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GLOSSARY 

TLCC – Time lag cross correlation. 

VAR – Vector autoregression model. 
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ABSTRACT, KEYWORDS AND JEL CODES 

Unlike stock markets in developed countries, Chinese stock markets are mainly 

composed of retail investors. Retail investment behavior is susceptible to emotions, which 

can affect the performance of stock markets. By studying the relationship between the 

two types of stock markets, retail investors can increase their awareness of risk and 

rational investment, and the regulation of Chinese capital markets can also be developed 

more scientifically and healthily. In this paper, the affective computing method is used to 

quantify the sentiment of retail investors registered on the Shanghai Stock Exchange. 

Then, the retail sentiment time series, the closing price of the Shanghai Securities 

Composite Index, and the total trading volume of the Shanghai Stock Exchange are 

organized for analysis and assessed through three analysis methods, the VAR model, 

Pearson correlation, and TLCC. The conclusions drawn from this study are as follows: (i) 

There is no causal relationship between the sentiment of retail investors and the closing 

price of the Shanghai Securities Composite Index. (ii) There is a causal relationship 

between retail investor sentiment and the total trading volume of the Shanghai Stock 

Exchange. (iii) There is a mutual lag influence and strong correlation between the 

sentiment of retail investors and the changing rate of the Shanghai Securities Composite 

Index. 

 

KEYWORDS: Behavioral Finance; Crawler; Affective Computing; Sentiment 

Dictionary Method; Pearson Correlation; TLCC; VAR; Shanghai Securities Composite 

Index. 

JEL CODES: C23; C36; D24; D43; E32; L22. 
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ANALYSIS OF THE RELATIONSHIP BETWEEN THE SENTIMENT OF RETAIL 

INVESTORS AND THE PERFORMANCE OF THE CHINESE STOCK MARKET  

By Yongzhe Zhao 

1. INTRODUCTION 

1.1. Research background of the subject 

With the development of technology, especially IT technology, the method of 

acquiring the investment information and connections of retail investors has been 

reformed in recent years. Retail investors share their opinions on public internet media, 

which creates a large amount of unstructured data. Furthermore, retail investors are also 

influenced by the opinions and subjective sentiment shared by other retail investors. Mei 

et al. (2009) and Carpenter et al. (2015) document that the Chinese stock markets are 

highly speculative and dominated by inexperienced retail investors who are subject to 

investor psychological biases. However, in the US, institutional investors dominate the 

market. Therefore, the relationship between stock market performance and the sentiment 

movement of Chinese retail investors can be observed in the Chinese stock markets. 

In the past, because of the limited technology available to analyze unstructured data, 

it was difficult to scientifically perform effective computing to measure the sentiment of 

retail investors. As substantial progress has been achieved in data science, collecting, 

organizing and analyzing unstructured data are more effective and quicker than they used 

to be. Data mining methods enable the value of unstructured data to be discovered. 

Combining sentiment unstructured data analysis with the background of the majority of 

retail investors in the Chinese stock markets may provide valuable analysis results. 

From 01/01/2020 to 10/07/2020, several events destroyed the confidence of retail 

investors in the Chinese capital markets. Additionally, some events increased the 

confidence of retail investors and the performance of markets at the same time. Zhang et 

al (2020) showed that the lockdown of the entire city of Wuhan on 23 January 2020 

shocked the whole world and later proved to be a very effective policy intervention by 

the Chinese government. For example, the investigation of Huo and Qiu (2020) shows 

that overreactions are stronger for stocks with lower institutional ownership, which means 

that retail investors reacted more strongly to COVID-19. The conflict between the two 
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major economies of China and the United States has intensified. The research of Wang et 

al (2020) shows that the negative effect on stocks is stronger for firms with prior export 

exposure to the US, especially nonstate firms. On March 22, the circuit breaker of the 

U.S. stock market was triggered four times. Xuan (2020) shows that the US stock market 

had significant spillover effects on the returns and fluctuations of the Chinese stock 

markets in the circuit breaker periods. 

FIGURE 1 – Affective Computing Emotion Results of retail investors (EMO) and the 

Shanghai Securities Composite Index Growth Rate (RATE). 

 

In June, the Chinese government began to consciously guide public opinion to 

promote stock market reform and long-term development in a healthier way by launching 

a package of open systems and reforms of the Chinese stock market and spreading hints 

by previous high officials to the market. Public sentiment was ignited, which immediately 

brought prosperity to the stock market. These abovementioned events are reflected in 

Figure 1. Figure 1 also shows that with the extreme dynamic change of sentiment, the 

performance of the capital market also experienced extremely dynamic changes 

compared to what was normal. Fang et al. (2019) showed that through the “alarm effect1” 

and “herd effect2”, emerging markets were infected by the residual contagion of the 

international financial crisis due to their weak macro foundations and immature financial 

 
1 The alarm effect means that when dangerous signals emerge in a market, investors sell in an irrational 

way. 
2 The herd effect means that investors engage in blind obedience behavior in the market. 
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systems. Regarding these two intense negative events, the “herd effect” in this last half 

year and the relationship between the emotions of retail investors and the performance of 

the capital markets should be studied. 

