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RESEARCH Open Access

Inherent variability of cancer-specific
aneuploidy generates metastases
Mathew Bloomfield1,2 and Peter Duesberg1*

Abstract

Background: The genetic basis of metastasis is still unclear because metastases carry individual karyotypes and
phenotypes, rather than consistent mutations, and are rare compared to conventional mutation. There is however
correlative evidence that metastasis depends on cancer-specific aneuploidy, and that metastases are karyotypically
related to parental cancers. Accordingly we propose that metastasis is a speciation event. This theory holds that
cancer-specific aneuploidy varies the clonal karyotypes of cancers automatically by unbalancing thousands of
genes, and that rare variants form new autonomous subspecies with metastatic or other non-parental phenotypes
like drug-resistance – similar to conventional subspeciation.

Results: To test this theory, we analyzed the karyotypic and morphological relationships between seven cancers
and corresponding metastases. We found (1) that the cellular phenotypes of metastases were closely related to
those of parental cancers, (2) that metastases shared 29 to 96% of their clonal karyotypic elements or aneusomies
with the clonal karyotypes of parental cancers and (3) that, unexpectedly, the karyotypic complexity of metastases
was very similar to that of the parental cancer. This suggests that metastases derive cancer-specific autonomy by
conserving the overall complexity of the parental karyotype. We deduced from these results that cancers cause
metastases by karyotypic variations and selection for rare metastatic subspecies. Further we asked whether
metastases with multiple metastasis-specific aneusomies are assembled in one or multiple, sequential steps. Since
(1) no stable karyotypic intermediates of metastases were observed in cancers here and previously by others, and
(2) the karyotypic complexities of cancers are conserved in metastases, we concluded that metastases are
generated from cancers in one step – like subspecies in conventional speciation.

Conclusions: We conclude that the risk of cancers to metastasize is proportional to the degree of cancer-specific
aneuploidy, because aneuploidy catalyzes the generation of subspecies, including metastases, at aneuploidy-
dependent rates. Since speciation by random chromosomal rearrangements and selection is unpredictable, the
theory that metastases are karyotypic subspecies of cancers also explains Foulds’ rules, which hold that the origins
of metastases are “abrupt” and that their phenotypes are “unpredictable.”

Background
Metastasis is defined as the development of secondary
malignant growths at a distance from a primary site of
cancer [1]. The relation of a metastasis to its primary
cancer was described by Foulds in 1965 as a “progres-
sion” which, “is not a mere extension of a pre-existing
lesion in space and time but a revolutionary change in a
portion of the old lesion establishing a tumor with new
properties not formerly present” [2]. Current textbooks

point out that metastasis accounts for about 90% of the
mortality from cancers and that, despite enormous efforts,
its origins are still unclear [3, 4]. For example, The Molecu-
lar Biology of the Cell states that metastasis “is the most
deadly – and least understood – aspect of cancer” [4].

No evidence for consistent metastasis-specific mutations
In 1954 Foulds showed that cancers progress to metastases
stochastically or “abruptly” and with diverse “unpredictable”
phenotypes and concluded that “it is inadvisable to attribute
to mutation” the great diversity of the individual pheno-
types of metastases [5]. In apparent agreement with Foulds,
no consistent metastasis-specific gene mutations [6–19],
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aneuploidies (abnormal chromosomes) [20–48] and tran-
scriptomes [47, 49–64] have since been found. Based on a
survey of influential studies on metastasis Michaelson et al.
also concluded in 2005, “There has been much uncertainty
as to whether metastasis requires mutation at the time of
spread” [6, 65–73]. In view of this Michaelson et al. studied
the probability of metastatic spread of clinical cancers and
arrived at the conclusion that metastasis follows a “nonge-
netic mechanism”, typically at rates below 10^-8 per cancer
cell [9, 10]. And The Biology of Cancer states in 2014–60
years after Foulds first questioned mutations - that “it is
clear that the identities of many of the genes that are
specifically involved in programming metastasis have been
elusive.” [3]. In searching for these elusive metastasis-
genes, it was also observed that the proclivity of cancers
to metastasize is determined prior to metastasis, is “pre-
ordained” [69] or “predetermined” [74]. Considering the
elusive search for metastasis-genes and our prior work on
the karyotypic basis of cancer and metastasis [43, 75–77]
we have asked here, whether the proclivity of cancers
to metastasize might be determined by cancer-specific
aneuploidy.

