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Abstract 

This study describes: 

• the comparison of the enzymatic activities of the two ovine cytochrome P450 17α-

hydroxylase/17,20-lyase (CYP17) isoforms expressed in non-steroidogenic COS-1 cells. 

The Km and Vmax values for the metabolism of pregnenolone and progesterone were 

determined, while time-dependent metabolism of pregnenolone, 17-hydroxypregenolone, 

progesterone and 17-hydroxyprogesterone was also reported. The cloning and sequencing of 

ovine cytochrome b5 is reported and was co-expressed with CYP17. The results showed that 

the wild type 1 (WT1) isoform of ovine CYP17 produce more cortisol precursors than the 

wild type 2 (WT2) isoform; 

• the analysis of the frequency distribution of the CYP17 genotypes within a South African 

Merino population, which were divergently selected for (H-line) or against (L-line) the 

ability of a ewe to rear multiple offspring per birthing opportunity. It was observed that the 

CYP17 frequency distribution was the same within the H- and L-line, with 78.3 % 

heterozygous WT1/WT2 and 21.7 % homozygous WT1/WT1. No homozygous WT2/WT2 

individuals were identified; 

• the development of a UPLC-MS/MS method for the separation and quantification of all 

thirteen adrenal steroids that are produced in the adrenal gland; 

• the relative contribution of the CYP17 genotypes in the total steroidogenic output in adult 

adrenocortical cells from the adrenal glands of H- and L-line sheep, with particular emphasis 

on cortisol production. The adrenocortical cells from the H-line sheep showed a marked 

higher cortisol production than the L-line, while adrenocortical cells from homozygous 

WT1/WT1 sheep also produced more cortisol than heterozygous WT1/WT2 sheep;  

• the blood cortisol responses upon the stimulation of the HPA axis by insulin induced 

hypoglycaemia of the H- and L-line sheep with known CYP17 genotypes. It was observed 

that the CYP17 genotype and selection line are important factors affecting the cortisol 

responses of sheep, where L-line heterozygous WT1/WT2 sheep showed the lowest cortisol 

response and glucose recovery; 
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• the association of the CYP17 genotype with behavioural responses of H- and L-line sheep to 

flock isolation stress, as well as the association of the CYP17 genotype with ewe 

reproduction and lamb output. While reproduction seemed to be unaffected by the CYP17 

genotype, the behavioural stress responses of sheep to flock isolation correlated with the 

CYP17 genotype, where the heterozygous WT1/WT2 genotype was associated with a wilder 

nature.  
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Opsomming 

Hierdie studie ondersoek: 

• die vergelyking van die ensiemaktiwiteite vir twee isoforme van skaap sitochroom P450 

17α-hidroksilase/17,20-liase (CYP17), wat uitgedruk was in nie-steroïed genererende COS-

1 selle. Die Km and Vmax waardes was bepaal vir die metabolisme van pregnenoloon en 

progesteroon, terwyl die tyd-afhanklike metabolisme van pregnenoloon, 17-

hidroksiepregnenoloon, progesteroon en 17-hidroksieprogesteroon ook gerapporteer word. 

Die klonering en volgorde bepaling van skaap sitochroom b5 was gedoen en gevolglik was 

sitochroom b5 saam met CYP17 uitgedruk in COS-1 selle. Die resultate het gewys dat wilde 

tipe 1 (WT1) meer voorlopers van kortisol produseer as wilde tipe 2 (WT2); 

• die frekwensie distrubusie van die CYP17 genotipes in ‘n Suid-Afrikaanse Merino 

populasie, waar skape in teenoorgestelde rigtings geselekteer was vir (H-lyn) of teen (L-lyn) 

die vermoë van ‘n ooi om geboorte te gee aan veelvoudige lammers per lamgeleentheid. Die 

frekwensie distrubusie van CYP17 was dieselfde in beide die H- en L-lyn, waar 78.3 % van 

die populasie heterosigoties WT1/WT2 en 21.7 % homosigoties WT1/WT1 was. Geen 

homosigote WT2/WT2 individue was geïdentifiseer nie; 

• die ontwikkeling van ‘n UPLC-MS/MS metode vir die skeiding en kwantifisering van al 

dertien steroïede wat natuurlik geproduseer word in die bynier van die skaap; 

• die relatiewe bydrae van die CYP17 isoforme tot die totale steroïedale uitsette vanuit die 

bynier kortex selle, vanaf die byniere van H- en L-lyn skape, waar klem geplaas word op die 

produksie van kortisol. Die bynierselle van die H-lyn skape het aansienlik meer kortisol 

produseer as die L-lyn, terwyl die bynierselle van die homosigotiese WT1/WT1 skape ook 

meer kortisol produseer het as heterosigotiese WT1/WT2 skape;  

• die bloed kortisol in reaksie tot die stimulering van die hipotalamus-hipofise-adrenale aksis, 

deur insulien geïnduseerde hipoglisemiese stress, in skape van die H- en L-lyne met bekende 

CYP17 genotipes. Dit was gevind dat die kortisol reaksie geaffekteer word deur beide die 

CYP17 genotipe en seleksie lyn, waar L-lyn heterosigotiese WT1/WT2 skape die minste 

kortisol geproduseer het en die stadigste herstel van glukose vlakke getoon het; 
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• die assosiasie tussen die CYP17 genotipe en die gedrags reaksies op trop-isolasie, sowel as 

ooi-reproduksie en lamuitset, van die H- en L-lyn skape. Die reproduksie parameters was 

onafhanklik van die CYP17 genotipe, terwyl ‘n sterk assosiasie gevind was tussen die 

CYP17 genotipe en gedrags reaksies op trop-isolasie. Die heterosigotiese WT1/WT2 skape 

het ‘n wilder natuur getoon gedurende trop-isolasie in vergelyking met homosigotiese 

WT1/WT1 skape. 
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CHAPTER 1 

Introduction 

The sentient body is constantly coping with the onslaught from various stressors. These stressors 

may be of a real (physical) or perceived (psychological) nature and pose an intrinsic or extrinsic 

threat to homeostasis (Mormède et al., 2007). Such deviations in homeostasis activate adaptation 

mechanisms that counteract such stressors in their response(s). The adaptation mechanisms on the 

forefront of most stress-related conditions are the hypothalamic-pituitary-adrenal axis (HPA) and 

autonomic nervous system. However, the interpretation of the response of these mechanisms is far 

from straight forward. Interpretation of the stress, adaptation and emotional state of an animal on a 

psychophysiological and physiopathological level is based on the assessment of measurable indices 

of behaviour, biology, production traits and pathology (Dantzer and Mormède, 1983; Mormède et 

al., 2007). The measurement of cortisol (corticosterone in birds, mice and rats) for instance is a 

standard method for measuring stress in animals, since this is the main active hormone produced by 

the activation of the HPA axis (Mormède et al., 2007). Cortisol is a glucocorticoid hormone that is 

produced in the adrenal gland and act on gluconeogenic enzymes in the liver to transform proteins 

to energetic metabolites. This reflects the purpose of the adaptation mechanisms, which is to 

regulate and maintain energy fluxes or supply the defence mechanisms with metabolic fuels.  

In the stimulation of the HPA axis, it is not only the magnitude of cortisol production that is 

important to counteract the stressor stimulus, but also the timeframe over which stress is incurred 

(Smith and Dobson, 2002; Mormède et al., 2007). This concept is best understood by Selye’s 

(1946) definition of stress as the ‘disease of adaptation’. In the acute phase the stress response 

counteracts stressors within its capacity at a harmless adaptive level (Ewbank, 1985). However, in 

the chronic phase the stress response is stretched beyond its limits to the point where it is non-

adaptive and causes damage to the animal’s health. 

This study is concerned with the acute phase response of the HPA axis that ultimately results in the 

secretion of cortisol from the adrenal gland in the South African Merino. More specifically, this 

study investigates the synthesis of cortisol within the adrenal gland. The study set out to determine 

the relative contributions of two isoforms of a key steroidogenic enzyme, namely 17α-

hydroxylase/17,20-lyase (CYP17), in cortisol biosynthesis. Two genetic sequences for ovine 

CYP17 have previously been published on Genbank (Genbank accession nrs. L40335 and 

AF251388) and it was shown by Storbeck et al. (2008a) that both sequences are present in the South 
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African Merino. The activities of these CYP17 isoforms and their relative contributions to cortisol 

production have not yet been compared to date. The two sequences will from hereon be referred to 

as wild type 1 (WT1, L40335) and wild type 2 (WT2, AF251388), while their expressed CYP17 

isoforms will be written in non-cursive text (WT1 and WT2). 

For the purpose of this study, the Biochemistry Department at Stellenbosch University collaborated 

with the Institute for Animal Production from the Western Cape Department of Agriculture. A 

project on selection responses to divergent selection for ewe multiple rearing ability was undertaken 

at the Institute for Animal Production since 1986, which received funding from both the South 

African wool industry and government. Two distinct Merino flocks were established that showed a 

marked divergent response in overall reproduction in the lines selected. The annual rate of genetic 

improvement in total weight of lambs weaned over three lambing opportunities, in the line selected 

for multiple rearing ability (H-line), was 1.8% of the overall phenotypic mean (Cloete et al., 2004). 

A corresponding decline of 1.2% of the overall mean was found in the line selected against multiple 

rearing ability (L-line). Genetic selection responses were symmetric, resulting in a cumulative 

difference of 21.2 kg, of lambs weaned over three lambing opportunities between the two lines in 

ewe progeny born in 1995. This line difference was supported by responses in behaviour conducive 

to an improved reproduction rate (Cloete and Scholtz, 1998). Moreover, slaughter data suggested a 

probability that L-line animals were more susceptible to stress than H-line contemporaries (Cloete 

et al., 2005a). These results, together with other distinct differences between the lines (Hoffman et 

al., 2003), suggest that differences between the populations could be detected on a genetic level and 

that the two different CYP17 isoforms could be involved in the differences in stress susceptibility 

between the two lines. 

Chapter 2 highlights the importance of a functional HPA axis in sheep breeding. The necessity to 

include stress response characteristics in selection criteria to improve robustness is explored. An 

overview of the HPA axis is presented with a description of the actions of the glucocorticoids 

(cortisol and corticosterone). The production of cortisol, and other steroid hormones within the 

adrenal gland, is described in Chapter 3. An overview of the regulation of a glucocorticoid-specific 

acute phase response from the adrenal gland is also presented. Hereafter, the role of CYP17 in the 

production of cortisol, as well as its characteristics and regulation, is discussed in detail in Chapter 

4. 

Following the literature review in Chapters 2 to 4, are the chapters describing the experimental 

procedures, results and discussions of this study. In Chapter 5 an investigation of the presence of the 
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two CYP17 genetic sequences in a South African Merino population is described using the CYP17 

genotyping test developed by Storbeck et al. (2008a) for the South African Angora goat. It was 

found that 14.4 % of the population contained only the WT1 sequence (homozygous WT1/WT1) and 

78.3 % of the population contained both WT1 and WT2 sequences (heterozygous WT1/WT2). 

However, no homozygous WT2 sheep were identified and it was suggested that the genotyping test 

might not be sensitive enough, that there was a genetic anomaly or that the genotype was lethal.  

A comparison of the CYP17 sequences revealed that they encode two distinct CYP17 isoforms 

(WT1 and WT2, respectively) that differ by two amino acid residues. The activities of these 

isoforms were compared in vitro by expression in non-steroidogenic COS-1 cells. Site-directed 

mutagenesis revealed that both amino acid differences of the isoforms were collectively responsible 

for the small differences in the conversion assays. Kinetic parameters, Km and Vmax, were 

determined for both CYP17 isoforms, but were not significantly different. However, some 

significant differences were observed in time-dependent substrate conversion assays, but these 

differences were less pronounced in the presence of redox partner, cytochrome b5. It was predicted 

that WT1 would be more advantageous for the production of cortisol. However, this hypothesis had 

to be investigated in a system where CYP17 is expressed in the presence of all the other enzymes 

involved in adrenal steroidogenesis, especially the two steroidogenic enzymes that compete with 

CYP17 for the substrates, namely 3β-hydroxysteroid dehydrogenase and cytochrome P450 21-

hydroxylase. 

The COS-1 expression system is not suitable for the expression of more than three enzymes (due to 

transfection limitations and bias). Therefore it was decided to use primary culture preparations from 

the adrenal glands of adult homozygous WT1/WT1 and heterozygous WT1/WT2 sheep. However, 

such a system would produce a complex mixture of steroids that presents a challenge for their 

detection and quantification. An ultra-performance liquid chromatography tandem mass 

spectrometry (UPLC-MS/MS) method was therefore developed for the accurate detection of the 

major steroids (13 in total) produced in the sheep adrenal. Chapter 6 presents the data pertaining to 

the development of this method and also reports on its validation. The method was used to analyse 

plasma steroids in the blood of sheep prior to and 60 minutes after insulin treatment, as well as 

primary cultures of adult adrenal cells under endogenous and adrenocorticotrophic hormone 

(ACTH) stimulated conditions after 48 hours. The plasma results showed a glucocorticoid-specific 

response to stimulation of the HPA axis by insulin induced hypoglycaemia. The results from adult 

adrenal cultures showed a general increase in all steroid metabolites that is likely to result from the 
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expressional upregulation of all steroidogenic enzymes, which is typical of a chronic response 

(usually after 24 hours of ACTH stimulation).  

The relative contribution of each CYP17 isoform on adrenal steroidogenesis as a whole is presented 

in Chapter 7. Preparations of primary cultures from the adrenal glands of adult homozygous 

WT1/WT1 and heterozygous WT1/WT2 sheep were cultured over three days, establishing basal 

endogenous steroid levels, and then with the addition of pregnenolone, the precursor of adrenal 

steroid hormones. In addition, different stimulators of the HPA axis were added together with 

pregnenolone, namely ACTH, cyclic adenosine monophosphate (cAMP), forskolin and cholera 

toxin. Numerous differences were observed in the production of steroid metabolites between the 

CYP17 isoforms, including a higher cortisol production for homozygous WT1/WT1 sheep compared 

to heterozygous WT1/WT2 sheep. These results indicated that the small catalytic differences of the 

CYP17 isoforms translated to significant differences in cortisol production. 

Furthermore, the production of various steroids was different in sheep that belonged to contrasting 

selection lines, derived from a divergent selection program. These sheep were either selected for 

(H-line) or against (L-line) the ability of a ewe to rear multiple offspring. The H- and L-lines were 

previously shown to have various differences in production and reproduction traits, including lamb 

output (Cloete et al., 2004), behavioural stress responses, meat quality (Cloete et al., 2005a), wool 

characteristics (Cloete et al., 2004), lamb survival and mothering ability (Cloete and Scholtz, 1998; 

Cloete et al., 2005b). All the sheep that were used in this study were obtained from this breeding 

program. It was interesting to observe that the most pronounced differences in cortisol production 

within the adult adrenal cells were due to selection line differences. This indicates that the selection 

program has also indirectly been successful in selection for cortisol production in the adrenal gland 

in response to HPA axis stimuli. 

As previously mentioned, it is not necessarily the quantity of cortisol that is produced, but also the 

duration of cortisol output that determines the efficacy of the cortisol response. Chapter 8 explores 

how the observed in vitro differences in the amount of cortisol produced would translate to the in 

vivo level. The activity of the HPA axis as a whole was assessed by measuring the blood glucose 

and cortisol responses to insulin induced hypoglycaemia over 2 hours. The glucose levels in the H-

line, for both homozygous WT1/WT1 and heterozygous WT1/WT2 sheep, returned to baseline levels 

after 2 hours, which indicated an adequate HPA axis response. The glucose levels of the L-line, 

however, did not recover after 2 hours for either CYP17 genotype. With regard to cortisol 

production, the H-line and homozygous WT1/WT1 sheep were able to produce more cortisol (at 
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equal duration) than the L-line and heterozygous WT1/WT2 sheep, respectively. However, when 

these two groups were subdivided into four groups (according to selection line X CYP17 genotype), 

the cortisol production was found to be the same in all groups (H-line homozygote WT1, H-line 

heterozygote WT1/WT2 and L-line homozygote WT1), except for the L-line heterozygous WT1/WT2 

sheep that had a lower cortisol response. These results suggested that the CYP17 genotype would 

have a small effect in animals with superior HPA axis activity, while it would have a large effect in 

animals with impaired HPA axis activity. This statement is supported by the study of Storbeck et al. 

(2008a), which showed that the CYP17 genotype contributes to hypocortisolism in the South 

African Angora goat – a species known to have an impaired HPA axis and makes it vulnerable to 

cold stress. 

Furthermore, the study explored the effects that the CYP17 genotype could potentially have on 

stressful behaviour, feed intake and reproduction traits. For accurate statistical analyses, a large 

sample size with known CYP17 genotypes were required (n > 400). A new CYP17 genotyping test 

was designed and validated with the results from the previous genotyping test. More than 550 sheep 

were genotyped, but the homozygous WT2 genotype remained undetected and it was suggested that 

this is most likely due to a genetic anomaly. 

The effect of the CYP17 genotype on various measureable indices of reproductive performance, 

behavioural stress and feed intake was investigated. It was found that the CYP17 genotype did not 

influence the parameters in which reproductive performance and feed intake was measured. 

However, the CYP17 genotype had a profound influence on behavioural stress responses, where 

three parameters of a flock-isolation test was affected, namely the number of bleats uttered, the 

urinating frequency and the average distance from a human operator. Furthermore, the total cortisol 

response during the hypoglycaemic test was negatively correlated with the frequency that sheep 

defecated during the behavioural test. These results suggest that the behavioural stress test may 

potentially be used for indirect selection for CYP17 genotypes and HPA axis function. 

Chapter 9 presents an overview of the results from this study and reiterate the main conclusions 

drawn from these results. Recommendations for further research are also included in this chapter. 
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CHAPTER 2 

The importance of the hypothalamic-pituitary-adrenal axis in stress 

management for the South African Merino 

2.1 Merino farming in South Africa 

Sheep farming accounts for one of the largest groups of commercial ruminant livestock in South 

Africa with sheep numbers estimated at 21.5 million sheep, while cattle and goat numbers are 

estimated at 13.7 and 2 million, respectively (Abstract of Agricultural Statistics, 2011). The sheep 

industry is important for South African agriculture, since 80 % of farmed land in South Africa is 

suitable only for sheep and goat farming due to relative arid climates and relatively poor soils 

(Livestock Development Strategy for South Africa, 2006). Furthermore, Merino and Merino-type 

breeds constitutes 52.4 % of the national sheep flock, while Merinos are also the most extensively 

studied sheep breed world-wide (Lynch et al., 1992; Schoeman et al., 2010; Abstract of Agricultural 

Statistics, 2011). The Merino breed had a major impact on the sheep populations of all the major 

sheep producing countries in the past century and Merinos contribute up to a third of all main breed 

types in some way (Mason, 1969; Lynch et al., 1992).  

The South African income from animal products contributes up to 50.6 % of the total agricultural 

income and is derived from poultry (36.3 %), beef and veal (21.8 %), milk (14.6 %), small stock 

products (12.4 %) and eggs (10.5 %) (Abstract of Agricultural Statistics, 2011). The contribution of 

sheep derived products amounts to an annual gross turnover of approximately 5 billion ZAR, which 

is derived 72.4 % from meat and 27.6 % from wool (Abstract of Agricultural Statistics, 2011). 

Although South Africa exports 77% of the produced wool, it imports 28% of its mutton (Cape 

Wools SA, 2008). Moreover, mutton prices have shown a larger increment over the past two 

decades compared to meat derived from other livestock species (Abstract of Agricultural Statistics, 

2011), which is indicative of a healthy local demand for the product. South Africa can therefore 

improve its production of mutton to meet this demand, while the production of wool would further 

contribute to the South African economy. 

2.2 Current breeding strategies 

Livestock recording and evaluation programmes, such as the National Small Stock Improvement 

Scheme in South Africa, have been developed to assist sheep farmers to select genetically superior 
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animals (Livestock Development Strategy for South Africa, 2006; Agricultural Research Council, 

2009). The improved levels of production in such animals are expected to assist in the fight against 

rising input costs. A diagrammatic summary of this strategy is shown in Figure 1.1. The strategy 

proposes the genetic improvement of income per animal by increasing the total weight of lamb 

weaned, growth rate, as well as quantity and quality of fibre produced (Olivier, 1999). Genetic 

selection based on all these parameters is aimed at improving production traits (e.g. fibre diameter, 

meat quality) and fitness traits (e.g. lamb survival, pathogen resistance). Genetic selection is also a 

preferable alternative to improve fitness and production compared to some husbandry procedures, 

which increase the cost per animal and may be detrimental to the animals’ welfare (such as 

mulesing) (Lynch et al., 1992). 

Figure 1.1. Summary of the strategy proposed by the National Small stock Improvement Scheme for the genetic 
improvement of cost per animal. CV: coefficient of variation; FD: fibre diameter. Adapted by SWP Cloete from 
Olivier (1999). 
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2.3 Robustness as breeding goal 

It is a difficult task to improve production traits in a commercial practise by means of genetic 

progress if the environment in which the animals are raised does not support the full expression of 

their genetic potential (Mormède et al., 2011). It is thus important to include robustness-related 

traits in breeding objectives to such an extent that selection balances genetic change in production 

potential with the genetic change in environmental sensitivity (Knap and Rauw, 2009). Robustness 

is best described as an ability to combine a high production potential with resilience to stressors, 

which allows for the unproblematic expression of a high production potential in a wide variety of 

environments (Beilharz, 1998; Knap and Rauw, 2009). Such objectives are particularly necessary in 

South Africa, where animals are often raised in adverse production environments (Cloete and 

Olivier, 2010). These extreme environments, along with climate change and economic pressure, 

increase the importance of considering robustness traits in the development of sustainable breeding 

goals.  

There are a number of examples where genetic selection based on production traits alone resulted in 

a reduction in robustness (Rauw et al., 1998; Star et al., 2008; Knap and Rauw, 2009; Siegel et al., 

2009; Veerkamp et al., 2009). One example is the case of the South African Angora goat, where 

selection for lower fibre diameter resulted in hypocortisolism and a susceptibility to cold stress 

(Van Rensburg, 1971; Engelbrecht et al., 2000). The cause for hypoadrenocortisolism was found to 

be mainly due to the activities of two cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17) 

isoforms (but three unique genotypes) in the adrenal gland (Storbeck et al., 2008a). 

An efficient genetic selection program would incorporate quantitative traits for both production and 

robustness as selection objectives. Most quantitative traits are determined by an intricate network of 

interacting loci and environmental factors (Falconer and Makay, 1996). In the best of 

circumstances, the genetic variation of a quantitative trait is determined by a small number of major 

genes with moderate to large effects, together with a large number of minor genes with small 

effects, known as the oligogenic model (Mackay, 1996 and 2001). The identification of these loci 

(called quantitative trait loci or QTLs), or markers in linkage equilibrium with it, in the genome is 

fundamentally important for agriculture in terms of marker-assisted selection or marker-assisted 

management (Camp and Cox, 2002; Wu et al., 2007; DeRijk, 2009). These methods aid the speed 

and accuracy of estimating breeding values in genetic selection programs or to adapt management 

practices to better match the genotypes of livestock (e.g. feeding, pre-slaughter procedures and drug 
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therapy). This study focuses on the HPA axis as an indicator mechanism that adds to livestock 

robustness, since the HPA axis plays an integral role in adaptation to stressful situations. 

2.4 Introduction to stress 

The importance of the capacity of an animal to cope with stressors is perhaps better understood by 

defining stress and its consequences. Selye (1946) defined ‘stress’ as the disease of adaptation, 

where the mechanisms to cope with stressors become overextended and eventually breakdown. 

Ewbank (1985) extended this idea and define three phases that are seen as a continuum of responses 

to a stressor(s): stress, overstress and distress. Stress is when an animal copes with a stressor within 

its capacity at an adaptive and harmless level. Overstress is when the coping mechanism is 

extended, but still remains sufficient to counteract the stressor. Distress, however, is when a stressor 

stretches the coping mechanism beyond its limits to the point where the response is non-adaptive 

and results in damage to the animal’s health, identified as the disease of adaptation.  

The adaptive mechanisms for coping with stress lie within the nervous system, immune system, 

endocrine system and the interregulation between these systems (Mormède et al., 2007). For 

example an environmental factor that continually stimulates the HPA axis for numerous days will 

lead to an increase in glucocorticoid secretion from the adrenal cortex over an extended time period. 

These elevated glucocorticoid levels will eventually inhibit inflammatory processes and increase the 

animal’s susceptibility to pathogens (Lynch, 1992; Spraker et al., 1984). This study will focus on 

stress in terms of stimulation of the HPA axis only. 

2.5 Stress in sheep 

Sheep are frequently subjected to routine handling procedures. Some differences in ease of handling 

between breeds have been reported and Merinos have been reported to be one of the easiest to 

handle (Lynch et al., 1992). Kilgour (1976) suggested that three basic behaviours of sheep should 

be recognized for successful sheep handling: 1) their strong flight reaction; 2) the prevailing role of 

vision in social organization; and 3) their flocking-follower behaviour. It is thus understandable 

why sheep avoid isolation from the flock, which results in unpredictable fearful behaviour and 

sometimes leads to injury during routine procedures (Degabrielle and Fell, 2001; Da Costa et al., 

2004). Lynch et al. (1992) report that the separation of sheep from their flock, and the anxiety it 

causes, is likely to be the predominant source of suffering and is considered a potent stimulus of the 

HPA axis. Various studies have also shown that some husbandry practices, such as shearing, 
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crutching, drafting and transport, resulted in increased plasma cortisol levels (Grandin, 1997; 

Hargreaves and Hutson, 1990; Degabrielle and Fell, 2001; Da Costa et al., 2004). Cold stress and 

starvation are two other important factors that stimulate the HPA axis. Starvation and cold exposure 

are two of the four main, and often interrelated, factors responsible for most lamb deaths, along 

with difficult parturition and relatively low birth weight, according to the review of Alexander 

(1984).  

Murphy et al. (1994) and Murphy (1999) have been able to correlate lamb survival with ewe 

temperament. These authors based their findings on Merino ewes selected for either high 

(‘nervous’) or low (‘calm’) reactivity to humans and flock-isolation. The mortality rate of lambs 

born to ‘calm’ ewes was half that of ‘nervous’ ewes. The authors proposed that the higher lamb 

survival could be ascribed to the display of superior maternal behaviour, in terms of grooming and 

bleating frequency, compared to the ‘nervous’ ewes (Murphy et al., 1994; Murphy, 1999). 

Furthermore, the degree to which maternal behaviour is displayed has been correlated with the 

concentrations of cortisol, progesterone and estradiol during the peripartum period (Pryce et al., 

1988; Dwyer et al., 2004). However, Bickell et al. (2011) showed that the concentrations of 

progesterone and estradiol were similar in the two temperament lines from 4 days prior and 24 

hours post parturition, which indicated that it was unlikely that these hormones contribute to the 

displayed maternal behaviour. The latter study also failed to support a hypothesis that ‘calm’ ewes 

and lambs coped better with the situation than their ‘nervous’ counterparts when they were 

subjected to a test involving a novel distraction during the early postnatal phase. 

A similar concept of behavioural stress was investigated where a flock-isolation test was used to 

assess the stressful behaviour of Merino sheep that were divergently selected on the ability of a ewe 

to rear multiple offspring per birthing opportunity (Cloete et al., 2005a). The line selected for their 

ability to rear multiples (H-line) was previously shown to have a markedly higher lamb survival and 

improved maternal and offspring behaviour than the line selected against multiple rearing ability 

(L-line) (Cloete and Scholtz, 1998). Stressful behaviour were assessed during an arena test, which 

monitored the movement within the arena (number of lines crossed), distance from human operator 

(separating the sheep from its flock), number of bleats, number of urinating events and number of 

defecating events. The H-line allowed smaller distances between itself and a human, while the L-

line defecated more frequently throughout the stress test (Cloete et al., 2005a). Furthermore the 

meat quality of these two lines was assessed at time of slaughter. It was found that at the same age 

and under the same management conditions the mean slaughter weight, dressing percentage, carcass 
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weight and vivid red meat colour was higher in the H-line than in the L-line. In relation to stress, 

the selection line difference in the pH of meat was the most important consideration. The collective 

observations from these studies demonstrate the complex relationship between stress, production 

(meat quality and ease of handling) and reproduction (lamb output, mothering ability and lamb 

survival). Incidentally, these results cannot be accepted as universal. A similar study involving an 

Australian Merino line selected for reproduction (the Fertility flock), and a random bred control 

line, failed to show conclusive evidence in behaviour in favour of ewes from the Fertility flock 

during contrived situations (Kilgour and Szantar-Coddington, 1995). 

2.6 The hypothalamic-pituitary-adrenal axis 

The HPA axis mediates stress responses in combination with the autonomic nervous system and 

behavioural adaptation (Manteuffel, 2002). An overview of the HPA axis is presented schematically 

in Figure 2.1. The hypothalamus receives neuronal input from various internal and external stimuli 

Figure 2.1. Overview of the hypothalamic-pituitary-adrenal axis. A stress stimulus is detected by the hypothalamus, 
which secretes corticotrophin releasing hormone (CRH) that in turn stimulates the release of adrenocorticotrophic 
hormone (ACTH) from the anterior pituitary into the bloodstream. The adrenal gland responds to ACTH by 
increasing its production and release of cortisol (glucocorticoid) into the bloodstream that counteracts the stressor. 
Cortisol also exerts a negative feedback effect on the hypothalamus and anterior pituitary. Reproduced from Kirk et 
al. (2000) (© David Klemm). 
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and conveys this signal to the anterior pituitary via corticotrophin releasing hormone (CRH) and 

vasopressin (VP). The synergistic action of CRH and VP stimulate the secretion of ACTH from the 

anterior pituitary gland. ACTH in turn stimulates the release of steroid hormones from the adrenal 

cortex (corticosteroids), of which glucocorticoids (cortisol and corticosterone) are the majority. The 

main active hormone in the HPA axis response is cortisol (such as sheep, cattle, pigs, mink, fox and 

fish) or corticosterone (such as birds, rats and mice) (Mormède et al., 2007). In fact, the 

measurement of cortisol has become the golden standard of evaluating stress in sheep (Mormède et 

al., 2011). 

The assessment of HPA axis activity is a standard method of evaluating stress and welfare in 

animals (Mormède et al., 2007). Large differences in HPA axis activity have been found across 

species, breeds and individuals, which reflects the contribution of genetic factors and environmental 

influences. There is large variability within the system, which makes the genetic selection for 

superior HPA axis activity a promising tool in animal breeding (Mormède et al., 2011). Some of the 

main sources of variation arise from the pulsatile, diurnal and seasonal rhythms in secretion of 

corticosteroids, which is also influenced by physiological state, age, feed intake and environmental 

factors such as temperature and humidity (Mormède et al., 2007). 

2.6.1 The hypothalamus 

The hypothalamus controls the release of ACTH from the anterior pituitary gland by a neuronal 

structure known as the paraventricular nucleus (PVN) (Manteuffel, 2002). The small celled 

subdivisions of the PVN consist of specialized neurons that synthesize CRH and VP, which is 

released in the capillary bed of the median eminence where it reaches the pituitary via the 

hypothalamic-pituitary portal vessels (Figure 2.2) (Whitnall, 1993). The axons of the large celled 

part of the PVN extend into the posterior pituitary to release VP and oxytocin (Aguilera, 1998; 

Manteuffel, 2002). It has been proposed that VP maintains HPA axis activity during prolonged 

stimulation, whereas CRH seems to be mainly active during the acute stress response (Lightman, 

1994; Bonaz and Rivest, 1998; Manteuffel, 2002). The PVN receives numerous inputs from the 

brain stem (neural inputs from the periphery), hypothalamic nuclei (metabolic and nyctohemeral 

inputs), limbic system (in relation to emotional state) and subfornical organ system (monitors blood 

plasma composition) (Manteuffel, 2002). The complexity of the various afferent and efferent 

pathways connected to the PVN explains why the HPA axis is sensitive to a wide range of external 

and internal stimuli to assess the homeostatic state of the sentient organism. This enables the 
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hypothalamus to communicate a state of stress (or normality) to the anterior and posterior pituitary 

as to which hormones to release for the maintenance of homeostasis. 

Da Costa et al. (2004) studied emotional stress and its effects on the HPA axis of sheep. These 

researchers subjected sheep to flock-isolation and found that showing facial pictures of familiar 

sheep, compared to pictures of goats and inverted triangles, reduced the stress responses of these 

sheep, in terms of behavioural (activity and protest vocalizations), autonomic (heart rate) and 

endocrine (cortisol and adrenaline) indices of stress. The mRNA expression of activity-dependent 

genes (c-fos and zif/268) was reduced in the PVN and the brain regions associated with fear (central 

and lateral amygdale), while their expression was increased in the brain regions dedicated to 

emotional control (orbitofrontal and cingluate cortex) and for processing faces (temporal and medial 

frontal cortices and basolateral amygdala). This study indicates the role of the PVN to translate 

Figure 2.2. Anatomy of the pituitary gland. The top left illustration depicts the relation of the pituitary gland to the rest 
of the brain and the schematic enlargement shows its vascular and neuronal connections to the hypothalamus. 
Reproduced from Vander et al. (2004). 
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signals of emotional stress via the HPA axis to the adrenal gland for the release of cortisol. 

Furthermore, the emotional reactivity (temperament) of sheep has been successfully used as 

selection criterion in breeding programs to improve reproductive biology (Blache and Bickell, 

2010). Selection for ‘calm’ ewes increased lamb survival and maternal behaviour (Murphy et al., 

1994). The activity of the PVN has been shown to affect mother-young relationships of sheep, and 

the expression of c-fos in the PVN has been used as a marker for neuronal activity that correlated 

with the onset of maternal behaviour (Keller et al., 2004; Novak et al., 2011). 

2.6.2 The pituitary 

The hypothalamus is connected to the posterior pituitary by axons that extend down from the 

paraventricular and supraotic nuclei through the infundibulum (Figure 2.2) (Vander et al., 2004). 

These axons secrete VP and oxytocin, as previously mentioned, via exocytosis into the posterior 

pituitary capillaries, which drain directly into the main blood circulation (Aguilera, 1998; 

Manteuffel, 2002). VP facilitates the re-uptake of water in the kidney by increasing the permeability 

of the collecting ducts. Oxytocin increase contraction of smooth muscles in the mammary glands 

and uterus (Vander et al., 2004).  

The hypothalamus is connected to the anterior pituitary by a special vascular system, the 

hypothalamic-pituitary portal system, which insures that blood flows directly from the 

hypothalamus to the anterior pituitary (Figure 2.2) (Vander et al., 2004). The first capillary bed at 

the base of the hypothalamus, the median eminence, converges to form the hypothalamic-pituitary 

portal vessels that pass through the infundibulum and lead to a second capillary bed in the anterior 

pituitary, the anterior pituitary capillaries (Figure 2.2). As mentioned previously, the CRH and VP 

are secreted by the PVN into the median eminence and reach the anterior pituitary via the 

hypothalamic-pituitary portal system.  

In the anterior pituitary, CRH binds to corticotrophs, specialized secretory cells, to release ACTH 

(Vander et al., 2004). In addition to corticotrophs, the anterior pituitary also consists of four other 

types of secretory cells that are responsible for the production and secretion of different trophic 

hormones. Each secretory cell type responds to a specific hypophysiotrophic hormone secreted by 

various neurons in the hypothalamus into the median eminence. The secretory cells in the anterior 

pituitary consist of 20 % corticotrophs (secretes ACTH in response to CRH); 50 % somatotrophs 

(secretes growth hormone in response to growth hormone releasing hormone and growth hormone-

inhibiting hormone); 20 % mammotrophs (secretes prolactin and regulated by prolactin-inhibiting 
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hormone); 5 % thyrotrophs (secretes thyroid stimulating hormone in response to thyrotrophin 

releasing hormone); and 5 % gonadotrophs (secrete follicle stimulating hormone and luteinizing 

hormone in response to gonadotropin releasing hormone). Various studies have shown that CRH 

inhibits the stimulation of gonadotrophs to release luteinizing hormone (for review see Rivier and 

Rivest, 1991). It is therefore not surprising that stress influences the reproductive endocrine axis in 

farm animals (Von Borell et al., 2007). 