1.2.Research method 

In the past, structured data were used for affective computing and quantizing the 

sentiment of retail investors. These data include macroeconomic indicators (such as the 

consumer confidence index) and the transaction records of capital markets. For example, 

Ben-Rephae et al (2012) use mutual fund flows to measure sentiment. Misina (2003) uses 

the risk appetite index to measure sentiment. Whether these structured data can directly 

reflect the relative sentiment level is still a concern. However, unstructured data are not 

mainly used for analysis. Unstructured data, for example, comments on social media, such 

as Twitter and discussions about news and topics on public news websites and retail 

investors’ internet forums, are used by retail investors to express their feelings and 

thoughts. The difficulty is how to design a system that can acquire data automatically 

from the target web or platform and then clean, code, and quantize sentiment for further 

analysis. The most famous internet forums of the Chinese Shanghai Securities Composite 

Index are a source of data. Many retail investors gather together there for discussions and 

sharing their opinions. A crawler algorithm programmed in Python language was used to 

automatically obtain, clean, and reorganize these unstructured data. Then, the Jieba3 

method was used to cut sentences based on the grammar and tradition of the Chinese 

language and into words. Then, the affective computing algorithm based on the sentiment 

dictionary was used to quantize sentiment and export the results. The relationship between 

individual events and sentiment results was analyzed. Next, EViews was used to build the 

VAR model for the Granger causal relation test and impulse response analysis. Then, the 

Pearson correlation and time lag cross-correlation analyses were used to analyze the 

relationship of the time series. Furthermore, other methods were used in the analysis. 

 

  

 
3 The Jieba method is a famous and widely used Chinese text segmentation library based on Python. 
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2.Literature research 

2.1. Sentiment and Investors’ behaviour 

The literature research was mainly composed of the following parts: (i) Emotions and 

investors’ behavior, (ii) behavioral finance and efficient market theory, and (iii) Chinese 

stock markets. 

In his paper, Peterson (2007) mentions that several studies have proven that individual 

investors’ financial decisions are significantly influenced by their emotions and moods. 

This is the foundation of affective computing in stock markets. Sun et al (2016) found 

that when the economy is booming and the market volume is large, emotions are much 

more predictable for markets. However, during a recession, emotions are less predictable 

for markets, and during periods of low trading volume, the predictability is greatly 

reduced. 

The research of Tsai (2017) revealed that the contagion of investor sentiment is 

asymmetric. When institutional investors remain optimistic and the market performs well, 

the spread of sentiment among investors is not obvious. Conversely, pessimism spreads 

more easily. 

In the past, the measurement of investors' sentiment relied on traditional surveys or 

structured data. Comparing different traditional measures, it is common to find that the 

sentiment results are quite different from each other. Qiu and Welch (2004) stated that the 

traditional method may have difficulty measuring sentiment. Because of equipment and 

data mining restrictions, Wüthrich et al (1998) use the simple terms frequency4, category 

discrimination5 , and normalization6 . However, the results are not as sound as they 

predicted. Cho and Wüthrich (1999) found that the most important factor influencing 

prediction accuracy is the selection of the data sources. Jaybhay et al (2012) listed four 

forecasting methods based on textual mining: 1. Technical analysis methods, 2. 

 
4 The simple term frequency is based on counting the words “up”,” down”, and “steady” on web pages 

on the Hang Seng Indexes. 
5 Category discrimination is a method for dividing different texts on the Hang Seng Indexes for further 

analysis. 
6 Normalization is the calculation method for obtaining each day's maximum value based on the results 

of category discrimination. 
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fundamental analysis techniques, 3. traditional time series prediction, and 4. machine 

learning methods. 

Derakhshan and Beigy (2019) introduced the LDA-based method7  and LDA-POS 

method8 to the analysis. They sought to avoid problems in the text. Social media text is 

usually short, and it contains many misspellings, uncommon grammar constructions, and 

other issue. They reconstructed the text based on the topic label and distribution, which 

achieves some positive results for specific text data; however, for other data, this method 

did not work. This paper highlights a phenomenon model that needs to be adjusted via 

unstructured data. 

Das and Chen (2007) built an analysis system based on the statistical dictionary 

method9; furthermore, they listed five kinds of clusters for message interpretation, and 

the decision was positive, negative, or neutral. The five classifiers of the naive classifier10, 

vector distance classifier 11 , adjective-adverb phrase classifier 12 , and Bayesian 

classifier13 have different structures based on different languages and grammar. 

