incidence of oxidative stress and 

myocyte injury (DeAtley et al, 1999; Dorr et al, 1996). Moreover, transgenic mice 

overexpressing catalase and superoxide dismutase (SOD), which are major 

antioxidant enzymes in myocytes, have been proven to be cardioprotective against 

AC-induced cardiotoxicity (Kang et al, 1996; Yen et al, 1996). Therefore, while the 

understanding of the mechanism of AC-induced cardiotoxicity continues to advance, 

the ability to modify myocyte injury awaits development of systems allowing selective 

but specific delivery of these agents in the heart. 

 

1.4: Cell death associated with AC-induced toxicity 

 

AC-induced toxic insults can trigger a multitude of reactions in cardiomyocytes 

leading to alterations in myocardial physiology, biochemistry and morphology. Some 

injuries can be repaired but others cause cell death in the form of apoptosis and 

necrosis. If the cell survives, structural and functional changes are likely to be 

present. AC-induced oxidative stress stimulates detrimental modifications to 

numerous cellular macromolecules including lipids (Myers et al, 1977) and proteins 

(Mihm et al, 2002) and DNA (Pacher et al, 2002). 
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1.4.1: Apoptosis 

 

It has long been known that myocardial apoptosis (Figure 4) is a common feature of 

both acute and chronic myocyte loss (Shan et al, 1996; Arola et al, 2000), but the 

mechanism by which ACs induce cardiomyocyte apoptosis remains to be fully 

elucidated (for comprehensive reviews of the apoptotic pathway see Elmore, 2007; 

O’Brien et al, 2008; Gastman, 2001). Four mechanisms of action have been 

proposed: (i) ACs stabilize reaction intermediates with DNA and topoisomerase II, 

consequently resulting in breakage of DNA strands and oncogene (p53)-mediated 

programmed cell death; (ii) ACs are able to bind to specific allosteric sites on the 20S 

proteasome causing the accumulation of aggregate prone proteins thus aiding in 

apoptosis induction; (iii) increased oxygen radical activity generated through 

semiquione moiety of the AC molecule causes lipid peroxidation and DNA damage. 

Furthermore, the indirect elicitation of apoptosis by mitochondrial membrane 

modifications, MAPK signalling molecules, transcription factors, acid 

sphingomyelinases or apoptotic regulatory proteins, form part of this free radical-

mediated myocyte damage; and (iv) iron-mediated free radical production and cell 

injury by iron release from aconitase of alcohol derivatives of ACs also contribute to 

myocyte injury (Minotti et al, 2004; Shan et al, 1996; Laurent et al, 2001). 

 

Although ample evidence exists for AC-induced apoptosis in in vitro experiments, it is 

currently unknown whether AC-induced cardiotoxicity induces apoptosis in vivo. 

Although Zhang and co-workers (1996) described DXR-induced apoptosis only in the 

kidney and intestine but not in the myocardium, Unverferth and others (1983) 

confirmed morphological characteristics, characteristic of apoptotic cell death in 

human heart samples (Unverferth et al, 1983). In light of this discrepancy, Arola et al 

(2000) described that acute DXR-induced apoptosis in cardiomyocytes was reduced 

to non-significant levels three days after the cumulative doses were achieved (Arola 

et al, 2000). The induction of apoptosis thus appears to be model and dose-

dependent. 

 

Even though most reports employ standard techniques to evaluate apoptotic cell 

death including Annexin V binding, electron microscopy, caspase-3 activity, DNA 

fragmentation and terminal nucleotidyl transferase-mediated nick end labeling 

(TUNEL) positivity, there is still conflicting data on the specificity of the apoptotic 
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pathway concerned. Findings from Childs and colleagues (2002) revealed elevated 

cytochrome C release, consistent with the intrinsic mitochondrial pathway of 

apoptosis (Childs et al, 2002). Additionally, Ascensao et al (2005) illustrated 

decreased oxygen consumption at stage 3 of the mitochondrial respiratory chain, 

elevated malondialdehyde, carbonyl groups, free thiols and suppressed aconitase, all 

supportive of electron leakage from electron transport complexes (Ascensao et al, 

2005). In contrast, others have produced evidence of elevated cardiac Fas ligand 

levels (Nakamura et al, 2000; Yamaoka et al, 2000), indicating a role for the extrinsic 

pathway of apoptosis. Furthermore, TNF-α receptor (TNFR) expression levels also 

appear to be a relevant event in DXR-induced cardiomyocyte death. These studies 

suggest a role for both the extrinsic and intrinsic pathways of apoptosis, but whether 

one pathway is dominant over the other or whether both pathways are activated 

concurrently remains uncertain. 

 

 

 
Figure 4: Apoptotic cell death. This type of cell death is morphologically characterized by cell shrinkage 
combined with pyknosis (chromatin condensation) and karyorrhexis (nuclear fragmentation). Adopted from 
Edinger & Thompson, 2004. 
 

1.4.2: Necrosis 

 

In contrast to apoptosis, necrosis (Figure 5) has been conventionally viewed as a 

passive form of cell death and has been widely used to describe myocardial cell 

death in the past (for comprehensive reviews of the necrotic pathway see Goldstein 

et al, 2006; Chen, 2009; Zong, 2006). The impact of necrosis in myocardial 

pathogenesis cannot be underestimated. Previously, apoptosis (Type I) and necrosis 

(Type III) were defined as two distinct forms of programmed cell death (Wyllie, 1994) 
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of which both can occur simultaneously in cultured cells and tissues (Kajstura et al, 

1998). However the duration and intensity of the injury potentially decides the 

eventual outcome (Loos et al, 2011). Although apoptosis and necrosis may share a 

common insult, downstream mediators and the availability of ATP directs cells 

towards programmed cell death by either apoptosis or necrosis (Leist et al, 1997).  

 

Very little attention has been paid to the role of necrosis in the context of AC-induced 

cardiotoxicity. Lim and co-workers (2004) demonstrated that 1 µM DXR induced 

necrotic cell death in cardiomyocytes, which was confirmed with an increase in trypan 

blue uptake and creatine kinase (CK) liberation. This observation appeared to be 

time-dependent as the percentage of trypan blue positive cells increased from a 

base-line value of ± 8 to 12% after 48 hrs of DXR treatment. Concomitantly, calpain 

activity also increased with DXR treatment after 1 hr and remained elevated till 48 

hrs. Co-treatment with calpain inhibitors preserved titin degradation, diminished 

myofibrillar disarray and necrosis declined. These data suggest that a change in 

calpain activity is an early event occurring in cardiomyocytes after DXR treatment, 

seemingly to target titin for proteolysis. Degradation of titin conceivably influences 

cardiomyocytes to contribute to diastolic dysfunction, myofilament instability and 

necrotic cell death. 

 

 

 
Figure 5: Necrotic cell death. This type of cell death is morphologically characterized by cytoplasmic swelling, 

irreversible plasma membrane damage and irreversible changes in the nucleus such as pyknosis, karyorrhexis 

and karyolysis as well as organelle swelling and breakdown. Adopted from Edinger & Thompson, 2004. 
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1.5: Induction of proteolytic pathways by ACs 

 

Cellular proteins exist in a balance between continuous synthesis and degradation. 

This drift of synthesis and degradation (i.e. turnover) contributes to the exertion of 

cell type specific functions and maintenance of cell homeostasis (Mizushima et al, 

2007; Kuma et al, 2010). Environmental stimuli such as UV irradiation and oxygen 

radicals frequently cause various types of protein damage that alter normal cellular 

functions as well as homeostasis and may eventually cause cell death. Rapid 

eradication of damaged or harmful proteins, which are especially significant in 

terminally differentiated cells such as neurons and cardiomyocytes (Nedelsky et al, 

2008), are entirely dependent on sufficient performance of the catabolic machinery. 

Two major protein degradation systems play fundamental roles: autophagy, whereby 

cells respond to energetic stress by recycling intracellular components; 

predominantly long-lived proteins, lipids and even entire organelles (Cuervo, 2004; 

Mizushima et al, 2008) and the ubiquitin-proteasome pathway (UPP), which 

selectively degrades predominantly short-lived regulatory proteins (Herrmann et al, 

2004; Willis et al, 2006; Paul, 2008). Both proteolytic systems have been implicated 

to play a role in AC-induced cardiotoxicity; however the underlying mechanisms are 

poorly understood. 

 

1.5.1: Autophagy 

 

Autophagy is a process by which cytoplasmic material, including macromolecules 

and organelles, are delivered to lysosomes for degradation. Three different types of 

autophagy have been identified: microautophagy, chaperone-mediated autophagy 

(CMA) and macroautophagy (Klionsky et al, 2000). Microautophagy involves the 

confining and destruction of small constituents of the cytoplasm by lysosomes via 

invaginations of the limiting membrane (Marzella et al, 1981). In chaperone-mediated 

autophagy, misfolded proteins are translocated by heat shock 70 (Hsp70) to the 

lysosomes for degradation (Cuervo, 2004). Macroautophagy (hereafter referred to as 

autophagy), the predominant type of autophagy, is a dynamic and highly coordinated 

process of self-digestion (Klionsky et al, 2000; Mizushima et al, 2008). This highly 

conserved cellular process is responsible for the elimination or salvaging of long-lived 

proteins and organelles and thus supplies cells with an alternate source of 

metabolites (Cuervo et al, 2004).  

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | CHAPTER 1  13 

 

The hallmark of autophagy is the de novo synthesis of an isolation membrane or 

phagophore which elongates around the cytoplasmic contents to be degraded. 

Cytoplasmic content is hence engulfed by the isolation membrane, resulting in the 

formation of a double-membrane structure known as the autophagososme. The outer 

membrane of the autophagososme fuses with the lysosome to form an 

autophagolysosome. This fusion allows for the degradation of the inner membrane as 

well as the cytoplasmic content of the autophagosome by digestive enzymes (acid 

hydrolases) present within the lysosome (Korolchuk et al, 2009) (Figure 6) (for 

comprehensive reviews of the autophagic pathway see Muzishima, 2007; Levine et 

al, 2008; Ravikumar et al, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Autophagic degradation. A: Degradation of cytoplasmic contents by autophagy (Modified from 

Ravikumar et al, 2010). B: Representative cell with extensive accumulation of autophagic vacuoles, indicating 

cell death with autophagy. Adopted from Edinger & Thompson, 2004. 

 

Autophagy plays a number of physiological roles such as facilitating survival, 

differentiation, development, aging, immunity and homeostasis (Delgado et al, 2008; 

Winslow et al, 2008). In eukaryotic cells, autophagy occurs constitutively at low levels 

to perform housekeeping functions such as the destruction of dysfunctional 

organelles (Komatsu et al, 2007; Kuma et al, 2010). Upregulation of autophagy 

occurs in the presence of external stressors such as hormonal imbalance, oxidative 

stress and starvation as well as intracellular stimuli (e.g. removal of protein 

aggregates), thus signifying autophagy also as an important survival mechanism. 

B: 

A: 

B:
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Whilst autophagy is active under baseline conditions, its activity is often altered 

during disease. Elevated autophagic activity in cardiomyocytes has been previously 

described following various forms of cardiovascular stress including heart failure 

(Kostin et al, 2003; Yan et al, 2005; Saijo et al, 2004). However, whether autophagy 

participates as a pro-survival or pro-death pathway during disease remains to be 

determined. Literature indicates that autophagy can have both beneficial and 

detrimental effects in the myocardium depending on the state of autophagic activity 

at the time. For example, increased levels of autophagy may have beneficial effects 

by removing damaged or injured organelles and preventing the accumulation of 

protein aggregates (Tannous et al, 2008), thereby recycling proteins in order to 

generate amino acids and free fatty acids that are required to maintain energy 

production (Kuma et al, 2010). On the other hand, extensive autophagy can also 

contribute to cellular demise, plausibly via excessive self-digestion or metabolic 

failure (Loos et al 2011; Gozuacik et al, 2007). Autophagosomes have also been 

observed in dying cells, but it is not clear whether autophagy directly contributes to 

cell death or whether it is upregulated in an effort to prevent it.  

 

1.5.2: The Autophagic Pathway as a therapeutic target 

 

The modulation of autophagy as a therapeutic modality in CVD has several 

limitations. Firstly, 3-methyladenine (3MA), a class III phosphoinositol-kinase (PI3-K) 

autophagy inhibitor, commonly used in cell culture experiments, is highly toxic and 

therefore inappropriate for in vivo applications (Mizushima, 2004). Secondly, nutrient 

starvation, a potent inducer of autophagy in mammalian cells, is often very 

dangerous from a cardiovascular view point because long-lasting starvation initiates 

relentless cardiovascular complications and even cell death (Rose et al, 1979).  

 

The attenuation of autophagic degradation is accountable for increased myocardial 

mass in hypertrophy and several other heart defects (Dammrich et al, 1983). When 

autophagy is induced in this scenario as a result of therapy, proteolysis is elevated 

and hypertrophy declines (Frenzel et al, 1987). On the other hand, dilated 

cardiomyopathy and consequent HF is associated with intensified PCD, yet during 

ischemic heart disease, autophagy either acts as a repair mechanism or a 

constituent of PCD, depending on the quantity of myocardial damage (Elsasser et al, 

2004; Krijnen et al, 2002; Decker et al, 1980). Myocardial injury caused by 
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autoimmune disease, intoxication or infection invigorates reparative autophagy which 

is followed by PCD, if the damage is severe (Akazawa et al, 2004; Nepomnyashchikh 

et al, 2000). Some researchers suggest that enhanced autophagy indirectly removes 

protein aggregates by clearing aggregate precursors, thereby shifting the equilibrium 

away from aggregate formation (Rubinsztein, 2006; Komatsu et al, 2007). 

Furthermore, it has been suggested that the pathophysiological outcome depends on 

the severity and/or duration or the nature of the autophagic response (Rothermel et 

al, 2008). Additionally, the context- and dose-dependent role of autophagy 

possesses specific challenges. For example, it is currently unknown how long 

autophagy can remain upregulated without harmful consequences for the cellular 

system. Moreover, there is inconsistency in the literature regarding autophagic 

cardiomyocyte deaths in patients suffering from heart failure, which is detected in 

very few cells, whereas the impact on functional parameters is remarkable. To 

selectively control autophagy and thereby autophagy-mediated survival without 

provoking cell death specific pathways therefore remains a challenge.  

 

Lambert and co-workers (2008) have demonstrated autophagy as a novel 

mechanism of enhanced synergistic cytotoxicity between DXR and roscovitine (Cdk-

cyclin-dependent kinase inhibitor) in a sarcoma model. In this particular study, the 

combination of the two drugs increased autophagy above basal levels. In addition, in 

the three different sarcoma cell lines used, combined treatment lead to prolonged G2-

M arrest. It was thus postulated that this prolonged arrest, caused by the activation of 

the DNA damage checkpoint by DXR, followed by the inhibition of the Cdk1-cyclin B 

complex by roscovitine, might be a trigger for autophagy induction and eventual cell 

death. Despite being a promising treatment regime for sarcomas, cardiotoxicity 

remains a major threat for cancer survivors and it is for this reason that various 

studies have attempted to amend autophagic activity. This may represent a potential 

therapeutic target to treat or prevent many cardiovascular diseases (CVDs), 

particularly in the context of AC-induced cardiotoxicity.  

 

Taken together these data suggest that autophagy is a plausible survival pathway 

that may be manipulated in order to produce beneficial effects within the context of 

heart disease. Although the role of autophagy in AC-induced cardiotoxicity is far from 

understood, the potential benefit of exploitation of this pathway may unravel new 
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insight into the mechanisms of autophagy, which will eventually lead to the discovery 

of novel mediators responsible for controlling autophagic activity. 

 

1.5.3: Ubiquitin-proteasome pathway 

 

The ubiquitin-proteasome pathway (UPP) and autophagy have long been viewed as 

independent and parallel degradation systems with no point of intersection. This view 

was challenged by the observation that monoubiquitination operates as a key signal 

in endocytosis, a vital process for many cell functions including lysosomal biogenesis 

(Ross et al, 2004). Consequently, various studies have suggested that both the UPP 

and autophagy are functionally interrelated catabolic processes that often share 

specific substrates and regulatory molecules (Itawa et al, 2005; Pandey et al, 2007; 

Rideout et al, 2004). Furthermore, these systems show coordination and in some 

contexts, serve compensatory functions. It is now becoming increasingly clear that a 

considerable subset of proteins can be degraded by either pathway which is in 

contrast to the conventional conception of the UPP and autophagy serving 

unambiguous routes of degradation for short-lived and long-lived proteins 

respectively (Li, 2006; Fuertes et al, 2003; Fuertes et al, 2003).  

 

It is now clear that p62/SQSTMI, an adapter molecule linking ubiquitinated proteins to 

the autophagic machinery, is responsible for the collaboration between the UPP and 

autophagy during protein quality control (Zheng et al, 2009; Bjorkoy et al, 2000). P62 

directly binds to polyubiquitinated substrates, LC-3 on autophagosomes (Pankiv et al, 

2007) and is able to polymerize and interact with the proteasome (Seibenhener et al, 

2004). This interaction between p62 with autophagosomes and the proteasome may 

aid in the transfer of targeted proteins towards degradation and it is suggested that  

p62 can be degraded by either proteolytic pathway (Zheng et al, 2009). Another 

important protein involved in the cross-talk between the UPP and autophagy is 

FoxO3 (Forkhead box), a transcription factor which activates and regulates both 

proteolytic pathways (Zhao et al, 2007). In addition, cardiac FoxO3 can also induce 

atrophy by stimulating the transcription of E3 ligases (Skurk et al, 2005) (Figure 7a, 

b). 
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Figure 7 (a): A schematic illustration of the interplay between the UPP and autophagy. Modified from Zheng et 

al, 2009. (b): FoxO3 co-ordinately upregulates both autophagy and the ubiquitin proteasome system (UPP) 

during muscle atrophy. Activation of the IGF/Akt signalling pathway via PI3K during atrophy results in FoxO3 

translocation into the nucleus, where it directly binds to promoter regions and upregulates transcription of the 

atrogenes (MuRF1 and MAFbx/atrogin1) and autophagy-associated genes. Autophagy is also induced by the 

IGF/Akt signalling pathway via the inhibition of mTOR. Adopted from Ravikumar et al, 2010. 

 

Ubiquitination refers to the conjugation of free ubiquitin (Ub) with a substrate protein. 

Ub is a small, highly conserved compact, globular protein that consists of 76 amino 

acids. It is ubiquitously expressed in all eukaryotes but only in very few prokaryotes 

and via a particular enzymatic reaction, it covalently binds to proteins in linear chains 

(Patterson et al, 2007; Powell, 2006). The process for Ub chain assembly requires 

three enzymatic reactions. The Ub-activating enzyme (E1) covalently attaches to Ub 

in an ATP-dependent fashion. The Ub-conjugating enzyme (E2) consequently 

transports the Ub molecule from E1 to itself. The Ub-ligase (E3) recognizes the 

specific substrate and thus transfers the Ub molecule from E2 to a lysine residue 

(Willis et al, 2006) (Figure 8). Specific E3-ligases, MuRF-1 (Muscle Ring Finger-1) 

and atrogin1/MAFbx (Muscle Atrophy F-box), are expressed exclusively in the heart 

and in skeletal muscle tissue (Bodine et al, 2001). MuRF-1 demonstrates ubiquitin 

ligase activity by binding to the sarcomeric protein, titin (Centner et al, 2001) and 

degrades cardiac TnI (Kedar et al, 2004). MAFbx binds to calcineurin A, -actinin-2 

(Li et al, 2004) and degrades MyoD (Tintignac et al, 2005). Whilst the turnover of 

skeletal muscle proteins involving the ubiquitin ligases MuRF-1 and MAFbx is well 

established (Glass, 2003), the contribution of these ubiquitin ligases in cardiac 

remodeling in heart failure remains to be fully elucidated. 

a b 
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Figure 8: Ubiquitin chain assembly for substrates marked for degradation. Selected abbreviations: E1 - 

Ubiquitin activating enzyme; E2 - Ubiquitin conjugating enzyme; E3 - Ubiquitin ligase; E4 – Polyubiquitin 

chain assembly factor. Adopted from Passmore et al, 2004 

 

The fate of ubiquitinated proteins depends entirely on the number of Ub molecules as 

well as the configuration of the Ub-Ub linkages which lead to different cellular 

outcomes. For example, poly-ubiquitination through lysine 48 (Lys48) linkages 

(canonical) results in the targeted substrate being degraded by the 26S proteasome 

(Spence et al, 1995; Pickart, 2001). Poly-ubiquitination through another lysine 

residue (Lys63; non-canonical) does not result in degradation but rather acts as a 

signal for re-localization, cellular signalling or DNA repair (Habelhah et al, 2004). The 

modification of a substrate with a single Ub molecule (mono-ubiquitination) leads to 

re-localization or endocytosis of targeted proteins (Bonifacino et al, 2003; Haglund et 

al, 2003). Some proteins or receptors cue mono-ubiquitination at multiple sites 

(multimonoubiquitination) to ensure accurate function or endocytosis (Haglund et al, 

2003) (Figure 9). A final form of ubiquitination, initially described for the cell cycle 

regulator p21, is NH2-terminal ubiquitination. This type of ubiquitination refers to the 

fusion of Ub to the α-NH2 group of the NH2-terminal residue ultimately affecting the 

stability of the protein and in some cases blocking degradation via an unknown 

mechanism (Bloom et al, 2003; Ciechanover et al, 2004). The rationale for 

assembling Ub in chains is not entirely clear, but it has been suggested that this 

phenomenon occurs to amplify the signal in order to maximize the efficiency of 

substrate recognition as well as to distinguish between Ub per se and Ub-like 
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proteins (Patterson et al, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Ubiquitin modification of targeted substrates resulting in different fates for the substrate. Modified 

from Willis et al, 2006 

 

1.5.4: The Ubiquitin-proteasome pathway as a therapeutic target 

 

While the understanding of role of the UPP in regulating cellular processes continues 

to expand, the elucidation of its role in cardiac disease is becoming increasingly 

clear. The UPP regulates pivotal processes at all levels of cardiac biology: from 

membrane-associated ion channels and receptors, to downstream signalling 

intermediates and transcription factors. Additionally, the UPP also plays a major role 

in maintaining cardiac protein quality control, as demonstrated by its multiple 

interactions with the cardiac sarcomere and its crucial role in familial 

cardiomyopathies (Paul, 2008; Nalepa et al, 2006).  

 

In the context of cardiotoxicity, recent studies using a unique reporter system in 

which the activity of the proteasome can be monitored, indicates that DXR enhances 

UPP function in both the heart and in cultured cardiomyocytes (Kumarapeli et al, 

2005). These results suggest that an overactive UPP may be a vital factor in acute or 

Lysine residues 
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chronic cardiotoxicity often observed after DXR therapy. More recently, several 

reports have suggested that DXR activates proteasome-mediated disintegration of 

particular transcription factors (Poizat et al, 2000; Ito et al, 2007). Furthermore, the 

proteasome has been proposed to function as a carrier for the translocation of DXR 

from the cytoplasm to the nucleus, thus altering its function (Kiyomiya et al, 1998, 

2002). Kumarapeli et al (2005) have illustrated that DXR ameliorates the degradation 

of a substitute UPP substrate in mice. However the mechanism by which DXR 

activates the UPP is still unknown.  