The binding of CRH to the CRH receptor of the corticotrophs activates adenylate cyclase and the 

accumulation of cyclic adenosine monophospate (cAMP) subsequently activates protein kinase A 

(Dunn and Berridge, 1990). This stimulation of adenylate cyclase by CRH is regulated by divalent 

ions and guanidine nucleotides, a common phenomenon observed for receptors coupled to 

adenylate cyclase (Chen et al., 1986). The synergistic action of CRH and VP is important in the 

physiological control of ACTH secretion. VP requires the presence of CRH to exert its full effect. 

VP has a weak ACTH-releasing activity in vitro for most species, and instead potentiates both 

CRH-stimulated ACTH release as well as CRH-induced accumulation of cAMP. VP act via a V1-

like receptor that results in the stimulation of phosphatidylinositol hydrolysis and intracellular 

calcium ion fluxes that subsequently activates protein kinase C. Studies have shown that the relative 

potencies of CRH and VP are reversed in sheep, where CRH has a weak ACTH-releasing activity, 

but can potentiate the effects of VP on ACTH release (Familari et al., 1989; Owens and Nemeroff, 

1992; Liu et al., 1994). Furthermore, AVP and ACTH secretion is stimulated by interleukin-6. The 

origins and significance (in terms of adreno-cortical regulation) of interleukin-6 (Mastorakos et al., 

1994; Charmandari et al., 2005) will be discussed in another section. 

ACTH is a polypeptide that is produced by the cleavage of the larger polypeptide 

proopiomelanocortin (POMC) (Stevens et al., 2010). Cleavage of POMC also yields endorphins 

(endogenous opioids) and lipotrophins (implicated in lipid metabolism) that can be secreted 

together with ACTH from corticotrophs in small quantities. ACTH enters the main blood 

circulation and reaches the adrenal gland where it primarily stimulates the secretion of 

glucocorticoids from the adrenal cortex, but also stimulates the secretion of mineralocorticoids and 

androgen precursors in some species (Vander et al., 2004). As stated previously, the main 

glucocorticoid product resulting from the stimulation of the HPA axis is cortisol in sheep, cattle, 

mink, fox and fish, and corticosterone in birds, mice and rats (Mormède et al., 2007). 
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2.6.3 The adrenal gland 

In the adrenal cortex ACTH binds to the ACTH receptor on the outside of the cell membrane. This 

transmembrane ACTH receptor is associated on the inside of the cell membrane with the α subunit 

of a signal transducing G-protein, Gs (Vander et al., 2004). The Gs protein is a guanine triphosphate 

(GTP) switch protein and consists of three subunits, known as α, β and γ. When there is no ligand 

bound to the receptor, guanine diphosphate (GDP) is bound to the α subunit that is associated with 

the β and γ subunits. Binding of ACTH to the receptor induces a conformational change that cause 

the GDP in the α subunit to be replaced by GTP. The α subunit subsequently dissociates from the β 

and γ subunits to associate with adenylate cyclase, which is also bound to the inner cell membrane. 

This association increases the affinity of adenylate cyclase for adenosine triphosphate (ATP) to 

produce cAMP, a second messenger in various metabolic pathways. The cytosolic cAMP binds to 

and activates cAMP dependent protein kinases. The activated protein kinases can alter the catalytic 

activity of numerous enzymes by means of phosphorylation, including ribosomal phosphorylation, 

at specific serine and threonine residues. These responses lead to increased steroidogenesis and 

secretion of corticosteroids (of which the majority is glucocorticoids) in both acute (within minutes) 

and chronic (after a few hours) stimulation with ACTH (Miller and Auchus, 2011). The enzymes 

involved in adrenal steroidogenesis and their regulation will be discussed in another section. 

The ACTH signal terminates when the levels of cytosolic cAMP decrease with the eventual 

conversion to AMP by phosphodiesterase (Vander et al., 2004). Furthermore, the hormonal 

response is limited by the slow GTPase activity of Gs that results in the dissociation of the α subunit 

from adenylate cyclase. The displacement of GDP with GTP in the α subunit also reduce the 

affinity of the receptor for the ligand, which may subsequently dissociate (Lodish et al., 2000). 

2.7 Mechanism of action of glucocorticoids 

The effectiveness of the HPA axis to counter stress will influence energy metabolism and food 

intake, immune responses, fertility and sexual libido, behaviour as well as the ability for learning in 

complex ways (Manteuffel, 2002). The final effectors of the HPA axis stress reponse are 

glucocorticoids. The mechanism of action and the main effects of glucocorticoids during stress will 

be discussed in the following paragraphs. 

Glucocorticoids are lipophilic and can transverse the cell membrane. However, 90 % of 

glucocorticoids are transported in the blood, where they are bound to corticosteroid binding 
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globulin (CBG) (Smith and Hammond, 1992; Mihrshahi et al., 2006). The remaining 10 % of 

glucocorticoids are either free or bound to albumin. Free glucocorticoids readily diffuse across cell 

membranes and exert their effects via intracellular receptors known as glucocorticoid receptors 

(GR) (Duma et al., 2006). GR is a cytosolic protein that is expressed in almost all tissues types 

(Hantzis et al., 2002; Oakley et al., 1997). The GR is maintained in the cytoplasm as an inactive 

multi-protein complex, where it is bound to heat shock protein 90. Binding of the ligand to GR 

induces a conformational change that results in the dissociation of the multi-protein complex, 

followed by the translocation of GR into the nucleus. The GR is able to bind to DNA sequences, 

known as glucocorticoid response elements (GREs), where it can either transactivate or transrepress 

the transcription of responsive genes (Beato et al., 1996; Olefsky, 2001). There are different models 

for the molecular mechanisms by which the GR, as homodimers or GR monomer via protein-

protein-interaction with other transcription factors, interact with different types of GREs (Newton, 

2000), but is beyond the scope of this discussion.  

This mechanism of action of the glucocorticoids allows for the regulation of the catabolic responses 

to stress, as well as non-stress related modulation of carbohydrate, protein and lipid metabolism. 

The effects of glucocorticoids on carbohydrate metabolism mostly involve the stimulation of 

gluconeogenesis and glycogen synthesis in the liver, while simultaneously increasing the substrate 

availability to these pathways by stimulation of lipolysis and the release of glycogenic amino acids 

from peripheral tissues. Glucocorticoids stimulate gluconeogenesis in the liver by activating key 

enzymes, such as glucose-6-phosphatase, phosphoenolpyruvate, tyrosine aminotransferase and 

gamma-glutamyltransferase (Barouki et al., 1982; Schmid et al., 1987; Orth et al., 1992; DuBios et 

al., 1995; Park et al., 2007). The availability of substrates for gluconeogenesis is increased by 

various mechanisms after exposure to increased glucocorticoids. Glucose uptake and utilization by 

peripheral tissues is limited by the action of glucocorticoids on glucose transport into the cells (Orth 

et al., 1992). The release of glycogenic amino acids from peripheral tissues is stimulated by 

glucocorticoids (Newton, 2000). The sensitivity of tissues to glucagons is increased by the 

permissive effect of glucocorticoids. The sensitivity to catecholamines in lipolysis (adipose tissue) 

and lactate production (muscle) is also enhanced by glucocorticoids. Lipolysis is therefore acutely 

activated in adipose tissue by glucocorticoids. The free fatty acids from the triacylglycerols provide 

the energy for the production of glucose from glycerol (Newton, 2000; Vander et al., 2004). 

Furthermore, glycogen synthesis in the liver is stimulated by the activation of glycogen synthase 

and the inactivation of glycogen phosphorylase by the action of glucocorticoids (Stalmans and 

Laloux, 1979).  

Stellenbosch University http://scholar.sun.ac.za



 

 18

Glucocorticoids also have a suppressive impact on immune function. Glucocorticoids are 

transported in the blood bound to CBG, as previously mentioned. CBG is a member of the serine 

protease inhibitor superfamily. CBG is cleaved by serine protease elastase, which accumulates at 

sites of inflammation, and thereby promotes the release of glucocorticoids (Pemberton et al., 1988; 

Rescher et al., 2006). Glucocorticoids are thus released at such sites of inflammation where they can 

exert anti-inflammatory effects. The innate immune response is altered by the action of 

glucocorticoids when it prevents the migration of leukocytes from blood circulation into 

extravascular fluids, decrease the number of circulating eosinophils and basophils, while increasing 

the blood counts of neutrophils, red blood cells and platelets (Kaliner, 1985; Reid and Perry, 1991; 

Newton, 2000; Kita et al., 2000). Glucocorticoids down-regulate the synthesis and secretion of pro-

inflammatory cytokines, such as interleukin-6 and interleukin-1β (Angeli et al., 1999).The cytokine 

driven upregulation of some acute phase proteins are also enhanced by the action of glucocorticoids 

(Uhlar and Whitehead, 1999). The acquired immunity response is suppressed by the action of 

glucocorticoids where the number of circulating lymphocytes is decreased. Glucocorticoids also 

inhibit the production of anti-bodies and the activity of helper T-cells and cytotoxic T-cells. 

Glucocorticoids have additional effects apart from energy metabolism and immunity. These include 

an increase in alertness and cognition, alteration in cardiovascular tone, increase in blood pressure, 

increase in respiratory rate and increase in bone resorption (Charmandari, 2005; Vander et al., 

2004). Glucocorticoids inhibit the production and secretion of growth hormone and gonadotropin 

(Manteuffel, 2002; Chrousos et al., 2000), which subsequently inhibits growth and reproduction. An 

example is the disruption of preovulatory events that results in the impairment of follicular 

development (MacFarlane et al., 2000; Breen, 2005). Furthermore, the deposition of glycogen 

stores in the foetus closer to term is essential for neonatal survival (Whittle et al., 2001). The 

glycogen stores serve as energy source to sustain metabolism until the establishment of a suckling. 

In addition glucocorticoids are in part responsible for the onset of parturition (via a glucocorticoid-

prostaglandin feed-forward loop), where increased glucocorticoids are either from maternal origin 

or result from the maturing foetal adrenal gland (Challis and Brooks, 1989; Whittle et al., 2001).  

2.8 Regulation of HPA 

One of the most pronounced features of the HPA axis is its nyctohemeral cycle, characterized by a 

diurnal (pulsatile) and circadian (24 hour rhythm) output (Weitzman et al., 1971). This 

nyctohemeral cycle is controlled by neuronal pacemakers in the PVN of the hypothalamus. This 

neuronal activity under resting conditions is not markedly altered by glucocorticoids. However, the 
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effects of glucocorticoids become apparent once the neurons are activated by neurotransmitter input 

(signals of stress) (Manteuffel, 2002). 

Glucocorticoids exert a negative feedback on the HPA axis by acting on the pituitary, hypothalamus 

and higher levels in the central nervous system. This feedback action of glucocorticoids ensures the 

return of the HPA axis activity to basal levels after stimulation. The hippocampus (part of limbic 

system) and PVN are the two brain centres with the highest density of glucocorticoid and 

mineralocorticoid receptors and are considered to be the main regulators of glucocorticoid feedback 

in the brain (Meyer et al., 1998; Matthews, 1998). Only free corticoids are able to cross the blood-

brain barrier and their concentrations thus determine the strength of the feedback, which ultimately 

inhibits CRH production and release (Manteuffel, 2002). Glucocorticoids also inhibit the production 

and release of ACTH from corticotrophs in the anterior pituitary. In addition, chronically elevated 

glucocorticoid levels can down-regulate the intracellular concentrations of their receptors.  

2.9 Conclusion 

The HPA axis is an important and complex stress-responsive neuroendocrine system. Large 

individual variations in the HPA axis activity have been described that have important 

physiopathological consequences (DeRijk, 2009). Glucocorticoids (cortisol and corticosterone) 

released by the adrenal gland exerts a wide range of effects, including effects on metabolism, 

inflammatory processes and the immune system. In terms of animal production, chronic exposure to 

cortisol (high basal cortisol levels) has negative effects on growth rate and feed efficiency, while it 

increases the fat/lean ratio of carcasses (Mormède et al., 2011). However, cortisol can also have 

beneficial effects. High cortisol in response to stressors can have positive effects on traits related to 

robustness and adaptation. For instance, animals that were able to mount a higher HPA axis 

response showed increased tolerance to heat stress (Nazifi et al., 2003; Michel et al., 2007) or an 

increased resistance to bacteria and parasites (Gross, 1976; Knap, 2009). It is suggested that the 

HPA axis activity should be included in selection criteria to improve robustness together with 

selection for production traits. Intense selection for fibre production and a reduced fibre diameter in 

the South African Angora, for instance, has resulted in hypocortisolism and increased susceptibility 

to cold stress (Van Rensburg, 1971; Engelbrecht et al., 2000; Storbeck et al., 2008a). Intense 

selection for lean tissue growth in French Large White pigs also resulted in reduced cortisol 

production that was associated with decreased piglet survival (Foury et al., 2007; Foury et al., 

2009). Several sources of genetic polymorphism and candidate genes have been described in the 

HPA axis (DeRijk, 2009; Mormède et al., 2011). Individual variation in the production of cortisol 
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by the adrenal gland, bioavailability of hormones as well as receptor and post-receptor mechanisms 

may be targeted during selection. The integration of these sources of genetic variability allows for 

the development of a model for marker-assisted selection to improve animal robustness without the 

negative side effects on production (Mormède et al., 2011). Alternatively, various stress tests, such 

as the arena or isolation test, may be used to identify individuals with superior HPA axis for 

breeding purposes. 

Some agricultural studies have attempted to identify phenotypic traits (such as litter size) that are 

associated with the glucocorticoid release from the adrenal gland (SanCristobal-Gaudy et al., 2001; 

Foury et al., 2007), but these traits are different among species and breeds. Some of these 

differences may be attributed to the inter- and intra-species differences in glucocorticoid production 

within the adrenal gland. As mentioned earlier, the main glucocorticoid produced in the adrenal 

gland is cortisol for most mammalian species, while corticosterone is the main glucocorticoid in 

birds and laboratory rodents. The pathway involved in the production of these glucocorticoids, 

namely adrenal steroidogenesis, will be discussed in the next chapter, with specific reference to the 

production of cortisol in the sheep adrenal gland. 
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CHAPTER 3 

Adrenal Steroidogenesis 

3.1 Introduction 

In mammals, all steroid hormones are derived from cholesterol as a common precursor. The 

enzymes that facilitate the synthesis of steroid hormones are expressed in specialized cells of the 

adrenal gland, gonads and placenta during pregnancy. These cells are unable to store steroids and 

the regulation of steroid hormone availability therefore depends heavily on the activity of these 

steroidogenic enzymes and the availability of their substrates. The steroidogenic enzymes expressed 

in the adrenal cortex allows for the production of three classes of steroid hormones, namely 

glucocorticoids (cortisol and corticosterone), mineralocorticoids (aldosterone) and androgens 

(dehydroepiandrosterone and androstenedione). The regulation of glucocorticoid hormone 

production by the HPA axis and its physiological effects to counter stress were discussed in the 

previous chapter. The production of the mineralocorticoid, aldosterone, is mainly regulated by the 

angiotensin II pathway to maintain electrolyte concentrations in the extracellular fluids. Aldosterone 

stimulates the reabsorption of sodium from urine, saliva, gastric juices and sweat (Cho et al., 1998; 

Kim et al., 1998; Palmer, 2001). The adrenal androgens, dehydroepiandrosterone (DHEA) and 

androstenedione, serve as precursors of other reproductive steroid hormones, such as testosterone 

and estradiol, and are involved in sexual differentiation and protein anabolism (Miller and Auchus, 

2011). 

Furthermore, the adrenomedullary cells produce epinephrine and norepinephrine under the control 

of the sympathetic nervous system. The adrenal gland is central to various essential processes, 

namely electrolyte homeostasis, reproduction and stress responses mediated by both the HPA axis 

(involved in carbohydrate metabolism, lipid metabolism and immune responses) and the 

sympathetic nervous system (fight-or-flight responses). 

3.2 Adrenal gland morphology 

3.2.1 Anatomy and histology 

Adrenal glands are present for most mammals, where one adrenal gland is located at the cranial end 

of each kidney (Vander et al., 2004). The adrenal gland consists of medullary cells that are 
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enveloped by cortical cells and the whole gland is encapsulated by a thin layer of connective tissue, 

as seen in Figure 3.1A. The primarily steroid-producing cortical cells and catecholamine-producing 

medullary cells (chromaffin cells) have two distinct embryological origins. The adrenal cortical 

cells originate from mesodermally derived foetal adrenal cells of the adrenal primordium, which 

forms from the condensation of celomic epithelium at the cranial end of the kidney during 

embryogenesis (Ehrhart-Bornstein et al., 1998). The cortical cells generally have a prolific system 

of smooth endoplasmic reticulum and numerous mitochondria of variable shape with 

tubulovesicular cristae. In Figure 3.2 a micrograph of a typical adrenocortical cell depicts the 

intracellular organization of the organelles. 

The adrenal cortex of most mammals consists of three morphologically different zones, as seen in 

Figure 3.1B. The different steroidogenic enzymes that are expressed in the cells of each zone will 

ultimately determine which steroid metabolites will be released by these zones. The three zones of 

the adrenal cortex, from the outer to inner zones, are the zona glomerulosa, zona fasciculata and 

zona reticularis (Ehrhart-Bornstein et al., 1998; Young et al., 2006). The zona glomerulosa is the 

outermost region of the adrenal cortex and makes up 15 % of the cortical cells (Ganong, 1995). This 

region consists of parenchymatous cells that are arranged in irregular small clusters that are 

separated by delicate trabeculae containing capillaries. Aldosterone is synthesised and secreted in 

this region (Hardy, 1981; Young et al., 2006). The glomerulosa tissue is capable of producing new 

Figure 3.1. Cross-section of a human adrenal gland. A: The division between the medulla (M) and cortex (C) can be 
seen clearly in this case, as well as the surrounding capsule and central medullary vein (V). B: At higher magnification, 
the distinction between the three histological zones is observed, namely the zona glomerulosa (G), zona fasciculata (F), 
and the zona reticularis (R). More often the borders of the zones are less regular and more difficult to recognize than in 
this cross-section. 
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cortical cells and able to regenerate the other two zones if they are removed (Teebken and 

Scheumann, 2000). The second region, the zona fasciculata, contains larger cells that are polyhedral 

and arranged in radial cords (Hardy, 1981; Young et al., 2006). These cells make up 50 % of 

cortical cells and are usually packed with lipid droplets (Ganong, 1995). The steroid metabolites 

produced in this region are mostly the glucocorticoids, cortisol and corticosterone, with trace 

amounts of DHEA (Ehrhart-Bornstein et al., 1998). The cells of the third region, the zona 

reticularis, are loosely arranged in a network of branching cords and clusters that are separated by 

numerous capillaries (Young et al., 2006). These cells comprise 7 % of cortical cells and mostly 

produce the androgens, DHEA and androstenedione, with trace amounts of glucocorticoids 

(Ganong, 1995; Ehrhart-Bornstein et al., 1998). This zone only starts to develop slowly over the 

years after birth and in humans it becomes active in producing androgens at the age of 6 to 8 years 

in the event called “adrenarche” (Miller, 2009). 

The adrenal gland generally consists of 72 % cortical cells and 28 % medullary cells, however, their 

distribution is not as clear-cut as a simple medulla enveloped by cortical cells (Ganong, 1995; 

Ehrhart-Bornstein et al., 1998). The medullary cells may radiate into the cortex or form islets, and 

the same can be observed with cortical cells within the medulla. This distribution varies across 

species and allows for extensive contact zones for paracrine interaction (Bornstein et al., 1991; 

Ehrhart-Bornstein et al., 1998). 

Figure 3.2. Micrograph of a steroid secreting adrenocortical cell. The steroid cell is intimately associated with the 
capillary (Cap) endothelium via microvillar channels. Numerous lipid droplets (L), which contain cholesterol esters, 
and mitochondria with variable shape are located in the abundant cytoplasm. A Golgi apparatus (G) can be seen 
adjacent to the nucleus and the cell is characterised by one or more prominent nucleoli (Nu) in the nucleus. 
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The adrenomedullary chromaffin cells originate from the neural crest precursor cells that migrate 

into the embryonic adrenal gland to differentiate under the control of adrenocortical cells (Ehrhart-

Bornstein et al., 1998). Chromaffin cells are generally characterized by their dense-cored 

catecholamine-containing vesicles. The main secretory products of chromaffin cells are the 

catecholamines, epinephrine and norepinephrine under sympathetic nervous control. However, 

various neurotransmitters, neuropeptides and proteins can also be contained in the chromaffin 

vesicles and released together with the catecholamines (Winkler et al., 1986). 

3.2.2 Blood supply to the adrenal gland 

The adrenal gland receives an abundant blood supply relative to its size (Young et al., 2006). It 

receives blood from the superior, middle and inferior suprarenal arteries that gathers in a plexus 

around the adrenal gland, just below the capsule. From this subcapsular arteriolar plexus, long and 

short cortical arteries supply blood to the medulla and cortex, respectively. The long cortical arteries 

form a network of capillaries that surrounds the medullary cells, before draining into the central 

medullary vein. The short cortical arteries supply blood to the adrenal cortex in an extensive 

network of thin-walled capillary sinusoids that extend through the zona fasciculata. These sinusoids 

end in a plexus in the zona reticularis, before collecting in venules that drain into the central 

medullary vein. The blood flow from these venules is regulated by smooth muscle contractions of 

the central medullary vein and subsequently serves as a regulatory mechanism of cortical blood 

flow (Ehrhart-Bornstein et al., 1998; Young et al., 2006). 

3.3 Steroid hormone biosynthesis 

3.3.1 Source of cholesterol 

Cholesterol is the common precursor to active steroid hormones. All steroid hormone metabolites 

thus share the 4-ring cyclopentanophenanthrene structure, which can be observed in the structure of 

cholesterol in Figure 3.3. The supply, transport and storage of cholesterol is summarised 

diagrammatically in Figure 3.4. The majority of cholesterol supply to steroidogenesis originates 

from low-density lipoproteins (LDLs) in the plasma, derived from dietary cholesterol (Gwynne and 

Strauss, 1982), though this varies by species. Access to these lipoproteins is uncomplicated by the 

high degree to which adrenal tissue is vascularised (Jefcoate, 2002). Adrenal cells acquire 

circulating LDLs by LDL-receptor mediated endocytosis (Brown et al., 1979). These cholesterol 
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esters are subsequently hydrolysed within the endosome by lyposomal acid lipase to release 

cholesterol (Liu et al., 2000).  

In rodents the majority of cholesterol supply is obtained from high-density lipoproteins (HDLs) via 

scavenger receptor B1 (SRB1) in a two-step process (von Eckardstein et al., 2001). The HDLs first 

binds to the extracellular domain of SRB1, after which it is transferred to the plasma membrane. 

This action of SRB1 therefore alters the lipid composition of the cell membrane and increases the 

membrane fluidity (Connelly and Williams, 2004). This process takes place in specialized 

compartments of the plasma membrane, namely microvillar channels, of which the formation is 

regulated by ACTH and requires the expression of SRB1 (Connelly, 2009). The HDL-cholesterol 

esters are metabolised extrasomally (Sparrow and Pittman, 1990) by hormone-sensitive lipase 

(HSL) without the uptake and degradation of the entire HDL particle (von Eckardstein et al., 2001; 

Connelly and Williams, 2004; Kraemer et al., 2007). The cholesterol esters can be directed towards 

lipid droplets for storage, or can be converted to free cholesterol for utilization in steroidogenesis by 

HSL (Connelly, 2009; Miller and Auchus, 2011). 

Furthermore the adrenal cells are capable of synthesising cholesterol de novo from acetate in the 

endoplasmic reticulum (Mason and Rainey, 1987). Cellular cholesterol, irrespective of its origin, 

can be esterified with fatty acids in the endoplasmic reticulum, where cholesterol esters accumulate 

Figure 3.3. The structure of cholesterol that illustrates the cycloperhydropentanophenanthrene structure common to all 
steroid hormones. The carbon atoms (C) are numbered. Substituents and hydrogens are labelled according to their 
position behind (α) or in front (β) of the ring planar. Steroids are classified as “∆5” if there is a double bond between C-
5 and C-6, while steroids are classified as “∆4” if there is a double bond between C-4 and C-5 (like most biologically 
active steroids). Adapted from Payne and Hales (2004). 
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and bud off as lipid droplets. This esterification of cholesterol is catalysed by acyl-coenzyme A: 

cholesterol acyltransferase (ACAT) (Miller and Auchus, 2011). Cholesterol esters from lipid 

droplets are accessed and hydrolysed by cholesterol ester hydrolase and neutral cholesterol ester 

hydrolase (HSL), but the relative contributions of these two enzymes are not known (Kraemer, 

2007). 

The intracellular fate of cholesterol is largely regulated by sterol response element binding proteins 

(SREBPs) (Horton et al., 2002). These proteins belong to a group of transcription factors that 

regulate genes involved in the biosynthesis of cholesterol and fatty acids. The rate-limiting enzyme 

in cholesterol synthesis, known as 3-hydroxy-3-methylglutaryl co-enzyme A reductase, is activated 

by ACTH, while it is suppressed by adequate LDL concentrations. Cellular cholesterol is increased 

by the action of ACTH (within 3 minutes after ACTH treatment), where it also stimulates HSL, 

LDL uptake, transcription of LDL and SRB1 receptors, while it inhibits ACAT (Miller and Auchus, 

2011). 

Cellular cholesterol is virtually insoluble in aqueous solutions and is therefore transported through 

the cytoplasm by binding to proteins. Once cholesterol reaches the outer mitochondrial membrane, 

it is transported across to the inner mitochondrial membrane by the steroid acute regulatory protein 

(StAR). Ovine StAR has been cloned and identified (Juengel et al., 1995; Hogg et al., 2011). Once 

Figure 3.4. Schematic summary of the cholesterol economy in adrenocortical cells. LDL: low-density lipoprotein; 
SRB1: scavenger receptor B1; ACAT: acyl-coenzyme A: cholesterol acyltransferase; HSL: hormone-sensitive lipase; 
OMM: outer mitochondrial membrane; IMM: inner mitochondrial membrane; StAR: steroid acute regulatory protein; 
StarD4: StAR-related lipid transfer domain 4; P450scc: cytochrome P450 side chain cleavage. Reproduced from Miller 
and Auchus (2011) (© WL Miller). 
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cholesterol reaches the inner mitochondrial membrane, its conversion to pregnenolone is facilitated 

by cytochrome P450 cholesterol side-chain cleavage (CYP11A1). This is the first rate-limiting step 

in steroidogenesis and its regulation by multiple mechanisms makes it a finely tuned quantitative 

regulating step for steroidogenesis in terms of supplying pregnenolone to steroidogenesis. The type 

of steroid to be produced (qualitative regulation) is determined by the mechanism of the remaining 

steroidogenic enzymes and their cofactors (Miller and Auchus, 2011). 

3.3.2 Overview of adrenal steroidogenesis pathway 

Reactions that facilitate steroidogenesis are not confined to the adrenal gland, but also occur in 

other tissues such as the placenta, testes and ovaries. It is therefore a process that is not gland-

specific, but is rather repeated in different glands by cell-type-specific expression of steroidogenic 

enzymes (Miller and Auchus, 2011). These steroidogenic enzymes belong to one of two major 

classes of proteins, known as the heme-containing cytochrome P450 proteins and the 

hydroxysteroid dehydrogenases. However, many of these enzymes, and the reactions they catalyse, 

are beyond the scope of this discussion and focus will be placed on the enzymes involved in sheep 

adrenal steroidogenesis only. A summary of the enzymes, the reactions they catalyse and the 

different tissues in which they are expressed, is depicted in Table 3.1. 

The adrenal steroidogenesis pathway is summarized in Figure 3.5, and includes the structures of the 

steroids and expression of steroidogenic enzymes in the adrenal gland. As mentioned earlier, 

cholesterol is converted to pregnenolone by CYP11A1 in the mitochondria. Hereafter, 

pregnenolone moves to the endoplasmic reticulum, where it serves as substrate for either 

cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17) or 3β-hydroxysteroid dehydrogenase/∆5 

→ ∆4 isomerase (3βHSD). Pregnenolone is hydroxylated at C-17 by CYP17 to yield 17-

hydropregnenolone, which in turn acts as yet another substrate for CYP17. In this step, the bond-

cleavage between C-17 and C-20 of 17-hydroxypregnenolone results in the formation of DHEA. 

The C-3 dehydrogenation of the ∆5 steroids, namely pregnenolone, 17-hydroxypregnenolone and 

DHEA, by 3βHSD converts these metabolites to their ∆4 isoforms, namely progesterone, 17-

hydroxyprogesterone and androstenedione, respectively. Furthermore, CYP17 also mediates the 

hydroxylation of progesterone at C-17 to yield 17-hydroxyprogesterone, as well as the bond-

cleavage between C-17 and C-20 of 17-hydroxyprogesterone to yield androstenedione. In some 

species such as the human, baboon and Angora goat, CYP17 has been reported to hydroxylate C-16 
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of progesterone, but not pregnenolone (Storbeck et al., 2008b). Progesterone and 17-

hydroxyprogesterone then acts as substrates for cytochrome P450 21-hydroxylase (CYP21), which 

 hydroxylates these steroid metabolites at C-21 to respectively yield deoxycorticosterone and 11-

deoxycortisol. A single enzyme, namely cytochrome P450 11β-hydroxylase (CYP11B), mediates 

the 11-hydroxylation of 11-deoxycortisol to cortisol in sheep, as well as all three steps required for 

the synthesis of aldosterone from deoxycorticosterone, namely the 11-hydroxylase, 18-hydroxylase 

and 18-methyl oxidase activities (Boon et al., 1997). In humans, these three steps are mediated by 

more than one enzyme (Miller and Auchus, 2011). The CYP11B enzyme is located in the 

mitochondrial membrane of all three adrenal zones. Kinetic studies have shown that CYP11B binds 

Table 3.1: Summary of enzymes involved in adrenal steroidogenesis, their tissue-specific expression, subcellular 
location and reactions catalysed. 

Enzyme Tissues-specific expression 

(subcellular location) 

Substrate Product 

CYP11A1 Adrenal cortex, ovary, testis, 
placenta 

(Mitochondria) 

 

Cholesterol Pregnenolone 

CYP17 Adrenal cortex (zona 
fasciculata & zona reticularis), 
Leydig cells, ovary (theca 
cells) 

(Endoplasmic reticulum) 

Pregnenolone 

17-
hydroxypregnenolone 

Progesterone 

Progesterone 

17-hydroxyprogesterone 

17-
hydroxypregnenolone 

Dehydroepiandrosterone 

17-hydroxyprogesterone 

16-hydroxyprogesterone 

Androstenedione 

 

3βHSD Adrenal cortex, Leydig cells, 
ovary 

(Mitochondria & endoplasmic 

reticulum) 

Pregnenolone 

17-
hydroxypregnenolone 

Dehydroepiandrosterone 

Progesterone 

17-hydroxyprogesterone 

Androstenedione 

 

 

CYP21 Adrenal cortex 

(Endoplasmic reticulum) 

Progesterone 

17-hydroxyprogesterone 

Deoxycorticosterone 

11-deoxycortisol 

 

CYP11B Adrenal cortex   

(Mitochondria) 

Deoxycortisol 

Deoxycorticosterone 

18-
hydroxycorticosterone 

Cortisol 

18-
hydroxycorticosterone 

Aldosterone 
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preferentially to deoxycorticosterone compared to corticosterone and 18-hydroxycorticosterone, and 

that these two latter intermediates are not released from the active site of the enzyme (Boon et al., 

1997; Imai et al, 1998). Although CYP11B is expressed in all three zones of the adrenal cortex in 

sheep, cattle and pig species, the synthesis of aldosterone is only observed in the zona glomerulosa 

and the reason remains unknown (Boon et al., 1997; Lisurek and Bernhardt, 2004). 

3.4 Importance of 11βHSD isoforms in glucocorticoid metabolism 

An additional step that does not occur in the adrenal gland, but plays an important role in the 

metabolism of corticosterone and cortisol, is mediated by the isoforms of 11β-hydroxysteroid 

Figure 3.5. Schematic representation of adrenal steroidogenesis. Cholesterol is converted to pregnenolone, which may 
ultimately be converted to androgens (dehydroepiandrosterone or androstenedione), glucocorticoids (cortisol and 
corticosterone) or mineralocorticoids (aldosterone). Furthermore, the glucocorticoids may be converted to their inactive 
11-oxo-derivatives in other tissues, such as adipose tissue. The steroidogenic enzymes involved are a: cytochrome P450 
side chain cleavage; b: cytochrome P450 17α-hydroxylase/17,20-lyase; c: 3β-hydroxysteroid dehydrogenase; d: 
cytochrome P450 21-hydroxylase; e: cytochrome P450 11β-hydroxylase; and f: 11β- hydroxysteroid dehydrogenase 
types 1 and 2. Reactions mediated within the adrenal gland are depicted by black arrows, while grey arrows indicate 
reactions that are mediated in other tissues.  
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dehydrogenase (11βHSD). These isoforms of 11βHSD mediate the interconversion between the 

active hormones, cortisol and corticosterone, and their inactive 11-oxo-derivatives, known as 

cortisone and 11-dehydrocorticosterone, respectively. Sheep 11βHSD types 1 (11βHSD1) and 2 

(11βHSD) have been cloned and identified (Campbell and Yang, 1996; Simmons et al., 2010).  

11βHSD1 is expressed in numerous tissues that are glucocorticoid responsive (e.g. pituitary gland, 

brain, lung, bone and eye), but it is most abundant in the adipose tissues and the liver. 11βHSD1 

predominantly functions as an oxoreductase to convert cortisone (or 11-dehydrocorticosterone) to 

cortisol (or corticosterone) using NADPH as cofactor, but also mediates the oxidation of cortisol (or 

corticosterone) to cortisone (or 11-dehydrocorticosterone) using NADP+ as cofactor. The 

interconversion is dependent on the availability of the cofactor, but can only function with high 

concentrations (micromolar) of glucocorticoids (Miller and Auchus, 2011; Quinkler and Stewart, 

2003).  

The other isoform, 11βHSD2, is predominantly found in target tissues of mineralocorticoids, such 

as the kidney, brain, colon, testis and placenta (Campbell and Yang, 1996). This isoform can only 

mediate the oxidation of cortisol (or corticosterone) to cortisone (or 11-dehydrocorticosterone) with 

NAD+ as cofactor and functions with low concentrations of steroid (nanomolar). In these tissues 

11βHSD2 “defends” the mineralocorticoid receptor from excess glucocorticoids (able to bind to this 

receptor) (Miller and Auchus, 2011; Quinkler and Stewart, 2003). Furthermore, the two isoforms 

play an important role during pregnancy in the regulation of active glucocorticoid concentrations 

(Miller and Auchus, 2011). 

3.5 Regulation of adrenal steroidogenesis 

The regulation of adrenal steroidogenesis is more complex than the conventional view that the 

circulating hormones, ACTH and angiotensin II, regulate steroid hormone secretion from the 

adrenocortical cells. Intraadrenal mechanisms are also in place, which influence the response of 

adrenocortical cells to ACTH stimulation. This study is primarily concerned with the HPA axis and 

will therefore place emphasis on the acute response of the adrenal to ACTH stimulation that 

ultimately results in the release of glucocorticoids, while briefly discussing intraadrenal 

mechanisms that influence this response.  