Schumaker et al (2012) used machine learning in sentiment analysis. They found that 

this method was best able to predict subjective articles in directional accuracy (positive 

or negative tendency of price from text data) and trading returns but not closeness. They 

also found a phenomenon different from common sense: negative sentiments should be 

indicative of downward price movement. Oliveira et al (2013) used two error metrics (the 

MAPE14 and RMSE15) to measure the results of models. In their paper, Guo et al (2017) 

 
7 The LDA-based method is an affective computing method based on the generative probability of the 

mixture of latent topics, and each topic is a probability distribution. 
8 The LDA-POS method, which is an optimized version of the LDA-based method, is an affective 

computing method that incorporates speech tags into topic modeling, which is an optimized method 

comparing with LDA-based method. 
9 The statistical dictionary method is an affective computing method. The text data are classified into 

three types by statistics and an emotion dictionary: bullish, neutral and bearish. 
10 The naive classifier is an algorithm based on the counting of words with positive and negative 

connotations. 
11 The vector distance classifier is an algorithm in which hand-tagged text data are calculated in vector 

function for classifying text data. 
12 The adjective-adverb phrase classifier is an algorithm in which the word count process is based on 

adjectives and adverbs from text data. 
13 The Bayesian classifier relies on a multivariate application classification algorithm that is based on 

Bayes’ theorem. 
14 Mean Absolute Percentage Error 
15 Root Mean Square Error 
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showed that sentiment data do not lead stock prices all the time, and a lead-lag structure 

appears. They also introduced the thermal optimal path method16 for their time series 

analysis. 

In this thesis, the idea of an affective computing algorithm is combined with the 

advantages of the statistical dictionary method and term frequency. For further analysis, 

the lag influence between time series is analyzed by the TLCC algorithm, and the results 

of the model are evaluated using a series of error metrics and standards from the VAR 

model. 

  

 
16 The Thermal Optimal Path method is an algorithm for identifying and quantifying the lead-lag 

structure in two different time series data. 
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2.2. Behavioural Finance and Efficient Market Theory 

The basis of this article is whether internet public opinion can affect the direction of 

the stock market or whether the two factors have a mutual influencing relationship. To 

realize research and judgment of this foundation, behavioral finance and efficient market 

theory are introduced here. 

Traditional financial theory believes that people's decision making in the market is 

based on harsh assumptions, such as rational expectations, risk aversion, utility 

maximization, and discretion. Fama (1965) proposed an efficient market hypothesis that 

is based on ideal market conditions. Under the assumption of rational people, stock prices 

reflect the balance between supply and demand, and arbitrage behavior makes stock 

prices move rapidly enough to make the two factors equal. A stock price fully reflects all 

the information related to the asset. However, in reality, the information is not always 

effective. Not every market participant, especially retail investors, can act completely 

rationally and procedurally according to theory and probability, such as adopting a 

quantitative investment algorithm. The irrational behavior of market participants plays a 

huge role in changes in financial markets. In his book on behavioral finance, Ritter (2003), 

states that behavioral finance encompasses research that drops the traditional assumptions 

of expected utility maximization with rational investors in efficient markets. The two 

building blocks of behavioral finance are cognitive psychology (how people think) and 

the limits to arbitrage (when markets will be inefficient). 

Research on behavioral finance has further challenged the prerequisites of the 

efficient market theory. Market participants have widespread irrational behaviors; 

arbitrage trading has various limitations in the real world, which cannot achieve the 

expected effects in theory; and transactions often appear out of time. 

Behavioral finance mainly focuses on the following directions: the investment 

behavior of individual investors, especially retail investors; the mutual influence between 

investors and the result of this influence in the medium and long term; the herd effect; the 

small company effect; equity premiums; and various extreme behaviors in specific 

turbulent times.  
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2.3. Chinese Stock Market 

For historical and political reasons, the Chinese stock market includes the Shanghai 

Stock Exchange and Shenzhen Stock Exchange, and they have several unique features. 

(i) Fernald and Rogers (2002) stated that the government control of Chinese capital makes 

it difficult for retail investors to invest outside of China. The A shares17 and B shares18 

systems were developed to conduct capital control. (ii) Yao et al (2014) revealed the 

reality that domestic retail investors dominate A-share markets while foreign institutional 

traders mainly dominate B-share markets. (iii) Kong and Wang (2014) found that in the 

Chinese capital markets, (1) order-based manipulation from the government affects the 

liquidity and trading behavior of the Chinese capital markets and (2) the manipulator 

pretends to be informed or expects to be seen as informed by choosing the “right” time to 

implement the manipulation. (iv) Chong et al (2017) found that recommendations from 

analysts, the short-term horizons of retail investors, and risk aversion are the main reasons 

for herding behavior in the Chinese stock markets. (v) The thesis of Hung (2009) found 

that the weak-form efficient market hypothesis was rejected for both the Shanghai Stock 

Exchange and Shenzhen Stock Exchange. With the ongoing progress of deregulation and 

liberalization, the efficiency of the Chinese stock market also gradually improves. (vi) Ni 

et al (2015) performed a nonlinear effect test of the investor sentiment and returns in the 

Chinese stock market using a panel quantile regression model. They found that in the 

Chinese stock market, investors have a notable cognitive bias and speculation tendency. 

(vii) Changsheng and Yongfeng (2012) researched the Chinese stock market and found 

that investor sentiment had a significant explanatory ability for both retail investors' 

favorable stocks and value stocks, which shows that when investors are bullish (bearish), 

these stocks will generate higher (lower) excess returns. It is important to note that 

investor sentiment is an important systemic risk factor in asset pricing models. In 

conclusion, the Chinese stock market is an immature stock market that is mainly 

composed of retail investors and is strongly regulated and influenced by the Chinese 

government with restricted capital controls.  