Two links between aneuploidy and metastasis
In an effort to find a mutation-independent mechanism
of metastasis, we reviewed previously unexplained find-
ings for clues. As a result we found two conspicuous
links: (1) the risk of metastasis correlates with the degrees
of cancer-specific aneuploidy, and (2) the aneuploid karyo-
types of metastases are related to those of primary cancers.
In the following we first summarize the evidence for these
two links between aneuploidy and metastasis, and then
show that a karyotypic, rather than a mutational theory
can explain the origins of metastasis.

Correlations between degrees of cancer-specific aneuploidy
and proclivity for metastasis
Studying cancer cytogenetics Atkin found in 1972 that
“Carcinomas of the breast fell into two discrete groups.
The lower near-diploid group showed a significantly better
eight year survival rate than the higher triploid-tetraploid
group.” [78]. Likewise, Frankfurt et al. observed in 1985,
“Only 7.1% of diploid tumors with a Gleason score of 5 to
6 formed metastases, but 80% of aneuploid tumors with a
higher Gleason score (7 to 10) formed metastases”, and
concluded, “DNA ploidy may be an important prognostic
factor for human prostate cancer.” [79]. In a review on
“tumor progression” Wolman wrote in 1986, “There was a
significantly higher survival rate and lower metastasis fre-
quency associated with diploid tumors. A large majority
(81%) of the tumors which metastasized were hyperploid.”
[80]. The same conclusion was reached in 1986 by
Ljungberg et al., who found that “deoxyribonucleic acid
content might be a useful prognostic discriminator with

implications for the clinical management of patients
with metastatic renal cell carcinoma” [81]. Fallenius et al.
made the same observation with breast cancers in 1988,
“The diploid carcinomas represent slowly growing tumors
with low risk of producing metastases and consequently, a
highly favorable prognosis. In contrast, aneuploid tumors
are potentially highly malignant variants, mostly rapidly
progressing tumors with poor prognoses” [82]. Further,
Saito et al. reported in 1994, “the incidence of the cervical
lymph node metastasis was significantly (P < 0.02) higher
in the aneuploid cases (8/15) than in the diploid cases (3/
21)” [83]. In 1997 Hemmer et al. reached the same conclu-
sion based on DNA content in a study entitled, “The value
of DNA flow cytometry in predicting the development of
lymph node metastasis and survival in patients with locally
recurrent oral squamous cell carcinoma” [84]. And Torres
et al. observed in 2007 that, “the number of genomic im-
balances in primary (breast) tumors was significantly
higher in patients presenting lymph node metastases
(median = 15.5) than in the group with no evidence” for
metastasis [85]. Concurrently Jonkers et al. reached the
conclusion in 2007 that “DNA copy number status is
the most sensitive and efficient marker of adverse clinical
outcome (of pancreatic cancers); particularly of metastatic
disease” [41], which was confirmed by an independent
study from Norway in 2014 [44].
Despite these consistent correlations between degrees

of aneuploidy and metastasis, the functional role of aneu-
ploidy in metastasis remained unexplained [3, 4, 86, 87].

Karyotypic relationships between the aneuploidies of
cancers and their metastases
Numerous independent studies found that the indi-
vidual aneuploid karyotypes of metastases are related
to those of individual primary cancers, but not to
those of metastases of other cancers [20–46, 75, 88].
Metastases also have individual transcriptomes and
gene mutations that are exclusively related to those of
parental cancers [3, 11–18, 49–64, 89]. The 1-to-1
correlations between the individual karyotypes and
individual transcriptomes of metastases indicate that
these individual transcriptomes encode the individual
phenotypes of metastases.
But in view of the individuality of the karyotypes