 

Liu and colleagues (2008) have shown that: (i) DXR not only increases the 

proteolysis of an exogenous UPP reporter protein (GFPu), it additionally provokes 

proteasome inhibitor-induced build-up of endogenous substrates of the UPP such as 

c-Jun and β-catenin in cultured cardiomyocytes; (ii) DXR facilitates in vitro 

degradation of GFPu and c-Jun by the reconstituted UPP via the elevation of 

proteasomal function; (iii) DXR stimulates peptidase activities of purified 20S 

proteasomes at a therapeutically relevant dose and (iv) DXR enhances E3 ligase 

COOH-terminus of the heat shock protein cognate 70 in 3T3 cells via a 

posttranscriptional mechanism. These novel observations propose that DXR 

stimulates the UPP by directly acting on the ubiquitination machinery and 

proteasome. 

 

Research indicates defined roles for the UPP in maintaining normal cardiac function 

through regulation of signalling pathways and maintenance of normal sarcomere 

structure. It has also been illustrated that downregulation of Ub-ligases may play a 

pivotal role in the response of the myocardium to hypertrophic stimuli (Oudit et al, 

2004). Others suggest that dysfunction of the proteasome may be important in 

cardiac pathologies (Kamikubo et al, 1996; Keyvani et al, 2000) and even senescent 

cardiomyocyte loss (Kajstura et al, 1996; Higami et al, 2000). From a therapeutic 

point of view, DXR appears to be the only exception in that it can increase the UPP 

proteolytic function in degrading both substitute and endogenous substrates.  

 

Although the coupling of the UPP's activating effects of DXR and cardiotoxicity 

remain to be elucidated, DXR is a unique pharmacological agent that embodies an 

intrinsic activation property. Therefore, DXR-induced stimulation of the UPP is 

possibly detrimental to the heart. It is thus enticing to examine proteasome inhibition 
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as an approach to diminish this side effect, especially in light of the fact that 

proteasome inhibitors have already been used clinically with promising results (Ciolli 

et al, 2008; Voorhees et al, 2007). These studies will likely lead to pioneering 

investigations into whether chemotherapies combining DXR and proteasome 

inhibitors will improve the parameters of cardiotoxicity compared to those using either 

one alone. 

 

1.6: ER-stress and Ca2+ concentration in cardiotoxicity 

 

Over the past decade, it has become evident that the accumulation of unfolded or 

misfolded proteins also contributes to numerous neurodegenerative (Kakizuka et al, 

1998; Niwa et al, 1999), immune (Turner et al, 2006) and endocrine pathologies 

(Thameem et al, 2006; Araki et al, 2003) as their destruction through the proteasome 

is not always possible (Willis et al, 2010). Recent evidence suggests that the build-up 

of misfolded proteins can contribute to vascular (Forstermann et al, 2006) and 

cardiac diseases (Hamada et al, 2004; Okada et al, 2004, Willis et al, 2010). Cells 

have acquired intricate protein quality control systems for identifying and eliminating 

dysfunctional misfolded proteins. As currently understood, protein quality control 

components involve two main elements: (i) cytosolic and organelle-targeted 

molecular chaperones, which protect the proteins from misfolding and are necessary 

for the assembly of particular sarcomere components; and (ii) the UPP (Willis et al, 

2009). One of the organelle-specific protein quality control systems dwells in the 

endoplasmic reticulum (ER) and is highly receptive to stresses such as oxidative 

stress, prompting the accumulation of terminally misfolded proteins in the lumen of 

the rough ER (Glembotski, 2007). 

 

1.6.1: ER stress and the unfolded protein response 

 

The ER is a vital site for the modifications and folding of proteins destined for the 

cellular membrane as well as the secretory pathway (Yorimitsu et al, 2007). It is 

extremely sensitive to perturbations in homeostasis from various stimuli such as 

glucose deprivation, alterations in calcium homeostasis and exposure to free 

radicals. Under these conditions, changes in the protein folding capacity as well as 

the conglomeration of malfolded proteins within the ER illicits a phenomenon known 

as ER stress (Kaufman, 1999). In response to this, the ER stress response, 
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otherwise known as the unfolded protein response (UPR), is mobilized (Schroder et 

al, 2005; Schroder, 2008; Mandl et al, 2009). This response is a highly conserved 

signalling system that has been studied in multiple cell- and tissue types (McMillan et 

al, 1994; Shamu et al, 1994). The UPR is proposed to convey information about the 

degree of the protein folding capacity from the rough ER to other cellular locations. In 

doing so, induction of the UPR transiently attenuates the rate of protein synthesis 

and upregulates genes encoding chaperones, foldases, ER-associated degradation 

(ERAD) proteins, autophagy regulators and ER membrane biogenesis enzymes 

(Hetz et al, 2008; Wang et al, 2008; Yoneda et al, 2001). Consequently, UPR 

signalling reduces the build-up and aggregation of unfolded proteins by augmenting 

the functional capacity of the ER to promote folding and to abolish abnormal proteins. 

Accordingly, this facet of the UPR is usually considered the prosurvival phase 

(Szegezdi et al, 2006). However if the ER stress is not resolved, sustained stress 

leads to the activation of pathways that mediate PCD (Szegezdi et al, 2003). Similar 

to many cellular signalling pathways, the eventual outcome of the UPR is context 

dependent, thus providing this compex signalling process with the conditional ability 

to facilitate survival or death. 

 

Despite extensive characterization of the regulatory signalling of the UPR, the 

morphological changes and determination of the cell fate due to damage caused by 

ER stress are not well understood. In addition, it also remains unknown whether 

other signalling pathways are activated in response to ER stress in order for the cell 

to cope with unfolded or misfolded proteins that gather within the ER. Recent 

evidence suggests that there is a connection between autophagy, ER stress and the 

UPR pathway (Yorimitsu et al, 2007; Araki et al, 2006). Although very little is known 

as to how autophagy regulates the UPR and vice versa, Li et al (2008) have reported 

that 3-MA, wortmannin and Beclin-1 knockdown inhibits ER stress-induced 

autophagy but only 3-MA is able to inhibit UPR induction. Moreover, knockdown of 

the ER molecular chaperone, GRP78, stimulated the UPR pathways and impeded 

autophagosome formation caused by nutrient starvation and ER stress. It was further 

discovered that the ER, a feasible membrane source for producing autophagic 

vacoule membranes (Mijaljica et al, 2006; Dunn, 1990), is vastly expanded and is 

thus unstructured in cells where GRP78 is not present. In order to quantify ER 

proliferation over time, Bernales and collegues (2006) showed that the ER increases 

more than 3 fold over a 3 hour time course using electron microscopy. Autophagy 
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activation in this context may counterbalance ER expansion during the UPR (Ding et 

al, 2007) and may consequently be cytoprotective (Ogata et al, 2006; Høyer-Hansen 

et al, 2007). 

 

The ER plays a crucial role in many cellular processes including the facilitation of 

effective folding of newly synthesized proteins as well as providing the cell with a 

calcium (Ca2+) reservoir (Mimoi et al, 2006; Berridge et al, 2002). A high Ca2+ 

concentration exists in the lumen of the ER, similar to that of the extracellular space, 

and provides the optimum environment for accurate folding of secreted proteins. 

When a major segment of the Ca2+ within the ER is liberated, it could affect Ca2+-

dependent processes in- and outside the ER lumen. For example, ER stress causes 

a release of Ca2+ from the ER resulting in an increase in cytosolic free Ca2+. 

Depending on the condition of the cell as well as the type of ER stress it encounters, 

the result can be a decline in the amount of proteins entering the ER, elevated 

removal of proteins from the ER, an enhanced capacity of the ER folding machinery, 

autophagy or even apoptosis (Bernales et al, 2006; Ogata et al, 2006; Yorimitsu et al, 

2006; Rao et al, 2004). The release of Ca2+ from the ER into the cytosol can induce 

various kinases and proteases which participate in autophagy signalling (Yousefi et 

al, 2006; Dermachi et al, 2006). A signalling pathway initially described by Høyer-

Hansen and co-workers (2007), employing pharmacological inhibitors and RNA 

interference, showed that Ca2+-mediated autophagy relied on the Ca2+/calmodulin-

dependent kinase kinase-β (CaMKK-β)-dependent stimulation of AMPK (AMP 

activated protein kinase) which eventually leads to the inhibition of mTORC1 

(mammalian target of rapamycin complex 1). It is however not clear whether the 

induction of AMPK is sufficient to initiate autophagy or whether separate independent 

signals are required. Despite the wealth of knowledge that is now readily available 

concerning ER stress, the UPR, autophagy and the UPP, the production of free 

radicals from ACs may possibly also trigger these pathways.  

 

1.7: Oxidative stress and AC-induced cardiotoxicity 

 

The disruptions of Ca2+ homeostasis caused by oxidative stress and indirectly by 

ACs are potent inducers of ER stress, and thus the stimulation of survival pathways 

remains a significant obstacle and may potentially represent novel therapeutic targets 

that may reduce cardiotoxicity or lead to better therapeutic regimes for patients with 
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cancer. Current understanding of AC-induced cardiomyopathy indicates that the 

primary cause of this condition is elevated oxidative stress (Figure 10), even though 

the drug’s antitumor function in patients may incorporate other mechanisms. Whilst 

various antioxidants show promise in reducing injury, to date none have been 

developed that act selectively at the site of toxicity, the heart. Strategies to prevent 

and manage AC-induced cardiotoxicity are pivotal in order to reduce the mortality of 

cancer patients. Initiation of these regimens should be conducted before AC 

exposure in order to minimize the possibility of irreversible cardiac damage. Apart 

from accurate screening of patients for underlying causes of heart disease, 

alternative-drug treatment regimens (Healy Bird et al, 2008; Chen, 2009) used in 

combination with ACs have previously been demonstrated. These have been shown 

to be effective in reducing the prevalence of AC-induced oxidative stress but are also 

correlated with cardiotoxicity. 

 

As cardiomyocytes are irreplaceable and often experience augmented ROS 

exposure as a result of intensified oxygen consumption, autophagy in any form is a 

significant life-sustaining mechanism. In response to stress, autophagy is induced as 

a compensatory response either for repair or detoxification. This is especially 

important during oxidative stress where numerous oxidative or impaired 

macromolecules and organelles, specifically mitochondria, being the active site of 

ROS production and the principal target of ROS attack, are degraded for essential 

nutrient supply. It is important to consider however that irreparable damage to 

cardiac myocytes triggers PCD in the form of apoptosis (PCD-1) or autophagic cell 

death (PCD-2) (Terman et al, 2005; Edinger & Thompson, 2004). In this case 

autophagy appears to be incapable of completely eliminating all damaged fragments 

which concentrate extralysosomally and intralysosomally, implying inadequacy of 

autophagic sequestration and degradation respectively. Despite this, the involvement 

of autophagy in a wide variety of cardiac pathologies draws consideration to this vital 

process proposing alternate strategies for the management of cardiovascular 

diseases as well as the development of cardiotropic drugs. 

 

1.8: Conclusion and Future Recommendations 

 

Cardioprotection can be accomplished by moderating AC cumulative life-time dose 

by keeping it well below the acclaimed threshold. Besides the cumulative dose of 

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | CHAPTER 1  25 

 

ACs, it has been postulated that amplifying the therapeutic index of free ACs by 

liposomal AC formulations, significantly decreases cardiotoxicity. By encapsulating 

ACs within self-sealing, macromolecular vesicles such as liposomes, the distribution 

volume of ACs is reduced, diffusion and thus toxicity of viable tissues diminishes 

while the concentration within neoplastic tissue is enhanced (Giotta et al, 2007; 

Gabizon et al, 1992; Mayer et al, 1989). Although this treatment regime would 

particularly benefit patients who have previously been exposed to ACs or those who 

are known to have attenuated cardiac function, critical modifications may exist amid 

distinct liposomal preparations as variations in vesicle size, drug-to-lipid ratio as well 

as lipid composition can have an immense impact on the biodistribution and toxicity 

of ACs.  

 

Considering the fact that AC-induced oxidative stress cannot be completely 

abolished, a feasible and practical approach for decreasing AC-induced cardiotoxicity 

is the acute stimulation of survival via autophagy before AC administration. This can 

be achieved in two ways: (i) amino acid deprivation or (ii) rapamycin treatment. Both 

these mechanisms would lead to the demand for fundamental end products of 

lysosomal degradation and thus supplies the cells’ anabolic machinery with new 

building blocks. Mammalian target of Rapamycin (mTOR), a protein kinase, is 

believed to play a pivotal role in intracellular control of the autophagic pathway. 

Furthermore, mTOR is described to act as an ATP sensor (Dennis et al, 2001). This 

notion is favoured by the occurrence of ATP maintenance and sustained cell survival 

during upregulation of autophagy by rapamycin. However, due to the fact that 

autophagy is ATP dependent, excessive ATP depletion would nevertheless inhibit 

autophagic activity (Seglen et al, 1990).  

 

This review emphasizes the importance of understanding AC-induced cardiotoxicity 

in its context. This review also highlights current and new treatment strategies that 

may focus either on the prevention, inhibition or the delay of AC-induced 

cardiotoxicity. By proposing autophagy as a potential treatment regime for this 

condition, it is hoped that this will lead to a better understanding of the beneficial 

effects of this pathway and thus contribute to improved recovery for cancer patients. 
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1.9: Motivation for this current study 

 

The motivation for this current study resulted from the fact that the administration of 

ACs, as the most effective anticancer drugs, leads to the development of HF by a 

mechanism which is not fully understood. This subsequently lead to a collaboration 

with researchers in Bergen, Norway and Cape Peninsula University of Technology, 

South Africa where cardiotoxicity induced by the AC, daunorubicin (DNR), was 

investigated in an ex vivo model (Chapter 2). The objective was (i) to investigate the 

effect of DNR treatment on protein and organelle degradation systems in the heart as 

well as (ii) to elucidate some of the signalling mechanisms involved. Although this 

model was ideal in allowing the characterization of signalling pathways that are 

affected by DNR, it did not allow for further exploration or manipulation of these 

signalling mechanisms that may be of potential benefit in this context. This then lead 

to another (in vitro) model where it was hypothesized that elevated autophagy 

alleviates AC-induced toxicity and delays the onset of cardiomyocyte death. The 

aims were: (i) to characterize the effect of DXR on the H9C2 cell line, (ii) to determine 

whether the induction/inhibition of autophagy in combination with DXR attenuates 

cytotoxicity and (iii) to investigate the influence of induced/inhibited autophagy in 

combination with DXR on programmed cell death, ROS production and the UPP 

(Chapter 3). In addition, an in vivo model was used to confirm the role of autophagy 

in DXR-induced cardiotoxicity (Chapter 4). 
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Figure 10: Scheme demonstrating possible signalling mechanisms affected by AC-induced cardiotoxicity. AC-

induced ROS production initiates the activation of cell death pathways including apoptosis, autophagy and 

necrosis. The disruption of calcium homeostasis as a direct consequence of elevated oxidative stress, results in 

ER stress, the stimulation of the UPR as well as autophagy. Increased activity of the UPP is also observed in this 

context. Abbreviations: FAS-L, FAS ligand; TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand; 

TRADD, Tumor necrosis factor receptor type 1-associated death domain; TNF-R1, Tumor necrosis factor 

receptor type 1; FADD, FAS-associated death domain; RIP, receptor-interacting protein; RAIDD, RIP associated 

Ich-1/CED homologous protein with death domain; FLIP, FLICE inhibitory protein; PUMA, p58-upregulated 

mediator of apoptosis; Bid, Bcl2 -interacting domain; tBid, Truncated Bid; dATP, Deoxyadenosine triphosphate; 

Cyto.-c, Cytochrome-c; Apaf-1, Apoptotic protease activating factor 1; ACs, Anthracyclines; TRAF-2, TNF 

receptor-associated factor 2; MADD, MAP kinase-activating death domain protein; NF-B, Nuclear factor 

kappa B; NIK, NFkB inducing kinase; IKK, I-kappa-B kinase; ASK-1, Apoptosis signal-regulating kinase1; 

IB, I kappa B; JNK, c-Jun NH2-terminal kinase; Nox1, NADPH oxidase 1; ROS, Reactive oxygen species; O2
-

superoxide anion; H2O2, hydrogen peroxide; ATF-2, activating transcription factor 2; ATF-4, activating 

transcription factor 4; Bcl2, B-cell lymphoma 2; IRE-1, Inositol requiring kinase1; PERK, RNA-dependent 

protein kinase (PKR)-like ER kinase; Ca2+, Calcium; P, phosphate; CHOP, CCAAT/enhancer binding protein 

(C/EBP) homologous protein; GADD34, Growth arrest DNA damage-inducible protein 34; ER, Endoplasmic 

reticulum; eIF2, Eukaryotic initiation factor 2; UPP, ubiquitin-proteasome pathway. 
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Chapter 2 
 

Ex vivo model 

 

2.1: Introduction 

 

Anthracyclines such as daunorubicin (DNR), doxorubicin (DXR), epirubicin and 

idarubicin are widely used for treatment of various haematological and solid tumor 

malignancies including breast cancer, leukemia and sarcomas (Fisher et al, 2005) 

Although these anthracyclines are very effective, its clinical use is limited due to 

cardiotoxicity which leads to congestive heart failure, reduced quality of life, or death 

(Von Hoff et al, 1977; Fajardo et al, 2006) On molecular level, anthracyclines induce 

apoptosis, alterations in iron homeostasis, deregulation of calcium homeostasis, and 

mitochondrial dysfunction (Vergely et al, 2007). 

 

Antracycline cardiotoxicity can be classified as acute or chronic. Acute cardiotoxicity 

is independent of the anthracycline dose and is characterized by hypotension, 

tachycardia, arrhythmias, and depression of left ventricular function (Fumoleau et al, 

2006). Chronic or delayed cardiotoxicity is dose-related, typically irreversible and 

usually presents within one year after the end of treatment.  

 

Since the early detection and treatment of cardiotoxicity can reduce its clinical 

outcome, it is particularly important to understand the molecular events leading to 

these adverse effects in order to develop new treatment strategies to manage the 

side-effects appropriately. Several mechanisms have been proposed for 

anthracycline-mediated cardiac toxicity such as the formation of reactive oxygen 

species (Liu et al, 2004) and the formation of secondary alcohol metabolites within 

cardiac tissue (Minotti et al, 2000). Furthermore, it was also shown that the ubiquitin-
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proteasome pathway (UPP) is deregulated by DXR in the heart (Poizat et al, 2000; 

Kumarapeli et al, 2005). The UPP is one of two major pathways which are 

responsible for the clearance of proteins and organelles in the eukaryotic cell. The 

UPP predominantly degrades short-lived normal protein molecules after they have 

fulfilled their duty in the cell, such as proteins involved in regulation of cell division, 

gene transcription, signal transduction and endocytosis (Hochstrasser et al, 1995). 

The UPP also degrades abnormal proteins such as misfolded, oxidised, and mutant 

proteins, thereby serving as a critical step of post-translational protein quality control 

in the cell (Gomes et al, 2006). Targeted proteolysis by the UPP includes two main 

steps: 1) the attachment of a series of Ub molecules to the target protein molecule 

via a process known as ubiquitination and 2) degradation of the ubiquitinated 

proteins by the proteasome (Patterson et al, 2007; Young et al, 2008). A series of 

energy-consuming reactions, involving ubiquitin-activating enzymes (E1), ubiquitin-

conjugating enzymes (E2) and ubiquitin ligases (E3) are required to tag targeted 

proteins. Two E3 ligases, muscle RING finger-1 (MuR-1) and muscle atrophy F-box 

(MAFbx) are expressed specifically in striated (cardiac and skeletal) muscle and are 

central players in the UPP regulated turnover of sarcomeric proteins (Li et al, 2004; 

Li et al, 2007). 

 

The other major pathway responsible for degradation of cytoplasmic proteins, 

organelles and long-lived proteins is the autophagy-lysosomal pathway (Yoshimori et 

al, 2004). Although there is a constant low level of autophagic activity under normal 

conditions in the heart (Levine et al, 2004), autophagy is upregulated in response to 

stressors such as ischaemia/reperfusion injury, cardiac hypertrophy, heart failure 

and nutrient deprivation (Gustafsson et al, 2008). Autophagy requires a cascade of 

evolutionarily conserved proteins (Atg proteins) that comprise two conjugation 

pathways: 1) the Atg12-Atg5 pathway; and 2) the light chain 3-

phosphatidylethanolamine (LC3 or Atg8-PE) pathway (Gustafsson et al, 2009). 

Beclin 1 (Atg6) is part of a phosphoinositide 3-kinase (PI3-K) complex and seems to 

play an important role during the initial steps of autophagosome formation by 

mediating the localization of other Atg proteins to the isolation membrane (Fuertes et 

al, 2003). 
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The distinction of substrate preference between these two proteolytic systems are 

relative as recent studies indicate the UPP can participate in the degradation of long-

lived proteins while autophagy can also be involved in the degradation of short-lived 

proteins (Fuertes et al, 2003; Li et al, 2006). Together, these systems play an 

essential role in the maintenance of sarcomeric function in the face of physiological 

and pathophysiological stimuli. Therefore, the aim of this study was to characterize 

these proteolytic systems after DNR-induced cardiotoxicity in a rat model. 

 

2.2: Materials and Methods 

2.2.1: Animal model and treatment 

 

 

Male Wistar rats (180 – 200 g, n=14) were fed a standard rat chow diet (SRC) with 

free access to water. All experiments were approved by the ethics committee at the 

Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, 

South Africa (Ref: CPUT/HW-REC 2008/009) and conforms with the European 

Communities Council Directive of 1986 (86/609/EEC) and the United States National 

Institute of Health guidelines. 

 

2.2.2: Experimental protocol 

Adult rats were divided into two groups where one group received DNR treatment 

and the other saline injections as control. Animals of the DNR group received six 

intraperitoneal injections of 2 mg/kg on alternate days resulting in a 12 mg/kg 

cumulative dose. The evaluation of heart function was performed the day after the 

last injection. 
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2.2.3: Working heart perfusions 

After the experimental protocol, rats were injected with sodium pentobarbitone 

solution (Euthenase, 50 mg/kg), and their hearts rapidly excised and placed in 

cooled Krebs Henseleit buffer [(KHB) - 121.5 mmol/l NaCI; 3.8 mmol/l KCI; 1.2 

mmol/l MgCI 6 H2O; 2.5 mmol/l CaCI2; 15.5 mmol/l NaHCO3; 1.2 mmol/l KH2PO4; 

11.0 mmol/l glucose] , before being mounted on a working heart perfusion apparatus 

by canulating the aorta and pulmonary vein. Retrograde aortic perfusion was initiated 

and sustained for 10 min (stabilization period) at a constant perfusion pressure of 

100 cm KHB. After the stabilization period, the hearts were switched to the working 

heart mode for 35 min, during which aortic output (AO), coronary flow (CF) and aortic 

pressure (AOP) was measured every 5 min. At the end of the perfusion protocol 

hearts were freeze clamped for biochemical analysis. 