 
17 A shares are issued in China, with RMB as the denominated currency, for individuals, organizations, 

and companies in China to subscribe and trade. 
18 B shares are issued in China, with RMB as the denominated currency, for overseas individuals, 

organizations and companies to subscribe and trade. 
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3.Affective computing and model analysis 

The general idea of affective computing and model analysis in this thesis is as follows. 

FIGURE 2 – Technical route. 

3.1 Data collection 

From the literature search, it can be concluded that the following are the main types 

of text-based sentiment analyses in the Chinese market. The first type is based on public 

media, such as portal websites, newspapers, and periodicals. The second type is based on 

various indicator data in the transaction process. The third type is based on stock-based 

internet forums, where stockholders visit, share and comment on their feelings and 

opinions. The fourth type is based on Weibo, which is equivalent to Twitter in China. 

Most followers are strangers, and a few followers are acquaintances. The fifth type is 

social applications for acquaintances, such as WeChat, which is equivalent to WhatsApp 

in China. 

In the Chinese market, there is a phenomenon of media control that cannot be ignored. 

Almost all public media or public social media comply with content censorship, and these 

media should comply with the regulations and intentions of the government. Relatively 

large institutions and opinion leaders have more opportunities to monopolize public 

influence. This type of text data cannot be used to represent the opinions of retail investors. 
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The second type is based on various data indicators in the transaction process that 

reflect emotions, such as the stock turnover rate. There is a certain deviation between the 

emotions and specific behaviors of market participants. This kind of deviation includes 

the deviation over time and the deviation in actions. 

The third type is stock forums, where stockholders gather together online. 

Stockholders freely express their opinions and feelings to each other. The government 

restrictions on stock forums are much looser than those on portal websites, newspapers, 

and periodicals. Shareholders also comment on each other's posts. These types of text 

data are instant, real, and abundant for analysis. 

The fourth and fifth types are social applications between partial acquaintances or full 

acquaintances, respectively. Social applications such as Weibo and WeChat are mostly 

used to share users’ daily lives. There is a cultural taboo in China that people showing 

one’s wealth directly on social media is regarded as rude and not well educated. Personal 

information about buying and selling stocks normally is not posted on social media. Only 

in the era of a big bull market or big bear market do people share their transaction 

information and feelings. Text data that are effective for analysis are difficult to collect. 

To conclude, in this thesis, the third type of text data from retail investor forums were 

chosen for analysis. The data of the Shanghai Securities Composite Index and the total 

trading volume of the Shanghai Stock Exchange are from the official website of the 

Shanghai Stock Exchange. 

3.2Text data acquisition by crawler 

To automatically acquire big text data from the target internet forum of retail investors, 

a crawler was programmed as follows. 

FIGURE 3 – Structure of the Crawler. 
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The largest stock internet forum in China is https://guba.eastmoney.com/. The forum 

is divided into several different sections. There are separate discussion areas for various 

investment targets. In this forum, stockholders express their opinions and discuss and 

comment all day. After years of development, this forum has become the most active 

platform for Chinese investors. In this thesis, the Shanghai Securities Composite Index 

investor forum is used as the data source. 

FIGURE 4 – Guba Shanghai Securities Composite Index Forum. 

 

The Shanghai Securities Composite Index is composed of all the public listed stocks 

on the Shanghai Stock Exchange, including A shares (issued in China, with RMB as the 

denominated currency, for individuals, organizations, and companies in China to 
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subscribe and trade) and B shares (issued in China, with RMB as the denominated 

currency for overseas individuals, organizations and companies to subscribe and trade). 

The Shanghai Securities Composite Index reflects the change in the price level of all the 

listed stocks on the Shanghai Stock Exchange. Finally, the closing price data of each 

trading day and the total trading volume of each trading day of the Shanghai Securities 

Composite Index are used for analysis. 

Each retail investor's post is composed of several components. The components 

include the title, date, user name, body content, and other investors' replies. The title and 

date of each post are used as data. 

FIGURE 5 – Guba Shanghai Securities Composite Index forum source code. 

 

By observing the source code, the required data are encapsulated in a specific key-

value pair. To automatically obtain data, the crawler method was used. Python was used 

as the program language. 

FIGURE 6 – Library called by the crawler. 
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One of the Python libraries used was Bs4 Beautiful Soup: Richardson (2007) 

developed Beautiful Soup, which is a Python crawler library for extracting data from 

HTML and XML files. The library works with parsers to provide idiomatic ways of 

navigating, searching, and modifying parse trees. 

Another Python library used was openpyxl Workbook: Gazoni and Clark (2018) 

developed openpyxl as an open source project, and the openpyxl module is a Python 

library for reading and writing Excel 2010 documents. 

Another Python library used was request.exceptions: Reitz (2020) developed this 

library to handle exceptions and errors during connections. 