and transcriptomes of metastases, compared to the
expected common metastasis-specific mutations, a
coherent theory of the role of the individual karyotypes
and transcriptomes of metastases has not emerged. There-
fore, we test here the theory that metastasis is a form of
speciation, which predicts individual metastasis-specific
karyotypes and phenotypes, rather than common muta-
tions. This theory extends and confirms preliminary
karyotypic evidence for metastasis from two labs including
ours [43, 75, 88].
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Karyotypic origins of metastasis
The theory that metastases are karyotypic subspecies of
cancers is a logical extension of the theory that cancers
are karyotypic species of their own [75, 90, 91]. Accord-
ing to this theory metastasis is the end product of a se-
quence of karyotypic variations (Fig. 1). This sequence
of variations starts with the induction of random aneu-
ploidy in normal cells (squares in Fig. 1) by carcinogens.
Aneuploidy then catalyzes further random karyotypic
variation of aneuploid cells (half-squares in Fig. 1) auto-
matically, because aneuploidy unbalances thousands of
genes including mitosis-genes, at aneuploidy-dependent
rates (r2, Fig. 1). Most such random variants perish. Sto-
chastically, very rare karyotypic variants of aneuploid
cells form new autonomous cancer cells (circles in Fig. 1)
at very low, aneuploidy-dependent rates (r3, Fig. 1).
Owing to the inherent instability of cancer-specific
aneuploidy cancer karyotypes vary within margins
defined by selection for cancer-specific autonomy, again at
aneuploidy-dependent rates (r2, Fig. 1). Eventually, very
rare new autonomous variants or new subspecies arise
from cancers with metastatic or other new phenotypes,

like drug-resistance at low aneuploidy-dependent rates
(r4, Fig. 1).
One may argue, however, that cancers are not species,

because they lack a natural habitat beyond their original
host. The American evolutionary biologist Lee Van Valen
acknowledged this reservation, because “cancer cells
depend for their existence on the continuation of the
practice of tissue culture”. But Van Valen maintained
that this “wholely artificial” habitat is not an argument
against the species definition of cancers, “the expected
persistence of its habitat is never used as a criterion for
judging the reality of a species, but rather for judging
its susceptibility to extinction” [92]. Moreover, unbe-
known to Van Valen several cancers have found niches
for infinite natural transmissions without natural graft
resistance in dogs [93], Tasmanian devils [88, 93] and
clams [94]. Thus cancers are species, although their
natural habitats are restricted.
In the following we have tested the theory that metas-

tases are subspecies of cancers by comparing the karyo-
types of seven independent cancers with corresponding
metastases.

Aneuploidization
of normal, diploid 
karyotype by
carcinogens

Autocatalyzed, 
random variation 
of aneuploid 
karyotypes

Autocatalyzed, 
clonal variation
of near-diploid,
near-triploid
cancer karyotypes

Autocatalyzed, 
clonal variation
of near-diploid,
near-triploid
karyotypes
of metastases

r

r1

Mutagenic or non-mutagenic 
carcinogens

+

r2

r2

r3 r3

r4 r4

r

r2 r2

r2

r2

Fig. 1 Karyotypic theory of metastasis. According to the karyotypic theory mutagenic and non-mutagenic carcinogens induce random aneuploidy
in normal cells at carcinogen-dependent rates, r1. Aneuploidy then auto-catalyzes further random karyotypic variation, because it unbalances
thousands of genes including mitosis-genes at aneuploidy-dependent rates, r2. Most such random variants perish. Rare karyotypic variants, however,
form new autonomous cancer species with near-diploid, hypo-diploid or hyper-diploid karyotypes at very low rates, r3, because the probability to form
a new autonomous cell is very low [75–77, 104, 105, 109, 135]. Owing to the inherent instability of aneuploidy, the karyotypes of new cancer species
vary at aneuploidy-dependent rates, r2, within margins that are defined by selection for cancer-specific autonomy. As a result of this inherent
variability of cancer karyotypes, new autonomous karyotypic subspecies with metastatic phenotypes arise stochastically. Since the probability
of forming new autonomous subspecies by random variation of cancer karyotypes is very low – as in conventional subspeciation – metastases
would occur typically at low rates, r4, such as the 10^-8 per-cell rate described in the Background in reference [9]. These rates are still higher than
those of carcinogenesis from normal cells, r3 [136]. The Figure also records graphically our results that the karyotypic complexity of cancers is highly
conserved in metastases. Thus hyper-triploid cancers formed hyper-triploid metastases and near-diploid cancers formed near-diploid metastases. There
was no evidence of spontaneous alterations of the clonal karyotypic complexity of cancers or metastases; hence ‘r?’ in Fig. 1
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Results and discussion
Karyotypic and phenotypic relationships between
metastases and parental cancers
As a first test of our theory that metastases are subspe-
cies of cancers, we analyzed the karyotypic and cellular
phenotypic relationships between seven published pairs
of cancers and metastases:

(1)The breast cancer, HIM-2 and a brain metastasis,
HIM-5 [16].

(2)The melanoma, WM-115 and a metastasis of
undefined origin, WM-266-4 [21–23]. It is demon-
strated in Fig. 3 that both cancers analyzed here de-
rived from an unknown common precursor.

(3)The liver cancer, H2P and a metastasis in the portal
vein to the liver, H2M [35].

(4)The medulloblastoma, M-458 and a metastasis from
a cerebrospinal fluid relapse, M-425 [95, 96].
A comparison between the M-458 and M-425
received in 2014 for this study with those published
previously by Bigner et al. in 1991 revealed a discrepancy
in chromosome copy numbers, although marker
chromosomes were conserved. As a result Dr. Bigner

left it up to us to decide, which variant was the original
cancer or metastasis. Based on our results, e.g. the
higher growth rate, growth in suspension and higher
clonality of M-425 compared to M-458 described
below, we named M-425 the metastasis.

(5)The colon cancer, SW-480 and a lymph node metastasis,
SW-620 [97–101] with evidence, shown below, that
both are derivatives of an unknown common precursor.

(6)The melanoma, IGR-39 from a leg and a metastasis
from the groin, IGR-37 [102].

(7)The pancreatic cancer, A13-B and two independent
metastases, a pancreatic metastasis A13-A and a
liver metastasis A13-D [43].

The provenance of these cancers and corresponding
metastases, and the conditions under which they were
propagated are described in Methods.
The theory that metastases are subspecies of cancers

makes two testable predictions: (1) Each pair of a cancer
and corresponding metastasis is karyotypically related.
(2) Each pair is also distinct in cancer- and metastasis-
specific karyotypic and phenotypic markers. To test
these predictions we compared the karyotypes and

Fig. 2 Cellular morphologies and karyotypes of breast cancer HIM-2 (a, b) and of a corresponding brain metastasis HIM-5 (c, d). The comparisons
show that the primary cancer HIM-2 and corresponding metastasis HIM-5 have very similar but distinct cell morphologies (a, c) and karyotypes
(b, d). Both primary cancer and metastasis have near diploid karyotypes with the same numbers and structures of chromosomes, except for a
trisomy 10 that is missing in the metastasis HIM-5 (d). The cells were photographed at 120X in cell culture dishes (Methods). The cells of the
primary cancer were found to be more refractive and growing at modestly higher rates than the metastasis. The chromosomes were prepared
from metaphase-cells and color-coded as described in Methods
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morphological cellular phenotypes of each of these seven
cancer-metastasis pairs.
As can be seen in Figs. 2, 3, 4, 5, 6, 7, 8, the results

of these tests revealed the following similarities and
dissimilarities between cancers and corresponding
metastases:

1) The microscopic cellular phenotypes of all seven
cancers were similar to, but also distinct from
those of the corresponding metastases. In addition
we found non-microscopic distinctions that set
apart cancers from metastases. For example, the
cellular growth rate of the primary melanoma
WM-115, shown in Fig. 3, was about five-fold
lower than that of the metastasis WM-266-4.
Likewise the growth rate of the primary melanoma
IGR-37 was lower than that of the corresponding
metastasis IGR-39 (Fig. 7). The primary
medulloblastoma M-458 also differed from
the corresponding metastasis M-425 in two
physiological characteristics: The M-458 cancer
cells grew slower than those of the metastasis

M-425; and the M-458 cells were mostly attached
to the culture dish, whereas the cells of the me-
tastasis grew mostly in suspension, hence out of
focus in Fig. 5.