 

2.2.4: Western-blot Analysis 

Tissue protein were extracted with a lysis buffer containing (in mM): Tris 20, p-

nitrophenylphosphate 20, EGTA 1, sodium fluoride (NaF) 50, sodium orthovanadate 

0.1, phenylmethyl sulphonyl fluoride (PMSF) 1, dithiothreitol (DTT) 1, aprotinin 10 

µg/ml, leupeptin 10 µg/ml. The tissue lysates were diluted in Laemmli sample buffer, 

boiled for 5 minutes and 10 µg (for kinases, E3 ligases and LC-3 and beclin) or 50 µg 

protein (for caspase-3 and PARP) were subjected to electrophoresis. The lysate 

protein content was determined using the Bradford technique (Bradford, 1976). The 

separated proteins were transferred to a PVDF membrane (ImmobilonTM P, 

Millipore). These membranes were routinely stained with Ponceau Red for 

visualization of proteins and stripped and reprobed with anti-actin antibody to ensure 

equal loading. Non-specific binding sites on the membranes were blocked with 5% 

fat-free milk powder dissolved in Tris-buffered saline-0.1% Tween 20 (TBST) and 

then incubated with the primary antibodies that recognize phospho-specific and total 

PKB Ser473 and FoxO1, caspase-3 (p17 fragment pAb) and PARP (p89 fragment 

pAb), Bcl-2, Bax, LC-3 and beclin-1 (all from Cell Signalling Technology) and 

MAFbx, MuRF-1 and ubiquitin from Santa Cruz. Membranes were subsequently 

washed with large volumes of TBST (5 x 5 min) and the immobilized antibody 
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conjugated with a diluted horseradish peroxidase-labeled secondary antibody 

(Amersham LIFE SCIENCE). After thorough washing with TBS-T, membranes were 

covered with ECLTM detection reagents and quickly exposed to an autoradiography 

film (Hyperfilm ECL, RPN 2103) to detect light emission through a non-radioactive 

method (ECLTM Western blotting). Films were densitometrically analyzed (UN-SCAN-

IT, Silkscience) and phosphorylated protein values were corrected for minor 

differences in protein loading, if required. All blots were scanned at a resolution of 

150 dpi. The exact outline of each band was demarcated in the UN-SCAN-IT 

programme, which takes all aspects of density and distribution into account. The full 

experimental range was analyzed on a particular blot. These analyses were 

performed under conditions where autoradiographic detection was in the linear 

response range. 

 

2.2.5: Statistics 

Values are presented as mean ± standard error of the mean (S.E.M). Western blot 

data are presented as means ± S.E.M. of triplicate analysis of the protein samples 

from seven rats per group. The student’s unpaired t test was used to determine 

statistical significance. A value of p ≤ 0.05 was considered statistically significant. 

 

2.3: Results 

2.3.1: DNR suppresses cardiac function (Table 1)  

We have previously demonstrated that the anti-cancer treatment regimen with the 

anthracycline, DNR, significantly attenuated cardiac function in the isolated rat heart 

(Wergeland et al, 2011). DNR significantly decreased aortic pressure [(93.98  8.53 

mmHg vs 117.80  2.99 mmHg (p < 0.05)] aortic output [(31.73  2.20 ml/min vs 

38.25  1.25 ml/min (p < 0.05)] and coronary flow rate [(17.07  1.41 ml/min vs 21.88 

 1.21 ml/min (p < 0.05)] compared to their respective control groups.  
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Functional characteristics of animal hearts 

  Control DNR 

Aortic Pressure 117.80 ± 2.99 mmHg 93.98 ± 8.53 mmHg* 

Aortic Output 38.25 ± 1.25 ml/min 31.73 ± 2.20 ml/min* 

Coronary Flow 

Rate 
21.88 ± 1.21 ml/min 17.07 ± 1.41 ml/min* 

*p<0.05 vs. Control 

 

Table 1: Functional characteristics of animal hearts. During the perfusion protocol, aortic pressure, output and 

coronary flow rate were measured. All values are reported as a mean ± SEM. Statistical significance at *p ≤ 

0.05, n = 7 

 

2.3.2: DNR induces apoptosis in the rat heart (Figure 2.3.1 - 3) 

DNR significantly increased caspase-3 [(215.00  8.88 vs 182.70  4.05 avg pixels 

(p = 0.029)] as well as PARP cleavage [(221.00  3.78 vs 185.30  7.79 avg pixels 

(p = 0.014)] in the rat heart. In animals treated with DNR, Bcl-2 protein expression in 

the hearts decreased, but Bax protein expression increased compared to control. 

More importantly, the ratio of Bcl-2/Bax increased during DNR treatment, indicating 

that DNR down-regulated Bcl-2 expression and up-regulated Bax expression [(0.48  

0.09 vs control (p = 0.009)]. 
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Figure 2.3.1: The effect of DNR treatment on apoptosis in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for apoptotic marker cleaved caspase-3. All values are reported as a 

mean ± SEM. Statistical significance at *p = 0.029, n = 7 
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Figure 2.3.2: The effect of DNR treatment on apoptosis in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for apoptotic marker cleaved-PARP. All values are reported as a mean 

± SEM. Statistical significance at *p = 0.014, n = 7 
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Figure 2.3.3: The effect of DNR treatment on apoptosis in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for apoptotic markers Bcl-2 and Bax. All values are reported as a mean 

± SEM. Statistical significance at *p = 0.009, n = 7 

 

2.3.3: DNR induces autophagy in the rat heart (Figure 2.3.4 - 6) 

DNR caused significant increases in two markers of autophagy. A 24% increase in 

beclin-1 [(206.10  2.51 vs 156.60  6.40 avg pixels (p = 0.0002)] as well as a 46% 

increase in LC-3 lipidation [(210.60  2.58 vs 114.10  4.85 avg pixels (p = 0.0002)] 

was observed after DNR treatment. DNR also caused a significant attenuation of 

p62/SQSTM1 [(152.70  5.81 vs 174.50  2.45 avg pixels (p = 0.008)]. 
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Figure 2.3.4: The effect of DNR treatment on autophagy in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for the autophagic marker Beclin-1. All values are reported as a mean ± 

SEM. Statistical significance at *p = 0.0002, n = 7 

 

 

 

 

 

 

 

 

 

 

 

β‐actin 
60 kD 

*

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | CHAPTER 2  59 

 

 

 

 

Figure 2.3.5: The effect of DNR treatment on autophagy in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for the autophagic marker LC-3. All values are reported as a mean ± 

SEM. Statistical significance at *p = 0.0002, n = 7 
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Figure 2.3.6: The effect of DNR treatment on autophagy in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for the autophagic marker p62/SQSTM1. All values are reported as a 

mean ± SEM. Statistical significance at *p = 0.008, n = 7 

 

2.3.4: DNR attenuates the PI3-Kinase/Akt signalling pathway (Figure 2.3.7 - 8) 

Akt (Ser473) phosphorylation was significantly inhibited after DNR treatment [(90.00  

0.58% (p = 0.001)]. One substrate of Akt, FoxO1, was also significantly 

dephosphorylated after DNR treatment [(95.60  1.20% (p = 0056)]. 
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Figure 2.3.7: The effect of DNR treatment on the PI3-kinase/Akt signalling pathway. After the perfusion 

protocol, the heart tissue was freeze clamped and analyzed for phosphorylated and total Akt (Ser473). All values 

are reported as a mean ± SEM. Statistical significance at *p = 0.001, n = 7  
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Figure 2.3.8: The effect of DNR treatment on the PI3-kinase/Akt signalling pathway. After the perfusion 

protocol, the heart tissue was freeze clamped and analyzed for phosphorylated and total FoxO1. All values are 

reported as a mean ± SEM. Statistical significance at *p = 0.0056, n = 7 

 

2.3.5: DNR activates the ubiquitin ligases, MuRF-1 and MAFbx (Figure 2.3.9 - 11) 

DNR caused a significant increase (44%) in the induction of MuRF-1 [(137.90  

10.15 vs 77.22  9.45 avg pixels (p = 0.001)], as well as a 40% increase in MAFbx 

[(172.90  4.82 vs 103.90  10.94 avg pixels (p < 0.0001)]. DNR treatment also 

caused a significant increase in the accumulation of ubiquitinated proteins [(153.20  

4.09 vs 141.40  4.66 avg pixels (p = 0.049)]. 

 

 

 

 

 

 

T‐FoxO 

78 kD 
p‐FoxO1 

*

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | CHAPTER 2  63 

 

 

 

 

Figure 2.3.9: The effect of DNR treatment on the UPP in the heart. After the perfusion protocol, the heart tissue 

was freeze clamped and analyzed for the E3 ligase MuRF-1. All values are reported as a mean ± SEM. Statistical 

significance at *p = 0.0011, n = 7 
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Figure 2.3.10: The effect of DNR treatment on the UPP in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for the E3 ligase MAFbx. All values are reported as a mean ± SEM. 

Statistical significance at *p = 0.0001, n = 7 
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Figure 2.3.11: The effect of DNR treatment on the UPP in the heart. After the perfusion protocol, the heart 

tissue was freeze clamped and analyzed for Ubiquitin conjugates. All values are reported as a mean ± SEM. 

Statistical significance at *p = 0.049, n = 7 
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2.4: Discussion 

The data presented in this part of the study supports a model where acute DNR-

induced cardiac dysfunction is associated with the upregulation of the UPP and 

autophagy. DNR-induced cardiac dysfunction is reflected in significant decreases in 

aortic pressure, aortic output and coronary flow rate (Wergelend et al, 2011). The 

attenuation of heart function induced by DNR was also associated with increased 

apoptosis in our model (Figures 2.3.1, 2.3.2, 2.3.3). It is well accepted that apoptosis 

of cardiomyocytes could be one of the fundamental mechanisms that initiates and/or 

aggravates heart failure after acute anthracycline therapy (Zhu et al, 2009). It has 

also been previously demonstrated that very low levels of myocyte apoptosis are 

sufficient to cause lethal, dilated cardiomyopathy (Wencker et al, 2003). In the 

present study, we used a clinically relevant dose of DNR, similar to that of Gausdal, 

et al, 2008. 

 

Although the involvement of the UPP and the E3 ligases, MuRF-1 and MAFbx, in the 

turnover of skeletal muscle proteins is clearly established (Acharryya et al, 2004; 

Costelli et al, 2001), no evidence exists for the potential role of these two E3 ligases 

following acute DNR therapy. We have demonstrated for the first time that acute 

DNR therapy is associated with upregulation of MuRF-1 and MAFbx (Figures 2.3.9, 

2.3.10) and concomitant accumulation of ubiquitin proteins (Figure 2.3.11). Although 

it was previously shown that a therapeutic dose of DXR activates the UPP by acting 

directly on both the ubiquitination apparatus and the proteasome, these researchers 

explore the mechanisms involved rather than investigating the role of these two 

ligases (Liu et al, 2008). Although the pathophysiological role of MuRF-1 and MAFbx 

has been largely confined to diseases that involve peripheral skeletal muscle wasting 

(Adams et al, 2008; Centner et al, 2001), only recent evidence exists for a possible 

role for these ligases in ventricular remodelling. Several investigators have 

demonstrated that the UPP is activated during cardiac hypertrophy (Fielitz et al, 

2007; Fielits et al, 2007). Upregulation of MuRF-1 and MAFbx are also associated 

with increased protein degradation via the UPP during myocardial remodelling in 

chronic heart failure (Adams et al, 2007). Molecular targets ubiquitinylated by MAFbx 
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and MuRF-1 include myofibrillar proteins like troponin-1, titin, nebulin, myosin light 

chain 2, as well as metabolic enzymes involved in energy production (Kedar et al, 

2004; Witt et al, 2005). MuRF-1-mediated degradation of troponin-1 appears to be 

very specific as demonstrated by Van der Velden et al (2004), who have shown that 

structural proteins such as myosin, actin or MyBP-C are not down-regulated. This 

study was however conducted on pigs with myocardial infarction (Van der Velden et 

al, 2004).  

 

Although autophagy has long been depicted as a survival pathway which allow cells 

to maintain energy production under various stress and starvation conditions 

(Mizushima, 2005), it has also been shown to contribute to cell death in other 

contexts, suggesting autophagy could either be protective or detrimental, depending 

on the cellular environment (Matsui et al, 2007; Eisenberg-Lerner et al, 2009). 

Therefore, the functional significance of autophagy induction has to be determined 

individually within the specific context of each study. In our model, DNR-induced 

cardiotoxicity is associated with an up-regulation of the autophagy markers, beclin-1 

and LC-3 and down-regulation of p62 (Figures 2.3.4, 2.3.5, 2.3.6). Beclin-1 is part of 

the PI (3)-kinase class III lipid kinase complex which plays a central role in the 

induction of autophagy (Levine et al, 2008). When autophagy is induced, 

microtubule-associated protein light-chain 3 (LC3), encoded by autophagy-related 

gene ATG8, is processed from LC3-I (18 kDa) to LC3-II (16 kDa) and incorporated 

into autophagic vacuoles (Tanida et al, 2004). p62 (also known as 

SQSTM1/sequestome 1) is an adaptor protein which targets protein aggregates and 

damaged organelles for autophagic degradation; in so functioning, p62 is selectively 

incorporated into autophagosomes through binding to LC3-II, degraded by 

autophagy and a good marker for efficient autophagic activity (Bjorkoy et al, 2005). 

Autophagy is often also associated with apoptosis, which make it even more difficult 

to determine the role of autophagy in cell death and cell survival. The interaction 

between autophagy and apoptosis has been characterized as follows: (1) autophagy 

and apoptosis can act as partners to co-ordinately induce cell death; (2) autophagy 

can act as an agonist to block cell death and (3) autophagy can act as an enabler of 

apoptosis (Eisenberg-Lerner et al, 2009). In accordance with our results, Kobayashi 
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and co-workers (2010) also demonstrated that DXR dramatically increased 

autophagy flux in cardiomyocytes which was associated with elevated apoptosis 

(Kobayashi et al, 2010). These researchers also demonstrated that inhibition of 

autophagy resulted in significant attenuation of cell death while the activation of 

autophagy with rapamycin exacerbated DXR-induced cardiomyocyte death, 

suggesting that autophagy is linked to apoptosis and act as partners to promote cell 

death.  

 

The induction of the UPP and autophagy is tightly controlled by many positive and 

negative regulators (Eisenberg-Lerner et al, 2009; Klionsky et al, 2007). The PI3-

Kinase/Akt signalling pathway, which is activated by insulin, growth factors and 

metabolic signals are well known to inhibit autophagy and the UPP. The activation of 

Akt results in the phosphorylation of both cytoplasmic and nuclear target proteins 

which include FoxO proteins, a subgroup of the Forkhead transcription factors and 

mTOR. Phosphorylation of FoxO proteins by Akt promotes FoxO sequestration by 

14-3-3 proteins in the cytoplasm leading to inhibition of their transcriptional functions. 

On the other hand, dephosphorylation of FoxO leads to nuclear entry and 

transcription of ubiquitin ligases (Huang et al, 2007). In the present study, we 

observed a significant attenuation in Akt and Foxo1 phosphorylation (Figures 2.3.7, 

2.3.8), which might be responsible for the increased induction of MuRF-1 and MAFbx 

in the DNR group. Furthermore, the attenuation of Akt phosphorylation by DNR 

might also be responsible for increased autophagy observed in our model through 

inhibition of mTOR, another downstream target of Akt. Our findings are indirectly 

supported by Zhu and co-workers (2009) who observed that DXR treatment 

decreased mTOR activity in non-transgenic mice (Zhu et al, 2009). 

 

In summary, the results reported here suggests that acute DNR-induced 

cardiotoxicity, which is reflected in attenuation of cardiac function and increased 

apoptosis, is associated with an increased induction of the ubiquitin proteasome 

pathway and autophagy as well as blunted Akt/FoxO signalling. Although a 

molecular link between the UPP-activating effects of DNR and its cardiotoxicity 
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remains to be established, the present study is the first to demonstrate that DNR 

activates the E3 ubiquitin ligases, MuRF-1 and MAFbx. This might implicate that the 

modulation of MuRF-1/MAFbx might represent a novel strategy to attenuate 

cardiotoxicity after DNR treatment. 
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Chapter 3 
 

In vitro model 

 

3.1: Introduction 

 

The use of doxorubicin (DXR, Adriamycin), a broad spectrum chemotherapeutic 

agent in oncologic practice, has been limited by its dose-dependent cumulative 

cardiotoxicity, which leads to irreversible and often fatal drug-induced congestive 

heart failure (Petit, 2004; Minow et al, 1975; Minow et al, 1977; Cortez et al, 1975; 

Lefrak et al, 1975). The prevailing mechanism by which DXR induces cardiotoxicity 

is oxidative stress associated with mitochondrial dysfunction (Singal et al, 1987; 

Singal et al, 1995). Although the “oxidative stress hypothesis” is supported by the 

ability of several antioxidants to reduce DXR cardiotoxicity in animal models (Kang et 

al, 1996; Kumar et al, 2001; Sun et al, 2001), these results could not be reproduced 

in clinical trials (Ladas et al, 2004). It is therefore suggested that other mechanisms 

than oxidative stress might also contribute to DXR-induced heart failure. 

 

Maintenance of the structure and function of the sarcomere is essential for the 

protection against cytotoxicity. Ensuring sufficient function of the sarcomere requires 

precise control of protein synthesis, processing and degradation. Two important 

protein degradation systems within the heart include autophagy and the ubiquitin-

proteasome pathway (UPP). Autophagy is the major pathway for degradation and 

recycling of long-lived proteins and organelles that are sequestered in double-

membrane vesicles known as autophagosomes (Gottlieb et al, 2009). After fusing 

with lysosomes to form autophagolysosomes, the inner membrane and its contents 

is degraded and recycled. The UPP on the other hand, functions by targeting specific 

proteins, labelling them with multiple ubiquitin molecules which then allow for 

recognition and subsequent degradation by the 26S proteasome (Passmore et al, 

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | CHAPTER 3  77 

 

2004; Willis et al, 2010). Together, these pathways play an essential role in the 

maintenance of sarcomeric function in the face of DXR-induced cytotoxic stimuli. 

 

Autophagy functions as a cytoplasmic quality control mechanism to remove protein 

aggregates and damaged organelles. In this respect, autophagy has been shown to 

play a vital role in cardiac homeostasis as the inactivation of an autophagy 

associated gene, ATG5, resulted in myocardial dysfunction (Nakai et al, 2007). 

Autophagy induction during ischemia has also been shown to be cardioprotective 

(Loos et al, 2011; Yan et al, 2005; Matsui et al, 2007). However, increased 

autophagic activity can also be detrimental to the heart under certain conditions 

(Levine et al, 2005) such as pressure overload (Rothermel et al, 2008).  

 

A number of cellular stresses such as nutrient deprivation, alterations in 

glycosylation status, and disturbances in calcium flux lead to the accumulation of 

misfolded and unfolded proteins in the endoplasmic reticulum (ER) lumen which 

ultimately results in the induction of ER stress (Austin, 2009; Rasheva et al, 2009). 

ER stress triggers a signalling cascade which couples the ER protein folding load 

with the ER folding capacity and is referred to as the unfolded protein response 

(UPR). Under normal circumstances, the UPR is a cytoprotective response, however 

excessive UPR results in apoptosis. 

 

Rapamycin is a very versatile drug with well-documented effects in reducing growth 

in numerous cancers (Wu et al, 2007; Namba et al, 2006). It is also being utilized as 

undercoats for drug-eluting stents to prevent the progression of restenosis after 

coronary angioplasty (Hausleiter et al, 2004) and has been shown to be a potent 

inhibitor of left ventricular (LV) hypertrophy in vivo (McMullen et al, 2004; Shioi et al, 

2003). Furthermore, as a potent mTOR (mammalian target of rapamycin) inhibitor, 

rapamycin has also been widely used to activate autophagy. Although rapamycin 

treatment is known to be beneficial in many contexts, its potential cardioprotective 

effects in DXR-induced cardiotoxicity has not been investigated.  
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Therefore, we hypothesized that elevated autophagy through rapamycin treatment, 

alleviates AC-induced toxicity and attenuates cardiomyocyte death. We aimed to (i) 

characterize the effect of DXR on H9C2 cells, (ii) to determine whether the 

induction/inhibition of autophagy in combination with DXR alleviates cytotoxicity and 

(iii) to investigate the influence of elevated/reduced autophagy in combination with 

DXR on apoptosis, ROS production, mitochondrial function, the ubiquitin-proteasome 

pathway (UPP) and ER stress. 

 

3.2: Materials and Methods 

3.2.1: Cell Culture Preparation 

H9C2 rat heart myoblasts (European Collection of Cell Cultures – ECACC), were 

seeded at 12 000/cm2, and cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 4% L-glutamine 

and 1% penicillin/streptomycin in a humidified atmosphere, 37 °C, in the presence of 

5% CO2. In brief, cells were washed with 0.01 M sterile phosphate-buffered saline, 

(PBS), trypsinized (0.25% Trypsin – EDTA), centrifuged for 3 min at 6000 x g and 

seeded as follows: 1x106 myoblasts per 75 cm2 tissue culture flask, 3x105 myoblasts 

per 25 cm² tissue culture flask, 1x105 myoblasts per culture dish in six-well plates 

and 2x104 myoblasts per 8-chamber slide. Growth medium was replenished every 

48 hrs. 

 

3.2.2: Passaging Protocol 

Cells were passaged at 70-80% confluency. Growth medium was discarded and 

cells rinsed with warm (37°C) sterile PBS. Warm 0.25% trypsin-EDTA (3/5 ml) was 

added and cells were incubated until cells detached from the surface (2-3 min). 

Culture medium (double the volume of trypsin used; 6/10 ml) was added to the cell 

suspension, which was then transferred to a 15/50 ml falcon tube, centrifuged for 3 

min at 6000 x g. Medium was decanted and cells resuspended in fresh medium. 

Aliquots for new flasks were made as required according to the desired seeding 

density. 
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3.2.3: Treatment of H9C2 cells with decreasing amino acid concentrations 

In order to assess the influence of amino acids on autophagic activity, H9C2 cells 

were subjected for 24 and 48 hrs to decreasing concentrations of amino acids (see 

table below) using two different types of growth media: normal growth medium 

containing the necessary growth factors and antibiotics and growth medium 

containing the necessary growth factors and antibiotics, excluding all amino acids.  

Normal 

Growth Medium 

Growth Medium 

without amino acids 

100% 0% 

90% 10% 

70% 30% 

50% 50% 

30% 70% 

10% 90% 

0% 100% 

 

Table 2: Amino acid concentrations. Normal growth media were combined with growth media without amino 

acids to achieve different amino acid concentrations. 

 

3.2.4: Treatment of cells with Rapamycin or Bafilomycin 

Cells were treated with either 50 nM rapamycin (Sigma, R8781) or 10 nM 

bafilomycin A1 (Sigma, 1793) for 24 and 6 hrs respectively (dose response data in 

appendix B and C). 

 

3.2.5: Silencing of mammalian target of rapamycin (mTOR) 

In order to mimic the effects of rapamycin, mTOR was silenced using siRNA. H9C2 

cells were grown and maintained as previously described in 24-well plates. After 

reaching a confluency of 50%, cells were transfected with siRNA-mTOR (Cell 
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Signalling, 6381) using the FuGENE transfection reagent (Roche, 11814443001) 

following the manufacturer’s instructions.  