The crawler automatically extracted the titles of all the retail posts that were published 

from January 1, 2020, to July 10, 2020. Then, the algorithm was used to summarize all 

the titles posted each day. The output data are composed of the corresponding date and 

sum of all the titles. The reason why only the titles are used is that after text analysis, 

retail investors summarize their posts using titles, and the title has been shown to have 

sufficient sentiment tendencies. The content of the main body of the posts published by 

retail investors is relatively random and is often mixed with various content that is not 

related to the subject, which makes various errors more likely to occur in subsequent text 

analysis. 

After obtaining the data, in the data sorting process, data from nontrading days were 

deleted. Furthermore, the data of exception strings that could not be processed were also 

deleted. 
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FIGURE 7 – Text data acquired by the crawler. 
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3.3 Sentiment dictionary preparation  

The main technical realization path of this paper is affective computing, which is a 

dictionary sentiment calculation. The structure of affective computing is as follows. 

FIGURE 8 – The structure of affective computing. 

 

 

First, a proper dictionary for emotional calculation is essential. The main technical 

realization path of this paper is the dictionary sentiment calculation method. First, a 

proper dictionary for emotional calculation is essential. At present, most Chinese 

emotional dictionaries are general purpose dictionaries, which are mainly composed of 

adjectives and adverbs. Zhu et al (2006) and Chen et al  (2018) developed sentiment 

dictionaries such as HOWNET and NTUSD, respectively. These dictionaries are not 

professional financial dictionaries. The text data for research on business issues should 

not include noncommercial data sets, as dictionaries constructed in this way will cause 

larger deviations in the results. The sentiment dictionaries HOWNET and NTUSD were 

used as the initial dictionaries. The commonly used vocabulary of this stock forum and 

the common oral vocabulary of retail investors in China were collected. Finally, the 

Chinese financial sentiment dictionary dedicated to the Guba Shanghai Securities 

Composite Index forum was constructed. 

          
         
      
        

          
              

           
                                        

           
                                        

                    

                   

           
                                        

           
                                        

      
       
     

     

                                        

         
                                      

                     

         
                                      

                     

      
                

        

        
 

       

                           
                     
                           



YONGZHE ZHAO                                         AFFECTIVE COMPUTING AND STOCK MARKT PERFORMANCE ANALYSIS 

16 

 

 

 

 

TABLE 1 

EXAMPLE OF POSITIVE WORDS AND NEGATIVE WORDS DICTIONARY 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 The jieba method for autodividing sentence 

Another Python library used was Jieba: In Junyi (2015), the Jieba method was used 

to cut sentences into words based on Chinese language grammar and tradition. The Jieba 

method is composed of three modes. (i) Accurate mode: The content of the text is 

accurately divided according to the grammatical structure and daily usage habits, and 

there is no redundant separate vocabulary. (ii) Complete mode: All possible words are 

scanned in segments, and there is single character redundancy. 

(iii) Search engine mode: Under the guidance of the precise mode, long words are 

also segmented from inside. The precise mode segmentation method is used for analysis 

in this thesis, and the function used is jieba.lcut (content). 

 

positive         
  rise        
赚 gain profit       
猛 rush to gain profit       
进 buy        
冲 rush to buy       
  price will go up       
长多 buy        
护盘 Government or institution investor protect market    
利多 information in market which shows it is better to buy    
牛市 bull market       
…         
                                      
negative         
跌 price of stock goes down      
亏 loss money       
走 sell        
怂 scared to buy       
下 price go down       
拨档 When investors are long, the stock price falls, and the stock price is expected to  

 continue to fall.       
崩 stock market is out of control to go down.     
利空 information which leads market go down.     
暴雷 suddenly the bad news come out to public.     
熊市 bear market        
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3.5 Construction and result of the sentiment function 

Then, the Python library Pandas was used for statistics. The divided words were 

entered in the positive dictionary and the negative dictionary one by one for comparison 

and counting. 

The Python library Pandas was also used: McKinney (2011) developed Pandas, a 

Python library for big data structures. Pandas has been widely used in statistics, finance, 

social sciences, and many other fields. The library includes functions of integrated and 

intuitive routines for performing common data control and analysis. Pandas can be used 

for data collection, data analysis, and data cleaning purposes. The output of each day's 

sentiment value is based on the percentage of the statistical value of all the positive and 

negative sentiment words to the total number of words from each text data. Positive and 

negative algorithms combine the advantages of the statistical dictionary method and term 

frequency. 

(1)  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
 

(2)  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
 

                                  Source: stake overflow.com (2020) 

The counted positive and negative words are nouns, adjectives, adverbs and grammar 

instructed slang. The output is a list of positive sentiment values and a list of negative 

sentiment values. To better use positive data and negative data for analysis, the emo 

(emotion) function is constructed for analysis. The following result function is 

constructed for the direction analysis of the Shanghai Securities Composite Index. 

(3) 𝐸𝑀𝑂 𝐸𝑚𝑜𝑡𝑖𝑜𝑛  𝐿𝑛 
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

(4) 𝑅𝐸𝑆𝑈𝐿𝑇  {

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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Figure 9 – Positive sentiment result. 

 

Figure 10 – Negative sentiment result. 

 

Figure 11 – Affective computing result（RESULT）and Shanghai Securities 

Composite Index change rate(RATE). 