The distinction between acute and chronic responses is made throughout the discussion, since 

ACTH stimulation regulates adrenal steroidogenesis at three levels (Ewbank, 1985; Miller and 
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Auchus, 2011). First, the acute response occurs within minutes and act mainly via StAR to increase 

cholesterol availability to the first committing step in steroidogenesis. In addition, blood flow to the 

adrenal gland is increased, CYP17 residues are phosphorylated (decrease 17,20-lyase activity 

relative to 17α-hydroxylation activity) and some cytoskeletal proteins are activated (facilitate 

interorganelle substrate delivery). Secondly, ACTH acts over hours to days via cAMP, while 

angiotensin II act via the calcium/calmodulin pathway, to increase the transcription of steroidogenic 

enzymes and their cofactors. Thirdly, the long-term exposure to ACTH over weeks to months 

promotes adrenal growth that results in adrenal cell hypertrophy and hyperplasia. This process is 

facilitated by intraadrenal interactions between adrenocortical cells, adrenomedullary cells, nerve 

fibres and immune cells via their secretory products (e.g. cytokines, growth factors and 

neurotransmitters). 

3.5.1 Acute and chronic intracellular responses to ACTH 

Steroidogenic cells can only store cholesterol, but not steroid hormones or their intermediary 

metabolites. The quantitative output of steroid hormones is therefore primarily controlled by the 

availability of cholesterol (and pregnenolone) to the enzymes in the steroidogenesis pathway (Miller 

and Auchus, 2011). Most of the acute regulating factors respond to ACTH stimulation in a way that 

increases the delivery of cholesterol to the inner mitochondrial membrane for its conversion to 

pregnenolone by CYP11A1. The transport of cholesterol from the outer to inner mitochondrial 

membrane by StAR is considered to be the main regulator of the acute ACTH response (Miller and 

Auchus, 2011). However, the exclusive regulation of cholesterol availability in the acute response 

would result in a general increase of all the steroid hormones and it is well-known that ACTH 

stimulation specifically increases glucocorticoid output in adrenocortical cells. Therefore, in the 

acute response, the basal expression of CYP11A1, CYP17, CYP21 and CYP11B in the zona 

fasciculata needs to be in favour of glucocorticoid production, and/or other non-transcriptional 

regulating factors must be involved in eliciting a glucocorticoid specific response. For instance the 

cytoskeleton (Li et al., 2010) and serine/threonine phosphorylation of CYP17 (Kempna et al., 2010) 

has been implicated in the non-transcriptional regulation of a glucocorticoid-specific response to 

ACTH. The regulation of cholesterol availability and non-transcriptional regulators of a 

glucocorticoid-specific response will be discussed in the following sections.  

Long-term ACTH stimulation will ultimately lead to an increase in steroidogenic enzyme 

expression (Payne and Hales, 2004). Various mechanisms are in place for the expressional 
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upregulation of these enzymes, but these mechanisms are not the same for each steroidogenic 

enzyme. The expressional control of CYP17 will be discussed as an example of the chronic 

response in Chapter 4. The expressional upregulation in response to ACTH stimulation is mostly 

mediated by activated protein kinases – such as ribosomal phosphorylation – or by cAMP that can 

act directly via the cAMP response element (CRE)/CRE binding protein (CREB) system (Payne 

and Hales, 2004).  

As mentioned earlier, the chronic response occurs hours to days after ACTH stimulation. Numerous 

studies have demonstrated the time-dependent increase in expression of steroidogenic enzymes 

hours after ACTH or cAMP stimulation. For example, Kempna et al. (2010) observed an increase in 

CYP17 mRNA in H295R cells twenty-four hours after cAMP stimulation, but no significant change 

within the first three hours. Generally the increases in mRNA expression is measured 24 hours after 

adding stimulation or inhibition agents to the experimental cells (Payne and Hales, 2004; Sirianni et 

al., 2005; Xing et al., 2011; Miller and Auchus, 2011). 

The expressional regulation of steroidogenic enzymes by ACTH is also important for increases in 

cortisol that is required for the onset of parturition. In sheep it is well known that the cortisol 

concentrations increase concomitantly with an increase in ACTH in the last 10 to 15 days of 

gestation (Challis and Brooks, 1989). It has been demonstrated that the expression of CYP11A1, 

CYP17 and CYP21 is increased 2 to 3-fold in the foetal adrenal and is essential for the increase in 

adrenal steroidogenesis that precedes parturition (Phillips et al., 1994; McMillen et al., 1995). From 

the discussion it is clear that chronic and acute ACTH stimulation has various effects on 

steroidogenesis that will be discussed in the following sections. 

3.5.2 Regulation of StAR and cholesterol availability 

The intracellular concentration of cholesterol in adrenocortical cells is increased within three 

minutes of ACTH stimulation and peaks after 10 to 15 minutes (Young et al., 2006). ACTH 

increases the uptake of cholesterol esters from circulating lipoproteins (by increasing transcription 

of LDL receptors and SRB1 for microvillar channel formation) and increase cholesterol synthesis 

(by inhibiting ACAT and stimulating the activity of HSL and 3-hydroxy-3-methylglutaryl 

coenzyme A reductase) (Connelly and Williams, 2004; Kraemer, 2007; Miller and Auchus, 2011). 

The intracellular cholesterol is then transported by cytoplasmic StAR-like proteins to the outer 
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mitochondrial membrane, where StAR transports cholesterol from the outer to inner mitochondrial 

membrane for utilization in the steroidogenesis pathway.  

From the observation that the mitochondrial transport of cholesterol is constrained by inhibitors of 

protein synthesis, it was concluded that this process is mediated by a short-lived protein species, 

later identified as StAR (Clark et al., 1994; Stocco and Clark; 1996). StAR is expressed as a 37-kDa 

protein with a mitochondrial leader sequence that directs it towards the mitochondria. This leader 

sequence is cleaved off upon entry into the mitochondrion to yield a 30-kDa intramitochondrial 

protein (Miller and Auchus, 2011). The 37-kDa cytoplasmic precursor has a short half-life, while its 

intramitochondrial 30-kDa form has a longer half-life and is active when associated with the outer 

mitochondrial membrane (Bose et al., 2002). The interaction between StAR and the outer 

mitochondrial membrane involves a conformational change that is required for the binding and 

discharge of cholesterol (Bose et al., 1999; Baker et al., 2005). Each StAR molecule appears to be 

recycled before the inactivation event and can thereby move hundreds of cholesterol molecules 

(Artemenko et al., 2001). The mode of action for StAR is complex and remains incompletely 

understood (Miller and Auchus, 2011).  

ACTH stimulation results in the protein kinase dependent phosphorylation of the 37-kDa 

cytoplasmic precursor to yield a phosphorylated 30-kDa intramitochondrial StAR protein upon 

mitochondrial entry (Jefcoate, 2002). ACTH stimulation also results in the increase in transcription 

of StAR. The conversion of 37-kDa precursor to 30-kDa intramitochondrial protein reaches steady-

state between formation and processing after 5 minutes, which is consistent with the time frame of 

ACTH stimulation of CYP11A1 activity (Tuckey et al., 2002; Jefcoate, 2002). 

3.5.3 Cytoskeletal regulation of steroidogenesis 

It has been suggested that the cytoskeleton is involved in the regulation of steroidogenesis, 

primarily where it may be involved in the spatial placing of mitochondria close to the endoplasmic 

reticulum (Sewer and Li, 2008; Li et al., 2010). This allows for efficient substrate delivery in 

steroidogenesis where the reactions involved are spatially distributed between the mitochondria and 

endoplasmic reticulum. Attention was initially drawn to the involvement of the cytoskeleton in the 

regulation of steroidogenesis when changes in adrenal cell morphology were observed on 

stimulation with ACTH (Voorhees et al., 1984). The stimulation of adrenocortical cells with ACTH 

was reported to result in the “rounding” of adrenal cells within 5 minutes and it correlated with 
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changes in steroidogenic output. This morphological change in adrenal cells was explained by the 

cAMP-dependent dephosphorylation of paxillin, a focal adhesion protein (Han and Rubin, 1996; 

Whitehouse et al., 2002). The organelles are subsequently clustered that brings the mitochondria in 

close proximity to the endoplasmic reticulum, where CYP17, CYP21 and 3βHSD are located and 

cholesterol is available from de novo synthesis. 

Furthermore, various studies on cytoskeletal protein polymerization have shown that 

microfilaments and microtubules are implicated in the regulation of steroidogenesis (Sackett and 

Wolff, 1986; Rainey et al., 1984; Rainey et al., 1985; Denkova et al., 1992; Shiver et al., 1992; Hall 

and Almahbobi, 1997; Lee et al., 2001; Li et al., 2010). Lipid droplets, for example, have been 

shown to move along microtubule tracts in Y1 mouse adrenal cells (Nan et al., 2006). Treatment of 

H295R cells (immortalized human adrenocortical cells) with colchicine or nocodazole promoted 

microtubule depolymerisation, leading to decreased mitochondrial movement and increased DHEA 

production (Li et al., 2010). In contrast, stimulation of H295R cells with paclitaxel increased 

microtubule stabilization, leading to increased mitochondrial movement and cortisol production, but 

decreased DHEA production (Li et al., 2010). The stimulation of mitochondrial movement upon 

ACTH/cAMP stimulation was shown to be dependent on a Rho-protein (RhoA) and its effector 

protein, namely diaphanous-related homolog 1 (DIAPH1). Stimulation with ACTH temporarily 

increased the concentration of ser-188 phosphorylated RhoA (via protein kinase A) and GTP-bound 

RhoA (active form), which promoted interaction with DIAPH1 to ultimately increase mitochondrial 

movement (Li et al., 2010). It was therefore suggested that ACTH regulates cortisol production by 

increasing the interorganelle substrate transfer via dynamic mitochondrial trafficking. 

3.5.4 Serine/threonine phosphorylation of CYP17 

The 17,20-lyase activity of CYP17 may be altered by phosphorylation of its serine and/or threonine 

residues. This mechanism remains poorly understood and will be discussed in greater detail in 

Chapter 4. In summary, the serine and threonine residues of CYP17 can be phosphorylated to alter 

the 17,20-lyase activity relative to the 17α-hydroxylase activity. Kempna et al. (2010) suggested a 

mechanism where serine or threonine residues of CYP17 are selectively phosphorylated by two 

distinct intracellular signalling pathways. Stimulation of H295R cells with cAMP showed no 

alteration in CYP17 expression within the first three hours, but threonine phosphorylation of 

CYP17 resulted in a decrease in 17,20-lyase activity relative to 17α-hydroxylase activity. After 24 

hours of cAMP stimulation, there was an increase in CYP17 expression and a simultaneous increase 
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in 17,20-lyase activity. In contrast, when H295R cells were subjected to starvation conditions 

(serum-deprived growth medium) the serine residues of CYP17 was selectively phosphorylated and 

resulted in an increase in 17,20-lyase activity relative to 17α-hydroxylase activity after 24 hours, 

without an increase in CYP17 expression. These results indicate that the threonine phosphorylation 

of CYP17 may be implicated in the acute response to ACTH/cAMP stimulation to selectively 

increase glucocorticoid production (by the inhibition of 17,20-lyase activity). 

3.5.5 Neuroendocrine and vascular regulation 

The adrenocortical nervous innervation appears to play a fine tuning role in the functions of the 

adrenal cortex (Ehrhart-Bornstein et al., 1998). The adrenal medulla is under sympathetic nervous 

control, while the adrenal cortex receives direct innervation, which is at least partly derived from 

the splanchnic nerve. The integrity of the sympathetic innervation is required for maintaining the 

diurnal steroidogenic output (Ottenweller and Meier, 1982; Dijkstra et al., 1996; Muglia et al., 

1997), while the splanchnic nerve supply was found to enhance the ACTH-stimulated 

glucocorticoid response (Edwards and Jones, 1987). The neurotransmitters from nerves that 

innervate the adrenal cortex have various actions, including the modulation of the actions of 

humoral stimuli on the adrenal cortex, or having direct effects on growth and steroidogenesis 

(Ehrhart-Bornstein et al., 1998). 

The adrenal innervation also plays a role in regulation of vasculature. Splanchnic nerve and ACTH 

stimulation increases the blood flow to the adrenal gland and enhances the access to cholesterol and 

oxygen (cosubstrate of all cytochromes P450 and some cofactors) (Young et al., 2006). The 

regulation of blood flow to the adrenal gland is complex and involves various local and humoral 

mediators (Ehrhart-Bornstein et al., 1998). Nearly each adrenocortical cell is adjacent to an 

endothelial cell, which facilitates the exchange of secretory products (Hinson and Kapas, 1998). 

3.5.6 Interaction between adrenocortical and adrenomedullary cells 

The interdispersion of cortical and medullary cells allows for complex regulatory circuits (Ehrhart-

Bornstein et al., 1998). Further study is still required to elucidate how the secretory products of the 

adrenomedullary cells are involved in the regulation of adrenocortical activity. In summary, various 

adrenomedullary secretions, such as catecholamines and a whole series of neurotransmitters, may 

interact with adrenocortical cells by addition, potentiation or antagonism of their effects. In return 

the secretory products of the adrenal cortex, namely steroid hormones and cytokines, influence the 
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expression of proteins, catecholamines and neuropeptides in adrenomedullary cells. There is 

increasing evidence that the colocalization of medullary and cortical cells is a prerequisite for 

paracrine interactions within the adrenal gland. Gap junctions have been suggested to play a more 

important role in communication between these cell types than previously thought and the number 

of gap junctions increases rapidly with ACTH stimulation. (Colomer et al., 2009; Ehrhart-Bornstein 

et al., 1998)  

Cytokines directly influence adrenocortical function, and are derived from either adrenal cells 

themselves (primarily cortical cells) or from immune cells that regularly infiltrate the adrenal gland. 

The localization (adrenal zona) of cytokine producing cells, as well as the type of cytokine 

produced, varies across species (Ehrhart-Bornstein et al., 1998). Generally cytokines like 

interleukin-1 (IL-1), IL-2 and IL-6 stimulate steroidogenesis (production of glucocorticoids with 

anti-inflammatory actions), while tumor necrosis factor-α (TNFα) and interferon-γ exert a 

regulatory influence on adrenal growth. Both the immune system and endocrine system play a 

crucial role, and interact at different levels, in the adaptive HPA axis response to deviations in 

homeostasis (from stress or disease). It has been suggested that the acute steroidogenic response is 

regulated at the level of the hypothalamus, while long-term regulation is mediated at the level of the 

adrenal by the locally produced cytokines, IL-1, IL-6 and TNFα (Chrousos, 1995). 

Furthermore, adrenal cells produce growth factors that locally mediate the development and 

maintenance of the adrenal cortex (Ehrhart-Bornstein et al., 1998). These growth factors include 

transforming growth factor-β (TGFβ), insulin-like growth factors (IGFs) and β-fibroblast growth 

factors (βFGF), that mediate a variety of stimulatory and inhibitory effects on the growth and 

differentiation of the adrenal. These actions of the growth factors may well be the mechanism by 

which systemic factors, like ACTH, mediate their growth-regulating effects and contribute to their 

acute and chronic effects on steroidogenesis. 

3.5.7 Renin-angiotensin system 

Although the renin-angiotensin system is not necessarily activated in the HPA axis stress response, 

it may influence the adrenocortical response to ACTH and is therefore discussed briefly in this 

section. The renin-angiotensin system plays an important role in the regulation of adrenal 

steroidogenesis along with plasma concentrations of ACTH, Na+ and K+ (Ehrhart-Bronstein et al., 

1998). A low Na+ diet will increase both aldosterone and adrenal renin levels. In rats it was shown 
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that a high K+ intake stimulates aldosterone and adrenal renin, while plasma renin activity was 

reduced (Mulrow, 1998). Specific angiotensin receptors are located predominantly in the zona 

glomerulosa and angiotensin II stimulates the production of aldosterone (mineralocorticoid) via the 

phosphatidyl inositol/ITP/intracellular calcium pathway (Ehrhart-Bornstein et al., 1998).  

Bird et al. (1996) observed that stimulation of human adrenocortical cells with angiotensin II 

resulted not only in an increase in aldosterone production, but also in an increase in cortisol 

production. Another study by Bird et al. (1992) showed that angiotensin II stimulation of ovine 

adrenal cells suppressed CYP17 expression and inhibited the cortisol response (fasciculata-type 

function) to ACTH stimulation. Galtier et al. (1996) also showed that the induction of CYP17 by 

ACTH was inhibited by angiotensin II in bovine zona glomerulosa cells.  

3.6 Conclusion 

The adrenal gland is a highly specialized organ that is regulated by various mechanisms in a 

complex manner. From this perspective, large individual differences are expected in cortisol 

production, which further adds to individual variation within the HPA axis. Adrenal steroidogenesis 

entails the conversion of cholesterol to active steroid hormones. The quantitative steroidogenic 

output is dependent on the amount of cholesterol available to the first rate-limiting step: the 

conversion of cholesterol to pregnenolone by CYP11A1. The qualitative steroidogenic output is 

dependent on the activity of the other steroidogenic enzymes. CYP17 is the only steroidogenic 

enzyme that redirects steroid hormone synthesis away from aldosterone synthesis, towards cortisol 

and DHEA synthesis. The activity and regulation of CYP17 is therefore important in determining 

the qualitative steroidogenic output. The characteristics and regulation of this enzyme will be 

discussed in the following chapter. 
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CHAPTER 4 

Cytochrome P450 17α-hydroxylase/17,20-lyase 

4.1 Introduction 

Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17) is a microsomal enzyme of the P450 

super-family that is predominantly expressed in the adrenal gland and gonads where it mediates two 

types of reactions, namely 17α-hydroxylase and 17,20-lyase reactions. Originally these activities 

were thought to be mediated by two different enzymes and that the adrenal enzymes were different 

from the gonadal enzymes. This hypothesis was concluded from clinical observations that serum 

cortisol concentrations (reflecting 17α-hydroxylase activity) remained constant throughout life, 

whereas serum DHEA concentrations (reflecting 17,20-lyase activity) increased with age. The 

abrupt increase in serum DHEA at ages eight to ten years in humans, compared to low serum 

DHEA concentrations in early childhood, suggested that the 17,20-lyase activity was dissociated 

from the 17α-hydroxylase activity (Apter et al., 1979; Orentreich et al., 1984). This hypothesis 

supported the observation that some patients appeared to lack 17,20-lyase activity while the 17α-

hydroxylase activity was normal (Zachmann et al., 1972). However, in 1981 and 1984 Nakajin et al. 

reported that one protein, isolated from pig testis, was responsible for both 17α-hydroxylase and 

17,20-lyase activities (Nakajin et al., 1981a, 1981b, 1984). These reports were received with 

scepticism and the controversial hypothesis that one enzyme mediates both reactions was only 

accepted in 1986 when cDNA of bovine CYP17 was cloned and expressed in COS-1 cells. Both 

17α-hydroxylase and 17,20-lyase activities were observed in cells transfected with vectors 

expressing the CYP17 cDNA, proving that CYP17 mediates both reactions (Zuber et al., 1986). 

Furthermore it was shown that the hypothesis of two tissue-specific isoforms was incorrect and that 

human CYP17 is encoded by a single gene on chromosome 10q24.3, which is expressed in both the 

adrenal gland and gonads (Matteson et al., 1986; Chung et al., 1987; Fan et al., 1992). The CYP17 

gene has also been found to be structurally related to the CYP21 gene (Picardo-Leonard and Miller, 

1987; Miller and Auchus, 2011). 

The importance of CYP17 in steroidogenesis is clear when considering its location at four branch 

points in the pathway, where it competes with 3βHSD and CYP21 for substrates (Figure 3.5). 

CYP17 is the only enzyme that redirects steroidogenesis away from mineralocorticoid (aldosterone) 

synthesis, towards glucocorticoid (cortisol) and androgen (DHEA) synthesis. The activity of CYP17 
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is regulated in several ways: 1) abundance of CYP17 by means of transcriptional control; 2) 

abundance of redox-partner; 3) abundance of cytochrome b5; and 4) by serine/threonine 

phosphorylation of CYP17. The mechanism of action of CYP17 and its interaction with its 

cofactors thus plays a central role in the qualitative regulation of the steroidogenic output. 

4.2 Cytochrome P450 enzymes 

Most of the enzymes that mediate steroidogenesis are either cytochrome P450 enzymes or 

hydroxysteroid dehydrogenase (HSD) enzymes. These enzymes are functionally unidirectional and 

as a consequence the flux through steroidogenesis is not directed back to precursor steroids with the 

accumulation of steroid products (Miller and Auchus, 2011). The hydroxysteroid dehydrogenase 

enzymes are mechanistically reversible under certain in vitro conditions, but under normal in vivo 

conditions they mediate only one of either oxidation or reduction reactions (Agarwal and Auchus, 

2005). Conversely, the cytochrome P450 enzymes mediate carbon-carbon bond cleavage reactions 

and hydroxylations that are mechanistically and physiologically irreversible (Hall, 1986).  

Cytochrome P450 enzymes are membrane-bound proteins that belong to a superfamily of heme-

containing proteins. These enzymes consist of approximately 500 amino acids and are found in 

animals, plants, fungi and bacteria (Gonzalez, 1988). The “P450” annotation is derived from 

“pigment 450”, since these enzymes absorb light maximally at 450 nm when the reduced form of 

the enzyme is complexed to carbon monoxide in vitro. The cytochrome P450 enzymes mediate 

hydroxylation and carbon-bond cleavage reactions (Miller and Auchus, 2011). They are 

monooxygenase enzymes that use nicotinamide adenine dinucleotide phosphate (NADPH) as 

electron donor for the reduction of molecular oxygen as follows: 

RH + O2 + NADPH + H+ → ROH + H2O + NADP+ 

In this reaction molecular oxygen is activated by the heme center of a cytochrome P450 enzyme 

that transfers one oxygen atom to the substrate (RH), while the other oxygen atom is reduced to a 

water molecule (Payne and Hales, 2004). The electron transfer from NADPH is mediated by two 

distinct electron transfer systems for cytochrome P450 enzymes that are bound to the mitochondria 

and endoplasmic reticulum. The mitochondrial bound cytochrome P450 enzymes are termed “type 

1” and include the steroidogenic enzymes CYP11A, CYP11B1 and CYP11B2. These enzymes 

receive its electrons from NADPH via two proteins, namely a flavoprotein termed ferrodoxin 

reductase and an iron-sulphur protein termed ferrodoxin. The endoplasmic reticulum bound 
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cytochrome P450 enzymes are termed “type 2” and include the steroidogenic enzymes CYP17, 

CYP21 and CYP19. These enzymes receive its electrons from NADPH via only one protein, 

namely the two flavin containing P450 oxidoreductase (POR) (Miller, 2005). There are six 

cytochrome P450 enzymes in total that are involved in steroidogenesis, where these enzymes have 

multiple substrates and mediate numerous oxidation reactions (Miller and Auchus, 2011). 

4.3 Catalytic activity 

The CYP17 protein consists of 507 amino acids in the rat (Fevold et al., 1989) and mouse 

(Youngblood et al., 1991); 508 amino acids in the human (Chung et al., 1987); and 509 amino acids 

in the goat (Storbeck et al., 2007) and sheep (Swart et al., 2003) with a molecular mass of 

approximately 57 kDa. Three important domains are identified, namely the heme-binding site, 

substrate-binding site and redox-partner binding site. More than 40 mutations in the introns and 

exons of the human CYP17 gene have been identified that result in 17α-hydroxylase/17,20-lyase 

deficiency (Yanase, 1995; Auchus, 2001; Costa-Santos et al., 2004a,b). The disease is generally 

characterized by the presence of homozygous or compound heterozygous mutations, but rare 

missense mutations in the redox-partner binding domain results in isolated 17,20-lyase deficiency 

(Geller et al., 1997). 

CYP17 is associated with the endoplasmic reticulum and therefore obtains electrons from NADPH 

via POR. The electrons are transferred to flavinadenine dinucleotide (FAD, the first flavin in the 

POR protein), followed sequentially by transfer to flavinmononucleotide (FMN, the second flavin 

in POR) and the substrate (Miller, 2005; Payne and Hales, 2004). The 17α-hydroxylation and 

17,20-lyase activities of CYP17 are two mixed-function oxidase reactions that each requires one 

molecule of oxygen and one molecule of NADPH. The hydroxylation and side chain cleavage 

reactions are both catalysed in a common active site and do not follow sequentially on one another, 

since it is a two-step process with the release of hydroxylated intermediate (Auchus and Miller, 

1999; Soucy and Luu-The, 2000). However, Yamazaki et al. (1998) have suggested that the 

hydroxylated intermediate is not necessarily released from the active site. The hydroxylation 

mechanism of CYP17 is believed to proceed when the heme center of the cytochrome P450 enzyme 

has formed an iron-oxygen complex upon activation of molecular oxygen (Atkinson and Ingold, 

1993; Auchus and Miller, 1999). The exact 17,20-lyase mechanism of CYP17, however, remains 

unknown, despite considerable study (Miller and Auchus, 2011). The same iron-oxygen complex as 

well as an iron-peroxide complex has both been suggested to be involved in the 17,20-lyase 

mechanism (Lee-Robichaud et al., 1995; Lee-Robichaud et al., 1997; Auchus and Miller, 1999).  
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The 17α-hydroxylase activity towards pregnenolone and progesterone is generally very similar. 

However, the 17,20-lyase activity and its preferential utilization of either 17-hydroxypregnenolone 

(∆5) or 17-hydroxyprogesterone (∆4) vary greatly among species. In the human and baboon the 

17,20-lyase activity towards 17-hydroxypregnenolone can be 50 to 100-fold higher than 17-

hydroxyprogesterone (Auchus and Miller, 1998; Miller and Auchus, 2011). Consequently the 

majority of sex steroids are derived from DHEA rather than from A4. This species-dependent 

variation in 17,20-lyase activity is attributed to the differences among these species in their 

augmentation by the accessory protein, cytochrome b5. The 17,20-lyase activity can be increased 

10-fold by the presence of cytochrome b5, however, the 17,20-lyase activity never quite reaches the 

rate of the 17α-hydroxylation reactions (Miller and Auchus, 2011). CYP17 can also mediate the 

16α-hydroxylation of pregnenolone and progesterone, but does not mediate hepatic 16α-

hydroxylation (Miller and Auchus, 2011; Lachance et al., 1990). Human CYP17 mediates the 16α-

hydroxylation of progesterone but not pregnenolone (Swart et al., 1993), due to the presence of an 

alanine instead of leucine at residue position 105 (Qiao et al., 2010; Miller and Auchus, 2011). The 

16α-hydroxylation of progesterone has also been reported for baboon and goat CYP17 (Storbeck et 

al., 2007; Storbeck et al., 2008b), but has not been investigated for ovine CYP17 to date. 

Interestingly, porcine CYP17 converts approximately 10 % of pregnenolone to its ∆5,16 andiene 

product in the presence of cytochrome b5, which results in the characteristic “boar taint” (Nakajin et 

al., 1985). 

4.4 Interaction of CYP17 with POR 

POR serves as a reductase for numerous non-P450 enzymes, including cytochrome b5 (Enoch and 

Strittmatter, 1979), fatty acid elongase (Ilan et al., 1981), squalene monooxygenase (Ono and 

Bloch, 1975) and heme oxygenase (Wilks et al., 1995). POR is the only electron transfer protein for 

all microsomal cytochrome P450 enzymes, to which two electrons are transferred one by one from 

NADPH (Yamano et al., 1989; Wang et al., 1997). The mechanism of electron transport by POR is 

summarized in Figure 4.1. 

The structure of POR is butterfly-shaped, where the N-terminus tethers the protein to the 

endoplasmic reticulum and joins the two lobes with an α-helical connecting domain. Each lobe 

contains a different flavin, namely FAD and FMN. A disordered “hinge” of 25 residues forms 

between the FMN domain and the connecting domain that allows substantial movement of the FMN 

domain relative to the FAD domain. When NADPH interacts with POR, the donated electron pair 

received by the FAD moiety induces a conformational change that permits the isoalloxazine rings of 
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FAD and FMN to come into close proximity of each other, and the electrons are transferred to the 

FMN moiety (Ellis et al., 2009). A second conformational change is induced that returns POR to its 

original orientation, permitting the FMN domain to bind to the cytochrome P450 enzyme and 

electrons are transferred to its heme moiety. It has been suggested that the “hinge” region also 

accommodates significant reorientation of the FMN domain for docking to the cytochrome P450 

enzyme (Miller, 2005; Auchus et al., 1998). The interaction between POR and the cytochrome P450 

is coordinated by negative charges on the surface of the FMN domain, mostly contains acidic 

residues, and positive charges of the redox-partner binding site of the cytochrome P450 enzyme, 

mostly contains basic residues (Miller and Auchus, 2011). The distance between the FMN moiety 

of POR and the heme group on the opposite side of the cytochrome P450 is too far (18 Å) for the 

electrons to “jump”, and instead the polypeptide is used as conduit (Sevrioukova et al., 1999). In 

humans the interaction between CYP17 and POR is facilitated by the allosteric action of 

cytochrome b5 and the serine phosphorylation of CYP17 (Miller and Auchus, 2011). 

The supply of electrons to microsomal cytochrome P450 enzymes is limited by POR. Indeed it was 

found that the 17,20-lyase activity of CYP17 is increased, relative to the hydroxylase activity, with 

an increase in POR concentrations (Yanagibashi and Hall, 1986; Lin et al., 1993). This effect of 

POR has profound implications for steroidogenesis, since the availability of reducing equivalents is 

a crucial regulating factor for the 17,20-lyase activity of CYP17. For example testicular microsomes 

have 3- to 4-fold higher POR to CYP17 ratios than adrenal microsomes and consequently showed 

an increased 17,20-lyase activity relative to hydroxylase activity (Yanagibashi and Hall, 1986). 

Figure 4.1. Schematic representation of the electron transport from nicotinamide adenine dinucleotide phosphate 
(NADPH) to a microsomal P450 enzyme. This electron transport is facilitated by the interactions with P450 
oxidoreductase (POR) and cytochrome b5 (b5). POR contains two flavins that facilitate the electron transport process, 
namely flavinadenine dinucleotide (FAD) and flavinmononucleotide (FMN). Reproduced from Miller and Auchus (2011) 
(© WL Miller). 
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4.5 Interaction with cytochrome b5 

Cytochrome b5 is a small (12-17 kDa) hemoprotein that may augment the activity of various 

cytochrome P450 enzymes. It may occur as a soluble protein in red blood cells where it is expressed 

without its membrane-anchoring C-terminal, but is membrane-bound in other tissues such as the 

liver (Miller and Auchus, 2011). Cytochrome b5 is expressed in the gonads and adrenal glands, 

where it can interact with CYP17. The expression of cytochrome b5 in the adrenal gland is confined 

to the zona reticularis, although this confinement may vary by species. For this reason, the zona 

reticularis produce mainly androgens (DHEA and androstenedione), since cytochrome b5 augments 

the 17,20-lyase activity of CYP17 that is expressed in this zone. CYP17 is also expressed in the 

zona fasciculata, but the expression of cytochrome b5 is relatively low, and this zone thus mainly 

produces glucocorticoids (cortisol). Neither CYP17 nor cytochrome b5 is expressed in the zona 

glomerulosa. Subsequently this zone is the main site for mineralocorticoid production (aldosterone). 

The mechanism of action for cytochrome b5 was presumed to involve the electron transport of a 

second electron from cytochrome b5 to cytochrome P450 (Bridges et al., 1998). However, the 

reduction potential is unfavourable for electron transfer from cytochrome b5 to the one-electron-

reduced cytochrome P450. Instead it was suggested by Bridges et al. (1998) that cytochrome b5 acts 

via an allosteric mechanism to promote the interaction of POR with CYP17 for efficient electron 

transport (Auchus et al., 1998; Lee-Robichaud et al., 1995) (Figure 4.1). However, further evidence 

is required, since it was only shown that it is not essential for cytochrome b5 to be redox active to 

influence lyase activity (Bridges et al., 1998). Cytochrome b5 thus plays a central role in the 

electron transport from NADPH to CYP17 and is the principal regulator of 17,20-lyase activity 

(Miller and Auchus, 2011). 

Cytochrome b5 consists of two domains, namely a heme-liganding (core 1) domain and a structural 

(core 2) domain. The C-terminal extends from the core 2 domain and forms a helix that anchors 

cytochrome b5 to the membrane (Falzone et al., 1996). This helix of cytochrome b5 is required to 

stimulate the 17,20-lyase activity of CYP17 in humans (Lee-Robichaud et al., 1997). The heme 

extends towards the periphery of cytochrome b5, while the entire surface of cytochrome b5 is 

dominated by residues with a negative charge (Falzone et el., 1996). Key residues with a positive 

charge have been identified in CYP17 that is important for its interaction with cytochrome b5. 

Furthermore E48 and E49 have been identified as two residues that are required for high 17,20-

lyase activity (Naffin-Olivos and Auchus, 2006). The exact molecular details of how cytochrome b5 

augments the interaction between POR and CYP17 are yet to be determined. 
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4.6 CYP17 gene expression and regulation 

The human (Picado-Leonard and Miller, 1987; Kagimoto et al., 1989), rat (Fevold et al., 1989), 

mouse (Youngblood et al., 1991) and pig (Conley et al., 1992; Zhang et al., 1992) CYP17 genes are 

encoded by a single gene that has been mapped to chromosome 10q24.3 in humans (Matteson et al., 

1986; Fan et al., 1992) and chromosome 19 at 46 cM in mice (Youngblood et al., 1991). The 

CYP17 gene is approximately 6 kb in length with 8 exons and the location of intron-exon 

boundaries are highly conserved among species (Youngblood and Payne, 1992). The first 550 base 

pairs in the 5’ upstream region have high homology in these species and include the nonconsensus 

TATA box (Payne and Hales, 2004). A duplication of the CYP17 gene has been reported by 

Storbeck et al. (2008a) in the case of the South African Angora and Boer goats. These breeds 

express two CYP17 isoforms that are encoded by two different CYP17 alleles, and three distinct 

genotypes. This is the result of a duplication of the CYP17 gene. The two CYP17 isoforms showed 

differences in catalytic activity and subsequently there was a difference in cortisol production 

among Angora goats with different CYP17 genotypes. The CYP17 genotypes were found to 

contribute to the vulnerability of the Angora goats to cold stress (Storbeck, et al. 2008). 

Furthermore, bovine CYP17 was previously thought to be the product of a single gene (Bhasker et 

al., 1989), but three paralogous copies of the CYP17A1 gene has been identified in the bovine 

genome, of which two copies might be silenced by epigenetic modification (Vanselow and Fürbass, 

2011). These recent studies (Storbeck et al., 2008; Vanselow and Fürbass, 2011) have shown that 

the genetic architecture of the CYP17 gene, and its regulation, may be more complicated than 

initially considered. In ovine species, two genetic sequences for ovine CYP17 have been 

independently deposited on Genbank, however, their activities and effects on the steroidogenic 

output has not been compared to date (Swart et al., 2003; Storbeck et al., 2008a). 

The expression of CYP17 in the gonads is generally confined to the Leydig cells in the testis and 

theca cells in the ovary. As mentioned previously the expression of CYP17 in adult adrenal cells are 

restricted to the zona reticularis and fasciculata (Miller and Auchus, 2011). In pregnancies at term, 

CYP17 is also expressed in the ovine foetal adrenal cells and placenta (Challis and Brooks, 1989; 

Connor et al., 2009). This expression of CYP17 during gestation plays an important role in the 

production of glucocorticoids, which are required for development of the foetal organs (Liggins, 

1969; Liggins, 1994) and also trigger the parturition cascade (Challis et al., 2000). It is therefore 

anticipated that there are various factors that regulate the expression of CYP17.  
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Chronic exposure to pituitary trophic hormones (ACTH for adrenal cells and LH for thecal and 

Leydig cells) induce the upregulation of CYP17 expression via the cAMP-dependent protein kinase 

A signalling pathway. The protein kinase A activations results in the phosphorylation of various 

transcription factors that will upregulate the transcription of the steroidogenic enzymes (Stocco et 

al., 2005; Manna et al., 2003). In humans, the adrenal expression of CYP17A1 has been found to be 

regulated by numerous transcription factors, including SF1, SP1, SP3, CTF2, CTF5, GATA4 and 

GATA6 (Rodriguez et al., 1997; Lin et al., 2001; Sewer et al., 2002; Jimenez et al., 2003; Flück and 

Miller, 2004; Sewer and Jagarlapudi, 2009). It was also demonstrated the transcription of CYP17A1 

may be regulated by the SREBP family of factors, which are involved in the synthesis of cholesterol 

and other sterols (Ozbay et al., 2006). In the case of CYP17 transcriptional upregulation, but not all 

P450 enzymes involved in steroidogenesis, the cAMP can act directly as activator via the 

CRE/CREB system (Waterman, 1994). The cAMP responsive sequences may differ across species 

and are located at various positions upstream from the CYP17 gene (Waterman and Keeney, 1996; 

Payne and Hales, 2004). Furthermore, it was shown that angiotensin II and TGFβ suppress CYP17 

gene expression in ovine adrenal cells (Ehrhart-Bornstein et al., 1998). 