 

3.2.6: Treatment of cells with DXR 

At 70 – 80% confluency, H9C2 cells were treated with different concentrations of DXR 

(Sigma, D1515) (1 – 10 µM) at various time points (1, 6, 12, 24 and 48 hrs) in order 

to establish an appropriate dose and time point to be employed. 

 

3.3: Assessment of Cell Viability 

3.3.1: Determination of H9C2 myoblast viability (MTT Assay) 

H9C2 myoblast viability was analysed at all above mentioned points post treatment 

with the MTT [3-(4,5-dimethylthylyhiazol-2-yl)-2,5-Diphenyltertrazolium Bromide] 

assay described by Gomez and colleagues (1997). This assay is based upon the 

principal of reducing MTT into blue formazan pigments by viable mitochondria in 

healthy cells. At the end of the experimental procedure, medium was removed from 

the cells, 1.5 ml PBS and 500 μl MTT (0.01 g/ml) solution was carefully added to 

each 6-well and incubated at 37ºC for 2 hrs at an atmosphere of 5% CO2. This time 

period was found to be optimal for the development of colour that is associated with 

formazan product formation. If there were cells that had detached, the content was 

transferred to eppendorf tubes and centrifuged for 2 min at 1000 rpm. The supernant 

was decanted; 2 ml HCl (hydrogen chloride)-isopropanol/Triton (1% HCl in 

isopropanol; 0.1% Triton X-100; 50:1) solution was added to each pellet and 

resuspended. Resuspended cells were then added back to the original plates where 

some cells remained attached. Next, 2 ml HCl-isopropanol/Triton solution was added 

to each well, which was then covered with foil and placed on a belly dancer for 5 

min. This solution causes lysis of cell membranes and the release of formazan 

pigments. The cell suspension was transferred to 2 ml eppendorf tubes and 

centrifuged for 2 min at 1400 rpm. The optical density (OD) was determined 

spectrophotometrically (Cecil-CE 2021-2000 Series, Lasec) at a wavelength of 540 

nm, using HCl-isopropanol/Triton solution as the blank. The values obtained are 

expressed as percentages of the control values. 
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3.4: Morphological Analysis of Cell Death 

3.4.1: Nuclear condensation 

Nuclear condensation (pyknosis) as well as fragmentation (karyorrhexis) have 

previously been demonstrated as morphological characteristics for apoptosis 

(Kajustra et al, 1996). Using the DNA intercalating dye, Hoechst 33342 (in a 1:200 

dilution in PBS) (Sigma, B2261), differentiation between normal nuclear morphology 

and apoptotic morphology is possible. After subjecting H9C2 myoblasts to the various 

treatment regimens, Hoechst was added onto the cells at a final concentration of 50 

μg/ml, and incubated for 10 min. Using the Olympus Cell^R Soft Imaging Systems, 

images of random fields of view were acquired immediately thereafter. Cells were 

classified according to their nuclear signal: (i) normal nuclei with blue chromatin, 

showing organization with a distribution of heterochromatin and euchromatin and (ii) 

cells displaying bright blue and substantially condensed or fragmented nuclei 

indicative of apoptosis. For each experimental condition, images of four random 

fields of view were acquired. Data are represented as the number of apoptotic 

cells/total number of cells x 100 as demonstrated by Lacerda et al (2006) and 

Engelbrecht et al (2007). 

 

3.4.2: Propidium Iodide (PI) exclusion 

The loss of membrane integrity has previously been described as an indicator for 

necrosis (Festjens et al., 2006). The DNA intercalating dye, Propidium Iodide (PI), is 

not able to penetrate the membrane of viable cells and is thus omitted from binding 

to the cell’s nucleus. If the membrane integrity of the cell is lost, PI penetrates the 

cell membrane and intercalates with the DNA with specificity for double-stranded 

nucleic acids, absorbing in blue-green (493 nm), fluorescing red (630 nm). The PI 

exclusion technique therefore allows for distinct differentiation between viable cells 

(PI-negative), and cells which have lost their membrane integrity (PI-positive). 

Following the experimental protocol, Hoechst and PI (in a 1:200 dilution with PBS) 

(Sigma, P4170) were added onto the cells at a final concentration of 50 μg/ml and 1 

μg/ml respectively. Cells were incubated for 10 min and images were acquired 

immediately thereafter. Using the Olympus Cell^R Soft Imaging Systems, four 
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random fields of view were acquired for each experimental condition. Using a Xenon-

Arc burner (Olympus Biosystems GMBH) as light source, images were acquired with 

the 360 nm and 572 nm excitation filter; emission was collected using a UBG triple 

band pass emission filter cube (Chroma). Necrotic cells showed bright red nuclei. 

The percentage (%) PI-positive cells was calculated as number of PI-positive 

cells/total cells x 100. 

 

3.4.3: Trypan Blue exclusion 

Following the various treatment regimens, H9C2 myoblasts were washed with warm 

PBS; trypsinized and neutralized using growth medium. Cell solutions from each well 

were centrifuged, the supernant decanted and the pellet resuspended in 500 μl PBS 

and 500 μl 0.4% trypan blue solution and incubated for 2 min at room temperature. 

This technique analyses the incorporation of trypan blue into cells with a damaged 

membrane (Kitakaze et al, 1997). The number of blue cells/total cells was counted. 

To avoid false positives, the count was performed within 5 min after exposure of cells 

to the trypan blue stain. Results are expressed as the percentage (%) of viable cells 

utilizing the CountessTM Automated cell counter (Invitrogen). 

 

3.4.4: Caspase-Glo Assay 

This assay (Promega, G8091) is a luminescent cell based technique that measures 

caspase-3 and -7 activities. Following caspase cleavage, a substrate for luciferase 

(amino-luceferin) is released, resulting in the luciferase reaction and the production 

of light. H9C2 cells were grown and treated as previously stated in white-walled 96-

well luminometer plates after which 100 µl of caspase-3/7 reagent was added to 

each well and incubated for 30 min at room temperature. This was followed by 

measuring the luminescence using a luminometer (GLOMAX 96 microplate 

Luminometer, Promega). 
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3.5: Flow Cytometry 

3.5.1: Acidic vacuole accumulation 

In order to assess autophagic activity, flow cytometry utilizing lysotracker was 

employed. Lysotracker (Molecular Probes, L7528) is a fluorescent probe that 

accumulates within intracellular acidic compartments such as lysosomes. It is thus 

being used as an indicator for the relative amount of acidic compartments. As 

autophagy is characterized by the development of acidic vesicular organelles 

(AVOs), lysotracker has been employed to detect and quantify AVOs (Azad et al., 

2008). H9C2 cells were grown and treated as previously described in 25 cm2 tissue 

culture flasks. Growth medium was discarded and cells rinsed with warm (37°C), 

sterile PBS. Warm 0.25% trypsin-EDTA (3 ml) was then added and cells were 

incubated until cells detached from the surface (2-3 min). Culture medium (double 

the volume of trypsin used; 6 ml) was added to the cell suspension, which was then 

transferred to a 15 ml falcon tube and centrifuged for 3 min at 6000 x g. Medium was 

decanted and cells resuspended in 500 µl warm PBS. Lysotracker was directly 

added onto the unfixed cells at a final concentration of 50 nM, incubated for 10 min, 

and analysed on the flow cytometer (BD FACSAria I) immediately thereafter. A 

minimum of 10 000 events (cells) were collected, and using the 488 nm laser and 

590 nm (Abs. = 577 nm) emission filter, fluorescence was measured. Fluorescence 

intensity signal was measured using the geometric mean on the intensity histogram. 

It should be noted that due to the autofluorescence of DXR in the red channel, which 

is similar to the emission of the fluorescent probe used for lysosomal production, the 

values presented in the results have been subtracted with the DXR-induced 

autofluorescence signal. 

 

3.5.2: Generic and mitochondrial ROS production 

Generic and mitochondrial ROS generation was evaluated with the aid of 6-carboxy-

2’7’-dichlorodihydrofluoresce in diacetate, diacetoxymethyl ester (DCF, Molecular 

Probes, D399) and MitoSOX (Molecular probes, M7514) respectively. H9C2 cells 

were grown and treated as previously described in 25 cm2 tissue culture flasks. 

Growth medium was discarded and cells rinsed with warm (37°C) sterile PBS. Warm 
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0.25% trypsin-EDTA (3 ml) was added and cells were incubated until cells detached 

from the surface (2-3 min). Culture medium (double the volume of trypsin used; 6 ml) 

was added to the cell suspension, which was then transferred to a 15 ml falcon tube 

and centrifuged for 3 min at 6000 x g. Medium was decanted and cells resuspended 

in 500 µl warm PBS. DCF and MitoSOX were directly added onto the unfixed cells at 

a final concentration of 50 µmol/L and 5 μM respectively and incubated for 15 min, 

and analysed on the flow cytometer (BD FACSAria I) immediately thereafter. A 

minimum of 10 000 events (cells) were collected, and using the 488 nm laser and 

510/580 nm emission filters, fluorescence intensity signal was measured. In addition, 

a concentration of 100 μmol/L H2O2 was used as a positive control. Fluorescence 

intensity signal was measured using the geometric mean on the intensity histogram. 

It should be noted that due to the autofluorescence of DXR in the red channel, which 

is similar to the emission of the fluorescent probe used for mitochondrial ROS 

production, the values presented in the results have been subtracted with the DXR-

induced autofluorescence signal. 

 

3.5.3: Assessment of Mitochondrial Load 

In order to determine the mitochondrial load, the cell-permeant, Mitotracker 

(Molecular Probes, M7514) was utilized. This fluorescent probe contains a mildly 

thiol-reactive chloromethyl moiety specific for mitochondrial labelling. H9C2 cells were 

grown and treated as previously described in 25 cm2 tissue culture flasks. Growth 

medium was discarded and cells rinsed with warm (37°C) sterile PBS. Warm 0.25% 

trypsin-EDTA (3 ml) was added and cells were incubated until cells detached from 

the surface (2-3 min). Culture medium (double the volume of trypsin used; 6 ml) was 

added to the cell suspension, which was then transferred to a 15 ml falcon tube and 

centrifuged for 3 min at 6000 x g. Medium was decanted and cells resuspended in 

500 µl warm PBS. Mitotracker was directly added onto the unfixed cells at a final 

concentration of 25 nM, incubated for 15 min, and analysed on the flow cytometer 

(BD FACSAria I) immediately thereafter. A minimum of 10 000 events (cells) were 

collected, and using the 490/516 nm excitation/emission filters, fluorescence 

intensity signal was measured using the geometric mean on the intensity histogram. 

 

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | CHAPTER 3  85 

 

3.5.4: Assessment of Mitochondrial function 

In order to determine mitochondrial function, the ratiometric 5, 5’, 6, 6’,-tetrachloro-1, 

1’, 3, 3’,-tetraethylbenzimidazolylcarbocyanine (JC-1) (Invitrogen, T3168) was 

utilized. This fluorescent probe is a cationic dye specific for mitochondrial labelling. In 

live cells, the dye exists either as a monomer and yields a green fluorescence at 

depolarized membrane potentials, or the dye forms red/orange fluorescent J-

aggregates at hyperpolarized membrane potentials, that exhibit a broad excitation 

spectrum and an emission maximum at 590 nm. The red/green ratio can thus be 

utilized as a sensitive marker for mitochondrial membrane potential. H9C2 cells were 

grown and treated as previously described in 25 cm2 tissue culture flasks. Growth 

medium was discarded and cells rinsed with warm (37°C) sterile PBS. Warm 0.25% 

trypsin-EDTA (3 ml) was added and cells were incubated until cells detached from 

the surface (2-3 min). Culture medium (double the volume of trypsin used; 6 ml) was 

added to the cell suspension, which was then transferred to a 15 ml falcon tube and 

centrifuged for 3 min at 6000 x g. Medium was decanted and cells resuspended in 

500 µl warm PBS. JC-1 was directly added onto the unfixed cells at a final 

concentration of 5 µM, incubated for 20 min, and analysed on the flow cytometer (BD 

FACSAria I) immediately thereafter. A minimum of 10 000 events (cells) were 

collected using the 488 nm laser and emission was collected between 515-545 nm 

and 575-625 nm. Fluorescence intensity signal was measured using the geometric 

mean on the intensity histogram. 

 

3.5.5: Assessment of Endoplasmic Reticulum (ER) Load 

In order to determine ER load, the cell-permeant ER-tracker (Molecular Probes, 

E12353) was utilized. This fluorescent probe is highly selective for ER labelling. H9C2 

cells were grown and treated as previously described in 25 cm2 tissue culture flasks. 

Growth medium was discarded and cells rinsed with warm (37°C) sterile PBS. Warm 

0.25% trypsin-EDTA (3 ml) was added and cells were incubated until cells detached 

from the surface (2-3 min). Culture medium (double the volume of trypsin used; 6 ml) 

was added to the cell suspension, which was then transferred to a 15 ml falcon tube 

and centrifuged for 3 min at 6000 x g. Medium was decanted and cells resuspended 

in 500 µl warm PBS. ER-tracker was directly added onto the unfixed cells, using a 
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final concentration of 100 nM, incubated for 10 min, and analysed on the flow 

cytometer (BD FACSAria I) immediately thereafter. A minimum of 10 000 events 

(cells) were collected. Utilizing the 407 nm laser and the 430-640 nm emission filters, 

fluorescence intensity signal was measured using the geometric mean on the 

intensity histogram. 

 

3.6: Fluorescence Microscopy 

 

Image acquisition was performed on an Olympus Cell^R system attached to an IX 81 

inverted fluorescence microscope equipped with a F-view-II cooled CCD camera 

(Soft Imaging Systems). Using a Xenon-Arc burner (Olympus Biosystems GMBH) as 

a light source, images were acquired using the 360, 497 or 572 nm excitation filters. 

Emission was collected using a UBG triple-bandpass emission filter cube (Chroma). 

Images were acquired through z-stacks where appropriate, using an Olympus Plan 

Apo N60x/1.4 oil objective, or a 10x objective. The top and bottom focus position 

parameter were selected, indicating the upper and lower dimensions of the sample 

to be acquired with a step width of 0.26 μm between the single image frames. 

Images were processed and background-subtracted using the Cell^R software, and 

presented in a maximum intensity projection. In setting up a defined experiment in 

the Experiment Manager facet of the Cell^R software, image acquisition parameters 

such as exposure time, illumination settings and emission filter cube selection were 

kept constant for all groups and ensured appropriate selection of parameters. The 

DAPI 360 nm excitation wave length was used for setting the focal plane, avoiding 

unnecessary photo-bleaching. 

 

3.6.1: Live Cell Imaging 

In order to establish a dynamic approach of monitoring various changes within the 

cell and its organelles after treatment, live cell imaging was performed. For that 

purpose, H9C2 cells were maintained at 37 °C in growth medium and seeded in 8-

chamber dishes with a density of 2x104 cells. After reaching confluency, cells were 
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treated as previously described and stained accordingly. For the staining procedure, 

the cell death (Sections 3.4.1 - 5) and flow cytometry (Sections 3.5.1 - 5) protocol 

including the different fluorescent probes and concentrations were used. Image 

acquisition was performed on an Olympus Cell^R system attached to an IX 81 

inverted fluorescence microscope equipped with a F-view-II cooled CCD camera 

(Soft Imaging Systems). Using a Xenon-Arc burner (Olympus Biosystems GMBH) as 

light source, images were acquired. 

 

3.6.2: Nuclear condensation 

Hoechst 33342 (50 μg/ml) 

 

 

 

 

3.6.3: PI Exclusion 

PI (1 μg/ml) 

 

 

 

 

3.6.4: Acidic Vacuole accumulation 

Lysotracker (50 nM) 
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3.6.5: ROS assessment 

DCF and MitoSOX (50 µmol/L and 5 μM) 

 

 

 

 

3.6.6: Mitochondrial Morphology 

MitoTracker (25 nM) 

 

 

 

 

3.6.7: Mitochondrial Function  

JC-1 (5 µM) 

 

 

 

 

3.6.8: DXR Localization 

DXR (3 µM)  
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and mitochondrial ROS in red 
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3.6.9: ER Load 

ER-tracker (100 nM)  

 

 

 

 

3.7: Proteasome Activity Analysis 

3.7.1: Chymotrypsin-like Cell-based Assay 

To investigate the activity of the proteasome after treatment, the Proteasome-Glo 

chymotrypsin-like cell-based assay (Promega, G8661) was employed. This assay is 

a luminescent cell based technique that measures the chymotrypsin-like protease 

activity associated with the proteasome complex in cultured cells. H9C2 cells were 

grown and treated as previously described in white-walled 96-well luminometer 

plates where after 100 µl of the Proteasome-Glo cell-based reagent was added to 

each well. The contents of the wells were mixed at 700 rpm using a plate shaker for 

2 min and incubated for 10 min at room temperature. This was followed by 

measuring the luminescence signal using a luminometer (GLOMAX 96 microplate 

Luminometer, Promega). 

 

3.8: Western Blotting Analysis 

3.8.1: Protein extraction 

H9C2 myoblasts were washed thoroughly with PBS where after 250 μl ice cold RIPA 

(Radio immunoprecipitation assay)/lysis buffer containing (in mM): tri-

(hydroxylmethyl)-aminomethane (TRIS)-HCl 50, NP-40 1%, Na-Deoxycholate 

0.25%, EDTA (Ethylenediaminetetraacetic acid) 1, sodium fluoride (NaF) 1, soybean 

trypsin inhibitor (SBTI) 4 μg/ml, phenylmethyl sulphonyl fluoride (PMSF) 1, 

Benzamidine 1, leupeptin 1μg/ml and Triton X-100 was added to each well for 5 min. 

The cells were scraped free from the wells and transferred into eppendorf tubes 
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maintained on ice. Cells were then sonicated (Ultrasonic Liquid Processor, Qsonica) 

for approximately 15 sec in order to allow the release of proteins. Centrifugation 

commenced (8000 rpm at 4ºC for 10 min) to remove nuclei and cellular debris. 

 

3.8.2: Protein quantification using the Bradford technique 

The rapid and sensitive Bradford method for the quantitation of microgram quantities 

of protein utilizing the principle of protein-dye binding was employed (Bradford, 

1976). This technique involves the binding of Coomassie Brilliant Blue G-250 to 

protein which causes a shift in the absorption maximum of the reagent from 465 nm 

to 595 nm. The increase in absorption at 595 nm is monitored spectrophotometrically 

(Cecil – CE 2021-2000 Series, Lasec). Cell lysates were thawed while kept on ice 

and sonicated for 10 sec at power level 3 (Vir Sonic 300, Virtis Gardiner) followed by 

centrifugation for 10 min at 4 °C at 5000 x g (ALC-PK121R) in order to pellet cell 

debris and to expose the whole cellular protein fraction. For the establishment of a 

standard curve, a protein dilution series was set up, pipetting 2 μg, 4 μg, 8 μg, 12 μg, 

16 μg and 20 μg bovine serum albumin dissolved in PBS (BSA, 200 μg/ml) and 900 

μl Bradford reagent into test tubes, adjusted to 1000 μl with deionized water. Sample 

protein concentrations were determined through pipetting 5 μl of the sample 

supernatant with 900 μl Bradford reagent and adjusted to 1000 μl with 95 μl 

deionized water. Samples were vortexed, incubated for 5 min at room temperature 

where after the absorbance was measured at a wavelength of 595 nm against a 

reagent blank. The weight of protein in μg/ml was plotted against the absorbance 

and the protein concentration was determined. 

 

3.8.3: Sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Laemmli sample buffer was prepared, using (in M): 33.3 ml TRIS 0.5, pH 6.8, 10% 

SDS, 2.5 ml glycerol, 0.2 ml 0.5% bromophenol blue in deionized water. A volume of 

150 μl mercaptoethanol was added to 850 μl sample buffer. Cell lysates were boiled 

for 5 min and shortly spun in a microcentrifuge. Total protein (20 μg) was separated 

by 8%, 10% or 15% sodium-dodecyl sulfatepolyacrylamide- gel-electrophoresis 

(SDS-PAGE) and a 4% stacking gel. 
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3.8.4: Transfer, Incubation and Visualization 

After completion of protein separation, proteins were transferred to PVDF 

membranes (ImmobilonTM P, Millipore). Membranes were routinely stained with 

Ponceau Red for visualisation of proteins. Non-specific binding sites were blocked 

with 5% fat-free milk in TRIS-buffered saline-Tween (TBS-T) and membranes were 

incubated with the primary antibodies that recognise cleaved-caspase-3, cleaved-

PARP, Beclin-1, p62/SQSTM1, LC-3, phospho-specific and total FoxO, MAFbx, 

MuRF-1, phospho-specific and total mTOR, ubiquitin and β-Actin. Membranes were 

subsequently washed with large volumes of TBS-T (3 x 5 min) and the immobilized 

antibody was conjugated with a diluted horseradish peroxidase-labelled secondary 

antibody (Amersham LIFE SCIENCE). After thorough washing with TBS-T, 

membranes were incubated with ECLTM detection reagents and quickly exposed to 

an autoradiography film (Hyperfilm ECL, RPN 2103) to allow the detection of light 

emission through a non-radioactive method (ECLTM Western blotting). Films were 

densitometrically analysed (UN-SCAN-IT, Silkscience version 5.1) and 

phosphorylated protein values were corrected for minor differences in protein 

loading, if required. 

 

3.9: Statistical Analysis 

All data are presented as mean ± SEM. Comparisons between the groups were 

performed by the one-way analysis of variance (ANOVA) followed by Bonferroni’s 

post hoc test conducted with the statistical program GraphPad Prism, version 5.0 

(GraphPad Inc.). A value of p ≤ 0.05 was considered statistically significant. All 

experiments were repeated three times for accuracy. 
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Figure 3.10.9 (a): Effect of various treatment regimens on acidic vacuole (lysosomes) accumulation in H9C2 
cells. H9C2 myoblasts were stained with both Hoechst 33342 (blue) and Lysotracker (red) and assessed for 
lysosomal activity using fluorescence microscopy. Abbreviations - C: control; CR: rapamycin, CB: bafilomycin 
A1, CD: DXR, RD: rapamycin and DXR, BD: bafilomycin A1 and DXR. Magnification = 10X. Scale bar = 0.2 
mm. 
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Figure 3.10.10 (a): Effect of various treatment regimens on generic and mitochondrial ROS production in H9C2 
cells. H9C2 myoblasts were stained with both DCF (green) and MitoSOX (red) and assessed for generic and 
mitochondrial ROS using fluorescence microscopy. Abbreviations - C: control; CR: rapamycin, CB: 
bafilomycin A1, CD: DXR, RD: rapamycin and DXR, BD: bafilomycin A1 and DXR. Magnification = 60X. 
Scale bar = 0.02 mm. 
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RD [0.45 ± 0.06 (p < 0.05)] and BD [0.37 ± 0.04(p < 0.01)] both showed a significant 

decrease in the area of colocalization when compared to group CD (0.68 ± 0.06).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10.13 (a): Effect of various treatment regimens on mitochondrial morphology and DXR localization in 
H9C2 myoblasts. H9C2 cells were stained with MitoTracker green (green) and DXR (red) and assessed using 
fluorescence microscopy (n = 3). Abbreviations - C: control; CR: rapamycin, CB: bafilomycin A1, CD: DXR, 
RD: rapamycin and DXR, BD: bafilomycin A1 and DXR. Magnification = 60X. Scale bar = 0.02 mm. 
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3.10.10: Assessment of the ubiquitin-proteasome pathway (UPP) during combination 
treatment (Figure 3.10.15 - 19) 

The phosphorylation of FoxO (specifically FoxO3), a transcription factor involved in 

the simultaneous activation and regulation of both the autophagic pathway and the 

UPP (Zhao et al, 2007) was significantly decreased in group CD [90.24 ± 3.70% (p < 

0.05)] when compared to the control (100%). A significant upregulation of both 

ubiquitin ligases MuRF-1 [119.00 ± 3.12% (p < 0.05]) and MAFbx [121.70 ± 3.82% (p 

< 0.05) in group CD was observed when compared to the control (100%). The 

evaluation of ubiquitinated proteins by means of western blotting corresponded with 

the results obtained above. A significant increase in ubiquitination was observed in 

groups CB [130.20 ± 6.24% (p < 0.05)] and CD [127.80 ± 5.82% (p < 0.05)] when 

compared to the control (100%).  