 

It can be intuitively seen from the image that sentiment has a certain consistency with 

the rise and fall of the Shanghai Securities Composite Index. In addition, there are still 

some lag differences in specific sections. 
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 3.5 VAR model analysis (SENTIMENT & INDEX) 

Next, the VAR model was constructed to explore the relationship between the 

sentiment of retail investors and the Shanghai Securities Composite Index. Qin (2011) 

introduced the history of the VAR model. The VAR approach arises from a fusion of the 

Cowles commission tradition and time series statistical methods, and it is catalyzed by 

the rational expectations (RE) movement. 

First, to find the relationship between the variable sentiment value (EMO) of retail 

investors, the unit root of the Shanghai Securities Composite Index (INDEX) and the 

first-order difference of the Shanghai Securities Composite Index needed to be tested. 

The first-order difference in the Shanghai Securities Composite Index represents the 

change in the Shanghai Securities Composite Index. The test results were as follows. The 

results showed that no root was outside the unit circle, and the model satisfied the stability 

condition. 

Figure 12 – EMO INDEX unit root test. 

 

Figure 13 – EMO D(INDEX) unit root test. 
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After confirming that the unit root test was passed, the lag order of the VAR model 

was determined by the VAR lag order selection criteria. 

 

Figure 14 – EMO INDEX VAR Lag order selection criteria. 

 

Figure 15 – EMO INDEX VAR lag 1 model.  

 

The lag 1 is significant for all kinds of information 

criteria, and it was selected to build a model for comparison. 

In the table of the VAR lag 1 model, the t-statistic is 1.14170, 

which is not significant at the 5% significance level. 
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Figure 16 – EMO INDEX Pairwise Granger causality tests.. 

 

Through Pairwise Granger Causality Test, it can be found that both null hypothesis 

INDEX dose not Granger Cause EMO and EMO does not Granger Cause INDEX. 

Figure 17 – EMO INDEX impulse analysis. 

 

It can be seen from the figure that EMO has a positive impact on the subsequent phase 

of EMO. After the second phase, the impact gradually disappears. This finding shows that 

the influence of the sentiment of retail investors reaches the strongest phase one day later 

and gradually disappears in the next two days. 

EMO's response to INDEX is not obvious, indicating that under this model, INDEX 

has no obvious direct influence on the sentiment of retail investors. 

In contrast, the response of INDEX to EMO is significant, reaching its maximum 

influence in the second phase and then gradually falling. This finding shows that it takes 
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two days for investors' emotions to reach the maximum impact and then gradually 

decrease. Furthermore, the impact of the index on itself is positive and gradually 

decreases. 

To further analyze the relationship between investor sentiment and the change in the 

Shanghai Securities Composite Index, a VAR model was established to analyze the 

relationship between the first-order difference of EMO and INDEX. 

Figure 18 – EMO D（INDEX）VAR Lag order selection criteria 

.  

 

Figure 19 – EMO D（INDEX）lag 1 Pairwise Granger causality tests. 

 

Figure 20 – EMO D（INDEX）lag 2 Pairwise Granger causality tests. 
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Through lag order analysis, only lag 0 is significant. It is impossible to establish a 

suitable VAR model for analysis. In addition, in the Pairwise Granger Causality Tests of 

lag1 and lag2, it was found that the null hypothesis could not be rejected. Therefore, it is 

impossible to determine that investor sentiment is the reason for leading the change of the 

Shanghai Securities Composite Index. 

 

3.6 Pearson correlation and TLCC analysis (SENTIMENT & INDEX) 

There is no causal relationship between the sentiment of retail investors and the 

Shanghai Securities Composite Index that can be proven by previous VAR models. In 

addition, there is no causal relationship between the sentiment of retail investors and the 

first-order difference of the Shanghai Securities Composite Index that can be proven by 

previous VAR models. Although causal relationships fail to be proven, there might be an 

overall correlation or partial correlation between the sentiment of retail investors and the 

change rate of the Shanghai Securities Composite Index. To avoid the problem that the 

numbers of indexes are much larger than the sentiment result, which makes the correlation 

calculation inaccurate, a rate function was built. 

(5) 𝑅𝐴𝑇𝐸 𝐼𝑁𝐷𝐸𝑋  
𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑒𝑥−𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑒𝑥  𝑎 𝑑𝑎𝑦 𝑏𝑒𝑓𝑜𝑟𝑒  

𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑖𝑛𝑑𝑒𝑥  𝑎 𝑑𝑎𝑦 𝑏𝑒𝑓𝑜𝑟𝑒 
 

 

Next, the Pearson method and the TLCC method were used to find the correlation 

relationship between two time series. 
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Figure 21 – Structures of the Pearson correlation and time lag cross correlation analyses 

 

To quantify the relationship between two time series, some libraries based on Python 

were used, such as Pandas, NumPy, matplotlib, seaborn and SciPy. 

Python library NumPy: Oliphant (2006) built NumPy on a successful numeric array 

object. The goal is to create the cornerstone of a useful environment for scientific 

computing. A large number of dimensional multidimensional matrix calculations are 

supported by NumPy, and it can also provide a large number of mathematical function 

libraries for array operations. Pandas is based on NumPy. High-performance matrix 

calculation support can be provided by NumPy. 