4.7 Serine/threonine phosphorylation van CYP17 

CYP17 is not only regulated by the availability of electrons from its redox partner and the allosteric 

mechanism of cytochrome b5, but also regulated by serine/threonine phosphorylation. Certain serine 

and threonine residues may be phosphorylated, which consequently increase the 17,20-lyase 

activity (Zhang et al., 1995). The augmentation of the 17,20-lyase activity by serine/threonine 

phosphorylation is independent of cytochrome b5 and is neither additive nor cooperative (Pandey et 

al., 2003; Pandey and Miller, 2005). It was suggested that the serine/threonine phosphorylation 

increase the velocity of the reaction, rather than the affinity of the enzyme for the substrate. It was 

proposed that the negative charge of the phosphorylated residues in CYP17 promotes electrostatic 

interactions of CYP17 with POR (Pandey and Miller, 2005). 

When a protein is activated by phosphorylation, such as CYP17, there is generally equilibrium 

between phosphorylation by a kinase and dephosphorylation by a phosphatase (Virshup, 2000). The 

dephosphorylation of human CYP17 has been shown to involve protein phosphatase 2A (PP2A), 

which in turn is inhibited by phosphoprotein SET (Pandey et al., 2003). The identification of the 

involved kinase(s) has, however, been a more difficult task. Wang et al. (2010) drew attention to the 

contrasting results obtained from in vitro studies and a whole-cell milieu. To date no kinase could 

be identified that is capable of augmenting the 17,20-lyase activity with subsequent phosphorylation 
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of serine and/or threonine residues of CYP17 in vitro. However, the 17,20-lyase activity has been 

shown to be influenced by two intracellular signalling proteins in a whole-cell milieu, namely 

protein kinase A (Zhang et al., 1995; Wang et al., 2010; Kempna et al., 2010) and rho-associated 

coiled-coil containing kinase 1 (ROCK1) (Tee et al., 2008). Differences between in vitro and in vivo 

results have led to conclusions such as the involvement of the ROCK/Rho signalling pathway 

upstream of the relevant kinase that phosphorylated CYP17 (Tee et al., 2008). This conclusion of 

Tee et al. (2008) was based on the observation that ROCK1 increases 17,20-lyase activity in vivo, 

but not in vitro, despite its capability to phosphorylate CYP17 in vitro. It is therefore unknown 

whether ROCK1 truly act upstream of the kinase that phosphorylates CYP17, or whether the 

observations of Tee et al. (2008) resulted from the experimental setup (in vivo vs. in vitro). 

Interestingly, Rho proteins belong to a family of GTPase switch proteins that are involved in the 

transduction of various intracellular and extracellular signals, including vesicular trafficking, 

cytokinesis, cell migration and phagocytosis (Raftopoulou and Hall, 2004; Jaffe and Hall, 2005; 

Hall, 2005; Ridley, 2006). Li et al. (2010) investigated the role of Rho proteins in the regulation of 

steroidogenesis in terms of mitochondrial movement in H295R cells. The researchers observed an 

increase in active Rho proteins upon ACTH/cAMP stimulation, which acted via diaphanous-related 

homolog 1 (DIAPH1) to increase the mitochondrial movement and ultimately increase the cortisol 

production relative to DHEA production. They also observed an increase in mitochondrial 

movement and cortisol production under starvation conditions (cells devoid of serum). They 

proposed that ACTH signalling promotes interorganelle substrate delivery by stimulating the 

microtubule-dependent movement of mitochondria. Considering that the first (CYP11A1: 

cholesterol to pregnenolone) and last step (CYP11B: deoxycortisol to cortisol) in cortisol synthesis 

is occurs in the mitochondrion, while intermediary steps occur in the endoplasmic reticulum, the 

placement of mitochondria in close proximity of the endoplasmic reticulum will therefore aid in 

substrate delivery. 

The mechanism of serine/threonine phosphorylation of CYP17 and the extent of it regulatory role in 

adrenal steroidogenesis remains poorly understood. In the study of Kempna et al. (2010), an 

interesting observation was made that CYP17 was phosphorylated exclusively at either threonine or 

serine residues when H295R cells were stimulated by cAMP or under starvation conditions (cells 

were devoid of serum), respectively. Serine phosphorylation of CYP17 under starvation conditions 

resulted in an increased 17,20-lyase activity. In contrast, the 17,20-lyase activity decreased upon 

threonine phosphorylation during the first three hours of cAMP stimulation. After 24 hours of 
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cAMP stimulation the CYP17 gene expression increased markedly and consequently high levels of 

DHEA were detected. The researchers suggested that different signalling pathways may be involved 

in the differential phosphorylation of CYP17. If the observations from Li et al. (2010) are compared 

to the observations of Kempna et al. (2010), it would seem likely that short (0 – 3 hours) exposure 

to ACTH/cAMP stimulation involves the action of Rho-proteins via protein kinase A to 

phosphorylate CYP17 at threonine residues (via ROCK1) and facilitate mitochondrial movement to 

the endoplasmic reticulum (via DIAPH1), to ultimately increase the cortisol production relative to 

DHEA production. Further research in this field is, however, still required.  

4.8 Physiological importance and CYP17 related disorders 

The proper functioning of CYP17 is essential for the production of glucocorticoids and androgens. 

Various enzymatic defects in CYP17 activity has been reported since the first description of 17α-

hydroxylase/17,20-lyase deficiency in 1966 by Biglieri et al. (Miller and Auchus, 2011). 

Computational modelling of human CYP17 allows for predictions of the effects that mutations may 

have (partial or complete) on one or both of these CYP17 activities (Auchus and Miller, 1999). 

These CYP17 defects are more commonly grouped according to 17α-hydroxylase deficiency, 

isolated 17,20-lyase deficiency and complete CYP17 deficiency, while the clinical manifestations 

are characterized by a deficiency in cortisol, but excessive secretion of precursor steroids. 

A 17α-hydroxylase deficiency results in low cortisol production, overproduction of ACTH and the 

stimulation of steps to increase CYP17 activity. Patients experience mild symptoms of 

glucocorticoid deficiency, since corticosterone, which also displays glucocorticoid activity, is 

overproduced. This situation is thus similar to adrenal steroidogenesis in rats and mice, where 

CYP17 is not normally expressed (Voutilainen et al., 1986; Van Weerden et al., 1992; Pelletier et 

al., 2001). Furthermore 11-deoxycorticosterone is overproduced in the zona reticularis that causes 

sodium retention, hypertension and hypokalemia with suppressed plasma rennin activity and 

suppressed aldosterone production from the zona glomerulosa. Patient treatment with 

glucocorticoids results in the decrease of 11-deoxycorticosterone and increase in aldosterone 

production to normal levels (Scaroni et al., 1986). 

Isolated 17,20-lyase deficiencies are very rare and are likely to result from impaired electron 

transport (Gupta et al., 2001; Geller et al., 1999). Patients have normal 17-hydroxycorticosteroids 

with reduced C19-steroids, which results in genital ambiguity (Geller et al., 1997) and/or failure to 

manifest adrenarche (Van den Akker et al., 2002). 
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Complete CYP17 deficiency is when the 17α-hydroxylase/17,20-lyase activity is absent and both 

adrenal and gonadal sex steroids cannot be synthesised. Consequently glucocorticoid deficiency 

symptoms accompany genital abnormalities (Miller and Auchus, 2011). Females are in general 

phenotypically normal, but do not undergo adrenarche and puberty (Biglieri et al., 1966). In males 

the external genitalia are absent or incompletely developed (New and Suvannakul, 1970). 

Deficiency in 17α-hydroxylase/17,20-lyase is also a form of congenital adrenal hyperplasia, which 

is characterised by reduced or absent cortisol and adrenal androgen production (Patocs et al., 2005). 

Furthermore CYP17 dysfunction has been associated with numerous clinical conditions, including 

rheumatoid arthritis (Huang et al., 1999), endometrial cancer (McKean-Cowdin et al., 2001), 

polycystic ovary syndrome (Qin and Rosenfield, 1998; Strauss, 2003) and prostate cancer (Lunn et 

al., 1999). Interestingly a study of Blair and Mellon (2004) showed that mice, homozygous for the 

CYP17 gene deletion, died by embryonic day 7. This suggests that the steroid products of CYP17 

are essential for embryonic development in this species. 

4.9 Conclusion 

The CYP17 enzyme catalyses two distinct reactions on one single active site. However, its specific 

activities are independently regulated. The 17α-hydroxylase activity is relatively constant and 

regulated by gene expression, while the 17,20-lyase activity varies significantly and depends on the 

amount of cofactors present or by serine/threonine phosphorylation. ACTH/cAMP stimulation 

results in increases of CYP17 expression and serine/threonine phosphorylation to increase the 

glucocorticoid and androgen release from the adrenal gland. Functional expression of CYP17 in the 

adrenal cortex is essential for the production of cortisol. Various mutations in the CYP17 protein 

has been identified and can have mild to serious health implications. Two functional alleles for 

sheep CYP17 have been reported, but it is unknown whether their expressed proteins have different 

catalytic properties. These mutations add to the genetic variation in the functioning of the HPA axis. 

The implications of these mutations for cortisol production in the South African Merino will be 

investigated in the following chapter. 
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CHAPTER 5 

In vitro comparison of the activities of two ovine CYP17 isoforms 

5.1 Introduction 

The preceding chapters provide a comprehensive discussion of the role of CYP17 in adrenal 

steroidogenesis. The aim of the current study was to compare the activities of the expressed proteins 

from the two CYP17 alleles that were identified in the South African Merino population, namely 

WT1 (Genbank accession nr. L40335) and WT2 (Genbank accession nr. AF251388). The two 

nucleotide differences between these genetic sequences were originally thought to be an artefact of 

the polymerase chain reaction (PCR) (Swart et al., 2003), but Storbeck et al. (2008a) confirmed 

these sequences to be two distinct CYP17 alleles (Storbeck et al., 2008a). The subsequent 

differences in the amino acid sequence of the CYP17 isoforms could ultimately result in differences 

in substrate affinity, reaction rate, interactions with POR and cytochrome b5, or may result in no 

difference whatsoever. The catalytic activity of the CYP17 isoforms was therefore compared to 

investigate whether one isoform would produce more precursors of cortisol than the other isoform. 

For the purpose of comparing the interaction between cytochrome b5 and each CYP17 isoform, an 

experimental setup was required where the concentration of cytochrome b5 could be controlled 

relative to the CYP17 expression. Furthermore, since the interaction between cytochrome b5 and 

CYP17 is only possible if these two enzymes are expressed in the same membrane (endoplasmic 

reticulum), a whole cell milieu was suggested. The use of a COS-1 cell (immortalized African 

Green Monkey kidney cells) expression system was therefore proposed in the present study. 

Storbeck et al. (2007) successfully compared the activity of goat CYP17 isoforms, and their 

interactions with cytochrome b5, by co-transfections of cytochrome b5 and goat CYP17 plasmid 

constructs in COS-1 cells. Moreover, Goosen et al. (2010) showed that enzymes are transcribed at a 

similar level for co-transfections in COS-1 cells and that differences observed in steroid metabolism 

is due to catalytic differences, rather than inherent differences in the level of transcription and 

translation. This study provides evidence that it is not necessary to determine the level of enzyme 

expression with techniques such as Western blot analyses, which requires higher concentrations of 

recombinant proteins than the concentrations that are present in COS-1 cells (Goosen et al., 2010). 

The effect of each amino acid difference could subsequently be investigated by establishing mutant 

plasmid constructs of CYP17 with site-directed mutagenesis. The activities of the CYP17 plasmid 
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constructs should also be assessed for all possible substrates of CYP17, namely pregnenolone, 17-

hydroxypregnenolone, progesterone and 17-hydroxyprogesterone. The enzyme activity towards 

these substrates would show if one CYP17 isoform produces more cortisol precursors than the 

other. 

The experimental approach of the present study was to first investigate the frequency distribution of 

the CYP17 genotypes in a South African Merino population. For this purpose the genomic DNA 

from Merinos was subjected to the CYP17 genotyping test that was developed by Storbeck et al. 

(2008a). Secondly, the kinetic constants, Vmax and Km values, were determined for each CYP17 

isoform with pregnenolone and progesterone as substrates. Thirdly, the activities of the CYP17 

isoforms and mutant constructs were compared with time-dependent substrate conversions, by co-

transfections with cytochrome b5 in non-steroidogenic COS-1 cells. For this purpose the present 

study also includes the cloning of ovine cytochrome b5 from liver tissue. 

5.2 Materials and Methods 

5.2.1 CYP17 genotyping with real-time PCR 

Genomic DNA was isolated from blood of South African Merino sheep at the Elsenburg Research 

Farm (Elsenburg, Western Cape, South Africa) with the DNA isolation kit for mammalian blood 

(Roche, Mannheim, Germany). Blood was collected from the jugular vein of 145 adult sheep or 

from the heart chamber of 36 deceased lambs (lamb mortalities within 3 days postpartum of the 

2008 lambing season). Genomic DNA was genotyped using the real-time PCR method developed 

by Storbeck et al. (2008a) for Angora goats, which was also shown to be a suitable CYP17 

genotyping test for Merino sheep (Storbeck et al., 2008a). The primers and hybridisation probes 

(TibMolBio, Berlin, Germany) were the same as previously reported (Storbeck et al., 2008a): 

LCLP, 5’-CCTGAAGGCCATACAAA-3’; LCRP, 5’-GGATACTGTCAGGGTGTG-3’; 

fluorescein-labelled CYP17 sensor probe, 5’-TTCTGAGCAAGGAAATTCTGTTAGA-FL; 

LC640-labelled CYP17 anchor probe, 640-TATTCCCTGCGCTGAAGGTGAGGA-3’. Real-time 

PCR was carried out using a LightCycler® 1.5 instrument. Amplification reactions (20µl) contained 

2 µl LightCycler® FastStart DNA Master HybProbe Master Mix (Roche Applied Science, 

Mannheim, Germany), 3 mM MgCl2, 0.5 µM of each CYP17 primer, 0.2 µM fluorescein-labelled 

CYP17 sensor probe, 0.2 µM LC640-labelled CYP17 anchor probe and 10 to 100 ng genomic DNA. 

Following an initial denaturation at 95°C for 10 min to activate the FastStart Taq DNA polymerase, 

the 35-cycle amplification profile consisted of heating to 95°C with a 8 s hold, cooling to 52°C with 

a 8 s hold and heating to 72°C with a 10 s hold. The transition rate between all steps was 20°C s-1. 
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Data were acquired in single mode during the 52°C phase using LightCycler® software (version 

3.5). Following amplification, melting-curve analysis was performed as follows: denaturation at 

95°C with a 20 s hold, cooling to 40°C with a 20 s hold and heating at 0.2°C s-1 to 85°C with 

continuous data acquisition. The sensor probe had a one nucleotide mismatch with WT1 and two 

nucleotide mismatches with WT2, which enabled genotyping with melting curve analysis as primer-

probes dissociated at 58°C and 54oC, respectively. A no-template control (negative control) was 

included in each assay.  

5.2.2 Cloning of ovine cytochrome b5 

Liver tissue was obtained from Merino sheep at a local abattoir, flash frozen and stored in liquid 

nitrogen. Total RNA was isolated from the liver homogenate using TRI Reagent (Sigma-Aldrich, 

St. Louis, MO, USA) according to the manufacturer’s instructions. The cDNA was prepared from 

the isolated RNA using AMV Reverse Transcriptase and Oligo (dT) primers according to the 

manufacturer’s instructions (Promega, Madison, WI, USA). Ovine cytochrome b5 cDNA was 

amplified using PWO DNA Polymerase (Roche Applied Science, Mannheim, Germany) and 

subjected to sequence analysis. PCR amplification of cDNA consisted of 37 cycles of repeated 

denaturation (40 s at 94oC), annealing (45 s at 52oC), and enzymatic chain extension (1 min at 

72oC). The primers used for amplification were: CYB5TOPO (Sense) 5′-

CACCCTCGCTGAGTTAAGAAATG-3′ and CYB5RP (Antisense) 5′-

CTCCCTGGACCAAAGCAG-3′. The PCR amplicon was cloned into a pcDNA3.2/V5/GW/D-

TOPO® mammalian expression vector according to the manufacturer’s instructions. Plasmid 

constructs were screened by restriction digest analyses with Acs I (Roche Applied Science, 

Mannheim, Germany) and positive clones were subsequently subjected to direct sequence analysis. 

Direct sequence analyses were performed on an ABI Prism 3100 Genetic Analyzer (Applied 

Biosystems, Foster City, California) by the Central Analytical Facility of Stellenbosch University. 

Sequencing results were analysed with BioEdit Sequence Alignment Editor (version 7.0.5.2 © 

1997-2007, T. Hall) software.  

5.2.3 Site-directed mutagenesis 

Site-directed mutagenesis was performed using the Genetailor site-directed mutagenesis kit 

(Invitrogen, Carlsbad, California, USA). The mammalian expression vector containing the WT2 

cDNA insert was used as template. The primers that were used to construct mutant G201S were 

LP210 (5’-TCCCGGCTGCTGCAGAGGTTCTACCTGGAGAT-3’) and RP210 (5’-

GAACCTCTGCAGCAGCCGGGACATGAAGAG-3’); while the primers used to construct mutant 
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N464Y were LP464 (5’-GATGGCATCCTGGAGGTTCTGAGCAAGGAAGT-3’) and RP464 (5’-

CAGAACCTCCAGGATGCCATCATTGACATT-3’). The integrity of the mutant constructs 

G210S and N464Y were confirmed with direct sequence analyses (ABI Prism 3100 Genetic 

Analyzer, Applied Biosystems, Foster City, California). All plasmid constructs consisted of the 

same type of mammalian expression vector (pcDNA3.2/V5/GW/D-TOPO®, Roche Applied 

Science, Mannheim, Germany). 

5.2.4 Enzyme activity assay of ovine CYP17 isoforms in COS-1 cells 

COS-1 cells were cultured at 37ºC and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM), 

containing 4 mM L-glutamine and 25 mM glucose (Sigma-Aldrich, St. Louis, MO, USA), and 

supplemented with 10% foetal calf serum, 1% penicillin-streptomycin (Gibco-Invitrogen, Grand 

Island, NY, USA) and 0.12% NaHCO3. COS-1 cells were seeded 24 hours prior to transfection into 

12-well dishes at a concentration of 1 x 105 cells mL-1. The CYP17 (previously cloned by and 

obtained from Swart et al., 2003, and Storbeck et al., 2008a) and cytochrome b5 plasmid constructs 

were transiently transfected into COS-1 cells, using Mirus TransIT®-LT1 transfection reagent 

(Mirus Bio Corporation, Madison, WI, USA) according to manufacturer’s instructions. All 

transfection experiments were conducted in triplicate. Where the activities of the two CYP17 

isoforms were compared, the same transfection combinations for both CYP17 plasmid constructs 

were done in one experiment. All transfections were performed using a total of 0.5 µg plasmid 

DNA. In co-transfections of CYP17 and cytochrome b5, the total plasmid DNA content was kept 

constant by transfection with 0.25 µg CYP17 vector and 0.25 µg cytochrome b5 or mammalian 

expression vector pCI-neo (Promega, Madison, Wisconsin), containing no insert. Positive control 

transfection reactions for ovine CYP17 and cytochrome b5 were performed using Angora goat 

CYP17 (GenBank accession nr. EF524063) and Angora goat cytochrome b5 (GenBank accession nr. 

EF524066), respectively. Negative control transfection reactions were performed using pCI-neo 

(Promega, Madison, Wisconsin) containing no insert. Enzyme activities were assayed 72 h after 

transfection, using pregnenolone (1 µM), 17-hydroxypregnenolone (0.5 µM) or progesterone (1 

µM) as substrates and 500 µL samples were collected over a 7 hour period for analysis by ultra-

performance liquid chromatography (UPLC). In the determination of kinetic constants, [7-3H]-

pregnenolone or [1,2,6,7-3H]-progesterone (PerkinElmer Life Sciences, Boston, MA, USA) was 

added to the varying substrate concentrations (0.25 to 12 µM for each substrate) and 50 µL samples 

were collected at specific time intervals for analysis by high performance liquid chromatography 

(HPLC).  
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On completion of each enzyme assay, the cells were washed with and collected in 0.1 M phosphate 

buffer, pH 7.4. The cells were subsequently disrupted using a Heat Systems W-10 Sonicator™ 

(Ultrasonics Inc, Plainview, NY, USA) and the protein concentration of the cell lysate was 

determined by the BCA method (Pierce Chemical, Rockford, Illinois) according to the 

manufacturer’s instructions. 

5.2.5 Liquid-liquid extraction of steroid metabolites 

Steroid metabolites were extracted from the culture media by liquid-liquid extraction, using a 10:1 

volume of dichloromethane to culture medium. Samples were vortexed for 20 min and centrifuged 

at 500 x g for 5 min. The water phase was aspirated and the organic phase transferred to a clean 

glass tube. The organic phase was evaporated under nitrogen gas and the steroids were redissolved 

in 100 µL methanol.  

5.2.6 Steroid separation and quantification by HPLC 

Chromatography was performed on a SpectraSYSTEM P4000 high performance liquid 

chromatograph (Thermo Separation™ Products, San Jose, CA, USA) coupled to a SpectraSYSTEM 

AS3000 automatic injector (Thermo Separation™ Products, San Jose, CA, USA) and a Flo-One 

liquid scintillation spectrophotometer (Radiomatic, Tampa, FL, USA). The ratio of scintillant to 

column effluent was 3:1. Steroid metabolites were separated on a Phenomenex C12 (60 mm×150 

mm, 4 µm) column at a flow rate of 1 mL min-1. The mobile phases for pregnenolone separation 

from the other ∆5 steroid metabolites consisted of solvent A (65% methanol: 35% water) and 

solvent B (methanol). An isocratic flow consisting of 100 % A for 2 minutes was applied, followed 

by a 9 minute linear gradient to 100% B and isocratic elution with 100 % solvent B for 1 min. A 3 

minute linear gradient returned the column to 100% A. The total run time per sample was 16 

minutes and the injection volume was 90 µL. The mobile phases for progesterone separation from 

the other ∆4 steroid metabolites consisted of solvent A (75% methanol: 25% water) and solvent B 

(methanol). An isocratic flow of 100% A was applied for 2 minutes, followed by a 9 minute linear 

gradient to 100% solvent B and isocratic elution with 100% solvent B for 1 minute. A 3 minute 

linear gradient returned the column to 100% solvent A. The total run time per sample was 14 

minutes and the injection volume was 90 µL.  
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5.2.7 UPLC quantification of steroids 

The UPLC-coupled atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) 

assay was developed by Storbeck et al. (2008b). Chromatography was performed on an ACQUITY 

ultra performance liquid chromatograph (Waters, Milford, MA, USA). The substrates pregnenolone 

and progesterone were separated from their respective metabolites on a Waters UPLC BEH C18 

(2.1 mm x 50 mm, 1.7 µm) column at 50°C flow rate of 0.4 ml min-1 as previously described 

(Storbeck et al., 2008b). The UPLC was connected to an API Quattro Micro tandem mass 

spectrometer (Waters, Milford, USA) as previously described (Storbeck et al., 2008b). 

5.2.8 Statistical analysis 

GraphPad Prism (version 5) software (GraphPad Software, San Diego, California) was used to 

analyse data. The frequency distribution of the CYP17 genotype in two populations was compared 

with Fischer’s exact t-test. Steroid concentrations were calculated from the percentage of total 

steroid detected per sample. Steroid metabolism assays were analysed with two-tailed paired t-tests 

for each steroid metabolite over time with either the CYP17 isoform or cytochrome b5 as factor (e.g. 

pregnenolone concentrations for WT1 vs. WT2 over time in the absence of cytochrome b5). Kinetic 

constants (Km and V values) were determined by non-linear regression (GraphPad Software, San 

Diego, California) and direct linear plots (Eisenthal and Cornish-Bowden, 1974). Comparisons of 

substrate conversion for CYP17 isoform and mutant constructs were analysed with one-way 

ANOVA and Bonferroni’s multi-comparison post-test for each substrate, respectively. Graphs 

represent the mean and standard error of the mean as calculated from triplicate experiments. A 95% 

confidence interval was used in all cases to determine statistical significance. 

5.3 Results 

5.3.1 Cloning of cytochrome b5 cloning 

Cytochrome b5 is expressed in the liver and adrenal gland (as well as in other tissues) as a 

membrane-bound hemoprotein (Miller and Auchus, 2011). The reverse transcription PCR of 

cytochrome b5 mRNA from sheep liver yielded a single 465 bp product that was subsequently 

sequenced and cloned. Sequence alignment of ovine cytochrome b5 (Ovis aries, Genbank accession 

no. GQ471028) with Angora goat cytochrome b5 (Capra hircus, Genbank accession no. EF524066) 

showed one nucleotide difference in the open reading frame at nucleotide position 177 (99.7% 

sequence similarity). However, both GTC and GCC codons of sheep and goat cytochrome b5, 

Stellenbosch University http://scholar.sun.ac.za



 

 55

respectively, translated to alanine at residue position 59 in the predicted 134 residue protein (100 % 

identity). 

5.3.2 Ovine CYP17 sequence alignment and genotyping 

The two CYP17 isoform sequences have previously been cloned and inserted into a suitable 

mammalian expression vector (Swart et al., 2003; Storbeck et al., 2008a). A relative DNA copy 

number determination by Storbeck et al. (2008a) indicated that a single CYP17 gene is present in 

South African Merinos, and that the two sequences - independently deposited on Genbank - are in 

fact two alleles of this gene and not a PCR artefact (Storbeck et al., 2008a). Sequence alignment of 

WT1 and WT2 cDNA sequences showed two nucleotide differences in the 1530 bp open reading 

frame (99.8 % sequence similarity), resulting in two amino acid differences in the predicted 509 

residue protein (99.6 % homologous). The first single nucleotide polymorphism (SNP) at position 

628 of WT1 encoded for codon AGC that translated to S210, while codon GGC of WT2 translated 

to G210. The second SNP at position 1390 of WT1 encoded for codon TAC that translated to Y464, 

while codon AAC of WT2 translated to N464. 

The two SNP differences permitted allelic discrimination with melting curve analysis, from real-

time PCR and hybridization probes, at nucleotide position 628. A melting curve peak at 58 oC 

indicated the presence of the WT1 allele, whereas a melting curve peak at 54 oC indicated the 

presence of the WT2 allele as shown in Figure 5.1. The accuracy of the genotyping test was 

confirmed with direct sequence analysis. Interestingly, no homozygous WT2 sheep were detected. 

The possibility of a lethal homozygous WT2 genotype was investigated by genotyping the genomic 

DNA samples from blood of early lamb mortalities (n = 36) during the 2008 lambing season. 

However, no individual sheep with a homozygous WT2 genotype was detected in this group either.  

The CYP17 frequency distribution in 209 adult sheep was found to be 85.6 % heterozygous 

WT1/WT2 and 14.4 % homozygous WT1/WT1. The CYP17 frequency distribution was the same 

among adult sheep and early lamb mortalities (P > 0.05). 

5.3.3 Kinetic analysis of ovine CYP17 isoforms 

The activities of both CYP17 isoforms, expressed in COS-1 cells, were assayed with pregnenolone 

and progesterone as substrates. Pregnenolone was converted to 17-hydroxypregnenolone and 

DHEA, whereas progesterone was converted to 17-hydroxyprogesterone and low levels of 16-

Stellenbosch University http://scholar.sun.ac.za



 

 56

hydroxyprogesterone and androstenedione (< 2%) over 7 hours. This is the first report that ovine 

CYP17 is able to mediate the 16α-hydroxylation of progesterone. 

Km and V values for each CYP17 isoform were determined for both pregnenolone and progesterone 

metabolism by non-linear regression (Table 5.1). These results coincided with the results obtained 

with the direct linear plot method (Eisenthal and Cornish-Bowden, 1974). No significant difference 

was observed between the CYP17 isoforms for either the Km or V values (WT1 vs. WT2) for both 

pregnenolone and progesterone metabolism (P > 0.05).  

Table 5.1. Summary of kinetic constant determinations of pregnenolone and progesterone metabolism. Initial reaction 
rates were determined by linear regression from at least four time points for each substrate concentration. Km (µM) and V 
values are expressed as mean ± SEM of three replicate experiments. The R2-values of all linear and non-linear regression 
lines were at least 0.95 and 0.98, respectively. A two-tailed unpaired t-test was done to compare the kinetic constants for 
each steroid substrate. 

      Pregnenolone      Progesterone 

 Km (µM) V
† 

Km (µM) V
† 

WT1 1.7 ± 0.1 27.8 ± 0.8 1.6 ± 0.1 41.7 ± 1.4 
WT2 1.9 ± 0.2 28.1 ± 0.8 1.8 ± 0.2 44.0 ± 2.3 

 †(nmol.h-1.mg total protein-1) 

Figure 5.1. Typical melting curve analysis from real time PCR with hybridization probes. A peak at 58 oC indicates the 
presence of the WT1 allele, whereas a peak at 54 oC indicates the presence of the WT2 allele in a DNA sample. 
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The difference in pregnenolone metabolism over 7 hours between the two CYP17 isoforms in the 

absence of cytochrome b5 is depicted in Figure 5.2. WT1 converted pregnenolone to 17-

hydroxypregnenolone at a higher rate (P < 0.05) than WT2. Conversion of pregnenolone reached 

50% after ~3 h for WT1 and ~3 h 40 min for WT2. Since the same amount of DHEA was produced 

for both CYP17 isoforms (P > 0.05) and more 17-hydroxypregnenolone was produced by WT1 (P 

< 0.01), WT1 would produce more cortisol precursors than WT2 in the absence of cytochrome b5.  

The difference in pregnenolone metabolism between the two CYP17 isoforms in the presence of 

cytochrome b5 is depicted in Figure 5.3. WT1 converted pregnenolone to 17-hydroxypregnenolone 

at a higher rate (P < 0.01) than WT2. Conversion of pregnenolone was at 50% after ~2 h 8 min for 

WT1 and ~2 h 15 min for WT2. However, WT1 also produced more DHEA (P < 0.05) than WT2. 

As a result, the CYP17 isoforms produced the same amount of 17-hydroxypregnenolone (P > 0.05) 

available for cortisol production. 17-hydroxypregnenolone concentrations reached a plateau after 3 

h at 25-36%, where its production from pregnenolone was matched by its conversion to DHEA. 

The difference in 17-hydroxypregnenolone metabolism between the two CYP17 isoforms was 

investigated at 0.5 µM, since this concentration is closer to the plateau concentration observed in 

pregnenolone metabolism than 1 µM. In the absence of cytochrome b5 (Figure 5.4), WT1 converted 

17-hydroxypregnenolone at a higher rate (P < 0.05) than WT2. Conversion of 17-

hydroxypregnenolone reached 50% after ~2 h 38 min for WT1 and after ~3 h 37 min for WT2. In 

the presence of cytochrome b5 (Figure 5.5), however, there was no difference (P > 0.05) in 17-

hydroxypregnenolone metabolism, where both CYP17 isoforms reached 50% conversion after ~1 h 

20 min. Cytochrome b5 thus enhanced the 17,20-lyase activity (P < 0.05) to such an extent that no 

difference was observed between the CYP17 isoforms. 

The difference in progesterone metabolism between the two CYP17 isoforms in the absence of 

cytochrome b5 is depicted in Figure 5.6. WT1 converted progesterone at a higher rate (P < 0.01) 

than WT2, where 50 % progesterone conversion was reached after ~1 h 30 min for WT1 as 

compared to ~2 h 20 min for WT2. More 17-hydroxyprogesterone (P < 0.01) was produced by 

WT1. The increased 17-hydroxyprogesterone produced by WT1 would potentially be available for 

cortisol production, which indicated that the presence of this isoform would lead to higher cortisol 

production than would be the case for WT2. Overall, very little androstenedione production was 

observed (< 3 %), as was also reported by Swart et al. (2003). However, statistical analysis still 

showed that more androstenedione (P < 0.05) was produced in the presence of WT1 than WT2. An 

equal amount of 16-hydroxyprogesterone (P > 0.05) was produced by both CYP17 isoforms. 
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Figure 5.2. Conversion of 1 µM pregnenolone over 7 hours by WT1 (left) and WT2 (right), expressed in COS-1 cells 
in the absence of cytochrome b5. A two-tailed paired t-test was done for each steroid metabolite (e.g. pregnenolone 
concentrations over time for WT1 vs. WT2). ns: P-value > 0.05; *P-value < 0.05; **P-value < 0.01; P5: 
pregnenolone; 17-OHP5: 17-hydroxypregnenolone; DHEA: dehydroepiandrosterone. 

 

Figure 5.3. Conversion of 1 µM pregnenolone over 7 hours by WT1 (left) and WT2 (right), expressed in COS-1 cells 
in the presence of cytochrome b5. A two-tailed paired t-test was done for each steroid metabolite. ns: P-value > 0.05; 
*P-value < 0.05; **P-value < 0.01; P5: pregnenolone; 17-OHP5: 17-hydroxypregnenolone; DHEA: 
dehydroepiandrosterone. 
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Cytochrome b5 enhanced the production of androstenedione (P < 0.05) and 16-hydroxyprogesterone 

(P < 0.001) for both CYP17 isoforms (Figure 5.7). As a result, progesterone conversion was the 

same for both CYP17 isoforms, where 50% progesterone conversion was reached after ~1 h in both 

instances. WT1 produced more 17-hydroxyprogesterone (P < 0.01), which would potentially be 

available for cortisol production than WT2. An equal quantity of androstenedione (P > 0.05) was 

Figure 5.4. Conversion of 0.5 µM 17-hydroxypregnenolone over 7 hours by WT1 (left) and WT2 (right), expressed in 
COS-1 cells in the absence of cytochrome b5. A two-tailed paired t-test was done for each steroid metabolite. *P-value 
< 0.05; **P-value < 0.01; 17-OHP5: 17-hydroxypregnenolone; DHEA: dehydroepiandrosterone. 

Figure 5.5. Conversion of 0.5 µM  17-hydroxypregnenolone over 7 hours by WT1 (left) and WT2 (right), expressed in 
COS-1 cells in the presence of cytochrome b5. A two-tailed paired t-test was done for each steroid metabolite. ns: P-
value > 0.05; 17-OHP5: 17-hydroxypregnenolone; DHEA: dehydroepiandrosterone. 

Stellenbosch University http://scholar.sun.ac.za



 

 60

produced for both CYP17 isoforms, while WT2 produced more 16-hydroxyprogesterone (P < 0.01) 

than WT1. 

Interestingly, the 17-hydroxyprogesterone/16-hydroxyprogesterone-ratio of WT1 was higher than 

WT2 in both the presence (WT1: 40.8 ± 0.6 vs. WT2: 33.7 ± 1.0) and absence (WT1: 29.4 ± 0.7 vs. 

WT2: 20.7 ± 0.3) of cytochrome b5 (P < 0.01). In other words, given the same amount of 

Figure 5.6. Conversion of 1 µM progesterone over 7 hours by WT1 (left) and WT2 (right), expressed in COS-1 cells in 
the absence of cytochrome b5. A two-tailed paired t-test was done for each steroid metabolite. ns: P-value > 0.05; *P-
value < 0.05; **P-value < 0.01; P4: progesterone; 17-OHP4: 17-hydroxyprogesterone; 16-OHP4: 16-
hydroxyprogesterone; A4: androstenedione. 