 

There was a significant decrease in proteasome activity in the presence of DXR 

alone (group CD) [75.43 ± 4.54% (p < 0.05)] when compared to the control (100%). 

The upregulation (group RD) as well as the inhibition (group BD) of autophagy in the 

presence of DXR both appeared to exacerbate the situation causing an even greater 

decrease [32.88 ± 4.94% (p < 0.01) and 41.31 ± 6.78% (p < 0.05)] in the 

chymotrypsin-like activity of the proteasome when compared group CD.  
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Figure 3.10.20 (a): The effect of various treatment regimens on ER load and DXR localization in H9C2 
myoblasts. H9C2 cells were incubated with ER tracker and visualized using fluorescence microscopy (n ≥ 3). 
Abbreviations - C: control; CR: rapamycin, CB: bafilomycin A1, CD: DXR, RD: rapamycin and DXR, BD: 
bafilomycin A1 and DXR. Magnification = 60X. Scale bar = 0.02 mm. 
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an increase in autophagy, was also much more pronounced in the group where 

mTOR was silenced compared to the rapamycin group.  

Results produced from the assessment of mitochondrial viability indicated that the 

silencing of mTOR (group CM) for 24 hrs significantly reduced viability [75.48 ± 

1.81% (p < 0.001)] when compared to the control (100%). Group RD significantly 

improved viability whereas the combination of silencing mTOR with DXR (group MD) 

significantly decreased viability when compared to group CD (55.70 ± 3.35%).  

Caspase activity was assessed as a marker of apoptosis in these groups; it was 

demonstrated that caspase activity was significantly increased in group CD [444.60 ± 

29.33% (p < 0.001)] compared to the control (100%). When comparing group CD 

with group RD, a significant reduction (78.86 ± 7.14%) in caspase activity was 

observed.  

Mitochondrial morphology and DXR localization revealed the following: Groups C 

(control), CR (control rapamycin) and CM (control si-mTOR) displayed normal, 

elongated mitochondria whereas groups CD (control doxorubicin) and MD (mTOR 

silencing+doxorubicin) displayed shorter mitochondria, similar to that observed as 

previously described when utilizing bafilomycin. Group RD (rapamycin+doxorubicin), 

on the other hand, also showed signs of abnormal mitochondria although the 

majority of the mitochondria preserved their normal elongated morphology. When 

DXR localization was assessed, groups RD (rapamycin+doxorubicin) and MD 

(mTOR silencing+doxorubicin) displayed less DXR in the nuclear region whilst the 

majority of the DXR localized in the perinuclear region when compared to group CD 

(control doxorubicin).  

 

 

 

 

 

Figure 3.10.21: Immunoblot showing inhibition of mTOR by rapamycin and siRNA, resulting in increased 
autophagy as demonstrated by LC-3 lipidation. Abbreviations - C: control; CR: rapamycin; CM: siRNA 
(mTOR) 
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Figure 3.10.24: The effect of various treatment regimens on mitochondrial morphology and DXR localization 
in H9C2 myoblasts. H9C2 cells were stained with MitoTracker green (green) and DXR (red) and assessed using 
fluorescence microscopy (n ≥ 3). Abbreviations - C: control; CR: rapamycin, CM: SiRNA (mTOR), CD: DXR, 
RD: rapamycin and DXR, MD: SiRNA (mTOR) and DXR. Magnification = 60X. Scale bar = 0.02 mm. 
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3.11: Discussion 

 

This study attempted to explore a possible treatment strategy for controlling the 

overwhelming and harmful effects of DXR on myocardial cells. We have 

demonstrated that DXR-induced cell death as well as oxidative stress, mitochondrial 

dysfunction and ER stress could be ameliorated with rapamycin pre-treatment. 

These results thus indicate a prospective role for rapamycin against DXR-induced 

cardiotoxicity and highlights rapamycin as a plausible adjuvant therapy to counteract 

and improve the life-threatening impediment of DXR’s actions in clinical practice. 

 

DXR treatment induces cardiomyocyte death 

The contribution of apoptosis in cardiotoxicity has previously been established. We 

have also shown that DXR is a potent inducer of apoptotic cell death (Figure 3.10.4). 

This is supported by various other researchers who have demonstrated that DXR-

induced apoptosis can occur via various mechanisms which include oxidative stress, 

the dysregulation of apoptosis-related proteins [i.e.: p53, Akt/PKB (protein kinase B), 

ERKs (extracellular signal-regulated kinases), Bcl-2 (B-cell lymphoma 2 family)] and 

the dysregulation of transcription and co-activators [i.e.: GATA-4, NF-B (nuclear 

factor-kappa B), NFAT (nuclear factor of activated T-cells), p300] (Kawamura et al, 

2004; Kotamraju et al, 2000; Wang et al, 2001). Our results also demonstrated that 

apoptotic cell death could be attenuated by rapamycin treatment, indicating that 

increased autophagy plays a role in this model of acute DXR-induced cardiotoxicity. 

Apoptosis is not the only mechanism by which cardiomyocytes die, as we have also 

demonstrated that necrosis is induced in our model (Figure 3.10.5). Necrosis is 

typically characterized by the rupture of the cellular membrane, swelling of 

cytoplasmic organelles and ATP depletion (Zhang et al, 2009). This is in agreement 

with numerous other studies who have observed a similar phenomenon (Ikegami et 

al, 2007; Li et al, 2006; Riad et al, 2009). The pre-treatment strategy with rapamycin 

in this model also showed beneficial effects towards a decrease in necrotic cell 

death.  
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DXR inhibits autophagic activity 

The available literature portrays autophagy as a process with a dual function, either 

being protective or detrimental depending on the particular cell type, the subcellular 

environment, the nature and intensity of the stimulus, as well as the levels of 

autophagy induced (Loos et al, 2011; Matsui et al, 2007; Kang et al, 2008; 

Eisenberg-Lerner et al, 2009). Therefore, the functional significance of autophagy 

was determined within this specific context. The clinically relevant dose of DXR (3 

µM) (Liu et al, 2008) used in this study demonstrated a decrease in the activity of the 

autophagic pathway and autophagic flux as shown in the attenuation of LC-3 II 

(Figure 3.10.6) and p62 (Figure 3.10.7) accumulation respectively. In contrast, 

Kobayashi and co-workers (2010) demonstrated that DXR treatment is associated 

with elevated autophagy. This discrepancy can be due to three major differences in 

the studies: (i) neonatal cardiac myocytes were used versus our model of cardiac 

myoblasts; (ii) they have used a concentration of 1 µM DXR, we employed a 

concentration of 3 µM DXR; (iii) the duration of DXR treatment also differed: their 

treatment was for 18 hrs versus our treatment duration of 24 hrs. Our current results 

are also in conflict with the results obtained in the ex vivo study (Chapter 2) where 

we have demonstrated that DNR (daunorubicin)-induced cardiotoxicity is associated 

with an upregulation of autophagic activity. Interestingly, no changes in beclin-1 were 

observed in our model between the different groups (Figure 3.10.8) – this is 

supported by Matsui and co-workers who suggested that increased beclin-1 

expression can be indicative of maladaptive autophagic activity (Matsui et al, 2007). 

It is thus clear that the type of model, duration of treatment as well the concentration 

of DXR used, play an important role in the cellular response of autophagy.  

 

In order to further evaluate the role of autophagy in acute DXR-induced 

cardiotoxicity, we manipulated autophagic activity using both pharmacological and 

genetic methodologies. Our data indicates that the inhibition of autophagy by 

bafilomycin (10 nM) alone or in combination with DXR resulted in significant 

amplification of apoptosis (Figure 3.10.4) and necrosis (Figure 3.10.5). Conversely, 

initiation of autophagy by rapamycin (50 nM) treatment in combination with DXR 

significantly attenuated cell death. However, autophagy stimulation through siRNA 
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(mTOR) exacerbated cell death (Figure 3.10.22 and 3.10.23). These results 

demonstrate that the sensitization of H9C2 cells to upregulated autophagy via 

rapamycin treatment (and not by mTOR silencing) before DXR treatment promotes 

cardiomyocyte survival. Although it remains to be determined how rapamycin-

induced autophagy attenuates DXR-induced cell death, our data suggests that this 

particular stimulus represents a feasible approach for diminishing acute DXR-

induced cell death and thereby alleviating DXR-induced cardiotoxicity. These 

beneficial effects of rapamycin are also supported by Demidenko et al, 2008 who 

have shown that reduced mTOR signalling may prolong lifespan in different species. 

 

Rapamycin counteracts DXR-induced oxidative stress 

Oxidative stress due to uncontrolled ROS production is one the mechanisms 

responsible for DXR-induced cardiotoxicity. We have shown that the main source of 

DXR-induced ROS production in our model is predominantly the mitochondria 

(Figure 3.10.10b, c), which was also confirmed by several other researchers (Vander 

Heide et al, 2007; Schimmel et al, 2004 and Shan et al, 1996). Furthermore, the co-

treatment of DXR with rapamycin effectively reduced mitochondrial ROS production, 

whereas the co-treatment of DXR with bafilomycin significantly enhanced 

mitochondrial ROS production, when compared to the group treated with DXR only 

(Figure 3.10.12). Our results are supported by Yuan and co-workers (2009) who 

have reported that the induction of autophagy protects myocytes against bacterial 

endotoxin lipopolysaccharide (LPS) toxicity through the amelioration of ROS 

production. The mechanism by which autophagy might suppress ROS production 

remains to be elucidated. 

 

Numerous attempts have been made to augment myocardial antioxidant capacity in 

order to reduce DXR-induced cardiotoxicity (Kang et al, 2002; DeAtley et al, 1999; 

Dorr et al, 1996; Yen et al, 1996). Though these studies have successfully been able 

to reduce myocardial oxidative stress in vitro and in vivo, clinical trials have however 

demonstrated inadequate efficiency of antioxidant therapy (Ladas et al, 2004; Olson 

et al, 1990). For example, the study conducted by Kang et al (2002) illustrated that 
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the overexpression of catalase, a major antioxidant in the heart, prevents chronic 

DXR-induced cardiotoxicity. It was found that the applicable activities of catalase in 

the heart were ~60-100 fold higher, which is unlikely to be attained in the heart using 

pharmaceutical approaches. In addition, suitable methods to constantly maintain 

elevated activities of catalase in the heart are at present non-existent.  

 

Mitochondrial morphology and function is preserved with rapamycin pre-treatment 

Changes in mitochondrial morphology are believed to affect a variety of biological 

processes including respiration and apoptosis (Dimmer et al, 2006, Hausenloy et al, 

2007). We have shown that mitochondria in the control and CR (control rapamycin) 

groups appeared to be elongated, tubular in structure and displayed an 

interconnected network. These characteristics are frequently identified in 

mitochondria undergoing fusion (Ong et al, 2010). In the presence of DXR (group 

CD), mitochondria also showed signs of abnormality indicative of mitochondrial 

fission whereas in group RD (rapamycin+doxorubicin), normal mitochondrial shape 

was maintained (Figure 3.10.13a). This characteristic morphology of the 

mitochondria described above in the rapamycin groups were also associated with 

improved cell viability (Figure 3.10.3) and mitochondrial function (Figure 3.10.14b). 

In the groups where autophagy was inhibited (CB and BD), mitochondria appeared 

to be shorter, fragmented and discontinuous, probably indicating mitochondrial 

fission (Ong et al, 2010).  

 

Rapamycin prevents DXR nuclear entry 

In terms of DXR localization, we showed that DXR is confined inside the nucleus 

(Figure 3.10.2) as well as within the mitochondria in the DXR treated group (Figure 

3.10.13a, b). This phenomenon is also supported by Nicolay et al (1986) who 

indicated that mitochondria play a fundamental role in the action of AC-induced 

cardiotoxicity. We thus propose that DXR induces alterations to create mitochondria 

with abnormal morphology and function. Markers of autophagy in the DXR group 

also revealed a blockage of the autophagic flux, thus promoting “autophagic stress”. 

These cells are thus unable to remove dysfunctional mitochondria through 
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mitophagy (the removal of impaired mitochondria by a specialised section of the 

autophagic pathway which delivers mitochondria to the lysosome for degradation). 

Pharmaceutical inhibition of autophagy thus exacerbates the deleterious effects of 

DXR on cell viability, thereby promoting apoptosis and necrosis. On the other hand, 

pharmaceutical induction of autophagy with rapamycin triggered a rescue 

mechanism where dysfunctional DXR-containing mitochondria can be removed via 

mitophagy, enabling cell survival. Our results are further supported by the fact that 

co-treatment of DXR with rapamycin, prevented DXR nuclear entry, implicating that 

DXR in the mitochondria and the cytosol can be removed through mitophagy and 

autophagy. Bafilomycin treatment, however, allowed DXR nuclear entry, thereby 

promoting apoptosis. 

 

Interestingly, genetic manipulation of the autophagic pathway with siRNA (mTOR) in 

the presence of DXR also appeared to preserve typical mitochondrial morphology 

and prevented DXR entry into the nucleus, similar to that observed with rapamycin 

treatment (Figure 3.10.24). However, this phenomenon did not result in protection of 

cells against DXR-induced cardiotoxicity (Figure 3.10.22 - 23), as was the case with 

rapamycin. This observation was unexpected since mTOR silencing also resulted in 

increased autophagy (Figure 3.10.21). We thus propose that the dynamic behaviour 

is an important parameter in the functional outcome, since rapamycin did not 

completely inhibit mTOR, while the silencing of mTOR completely abolished the 

mTOR signal. This might indicate that the residual mTOR activity is still required to 

limit over activation of the autophagic pathway which can induce autophagic cell 

death. 

 

DXR-induced activation of the UPP in cardiac myoblasts 

The activation of some components of the UPP, a major proteolytic pathway often 

associated with autophagy in proteinopathies (Zheng et al, 2009), have been shown 

to be elevated in a model of DNR-induced cardiotoxicity (Chapter 2). It is known that 

both these proteolytic pathways (autophagy and the UPP) are downregulated by the 

PI3-Kinase/Akt signalling pathway. Phosphorylation of FoxO proteins by Atk 
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promotes FoxO sequestration by 14-3-3 proteins in the cytoplasm leading to 

inhibition of their transcriptional functions (Tran et al, 2003). Dephosphorylation of 

FoxO leads to nuclear entry where it induces the expression of E3 ubiquitin ligases, 

MuRF-1 (Figure 3.10.16) and MAFbx (Figure 3.10.17). The overall magnitude of 

ubiquitinated proteins were also elevated in this model of acute DXR-induced 

cardiotoxicity (Figure 3.10.18), thus suggesting that though different models were 

employed, increased activity of the UPP is a relevant event during AC-induced 

cardiotoxicity.  

 

The activity of the proteasome on the other hand has previously been shown to be 

inhibited at higher concentrations (e.g. ≤ 5 µM) and upregulated at lower 

concentrations (0.1 – 5 µM) of DXR (Liu et al, 2008). We have shown that a 

concentration as low as 3 µM, is a potent inhibitor of the chymotrypsin-like activity of 

the proteasome (Figure 3.10.19). The mechanism by which DXR alters proteasome 

activity appears to be regulated by the amount of DXR molecules binding onto the 

proteasome (Fekete et al, 2005; Kiyomiya et al, 2002) which is also believed to be 

used as a transporter for nuclear translocation (Kiyomiya et al, 1998; Kiyomiya et al, 

2002). This observed inhibition of the proteasome does not imply that proteolysis 

does not take place; it is likely that these proteins intended for degradation by the 

UPP are degraded by another pathway such as autophagy. Although rapamycin 

treatment is known to augment both protein ubiquitination and Akt signalling in 

pressure-overload hypertrophy (Harston et al, 2011), its use in this model (in vitro), in 

combination with DXR, decreased the already elevated protein ubiquitination status 

induced by DXR treatment. 

 

ER stress acts as a survival mechanism during cardiotoxicity 

ER stress induced by misfolded protein accumulation due to proteasome inhibition, 

overload and ERAD (Endoplasmic reticulum-associated protein degradation) failure 

has previously been implicated in ischemic and pressure overload cardiac diseases 

(Schroeder et al, 2005; Harding et al, 2002; Ogata et al, 2006). Our results indicate 

that ER stress, characterized by ER expansion in our model (Figure 3.10.20a) is a 
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phenomenon that occurs during DXR-induced cardiotoxicity. Although this 

phenomenon is often accompanied by the UPR (Unfolded protein response) and 

consequently autophagy upregulation (Ding et al, 2007), the UPR in this context was 

not measured. The upregulation of autophagy is believed to counteract ER 

expansion during the UPR. We also observed ER expansion in the cardiomyocytes 

treated with rapamycin alone, however this was attenuated to baseline levels with 

co-treatment of rapamycin and DXR. While the inhibition of autophagy with 

bafilomycin alone or in combination with DXR did not induce ER expansion, the 

inhibition of autophagy in this setting has been demonstrated to be detrimental. The 

ER is sensitive to changes in oxidative stress and the disruption of Ca2+ 

homeostasis, resulting in the liberation of Ca2+ from the ER and ultimately increasing 

cytosolic free Ca2+. This was, however, not observed in our model of acute DXR-

induced cardiotoxicity at the time-point we have investigated (see Appendix D). 

 

In summary, this study clearly demonstrated the beneficial effects of rapamycin 

treatment in counteracting the detrimental effects of DXR-induced cardiotoxicity. This 

seemingly advantageous property is especially important as it has shown to be 

cardioprotective by reducing ROS production, preventing DXR nuclear translocation, 

maintaining typical mitochondrial morphology and improving mitochondrial function. 

Although these effects were not able to decrease protein degradation, it was not 

exacerbated by increased autophagy with rapamycin treatment either. This study 

also showed that DXR-induced ER stress could be attenuated by pre-treatment with 

rapamycin. Furthermore, our data support the notion that the clinical use of 

rapamycin possesses a high therapeutic index. Our findings warrant further 

investigations into this valuable phenomenon, and indicate the importance of future 

work focussing on cardiac specific control of autophagic flux in order to minimize 

DXR-induced cardiotoxicity. 
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Chapter 4 
 

In vivo model 

 

4.1: Introduction 

Animal models have been widely utilized to study the molecular basis underlying 

doxorubicin-induced cardiotoxicity and to develop strategies to facilitate 

cardioprotection. However, most of the animal models utilized only evaluated the 

cardiotoxic effects of doxorubicin, without considering the effects of a growing 

tumour in the animal. Our aim was thus to establish a novel mammary tumour model 

in GFP-LC3 transgenic mice in which the effects of doxorubicin with adjuvant 

rapamycin treatment could be analysed with respect to cardiac toxicity and 

simultaneously assessing its effects on tumour size. 

Doxorubicin is an anthracycline that inhibits topoisomerase II activity, intercalates 

with DNA base pairs and decreases DNA and RNA polymerase activity. The 

therapeutic activity of doxorubicin is most effective against highly proliferative 

tumours (Singal et al, 1997). Much evidence indicates that the cardiotoxic effects 

induced by doxorubicin are complex and eventually lead to increased apoptosis 

(Kalyanaraman et al, 2002). 

Rapamycin is a lipophilic, antifungal antibiotic isolated from a strain of Streptomyces 

hygroscopicus indigenous to Easter Island (Vezina et al, 1975). Rapamycin is also a 

well-established inducing agent of autophagy (Noda & Ohsumi, 1998) through its 

ability to inhibit mTOR (mammalian target of rapamycin). The mTOR pathway 

involves two functional complexes: mTORC1 consisting of mTOR, raptor (regulatory 

associated protein of mTOR) and GβL (G-protein β-subunit like protein); and mTOR2 

comprising mTOR, rictor and GβL (Sarbassov et al., 2005). Rapamycin forms a 

complex with the immunophilin FK506-binding protein-12 (FKBP-12), which then 

stabilizes the raptor-mTOR association and inhibits the kinase activity of mTORC1 

(Kim et al, 2002). This selective inhibitory effect of rapamycin on mTORC1 signalling 
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sample supernatant with 900 μl Bradford reagent and adjusted to 1000 μl with 95 μl 

deionized water. Samples were vortexed, incubated for 5 min at room temperature 

and the absorbance was measured at a wavelength of 595 nm against a reagent 

blank. The weight of protein in μg/ml was plotted against the absorbance and the 

protein concentration was determined. 

 

4.3.3: Sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Laemmli sample buffer was prepared, using (in M): TRIS 0.5, pH 6.8, 10% SDS, 2.5 

ml glycerol, 0.2 ml 0.5% bromophenol blue in deionized water. A volume of 150 μl 

mercaptoethanol was then added to 850 μl sample buffer. Tissue lysates were boiled 

for 5 min and shortly spun in a microcentrifuge. Total protein (50 μg) was separated 

by 8%, 10% or 16% sodium-dodecyl sulfatepolyacrylamide- gel-electrophoresis 

(SDS-PAGE) and a 4% stacking gel. 

 

4.3.4: Transfer, Incubation and Visualization 

After completion of protein separation, proteins were transferred to a PVDF 

membrane (ImmobilonTM P, Millipore). Membranes were routinely stained with 

Ponceau Red for visualisation of proteins. Non-specific binding sites were blocked 

with 5% fat-free milk in TRIS-buffered saline-Tween (TBS-T) and then incubated with 

the primary antibodies that recognise cleaved-caspase-3, cleaved-PARP, Beclin-1, 

p62/SQSTM1, LC-3, phospho-specific and total FoxO3, MAFbx, MuRF-1, phospho-

specific and total mTOR, ubiquitin and β-Actin. Membranes were subsequently 

washed with large volumes of TBS-T (3 x 5 min) and the immobilized antibody 

conjugated with diluted horseradish peroxidase-labelled secondary antibody 

(Amersham LIFE SCIENCE). After thorough washing with TBS-T, membranes were 

incubated with ECLTM detection reagents and exposed to autoradiography film 

(Hyperfilm ECL, RPN 2103) to detect light emission through a non-radioactive 

method (ECLTM Western blotting). Films were densitometrically analysed (UN-SCAN-

IT, Silkscience version 5.1) and phosphorylated protein values were corrected for 

minor differences in protein loading if required. 
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4.4: Histology 

4.4.1: Fixation and Sectioning 

Cardiac tissue for sectioning and staining was placed on a piece of cork, covered in 

tissue freezing medium (LEICA OCT Compound, SMM instruments, 14020108926), 

placed in ice cold isopentane (Merck, 1071771000) and frozen in liquid nitrogen. 