Python library matplotlib: Hunter and Dale (2007) The matplotlib is a library for 

making 2D plots of arrays in python 

Python library seaborn: Sheppard  (2012) developed seaborn to provide a number of 

advanced data visualized plots and a general improvement in the default appearance of 

matplotlib-produced plots. 

Python library SciPy: Oliphant (2004) developed SciPy as a collection of 

mathematical algorithms and convenience functions that is built on the numerical 

extension of Python. It can be used for the manipulation and visualization of data. 

The Pearson correlation coefficient statistical guide (2020) states that the Pearson 

correlation is a measure of the linear correlation between two variables and how the two 

variables change together over time. The correlation coefficient can be used to reveal the 

degree of correlation (0.5 (-0.5)-1.0 (0.5) means a strong correlation, 0.3 (-0.3)-0.5 (-0.5) 

means a medium correlation, and 0.1 (-0.1)-0.3 (-0.3) means a weak correlation). When 
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the correlation coefficient r is greater than 0 and less than 1, it indicates a positive 

correlation between x and y. When r is greater than -1 and less than 0, it indicates a 

negative correlation between x and y. It is unusual to regard the Pearson correlation as a 

measure of full-time synchronization. Therefore, the Pearson correlation cannot be used 

to judge the directionality between two variables, and it cannot distinguish which variable 

plays a leading role and which variable is just following. 

After calculation, the Pearson correlation coefficient was 0.5159316953442752 and 

the p-value was 7.37838628287929e-10. The results show that the sentiment of retail 

investors and the change rate of the Shanghai Securities Composite Index are strongly 

correlated. 

Figure 22 – Pearson analysis. 

 

In addition, to measure the local synchronization, the sliding window method was 

adopted, and the Pearson correlation was repeatedly calculated in all the sliding windows 

until all the variables were covered by the window. The figure above shows the result of 

the synchronization calculation at each moment. It appears that for the majority of the 

time, there is positive synchronization between two time series. 
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Figure 23 – TLCC analysis. 

 

The literature search shows that some scholars find that there is a lag difference 

between the sentiment of retail investors and changes in the stock market. To further 

explore the influencing relationship between the two variables, the time lag cross-

correlation of different windows was calculated for analysis. The time lag cross-

correlation was repeatedly calculated in multiple time windows. By comparing the 

differences in the scores in the interaction, the initiator and the followers was found. The 

time series was divided into 20 equal size time windows, and then, the cross-correlation 

of each time window was calculated. Through analysis of the results, it was found that 

there is a lag in the mutual influence relationship between the sentiment of retail investors 

and the change rate of the Shanghai Securities Composite Index. 

3.7 VAR model analysis (SENTIMENT & VOLUME) 

To find the relationship between the variable sentiment value (EMO) and the trading 

volume of the Shanghai Securities Composite Index, the unit root should be tested. 

Because the real trading volume is normally a huge number, the logarithms of those 

numbers have been taken. The test results are as follows. 
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Figure 24 – EMO VOLUME unit root test. 

 

The results are all within the unit circle, and the data are stationary and can be used 

for modeling. The result shows that no root lies outside the unit circle, and the two VARs 

satisfy the stability conditions. 

Figure 25 – EMO VOLUME var lag order selection criteria. 

 

The testing the lag order selection criteria found that lag 2 is significant. 
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Figure 26 – EMO VOLUME VAR model. 

 

 

 

 

 

Figure 27 – EMO VOLUME VAR model. 

 

 

 

 

In vector autoregression estimates table, the t-statistics of EMO (-1), VOLUME (-1) 

and VOLUME (-2) are all significant. The r-squared is 0.840198, which is quite high. 

Through the pairwise Granger causality test, the p-value is 0.0121, which is significant. 

The null hypothesis (EMO does not Granger cause VOLUME) can be rejected. The 

sentiment of retail investors is the reason for the change in trading volume. 

VAR Model: 

VOLUME = C(2,1)*EMO(-1) + C(2,2)*EMO(-2) + C(2,3)*VOLUME(-1) + 

C(2,4)*VOLUME(-2) + C(2,5) 

VAR Model - Substituted Coefficients: 

VOLUME = 0.1530517258*EMO(-1) - 0.0265355078095*EMO(-2) + 

0.587591946226*VOLUME(-1) + 0.364911869886*VOLUME(-2) + 1.26544984901 
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Figure 28 – EMO VOLUME impulse analysis 

 

The results of the impulse response analysis show that the influence of investor 

sentiment on trading volume gradually increases from the first period to the second period, 

the influence decreases in the third period, and the influence increases in the fourth period. 