Figure 5.7. Conversion of 1 µM progesterone over 7 hours by WT1 (left) and WT2 (right), expressed in COS-1 cells in 
the presence of cytochrome b5. A two-tailed paired t-test was done for each steroid metabolite. ns: P-value > 0.05; **P-
value < 0.01; ***P-value < 0.001; P4: progesterone; 17-OHP4: 17-hydroxyprogesterone; 16-OHP4: 16-
hydroxyprogesterone; A4: androstenedione. 
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progesterone, WT1 would produce more 17-hydroxyprogesterone (precursor of cortisol) and less 

16-hydroxyprogesterone (not a precursor of cortisol) than WT2. 

In addition, the ratio of 17-hydroxypregnenolone/DHEA was 16- to 21-fold higher than the 17-

hydroxyprogesterone/androstenedione ratio. This gives an indication that androgen synthesis is 

primarily mediated by the 17,20-lyase activity through the ∆5 pathway rather than the ∆4 pathway in 

this species, an observation consistent with previous studies (Mason et al., 1989; Auchus et al., 

1998; Lee-Robichaud, 1995, Swart et al., 2003; Miller and Auchus, 2011). The removal of 17-

hydroxypregnenolone to DHEA by CYP17 is therefore a more important consideration for cortisol 

production relative to the removal of 17-hydroxyprogesterone to androstenedione by CYP17 in the 

∆
4 pathway (Miller and Auchus, 2011). 

5.3.4 Site-directed mutagenesis 

The effect of amino acid substitutions on the activity of the two CYP17 isoforms was investigated 

by means of expression in COS-1 cells. Figure 5.8 depicts the results of pregnenolone metabolism, 

where no significant difference (P > 0.05) was observed in the absence (Figure 5.8A) or presence 

(Figure 5.8B) of cytochrome b5 between the CYP17 isoforms and mutant constructs. After four 

Figure 5.8. Conversion of 1 µM pregnenolone after 4 hours in the absence (A) or presence (B) of cytochrome b5 by 
CYP17 isoforms (WT1 and WT2) and mutant constructs (G210S and N464Y). A one-way ANOVA was done for each 
steroid metabolite with Bonferroni’s multiple comparison post-test. P5: pregnenolone; 17-OHP5: 17-
hydroxypregnenolone; DHEA: dehydroepiandrosterone. 
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hours, approximately 59 % pregnenolone was converted to ~41 % 17-hydroxypregnenolone and ~8 

% DHEA.  

After four hours, 17-hydroxypregnenolone metabolism in the absence of cytochrome b5 (Figure 

5.9A) was higher for WT1 (~62 %; P < 0.05) than for mutant construct G210S (~44 %), while no 

significant difference was observed compared to WT2 (~56 %) and N464Y (~46 %). In the 

presence of cytochrome b5 (Figure 5.9B), 17-hydroxypregnenolone metabolism after three hours 

was the same (P > 0.05) for all constructs (~68 %). 

After two hours, approximately 60 % of the progesterone was converted to ~57 % 17-

hydroxyprogesterone and small quantities (< 2 %) of androstenedione and 16-hydroxyprogesterone 

in the absence of cytochrome b5 (Figure 5.10A). Progesterone metabolism was the same (P > 0.05) 

for all constructs, with the exception in 16-hydroxyprogesterone production, where WT1 produced 

larger quantities (P < 0.01) of 16-hydroxyprogesterone (~2.0 %) than WT2 (~1.2 %) and N464Y 

(~1.4 %). In the presence of cytochrome b5, the production of 17-hydroxyprogesterone (Figure 

5.10B) was the same (P > 0.05) for all constructs (~56 %), while these constructs showed distinct 

differences (P <0.01) in the remainder of progesterone metabolism. After one hour, WT2 

metabolized less progesterone (~63 %; P < 0.05) than WT1 (~68 %) and N464Y (~68 %), while 

G210S metabolized intermediary amounts of progesterone (~66 %). However, equal amounts of 17-

Figure 5.9. Conversion of 1 µM 17-hydroxypregnenolone after 4 hours in the absence (A) or 3 hours in the presence 
(B) of cytochrome b5 by CYP17 isoforms (WT1 and WT2) and mutant constructs (G210S and N464Y). A one-way 
ANOVA was done for each steroid metabolite with Bonferroni’s multiple comparison post-test. 17-OHP5: 17-
hydroxypregnenolone; DHEA: dehydroepiandrosterone. 

Stellenbosch University http://scholar.sun.ac.za



 

 63

hydroxyprogesterone (~56 %) and 16-hydroxyprogesterone (~8 %) were produced (P <0.001). 

Furthermore, the production of androstenedione by WT1 and N464Y (~4.6 %) was higher (P < 

0.0001) compared to WT2 and G210S (~2.4 %). 

From the results of site-directed mutagenesis, it can be concluded that both amino acid differences 

of WT1 and WT2 are collectively responsible for the catalytic differences or similarities observed 

between these two CYP17 isoforms. 

5.4 Discussion 

The CYP17 genotyping method described in this chapter was developed by Storbeck et al. (2008) to 

establish the CYP17 genotypes of Angora and Boer goats (Storbeck et al., 2008a). This study 

showed that the method was also suitable for ovine CYP17 genotyping, since it was able to detect 

heterozygous WT1/WT2 sheep. Storbeck et al. (2008a) reported that the two genetic sequences of 

CYP17 deposited on Genbank are not PCR artefacts, but two alleles of one CYP17 gene as 

confirmed with a relative DNA copy number determination. In contrast the Angora and Boer goats 

had two CYP17 alleles, but three genotypes because of a duplication of the CYP17 gene. In the 

present study the same CYP17 genotyping method was used to genotype 145 genomic DNA 

samples from South African Merinos. Only two CYP17 genotypes were identified, namely 

homozygous WT1/WT1 and heterozygous WT1/WT2 sheep, but no homozygous WT2 sheep. The 

possibility of a lethal homozygous WT2 genotype was investigated by genotyping DNA from lambs 

Figure 5.10. Conversion of 1 µM progesterone after 2 hours in the absence (A) or after 1 hour in the presence (B) of 
cytochrome b5 by CYP17 isoforms (WT1 and WT2) and mutant constructs (G210S and N464Y). A one-way ANOVA 
was done for each steroid metabolite with Bonferroni’s multiple comparison post-test. P4: progesterone; 17-OHP4: 17-
hydroxyprogesterone; 16-OHP4: 16-hydroxyprogesterone; A4: Androstenedione. 
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that died within 3 days of parturition. No homozygous WT2 genotypes were detected in this group 

either. It is possible that this genotype is lethal at earlier stages of development, or that there is a 

genetic anomaly in the CYP17 gene that was not detected in the relative copy number determination 

from the small sample (less than five sheep) studied by Storbeck et al. (2008a). Another 

consideration is to develop a CYP17 genotyping test that is specific for ovine CYP17, which may be 

more sensitive than the current method (one or two nucleotide mismatches for ovine species) that 

was originally designed for caprine species (perfect nucleotide match or one mismatch). However, 

the accuracy of the current method was confirmed with direct sequence analysis and genotyping of 

plasmid vectors containing the appropriate cDNA insert (data not shown). 

Expression of both CYP17 isoforms in COS-1 cells showed that ovine CYP17 is capable of 

mediating the 17α-hydroxylation of pregnenolone and progesterone; the 16α-hydroxylation of 

progesterone; and cleave the C-17/C-20 bond of 17-hydroxypregnenolone and 17-

hydroxyprogesterone in the absence of cytochrome b5. Determination of kinetic constants revealed 

that ovine CYP17 has similar affinities towards pregnenolone and progesterone, but catalyses 

progesterone at a slightly higher catalytic rate than pregnenolone. In the presence of cytochrome b5 

the hydroxylation of pregnenolone and progesterone appeared to increase, however, it is unlikely 

that cytochrome b5 directly enhances the hydroxylation reaction and such a case has never been 

reported previously (Miller and Auchus, 2011). Instead cytochrome b5 enhances the 17,20-lyase 

activity of CYP17 that ultimately eliminates any effects of product inhibition on the hydroxylation 

reaction. The 17,20-lyase activity towards 17-hydroxypregnenolone was roughly 25-fold higher 

than towards 17-hydroxyprogesterone. This observation is consistent with previous studies where it 

was suggested that the majority of precursors for the synthesis of sex steroids are derived from 

DHEA rather than androstenedione (Mason et al., 1989; Swart et al., 2003; Storbeck et al., 2007; 

Miller and Auchus, 2011). 

Auchus and Miller (1999) constructed a molecular model for human CYP17 in 1999, to gain 

insights into its dual activities and predict the effects of various mutations in the CYP17 protein. 

The latter study was used as a basis to investigate the two amino acid differences in the ovine 

CYP17 isoforms. These amino acid differences are located at residue positions 210 and 464, 

respectively. The model indicated that the residue at position 210 is located in the F-helix, a core 

helix that forms part of the F-G loop. The residues that line the cleft in this F-G loop may serve to 

form an access pathway for the entry of the steroid into the substrate binding pocket (Auchus and 

Miller, 1999). The S210 residue is present in human, bovine and ovine WT1 CYP17, while G210 is 

present in porcine and ovine WT2 CYP17. The model indicated that the second residue, at position 
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464, is located in β-sheet 3. This is a core sheet that includes a turn, at residue positions 482 and 

483, which forms the top of the substrate binding pocket (Auchus and Miller, 1999). The Y464 

residue is present in ovine WT1 CYP17 only; the N464 residue is present in ovine WT2 and bovine 

CYP17; while the D464 residue is present in human and porcine CYP17. 

The importance of an amino acid mutation at residue positions 210 and 464 is likely to be reflected 

in the catalytic activity of CYP17. However, WT1 and WT2 showed similar activities, with some 

differences indicated by the steroid conversion assays. WT1 showed a tendency towards a higher 

catalytic activity in all cases except the 16α-hydroxylation of progesterone, where WT2 had a 

higher catalytic activity. These differences were only observed in the time-dependent steroid assays, 

but were not reflected in the kinetic constant determinations and site-directed mutagenesis assays. 

Furthermore, cytochrome b5 corrects the small catalytic differences between the CYP17 isoforms at 

the 17,20-lyase activities of the ∆4 and ∆5 pathways, while accentuating the differences at the 17α- 

and/or 16α-hydroxylation of pregnenolone and progesterone. 

Another way in which the CYP17 isoforms may be different is in the regulation of CYP17 by 

serine/threonine phosphorylation. This mechanism is still not fully understood, but has been 

proposed to increase the 17,20-lyase activity relative to the 17α-hydroxylase activity by 

phosphorylation of certain serine and threonine residues of CYP17 (Zhang et al., 1995). As 

previously mentioned, WT1 contains a serine at residue position 210, whereas WT2 contains a 

glycine. However, it is unknown whether the S210 of WT1 is one of the residues that may be 

phosphorylated by this mechanism. Kempna et al. (2010) proposed a model whereby serine residues 

are exclusively phosphorylated to increase the 17,20-lyase activity (in response to cAMP 

stimulation), while threonine residues are selectively phosphorylated via another messenger 

pathway to inhibit 17,20-lyase activity (in response to starvation conditions). Pandey and Miller 

(2005) demonstrated that the serine/threonine phosphorylation of CYP17 acts to increase the 

velocity of the 17,20-lyase reaction, but does not increase the affinity for its substrate. They 

proposed that the negatively charged phosphate groups affect the electrostatic interactions between 

CYP17 and POR to increase electron transport. Furthermore, Pandey et al. (2003) showed that the 

increase in 17,20-lyase activity is not dependent on cytochrome b5, nor is it cooperative or additive 

(Pandey and Miller, 2005).  

In the present study, it was observed that 17-hydroxypregnenolone was converted to DHEA by 

WT1 (with S210) at a higher rate than WT2 (with G210), in the absence of cytochrome b5. With 

cytochrome b5, being present, however, the CYP17 isoforms had equal conversion rates. These 
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results may have suggested that S210 is more advantageous for electron transport from POR to 

CYP17, perhaps by the phosphorylation mechanism. However, the site-directed mutagenesis results 

did not support this statement. Additional experimental procedures are required to investigate 

whether the serine/threonine phosphorylation of CYP17 is different between the ovine CYP17 

isoforms. 

5.5 Conclusion 

WT1 and WT2 produced equal amounts of 17-hydroxypregenolone, while WT1 produced more 17-

hydroxyprogesterone than WT2 in the presence of cytochrome b5. It is therefore concluded that 

WT1 produce more cortisol precursors than WT2. Whether these small differences in the activity of 

the CYP17 isoforms would manifest on the in vivo level to produce different quantities of cortisol, 

however, remains unknown. The competition of CYP21 and 3βHSD with CYP17 for substrates 

may intensify or mask these small catalytic differences and should also be considered. The current 

COS-1 expression system does not support such an experimental design, since results become less 

accurate when transfecting cells with more than three plasmid constructs. An experimental setup, 

that would closely resemble in vivo conditions, is the preparation of primary cultures from the 

adrenal glands of homozygous WT1/WT1 and heterozygous WT1/WT2 sheep. The complex mixture 

of steroids (13 steroids), however, presented a significant challenge for analyses as it is a relatively 

complex mixture. The structural similarity of these steroids severely complicates separation, which 

makes it difficult to determine the percentage distribution of steroid metabolites (as was done in the 

present study). Furthermore, absolute quantification requires the use of various expensive internal 

standards (deuterated steroids). The following chapter (Chapter 6) therefore presents the 

development of a UPLC tandem mass spectrometry method for the detection of all the adrenal 

steroids (100 %). This method enabled the detection of all steroids produced by the adrenocortical 

cells of primary cultures (Chapter 7), which could be expressed as percentage of total steroid 

produced (as was done in this chapter) without the use of internal standards. 
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CHAPTER 6 

Simultaneous quantification of adrenal steroids using ultra performance liquid 

chromatography tandem mass spectrometry 

6.1 Introduction 

The analysis of endogenous steroids in humans and livestock has become the focus of 

endocrinologists and physiologists that investigate these important hormones. The quantification of 

these steroids is imperative to our understanding of reproductive fitness and stress management. In 

mammals, stress responses are mediated by the HPA axis in combination with the autonomic 

nervous system and behavioural adaptation (Mormède et al., 2007; Manteuffel, 2002). Stimulation 

of the HPA axis results in the secretion of adrenocorticotrophic hormone (ACTH) from the pituitary 

gland, which in turn stimulates the release of glucocorticoids, such as cortisol, from the adrenal 

cortex (Bush and Ferguson, 1953; McDonald and Reich, 1959). To date, the majority of animal 

HPA response studies have focussed on the detection of only one or two glucocorticoids, mainly 

cortisol (sheep, cows, pigs, fish) or corticosterone (birds, rats, mice), as well as total glucocorticoid 

concentration (Dantzer and Mormède, 1983; Hargreaves and Hutson, 1990; Apple et al., 1993; 

Engelbrecht et al., 2000; Smith and Dobson, 2002; Okeudo and Moss, 2005; Prunier et al., 2005; 

Storbeck et al., 2008a). The change in some adrenal steroid hormones (usually end products) and 

the ratios between the different metabolites in response to ACTH stimulation has been the focus of 

many investigations, but inadequate analytical methods have hampered comprehensive analyses, 

which would be more informative than the quantification of the single end products. Xing et al. 

(2011) recently demonstrated that, while the production of the glucocorticoids (cortisol and 

corticosterone) was stimulated by ACTH in human adrenals, the production of androgens and 

adrenal androgen precursors were also significantly up-regulated. Another aspect of glucocorticoid 

production that is often overlooked is the interconversion of the active glucocorticoids, cortisol and 

corticosterone, to their inactive 11-oxo-derivatives, cortisone and 11-dehydrocorticosterone, 

respectively, by 11βHSD (type 1 and 2) (Mormède et al., 2011). 

The accurate detection and quantification of endogenous steroid hormones from experimental 

subjects remains a challenging task, due to structural homology and the low concentrations at which 

such hormones are normally present in biological fluids (Soldin and Soldin, 2009; Makin and 

Gower, 2010; Rauh, 2010). Routine quantification of endogenous steroid hormones is based 

predominantly on immunoassay methods, which are easily accessible to hospitals and laboratories 
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(Soldin and Soldin, 2009; Kushnir et al., 2011). However, immunoassays are steroid specific, 

hampered by cross-reactivity and prone to the overestimation of true steroid concentrations 

(Middle, 1998; Dorgan et al., 2002; Marks, 2002; Valdes and Jortani, 2002; Minutti et al., 2004; 

Etter et al., 2006; Soldin and Soldin, 2009). Gas chromatography linked to mass spectrometry (GC-

MS) is considered the golden standard in steroid analysis and can quantify a large number of 

steroids at great sensitivity (65 steroids in 50 min: Ha et al., 2009). However, sample preparations 

involved in GC-MS can be laborious and complex, thus limiting the throughput (Ha et al., 2009; 

Rauh, 2010; Shackleton, 2010; Kushnir et al., 2011). 

The development of modern HPLC resulted in significant improvements in resolution and 

selectivity of steroids over the traditionally used thin layer chromatography. Expensive radiolabeled 

tracers and radio-active flow detection are, however, required to quantify steroids that do not absorb 

in the UV-region, such as the ∆5 steroids (pregnenolone, 17-hydroxypregnenolone and DHEA) 

(Makin and Gower, 2010; Rauh, 2010; Shackleton, 2010). In addition, conventional HPLC methods 

require relatively long run times, in excess of 50 minutes, to achieve the desired resolution (Miksik 

et al., 1999; Nithipatikom et al., 2005). Coupling MS to HPLC has made MS available as a 

universal detection alternative for liquid chromatography. Run times can be significantly reduced as 

a number of precursor and product ions can be detected simultaneously and selectively (Hauser, 

2008; Soldin and Soldin, 2009; Rauh, 2010; Shackleton, 2010). Further developments in the field 

led to the incorporation of UPLC-MS/MS as an analytical tool which allows for smaller sample 

volumes together with higher throughput while achieving good resolution in shorter run times. 

Various studies have been successful in achieving the quantification of 7 to 21 endogenous steroids 

in less than 18 minutes with UPLC-MS/MS (Guo et al., 2006; Carvalho et al., 2008; Janzen et al., 

2008; Storbeck et al., 2008b; Cho et al., 2009; Simersky et al., 2009; Xing et al., 2011). However, 

most of these methods require additional derivatisation steps to achieve the required sensitivity for 

quantification (Xing et al., 2011). Even though recent developments in UPLC-MS/MS has 

significantly increased the number of steroids that can be separated and quantified in a single 

chromatographic separation (Holst et al., 2007; Soldin and Soldin, 2009; Kushnir et al., 2011), the 

quantification of the total steroid output of a complex endocrine gland, such as the adrenal gland, in 

a single analytical step has not been achieved. 

The need for the development of a LC-MS/MS method to quantify all the adrenal steroids was 

recently demonstrated by the study of Xing et al. (2011), where steroid metabolites produced by 

adrenal cells were analysed. Three different LC-MS/MS methods had to be utilised: 1) an analysis 
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of underivatised steroid metabolites; 2) an analysis requiring derivatisation of keto-steroids with 

hydroxylamine; and 3) an analysis requiring the derivatisation of estrone and estradiol with dansyl 

chloride. In addition, an enzyme immunoassay was performed for the detection and quantification 

of cortisol, corticosterone and 11-hydroxyandrostenedione. 

The aim of this study was to develop a sensitive and rapid UPLC-MS/MS method, for the detection 

of all the major endogenous adrenal steroids, without derivatisation, from sheep plasma and adrenal 

primary cells. These steroids included: pregnenolone, 17-hydroxypregnenolone, DHEA, 

progesterone, 17-hydroxyprogesterone, 16-hydroxyprogesterone, androstenedione, 11-

deoxycortisol, cortisol, deoxycorticosterone, corticosterone, 18-hydroxycorticosterone, and 

aldosterone. Furthermore, the application of this method for quantification of adrenal steroids in 

plasma was tested, and additionally included the steroids 11-dehydrocorticosterone, cortisone, and 

testosterone. A pentafluorophenyl (PFP) stationary phase with trimethylsilyl (TMS) end capping 

was used as opposed to the more popular C18 columns (Rauh, 2010; Shackleton, 2010; Kushnir et 

al., 2011). The method was validated by investigating the change in steroid hormone production of 

South African Merino sheep in response to HPA axis stimulation. 

6.2 Materials and Methods 

6.2.1 Chemicals 

Testosterone was purchased from The British Drug House Ltd. (Poole, England); 11-

dihydrocorticosterone was from Merck (Darmstadt, Germany), and (9,11,12,12-d4)-cortisol was 

purchased from Cambridge Isotope Laboratories Inc. (Andover, MA, USA). All other steroids as 

well as analytical grade methanol, isopropanol and dichloromethane were purchased from (Sigma-

Aldrich, St. Louis, MO, USA). Formic acid and ethyl acetate, also analytical grade, were obtained 

from Merck (Darmstadt, Germany). Analytical grade water was prepared using the MilliQ 

purification system from Millipore (Billerica, MA, USA).  

6.2.2 Standard solutions and quality-control samples 

Steroids (2 mg mL-1) and the internal standard (9,11,12,12-d4)-cortisol (50 µg mL-1) were dissolved 

in ethanol and stored at -20 ºC. Prior to use, d4-cortisol was diluted in methanol to either 1000 ng 

mL-1 for the calibration curves or 100 ng mL-1 for quality control samples. Six quality control 

samples for method validation were prepared in low serum culture medium (see section 2.5.1) and 

steroid-free foetal calf serum (Highveld Biological, Lyndhurst, South Africa). Samples were spiked 
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with all of the 16 steroids and with the internal standard d4-cortisol at a concentration of 100 ng mL-

1 each. In addition, non-spiked low serum culture medium and steroid-free serum samples were 

prepared in triplicate as controls. 

6.2.3 Method validation 

Calibration standards for construction of calibration curves (n = 8), limits of detection (LOD) and 

limits of quantification (LOQ) (n = 13), were prepared at concentrations ranging from 0.009 ng mL-

1 to 10000 ng mL-1, containing all of the 16 steroids and the d4-cortisol internal standard at a fixed 

concentration of 100 ng mL-1. Calibration curves were generated by performing least-squares 

regression analysis on peak area ratios relative to the internal standard at different concentrations, 

within the sensitivity range of each steroid. The LOD and LOQ were defined as the lowest steroid 

concentration with a signal-to-noise (S/N) ratio larger than 3 and 10, respectively. Precisions were 

expressed as coefficients of variation (% RSD) and accuracy as percentage recovery, which were 

both determined from the quality control samples. In addition, the instrumental precision was 

calculated from the average coefficient of variation of all of the steroids in the quality control 

sample (100 ng mL-1) for intra-day precision (quality control sample analysed six times within the 

same day) and inter-day precision (quality control sample analysed twice per day for four 

consecutive days).  

6.2.4 UPLC-MS/MS instrument setup 

UPLC–MS/MS was performed using a Waters Acquity UPLC (Milford, MA, USA) coupled to a 

Waters Xevo triple quadrupole mass spectrometer (Milford, MA, USA). All instruments were 

controlled by MassLynx Software 4.0 and the integration and quantification were performed using 

TargetLynx. The settings on the instrument were optimized for maximum sensitivity for all steroids 

with the optimal settings and fragments defined after injection of the pure standards (1 µg mL-1 in 

methanol). All steroids were analysed in multiple reaction monitoring (MRM) mode using an 

electrospray in the positive ionization mode (ESI+). 

The following settings were used: capillary voltage of 2.8 kV, cone voltage 15–35 V (Table 6.1), 

collision energy 4–32 eV (Table 6.1), source temperature 100 ºC, desolvation temperature 500 ºC, 

desolvation gas 1000 L h-1, cone gas 50 L h-1 and dwell time 0.002 sec. During analyses the samples 

were kept at 10 ºC.  
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Steroids were separated on a Kinetex PFP column (50 mm × 2.1 mm, 2.6 µm; Phenomenex, USA) 

at 45 ºC and a flow rate of 0.4 mL min-1 using mobile phases that consisted of solvent A (1% formic 

acid in water) and solvent B (49% methanol: 49% acetonitrile: 2% isopropanol). A linear gradient 

from 85% A to 60% B in 7.5 min, followed by a linear gradient to 100% in 0.1 min and an isocratic 

elution with 100% solvent B for 0.9 min was applied. The total run time was 10.5 min and the 

injection volume was 5 µL. 

6.2.5 Assay procedures 

6.2.5.1 Preparation of adrenal culture and extraction of steroids 

The adrenal gland of a Merino ram (2 years of age) was used for the preparation of adrenal primary 

cells as previously described (Basset et al., 2004; Xing et al., 2011). In summary, after the adrenal 

gland was obtained at a local abattoir, it was minced and digested with culture medium containing 1 

mg mL-1 collagenase D (Roche, Mannheim, Germany) for 1 hour at 37 ºC. The resulting cell 

suspension was filtered through a 100 µm mesh nylon filter, before collecting cells by 

centrifugation at 600 x g and resuspension in culture medium. Digestion and mechanical dispersion 

was carried out twice before seeding the collective cell suspension into 10 cm tissue culture dishes. 

After twenty-four hours the cells were trypsinised, counted and replated into 12-well tissue culture 

plates at a concentration of 300 000 live cells per well (cell viability > 75 %). The cells were 

cultured for four days in culture medium consisting of DMEM/F12 (Sigma-Aldrich, St. Louis, MO, 

USA) containing penicillin/streptomycin, gentamycin, kanamycin and 10% foetal calf serum 

(Gibco-Invitrogen, Grand Island, NY, USA). After day four, kanamycin was omitted from the 

culture medium to allow for more rapid cell growth. Twenty-four hours prior to the steroid assay, 

the foetal calf serum concentration in the culture medium was reduced to 0.1 %. The steroid assay 

was conducted after day six, when cells were confluent. 

Culture medium containing 100 µM pregnenolone, with and without 1 µM ACTH, was added to the 

cells in triplicate and samples (400 µL) were removed from the medium after forty-eight hours. A 

liquid-liquid extraction of the steroids was performed by vortexing the samples in a 1:10 ratio in 

dichloromethane for twenty minutes, centrifugation at 500 x g for five minutes, followed by the 

aspiration of the aqueous phase. The dichloromethane phase was dried under gaseous nitrogen at 45 

ºC and the dried residue dissolved in 200 µL methanol. Samples were stored at -20 ºC prior to 

UPLC-MS/MS analysis. 
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6.2.5.2 Plasma collection and extraction of steroids 

Ten Merino rams (2-6 years of age) were injected intravenously with human insulin at a dose of 0.1 

IU kg-1 body weight. Blood samples were collected from the jugular vein immediately prior to 

insulin administration and sixty minutes thereafter. Blood was collected in EDTA-treated collection 

tubes and immediately placed on ice. Representative plasma samples from each animal were 

obtained the same day of the test by centrifugation (2 500 x g; 10 min; 4 ºC), transferred to 1.5 mL 

microcentrifuge tubes and stored at -20 ºC. Ethics approval was obtained from the Departmental 

Ethics Committee for Research on Animals (DECRA ref: R08/21) of the Western Cape Department 

of Agriculture. 

For liquid-liquid and solid phase extraction, plasma samples were thawed on ice. Internal standard 

was added (10 µL of 1000 ng mL-1 d4-cortisol) to 500 µL plasma diluted with 500 µL water. After 

the addition of 1 mL acetonitrile and 4 mL ethyl acetate, samples were vortexed for ten minutes and 

centrifuged (500 × g; 10 min; 22 ºC). The aqueous phase was subsequently flash frozen using liquid 

nitrogen, after which the unfrozen organic phase was transferred to a test tube. The samples were 

subsequently dried under gaseous nitrogen at 45 ºC, redissolved in 200 µL methanol after which 

800 µL water was added. Solid phase extraction was performed on 60 mg mL-1 strata-X, 33 µm 

polymeric reverse phase cartridges (Phenomenex, USA). The cartridges were preconditioned with 1 

mL methanol, equilibrated with 1 mL water, and the sample (1 mL) was applied. The column was 

washed with 1mL 80% methanol (in water) and the steroids eluted with 1 mL methanol. The eluate 

was evaporated under gaseous nitrogen at 45 ºC, and the resulting dried steroid-containing residue 

dissolved in 100 µL methanol and stored at -20 ºC prior to UPLC-MS/MS analysis. 

6.2.6 Statistical analysis 

The data obtained in the conversion assays performed in the adrenal cells was normalised by 

expressing each steroid concentration as the fraction of the total sum of detected steroids (set equal 

to 100 µM). Steroid concentrations that were below the LOQ were set equal to zero. Plasma steroid 

concentrations that were obtained from LC-MS/MS analysis (in ng µL-1 representative of 500 µL 

plasma) were transformed to obtain the true physiological concentration (in ng mL-1), by dividing 

by five and multiplying by a thousand. GraphPad Prism 5.03 was used in the statistical analysis of 

the data obtained from assays in adrenal cells (unpaired two-tailed Student’s t-test) and the sheep 

plasma samples (paired two-tailed Student’s t-test), to assess the treatment effect for each steroid 

metabolite, respectively (GraphPad Software, Inc., San Diego, CA, USA). Results were considered 

significant if P < 0.05.  
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6.3 Results and discussion 

6.3.1 UPLC-MS/MS steroid detection 

Various solvents, solvent gradients and columns were explored in the development of a suitable 

method. The use of ammonium formate (10mM) in the hydrophilic solvent A was considered, based 

on the method developed by Carvalho et al. (2008) to separate seven C-21 steroids. In ammonium 

formate DHEA exhibited a high abundance of protonated molecules due to the addition of water [M 

+ 3H2O + H+]. However, the ionization efficiency of the steroid metabolites in the ∆5 steroidogenic 

pathway (pregnenolone, 17-hydroxypregnenolone and DHEA) was substantially lower when using 

5-10 mM ammonium formate (pH 2, 3 or 9) with or without 1% formic acid. The ionization 

efficiency of these three steroid metabolites was optimal in 1% formic acid, which was 

subsequently selected as solvent A.  

Most steroids exhibited mass spectra with a high abundance of protonated molecules ([M + H+]) in 

1 % formic acid (listed in Table 6.1). DHEA and 11-dehydrocorticosterone exhibited a high 

abundance of protonated molecules with the loss of a water molecule ([M – H2O + H+]), whereas 

17-hydroxypregnenolone exhibited a high abundance of protonated molecules due to the loss of two 

water molecules ([M – 2H2O + H+]). The ionization efficiency for all steroids in the mobile phase 

was tested in positive ESI mode. Although the detection limits for pregnenolone, 17-

hydroxypregnenolone and DHEA were the highest of all the steroids (see Table 6.2), detection 

limits were adequate for quantification throughout (data not shown). The cone voltage and collision 

energy was optimized for each steroid (Table 6.1) and the resulting MRM transitions are depicted 

with chromatograms in Figure 6.1.  

Due to the structural similarity of the steroids, many of the product ions have the same size, e.g. 

97.0, 108.9 and 121.0 m/z (Table 6.1) and it was therefore necessary to separate these groups of 

steroids to avoid cross-talk. Five groups of steroids presented difficulty in separation: a) aldosterone 

and cortisone; b) 18-hydroxycorticosterone and cortisol; c) cortisol and cortisone; d) corticosterone 

and 11-deoxycortisol; and e) 17-hydroxyprogesterone, 16-hydroxyprogesterone, and 

deoxycorticosterone. The latter two groups (d and e) included isomers. For the separation of these 

steroids numerous columns with different stationary phases were tested, namely phenyl rings 

(Acquity UPLC, BEH Phenyl, 1.7 µm, 100 X 2.1 mm), C12 with TMS endcapping (Phenomenex, 

Synergi Max-RP, 80 Å, 4 µm, 150 X 4.6 mm), C18 with TMS endcapping (Phenomenex, Kinetex 

C18, 80 Å, 2.6 µm, 100 X 4.6 mm; Waters UPLC, BEH C18, 1.7 µm, 2.1 X 100 mm) and polar 

embedded C18 with TMS endcapping (Phenomenex, Synergi Fusion-RP, 80 Å, 4 µm, 250 X 4.6 
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mm) (data not shown). The chosen column with a pentafluorophenyl (PFP) stationary phase, 

however, showed superior separation of all 16 steroids, excluding the internal standard (elution 

times depicted in Table 6.1). In particular the PFP column yielded a higher resolution between 

corticosterone and 11-deoxycortisol (Figure 6.1), as well as 18-hydroxycorticosterone and cortisol 

(Figure 6.1), than the other columns tested (data not shown). 

Table 6.1. Optimal MRM transitions and parameters for MS/MS analysis of steroids. CV: Cone voltage; CE: Collision 
energy 

Steroids (trivial name) Retention time
a
 

(min) 

Precursor ion 

m/z (CV)
 

Product ion 

m/z (CE)
 

Aldosterone 

18-Hydroxycorticosterone 

Cortisol 

d4-Cortisol 

Cortisone 

11-Dehydrocorticosterone 

Corticosterone 

11-Deoxycortisol 

16-Hydroxyprogesterone 

Testosterone 

Dehydroepiandrosterone 

Androstenedione 

17-Hydroxypregnenolone 

Deoxycorticosterone 

17-Hydroxyprogesterone 

Pregnenolone 

Progesterone 

2.79 

2.83 

3.01 

3.01 

3.23 

3.76 

3.96 

4.19 

4.36 

4.90 

5.01 

5.08 

5.09 

5.15 

5.32 

6.34 

6.49 

361.4 (30) 

363.2 (30) 

363.0 (30) 

367.0 (35) 

361.2 (30) 

345.3 (30) 

347.0 (30) 

347.0 (30) 

331.2 (30) 

289.2 (30) 

271.2 (30) 

287.2 (30) 

297.2 (30) 

331.2 (30) 

331.2 (30) 

317.2 (16) 

315.2 (30) 

97.0 (32), 315.1 (20), 343.2 (18) 

147.0 (22), 251.2 (20), 269.2 (15) 

121.0 (20) 

121.0 (25) 

163.0 (30) 

121.0 (20), 301.2 (25) 

121.0 (15), 329.1 (15) 

97.0 (15), 108.9 (15) 

97.0 (15), 108.9 (15) 

97.2 (22), 109.0 (22) 

243.0 (15), 253.2 (15) 

96.9 (15), 108.8 (15) 

165.6 (25), 256.0 (10), 297.2 (4) 

97.0 (15), 108.9 (15) 

97.0 (15), 108.9 (15) 

159.1 (18), 281.2 (12) 

96.9 (15), 297.2 (15) 

 
a Retention times and chromatograms of each MRM function can be seen in Figure 6.1.  
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The composition of the organic solvent B, was optimised for separation on a Kinetex PFP column 

(50 mm × 2.1 mm, 2.6 um; Phenomenex, USA) at 45 ºC. Solvents considered included 100 % 

methanol, 100 % acetonitrile, 50 % methanol: 50 % acetonitrile and 55 % methanol in 5 mM 

ammonium formate (data not shown). The best resolution for the majority of steroids was achieved 

using a solvent containing 49 % methanol: 49 % acetonitrile: 2 % isopropanol (solvent B). Steroids 

were subsequently separated at a flow rate of 0.4 mL min-1 using a linear gradient from 85% A to 

60% B in 7,5 min, followed by a linear gradient to 100% in 0.1 min and an isocratic elution with 

100% solvent B for 0.9 min. The total run time was 10.5 min and the injection volume was 5 µL. 