Sectioning was then performed on the RM125 RT microtome (Leica CM 100), 

generating 8 μm sections which were collected on glass slides.  

 

4.4.2: GFP Fluorescence Microscopy 

Image acquisition was performed on an Olympus Cell^R system attached to an IX 81 

inverted fluorescence microscope equipped with an F-view-II cooled CCD camera 

(Soft Imaging Systems). Using a Xenon-Arc burner (Olympus Biosystems GMBH) as 

light source, images were acquired using the GFP excitation/emission filters.  

 

4.4.3: Haematoxylin Eosin (H & E) stain 

In order to assess whether DXR treatment induced any structural damage within the 

myocardium, the haematoxylin and eosin (H & E) stain was utilized. This technique 

is a widely used staining method in histology. It involves application of the basic dye 

haematoxylin, colouring basophilic structures with blue-purple hue, and alcohol-

based acidic eosin Y, colouring eosinophilic structures bright pink. The basophilic 

structures contain nucleic acids, such as ribosomes and the chromatin-rich cell 

nucleus as well as cytoplasmic regions rich in RNA. The eosinophilic structures are 

generally composed of intracellular or extracellular proteins.  

 

Sections were hydrated using a xylene and ethanol dilution range as follows: xylene, 

100%, 95% and 70% ethanol as well as distilled water (dH2O). Following this, 

sections were stained using Harris haematoxylin, acid alcohol, Scott’s tap water and 

eosin. The sections were then rehydrated as follows: 70%, 95%, 100% ethanol and 

xylene. Sections were mounted onto microscope slides and visualized using a Nikon 
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Eclipse E 400 microscope fitted with a Nikon DMX 1200 digital camera, using a 40X 

objective. Ten random areas of interest were acquired for each group in order to 

determine cellular cross-sectional area and visualisation of structural damage. A 

minimum of 150 cardiac muscle cells (15 from each image) were measured in µm2 

by means of selecting the sarcolemma as the region of interest and an average was 

then calculated. 

 

4.5: Statistical Analysis 

All data are presented as mean ± SEM. Comparisons between the groups were 

performed by the one-way analysis of variance (ANOVA) followed by Bonferroni’s 

post hoc test conducted with the statistical program GraphPad Prism, version 5.0 

(GraphPad Inc.). A value of p ≤ 0.05 was considered statistically significant. 

 

4.6: Results 

4.6.1: DXR and Rapa-DXR treatment attenuated tumour growth (Figure 4.1.3) 

Tumour size was measured every second day as described previously. No 

significant differences were observed in the volume of E0771 tumours in GFP-LC3 

mice between groups prior to treatment interventions. DXR however decreased 

tumour volume when compared to the control. A similar response was observed in 

the combination of rapamycin and DXR where tumour volume also decreased 

(although at a slower rate) when compared to DXR treatment alone. Conversely 

rapamycin treatment alone did not change tumour volume. These observations were 

however statistically insignificant. 
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4.7: Discussion 

The data presented support a model of acute doxorubicin-induced cardiotoxicity, 

characterized by body mass loss, increased apoptosis, attenuated autophagy, 

elevated E3 ligase activity as well as protein ubiquitination and decreased muscle 

fibre cross-sectional area. 

 

Autophagy in the myocardium has long been viewed as a double-edged sword that 

can be maladaptive in one context and beneficial in another depending on the type 

(Matsui et al, 2007) and duration (Kang et al, 2008) of the injury as well as the levels 

of autophagy stimulated (Eisenberg-Lerner et al, 2009). Moreover, autophagy is 

often accompanied with other forms of cell death such as apoptosis and/or necrosis, 

thus making it a challenge to assess autophagy as a survival or a death pathway 

(Kobayashi et al, 2010). This complex collaboration has inevitably been portrayed in 

three different categories: (i) autophagy and apoptosis can act synergistically to 

induce cell death; (ii) autophagy can act as an antagonist to promote survival by 

inhibiting apoptosis; or (iii) autophagy facilitates apoptosis by allowing apoptosis to 

occur without resulting in death by autophagy (Eisenberg-Lerner et al, 2009). The 

present study was thus designed to evaluate the therapeutic potential of elevated 

autophagy as an adjuvant treatment against DXR-induced myocardial damage.  

 

Rapamycin-doxorubicin co-treatment increased the survival rate of tumour bearing 

mice 

It was demonstrated in this study that treatment with DXR alone and in combination 

with rapamycin, effectively decreased tumour volume in GFP-LC3 mice after 

receiving a total cumulative dose of 20 mg/kg DXR (Figure 4.1.3). In the clinical 

setting, DXR is typically administered in doses between 50-75 mg/m2 over a brief 

period of time with a cumulative maximum of 450 mg/m2, which is equivalent to 

approximately 12 mg/kg (Yi et al, 2005). The condition simulated in this study 

represents acute DXR-induced cardiotoxicity as the animals received only two doses 

of DXR. Even though this concentration is relatively greater than that received by 
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patients, the cardiotoxic dose in mice differs because of factors related to absorption, 

metabolism and elimination of the drug. The dose in this study was selected for 

acute exposure on the basis of previous work that verified an inevitably toxic but not 

rapidly fatal dose indicating myocardial damage (Zhu et al, 2008). 

 

The survival curve of the treated groups demonstrated in Figure 4.1.4 showed that 

all of the DXR treated mice (100%) as well as 50% of the rapamycin and DXR 

treated mice died after treatment. This may suggest progressive cardiac dysfunction 

after appropriate exposure to DXR, as observed in human patients suffering from 

heart failure months or years after DXR treatment has been discontinued. Of note is 

the better survival rate of mice in the combination group compared to that of the DXR 

treated group, suggesting a beneficial role for increased autophagy with DXR 

treatment (Vellai et al, 2009; Cuervo, 2008). In support of this notion, mice body 

weight (Figure 4.1.5) data demonstrate that DXR treated mice lost significantly more 

weight than their control counterparts whereas in the combination group, although 

insignificant, rapamycin treatment conserved body weight in relation to the DXR 

treated group. A comparable trend was also observed with heart weight (Figure 

4.1.6). Our observations are in agreement with previous studies despite different 

doses of DXR being employed (Ewans et al, 2006; Zhu et al, 2008). 

 

Doxorubicin induces apoptosis in the hearts of tumour bearing mice 

Myocardial apoptosis, a common feature of acute DXR-induced cardiotoxicity, was 

demonstrated in our study (Figures 4.1.7 and 4.1.8). This is supported by various 

other studies which have shown that multiple pathways are involved in the activation 

of both intrinsic and extrinsic apoptotic pathways with doxorubicin treatment (Shan et 

al, 1996; Arola et al, 2000; Kang, 2001). Furthermore, we have demonstrated that by 

combining rapamycin with DXR, cleaved caspase-3 is significantly reduced, thus 

proposing an inhibitory role of autophagy on apoptotic activity. The observed 

increase in active caspase-3 levels in the DXR treated group was also associated 

with the loss of myocyte cross-sectional area (Figure 4.1.19) possibly indicating that 

apoptosis may have partly contributed to this phenomenon. Zhu and co-workers, 
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however, demonstrate that the main contributor to DXR-induced cardiotoxicity is the 

loss of myocardial mass rather than cardiomyocyte apoptosis (Zhu et al, 2009). 

 

Rapamycin-doxorubicin co-treatment increased autophagy in the hearts of tumour 

bearing mice 

As autophagic activity formed an integral part of this study, its functional significance 

had to be assessed within this specific context. LC-3 protein levels (Figure 4.1.9) 

showed down regulation of autophagic activity in both the rapamycin and DXR 

treated groups as demonstrated by LC-3I accumulation. The extent of p62/SQSTM1 

expression, an adapter molecule that is degraded by autophagy (Pankiv et al, 2007) 

or the UPP (Zheng et al, 2009), showed significant accumulation in the cardiac 

samples of the DXR treated mice when compared to the control (Figure 4.1.10). This 

accumulation of p62 is often considered a sign of autophagic malfunction (Zheng et 

al, 2009) and hence interruption of autophagic flux. By contrast, the combination 

group (RD) demonstrated reduced levels of p62, suggesting functional autophagic 

activity. These observations were further confirmed by GFP-LC-3 fluorescent images 

(Figure 4.9.12) which showed a reduction in autophagic activity in the rapamycin and 

DXR treated groups, but elevated autophagic activity in the combination group. The 

observed decline in autophagic activity in the rapamycin group could possibly be 

explained by the fact that these animals only received one injection of rapamycin for 

the duration of the study which sustained increased autophagy for ±2 days (Figure 

4.1.13) as beclin-1 and LC3 expression levels began to decline. Therefore, these 

data suggest that at the time of treatment, the levels of autophagy may have already 

returned to basal levels. 

 

Doxorubicin increased protein ubiquitination and E3 ubiquitin ligase activity in the 

hearts of tumour bearing mice 

The ubiquitin proteasome pathway (UPP) plays a critical role in protein turnover in 

the heart and its upregulation is mainly associated with cardiac atrophy. Proteolysis 

of the sarcomere occurs through the coordinated efforts of the ubiquitin proteasome 

system, the process of autophagy and the activity of proteases such as calpain and 
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caspases. A molecular link between autophagy and the proteasome is well-

recognized, with studies demonstrating that suppression of autophagy leads to an 

increase in ubiquitinated proteins (Hara et al, 2006; Ding et al., 2007). This is 

confirmed with our results as we have demonstrated that DXR attenuates autophagy 

and subsequently increases protein ubiquitination (Figure 4.1.17), whereas 

rapamycin treatment induced autophagy and inhibited protein ubiquitination. 

Furthermore, we have shown that the E3 ubiquitin ligases, MuRF-1 and MAFbx were 

significantly augmented in the cardiac muscle of the DXR treated group (Figures 

4.1.14 and 4.1.15). By combining both drugs in the treatment regimen, MuRF-1 

expression decreased but not MAFbx. This observation indicates that the 

transcription of MuRF-1 is prevented during elevated autophagy induced by 

rapamycin treatment. Additionally, this proposes a regulatory role of rapamycin 

and/or autophagy on MuRF-1 expression. In muscle undergoing atrophy, FoxO3 

activation stimulates and regulates both proteolytic pathways (UPP and autophagy) 

concurrently (Zhao et al, 2007) and induces atrophy by stimulating the transcription 

of E3 ligases (Skurk et al, 2005). Although our study resulted in no significant 

differences between the groups in cardiac FoxO3 protein phosphorylation (Figure 

4.1.16), an alternate pathway such as the TNF-/NF-B signalling pathway often 

implicated in muscle wasting conditions (Adams et al, 2007; Li et al, 1998), might be 

responsible for the observed increases in MuRF-1 and MAFbx. Moreover, a time-

dependent effect is also plausible; FoxO3 might have been upregulated early after 

the administration of DXR and reached baseline levels when the tissue was taken for 

analysis. 

 

Doxorubicin treatment decreased myocyte cross-sectional area in tumour bearing 

mice 

Histological sections of H & E stained hearts (Figure 4.1.18) revealed heterogeneous 

myocyte size in the DXR treated group as well as in the combination group. Analysis 

of the average myocyte cross-sectional area (Figure 4.1.19) demonstrated that DXR 

treated mice had a significantly reduced myocyte area when compared to the control 

group. These observations thus confirm muscle wasting in the setting of acute DXR-

induced cardiotoxicity and supported the trend observed in heart weight (Figure 
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4.1.6). Our observations are also corroborated by existing studies that have shown a 

similar impact on heart weight and cardiomyocyte fiber diameter (Esaki et al, 2006; 

Li et al, 2006; Li et al, 2006; Li et al, 2007) following a single injection of DXR (15 

mg/kg) in adult mice.  

 

In summary, this study demonstrates a model of acute DXR-induced cardiotoxicity 

that resulted in elevated apoptosis, inhibition of autophagy and increased proteolysis 

by means of the UPP. We have provided substantial evidence that DXR is a potent 

chemotherapeutic drug that induces cardiomyocyte death. DXR upregulated key 

molecules involved in apoptosis and proteolysis which ultimately resulted in the 

gradual loss of body weight and a decrease in myocyte cross-sectional area. 

Importantly, these detrimental effects of DXR were abolished when treatment 

included rapamycin. The protective effects provided by combining both drugs in the 

treatment regimen suggest that it may be possible to mitigate the cardiotoxic effects 

of DXR in cancer patients by carefully controlling the levels of autophagy with the 

use of rapamycin. 
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Chapter 5 
 

Final Conclusions 

Daunorubicin (DNR) and doxorubicin (DXR) are the two most effective drugs known 

for the treatment of systemic neoplasms and solid tumours. It has become evident 

however that their therapeutic potential is restricted by their serious side effects 

(cardiotoxicity) which can lead to congestive heart failure. According to the widely 

accepted hypothesis, AC therapy, submitted to redox cycling by mitochondria, result 

in persistent oxidative stress, mitochondrial dysfunction and cell death. Although 

numerous studies have attempted various methods to reduce AC-induced 

cardiotoxicity, very few have been able to reproduce their results in a clinical setting. 

Our study has demonstrated that rapamycin, a potent inhibitor of the mTOR 

signalling pathway which induces autophagy, possesses cardioprotective effects 

against AC-induced cardiotoxicity (Figure 5.1.1). We have demonstrated that DXR is 

a potent inducer of cell death, the ubiquitin-proteasome pathway (UPP), 

mitochondrial dysfunction and ER stress which are all attenuated by rapamycin 

treatment. Additionally, the co-treatment of rapamycin and DXR increased 

cardiomyocyte size in the in vivo model and prevented the decrease in body weight 

induced by DXR treatment. Furthermore, as rapamycin is currently being used in the 

clinical setting to suppress tumour growth, its characteristics thus make this drug an 

ideal adjuvant therapy to either treat or prevent cardiotoxicity in order to potentially 

inhibit or delay heart failure. 
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Appendix C – Supplementary Data (Section 3) 

Characterization of H9C2s during Bafilomycin A1 (autophagy 
inhibitor) treatment 

In continuation from the previous results obtained (Supplementary Data), autophagy 

inhibition with Bafilomycin A1 was used. This pharmacological agent blocks the 

fusion of autophagosomes with lysosomes thereby causing an accumulation of both 

organelles within the cell. A dose and time response curve was conducted with MTT 

assays in order to determine the appropriate time and dose to use throughout the 

study. 

 

7.1: Dose response 

A time- and dose-dependent decrease in mitochondrial viability was observed after 

6, 24 and 48 hrs when comparing the different doses of bafilomycin A1 to their 

controls respectively (Figure 7.1.1). Western blot results for Beclin-1 also showed 

modest increases at all times and doses of bafilomycin A1 when compared to the 

control (figure 7.1.2). Additionally, LC-3 assessment demonstrated increased 

accumulation, specifically LC-3-II, at all-time points and at all doses (Figure 7.1.3).  

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za 



 

Figure 7
H9C2s. H
and their 

 

 

 

 

Figure 7
with vari

7.1.1: Effect o
H9C2 myoblast

cell activities

7.1.2: Immuno
ious concentra

6 h

of various Baf
ts were incuba
s were assesse

oblot analysis 
ations of Bafil

5 
n

M
 

C
 

 hrs 

filomycin A1 
ated with incr

ed at these tim

and the relativ
lomycin A1 fo

10
 n

M
 

20
 n

M
 

48 hrs 

Stel

concentration
reasing conce

me points. 

 

 

ve quantificat
or 6, 24 and 4

V
 

24hrs

lenbosch Un

ns on mitocho
entrations of B

ion of Beclin-
8 hrs. 

s 

iversity | AP

ndrial viabilit
Bafilomycin A

-1 in the H9C2

PPENDICES 

ty of 70-80% 
A1 for 6, 24 a

 

2 cell line supp

60 kD 

174 

 

confluent 
and 48 hrs 

plemented 

 

Stellenbosch University  http://scholar.sun.ac.za 



 

 

 

Figure 7
with vari

 

From t

induce

assess

increas

followin

bafilom

 

Appe

Assess

Assess

toward

control

7.1.3: Immuno
ious concentra

these resu

d modest 

sment of 

se in thes

ng experim

mycin A1 at

ndix D –

sment of C

sment of ce

s an incre

. Necrosis

C

6 hr

oblot analysis
ations of Bafil

lts the con

decreases

autophagic

se proteins

ments wil

t a time po

– Supplem

Cell Death d

ell death in

ease in p

s evaluatio

5 
n

M
 

C
 

rs 

 and the relat
lomycin A1 fo

ncentration

s in cell v

c markers

s caused 

l be cond

oint of 6 hrs

mentary 

during com

n the form 

yknosis in

n also sho

10
 n

M
 

20
 n

M
 

48 hrs 

Stel

 

 

 

tive quantifica
or 6, 24 and 4

n of 10 nM

viability fol

s demonst

by the in

ducted us

s. 

Data (Se

mbination tr

of apoptos

n groups C

owed a tre

V
 

 

24hrs

lenbosch Un

ation of LC-3
8 hrs. 

 was dedu

lowing sho

trated a d

nhibition o

sing this 

ection 4)

reatment (

sis and nec

CR and C

end toward

s 

iversity | AP

3 in the H9C2 

uced to be

orter incub

dose- and

of autopha

concentrat

Figure 8.1

crosis dem

CB when c

ds an incre

PPENDICES 

 

cell line supp

e appropria

bation time

d time-dep

agic activit

tion (10 

.1 - 3) 

monstrated 

compared 

ease in gro

I‐1

II‐1

175 

plemented 

ate as it 

es. The 

pendent 

ty. The 

nM) of 

a trend 

to the 

oup CB 

8kD 

16kD 

Stellenbosch University  http://scholar.sun.ac.za 



 

wherea

were h

were n

nuclei 

encoun

fluores

differen

DXR fl

forms o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as group C

owever ob

not analys

where b

ntered with

sce within t

ntiate whe

uorescenc

of cell deat

Ho

CR showe

bserved in 

ed due to

oth dyes 

h analysis 

the same 

ether what 

ce. Further

th. 

oechst - Apo

d a trend 

any of the

o interferen

are situa

of the necr

light spect

they obse

r experime

optosis 

C 

CR 

CB 

CD 

RD 

Stel

towards a

e groups an

nce of DX

ated (see

rosis imag

trum, and 

erved was

ents will ho

PI - Nec

lenbosch Un

a decrease

nalysed. Th

XR auto-flu

e images 

es was the

therefore a

s due to tr

owever be

rosis 

iversity | AP

e. No signi

he groups 

uorescence

below). A

e fact that 

an examin

rue PI fluo

e conducte

Overlay – H

PPENDICES 

ificant diffe

treated wi

e localised

Another p

both PI an

ner was un

orescence 

ed to asses

Hoechst & P

176 

erences 

th DXR 

d in the 

problem 

nd DXR 

nable to 

or true 

ss both 

PI 

Stellenbosch University  http://scholar.sun.ac.za 



 

 

 

 

Figure 8
stained w
fluoresce
rapamyci

 

Figure 8
stained w
experime
C: contro

 

 

8.1.1: Effect o
with both Hoec
ence microsco
in and DXR, B

8.1.2: Effect 
with Hoechst 
ent were asses
ol; CR: rapam

Hoe

of various trea
chst 33342 (b
opy. Abbrevia
BD: bafilomy

of various tre
33342 and ap
ssed for signs 

mycin, CB: baf

echst - Apop

atment regime
lue) and PI (re

ations - C: co
cin A1 and DX

eatment regim
poptosis was a

of apoptosis. 
filomycin A1.

BD 

ptosis 

Stel

ens on apopto
ed) and assess

ontrol; CR: ra
XR. 

mens on apop
assessed using
Results are p

. 

PI - Necro

lenbosch Un

osis and necro
sed for apopto
apamycin, CB

ptotic cell dea
g fluorescence
presented as m

osis O

iversity | AP

osis in H9C2 m
osis and late ap
B: bafilomycin

ath in H9C2 m
e microscopy.

mean ± SEM (

Overlay – Ho

PPENDICES 

myoblasts. H
apoptosis/necr
n A1, CD: D

 

myoblasts. H9

. At least 300
(n ≥ 3). Abbre

oechst & PI 

177 

9C2s were 
osis using 

DXR, RD: 

9C2s were 
0 cells per 
eviations - 

Stellenbosch University  http://scholar.sun.ac.za 



 

Figure 8
stained w
experime
C: contro

 

Anothe

needed

was be

were o

0.01)] 

(Figure

with D

caspas

(Figure

mecha

activati

cleaved

decrea

observ

 

 

 

8.1.3: Effect o
with PI and n
ent were asses
ol; 10: CR: rap

er techniqu

d to determ

eing transl

observed in

and CD [1

e 8.1.4). Th

DXR howev

se-3 produ

e 8.1.5) w

anism of th

ion and th

d-PARP (c

ase in c-P

vations wer

of various trea
necrotic cell d
ssed for signs
pamycin, CB

ue used t

mine wheth

lated into 

n groups C

131.00 ± 3

he upregul

ver did no

uced when

was also a

his pathway

us executi

c-PARP) w

PARP was 

re insignific

atment regime
death was ass
of necrosis. R

: bafilomycin 

to assess

her the enz

protein for

CR [125.40

3.99% (p <

lation (RD)

ot appear 

n compare

assessed i

y as it is k

on of apop

was observe

observed

cant.  

Stel

ens on late ap
sessed using 
Results are pr
A1. 

s apoptotic

zyme activ

rm. Signifi

0 ± 1.34% 

< 0.001)] w

) or inhibit

to improv

ed to grou

in order to

known tha

ptosis. Alth

ed in grou

d in group

lenbosch Un

poptosis/necro
fluorescence 
resented as m

c activity 

vity observ

cant incre

(p < 0.01)

when comp

ion (BD) o

ve nor exa

up CD. Ad

o get a b

t caspase-

hough a tr

ps CR, CB

ps RD and

iversity | AP

osis in H9C2 m
microscopy. 

mean ± SEM (n

was west

ed in the a

eases in cl

)], CB [121

pared to th

of autophag

acerbate t

dditionally, 

etter unde

-3 cleavag

end toward

B and CD, 

d BD. Nev

PPENDICES 

 

myoblasts. H
At least 300
n ≥ 3). Abbre

tern blottin

above exp

leaved-cas

1.90 ± 4.07

he control 

gy in comb

the amoun

 PARP cl

erstanding

ge leads to

rds an incr

a trend tow

vertheless

178 

9C2s were 
cells per 

eviations - 

ng. We 

eriment 

spase-3 

7% (p < 

(100%) 

bination 

nt of c-

eavage 

of the 

o PARP 

rease in 

wards a 

, these 

Stellenbosch University  http://scholar.sun.ac.za 



 

 

 

Figure 8
H9C2 cell
6 hrs. Re
control; C
DXR.  