2) The numbers of chromosomes of all seven cancers
were very similar to, but not identical to those of the
corresponding metastases.

3) The karyotypes of all seven cancers shared a
majority of structurally and numerically-defined
aneusomies with corresponding metastases. But
they also all differed from each other in distinct
cancer- and metastasis-specific aneusomies.

4) The phenotypic and karyotypic differences between
cancers and metastases were roughly proportional to
the degrees of cancer-specific of aneuploidy: The more
aneuploid the cancer, the more different are the
karyotypes of cancers from those of corresponding
metastases. For example, it is shown Fig. 2 that the
near-diploid breast cancer HIM-2 differed from the
brain metastasis HIM-5 only in the loss of one of two
trisomies, namely trisomy 10. By contrast the six near-
triploid cancers shown in Figs. 3, 4, 5, 6, 7, 8, differed

Fig. 3 Cellular morphologies and karyotypes of melanoma WM-115 (a, b) and a corresponding metastasis WM-266-4 (c, d). The comparisons
show that the primary cancer WM-115 and the corresponding metastasis WM-266-4 have similar, but distinct cell morphologies (a, c) and
karyotypes (b, d). Both primary cancer and metastasis have hyper-triploid karyotypes with similar numbers of chromosomes and aneusomies and
both lack intact chromosome 9. They also differ from each other in the total numbers of chromosomes and in the structures of some marker
chromosomes (see Tables 1 and 2). The absence of normal chromosomes 6 from the presumed primary and the presence of "primary specific" marker
chromosomes 6 indicate that both the presumed primary and the metastasis derived from an unknown primary with normal chromosomes 6. The
cells were propagated and karyotyped as described for Fig. 2
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from the corresponding metastases in high percentages
of their constituent aneusomies (see also below).

We deduce from these comparative analyses that the
karyotypes and phenotypes of metastases are exclusively
related to, but also distinct from parental cancers –
exactly as predicted by the theory that metastases are
subspecies of cancers. Our observations that metastases
appear to conserve the average numbers of parental
chromosomes and conserve many parental aneusomies
further supports the subspeciation theory – as conven-
tional species typically conserve the genetic complexities
and most of the karyotypes of their precursors [103].
It could be argued, however, that the differences setting

apart the karyotypes of metastasis from parental cancers
shown in Figs. 2, 3, 4, 5, 6, 7, 8 are random karyotypic var-
iants generated by the inherent instability of cancer-
specific aneuploidy, and that as yet un-identified gene mu-
tations generate metastases from cancers. If that were cor-
rect, the karyotypes of metastases would not be stabilized
by selection for autonomy and thus would not be clonal,
and the numbers of their chromosomes would not, or not
consistently be close to those of parental cancers.
By contrast, if metastases were karyotypic subspecies

of cancers, their karyotypes would be clonally related to

parental cancers and would be stabilized by selection
for autonomy - like those of parental cancers and of
conventional species.
To distinguish between these possibilities we next have

investigated, whether the karyotypes of metastases are
clonal and are clonally related to parental cancers.

Metastases are karyotypic subspecies of cancers
To prove that cancers cause metastases by karyotypic
variation rather than by gene mutation, we need evidence
that the karyotypes of metastases are clonal and clonally
related to parental karyotypes.
To determine karyotypic clonality, the karyotypes of

multiple cells of a metastasis and of a primary cancer
must be compared and shown to be identical. But, owing
to the inherent variability or flexibility of cancer karyo-
types and the resulting clonal heterogeneity of cancers
[75, 88, 104, 105] (Background), the determination of
clonality of karyotypes is often obscured in conven-
tional karyotypic analyses of cancers by clonal hetero-
geneity [7, 106, 107].
Therefore, we have recently developed a technique, which

determines karyotypic clonality based on the clonality of its
constituent chromosomes, rather than on the karyotypes
as a whole. This technique is able to detect karyotypic