Steroid (trivial name) 
LODa  

(ng mL-1) 

LOQb  

(ng mL-1) 

 

Calibration 

range  

(ng mL-1) 

Linearity 

(r2) 
Culture medium Plasma 

     
RSDc 

(%) 

Recoveryc 

(%) 

RSDc 

(%) 

Recoveryc 

(%) 

Aldosterone 

18-Hydroxycorticosterone 

Cortisol 

Cortisone 

11-Dehydrocorticosterone 

Corticosterone 

11-Deoxycortisol 

16-Hydroxyprogesterone 

Testosterone 

Dehydroepiandrosterone 

Androstenedione 

17-Hydroxypregnenolone 

Deoxycorticosterone 

17-Hydroxyprogesterone 

Pregnenolone 

Progesterone 

0.1 

0.1 

0.1 

0.09 

0.09 

1.0 

0.09 

0.009 

0.09 

0.9 

0.1 

1.0 

0.09 

0.09 

0.1 

0.01 

1.0 

0.9 

0.1 

0.09 

0.9 

9.0 

0.09 

0.009 

0.1 

10 

0.9 

10 

0.09 

0.09 

1.0 

1.0 

1.0-10000 

0.9-9000 

0.1-9000 

0.09-9000 

0.9-9000 

9.0-9000 

0.09-9000 

0.009-10000 

0.1-2000 

10-9000 

0.9-10000 

10-10000 

0.09-9000 

0.09-10000 

1.0-9000 

1.0-10000 

0.998 

0.996 

0.999 

0.999 

0.999 

0.999 

0.999 

0.998 

0.998 

0.993 

0.999 

0.994 

0.998 

0.997 

0.994 

0.996 

7.7 

9.3 

5.4 

4.6 

9.9 

8.0 

8.0 

7.8 

7.4 

9.9 

6.9 

6.5 

9.4 

7.1 

9.0 

9.2 

136.2 

130.8 

127.6 

131.5 

128.9 

137.0 

129.7 

133.6 

140.4 

118.9 

134.9 

124.4 

138.4 

112.9 

125.6 

142.0 

8.9 

9.2 

9.7 

8.7 

6.8 

8.9 

9.5 

9.8 

8.4 

8.1 

5.2 

9.8 

3.8 

6.6 

12.3 

7.7 

112.2 

111.9 

112.0 

105.0 

110.5 

119.6 

104.6 

116.4 

128.3 

96.0 

114.0 

105.0 

109.6 

109.9 

80.6 

96.3 

 

Table 6.2. Method validation results for LC-MS/MS analysis 

aLimit of detection 
bLimit of quantification 
cResidual standard deviation 
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All steroids mentioned were separated to baseline within 10.5 minutes (including equilibration), 

with the exception of 18-hydroxycorticosterone and cortisol, of which the peaks were resolved to at 

least 30 % above baseline.  

The 16 steroids that were analysed included the 13 steroids known to be produced in the sheep 

adrenal gland, as well as the inactive 11-oxo-derivatives of cortisol and corticosterone, namely 

cortisone and 11-dehydrocorticosterone, respectively. The inclusion of these two steroids is 

important for stress related studies. Since the measurement of cortisol is considered the golden 

standard for measuring stress in sheep, d4-cortisol was chosen as internal standard. Testosterone 

was also included in the analysis as only male animals were used in the in vivo study and a high 

concentration of testosterone is therefore expected. The inclusion of testosterone in the method 

development was done to ensure that there is no cross-talk with the other steroids of interest.  

6.3.2 Method validation 

Method validation requires the evaluation of linearity, LOD and LOQ from calibration samples, as 

well as the evaluation of precision and accuracy from quality control samples. Excellent linearity 

was obtained from calibration samples with r2 values > 0.993. This linearity was maintained for an 

extensive calibration range up to 4 orders of magnitude and is shown in Table 6.2. Although 

concentrations as high as 10000 ng mL-1 are not physiologically relevant, they can occur under in 

vitro conditions and it was therefore necessary to establish these linearity ranges to facilitate in the 

designing of in vitro experimental setups. LOD and LOQ results are shown in Table 6.2. 16-

Hydroxyprogesterone had the lowest detection and quantification limit at 0.009 ng mL-1, while 17-

hydroxyprogesterone had the highest LOQ of 10 ng mL-1. 

Accuracy was measured as the percentage steroid recovery from 6 quality control samples of either 

culture medium (containing 0.1 % foetal calf serum) for the liquid-liquid extraction procedure or 

steroid-free foetal calf serum for the solid-phase-extraction procedure. No steroids were detected in 

non-spiked samples of low serum culture medium or steroid-free serum.  

The steroid recovery from culture medium with liquid-liquid extraction was generally higher than 

the steroid recovery from serum samples (more complex matrix) using SPE in combination with 

liquid-liquid extraction. Steroid recoveries from culture medium ranged between 112.9 % (17-

hydroxyprogesterone) and 142.0 % (progesterone), with precisions (% RSD) ranging between 4.6 

(cortisone) and 9.9 (DHEA). Steroid recoveries from serum samples ranged between 80.6 % 
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Figure 6.1. Multiple reaction monitoring (MRM) chromatograms of the steroids separated on a Phenomenex Kinetex PFP column (50mm × 2.1 mm, 2.6 µm) at 45 ºC. The MRM 
transitions and settings are listed in Table 6.1. 
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(pregnenolone) and 128.3 % (testosterone), with precisions ranging between 3.8 % 

(deoxycorticosterone) and 12.3 % (pregnenolone). The difference found in recoveries may result 

from both a matrix effect and the more elaborate extraction procedure followed in the preparation of 

serum samples. 

Accuracy was measured as the percentage steroid recovery from 6 quality control samples of either 

culture medium (containing 0.1 % foetal calf serum) for the liquid-liquid extraction procedure or 

steroid-free foetal calf serum for the solid-phase-extraction procedure. No steroids were detected in 

non-spiked samples of low serum culture medium or steroid-free serum.  

The steroid recovery from culture medium with liquid-liquid extraction was generally higher than 

the steroid recovery from serum samples (more complex matrix) using SPE in combination with 

liquid-liquid extraction. Steroid recoveries from culture medium ranged between 112.9 % (17-

hydroxyprogesterone) and 142.0 % (progesterone), with precisions (% RSD) ranging between 4.6 

(cortisone) and 9.9 (DHEA). Steroid recoveries from serum samples ranged between 80.6 % 

(pregnenolone) and 128.3 % (testosterone), with precisions ranging between 3.8 % 

(deoxycorticosterone) and 12.3 % (pregnenolone). The difference found in recoveries may result 

from both a matrix effect and the more elaborate extraction procedure followed in the preparation of 

serum samples. 

The low ionization efficiencies of pregnenolone, 17-hydroxypregnenolone and DHEA may 

contribute to the relatively high LOD and LOQ, and the subsequent lower linearity, precision and 

accuracy obtained for these compounds. The instrument precision was found to be 4.8 % intra-day, 

but increased to 9.8 % inter-day (over 4 days). This may be the result of drift in the signal of the 

mass spectrometer and the source that could become contaminated during the day. For this reason, a 

new standard dilution series was prepared for each day, which was analysed daily at the 

commencement and cessation of each sample list.  

6.3.3 Quantification and analyses of steroids in adrenal cells and plasma 

The validated method was used to analyse the production of steroid hormones in sheep adrenal 

primary cultures upon addition of 100 µM pregnenolone in the absence or presence of 1 µM ACTH. 

The predominant steroids detected in the primary cultures after forty-eight hours of incubation with 

100 µM pregnenolone were progesterone (19.39 ± 0.27 x 103 ng mL-1), 17-hydroxyprogesterone 

(3.93 ± 0.18 x 103 ng mL-1); pregnenolone (3.81 ± 0.20 x 103 ng mL-1), corticosterone (2.86 ± 0.04 

x 103 ng mL-1) and 17-hydroxypregnenolone (1.25 ± 0.04 x 103 ng mL-1) (Table 6.3). The other 
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adrenal steroids were also present at low, but detectable concentrations, while cortisone, 11-

dehydrocorticosterone and testosterone were not detected since these steroids are not synthesised in 

the sheep adrenal. As expected, the addition of 1 µM ACTH resulted in a 1.22-fold increase in 

cortisol production (P < 0.01). Moreover, the addition of ACTH also resulted in significant 

increases (P < 0.05) in the production of 17-hydroxyprogesterone (1.16-fold), 16-

hydroxyprogesterone (1.22-fold) and 18-hydroxycorticosterone (1.48-fold). Progesterone, 17-

hydroxyprogesterone, pregnenolone, corticosterone and 16-hydroxyprogesterone remained the 

predominant steroids during the ACTH treatment. 17-Hydroxyprogesterone is a precursor of 

cortisol, which explains the concomitant concentration increases in these two steroids. In addition, 

the 16-hydroxyprogesterone (not a precursor of cortisol) concentration also increased, which 

suggest that the hydroxylase activity of CYP17 towards progesterone (produces 16- and 17-

hydroxyprogesterone) was increased by ACTH addition.  

 
Pregnenolone 

(ng mL-1) 

Pregnenolone +ACTH  

(ng mL-1) Fold change P-value 

Pregnenolone 

17-Hydroxypregnenolone 

Dehydroepiandrosterone 

Progesterone 

17-Hydroxyprogesterone 

16-Hydroxyprogesterone 

Androstenedione 

Deoxycorticosterone 

Corticosterone 

18-Hydroxycorticosterone 

Aldosterone 

11-Deoxycortisol 

Cortisol 

3.81 ± 0.20 x103 

1.25 ± 0.04 x103 

276.89 ± 30.36 

19.39 ± 0.27 x103 

3.93 ± 0.18 x103 

347.14 ± 25.54 

37.22 ± 0.66 

299.18 ± 32.01 

2.86 ± 0.04 x103 

16.43 ± 1.27 

1.15 ± 0.54 

402.02 ± 29.55 

471.05 ± 7.80 

3.36 ± 0.42 x103 

1.16 ± 0.02 x103 

288.72 ± 35.24 

18.00 ± 0.35 x103 

4.56 ± 0.06 x103 

422.87 ± 6.32 

42.23 ± 2.19 

305.25 ± 37.87 

2.98 ± 0.09 x103 

24.25 ± 2.40 

0.53 ± 0.25 

400.63 ± 38.35 

576.65 ± 11.23 

0.88 ± 0.12 

0.95 ± 0.04 

1.04 ± 0.17 

0.98 ± 0.02 

1.16 ± 0.05 * 

1.22 ± 0.09 * 

1.13 ± 0.06 

1.02 ± 0.17 

1.04 ± 0.04 

1.48 ± 0.19 * 

0.47 ± 0.31 

1.00 ± 0.12 

1.22 ± 0.03 ** 

0.3866 

0.3291 

0.8117 

0.4209 

0.0289 

0.0451 

0.0936 

0.9085 

0.3030 

0.0451 

0.3634 

0.9785 

0.0015 

 

Table 6.3. Steroid hormones produced in sheep adrenal primary cultures after forty-eight hours with 100 µM 
pregnenolone treatment, with or without 1 µM ACTH. Data represents the mean and standard error of the mean of 
triplicate values with P-values reported by Student’s t-tests. Note that concentrations were calculated from the fraction 
of total steroid added as substrate (100 µM). 

*P < 0.05; **P < 0.01 
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From the foregoing, it is evident that the UPLC-MS/MS method allowed accurate analysis of 

adrenal steroidogenesis products in a primary culture system. The potential of the method to 

measure plasma steroids was also investigated in sheep administered insulin. The steroid 

concentrations in the plasma were significantly lower than in the adrenal cell cultures with the 

predominant steroid hormones under basal conditions (pre insulin injection) being cortisol (11.64 ± 

2.20 ng mL-1), testosterone (3.44 ± 0.94 ng mL-1) and cortisone (1.40 ± 0.12 ng mL-1) (Table 6.4). 

Androstenedione (0.17 ± 0.03 ng mL-1), aldosterone (0.13 ± 0.03 ng mL-1), 16-hydroxyprogesterone 

(0.117 ± 0.026 ng mL-1), 11-dehydrocorticosterone (0.10 ± 0.02 ng mL-1), 17-hydroxyprogesterone 

(0.07 ± 0.01 ng mL-1), and 11-deoxycortisol (0.05 ± 0.01 ng mL-1) were all present at low, but 

 
Pre-insulin 

(ng mL-1) 

Post-insulin 

(ng mL-1) Fold change P-value

Adrenal steroids 

Pregnenolone 

17-Hydroxypregnenolone 

Dehydroepiandrosterone 

Progesterone 

17-Hydroxyprogesterone 

16-Hydroxyprogesterone 

Androstenedione 

Deoxycorticosterone 

Corticosterone 

18-Hydroxycorticosterone 

Aldosterone 

11-Deoxycortisol 

Cortisol 

Other steroids 

Cortisone 

11-Dehydrocorticosterone 

Testosterone 

- 

- 

- 

0.16 ± 0.06 

0.07 ± 0.01 

0.117 ± 0.026 

0.17 ± 0.03 

0.18 ± 0.10 

0.27 ± 0.10 

- 

0.13 ± 0.03 

0.05 ± 0.01 

11.64 ± 2.20 

 

1.40 ± 0.12 

0.10 ± 0.02 

3.44 ± 0.94 

- 

- 

- 

0.10 ± 0.03 

0.05 ± 0.02 

0.106 ± 0.019 

0.14 ± 0.02 

0.09 ± 0.02 

0.49 ± 0.18 

- 

0.17 ± 0.03 

0.14 ± 0.06 

21.12 ± 3.24 

 

1.90 ± 0.26 

0.13 ± 0.02 

1.71 ± 0.42 

- 

- 

- 

0.63 ± 0.30 

0.71 ± 0.30 

0.91 ± 0.26 

0.82 ± 0.19 

0.50 ± 0.3 

1.81 ± 0.95 

- 

1.31 ± 0.38 

2.80 ± 1.32 

1.81 ± 0.44 * 

 

1.36 ± 0.22 * 

1.30 ± 0.33 

0.50 ± 0.19 

- 

- 

- 

0.1289 

0.3859 

0.5957 

0.3611 

0.2621 

0.3537 

- 

0.2563 

0.2048 

0.0205 

 

0.0499 

0.2110 

0.0551 

 

Table 6.4. Steroid hormones produced in sheep plasma immediately prior to insulin administration and 60 minutes 
thereafter. Data represents the mean and standard error of the mean of 10 sheep with P-values reported by Student’s t-
tests. 

*P < 0.05 
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detectable concentrations. Pregnenolone, 17-hydroxypregnenolone, DHEA and 18-

hydroxycorticosterone concentrations were below the limits of detection.  

Insulin administration resulted in a significant (P < 0.05) increase in cortisol concentrations (1.81-

fold). The cortisol response to insulin-induced hypoglycaemia is consistent with response data from 

previous studies on Merinos, such as Engelbrecht et al., 2000, as well as Smith and Dobson, 2002. 

Interestingly, a 1.36-fold increase in cortisone concentrations (the inactive 11-oxo-derivative of 

cortisol) was also observed. However, the cortisol:cortisone ratio also increased 1.34-fold from 8.3 

to 11.1 in response to insulin administration. This indicates that the stress response not only resulted 

in a higher production of cortisol in the adrenal gland, but also increased the fraction of active 

glucocorticoids relative to inactive glucocorticoids. The measurement of both cortisol and cortisone 

would thus seem to be a more accurate approach than the measurement of cortisol alone in stress-

related studies. 

Although 100 µM pregnenolone was added to the primary adrenal cultures, which is approximately 

3 orders of magnitude higher than concentrations normally encountered in vivo, a similar cortisol 

specific response was observed in these adrenocortical cells. The addition of 100 µM pregnenolone 

was done to ensure that this substrate is not depleted within 48 hours and impede downstream 

catalytic reactions. 

6.4 Conclusion 

The method developed in this study is sensitive and specific for the quantification of the steroids 

involved in the HPA axis stress response. The limit of quantification and linearity across a wide 

concentration range makes this method suitable for both in vivo and in vitro studies. Analysis of 16 

steroids from a 5 µL injection volume was done in 10.5 minutes per run without derivatisation, and 

is considered progress in the quest for detecting multiple steroids in a single analysis by UPLC-

MS/MS in comparison with other current methods. This method is a simple alternative to labour 

intensive GC-MS and the less accurate immunoassay methods.  

Investigation of the plasma steroid responses to insulin induced hypoglycaemia showed a cortisol 

and cortisone specific response. Not only was the production of cortisol in the adrenal gland 

increased, but the ratio of active glucocorticoids relative to inactive glucocorticoids was increased 

outside the adrenal gland. It is suggested that cortisol should be monitored together with cortisone 

in stress-related studies, since the interconversion between these two steroids by 11βHSD may 

affect conclusions drawn based on the analysis of cortisol alone. Investigation of the adrenocortical 

Stellenbosch University http://scholar.sun.ac.za



 

 82

cell response to ACTH stimulation showed a cortisol specific response that is thought to be 

mediated by an increase in CYP17 activity towards progesterone, as reflected by the concomitant 

increases in 16- and 17-hydroxyprogesterone. It was therefore important to investigate the relative 

contributions of the two ovine CYP17 isoforms towards cortisol production of sheep. This study is 

described in the next chapter. 
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CHAPTER 7 

Relative contribution of two ovine CYP17 isoforms in the steroidogenic output 

of adult adrenocortical cells 

7.1 Introduction 

The two CYP17 isoforms from Chapter 5 showed little difference in catalytic activity under in vitro 

conditions, and it is unclear whether these small differences would affect cortisol production or alter 

the total steroidogenic output (see Table 5.1). The substrate competition between CYP17 and 

3βHSD needs to be considered, as well as the modulating effect of cytochrome b5. The use of 

primary culture preparations of adrenocortical cells allows an in vitro experimental setup that 

closely resembles the in vivo conditions of the adrenal gland. The current study thus investigated the 

relative contribution of the two CYP17 isoforms on the cortisol production, and general 

steroidogenic output, from adrenocortical cells of either homozygous WT1/WT1 or heterozygous 

WT1/WT2 sheep. Furthermore, the animals that were used in this study belonged to one of two 

selection lines, with either high (H-line) or low (L-line) fitness traits. The H-line exhibited superior 

reproductive performances relative to the L-line (Cloete et al., 2004), while lamb survival was also 

reported to respond to selection (Cloete et al., 2009). Moreover, the L-line was characterised by 

behavioural responses indicative of a wilder nature (Cloete et al., 2005a, 2010), which may result in 

stress under normal husbandry practices. It is proposed that the HPA axis function of the H-line is 

superior to that of the L-line, and that some of these line differences may be explained by 

differences in adrenal steroidogenesis. The CYP17 genotype was therefore investigated in the 

current study as contributor to HPA axis function due to its potential effects on cortisol production.  

The steroidogenic output from primary cultures of adult adrenocortical (AA) cells could be assessed 

either under endogenous conditions (Xing et al., 2011) or by the addition of a common precursor, 

such as pregnenolone (Engelbrecht et al., 2000). As mentioned in Sections 3.3.1 and 3.5.1, the 

supply of cholesterol to CYP11A1, and it subsequent conversion to pregnenolone, is the primary 

regulating mechanisms of the quantitative steroidogenic output. Therefore the addition of an excess 

pregnenolone to AA cells is proposed, rather than endogenous conditions, to reduce variation in the 

experimental system, since the aim is to ascertain differences in steroidogenesis among CYP17 

genotypes. Moreover, pregnenolone was chosen rather than cholesterol, since cholesterol is 

virtually insoluble in aqueous solutions and renders it unsuitable as substrate in such experiments. 
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An additional goal of these experiments with AA cells was to compare the steroidogenic responses 

of unstimulated and ACTH stimulated cells. ACTH was added to AA cells to stimulate adrenal 

steroidogenesis and distinguish stimulated from basal secretion. The comparison of the 

glucocorticoid responses between the CYP17 genotypes may therefore reveal whether the activity of 

the CYP17 isoforms is regulated differently, or whether there are differences in the intracellular 

ACTH responses of the selection lines. Furthermore, the intracellular signal transduction pathways 

may be different between the selection lines. For this reason it is suggested that compounds are 

added to AA cells, which influence the cAMP second messenger pathway. As previously mentioned 

in Section 2.6.3, ACTH binds to an ACTH receptor on the outer surface of the adrenal cell 

membrane, which results in the activation of adenylate cyclase to produce cAMP from ATP via Gs 

(a G-protein on the inner surface of the cell membrane). The cAMP acts as second messenger to 

ultimately increase glucocorticoid secretion (Miller and Auchus, 2011). Cholera toxin and forskolin 

are compounds that prolong the production of cAMP.  

Cholera toxin is produced by the bacterium, Vibrio cholerae, which inhibits the GTPase activity of 

Gs. The A1 peptide of this 87-kD multimeric protein catalyses the ADP-ribosylation of Arg210 in the 

α subunit of Gs, using NAD+ as substrate (Garrett and Grisham, 1995). This irreversible ADP-

ribosylation of Gs subsequently prevents it from dissociating from adenylate cyclase (Gilman, 

1987). As a consequence the activation of adenylate cyclase is prolonged and the elevated levels of 

cAMP cause epithelial cells to secrete high volumes of fluid. This results in the characteristic 

symptom of diarrhoea in cholera victims and will lead to death if fluids are not replenished. 

Forskolin was isolated form the root of an Indian plant, Coleus forskohlii, and has been used as 

therapeutic agent for abdominal colic, heart diseases, respiratory disorder and other diseases (Tatee 

et al., 1996). Forskolin prolongs the adenylate cyclase activity by directly binding to adenylate 

cyclase (Seamon and Daly, 1981, 1984; Nelson and Seamon, 1985, 1986; Bender and Neer, 1983). 

However, the association of Gs with adenylate cyclase is required for the full expression of the 

effect of forskolin (Darfler et al., 1982; Schimmer et al., 1987; Juska and de Foresta, 1995).  

Against this background, steroid metabolism was studied in primary cultures of adult adrenocortical 

cells, obtained from H- and L-line rams of different CYP17 genotypes, in the presence or absence 

of ACTH. Stimulation by using either cholera toxin or forskolin was investigated simultaneously, to 

investigate possible differences in the production of intracellular cAMP. 
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7.2 Material and Methods 

7.2.1 Animals 

The South African Merino sheep that were used in this study, originated from the breeding program 

at the Elsenburg Research Farm, situated at lattitude 33° 51‘ S and longitude 18° 50‘ E at an 

elevation of 177 m. The breeding program commenced in 1986 from the same base population, 

where sheep were divergently selected on maternal ranking values for number of lambs weaned per 

mating opportunity (Cloete et. al., 2004, 2009). This divergent selection resulted in significant 

differences in reproduction (Cloete et al., 2004), lamb survival (Cloete and Scholtz, 1998; Cloete et 

al., 2009) and their responses to flock separation (Cloete et al., 2005a; 2010), where the H-line 

outperformed the L-line. The CYP17 genotype of numerous sheep from this breeding program was 

previously determined (Chapter 4). The adrenal glands of 8 sexually mature rams were collected at 

a local abattoir during routine slaughter schedules for the preparation of primary cultures. The 

experiment was structured according to a 2 x 2 statistical design, with CYP17 genotype (WT1/WT1 

vs. WT1/WT2) and selection line (H-line vs. L-line) as factors. Each of the four groups were 

represented by only two individuals (separate primary cultures), due to practical and logistical 

constraints. 

7.2.2 Preparation of primary cultures from adult adrenal cells 

The adrenal glands from Merino rams were used for the preparation of primary cultures of adult 

adrenal (AA) cells as previously described (Basset et al., 2004; Xing et al., 2011). Ethanol (70 % 

v/v) was used to rinse the adrenal glands after collection at the abattoir and after excess fat was 

removed at the laboratory. The glands were stored in ice cold EBS (Earl’s balanced salts, Sigma-

Aldrich, St. Louis, MO, USA) and kept on ice for no more than five hours. The adrenals were then 

sliced with the use of a microtome, minced with scissors and digested with culture medium 

containing 1 mg mL-1 collagenase D (Roche, Mannheim, Germany), 0.1 mg mL-1 DNase I (Roche, 

Mannheim, Germany), penicillin/streptomycin and gentamycin for one hour at 37 ºC. The resulting 

cell suspension was filtered through a 100 µm mesh nylon filter, before collecting the cells by 

centrifugation at 600 x g and resuspending the cells in culture medium. The remainder of 

undigested adrenal tissue was subjected to a second round of digestion, filtration and resuspension, 

after which the collective cell suspension from an individual sheep was seeded into 10 cm tissue 

culture dishes. After 24 hours the cells were trypsinised, counted and replated into 12-well tissue 

culture plates at a concentration of 300 000 cells per well (cell viability > 75 %). The cells were 

cultured for four days in culture medium consisting of DMEM/F12 (Sigma-Aldrich, St. Louis, MO, 
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USA) containing penicillin/streptomycin, gentamycin, kanamycin and 10% foetal calf serum 

(Gibco-Invitrogen, Grand Island, NY, USA). After day four, kanamycin was omitted from the 

culture medium to allow for more rapid cell growth. Twenty-four hours prior to the steroid 

metabolism assay, the foetal calf serum concentration in the culture medium was reduced to 0.1 %. 

The steroid assay was conducted after day six, when the cells were confluent. 

7.2.3 Steroid metabolism assay 

The steroidogenic output of AA cells was investigated in control and stimulated AA cells. No 

steroid was added to the growth medium of control AA cells and therefore represented basal 

conditions. The growth medium of all the stimulated AA cells contained 100 µM pregnenolone. In 

addition to pregnenolone, AA cells were stimulated by the addition of 1 µM ACTH, 10 µM 

forskolin or 100 µM cholera toxin. The substrate additions are shown in Table 7.1. Assays were 

performed in triplicate for individual sheep, where each group (four groups in total: H-line CYP17 

homozygous, H-line CYP17 heterozygous, L-line CYP17 homozygous or L-line CYP17 

heterozygous) was represented by two individuals. Substrate media sample aliquots (400 µL) were 

removed at six, twelve, twenty-four, forty-eight and seventy-two hours after initial addition of 

media. A (9,11,12,12-d4)-cortisol internal standard was added to all 48 hour samples to measure the 

true concentrations of steroids in the media. A liquid-liquid extraction of the steroids in the 

respective media was performed. Samples were vortexed for twenty minutes in a 1:10 ratio of 

medium:dichloromethane, centrifuged at 500 x g for five minutes and the aqueous phase was 

aspirated. The dichloromethane phase was dried under gaseous nitrogen at 45 ºC and the dried 

residue dissolved in 200 µL methanol. Samples were stored at -20 ºC prior to analysis. The UPLC-

Table 7.1. Summary of the additions to substrate media for the study of steroid metabolism in adult adrenal cells. The 
“X” indicates the compounds that were added to the various substrate media. 

Description of substrate 
media 

Growth Medium 
(0.1 % serum) 

Pregnenolone 
(100 µM) 

ACTH 
(1 µM) 

Forskolin 
(10 µM) 

Cholera toxin 
(100 µM) 

Basal conditions 

Substrate addition 

ACTH stimulation 

Forskolin stimulation 

Cholera toxin stimulation 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

X 

 

 

 

 

 

X 

 X 
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MS/MS method described in Chapter 6 was used to analyse all thirteen steroids that have previously 

been shown to be produced in the sheep adrenal gland.  

7.2.4 Statistical analysis 

GraphPad Prism 5.03 was used for all statistical analysis (GraphPad Software, Inc., San Diego, CA, 

USA). The UPLC-MS/MS data obtained for pregnenolone conversion in the AA cells was 

normalised by expressing each steroid concentration as the fraction of the total sum of detected 

steroids (set equal to 100 µM). Comparisons of steroid biosynthesis in AA cells were made for each 

steroid metabolite over 72 hours for the selection lines (H- vs. L-line) and CYP17 genotype 

(homozygous WT1/WT1 vs. heterozygous WT1/WT2) with a paired t-test, while the selection line x 

CYP17 genotype sub-groups (HO, HE, LO and LE) were compared with a repeated measures one-way 

ANOVA and Bonferroni’s post-test. The effects of forskolin and cholera toxin on steroidogenesis, 

relative to the effects of ACTH, were analysed for each steroid metabolite with a one-way ANOVA 

and Dunnett’s post-test (ACTH as control). Concentrations of steroid metabolites after 48 hours that 

were calculated with the use of an internal standard were compared to concentrations that were 

calculated without the use of an internal standard (normalised as fraction of total steroid detected, 

set equal to 100 µM) with unpaired t-tests. Results were considered to be significant if the P-value 

was lower than 0.05. 

7.3 Results 

The steroid output from the AA cells were assessed separately for each group of a 2 x 2 design 

(CYP17 genotype x selection line group), namely H-line homozygous WT1/WT1 (HO), H-line 

heterozygous WT1/WT2 (HE), L-line homozygous WT1/WT1 (LO), and L-line heterozygous 

WT1/WT2 (LE). Under basal conditions, the AA cells produced low levels (< 0.3 µM) of 

endogenous steroids (Figure 7.1). These concentrations were close to their lower limits of 

quantification (LOQ) in the UPLC-MS/MS method. A large standard error of the mean was 

therefore present in the data for all the steroids measured under these conditions. The LOQ values 

are indicated by a shaded background in Figure 7.1. The concentrations of 17-

hydroxypregnenolone, DHEA, androstenedione, corticosterone, 18-hydroxycorticosterone, and 

aldosterone were particularly close to the LOQ and accurate comparisons of the CYP17 genotype 

groups were thus not possible. For this reason, no significant difference in the endogenous steroid 

production between the CYP17 genotypes were observed, with the exception of corticosterone 

production, where the LO group produced more corticosterone than the HO group. The LO group 

produced corticosterone at levels higher than the LOQ, while the production of corticosterone in the 
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HO group remained low at levels equal and below the LOQ. Only two other significant differences 

(P < 0.05) in endogenous steroid levels were observed under basal conditions (P < 0.05), namely 

where the pregnenolone levels in the LE group were higher than the LO group (below LOQ) and 11-

deoxycortisol levels in the HE group were higher than the HO group. A gradual accumulation of all 

steroids was observed as steroidogenesis continued over 72 hours at a basal rate, with peak 

concentrations observed after 48 hours.  

The steroid concentrations at 48 hours were calculated by two different quantification methods. The 

one quantification method calculates the steroid concentration as the fraction of total steroid that 

was initially added to the AA cells (100 µM). This method therefore normalise the data and does 

not require the use of an internal standard for quantification. The other quantification method 

calculates the absolute steroid concentrations from the internal standard (deuterated cortisol) 

concentration, where an equal amount of internal standard was added to all the 48 hour samples 

prior to steroid extraction. The steroid concentrations that were calculated from each quantification 

method did not differ significantly (P > 0.05). This indicates that the use of an internal standard to 

quantify steroids is redundant in this study, since the detection of all the adrenal steroids is possible 

and may be expressed as the fraction of the total steroid content. 

As seen in Figure 7.2, the addition of pregnenolone markedly increased the concentrations of all 

steroids (P < 0.05), except for aldosterone. The levels of 18-hydroxycorticosterone and aldosterone 

remained low throughout the different AA cell treatments, with the concentration of aldosterone 

consistently at its LOQ. For this reason, conclusions about the aldosterone responses could not be 

drawn. The aldosterone profiles were not included in Figures 7.1 to 7.5, but have been supplied in 

addendum A (Figure A.1). 

The predominant steroids identified were pregnenolone, progesterone, 17-hydroxyprogesterone and 

17-hydroxypregnenolone. It is interesting to note that corticosterone was present at a relatively high 

concentration (maximum at 3 – 12 µM), which was 5- to 26-fold higher than cortisol. This is in 

contrast to endogenous conditions, where equal amounts of corticosterone and cortisol were 

produced. The cortisol:corticosterone ratio of each group at 48 hours was unique (P < 0.0001), and 

remained constant for that group, irrespective of the stimulation applied (P > 0.05). The HO group 

produced the most cortisol relative to corticosterone with an average cortisol:corticosterone ratio of 

5.2 ± 0.7 (48 h), followed by the HE group with a cortisol:corticosterone ratio of 9.6 ± 1.5, the LO 

group with 17.4 ± 1.8, and lastly the LE group produced the least cortisol with a 

cortisol:corticosterone ratio of 26.0 ± 2.1.  
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Figure 7.1. Steroidogenesis in sheep adrenocortical cells under basal conditions. The shaded background indicates the 
limit of quantification with the UPLC-MS/MS method. The H-line is represented by a black coloured line (HO and HE), 
the L-line represented by a grey coloured line (LO and LE), homozygous WT1 groups are represented by a solid line (HO 
and LO), and heterozygous WT1/WT2 groups by a broken line (HE and LE). 
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Figure 7.2. Steroidogenesis in sheep adrenocortical cells incubated over 72 hours with 100 µM pregnenolone. The H-
line is represented by a black coloured line (HO and HE), the L-line represented by a grey coloured line (LO and LE), 
homozygous WT1 groups are represented by a solid line (HO and LO), and heterozygous WT1/WT2 groups by a broken 
line (HE and LE). 
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Figure 7.3. Steroidogenesis in sheep adrenocortical cells incubated over 72 hours with 100 µM pregnenolone and 1 µM 
ACTH. The H-line is represented by a black coloured line (HO and HE), the L-line represented by a grey coloured line 
(LO and LE), homozygous WT1 groups are represented by a solid line (HO and LO), and heterozygous WT1/WT2 groups 
by a broken line (HE and LE). 
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Figure 7.4. Steroidogenesis in sheep adrenocortical cells incubated over 72 hours with 100 µM pregnenolone and 10 
µM Forskolin. The H-line is represented by a black coloured line (HO and HE), the L-line represented by a grey 
coloured line (LO and LE), homozygous WT1 groups are represented by a solid line (HO and LO), and heterozygous 
WT1/WT2 groups by a broken line (HE and LE). 
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Figure 7.5. Steroidogenesis in sheep adrenocortical cells incubated over 72 hours with 100 µM pregnenolone and 100 
µM cholera toxin. The H-line is represented by a black coloured line (HO and HE), the L-line represented by a grey 
coloured line (LO and LE), homozygous WT1 groups are represented by a solid line (HO and LO), and heterozygous 
WT1/WT2 groups by a broken line (HE and LE). 
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There were detectable differences in steroidogenesis among the four groups of AA cultures in the 

presence of 100 µM pregnenolone (P < 0.05), although the concentrations of progesterone, 

deoxycorticosterone, 18-hydroxycorticosterone and aldosterone were not significantly different 

among the groups (P > 0.05). At a first glance of Figure 7.2, it was clear that the H-line generally 

produced more 17-hydroxypregnenolone, 17-hydroxyprogesterone, 11-deoxycortisol, cortisol, 

corticosterone, DHEA and androstenedione than the L-line (P < 0.05). The only conclusive 

differences between CYP17 genotypes were observed within the H-line, where the HO group 

showed lower conversion of pregnenolone, lower production of DHEA and corticosterone, as well 

as higher production of 16-hydroxyprogesterone (P < 0.05). Cortisol production reached a 

maximum of 1.19 ± 0.08 µM for the HO group, 1.12 ± 0.07 µM for the HE group, 0.25 ± 0.09 µM 

for the LO group, and 0.22 ± 0.06 µM for the LE group. 

Upon ACTH stimulation (Figure 7.3), steroidogenesis was markedly different among the four AA 

cultures for all steroid metabolites assayed, except for pregnenolone and deoxycorticosterone (P > 

0.05). The H-line produced more 17-hydroxypregnenolone, 17-hydroxyprogesterone, 11-

deoxycortisol, cortisol, corticosterone, 18-hydroxycorticosterone and DHEA than the L-line (P < 

0.05). The only differences in CYP17 genotypes were observed within the H-line, where the HO 

group showed lower production of DHEA and higher production of 16-hydroxyprogesterone (P < 

0.05). Cortisol production reached a maximum of 1.55 ± 0.29 µM for the HO group, 1.17 ± 0.25 µM 

for the HE group, 0.35 ± 0.11 µM for the LO group, and 0.27 ± 0.06 µM for the LE group. 