Then, the influence gradually diminishes. 
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4.Conclusions and future research 

4.1 Conclusions 

By analyzing the relationship between the sentiment of retail investors and the 

Shanghai Securities Composite Index and the relationship between the sentiment of retail 

investors and the total trading volume of the Shanghai Stock Exchange, the results remind 

retail investors to improve their rational investment awareness and provide a reference 

for the Chinese government to improve the quality of market regulation to protect retail 

investors. In the VAR model (EMO INDEX), the pairwise Granger causality test found 

that neither null hypothesis was supported: INDEX does not Granger cause EMO and 

EMO does not Granger cause INDEX. The results of the EMO INDEX impulse analysis 

show that the response of INDEX to EMO is significant, reaching its maximum influence 

in the second phase and then gradually falling. In the VAR model (EMO D(INDEX)), lag 

order analysis shows that only lag 0 is significant. A suitable VAR model cannot be 

established for analysis. The results of the Pearson correlation of Rate(INDEX) and the 

sentiment of retail investors is 0.5159316953442752, and the p-value is 

7.37838628287929e-10. The results show that the sentiment of retail investors and the 

change rate of the Shanghai Securities Composite Index are strongly correlated. Analysis 

of the TLCC shows that there is a lag in turn in the mutual influence relationship between 

the sentiment of retail investors and the change rate of the Shanghai Securities Composite 

Index. In the VAR model (sentiment & volume), the pairwise Granger causality test 

provides a p-value of 0.0121, which is significant. The null hypothesis (EMO does not 

Granger cause VOLUME) can be rejected. There is no causal relationship between the 

sentiment of retail investors and the Shanghai Securities Composite Index, and there is a 

causal relationship between retail investor sentiment and the total trading volume of the 

Shanghai Stock Exchange. There is a strong correlation and a mutual lag influence 

between the sentiment of retail investors and the rate of change of the Shanghai Securities 

Composite Index. 

4.2Future research 

First, the crawler program needs to be further optimized since the existing program 

has the problem of insufficient stability. This problem becomes more prominent when the 
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target website itself is not stable enough. The stability and adaptability of the crawler 

program need to be further improved. 

Second, with the advancement of big data technology, data sources should be more 

extensive in the future. In the future, the real-time and comprehensive advantages of big 

data technology should be incorporated. 

Third, reinforcement learning algorithms in artificial intelligence, support vector 

machines and clustering calculations provide more diverse modeling options for affective 

computing algorithms. These methods have also achieved good results in some papers 

and provide more choices for affective computing in the future. 
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APPENDICES 

Table 

 

TABLE 1– Example of positive words and negative words dictionary 

 

  positive         
  rise        
赚 gain profit       
猛 rush to gain profit       
进 buy        
冲 rush to buy       
  price will go up       
长多 buy        
护盘 Government or institution investor protect market    
利多 information in market which shows it is better to buy    
牛市 bull market       
…         
                                      
negative         
跌 price of stock goes down      
亏 loss money       
走 sell        
怂 scared to buy       
下 price go down       
拨档 When investors are long, the stock price falls, and the stock price is expected to  

 continue to fall.       
崩 stock market is out of control to go down.     
利空 information which leads market go down.     
暴雷 suddenly the bad news come out to public.     
熊市 bear market        
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Figure 

 

 

 

 

 

 

 

FIGURE 1 –  Affective 

Computing Emotion Result of 

retail investors （EMO） and 

Shanghai Securities Composite 

Index Growth Rate (RATE) 

FIGURE 2 – Technical route. 

 

FIGURE 3 – Structure of Crawler. FIGURE 4 – Guba Shanghai Securities 

Composite Index Forum. 

FIGURE 5 – Guba Shanghai Securities 

Composite Index forum source code. 

 

FIGURE 6 – Library called by 

the crawler. 
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FIGURE 7 – Text data acquired by 

the crawler. 

 

FIGURE 829 – The structure of 

affective computing. 

 

FIGURE 9 – Positive sentiment result. Figure 10 – Negative sentiment result. 

Figure 11 – Affective computing result

（ RESULT） and Shanghai Securities 

Composite Index change rate(RATE). 

 

Figure 12 – EMO INDEX 

unit root test. 
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Figure 14 – EMO INDEX VAR 

Lag order selection criteria. 

 

Figure 13 – EMO D(INDEX) 

unit root test. 

Figure 15 – EMO INDEX 

VAR lag 1 model. 

 

Figure 16 – EMO INDEX 

Pairwise granger causality 

tests. 

 

Figure 17 – EMO INDEX 

impulse analysis. 
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Figure 18 – EMO D

（ INDEX）VAR Lag order 

selection 

Figure 19 –  EMO D

（ INDEX ） lag 1 Pairwise 

granger causality tests. 

Figure 21 – EMO D（ INDEX） lag 2 

Pairwise granger causality tests. 

Figure 20 –The structure of Pearson 

correlation and Time lag cross 

correlation analysis 

 

Figure 22 – Pearson analysis. Figure 23 – TLCC analysis. 

 

Figure 30 – EMO VOLUME unit root test. 

 

Figure 24 – EMO VOLUME unit root test. 
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Figure 28 – EMO VOLUME 

impulse analysis 

 

 

 

Figure 25 – EMO VOLUME var lag 

order selection criteria. 

 

Figure 26 – EMO VOLUME 

VAR model. 

 

Figure 27 – EMO VOLUME VAR 

model pairwise granger causality 

tests. 

 