Fig. 4 Cellular morphologies and karyotypes of liver cancer H2P (a, b) and a corresponding portal vein metastasis H2M (c, d). The comparisons
show that the primary cancer H2P and the corresponding metastasis H2M have similar, but distinct cell morphologies (a, c) and karyotypes (b, d).
Both primary cancer and metastasis have hyper-triploid karyotypes with similar numbers of chromosomes and aneusomies, and both lack intact
chromosome 4. They differ from each other in the total numbers of chromosomes and in the structures of some marker chromosomes (see Tables 1
and 2). The cells were propagated and karyotyped as described for Fig. 2
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clonality, even if a minority of the chromosomes of a given
karyotype is non-clonal [76, 108, 109] (Background). The
technique arrays the copy numbers of individual
chromosomes of 20 cancer karyotypes in 3-
dimensional tables. These tables list the numbers of
individual chromosomes and of individual marker
chromosomes on the x-axis, the copy numbers of the
chromosomes and marker chromosomes on the y-
axis, and the numbers of karyotypes/metaphases ana-
lyzed on the z-axis. The resulting pattern is therefore
called a karyotype array. In such arrays, karyotypes
with clonal chromosome copy numbers form easily
recognizable parallel lines. The arrays shown here also
include tables that list the percentages of clonality of
each chromosome. The percentages of chromosomal
clonality have been calculated from primary data of
all chromosomes of all karyotypes analyzed here (Figs. 9c,
d; 10c; 11c; 12c, d; 13d,e; 14c and 15d).
As shown in the karyotype arrays of all seven cancers

and of the corresponding metastases, the karyotypes of
all seven cancers and corresponding metastases were
mostly 70–100% clonal (Figs. 9, 10, 11, 12, 13, 14, 15).
The 0–30% of non-clonal sets of chromosomes or aneu-
somies reflects the inherent instability of aneuploidy
(Background).

We note that we have counted here all sets of identical
chromosomes as aneusomies, including even diploid
normal chromosomes of aneuploid cancers. This was
justified by the facts that even diploid sets of normal
chromosomes are less than 100% diploid in cancers
owing to the inherent instability of aneuploid karyo-
types (see Figs. 9, 10, 11, 12, 13, 14, 15 and [110])
and that the functions of diploid sets of normal chro-
mosomes are altered in aneuploid karyotypes [111].
In a previous study of metastasis we have termed
such aneusomies “chromosomal units” for the same
reasons [43].
Table 1 presents a summary of the karyotypic relation-

ships between the seven cancers and corresponding me-
tastases based on shared and individual aneusomies,
which is shown below on page 18. The data for this table
were derived from Figs. 9, 10, 11, 12, 13, 14, 15.
As can be seen in this table, the clonal diversities

between cancers and metastases increased with in-
creasing degrees of cancer-specific aneuploidies as
follows:

(1)The near-diploid breast cancer HIM-2 shared 96%
and its clonal aneusomies with the near-diploid
metastasis HIM-5.

Fig. 5 Cellular morphologies and karyotypes of medulloblastoma M-458 (a, b) and a corresponding metastasis M-425 (c, d). The comparisons
show again that the primary cancer M-458 and the corresponding metastasis M-425 have similar, but distinct cell morphologies (a, c) and
karyotypes (b, d). Some of the metastatic M-425 cells grew in suspension (One reason, why M-425 was named the metatasis. See note above
in this section.), while the rest was attached to the culture dish. The karyotypes of both the primary cancer and the metastasis are hyper-triploid
and have similar numbers of chromosomes and of aneusomies. But they also differ in the total numbers of chromosomes and in the structures of
some individual marker chromosomes (see Tables 1 and 2). The cells were propagated and karyotyped as described for Fig. 2
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(2)The hyper-diploid melanomaWM-115 shared 60%
of its clonal aneusomies with the hyper-diploid
metastasis WM-266-4.

(3)The hyper-triploid liver cancer H2P shared 52% of
its clonal aneusomies with the hyper-triploid
metastasis H2M.

(4)The hyper-triploid medulloblastoma M-458 shared
32% of its clonal aneusomies with the hyper-triploid
metastasis M-425.