Stimulation with forskolin (Figure 7.4), affected steroidogenesis differently amongst the four AA 

cultures for all steroid metabolites, except for androstenedione and aldosterone. The H-line 

produced more 17-hydroxypregnenolone, 17-hydroxyprogesterone, 11-deoxycortisol, cortisol, 

corticosterone, and 18-hydroxycorticosterone, while less progesterone and deoxycorticosterone was 

produced compared to the L-line (P < 0.05). The only differences in CYP17 genotypes were 

observed within the H-line, where the HO group showed lower conversion of pregnenolone, lower 

production of progesterone, corticosterone and DHEA, while producing more 17-

hydroxyprogesterone and 16-hydroxyprogesterone (P < 0.05). Cortisol production reached a 

maximum of 1.49 ± 0.28 µM for the HO group, 1.08 ± 0.21 µM for the HE group, 0.36 ± 0.06 µM 

for the LO group, and 0.26 ± 0.06 µM for the LE group. 

Upon stimulation with cholera toxin (Figure 7.5), steroidogenesis differed amongst the four AA 

cultures for all steroid metabolites, except for aldosterone. The H-line produced more 17-

hydroxypregnenolone, 17-hydroxyprogesterone, 11-deoxycortisol, cortisol, corticosterone, and 18-
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hydroxycorticosterone, while less progesterone and deoxycorticosterone was produced compared to 

the L-line (P < 0.05). The only differences in CYP17 genotypes were observed within the H-line, 

where the HO group showed lower conversion of pregnenolone, lower production of 

deoxycorticosterone, corticosterone and DHEA, while producing more 16-hydroxyprogesterone (P 

< 0.05). Cortisol production reached a maximum of 1.90 ± 0.31 µM for the HO group, 1.45 ± 0.28 

µM for the HE group, 0.37 ± 0.06 µM for the LO group, and 0.36 ± 0.09 µM for the LE group. 

There were no significant differences in the effects of forskolin, cholera toxin and ACTH on the 

production of cortisol (P > 0.05). The effect of forskolin was, however, significantly different (P < 

0.05) compared to the effect of ACTH for the HO group with respect to 17-hydroxypregnenolone 

and 16-hydroxyprogesterone; the HE group with respect to 17-hydroxypregnenolone; the LO group 

with respect to 17-hydroxyprogesterone, 16-hydroxyprogesterone, androstenedione, 

deoxycorticosterone and DHEA; as well as the LE group with respect to 16-hydroxyprogesterone. 

The effect of cholera toxin was significantly different (P < 0.05) compared to the effect of ACTH 

for the HO group with respect to 17-hydroxyprogesterone and 16-hydroxyprogesterone; the LO 

group with respect to 16-hydroxyprogesterone, deoxycorticosterone, corticosterone and DHEA; as 

well as the LE group with respect to 16-hydroxyprogesterone and androstenedione. 

The morphology of the AA cells differed among treatments and the microscopic images are shown 

in Figure 7.6. AA cells that were treated with pregnenolone (Figure 7.6A) displayed similar normal 

cell morphology as expected from AA cells under basal conditions (no treatment, data not shown). 

Treatment of AA cells with ACTH (Figure 7.6B), however, resulted in a “round” cell morphology 

in certain cells, while treatment with forskolin and cholera toxin caused “rounding” of almost all the 

AA cells. Despite the altered cell morphology, these cells were still viable as reflected by their 

ability to convert pregnenolone to the various steroid metabolites. These cells also remained 

attached (signal of viability) to the tissue culture plate throughout the three day experiment. 
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7.4 Discussion 

The results obtained in this study showed that the concentrations of pregnenolone and 16-

hydroxyprogesterone are exclusively affected by the CYP17 genotype, while the selection lines 

predominantly affected the concentrations of 17-hydroxypregnenolone, 11-deoxycortisol, cortisol 

and 18-hydroxycorticosterone. Moreover, the interaction between the CYP17 genotype and 

selection lines affected the concentrations of DHEA, progesterone, 17-hydroxyprogesterone, 

deoxycorticosterone and corticosterone. These observations explain the unique 

cortisol:corticosterone ratio for each of the four AA cell groups. The cortisol:corticosterone ratio 

indicated that the HO group produced more cortisol (~2-fold) relative to corticosterone when 

compared to the HE group. It is noticeable, however, that the cortisol production was not 

significantly different among CYP17 genotypes over 72 hours, but that it was significantly different 

within the H-line after 24 hours. The HO group produced more cortisol after 24 hours than the HE 

group when stimulated with ACTH, forskolin and cholera toxin, but not under basal conditions or 

with pregnenolone treatment (no ACTH, forskolin or cholera toxin). The cortisol concentrations 

Figure 7.6. Microscope images of primary cultures of adult adrenal gland cells (AA cells). These images displays the 
appearance of AA cells with different substrates: A) 100 µM pregnenolone; B) 100 µM pregnenolone and 1 µM 
ACTH; C) 100 µM pregnenolone and 10 µM forskolin; and D) 100 µM pregnenolone and 100 µM cholera toxin. 
Images were obtained with CellOne software using an Olympus XR microscope at X10 enlargement. 
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also started to decrease after this 24 hour peak. The current study therefore confirms that the 

presence of WT1 was more advantageous for cortisol production than WT2, as was suggested in 

Chapter 5. In all cases, it was clear that the H-line was able to elicit a higher total glucocorticoid 

response than the L-line. This glucocorticoid production difference was the most pronounced for 

cortisol. The contention that this is the result of differences in expression of steroidogenic enzymes 

is likely, but requires further investigation. Such a study would be possible, since the cDNAs from 

these AA cells were obtained, but remains to be analysed for the relative expression of the 

steroidogenic enzymes (data not yet available). 

Interestingly, where 3βHSD and CYP17 are the first enzymes to compete for pregnenolone as 

common substrate, pregnenolone (100 µM) is primarily converted to progesterone (maximum at 50 

– 80 µM) instead of 17-hydroxypregnenolone (maximum at 2 – 7 µM). Therefore it would be 

reasonable to assume that the competition between CYP17 and CYP21 for progesterone is the next 

important enzyme-competing step where a large quantity of steroid may be redirected towards 

cortisol production (50-80 % of total potential precursors of cortisol). However, the supply of 17-

hydroxyprogesterone (maximum at 2 – 18 µM) from the conversion of 17-hydroxypregnenolone by 

3βHSD should not be neglected and remains an important supply of precursor for cortisol 

production. 

The homozygous WT1/WT1 groups for both the H- and L-lines unexpectedly produced more 16-

hydroxyprogesterone than the heterozygous WT1/WT2 groups in the AA cells. This is in contrast to 

observations from Chapter 5, where WT1 produced less 16-hydroxyprogesterone than WT2. 

However, WT1 displayed a higher 17-hydroxyprogesterone/16-hydroxyprogesterone-ratio than 

WT2. The catalytic properties thus suggest that a higher expression of WT1 is required to obtain 

higher 16-hydroxyprogesterone concentrations compared to WT2. In the AA cells, the production 

of 16-hydroxyprogesterone was shown to be under the exclusive control of the CYP17 genotype, 

while the concentrations of 17-hydroxyprogesterone were influenced by both the CYP17 genotype 

and selection line. Furthermore, the concentrations of 16-hydroxyprogesterone were different when 

stimulated with forskolin and cholera toxin, compared to stimulation with ACTH, for the HO, LO 

and LE groups. It is speculated that the higher 16-hydroxyprogesterone production in the 

homozygous WT1/WT1 compared to heterozygous WT1/WT2 sheep may result from a higher 

expression of the WT1 isoform. It might be possible that an unequal expression of the CYP17 

isoforms could also result from either a duplication of the WT1 sequence, or a difference in 

expressional control of the two isoforms, such as the case of bovine CYP17A1 (Vanselow and 

Stellenbosch University http://scholar.sun.ac.za



 

 98

Fürbass, 2011). However, such statements cannot be supported by the present data and it is 

suggested that the cDNA obtained from these AA cells should be analysed for expressional bias. 

This study investigated how the glucocorticoid production in the sheep adrenal gland is affected by 

the CYP17 genotype, with particular emphasis on cortisol production. In Chapter 5, small catalytic 

differences were observed in the activity of the two CYP17 isoforms. It was predicted that the WT1 

isoform would be more likely to support cortisol production than the WT2 isoform. However, it was 

unknown how these minor catalytic differences would affect steroidogenesis as a whole. The results 

from the present study provides evidence in support of the hypothesis that the small catalytic 

differences of the two CYP17 isoforms may translate to significant differences in cortisol 

production in vitro, where the presence of WT1 results in a higher cortisol production than WT2.  

In addition to the CYP17 genotype, the differences in adrenal steroidogenesis were investigated for 

sheep that are considered to have a superior (H-line) or inferior (L-line) ability to cope with stress 

(Cloete et al., 2005a). These sheep were subjected to an arena test, were their behavioural stress 

responses to isolation from their flock - a potent stimulus of the HPA axis - were monitored. The 

present study thus investigated if there were any differences in the HPA axis at the level of adrenal 

steroidogenesis between the H- and L-lines. It was found that the production of cortisol was 

significantly higher in the H-line, compared to the L-line. These differences in steroidogenesis are 

likely the result of genetic differences between the selection lines (Cloete et al., 2004; Cloete et al., 

2005a). The results also reflect the genetic variability within adrenal steroidogenesis that may be 

exploited to improve cortisol responses to the HPA axis if these putative genetic factors could be 

identified. The current study identified CYP17 as one such a factor. 

The observation that there were no significant differences in the effects of ACTH, compared to 

forskolin and cholera toxin, on the production of cortisol, suggests that the intracellular signalling 

pathway is intact for each selection line x CYP17 genotype group. In other words, it is unlikely that 

the variation in steroidogenic responses to ACTH stimulation among these groups stems from 

variation in the ACTH-stimulated production of intracellular cAMP via Gs. The Bonferroni’s post-

test, however, indicated differences in some steroid metabolite concentrations within each group for 

ACTH, forskolin and cholera toxin. This finding might imply that the intracellular responses of 

each group to intracellular cAMP may be different, rather than the production of cAMP. However, 

further research is required for such a conclusion. 

Forskolin and cholera toxin was observed to have a “rounding” effect on the cellular morphology of 

the AA cells. Treatment with ACTH showed a similar effect, but to a lesser extent. This 
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phenomenon was previously observed by Voorhees et al. (1984) in Y1 mouse adrenal tumour cells. 

These researchers observed a “rounded” cell morphology of adrenal cells within 5 minutes of 

ACTH treatment and it correlated with changes in steroidogenic output (higher glucocorticoid 

production). This morphological change in adrenal cells was explained by the cAMP-dependent 

dephosphorylation of paxillin, a focal adhesion protein (Han and Rubin, 1996; Whitehouse et al., 

2002). The organelles are subsequently clustered, which brings the mitochondria (where CYP11A1 

is located) in close proximity to the endoplasmic reticulum, where CYP17, CYP21 and 3βHSD are 

located. Forskolin and cholera toxin causes the prolonged activation of adenylate cyclase and the 

higher production of cAMP consequently results in the higher degree of “roundedness” compared to 

ACTH treatment. 

Although the differences in the intracellular cholesterol economy between the H- and L-line AA 

cells in response to ACTH stimulation (no pregnenolone added) would be interesting to investigate, 

the focus of the current study was to investigate the relative contributions of the CYP17 isoforms in 

steroidogenesis. The addition of pregnenolone as substrate in the current experimental setup was 

merely done to minimize variability within the system to reveal the true effects of the two CYP17 

isoforms in the AA cells. Furthermore, the endogenous steroid concentrations were low and near the 

LOQ for the method employed, which made it difficult to accurately measure any differences that 

could result between the four different groups of AA cells. If such a study should be undertaken, a 

significantly higher injection volume is suggested for UPLC-MS/MS analysis, though would 

complicate subsequent separation and quantification. 

The concentration of aldosterone was consistently low throughout all the AA cell treatments. The 

production of aldosterone is regulated primarily by angiotensin II and renin, and the results suggest 

that aldosterone levels are not increased upon ACTH stimulation. However, the concentrations of 

aldosterone in the samples were near the LOQ, which made conclusions about its regulation by 

ACTH impossible. It might be possible that the cells from the zona glomerulosa – the outer most 

zone of the adrenal cortex – were damaged in the preparative procedure of the AA cultures. This 

theory could explain why low concentrations of aldosterone, and 18-hydroxycorticosterone, were 

detected in the AA cultures, since CYP11B that mediates their production is expressed exclusively 

in the glomerulosa cells. 

7.5 Conclusion 

Both the CYP17 genotype and selection line was responsible for qualitative differences in adrenal 

steroidogenesis. It is plausible to consider selection for the CYP17 genotype to improve the 
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glucocorticoid response from the adrenal gland in Merino sheep. It is also evident that additional 

factors play an important role in steroidogenesis and is reflected in the marked differences between 

the H- and L-lines. The results suggest that glucocorticoid production responded to the divergent 

selection imposed on these lines, as reflected by the distinct differences in adrenal steroidogenesis 

of sheep from the H- and L-lines. It would be worth the effort to identify the putative genetic factors 

that influence adrenal steroidogenesis with the purpose of utilizing it as selection criteria in a 

breeding objective to improve the glucocorticoid response and ultimately robustness in sheep. It 

would also be interesting to investigate possible differences in the cholesterol economy between the 

selection lines, as well as compare their quantitative supply of pregnenolone to steroidogenesis on 

ACHT stimulation.  

The H- and L-lines have shown distinct differences in their steroidogenic output, which prompts the 

question of how the HPA axis responses of these animals would compare to one another. The next 

chapter investigates the in vivo HPA axis responses of the H- and L-lines and the relative 

contribution of the CYP17 genotype in these responses.  
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CHAPTER 8 

Stress coping ability in a divergently selected Merino population: The potential 

of CYP17 as genetic marker for robustness 

8.1 Introduction 

The proper functioning of the HPA axis is crucial in the adaptive response of an animal to various 

stressors. The effectiveness of the HPA axis response is dependent not only on the quantity of 

cortisol that is produced, but also on the time that is required to produce sufficient cortisol and the 

responsiveness of target tissues to circulating cortisol concentrations (Smith and Dobson, 2002; 

Mormède et al., 2007; Mormède et al., 2011). The efficiency at which the HPA axis produces and 

responds to cortisol will ultimately determine how quickly a stressor is counteracted and whether 

the animal is in a state of stress, distress or overstress (Selye, 1946; Ewbank, 1985). It is therefore 

proposed that the HPA axis response of animals be investigated in a time-dependent manner. 

The measurement of glucocorticoids (cortisol in sheep) is the gold standard for measuring the stress 

responses in animals, since it reflects the functioning of the HPA axis (Mormède et al., 2007, 2011). 

Therefore it is suggested that the cortisol response to simulated stress be measured to assess the 

HPA axis function. Various stressful situations may be simulated for the measurement of the HPA 

axis responses, including the transport of animals, isolation from the flock, and administration of 

insulin, CRH or ACTH. The administration of insulin simulates hypoglycaemic stress and allows 

the measurement of glucose concomitantly with cortisol concentrations, which allows the 

monitoring of the both the response and recovery of the animal to the stress. An insulin-induced 

hypoglycaemic stress test is therefore proposed to monitor the time-dependent cortisol responses of 

sheep. 

Although the isolation of a sheep from its flock is also a potent stimulus of the HPA axis (Lynch et 

al., 1992), the measurement of cortisol is an invasive approach that would compromise the stress 

responses of sheep under such circumstances. Instead the measurement of behavioural responses is 

suggested for the assessment of isolation stress. Since researchers have been able to correlated ewe 

temperament with lamb survival and maternal behaviour (Murphy et al., 1994; Murphy, 1999), 

Cloete et al. (2005a) assessed the behavioural responses to flock isolation (reflects temperament) of 

South African Merino sheep, which were divergently selected for (H-line) or against (L-line) the 

ability of a ewe to rear multiple offspring per birthing opportunity. The H-line was previously 
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shown to have a markedly higher lamb survival and maternal behaviour than the L-line (Cloete and 

Scholtz, 1998). Cloete et al. (2005a) observed that the H-line showed a superior stress coping ability 

than the L-line, where the H-line allowed smaller distances from humans, while the L-line lambs 

defecated more frequently throughout the stress test (Cloete et al., 2005a). Furthermore the meat 

quality of these two lines was assessed at time of slaughter (Hoffman et al., 2003; Cloete et al., 

2005a). It was found that the mean slaughter weight, dressing percentage, carcass weight and vivid 

red meat colour was higher in the H-line than in the L-line (Cloete et al., 2005a). In relation to 

stress, the selection line difference in the pH of meat was the most important consideration. The 

collective observations from these studies demonstrate the complex relationship between stress, 

production (meat quality and ease of handling) and reproduction (mothering ability and lamb 

survival). Cloete et al. (2005a) proposed that divergent selection, for and against the ability of ewes 

to rear multiples, may have resulted in differences in the functioning of the HPA axis in the H- and 

L-line animals. However, the activity of the HPA axis of the H- and L-line animals has not been 

assessed on a physiological level to date (e.g. measurement of cortisol response to stress). 

The present study thus set out to investigate the functionality of the HPA axis in the H- and L-lines 

by assessing their cortisol response to insulin induced hypoglycaemic stress. In addition, the relative 

contribution of the CYP17 genotype was investigated within each selection line for both the cortisol 

responses to hypoglycaemic stress and behavioural responses to flock isolation (arena test). An 

ovine specific CYP17 genotyping test was developed to analyse genomic DNA from the blood of 

sheep in the breeding program. Furthermore, correlations among the cortisol response and various 

measurable indices of reproduction and arena stress test performance were investigated. 

8.2 Materials and methods 

8.2.1 CYP17 genotyping 

8.2.1.1 Genomic DNA isolation from blood samples 

Blood samples were obtained from sheep of the previously mentioned breeding program (Chapter 

7). Blood samples were collected from the jugular vein in EDTA treated tubes, without prior 

knowledge of the selection line to which the individual sheep belong to. Blood samples were stored 

at –20oC for downstream analysis. The NucleoSpin Blood Core Kit from (Macherey-Nagel, Düran, 

Germany) was used to isolate genomic DNA from the blood samples. All isolations were performed 

by the DNA Sequencing Laboratory of the Central Analytical Facility at Stellenbosch University, 

Stellenbosch, South Africa. The protocol was optimised for DNA yield (all chemicals included with 
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kit, except ethanol). Briefly, 400 µL blood, 400 µL buffer BQ1 and 25 µL proteinase K was mixed 

and incubated at 60 oC overnight. After the addition of 400 µL ethanol, the contents were mixed, 

then transferred to the binding plate and overlayed with 150 µL buffer B5 before applying the 

vacuum. The binding plate was then washed with 600 µL buffer BW and two separate 900 µL 

buffer B5 applications in three respective vacuum steps. The silica membrane was dried for 15 

minutes under vacuum, before eluting the DNA in two sequential vacuum steps with 100 µL elution 

buffer that was pre-heated to 70 oC. DNA yields were typically between 2 (in blood samples stored 

for 6 years) to 50 ng.µL-1 (blood samples stored for less than a year) with 260nm/280nm ratios 

within the acceptable range of 1.8 to 2.2. Blood samples from sheep born from 1995 to 2010 were 

analysed. 

8.2.1.2 CYP17 genotyping with real time polymerase chain reaction 

The Assays-by-DesignSM service for SNP genotyping assays (part number: 4332077) from Applied 

Biosystems (California, USA) was used to develop an ovine CYP17 genotyping method. This real 

time PCR method utilized TaqMan® MGB probes with FAMTM and VIC® dye-labels (Applied 

Biosystems and Roche Molecular Systems Inc., California, USA). The sequence of the VIC®-

labelled probe was 5’-CTTCCTTGCTCAGAACC-3’ and its fluorescence indicated the presence of 

the WT1 allele. The sequence of the FAMTM-labelled probe was 5’-TCCTTGCCCAGAACC-3’ and 

indicated the presence of the WT2 allele. The unlabelled primer sequence of the forward primer was 

5’-CCTGAAGGCCATACAAAATGTCAAT-3’ and the unlabelled reverse primer sequence was 

5’-GCGCAGGGAATATGTCTAACAGAA-3’. Genomic DNA was used as template for reactions, 

which were performed in duplicate in 96-well plates (25 µL final volume/well) according to the 

manufacturer’s instructions. In each assay a negative (no-template) and two positive controls were 

included in duplicate. A positive control for each allele consisted of plasmid vectors that contained 

the cDNA insert of either WT1 or WT2. The CYP17 genotypes of 562 genomic DNA samples were 

analysed. 

Furthermore, the presence of the SNP at nucleotide position 628 was investigated with direct 

sequence analysis. The ACS forward primer designed by Storbeck et al. (2007) was used in the 

analyses: 5’-GAGATCCTGTCAGACAACCA-3’. An ABI Prism 3100 Genetic Analyzer (Applied 

Biosystems, Foster City, California) by the Central Analytical Facility of Stellenbosch University to 

perform direct sequence analyses. Sequencing results were analysed with BioEdit Sequence 

Alignment Editor (version 7.0.5.2 © 1997-2007, T. Hall) software. 

Stellenbosch University http://scholar.sun.ac.za



 

 104

8.2.2 Stress tests 

8.2.2.1 Insulin induced hypoglycaemic stress 

This stress test was performed on thirty-eight adult breeding rams (2-6 years of age) from the 

breeding program (17 H- and 21 L-line sheep) at the Elsenburg Research Farm, situated at lattitude 

33° 51‘ S and longitude 18° 50‘ E at an elevation of 177 m. Sheep were kept in separate pens, but 

maintained visual contact with the members of the flock, and given ad libitum access to water and 

ground alfalfa hay for 1-2 weeks. The feed intake was weighed during the housing period to 

measure daily feed intakes and was normalized per body weight. Human insulin (Actrapid® HM, 

Novo Nordisk, Johannesburg, South Africa) was diluted to 1 IU mL-1 1% NaCl solution 2 hours 

prior to the stress test and administered intravenously to the left jugular vein at a dosage of 0.1 IU 

kg-1 body weight. Blood samples were collected from the right jugular vein of each animal in 

EDTA treated collection tubes (Becton, Dickinson and Company, UK) that were immediately 

placed on ice. The first blood collection was done directly prior to insulin administration, followed 

by blood collections at 15, 30, 60, 90 and 120 min post insulin administration. Representative 

plasma samples from each animal were obtained the same day of the test by means of centrifugation 

(2 500 x g; 10 min; 4 oC), after which plasma samples were transferred to 1.5 mL microcentrifuge 

tubes and stored at 4 oC until analysis followed the next day. Plasma glucose and cortisol levels 

were determined with radio-immunoassay by the PathCare Reference Laboratory (PathCare Park, 

N1 City, Goodwood, Cape Town, South Africa). Cortisol and glucose measurements of sheep that 

did not reach a hypoglycaemic state (defined as < 2 mmol plasma glucose L-1) were excluded from 

the data. Ethics approval for this stress test was obtained from the Departmental Ethics Committee 

for Research on Animals (DECRA reference R08/21) of the Western Cape Department of 

Agriculture.  

8.2.2.2 Animals and breeding program 

All the animals in the current study belonged to the South African Merino breeding program that 

was undertaken in 1986, where sheep have been divergently selected for their ability to rear 

multiple offspring (Cloete and Durand, 1994; Cloete et al., 2004). The selection lines were derived 

from the same base population and selection within each line was based on maternal ranking values 

for number of lambs weaned per lambing opportunity (Cloete and Durand, 1994). Number of lambs 

weaned per mating in the line selected in the upward direction (H-line) has been proved to be near 

to double that of the line selected in the downward direction (L-line) (Cloete and Scholtz, 1998). 

Furthermore, these lines have also showed marked differences in lambing behaviour (Cloete and 
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Scholtz, 1998; Cloete et al., 2003; Cloete et al., 2005b). Reproductive performance of breeding 

ewes from 1996 to 2008 was recorded as: number of lambs born per mating opportunity (NLB); 

number of lambs weaned per lambing opportunity (NLW); and total weight weaned per lambing 

opportunity (TWW) (HE n = 221 HO n = 75; LE n = 50; LO n = 22). Refer to Cloete and Durand 

(1994), as well as Cloete et al. (2004; 2009), for more details about the breeding program.  

8.2.2.3 Arena stress test 

In this isolation stress test, sheep entered a 10.6 m X 4.0 m arena (marked out in 18 squares) one-

by-one (HE n = 260; HO n = 74; LE n = 53; LO n = 13). The arena was surrounded by wooden panels 

to prevent escape, but still allowing visual contact of six sheep on the opposite side of the arena, 

behind a split-pole fence, where a human operator was situated on a chair. The operator remained 

motionless, while the behaviour of the sheep was assessed for 3 minutes according to the following 

parameters: number of bleats, number of defecation events, number of urinating events, average 

distance from human operator (meters); and movement as number of the boundaries between 

squares that were crossed (crosses). For more details about this arena test and its recordings, refer to 

Cloete et al. (2005a). 

8.2.3 Statistical analysis 

GraphPad Prism (version 4) software (GraphPad Software, San Diego, California) was used for all 

statistical analysis. For the hypoglycaemic stress test, plasma glucose and cortisol responses over 

time were analysed for the selection lines (H- vs. L-line) and CYP17 genotype (homozygous 

WT1/WT1 vs. heterozygous WT1/WT2) with a paired t-test, while the selection line x CYP17 

genotype sub-groups (HO, HE, LO and LE) were compared with a repeated measures one-way 

ANOVA and Bonferroni’s post-test. The peak cortisol concentrations at 60 minutes post insulin 

treatment, as well as the area under the curve of the normalized cortisol response (cortisol 

concentration divided by the glucose concentration), were compared with a two-way ANOVA and 

Bonferroni’s post-test. Fisher’s exact test was used to analyse the CYP17 genotype frequencies (H- 

vs. L-line). The average feed intakes of the CYP17 genotype X selection line sub-groups were 

compared with a two-way ANOVA and Bonferroni’s post-test. 

The interaction effects of CYP17 genotype and selection line was tested with a two-way analysis of 

variance and a Bonferroni’s post-test for each parameter in the insulin tolerance test (parameters: 

cortisol production 60 minutes post insulin administration, and area under the curve for total 

cortisol produced over 2 hours post insulin administration), arena test (parameters: average distance 
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between the sheep and the human operator, movement in arena depicted by number of squares 

crossed, number of bleats, number of urinating events, and number of defecating events), as well as 

reproductive performance assessment (parameters: number of lambs born per lambing opportunity, 

number of lambs weaned per lambing opportunity, total weight weaned per lambing opportunity). 

The relationship between mean cortisol production and the means of each reproduction or 

behaviour trait recorded was investigated with a correlation test between the means (taking into 

account the standard error of the mean and number of observations) of each CYP17 genotype x 

selection line (HE: H-line heterozygotes WT1/WT2; HO: H-line homozygotes WT1/WT1; LE: L-line 

heterozygotes WT1/WT2; and LO: L-line homozygotes WT1/WT1). 

8.3 Results 

8.3.1 CYP17 genotyping results 

The positive controls indicated that the TaqMan assay was suitable for the detection of both WT1 

and WT2 alleles, as shown in Figure 8.1 (areas D and A, respectively). The VIC-specific 

fluorescence of the homozygous WT1/WT1 genomic DNA samples corresponded with the 

fluorescence area D, where the WT1 positive controls were also detected. Area D (Figure 8.1) was 

located between VIC-fluorescence of 2.3 to 3.2 and FAM-fluorescence below 1.2 (as indicated by 

the negative controls in area E). The positive control for WT2 (area A, Figure 8.1) showed FAM-

fluorescence of 3.6 to 4.8 and a VIC-fluorescence below 1.7. However, no homozygous WT2/WT2 

genotypes were detected in the 562 genomic samples that were analysed. The heterozygous 

WT1/WT2 samples therefore showed fluorescence between these values, and interestingly formed 

two distinct groups of heterozygote animals. These two heterozygous groups consistently fell in 

either area B or C of Figure 8.1, even when these samples were re-analysed. Moreover, when 10 

samples from area B (Figure 8.1) were analysed with the previous CYP17 genotyping method 

(LightCycler real time PCR with FRET hybridisation probes), these samples showed melting curve 

peaks with approximately equal height (data not shown). In contrast, 10 samples from area C 

(Figure 8.1) showed skewed melting curve peaks with the LightCycler genotyping method, with a 

higher peak associated with the WT1 melting temperature (data not shown). Furthermore, direct 

sequence analysis showed unequal double peaks in the sequence chromatogram from a sample in 

area B of the Taqman assay (Figure 8.2), where the higher peak was associated with the presence of 

adenine at nucleotide position 628 (WT1). In contrast, the double peaks of the sequence 

chromatogram from a sample in area C of the Taqman assay showed peaks of similar height (Figure 
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8.3). For the purpose of the present study, however, the two heterozygous WT1/WT2 groups were 

treated as one collective group. 

From the analyses of 562 samples with the TaqMan assay, it was observed that 78.3 % of the 

population were heterozygous WT1/WT2 and 21.7 % were homozygous WT1/WT1. Within the 

heterozygous group, 61.6 % were detected in area C of Figure 8.1, while 16.7 % were detected in 

area B. The same CYP17 frequency distribution was observed in both the H- and L-lines (Fisher’s 

exact test: P > 0.05).  

A 

B 

C 

D E 

Figure 8.1. Typical allelic discrimination plot from the TaqMan genotyping assay. The VIC fluorescent dye (x-axis) 
indicates the presence of the WT1 allele, and area D therefore represents homozygous WT1 samples and positive 
controls for WT1. The FAM fluorescent dye (y-axis) indicates the presence of the WT2 allele, and area A therefore 
represents the positive controls for WT2. Area E represents the no-template negative controls. Heterozygous WT1/WT2 
samples were collectively detected in areas B (equal LightCycler melting peaks) and C (unequal LightCycler melting 
peaks). 
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Figure 8.2. A segment from a direct sequence chromatogram depicting the unequal peak heights at nucleotide position 
628 (indicated by the arrow), where the higher peak is associated with the presence of adenine (WT1). The ACS 
forward primer from Storbeck et al. (2007) was used to confirm the presence of this single nucleotide polymorphism in 
the South African Merino. BioEdit Sequence Alignment Editor (version 7.0.5.2 © 1997-2007, T. Hall) software was 
used in the analysis. 

 

Figure 8.3. A segment from a direct sequence chromatogram depicting the similar peak heights at nucleotide position 
268 (indicated by the arrow). The ACS forward primer from Storbeck et al. (2007) was used to confirm the presence of 
this single nucleotide polymorphism in the South African Merino. BioEdit Sequence Alignment Editor (version 7.0.5.2 
© 1997-2007, T. Hall) software was used in the analysis. 

 

Stellenbosch University http://scholar.sun.ac.za



 

 109

8.3.2 Insulin induced hypoglycaemic stress test 

The plasma glucose and cortisol responses of the rams were first grouped according their selection 

lines, namely the H- and L-lines (Figure 8.4). Glucose levels of the H-line reached hypoglycaemia 

(minimum: 1.82 ± 0.07 mmol glucose L-1) quicker at 30 min and returned to baseline levels after 2 

hours, while L-line glucose levels reached a hypoglycaemic state (minimum: 1.77 ± 0.11 mmol 

glucose L-1) at 60 min and remained below the baseline after 2 hours. The H-line produced a higher 

cortisol peak (116.4 ± 7.35 nmol cortisol L-1) at 60 min than the L-line (87.79 ± 12.03 nmol cortisol 

L-1). However, a two-tailed paired t-test showed that the H-line did not have a higher cortisol 

response throughout the two hours than the L-line (P = 0.0967). The glucose response of the H-line, 

however, had a faster recovery rate (paired t-test: P = 0.0003) than the L-line and the glucose 

concentrations of the H-line was higher 90 and 120 minutes post insulin administration.  

When the rams were grouped according to their CYP17 genotype (Figure 8.5), the cortisol response 

of the homozygous WT1/WT1 group was higher (paired t-test: P = 0.0416; maximum: 120.95 ± 

14.62 nmol cortisol L-1) compared to the heterozygous WT1/WT2 group (maximum: 93.07 ± 8.74 

nmol cortisol L-1) (Figure 8.5B). The glucose responses, however, was not different between these 

two groups (paired t-test: P = 0.7497; minima: 1.81 ± 0.07 mmol glucose L-1 for the WT1/WT2 

genotype vs. 1.91 ± 0.19 mmol glucose L-1 for the WT1/WT1 genotype) (Figure 8.5A).  

Figure 8.4. Plasma glucose (A) and cortisol (B) responses of the H- (solid line) and L-lines (broken line) to insulin 
induced hypoglycaemia. Results are representative of 18 H-line and 20 L-line Merino rams and expressed as mean ± 
SEM. *P < 0.05; **P < 0.01; ** P < 0.001. 
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The cortisol production of homozygous WT1/WT1 sheep and H-line sheep seemed to have a 

common higher trend, which was the motivation for subdividing the H- and L-line sheep into their 

respective CYP17 genotypes (Figure 8.6), namely H-line homozygous WT1/WT1 (HO), H-line 

heterozygous WT1/WT2 (HE), L-line homozygous WT1/WT1 (LO), and L-line heterozygous 

WT1/WT2 (LE) sheep. A repeated measures one-way ANOVA showed that the CYP17 genotype and 

selection line are important factors influencing the cortisol response (P = 0.0246). Inspection of the 

graphs suggested that all sub-groups had an equally high cortisol production (Bonferroni: P > 0.05), 

except for the LE group (72.83 ± 11.51 nmol cortisol L-1) that showed a significantly lower 

(Bonferroni: P < 0.05) cortisol production than the LO group (125.21 ± 26.57 mmol glucose L-1) 

(Figure 8.6 C and D). Interestingly, the glucose responses (Figure 8.4 A and B) appeared to be 

distinct for each sub-grouping (one-way ANOVA: P = 0.0485), however, the only significant 

difference in glucose response was observed between the HO (1.95 ± 0.11 nmol glucose L-1) and LO 

(1.72 ± 0.34 nmol glucose L-1) groups. The glucose responses of the HO and HE groups returned to 

baseline (> 30 mmol L-1 glucose), while the LO and LE groups still remained below baseline after 2 

hours. In this case, the glucose levels of the LO group remained the lowest of all sub-groups (Figure 

8.6B), despite its apparent largest cortisol response (Figure 8.6D). 

 

Figure 8.5. Plasma glucose (A) and cortisol (B) responses of homozygous WT1 (solid line) and heterozygous 
WT1/WT2 (broken line) sheep to insulin induced hypoglycaemia. Results are representative of 26 heterozygous 
WT1/WT2 and 12 homozygous WT1 Merino rams and expressed as mean ±SEM. ***P < 0.001. 
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The peak cortisol concentrations for the CYP17 genotype x selection line sub-groups at 60 minutes 

post insulin treatment were compared with a two-way ANOVA, which indicated that neither the 

CYP17 genotype (P = 0.1268) nor the selection line (P = 0.3418) were significant factors. However, 

the interaction between these factors approached significance (P = 0.0524). As mentioned 

previously, it is not only the magnitude of the cortisol response that is important, but also the 

duration of the cortisol output. For this reason the area under the curve (AUC) was calculated for 

the cortisol responses (cortisol concentration normalised by glucose concentration) and compared 

with a two-way ANOVA. These result indicated that total cortisol response was affected by the 

CYP17 genotype (P = 0.0378), but not the selection line (P = 0.1003). The interaction between the 

selection line and the CYP17 genotype, however, was significant (P = 0.0226). Differences in 

cortisol responses between the CYP17 genotype were only found within the L-line (2751.5 ± 57.5 

AUC for the WT1/WT1 genotype vs. 1765.0 ± 179.0 AUC for the WT1/WT2 genotype; Bonferroni: 

P < 0.05). In contrast, cortisol output was independent from CYP17 genotype in the H-line 

Figure 8.6. The plasma glucose (A and B) and cortisol (C and D) responses of the CYP17 x breeding line subgroups to 
hypoglycaemic stress. Homozygous WT1 groups are represented by solid lines, while heterozygous WT1/WT2 sheep are 
represented by broken lines. The responses of H-line sheep (left: A and C) and L-line sheep (right: B and D), 
respectively, have been plotted on the same graph. Results are representative of 17 H-line (11 HE and 6 HO) and 21 L-
line (15 LE and 6 LO) Merino rams and expressed as mean ±SEM.  
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(respectively 2528.5 ± 225.5 AUC for the WT1/WT1 genotype vs. 2610.5 ± 37.5 AUC for the 

WT1/WT2 genotype; Bonferroni: P > 0.05). 