 

 

 

Figure 8
line supp
Results a
CD: DXR

 

8.1.4: Immun
l line supplem
esults are pres
CR: rapamyc

8.1.5: Immuno
plemented wit
are presented a
R, RD: rapam

oblot analysis
mented with 50
sented as mea
in, CB: bafilo

oblot analysis 
th 50 nM rapa
as mean ± SE

mycin and DXR

19 kD 

β‐actin 

17 kD 

116 kD 

89 kD 

β‐actin 

s and the rela
0 nM rapamyc
an ± SEM (n 
omycin A1, C

and the relat
amycin, 3 µM
M (n = 3). Ab
R, BD: bafilom

#

Stel

ative quantifi
cin, 3 µM DX
= 3). #P < 0.0

CD: DXR, RD

tive quantifica
M DXR for 24
bbreviations -
mycin A1 and

#

lenbosch Un

ication of cle
XR for 24 hrs a
01, *P < 0.00
D: rapamycin 

ation of cleave
4 hrs as well a

C: control; C
d DXR. 

*

iversity | AP

aved-caspase-
as well as 10 n
1 versus contr
and DXR, BD

ed-PARP (c-P
as 10 nM Baf

CR: rapamycin

PPENDICES 

 

-3 (c-caspase-
nM Bafilomyc
trol. Abbrevia
D: bafilomyci

 

PARP) in the 
filomycin A1 
n, CB: bafilom

179 

-3) in the 
cin A1 for 

ations - C: 
in A1 and 

H9C2 cell 
for 6 hrs. 

mycin A1, 

Stellenbosch University  http://scholar.sun.ac.za 



 

Lactate

Anothe

dehydr

enzym

the am

the am

assay 

groups

perform

pattern

techniq

conditio

amoun

 

Figure 8
50 nM ra
assessed.
bafilomy

 

Assess

The tox

In orde

e Dehydrog

er assay u

rogenase) 

e that is re

mount of LD

mount of ce

were inco

s when co

med to ver

n of results

que. While 

ons, base

nts in the va

8.1.6: Effect o
apamycin, 3 µ
. Results are 

ycin A1, CD: D

sment of C

xicological

er to determ

genase (LD

used to de

assay w

eleased du

DH release

ell lysis ta

nclusive a

ompared t

rify results

s attained 

necrosis i

d on thes

arious trea

f various trea
µM DXR for
presented as 

DXR, RD: rap

Ca2+ change

 significan

mine the r

DH) Assay

termine ne

which quan

uring cell ly

ed by the 

king place

as no signi

to the con

s acquired 

from thes

s a commo

se findings

atment grou

tment regimen
24 hrs as we
mean ± SEM

pamycin and D

es during c

ce of Ca2+

role of Ca2

Stel

y (Figure 8

ecrosis in 

ntitatively 

ysis. This a

cells durin

e and thus

ificant diffe

ntrol or g

from the 

se data va

on irrevers

s, this type

ups. 

ns on LDH re
ell as 10 nM 
M (n = 3). A
DXR, BD: ba

combinatio

+ in this co
2+ in cardio

lenbosch Un

.1.6) 

this study

measures

assay is ba

ng treatme

necrosis. 

erences w

roup CD. 

trypan blu

aried vastly

sible form o

e of cell d

elease in H9C2

Bafilomycin 
Abbreviations 
filomycin A1 

on treatme

ntext has r

otoxicity, H

iversity | AP

y included 

s LDH, a 

ased upon

nt is direct

Results o

ere observ

Although 

ue exclusio

y from tha

of cell dea

death is p

2s. H9C2 myob
A1 for 6 hrs 
- C: control;
and DXR. 

nt (Figure 

remained l

H9C2 cells w

PPENDICES 

the LDH 

stable cy

 the princi

tly proport

obtained fr

ved at any

this assa

on techniq

at of the p

ath under s

resent in 

 

blasts were tre
s and LDH re
; CR: rapamy

8.1.7) 

largely und

were stain

180 

(lactate 

ytosolic 

pal that 

ional to 

om this 

y of the 

ay was 

que, the 

previous 

stressful 

varying 

eated with 
elease was 
ycin, CB: 

defined. 

ed with 

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | APPENDICES  181 

 

the Fura Ca2+ ratiometric indicator (Molecular Probes, F1221) and observed whether 

any changes in the ratio of the Fura Ca2+ ratiometric indicator were present. Results 

obtained only showed transient Ca2+ fluxes between the groups and no significance 

was observed. It should be noted that in this experiment only the ratiometric change 

and not the Ca2+ concentration was determine. Perhaps a better indicator to 

determine whether any changes had occurred would have been to measure free 

Ca2+ concentration within the cytosol of the cardiomyocytes with this technique. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1.7 (a): Effect of various treatment regimens on Ca2+ homeostasis in H9C2 myoblasts. H9C2s were 
stained with the Fura Ca2+ ratiometric indicator and visualized using fluorescence microscopy (n ≥ 3). 
Abbreviations - C: control; CR: rapamycin, CB: bafilomycin A1, CD: DXR, RD: rapamycin and DXR, BD: 
bafilomycin A1 and DXR. Magnification = 60X. Scale bar = 0.02 mm. 
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Appendix F 

 

Protocol 1: Cell culture 

 

 Before work was started on the hood, hands were washed up to the elbows 

and gloves were worn. Hands were sprayed with 70% alcohol each time 

before putting them inside the laminar flow to keep sterile 

 75 cm2 flasks containing H9C2 myoblasts that were approximately 70-80% 

confluent were split into smaller 6-well plates or 25 cm2 culture flasks 

containing ± 80x103 or ± 20x104 cells respectively for experimental purposes 

 Cells were first washed with warm PBS (see Appendix G) to remove all traces 

of growth medium (GM) (see Appendix G) and were then loosened from the 

75 cm2 flask surface using trypsin (4 ml) which is a protease enzyme 

 The flask was placed in a “shaking” incubator for 2-3 min at 37 ºC (Trypsin is 

only active at this temperature). Cells were checked to see if they have 

detached under a microscope. If the cells had not loosened, the bottom of the 

flask was gently tapped to help the process 

 Once the cells have eventually loosened, warm GM (double the volume of 

trypsin, thus 8 ml) was added to the cells to neutralise the trypsin 

 The cells/trypsin and medium were transferred to a 10 ml falcon tube and 

centrifuged at 15x103 rpm for 3 min 

 The supernatant (medium containing trypsin) was decanted and the pellet 

(cells) at the bottom of the tube was resuspended with 3 ml fresh GM using a 

pipette 

 To determine the average number of cells, 20 μl from the cell suspension was 

pipetted onto a haemocytometer (see protocol 2) 

 The number of cells per millilitre was determined using a simple calculation 
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Protocol 2: Cell counting using a haemocytometer 

 

 The haemocytometer was first cleaned by wiping with 70% alcohol and then 

breathed on it to moisten the surface before placing a coverslip on top 

 The coverslip was placed over the counting area on the haemocytometer and 

viewed under a microscope until Newton’s rings appeared 

 A sample (20 μl) of the resuspended cell solution was then aspirated onto the 

coverslip using a micropipette 

 The cell suspension was allowed to fill the chamber by capillary action and 

both counting grids covered (see example below) 

 

 

 

 

 

 

 

 The total number of cells was counted by counting areas 1 to 8 in both 

counting grids. The average number of cells was then calculated. This 

average was then multiplied by 1x104 to get the number of cells per millilitre of 

the original cell suspension 

 

Protocol 3: Cell Harvesting 

 

 This process removes the cells from the plastic substrate and breaks cell-to-

cell bonds as gently as possible 

 The old medium was discarded either by careful decanting or with a sterile 

pipette and the monolayer of cells was washed quickly with ice cold PBS. This 

wash step was repeated three times to remove all traces of FBS 

     
2

3 

5

74 8

1 6
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 The wash medium was decanted and then 250 μl (6-well plates) or 1000 μl 

(25 cm2 flask) of RIPA buffer (see appendix G) was added to each well of the 

6-well plate and flasks and placed on ice for 3-5 min 

 The plates or flasks were swirled to make sure that the surface area was 

covered with the buffer 

 After the time period had lapsed, the cells were scraped from the surface of 

each well and flask using a sterile cell scraper 

 The buffer containing the cells was then pipetted into already chilled 

eppendorf tubes and stored at -80 °C until further experiments were carried 

out. 

 

Protocol 4: Extraction of proteins from cell samples 

 

 Work on ice at all times to avoid the denaturing of proteins 

 Thawed cell samples (from protocol 3) were placed in chilled test tubes and 

sonicated. This process ruptures the cell walls in order to release proteins 

 The metal piece of the sonicator was rinsed before and after use with distilled 

water 

 After sonicating the cells, the cell solution was transferred into a chilled 

eppendorf tube and centrifuged at 4 ºC and 8x103 rpm for 10 min. 

 

Protocol 5: Protein determination with Bradford reagent 

 

 Work on ice at all times to avoid the denaturing of proteins 

 For protein determination, make a 1:5 dilution of the Bradford reagent (see 

Appendix G) using distilled water. This solution needs to be filtered twice 

using 2 pieces of filter paper. The Bradford reagent is light sensitive therefore 

remember to use foil or work in the dark room when filtering 

 Once the Bradford reagent has been made, a standard curve needs to be 

made in 7 different eppendorf tubes as follows: 
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 Distilled water 

(dH2O) 

BSA 

(see Appendix G) 
Bradford Reagent 

1 0 µl 100 µl 900 µl 

2 20 µl 80 µl 900 µl 

3 40 µl 60 µl 900 µl 

4 60 µl 40 µl 900 µl 

5 80 µl 20 µl 900 µl 

6 90 µl 10 µl 900 µl 

7 100 µl 0 µl 900 µl (BLANK) 

 

 Vortex the solutions thoroughly and let them stand in ice for ±5 min 

 Zero the spectrophotometer using the blank and then read the absorbance 

values at 595 nm using the Simple Reads program 

 Once the absorbance readings were recorded, the reading were transferred 

onto an Excel spreadsheet and a standard curve was created (see graph 

below) 

 

Samples: 

 Pipette 5 μl from each sample that was centrifuged into a new eppendorf tube 

and then add 95 μl distilled water and 900 μl Bradford reagent. Vortex solution 

and then read the absorbance values at 595 nm using the Simple Reads 

program 

 Using excel, plot the standard curve with protein concentration on the x-axis 

and the mean OD on the y-axis (see example below). Add in the absorbance 
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 Wash of iso-butanol with distilled water 

 Make up the stacking gel (4%) (see Appendix G) 

 Using a squeeze pipette, add stacking gel on top of separating gel. 

Immediately add the 10 well comb at an angle to prevent bubbles until the 

wells come to the end of the glass plates. Don’t push in too deep and then 

take out 

 Allow gel to set for 30 min. During this time prepare Running buffer and thaw 

your samples 

 Denature samples by boiling at 50-70 ºC for 5 min. Punch a hole in each 

sample eppendorf to release pressure 

 Centrifuge samples for ±10 sec at 5x103 rpm. 

 Remove combs carefully and rinse with distilled water. Drain excess water 

with blotting paper, being careful not to wipe away the wells 

 Take glass off assembly stand and place onto U-shaped Core-latch and then 

click to secure 

 Place the apparatus into tank and add Running buffer (see Appendix G) in the 

middle compartment just overflowing into the wells 

 

Loading samples 

 Place yellow well guide on top of apparatus in the middle compartment 

 Using a 20 μl pipette, add 10 μl peqGOLD pre-stained marker in first well on 

the left and then your samples from the second well. Use a clean tip for every 

sample and marker 

 Once all samples have been loaded, remove the well guide and add running 

buffer on the outer compartment up to ½ way from the bottom 

 Place green lid on apparatus and attach electrodes – red to red and black to 

black 

 Turn on electrophoresis machine and allow samples to run for 10 min at 400 

mA and 100 V (fixed) 

 Run samples for a second time for 50 min at 400 mA and 200 V 
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Transfer of proteins to membrane 

 Soak PVDF membrane in methanol then rinse in distilled water and then soak 

in transfer buffer (see Appendix G) until needed 

 Dip a piece of blotting paper in transfer buffer and place on the semi-dry 

apparatus 

 Go back to gel apparatus and remove the U-shaped core-latch. Remove the 

glass plates and separate them very carefully to avoid tearing the gel. Cut off 

the wells (stacking gel) and place the remaining (separating) gel in transfer 

buffer 

 Place the PVDF membrane on top of the blotting paper already on the semi-

dry apparatus and then add the gel on top of membrane 

 Finally, place another piece of blotting paper (dipped in transfer buffer) on top 

of the gel and roll out excess liquid thoroughly 

 Close the apparatus and then supply power for electron transfer: 15V, 0.5A, 

300W for 1 hr 

 Once the time has elapsed, open semi-dry apparatus and remove the blotting 

papers on top carefully. Place membrane in methanol for a few minutes and 

allow to air dry completely 

 Place membrane in blocking solution (see Appendix G) for a minimum period 

of 2 hr on the belly dancer on lowest setting or leave in the fridge (4 ºC) 

overnight 

 

Specific binding of proteins 

 Wash membrane 3X (5 min each) with TBS-tween (see Appendix G) 

 Make primary antibody (see Appendix G) solution in a 50 ml falcon tube. Roll 

the membrane containing transferred proteins facing the inside and the 

marker facing the bottom and place inside the falcon tube 

 Mix on the rotating machine in the corridor fridge for a minimum period of 8 hr 

or leave overnight 

 Wash membrane 3X (5 min each) with TBS-tween 
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 Make secondary antibody (see Appendix G) solution in a 50 ml falcon tube 

and add to membrane. Mix on the belly dancer or tube roller on lowest setting 

for 1 hr 

 

Exposure 

 Wash membrane 3X (5 min each) 

 Cut 2 pieces of transparent paper and tape them together on one side in a 

cassette (exposure tray) 

 Mix ECL cocktails (500 μl solution A + 500 μl solution B) in falcon tube 

 Drain excess liquid from membrane using tissue paper and add the ECL on 

the membrane and leave on for 1min 

 Drain excess ECL from membrane and place membrane in between the 

transparencies. Remove the air bubbles 

 In the dark room with the lights off, cut x-ray film and place on the exposure 

tray on top of the transparency. Place once and do not remove. Close 

exposure tray and leave for ± 5 min 

 After the time elapsed, take out the x-ray film and place in developer for ± 5 

min 

 Rinse x-ray film thoroughly in water and then place in fixative for ± 5 min 

 Rinse well and air dry 

 

Stripping membranes 

 Wash membrane 2X (5 min each) in dH2O at room temperature 

 Wash membrane 1X (5 min) in 0.2 M NaOH at room temperature  

 Wash membrane 2X (5 min each) in dH2O at room temperature 

 Place membrane in blocking solution and carry on as usual for western 

blotting (This procedure completely removes all antibodies) 
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Protocol 7: MTT assay 

 

Preparation of solutions 

 1% Isopropanol = 1 ml Concentrated HCl added to 99 ml Isopropanol 

 % Triton = 0.1 ml Triton-X-100 made up to 100 ml using distilled water 

 Isopropanol/ Triton solution in 50/1 ratio = 50 ml of 1% Isopropanol added to 1 

mL 0.1% Triton 

 1% MTT (0.01 g/1 ml PBS) made fresh before use. This solution was covered 

in foil to protect against the light as it is light sensitive. It was then filtered to 

remove any excess granules that have not dissolved 

 

Method 

 The medium from the cells was gently discarded. These cells were not rinsed 

with PBS as the cells may loosen 

 1.5 ml PBS and 500 μl MTT solution was added to each well. This was done 

very slowly so that the cells did not loosen. 

 The plate was then covered in foil and place in the incubator for 2 hr 

 

If some cells have loosened: 

 The contents of wells were transferred to 2 ml centrifuge tubes and spun 

down gently for 2 min at 1000 rpm 

 The supernatant was discarded and 2 ml ‘Isopropanol/Triton’ solution was 

added to each pellet and the cells were resuspended. This resuspended 

solution was added back into wells were some cells may still be sticking to 

wells 

If no cells loosened: 

 The contents of the wells were discarded and 2 ml ‘Isopropanol/Triton’ 

solution was added to each well 

 The plates were put on belly dancer shaker to mix for 5 min while still covered 

in foil. This loosens the cells from the bottom of the surface 
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 The content of each well was transferred to 2 ml eppendorf tubes and 

centrifuged for 2 min at 1400 rpm 

 The absorbance values of the supernatant was read at 540 nm on the 

spectrophotometer, using Isopropanol/Triton solution as the blank 

 If any of the absorbance values of the supernatants were greater than one, 

the supernatant was diluted with the Isopropanol/Triton solution 

 

Protocol 8: Trypan Blue exclusion technique 

 

 Trypan blue stock solution (0.4%) was prepared with PBS and stored in the 

dark room at 4 ºC (see appendix G) 

 

Method 

 Medium was removed from cells, washed with warm PBS and trypsinized as 

previously described 

 Cell solution containing trypsin was neutralized using warm growth medium 

and centrifuged at 1300-1500 rpm for 3 min 

 The cells (each well analysed separately) were then resuspended in 500 μl 

warmed PBS and 500 μl 0.4 % trypan blue solution and allowed to stand for 

2-5 min prior to counting 

 50 μl of the resuspended solution was placed into the haemocytometer and 

counting was conducted utilising the CountessTM automated cell counter. 

Viable cells did not take up dye and non-viable cells took up dye and stained 

blue 
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Protocol 9: Hoechst 33342 and Propidium Iodide (PI) staining techniques 

 

For this technique, cells were grown 8-chamber slides. Cells were grown and treated 

as previously described. The experiments were performed in the staining lab where 

there is minimal light. 

 

Method 

 Medium was removed from cells and washed 3X with sterile PBS (0.1 M) 

 100 μl of PI solution (see Appendix G) was added to each chamber and 

incubated for 20 min at 4 ºC 

 PI solution was then removed and the cells were rinsed twice with sterile PBS 

 A cold fixative (1:1 methanol/acetone), enough to cover the monolayer of 

cells, was then added to each chamber and incubated for 10 min at 4 ºC 

 The fixative was removed and the coverslips were left to air dry completely for 

a further 10 min 

 After the time had elapsed, 150 μl of Hoechst solution (see Appendix G) was 

added to each coverslip and incubated for 10 min at 4 ºC 

 Hoechst solution was removed and the chambers containing cells were rinsed 

5 times with sterile PBS to avoid or minimise background noise 

 The chambers were allowed to dry before a small drop of fluorescent 

mounting medium was added 

 The chambers were then covered with foil to protect from the light 

 The chambers and their contents can now be viewed or stored at -20 ºC for 

up to 2 weeks 

 

Protocol 10: CytoTox 96 non-radioactive cytotoxicity assay (LDH Assay) 

 

For this technique, cells were grown and treated on 96-well flat-bottom (enzymatic 

assay) plates and LDH was measured as follows: 
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 50 µl of the reconstituted substrate mix was added to each well (50 µl) of the 

plate. The plate was covered in foil to protect it from light and was incubated 

for 30 min at room temperature 

 After the incubation time had elapsed, 50 µl of stop solution was added to 

each well of the plate. Any bubbles formed during this were popped using a 

syringe needle and absorbance was recorded at 490 nm using a plate reader. 

 In addition, blank (containing only medium) wells were treated with the LDH 

assay. The values from these wells were subtracted from the wells containing 

cells to remove any background noise. 

 

Protocol 11: Caspase-Glo 3/7 Assay 

 

For this technique, cells were grown and treated on 96-well flat-bottom (enzymatic 

assay) plates and caspase activity was measured as follows: 

 The Caspase-Glo 3/7 reagent was prepared (mix) following the 

manufacturer’s instructions, and was allowed to equilibrate to room 

temperature  

 The 96-well plates containing cells were removed from the incubator and 

allowed to equilibrate to room temperature 

 100 µl of the Caspase-Glo 3/7 reagent was added to each well (100 µl) of the 

plate. The plate was then covered 

 The contents of the wells were mixed using a plate shaker at 300-500 rpm for 

30 sec. Incubation followed for 30 min at room temperature 

 The luminescence of each sample in the plate was measured using a plate-

reading luminometer 

 In addition, blank (containing only medium) wells were treated with the 

Caspase-Glo 3/7 reagent. The values from these wells were subtracted from 

the wells containing cells to remove any background noise. 
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Protocol 12: Proteasome-Glo Chymotrypsin-like Cell-based Assay 

 

For this technique, cells were grown and treated on 96-well flat-bottom (enzymatic 

assay) plates and proteasome activity was measured as follows: 

 The Proteasome-Glo Cell-based Reagent was prepared (by mixing) following 

the manufacturer’s instructions, and was allowed to equilibrate to room 

temperature  

 The 96-well plates containing cells were removed from the incubator and 

allowed to equilibrate to room temperature 

 100 µl of the Proteasome-Glo Cell-based Reagent was added to each well 

(100 µl) of the plate. The plate was then covered 

 The contents of the wells were mixed using a plate shaker at 700 rpm for 2 

min. Incubation followed for 10 min at room temperature 

 The luminescence of each sample in the plate was measured using a plate-

reading luminometer 

 In addition, blank (containing only medium) wells were treated with the 

Proteasome-Glo Cell-based Reagent. The values from these wells were 

subtracted from the wells containing cells to remove any background noise. 

 

Protocol 13: Haematoxylin and Eosin (H & E) staining technique 

 

For this technique, mice cardiac tissue sections (8 µM) were made and placed on 

microscope slides. They were then stained as follows: 

Method 

 Xylene was added for 10 min 

 Xylene was discarded and 100% ethanol was added for 15 sec 

 100% ethanol was discarded and 95% ethanol (see Appendix G) was added 

for 15 sec. This step is repeated twice 
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 95% ethanol was discarded and 70% ethanol (see Appendix G) was added for 

15 sec. This step is repeated twice 

 70% ethanol was discarded and coverslips were rinsed in distilled water 

 Haematoxylin dye (see Appendix G) was then added for 3 min 

 The microscope slides were rinsed in distilled water first and then in acid 

alcohol (see Appendix G) 

 The microscope slides were rinsed in distilled water again and blued in Scott’s 

tap water (see Appendix G) 

 After this was done, the microscope slides were rinsed in distilled water before 

adding the eosin dye (see Appendix G) for 2 min 

 After the time had elapsed, the microscope slides were rinsed for a final time 

in distilled water and then 70% ethanol was added for 15 sec 

 70% ethanol was discarded and 95% ethanol was added for 15 sec. This step 

is repeated twice 

 95% ethanol was discarded and 100% ethanol was added for 15 sec. This 

step is repeated twice 

 95% ethanol was discarded and xylene was added for 15 sec. This step was 

also repeated twice 

 Finally the microscope slides were mounted with permanent labelled 

coverslips. Allow the mounting medium to dry before use 

 

Protocol 14: Measurement of acidic vacuole accumulation 

 

For this technique, cells were also grown and treated in 25 cm2 tissue culture flasks 

as previously described (Protocol 1). The fluorescent dye LysoTracker was used to 

measure acidic vacuole (eg. lysosomes) accumulation in cells after treatment. 

Method 

 Growth medium was discarded and cells rinsed with warm (37 °C) sterile PBS 

 Warm 0.25% trypsin-EDTA (3 ml) was added and cells were incubated until 

cells detached from the surface (2-3 min). Culture medium (double the volume 
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of trypsin used; 6 ml) was added to the cell suspension, which was then 

transferred to a 15 ml falcon tube, centrifuged for 3 min at 6000 x g. 

 Medium was decanted and cells resuspended in 500 µl warm PBS. 

Lysotracker was directly added onto the unfixed cells, using a final 

concentration of 50 nM and incubated for 10 min 

 Analysis followed on the flow cytometer (BD FACSAria I) immediately 

thereafter. A minimum of 10 000 events (cells) were collected and using the 

488 nm laser and 590 nm (Abs. = 577 nm) emission filter, fluorescence 

intensity signal was measured using the geometric mean on the intensity 

histogram 

 

Protocol 15: Measurement of intracellular and mitochondrial ROS production 

 

For this technique, cells were also grown and treated in 25 cm2 tissue culture flasks 

as previously described (Protocol 1). The intracellular and mitochondria specific 

fluorescent dyes DCF and MitoSOX were used to measure mitochondrial ROS 

production in cells after treatment. 

Method 

 Growth medium was discarded and cells rinsed with warm (37 °C) sterile PBS 

 Warm 0.25% trypsin-EDTA (3 ml) was added and cells were incubated until 

cells detached from the surface (2-3 min). Culture medium (double the volume 

of trypsin used; 6 ml) was added to the cell suspension, which was then 

transferred to a 15 ml falcon tube, centrifuged for 3 min at 6000 x g. 

 Medium was decanted and cells resuspended in 500 µl warm PBS. DCF and 

MitoSOX were directly added onto the unfixed cells, using a final 

concentration of 50 µmol/L and 5 μM respectively and incubated for 15 min 

 Analysis followed on the flow cytometer (BD FACSAria I) immediately 

thereafter. A minimum of 10 000 events (cells) were collected and using the 

488 nm laser and 510/580 nm excitation/emission filters, fluorescence 

intensity signal was measured using the geometric mean on the intensity 

histogram 
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 In addition, concentration of 100 μmol/L H2O2 was used as a positive control 

 

Protocol 16: Measurement of mitochondrial load 

 

For this technique, cells were also grown and treated in 25 cm2 tissue culture flasks 

as previously described (Protocol 1). The mitochondria specific fluorescent dye 

Mitotracker was used to measure mitochondrial number in cells after treatment. 

 

Method 

 Growth medium was discarded and cells rinsed with warm (37 °C) sterile PBS 

 Warm 0.25% trypsin-EDTA (3 ml) was added and cells were incubated until 

cells detached from the surface (2-3 min). Culture medium (double the volume 

of trypsin used; 6 ml) was added to the cell suspension, which was then 

transferred to a 15 ml falcon tube, centrifuged for 3 min at 6000 x g. 

 Medium was decanted and cells resuspended in 500 µl warm PBS. 

Mitotracker was directly added onto the unfixed cells, using a final 

concentration of 25 nM and incubated for 15 min 

 Analysis followed on the flow cytometer (BD FACSAria I) immediately 

thereafter. A minimum of 10 000 events (cells) were collected and using the 

490/516 nm excitation/emission filters, fluorescence intensity signal was 

measured using the geometric mean on the intensity histogram 

 

Protocol 17: Measurement of mitochondrial function 

 

For this technique, cells were also grown and treated in 25 cm2 tissue culture flasks 

as previously described (Protocol 1). The mitochondria membrane potential 

fluorescent dye JC-1 was used to measure mitochondrial function in cells after 

treatment. 
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Method 

 Growth medium was discarded and cells rinsed with warm (37 °C) sterile PBS 

 Warm 0.25% trypsin-EDTA (3 ml) was added and cells were incubated until 

cells detached from the surface (2-3 min). Culture medium (double the volume 

of trypsin used; 6 ml) was added to the cell suspension, which was then 

transferred to a 15 ml falcon tube, centrifuged for 3 min at 6000 x g. 

 Medium was decanted and cells resuspended in 500 µl warm PBS. JC-1 was 

directly added onto the unfixed cells, using a final concentration of 5 µM and 

incubated for 15 min 

 Analysis followed on the flow cytometer (BD FACSAria I) immediately 

thereafter. A minimum of 10 000 events (cells) were collected and using the 

488 nm laser, emission was collected between 515-545 nm and 575-625 nm 

 Fluorescence intensity signal was measured using the geometric mean on the 

intensity histogram 

 

Protocol 18: Measurement of ER load 

 

For this technique, cells were also grown and treated in 25 cm2 tissue culture flasks 

as previously described (Protocol 1). The ER specific fluorescent dye ER-tracker 

was used to measure ER load in cells after treatment. 

Method 

 Growth medium was discarded and cells rinsed with warm (37 °C) sterile PBS 

 Warm 0.25% trypsin-EDTA (3 ml) was added and cells were incubated until 

cells detached from the surface (2-3 min). Culture medium (double the volume 

of trypsin used; 6 ml) was added to the cell suspension, which was then 

transferred to a 15 ml falcon tube, centrifuged for 3 min at 6000 x g. 

 Medium was decanted and cells resuspended in 500 µl warm PBS. ER-

tracker were directly added onto the unfixed cells, using a final concentration 

of 100 nM and incubated for 10 min 
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 Analysis followed on the flow cytometer (BD FACSAria I) immediately 

thereafter. A minimum of 10 000 events (cells) were collected and using the 

374/430-640 nm excitation/emission filters, fluorescence intensity signal was 

measured using the geometric mean on the intensity histogram 

 

Protocol 19: Transfection (Silencing of mTOR) 

 H9C2 cells were seeded on 12-well plates at a density that will allow the cells 

to reach a confluency level of 50% the very next day 

 Remove medium from cells and replace it with 500 µl fresh serum-containing 

medium 

 Add 100 µl of serum-free medium into a clean, sterile eppendorf tube 

 Add 2 µl of transfection reagent into the tube. Mix by pipetting up and down 

and incubate at room temperature for 5 min 

 Add the appropriate volume (6 µl of 10 µM stock SiRNA = 100 nM final 

concentration) of SiRNA into the tube. Mix by pipetting up and down gently 

and incubate at room temperature for 5 min 

 Add the 100 µl mixture in the tube into the wells containing 500 µl medium all 

at once (not drop-wise). Agitate vigorously to disperse the SiRNA evenly but 

avoid spillage of medium from one well to another 

 After 24 hr, the medium in the wells was replaced with fresh medium and the 

cells were allowed to continue proliferating until the desired confluency level 

 

Protocol 20: Ca2+ staining technique 

For this technique, cells were grown 8-chamber slides. Cells were grown and treated 

as previously described.  

Method 

 Prepare a 1–5 mM DMSO stock solution of the AM ester (Protocol provided 

by manufacturer) 

 Dilute an aliquot of the DMSO stock solution into a suitable buffer (PBS). Use 

the minimum concentration of AM ester necessary to obtain an adequate 
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signal; typically as low as 0.1 μM. Mix well. Do not store the AM esters in 

aqueous solution for extended periods, as spontaneous hydrolysis will occur 

 For adherent cells rinse off the medium and replace with a solution of the AM 

ester. Incubate for 15 min at 37 °C 

 Wash the cells twice with PBS and then incubate for a further 30 min to allow 

complete de-esterification of intracellular AM esters 
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Appendix G 

 

Growth Medium 

 

 500 ml Dulbecco’s Modified Eagles Medium (DMEM) 

 56 ml Fetal Bovine Serum (FBS) (filtered first before used) 

 5.6 ml Penstrep 

 

Growth Medium (without amino acids) 

 

 500 ml Dulbecco’s Modified Eagles Medium (DMEM – no amino acids) 

 56 ml Dialysed FBS (filtered first before used – no amino acids) 

 

X1 Phosphate Buffer Saline (PBS)-2 L 

 

Dissolve the following in 1 L of water 

 16 g NaCl 

 0.4 g KCl 

 2.88 g Na2HPO4 (di Sodium hydrogen phosphate) 

 0.48 g KH2PO4 (potassium dihydrogen phosphate) 

Adjust pH to 7.4, fill up to the 2 L mark with distilled water and sterilize by 

autoclaving 

 

Trypan Blue dye 

 

 Weight out 40 g trypan blue dye and dissolve this in 100 ml PBS 

 Store away at 4 ºC 

 

Propidium Iodide and Hoechst 33342 stain 

 

 Dissolve 5 μl Propium iodide in 1000 μl sterile PBS 

 Dissolve 5 μl Hoechst 33342 in 1000 μl sterile PBS 

 These solutions are made fresh and must be kept on ice and away from light 
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10% Acid alcohol 

 

 10 ml 1% HCl dissolved in 1 L 70% alcohol 

 

95% alcohol (1 L) 

 

 Dilute 950 ml 100% ethanol with 50 ml distilled water 

 

70% alcohol (1 L) 

 

 Dilute 700 ml 100% ethanol with 300 ml distilled water 

 

Harris Haematoxylin 

 

 5 g Harris haematoxylin 

 100 g Ammonium Alum 

 50 ml 100% ethanol 

 1 L distilled water 

 2.5 g mercury oxide 

 

To prepare: Dissolve haematoxylin in ethanol and add the ammonium alum to 

distilled water and heat to boiling point. Immediately add the mercuric oxide and 

shake until the solution has a purple-black colour. Cool rapidly in the fridge 

 

For staining: Filter before use and add 4 ml glacial acetic acid per 100 ml of 

haematoxylin 

 

Eosin 

 

Stock solution: dissolve 10 g eosin in 1 L distilled water 

 

Working solution: 10 ml eosin stock solution dissolved in 90 ml distilled water. This 

must be prepared fresh 
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For staining: Add 2-3 drops of glacial acetic acid per 100 ml before use  

 

Scott’s Tap Water 

 

 3.5 g NaHCO3 

 20 g MgSO4 

 10 ml 37% Formalin 

 1 L tap water 

 

To prepare: dissolve NaHCO3 in the tap water first and then add MgSO4 and formalin 

 

DCF and MitoSOX Red 

 

 Dissolve the 50 µg MitoSOX mitochondrial superoxide indicator in 13 µL of 

high-quality, anhydrous dimethylsulfoxide (DMSO) to make a 5 mM stock 

solution 

 Dissolve the of 5 mM stock solution to a final working concentration (5 µM) in 

PBS 

 Dissolve the DCF stock solution to a final working concentration (50 µmol/L) in 

PBS 

 

LysoTracker Red 

 

 Dissolve the of 1 mM stock solution to a final working concentration (50 nM) in 

PBS 

 

MitoTracker Green 

 

 Dissolve the lyophilized MitoTracker product in DMSO to a final concentration 

of 1 mM (stock solution) 

 

 Dilute the 1 mM stock solution to the final working concentration (25 nM) in 

PBS 
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ER-Tracker Blue-White 

 

 Dissolve the of 1 mM stock solution to a final working concentration (100 nM) 

in PBS 

 

Fura ratiometric Ca2+ indicator 

 

 Prepare a 1-5 mM DMSO stock solution of the AM esters 

 Dilute an aliquot of the DMSO stock solution into a suitable buffer such as 

PBS. Use the minimum concentration (0.1-5 µM) of AM ester necessary to 

obtain an adequate signal 

 Add one volume of aqueous AM ester dispersion to one volume of cell 

suspension or adherent cells 

 Fluorescent images were then obtained and changes in the ratio were 

observed and calculated 

 

RIPA buffer (100 ml) 

 

 Prepare 50 mM Tris-HCl: add 790 mg Tris to 75 ml distilled water. Add 900 

mg NaCl and stir. Adjust pH to 7.4 using HCl. Pour the prepared Tris-HCl into 

a 100 ml beaker. Add the following reagents in the beaker in the same order 

as they appear on the table 

 

 Final Concentration Volume 

NP-40 1% 10 ml 

Na-deoxycholate 0.25% 2.5 ml 

EDTA 1 mM 1000 μl 

Phenylmethylsulfonyl 

Flouoride (PMSF) 
1 mM 1000 μl 

Leupeptin 1 μg/ml 1 μl 

SBTI-1 4 μg/ml 80 μl 

Benzamidine 1 mM 100 μl 
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Na3VO4 1 mM 1000 μl 

NaF 1 mM 500 μl 

 

 Add 1000 μl Triton X-1000 to the solution and finally fill up to 100 ml with 

distilled water and mix thoroughly 

 Aliquot 1000 μl of RIPA buffer into eppendorf tubes and store at -20 ºC 

 

BSA (Bovine serum albumin 1 mg/ml) 

 

 For 1 ml BSA, weight out 1mg BSA and add 1000 μl distilled water. 

 For use during Western blotting, this BSA needs to be diluted. Pipette 100 μl 

from 1 mg/ml BSA in new eppendorf tube and add 400 μl distilled water 

 Mix well 

 

Bradford Reagent (1 L) 

 

 Weight out 500 mg Coomassie Brilliant Blue G and add it to 250 ml 95% 

ethanol 

 Add 500 ml phosphoric acid and mix well 

 Fill up to 1 L with distilled water and store at 4 ºC 

 For use during Western blotting, this solution needs to be filtered twice and 

then a 1:5 dilution needs to be made 

 

3X Sample buffer 

 

 Measure 33.3 ml stacking Tris (0.5 M) and place in a beaker 

 Weigh out 8.8 g SDS and 20 g glycerol and place in the beaker 

 Add a pinch of Bromo-phenol blue to the mixture 

 Add and make up to 75.47 ml with distilled water 

 

Tris pH 8.8 (500 ml) 

 

 Weigh out 68.1 g Tris (1.124 M) and 1.5 g SDS (0.3%) and place in a beaker. 
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 Add 400 ml distilled water, stir and then adjust pH using HCl 

 Add 100 ml distilled water to make the final volume to 500 ml 

 

Tris pH 6.8 (500 ml) 

 

 Weigh out 30.3 g Tris (0.5M) and 2g SDS (0.4%) and place in a beaker. 

 Add 400 ml distilled water, stir and then adjust pH using HCl 

 Add 100 ml distilled water to make the final volume to 500 ml 

 

Tris pH 6.8 (100ml) for Sample buffer 

 

 Weigh out 6.06 g Tris (0.5 M) and 4 ml 10%SDS and place in a beaker 

 Add 80 ml distilled water, stir and then adjust pH using HCl 

 Add 20 ml distilled water to make the final volume to 100 ml 

 

10% Sodium dodecyl sulphate (SDS 500 ml) 

 

 Weight out 50 g SDS and add 500 ml distilled water 

 

10% Ammonium persulphate (1000 μl) 

 

 Weight out 0.1 g APS into an eppendorf tube and add 1000 μl distilled water 

 

6% acrylamide (separating) gel 

 

 Distilled water  2.6 ml 

 1.5 M Tris-HCl (pH 8.8)  1.3 ml 

 10% SDS  50 μl 

 Acrylamide  1.0 ml 

 10% APS  50 μl 

 Temed  4 μl 
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8% acrylamide (separating) gel 

 

 Distilled water  2.3 ml 

 1.5 M Tris-HCl (pH 8.8)  1.3 ml 

 10% SDS  50 μl 

 Acrylamide  1.3 ml 

 10% APS  50 μl 

 Temed  3 μl 

 

10% acrylamide (separating) gel 

 

 Distilled water  3.85 ml 

 1.5 M Tris-HCl (pH 8.8)  2.5 ml 

 10% SDS  100 μl 

 Acrylamide  2.5 ml 

 10% APS  50 μl 

 Temed  5 μl 

 

12% acrylamide (separating) gel 

 

 Distilled water  3.35 ml 

 1.5 M Tris-HCl (pH 8.8)  2.5 ml 

 10% SDS  100 μl 

 Acrylamide  3.0 ml 

 10% APS  50 μl 

 Temed  5 μl 

 

4% acrylamide (stacking) gel 

 

 Distilled water  6.1 ml 

 0.5 M Tris-HCl (pH 6.8)  2.5 ml 

 10% SDS  100 μl 

Stellenbosch University  http://scholar.sun.ac.za 



Stellenbosch University | APPENDICES  209 

 

 Acrylamide  1.0 ml 

 10% APS  100 μl 

 Temed  20 μl 

 

Running buffer (1 L) 

 

 Weight out 3.03 g Tris, 1.44 g Glycine and 1 g SDS into a 1 L beaker. Add 

500 ml distilled water and stir until dissolved 

 Fill up to 1 L with distilled water 

 

10X TBS (5 L) 

 

 Weight out 121 g Tris and 80 g NaCl into a 5 L beaker. Add 2.5 L distilled 

water and stir until dissolved. 

 Adjust pH to 7.6 using HCl and then fill up to 5 L with distilled water 

 For use in Western blotting, take a 1 L measuring cylinder and add 100 ml 

10X TBS and dilute with 900 ml distilled water 

 To make TBST, add 1 ml tween to 1 L diluted solution of TBS 

 

Transfer Buffer 

 

 In a 1 L cylinder, add 100 ml Biorad 10X TG buffer, 200 ml 100% methanol 

and 700 ml distilled water 

 

Milk blocking solution (100 ml) 

 

 Weight out 5 g non-fat dry instant milk powder into a beaker. Add 100 ml TBS 

and mix well 

 Finally add 10 μl Tween and mix well. This is sufficient for only one gel 
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Primary (1º) antibody 

 

 Pipette 5 μl 1º antibody in 5 ml TBST in a 50 ml falcon tube. This 

concentration is suitable for most 1º antibodies but others require a higher 

concentration 

 

Secondary (2º) antibody 

 

 Pipette 2.5 μl 2º antibody and 10 ml TBST in a 50 ml falcon tube 

 

Stripping buffer (1 L) 

 

 Dissolve 8 g NaOH in 1 L distilled water 
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Appendix H 

 

Reagents Catalogue Number Company 

Absolute alcohol 32221 Riedel deHaën 

Agarose D-1 LE 39209080 Hispanagor 

6-Aminohexanoic Acid A7824 Sigma 

Acrylamide A3699 Sigma 

Ammonium Alum A2140 Sigma 

Ammonium Persulphate (APS) A3678 Sigma 

Bafilomycin A1 1793 Sigma 

Biorad 10X TG (Tris/Glycine) 

Buffer 

1610771 Biorad 

Bovine Serum Albumin (BSA) A4503 Sigma 

Bradford Reagent B6916 Sigma 

Bromophenol Blue 32400A UnivAR 

Caffeine C0750 Sigma 

Caspase-Glo 3/3 Assay G8091 Promega 

Coomassie Brilliant Blue G 27815 Fluka 

Coverslips (18 X 18mm) S1815 Sigma 

CytoTox 96 non-radioactive 

cytotoxicity assay (LDH Assay) 
G1780 Promega 

Dako Fluorescent Mounting 

Media 
S3023 DakoCytomation 

Doxorubicin (DXR) D1515 Sigma 

Dulbecco’s Modified Eagles 

medium (DMEM) + GlutaMAX-1 
32430 Gibco 

DMEM – no amino acids CN3489 Highveld Biological 

Eosin 32617 Riedel deHaën 

ECLTM Western Blotting 

analysis system 
RPN2108 Amersham Biosciences 

ER-Tracker Blue-White E12353 
Molecular Probes, 

Invitrogen 
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Fetal Bovine Serum (FBS) 10270 Gibco 

Dialyzed FBS  26400-044 Gibco 

Formalin HTS0-1-128 Sigma 

Fura Ratiometric Calcium 

indicators 
F1221 

Molecular Probes, 

Invitrogen 

Glacial Acetic Acid  UN2789 Merck 

Glycerol  G5516 UnivAR 

Glycine  G8898 Sigma 

Harris haematoxylin  OB657122 Merck 

Hoechst 33342  B2261 Sigma 

Hydrochloric Acid (HCl)  UN1789 Merck 

H2O2 (Perdrogen) 31642 Riedél-de Haën 

Iso-butanol  UN1212 Merck 

Isopentane 1071771000 Merck 

Isopropanol 31 461-1 Sigma 

JC-1 T3168 Invitrogen 

LysoTracker Red L7528 
Molecular Probes, 

Invitrogen 

Magnesium Sulphate (MgSO4)  M2643 Sigma 

Manual X-ray Developer  9X23018 Axim 

Manual X-ray Fixative  9X23013 Axim 

Mercuric Oxide  21-335-7 Sigma 

Methanol  UN1250 Merck 

MG132 (Z-Leu-Leu-Leu-al) C2211 Sigma 

Microscope slides (25 X 75 mm) S8400 Sigma 

MitoSOX Red M36008 
Molecular Probes, 

Invitrogen 

MitoTracker Green M7514 
Molecular Probes, 

Invitrogen 

MTT (Thiazolyl Blue 

Tetrazolium Bromide)  
M5655-16 Sigma 

PecqGold prestained protein 27-2110 Peqlab 
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Marker  

Penicillin-Streptomyin Solution  P4333 Sigma 

Phenol solution  P5447 Sigma 

Phosphoric Acid  P5811 Merck 

Ponceau S solution  P7170 Sigma 

Precision plus protein dual 

colour standards  
161-0374 Bio-Rad 

Propidium Iodide (PI) P4170 Sigma 

Proteasome-Glow 

Chymotrypsin-like Cell-based 

Assay 

G8622 Promega 

Rapamycin R8781 Sigma 

Rapid Mounting Media for 

Microscopy  
UN1866 Merck 

SiRNA (mTOR) 6381 Cell Signalling 

Sodium Dodecyl Sulphate 

(SDS)  
L3771 Sigma 

Sodium Hydrogen carbonate 

(NaHCO3)  
AC006329.500 Merck 

SR FLIVO in vivo apoptosis kit 983 
ImmunoChemistry 

Technologies 

Temed  T9281 Sigma 

FuGENE Transfection Reagent 11814443001 Roche 

Triton X-100  X-100 Sigma 

Trizma-base  93304 Fluka 

Trypan Blue dye  T6146 Sigma 

0.25% Trypsin-EDTA Solution  T4049 Sigma 

Tween 20  P5927 Sigma 

Xylol  UN1307 Merck 
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Primary Antibodies 

 

 Catalogue Number Company Name 

Cleaved-caspase-3 9665 Cell Signalling 

Cleaved-PARP 9541S Cell Signalling 

Bax 2772 Cell Signalling 

Bcl2 2827 Cell Signalling 

Beclin-1 3738 Cell Signalling 

LC-3B 2775 Cell Signalling 

Anti-P62 protein 03-GP62-C 
American Research 

Products 

p-FoxO1/FoxO3a 9464 Cell Signalling 

T-FoxO3a 9467 Cell Signalling 

MAFbx Sc-33782 
Santa Cruz 

Biotechnotology 

Anti-MuRF-1/TRIM 63 IMX-3924 Imgenex 

Anti-ubiquitin (P4D1) 3936 Cell Signalling 

p-Akt 9275 Cell Signalling 

T-Akt 9272 Cell Signalling 

p-mTOR 2971L Cell Signalling 

T-mTOR 2983 Cell Signalling 

B-actin 4967 Cell Signalling 

 

Secondary Antibodies 

 

 Catalogue Number Company Name 

ECL Anti-rabbit IgG, 
Horseradish peroxidase 
linked whole antibody 

NA 934V Amersham Life Science 

Peroxidase labelled anti-
mouse antibody 

NIF 825 Amersham Life Science 

Anti-goat IgG (H & L) 

(Donkey) 
605-703-125 Rockland 
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Paper and Film 

 

 Catalogue Number Company Name 

Hyperfilm  28-9068-36 Amersham Biosciences 

ImmobilonTM P transfer 
membrane (PVDF) 

IPVH00010 Millipore 

Paper (Blotting) Sheets 06-134 Lasec 
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