The average daily feed intake (normalized for body weight) of sheep in the week prior to the 

hypoglycaemic stress test was not influenced by the CYP17 genotype or selection line (Two-way 

ANOVA: CYP17 genotype P = 0.4864, Selection line P = 0.1828, CYP17 genotype X selection line 

P = 0.360). No significant difference observed in the average daily feed intakes among any of the 

groups (Bonferroni: P > 0.05; HE: 30.88 ± 1.13 g feed kg-1 body weight, HO: 31.34 ± 0.50 g feed kg-

1 body weight, LE: 34.17 ± 1.01 g feed kg-1 body weight, LO: 31.78 ± 1.89 g feed kg-1 body weight). 

8.3.3 Arena stress test 

The arena test performance of sheep in the HE (n = 260), HO (n = 74), LE (n = 53) and LO (n = 13) 

subgroups were compared. As seen by the sample size, the L-line sheep were poorly represented 

compared to the H-line, due to the effects of downward selection on the birth rate and survival of L-

line animals. The stressful behaviour of sheep was tested before one year of age (prior to exposure 

to various handling procedures) of lambs born from 2001 to 2008 of which the CYP17 genotypes 

were known. The effect of the selection line and CYP17 genotype, as well as their interaction, was 

assessed with a two-way ANOVA, followed by a Bonferroni’s post-test, for each arena test 

Table 8.1. Summary of the behavioural responses of sheep to the arena test that depicts the means (± standard error of 
the mean) and P-values from the two-way ANOVA with CYP17 genotype (CG) and selection line (SL) as factors. 
Traits that were considered were the average distance from the human operator (ADIS), number of crosses (NCROSS), 
number of bleats uttered (NBL), number of urinating events (NUR) and number of defecating events (NDEF). 

 H Line L Line P-values 

 WT1/WT1 WT1/WT2 WT1/WT1 WT1/WT2  SL CG 
SL x 
CG 

Trait         

ADIS 3.65 ± 0.16 3.79 ± 0.99 3.05 ± 0.55 4.21 ± 0.28  0.7301 0.0192* 0.0646 

NCROSS 18.70 ± 1.33 19.40 ± 0.75 15.46 ± 2.54 17.32 ± 1.30  0.1709 0.5096 0.7650 

NBL 12.82 ± 1.23 17.50 ± 0.76 11.69 ± 3.11 18.42 ± 1.43  0.9574 0.0038** 0.6017 

NUR 4.01 ± 0.78  1.79 ± 0.23 4.54  ± 2.45 2.49  ± 0.68  0.4466 0.0083** 0.9116 

NDEF 1.16 ± 0.14 1.06 ± 0.07 0.77  ± 0.26 1.26 ± 0.13  0.6093 0.2852 0.1018 

 *P < 0.05; **P < 0.01 
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parameter (Table 8.1). It was found that the CYP17 genotype (P < 0.05), but not the selection line 

or its interaction with the CYP17 genotype (P > 0.05), had a significant effect on three arena test 

parameters, namely the number of bleats (P = 0.0038, WT1/WT2: 18.58 ± 0.69 bleats vs. WT1/WT1: 

13.76 ± 1.15 bleats), number of urinating events (P = 0.0083; WT1/WT2: 1.45 ± 0.15 events vs. 

WT1/WT1: 3.45 ± 0.71 events) and the average distance allowed between the sheep and the human 

operator (P = 0.0192; WT1/WT2: 4.50 ± 0.17 meters vs. WT1/WT1: 4.26 ± 0.28 meters). The 

animals of the LE group on average kept a longer distance (Bonferroni: P < 0.05; LE: 4.21 ± 0.28 

meters) from the human operator (signal of stress) compared to the LO group (3.05 ± 0.55 meters) 

that showed a higher cortisol response to hypoglycaemia (better ability to cope with stress). The HE 

group uttered more bleats (17.50 ± 0.76 bleats), but urinated less frequently (1.79 ± 0.23 events) 

during the arena test than the HO group (P < 0.05; HO: 12.82 ± 1.23 bleats, 4.01 ± 0.78 events). 

Although the psychological stress responses of these two H-line groups were different, their 

responses to physiological stress (insulin-induced hypoglycaemia) were the same. 

Furthermore, the correlation between cortisol production and the arena test parameters were 

investigated for four sub-groups. When the peak cortisol concentrations were used in the analysis, 

there was no evident correlation (P > 0.05). However, when the area under the curve for the cortisol 

responses (cortisol concentration normalised by glucose concentration) was used in the analysis, a 

strong correlation was found with the defecating frequency (P: 0.0200; Pearson r: 0.98; R2: 0.9603; 

n = 4). The LE group that produced the lowest cortisol response in the hypoglycaemic test also 

defecated at the highest absolute frequency during the arena test. The average distance from the 

human operator also showed a certain degree of correlation, although it only approached 

significance (P: 0.0640; Pearson r: 0.9360; R2: 0.8761; n = 4). 

8.3.4 Reproductive performance 

The reproductive performance of HE (n = 221), HO (n = 75), LE (n = 50), and LO (n = 22) ewes were 

compared (Table 8.2). The motivation for this investigation is that CYP17 also plays a central role 

in the production of reproductive hormones, the production of cortisol to initiate parturition, and it 

has been suggested that a high cortisol production is linked to litter size (SanCristobal-Gaudy et al., 

2001; Mormède et al., 2007). The H- and L-line has been previously shown to have marked 

differences in the number of lambs born and weaned per lambing opportunity (Cloete and Scholtz, 

1998). In the current study, the effect of the CYP17 genotype, and its interaction with the selection 

line, was investigated by a two-way ANOVA and Bonferroni’s post-test (Table 8.2). ). It is clear 
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that the selection line is the only factor that affected reproductive output (P < 0.01), while the 

CYP17 genotype, as well as the interaction between the two factors, had no effect (P > 0.30). 

8.4 Discussion and conclusion 

The TaqMan genotyping assay was an effective method for determining the CYP17 genotype of 

sheep. Two heterozygous WT1/WT2 groups were consistently detected, but the cause of the 

difference between these groups remains unknown. The data from the TaqMan assay corresponded 

with the LightCycler method used previously. Storbeck et al. (2008a) also observed two 

heterozygous CYP17 genotypes, with either equal or unequal melting peak heights by using the 

same LightCycler method, for the South African Angora and Boer goats. They found that this 

phenomenon was the result of a CYP17 duplication of the one allele, which gave rise to three 

genotypes (but two alleles): homozygous ACS- (one high melting peak: two ACS- copies); 

heterozygous ACS+/ACS- with unequal peaks (one ACS+ and two ACS- copies); and heterozygous 

ACS+/ACS- with equal peaks (two ACS+ and two ACS- copies). The homozygote of the other 

allele was never detected in the populations investigated. In addition, they also analysed 

heterozygous WT1/WT2 samples from the South African Merino and found that sheep only have 

one CYP17 copy (relative to the goat). However, less than five heterozygous sheep were analysed, 

which might not have been representative of both heterozygous groups observed in the current 

study. In an attempt to investigate whether there may indeed be a CYP17 duplication, a relative 

DNA copy number determination was done for samples of both heterozygous groups with the 

TaqMan assay, using the 2-∆∆C
T method (Livak and Schmittgen, 2001). However, the data were 

inconsistent and a conclusion could not be drawn, since twice the amount WT2 was detected in the 

Table 8.2. Summary of reproductive performances, in terms of ewe reproduction and lamb output, that depicts the 
means (± standard error of the mean) and P-values from the two-way ANOVA with CYP17 genotype (CG) and 
selection line (SL) as factors. Traits that were considered were the number of lambs born per joining (NLB), number 
of lambs weaned per lambing (NLW) and total weight of lamb weaned per lambing (TLWW). 

 

 H-Line L-Line P-values 

Trait WT1/WT1 WT1/WT2 WT1/WT1 WT1/WT2  SL CG 
SL x 
CG 

NLB 1.14 ± 0.06 1.18 ± 0.04 0.73 ± 0.09 0.80 ± 0.06  < 0.0001*** 0.4513 0.7851 

NLW 0.97 ± 0.05 0.92 ± 0.03 0.54 ± 0.08 0.57 ± 0.05  < 0.0001*** 0.8835 0.5664 

TLWW 22.79 ± 1.18 20.93 ± 0.74 11.15 ± 1.72 12.30 ± 1.15  < 0.0001*** 0.8117 0.3127 

 ***P < 0.001 
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“equal peak” (Figure 8.1 area B) compared to the “unequal peak” (Figure 8.1 area C) heterozygous 

group, while half the amount of WT1 was detected in the homozygous WT1/WT1 group compared 

to both heterozygous groups (data not shown). It seems likely that the missing homozygous WT2 

genotype may be the result of a genetic anomaly after all, but it cannot be conclusively proven at 

this stage. The recent study by Vanselow and Fürbass (2011), together with the study of Storbeck et 

al. (2008), has demonstrated that genetic anomalies of the CYP17 gene (such as multiple copies) 

may be more common than initially considered. It is suggested that more sensitive methods, such as 

the fluorescent in situ hybridisation technique, should be utilised to establish the number of CYP17 

copies in the sheep genome. The present study therefore did not distinguish between the two 

heterozygous groups, and they were treated as one group throughout analyses. The reason why no 

homozygous WT2 sheep were detected is most probably the result of a genetic anomaly, which may 

also explain the recurrence of the two heterozygous groups. However, this finding warrants further 

investigation and fluorescent in situ hybridisation is recommended to determine the number of 

CYP17 copies in the ovine genome. 

The breeding program was successful in improving the reproductive performance, in terms of lamb 

output, lamb survival and growth, in the H-line (Cloete and Scholtz, 1998; Cloete et al., 2003, 2004, 

2009), but the CYP17 genotype apparently does not contribute to these differences. It would, 

however, be interesting to investigate the influence of the CYP17 genotype on maternal behaviour, 

since cortisol production has previously been linked to the degree of maternal behaviour displayed 

by ewes (Pryce et al., 1988; Dwyer et al., 2004). Such an investigation is suggested for future 

studies.  

While the weekly feed intake of sheep seemed to not be affected by the CYP17 genotype, the 

CYP17 genotype had significant influences on behavioural responses to isolation stress. The 

homozygous WT1/WT1 sheep uttered less bleats and approached humans more easily than 

heterozygous WT1/WT2 sheep, which indicates that homozygous WT1/WT1 sheep have a ‘calmer’ 

temperament. These significant parameters corresponded to certain parameters that showed 

significant differences in the H- and L-lines in the study of Cloete et al. (2005a). In the study by 

Kilgour and Szantar-Coddington (1995), it was also found that Merinos of the Fertility flock (that 

were selected for rearing ability) allowed smaller (P < 0.05) distances to the human operator and 

also bleated less often than Random control ewes. However, the homozygous WT1/WT1 sheep in 

the present study also urinated more frequently than heterozygous WT1/WT2 sheep, which indicates 

stressful behaviour. The higher urinating frequency observed for homozygous WT1/WT1 (and L-

line sheep) might be explained by their higher production of deoxycorticosterone (as seen in 
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Chapter 6) that is known to inhibit plasma renin activity and act via the renin-angiotensin system 

(Scaroni et al., 1986). The number of bleats uttered; the frequency of urinating events and the 

average distance from the human operator during the arena test therefore hold potential selection 

criteria to assist in the identification of Merinos belonging to the respective CYP17 genotypes, after 

further development.  

Furthermore, the total cortisol response to hypoglycaemia correlated (indirectly proportional) to the 

frequency of defecation during the arena test, while also showing some degree of correlation with 

the average distance from the human operator. These two parameters coincided with the 

observations by Cloete et al. (2005a) that the H-line displayed less stressful behaviour, in terms of a 

lower defecating frequency and also allowing smaller distances from the human operator than the 

L-line. These results suggest that these two parameters of the arena test may be utilised to select for 

superior HPA axis function in terms of total cortisol responses. The common selection criterion for 

both these objectives is based on the distance from to the human operator, while the number of lines 

crossed (agitated movement) appears to not be related to the CYP17 genotype or cortisol 

production. 

It is noteworthy that the arena test was performed on both male and female contemporaries, while 

the production of cortisol in response to insulin-induced hypoglycaemia was evaluated in only male 

contemporaries. The reason for using only male contemporaries in the last mentioned stress test was 

firstly due to the limitation of L-line animals available for experimentation and breeding purposes, 

due to the effects of downward selection on the birth rate and survival of L-line animals. The L-line 

ewes were therefore reserved for breeding purposes. Secondly, the evaluation of only male 

contemporaries was expected to minimize individual variation in cortisol responses. Turner et al. 

(2002) observed a higher cortisol response in adult Romney Marsh rams compared to ewes in 

response to insulin-induced hypoglycaemia, while the cortisol response to ACTH administration 

was the same. In contrast, Van Lier et al. (2003) observed a higher cortisol response to ACTH 

administration in Corriedale ewes compared to rams. These results indicate that some gender-

specific differences in cortisol responses to various stimuli may exist in certain sheep breeds. In the 

present study it is assumed that the same trend in cortisol responses of rams that represent a certain 

group (selection line X CYP17 genotype) would be observed in ewes of the same group, but some 

variation between male and female cortisol responses may be anticipated. This assumption should 

be kept in mind with interpretation of correlations with data from the arena test and reproductive 

performance. 
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The measurement of only cortisol, and not cortisone, in the hypoglycaemic stress test was done by 

radioimmunoassay, since the UPLC-MS/MS method was incompletely developed at that time. It is, 

however, suggested that future stress test measurements include the detection of cortisone 

concomitant with cortisol. From the results obtained by the hypoglycaemic test it was seen that the 

cortisol response to hypoglycaemia is greatly affected by the CYP17 genotype, while the selection 

line affects the response of glucose to the cortisol output. This statement is also supported by the 

large standard errors of the means observed in the cortisol responses (Figure 8.4B) and small 

standard errors of the means observed in the glucose responses (Figure 8.4A) of the H- and L-lines. 

The opposite trend in standard errors of the means was observed for the cortisol and glucose 

responses when the data was grouped according to CYP17 genotype compared to when the data was 

grouped according to selection line (Figure 8.4). This indicates that the CYP17 genotype greatly 

affects the cortisol response, but not the glucose response. Furthermore, the initial low cortisol peak 

at 0 – 30 min post insulin administration is suggested to result from the sheep’s fear for human 

interaction (Figures 8.4-8.6). The cortisol responses that followed the hypoglycaemic drop in 

glucose levels after 30 min (< 2.00 mmol glucose L-1), however, were much higher than this initial 

cortisol peak.  

The higher cortisol response observed for the homozygous WT1/WT1 group confirms that the 

presence of the WT1 allele is more advantageous for cortisol production than the WT2 allele. This 

finding is consistent with the previous predictions for WT1 from in vivo studies. The H-line also 

showed an improved ability to cope with stressors compared to the L-line. The differences in the 

cortisol and glucose responses between the H- and L-line suggest that the CYP17 genotype will 

have a small effect in animals with a proper functioning HPA axis, while it will have a large effect 

in animals with an impaired HPA axis. This statement is supported by the studies of Storbeck et al. 

(2008a), which showed that the CYP17 genotype has a great effect on the cortisol production of 

Angora goats – animals that are known to have an impaired HPA axis (Storbeck et al., 2008a; 

Hough et al., 2010) – while cortisol production of Boer goats are largely independent of CYP17 

genotype (Engelbrecht et al., 2000).  

It is therefore suggested that selection for WT1 may be utilised to improve the cortisol response of 

animals with an impaired HPA axis, while it would not markedly improve the cortisol production of 

robust animals. Large individual variation was observed in the cortisol and glucose responses, 

which suggest that other putative genetic factors are involved that may potentially be used as 

additional markers for robustness.  
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CHAPTER 9 

General discussion and conclusion 

9.1 Summary of results and recommended future studies 

The proper functioning of the HPA axis is crucial to counteract stressor stimuli in farmed livestock. 

In theory, animals with superior HPA axis activity will be able to adapt more efficiently to stress 

and is considered to be more robust. A properly functioning HPA axis facilitates a coordinated 

stress response that elicits a cortisol specific response from the adrenal gland in sheep. Both the 

magnitude and duration of the cortisol output is important factors that determine the efficacy of the 

cortisol response. The observations made in the present study showed that the time-dependent 

cortisol response is a more accurate reflection of the HPA function than the measurement of only 

the peak cortisol concentrations. Moreover, the measurement of cortisone and corticosterone 

concentrations, together with cortisol, is advised, since the ratio of these hormones relative to 

cortisol may be altered during a state of stress. The developed UPLC-MS/MS method could be used 

for the analysis of stress-related steroids or adrenal steroid profiles. It is also important to develop a 

method for the analyses of reproductive hormone profiles to possibly investigate correlations with 

reproductive traits. 

The present study has shown that the divergent selection criteria, that shaped the H- and L-lines, 

also resulted in differences in the HPA axis responses. This statement is reflected by the higher 

cortisol response and more rapid glucose recovery profiles in the H-line, compared to the L-line. It 

was observed the CYP17 genotype played an important role in the cortisol responses of these lines. 

The CYP17 genotype had little effect on the cortisol response of the H-line, which arguably consists 

of sheep with good levels of robustness (see Cloete et al., 2004; Cloete et al., 2005). However, the 

CYP17 genotype had a large effect on the cortisol response of the L-line, which consists of sheep 

with poor robustness (see Cloete et al., 2004; Cloete et al., 2005). It is therefore suggested that 

selection based on the CYP17 genotype will only improve cortisol responses in animals with an 

impaired HPA axis function, while maintaining the cortisol responses of animals with sufficient 

HPA axis activity. This statement is supported by the observations of Storbeck et al. (2008), which 

showed that the CYP17 genotype profoundly affects the cortisol response in Angora goats that are 

known to have an inefficient HPA axis activity (Storbeck et al., 2008; Hough et al., 2010). In 

contrast, cortisol production was independent of CYP17 genotype in Boer goats, which can be 

considered to be a more robust breed (Engelbrecht et al., 2000). 
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It was interesting to observe, from the results obtained in studies with primary cultures of 

adrenocortical cells (Chapter 7), that the most prominent differences in cortisol production resulted 

from selection line differences. These results indicated that these selection lines are likely to have 

intraadrenal differences, other than the CYP17 genotype. The identification of the intraadrenal 

genetic factors that contributes to these differences will prove useful to marker-assisted selection 

with robustness as objective in future. 

The presence of WT1 in the CYP17 genotype was shown to be more advantageous for cortisol 

production than the presence of WT2. This was seen in studies on both the in vitro and in vivo level. 

The level of expression of WT1 relative to WT2, however, remains to be determined. The cDNA 

from the primary cultures are available for such a study, but has not been analysed to date due to 

time constraints. Furthermore, the reason why no homozygous WT2 genotypes were detected needs 

to be established. The use of the fluorescent in situ hybridization technique is suggested to establish 

whether there are any CYP17 copies in the ovine genome. 

The CYP17 genotype seemed to not influence the measurable indices of reproduction (lamb output, 

lamb survival and growth) and weekly feed intake. The maternal behaviour of ewes and the 

relationship with the CYP17 genotype was not investigated, and is suggested for future studies. The 

CYP17 genotype was found to influence behavioural responses of sheep subjected to a flock-

separation test. The frequency at which sheep urinated and uttered bleats in the arena test, as well as 

the average distance from the human operator, was different between homozygotes WT1 and 

heterozygotes WT1/WT2. Furthermore, the cortisol responses correlated with the frequency of 

defecation and potentially the distance from the human operator. These two parameters of the arena 

test may therefore be developed to identify animals with superior cortisol production. It is proposed 

that an easy-to-perform behavioural stress test is developed to identify animals homogeneous for 

WT1 and/or the efficient production of cortisol to ultimately improve sheep robustness. 

9.2 Discussion about the implications of CYP17 genotypes for the South African Merino 

What is the physiological relevance of the CYP17 genotype and its subsequent effects on cortisol 

production? From the present study it was demonstrated that, given the same stimulus, WT1 would 

produce more cortisol than WT2. This implies that, theoretically, the HPA axis will be activated for 

a shorter time to produce adequate amounts of cortisol in the presence of WT1, compared to the 

presence of WT2. As mentioned in section 2.7, the effectiveness of the HPA axis to counter stress 

will complexly influence energy metabolism, immune responses, behaviour, ability for learning, 

fertility and sexual libido (Manteuffel, 2002). The differentially HPA-mediated glucocorticoid 
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response from homozygous WT1/WT1 or heterozygous WT1/WT2 sheep may therefore have various 

implications for traits related to robustness and production. In the present study it was shown that 

certain parameters of energy metabolism and behaviour were affected by the CYP17 genotype, 

while certain parameters of fertility were apparently unaffected. These parameters and traits may, 

however, not be the only factors that are influenced by the CYP17 genotype and may require further 

investigation. 

The effect of the CYP17 genotype on cortisol production may be masked by other factors that 

influence the HPA axis activity. The H- and L-lines were shown to have different coping strategies 

to psychological and physiological stressors, which also implied that their sensitivity to the CYP17 

genotype would be different. These selection lines have provided evidence that genetic selection 

resulted in differences in HPA axis activity. The inferior HPA axis activity of the L-line may be 

related to some of the poor traits, related to production and robustness, observed in this group 

compared to the H-line. 

Furthermore, the complexity of the regulation of the HPA axis was demonstrated by the correlations 

between CYP17 genotype, cortisol production and behavioural responses to physiological and 

psychological stressors. For instance homozygous WT1/WT1 sheep uttered less bleats and 

approached humans more easily than heterozygous WT1/WT2 sheep, which indicates that 

homozygous WT1/WT1 sheep have a better temperament. However, the homozygous WT1/WT1 

group also urinated more frequently than heterozygous WT1/WT2 sheep, which indicates stressful 

behaviour. The higher urinating frequency observed for homozygous WT1/WT1 and L-line sheep 

might be explained by their higher production of deoxycorticosterone that inhibits plasma renin 

activity and act via the renin-angiotensin system. Similarly, the same group may respond differently 

to other forms stress, such as the HE and HO group that had equal cortisol responses to insulin-

induced hypoglycaemia (physiological stress), while the HE group uttered more bleats (signal of 

stress) than the HO group during the arena test (psychological stress).  

This study provided a thorough investigation into the relative contributions of the two CYP17 

isoforms on cortisol production in the sheep adrenal. It was found that WT1 is more advantageous 

for cortisol production than WT2, which was reflected both on an in vitro and in vivo level. 

9.3 Publication and presentation of the work 

The preliminary results for the hypoglycaemic stress test and CYP17 genotype frequency 

distributions (LightCycler) was presented at the 18th conference of the Association for the 
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Advancement of Animal Breeding and Genetics (AAABG 2009, Adelaide, Australia) and was 

published in the proceedings (Addendum B; Van der Walt et al., 2009). The data from a comparison 

of the total cortisol responses (AUC of normalised cortisol per glucose concentrations) of the South 

African Angora goat (data from Storbeck et al., 2008a) and Merinos (the current study) were 

presented at the 9th World Congress on Genetics Applied to Livestock Production (WCGALP 2010, 

Leipzig, Germany) and published in the proceedings (Addendum C; Hough et al., 2010). Selected 

data has also been presented at local conferences, namely the South African Society of Animal 

Science (SASAS 2009, 2011) and the South African Society for Biochemistry and Molecular 

Biology (SASBMB 2010). The data obtained through this PhD will be submitted for publication in 

scientific journal in the ensuing months. 
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Addendum A 
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Figure A.1. Aldosterone concentrations in AA cells incubated over 72 hours (A) under basal conditions; (B) with 
100 µM pregnenolone; (C) with100 µM pregnenolone and 1 µM ACTH; (D) with100 µM pregnenolone and 10 µM 
forskolin; and (D) with100 µM pregnenolone and 100 µM cholera toxin. The H-line is represented by a black 
coloured line (HO and HE), the L-line represented by a grey coloured line (LO and LE), homozygous WT1 groups are 
represented by a solid line (HO and LO), and heterozygous WT1/WT2 groups by a broken line (HE and LE). 
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SUMMARY 

South African Merino sheep were selected divergently from the same base population for their 
ability to rear multiples. Two distinct populations were formed over a period of more than 20 years 
of selection. Reproduction (and therefore presumably fitness) in the line selected in the upward 
direction (H-line) was substantially improved compared to the line selected in the downward 
direction (L-line).  In the present study, it was demonstrated that the H-line was more stress-
tolerant than the L-line in terms of their glucose and cortisol response when challenged with 
insulin. Sheep from the breeding program were genotyped according to one of two cytochrome 
P450 17α-hydroxylase/17-20 lyase (CYP17) alleles, as these genotypes were previously linked to 
the ability of Angora goats to cope with external stressors. However, no association was found 
between CYP17 genotype and selection line. The difference in insulin induced stress response 
between the H- and the L-line can therefore not be attributed to CYP17 genotype. 
 
INTRODUCTION 

Fitness of farm animals (defined as reproduction and survival) has long been identified as 
being of economic importance. Yet fitness traits have seldom been incorporated in selection 
programs for livestock (Goddard 2009). These fitness traits can be linked to genotypic markers
that can be identified within livestock breeding programmes. These genetic targets can then be 
recorded and included in selection criteria to ultimately improve livestock fitness. In this study we 
look at cytochrome P450 17α-hydroxylase/17-20 lyase (CYP17) genotype as a possible genetic 
target to link to stress coping ability, a fitness trait.  

CYP17 plays a critical role in the production of mineralocorticoids, glucocorticoids and 
androgens by the adrenal cortex in mammals (Vander et al. 2001). These steroid hormones are 
involved in fitness, since they play a vital role in the control of water and mineral balance, stress
management and reproduction, respectively. CYP17 catalyses two distinct reactions, namely: a 
17α-hydroxylation and a C17-C20 lyase reaction (Nakajin et al. 1981). This dual enzymatic 
activity places CYP17 at key branch points in the biosynthesis of adrenal steroid hormones.   

Cortisol and corticosterone are the glucocorticoid hormones produced in the adrenal gland, 
which play an important role in stress management (Vander et al. 2001). As in humans, cortisol is
by far the main glucocorticoid in sheep that counters a stress stimulus. Cortisol production is 
stimulated when the adrenal gland receives a “stress-signal” through the hypothalamus-pituitary-
adrenal axis, via adrenocorticotropic hormone. The decreased ability of an animal to produce 
cortisol will lead to a reduced ability to counteract stress associated with the environment. Such an 
example was observed by Engelbrecht and Swart (2000) in Angora goats. These animals had a 
decreased ability to produce cortisol compared to Merino sheep and Boer goats, and accordingly
exhibited a reduced ability to cope with insulin-induced stress.  
Stress has been shown to reduce fitness, as reflected by growth, reproduction and survival of farm 
animals. Divergent selection for number of lambs weaned in Merino sheep, an example of a 
composite fitness trait, has resulted in marked differences in responses between the lines in this  

Stellenbosch University http://scholar.sun.ac.za



 

 148

trait (Cloete et al. 2004). Differences between the lines in survival of lambs and behavioural 
adaptations conducive to lamb survival were also observed (Cloete and Scholtz 1998).  

Two CYP17 alleles have previously been identified in Merino sheep (Genbank accession no.
L40335/WT1 and AF251388/WT2) and confirmed by Storbeck et al. (2008). However, it has not 
been established in this species whether a specific CYP17 genotype would enhance cortisol 
production, and thus stress coping ability, relative to the other. In this study, we investigated
whether the observed divergence in fitness (as reflected by number of lambs weaned) observed in 
a Merino selection experiment can be related to the genotypic composition of ovine CYP17.  
 
MATERIALS AND METHODS 

 

Breeding program. A Merino sheep breeding program has been undertaken since 1986 in which 
sheep have been divergently selected for their ability to rear multiples (alternatively defined as 
number of lambs weaned per mating). The selection lines were derived from the same base 
population and selection within each line based on maternal ranking values for number of lambs 
weaned per lambing opportunity (Cloete et al. 2004). Number of lambs weaned per mating in the 
line selected in the upward direction (H-line) has been proved to be near to double that of the line 
selected in the downward direction (L-line) (Cloete et al. 2004).  
 

Stress test. Stress coping ability was tested on 24 rams from this breeding program (13 H-line and 
11 L-line sheep), housed at the Elsenburg Research farm near Stellenbosch, South Africa. These 
rams were injected intravenously with human insulin (Actrapid® HM, Novo Nordisk, 
Johannesburg, South Africa) after which 6 blood samples of each animal were collected over a 2 
hour period and placed on ice. Blood samples were centrifuged at 2 500xg for 10 minutes (4oC) to 
acquire representative plasma samples from each animal. Plasma glucose and cortisol levels were 
determined by PathCare Reference Laboratory (PathCare Park, N1 City, Goodwood, Cape Town, 
South Africa). Ethics approval for this stress test was obtained from the Departmental Ethics 
Committee for Research on Animals (DECRA reference R08/21).  
 

Genomic DNA isolation. Blood samples of both H- (n=105) and L-line (n=31) sheep were 
collected in EDTA treated collection tubes (BD Vacutainer® Blood Collection Tubes; Pronto™ 
Quick Release Holder and Eclipse™ Blood Collection Needles). Blood samples were also 
acquired from the heart chamber of 36 lambs that had died during the 2008 lambing season. 
Genomic DNA was isolated using the Wizard® Genomic DNA isolation kit (Promega, Madison, 
Wisconsin) according to the instructions provided by the manufacturer.  
 
CYP17 genotyping with real time polymerase chain reaction (RT-PCR). All 172 sheep were 
genotyped using the RT-PCR method developed by Storbeck et al. (2008). The primers and 
hybridisation probes (TibMolBio, Berlin, Germany) were as follows: LCLP, 5’-
CCTGAAGGCCATACAAA-3’; LCRP, 5’-GGATACTGTCAGGGTGTG-3’; fluorescein-labelled
CYP17 sensor probe, 5’-TTCTGAGCAAGGAAATTCTGTTAGA-FL; LC640-labelled CYP17
anchor probe, 640-TATTCCCTGCGCTGAAGGTGAGGA-3’. RT-PCR was carried out using a 
LightCycler® 1.5 instrument. Amplification reactions (20µl) contained 2 µl LightCycler® FastStart 
DNA Master HybProbe Master Mix (Roche Applied Science, Mannheim, Germany), 3 mM
MgCl2, 0.5 µM of each CYP17 primer, 0.2 µM fluorescein-labelled CYP17 sensor probe, 0.2 µM 
LC640-labelled CYP17 anchor probe and 10 to 100 ng genomic DNA. Following an initial 
denaturation at 95°C for 10 min to activate the FastStart Taq DNA polymerase, the 35-cycle 
amplification profile consisted of heating to 95°C with a 8 s hold, cooling to 52°C with a 8 s hold 
and heating to 72°C with a 10 s hold. The transition rate between all steps was 20°C/second. Data   
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were acquired in single mode during the 52°C phase using the LightCycler® software (version 
3.5). Following amplification, melting-curve analysis was performed as follows: denaturation at 
95°C with a 20 s hold, cooling to 40°C with a 20 s hold and heating at 0.2°C/s to 85°C with 
continuous data acquisition.  

The sensor probe was designed to be a perfect match for the WT1 sequence and dissociated at 
58°C when bound to the perfectly matched WT1 sequence. However, when bound to the 
mismatched sequence (WT2) dissociation occurred at 54°C. A no-template control (negative 
control) was also included in each assay. 

 
Statistical analysis. For the stress test, plasma glucose and cortisol response over time for the H-
and L-lines were analyzed with a regular two-way ANOVA with selection line and the period that 
passed since the insulin injection as factors. Differences between breed lines at specific time points 
were examined with Bonferonni’s post-test (glucose: 95% confidence; cortisol: 94% confidence).
The Chi-square test was used to analyze CYP17 genotype frequencies. GraphPad Prism (version 
4) software (GraphPad Software, San Diego, California) was used for all statistical analysis. 
 
RESULTS AND DISCUSSION 

 

Stress test. Plasma glucose (mmol/L; which served to monitor the progress of the stress response) 
and plasma cortisol (log nmol/L) responses to insulin-induced stress are depicted in Figure 1. The 
H-line reached a hypoglycaemic state earlier than the L-line, with glucose levels of 1.9 mmol/L 30 
min post insulin challenge, and recovered  to baseline glucose (3.7 mmol/L) 2 hours post insulin 
challenge (3.3 mmol/L). Cortisol levels increased rapidly from 30 min post insulin challenge (60.3 
log nmol/L), reached maximum at 60 min (120.2 log nmol/L) and returned to baseline 
concentrations after 2 hours. The stress response of H-line animals was completed after 2 hours 
with both glucose and cortisol concentrations having recovered to baseline levels.  

The L-line reached maximum hypoglycaemic state at 60 min post insulin challenge with 
glucose levels of 2.1 mmol/L, but did not recover to baseline concentrations (3.6 mmol/L) by 2 
hours post insulin challenge (2.7 mmol/L). L-line cortisol levels increased from 30 min post 
insulin challenge (53.3 log nmol/L), but at an apparently slower rate than the H-line. Maximum 
cortisol in the L-line was observed 90 min post insulin challenge (100.5 log nmol/L). 

The interaction between breed line and time of measurement was highly significant (P<0.0001) 
for glucose (F=9.22, dfn=5, dfd=132), but not for cortisol (P=0.3028, F=1.22, dfn=5, dfd=132)
responses to insulin-induced stress. 

Figure 1. Merino sheep plasma glucose and cortisol response to insulin challenge.             
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 Glucose levels were lower in the H-line at 30 minutes post insulin challenge (P<0.01), the 
opposite trend being observed after 90 (P<0.01) and 120 min (P<0.001). Cortisol levels were 
higher (P=0.0590) in the H-line 60 min post insulin challenge. The H-line animals thus had an 
improved ability to cope with insulin induced hypoglycaemia than the L-line, as reflected by their 
quicker glucose recovery to baseline and earlier peaking of cortisol at 60 min. An improved 
cortisol collection and detection method might limit variation in future tests. 
 
CYP17 genotyping. Interestingly, no homozygous WT2 sheep were detected in either the H- or L-
lines or among the lambs that died in 2008. Relative DNA copy number determination of sheep 
CYP17 has previously been done (Storbeck et al. 2008), indicating that the two CYP17 genetic 
sequences are two alleles of one gene.  This finding thus warrants further investigation. 

Table 1 summarizes the genotyping results obtained for the H-, L-line and lamb mortalities. 
There was no significant association (P=0.7617, Chi-square=0.5444, df=2) between CYP17 
genotypes and designation of sample population (H-, L-line or lamb mortalities). On average 83.4 
% sheep in the breeding program was heterozygous, while 16.6 % were homozygous WT1.  
 

Table 1. Frequency distribution of CYP17 genotype in the Merino sheep breeding program  

 

Homozygous WT1 Heterozygous WT1/WT2 Homozygous WT2 
Merino flock Number of 

sheep 
Percentage 

Number of 
sheep 

Percentage 
Number of 

sheep 
Percentage 

H-line 15 14.3 90 85.7 0 0 
L-line 5 16.1 26 83.9 0 0 
Lamb mortalities 7 19.4 29 80.6 0 0 
 

CONCLUSIONS 

The divergent breeding program was shown to result in differences in insulin-induced stress 
coping ability, the H-line having a higher stress tolerance than the L-line. This difference in stress 
tolerance could not, however, be ascribed to CYP17 genotype, since there was no association 
between CYP17 genotype and selection lines. One CYP17 isoform is not more advantageous for 
cortisol production in the adrenal gland than the other. This study rules out CYP17 as possible 
genotypic marker to use during selection, and suggest investigating other factors along the HPA 
axis or adrenal steroidogenesis that could be implicated in the stress response difference observed.   
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