(5)The hyper-triploid colon cancer SW-480 Clone-1
shared 34% of its clonal aneusomies with the
hyper-triploid metastasis or presumed metastasis
SW-620 [97–99]. And SW-480 Clone-2 shared 29%
of its clonal aneusomies with SW-620.

(6)The hyper-tetraploid melanoma IGR-39 shared
13% of its clonal aneusomies with the hyper-
triploid metastasis IGR-37. But the size of this nu-
merical discrepancy reflects in part the ploidy-shift
of IGR-39 from hyper-tetraploid in the cancer to
hyper-triploid in the metastasis.

(7)The hypo-triploid pancreatic cancer A13-B shared
44% of its clonal aneusomies with the hypo-triploid
metastasis A13-A and 60% of its clonal aneusomies
with the hypo-triploid metastasis A13-D, which

confirmed and extended a previous study of
ours [43].

Regarding the evaluations of the relationships between
cancers and metastases based on aneusomies we
point out that non-identical numerical aneusomies
are typically still related, as for example the trisomy
1 of the cancer H2P versus the tetrasomy 1 in the
corresponding metastasis (Fig. 11a). Likewise even
structurally distinct aneusomies tend to contain com-
mon chromosomal elements. Thus the comparisons
based on distinct aneusomies minimize the relation-
ships. This effect is, however, compensated by the
juxtaposition of their karyotype arrays, which favor
relationships by comparing patterns of all aneusomies
as a whole.
In sum all metastases analyzed here confirm the theory

that metastases are individual subclones or subspecies of
parental cancers, differing from parental cancers in
metastasis-specific clonal aneusomies rather than in
“elusive” gene mutations [3]. If gene mutations would
generate metastases, metastases would have the same
karyotypes as parental cancers, but this was not
observed. Moreover, if gene mutations were sufficient

Fig. 6 Cellular morphologies and karyotypes of colon cancer SW-480 (a, b) and of a corresponding metastasis SW-620 (c, d). The comparisons
show once more that the primary cancer SW-480 and the corresponding metastasis SW-620 have similar, but distinct cell morphologies (a, c) and
karyotypes (b, d). Both primary cancer and metastasis have hyper-diploid karyotypes with similar numbers of chromosomes and of aneusomies.
They also differ from each other in the total numbers of chromosomes and in the structures of some marker chromosomes (see Tables 1 and 2).
We adduce evidence in the text that both SW-480 and SW-620 are probably both metastases of an unknown primary. The cells were propagated
and karyotyped as described for Fig. 2
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to confer metastatic phenotypes to cancer, the risk of
metastases would be independent of the cancer karyo-
type. But this was also not observed here as in numer-
ous studies in the past (see Background).
The karyotypic analyses summarized in Table 1 also

show the divergence of the karyotypes of metastases
from cancers was proportional to degrees of aneuploidy
of the parental cancer: The more aneuploid the cancer
the more it differs karyotypically from corresponding
metastases. This supports the prediction of our theory
that cancer-specific aneuploidy catalyzes metastasis by
karyotypic variation (Background).
Unexpectedly our comparisons also showed that

the total numbers of aneusomies of cancers and of
corresponding metastases were consistently very
close in all seven pairs of cancers and metastases
compared – irrespective of the percentages of aneu-
somies exchanged in metastasis (Table 1). In view of
this conservation of aneusomic complexity between
metastases and corresponding cancers, we asked next
whether this conservation of aneusomic complexity also
applied to the numbers of all constituent chromo-
somes shared by cancers and metastases and thus to
the karyotype as a whole.

Conservation of the complexity of cancer karyotypes in
metastasis
In view of the conservation of cancer-specific aneusomic
complexity in metastases (Table 1) we hypothesized that
the autonomy of cancers is encoded in the karyotype as
a whole and that metastases conserve the specific paren-
tal autonomy via the complexity of the parental karyo-
type. According to this hypothesis cancers acquire new,
metastasis-specific host ranges from lateral karyotypic
variations between cancers and metastases that do not
affect the complexity of the karyotype.
To test the conservation of the complexity of cancer

karyotypes in metastases, we compared the average
numbers of the chromosomes and the aneusomies of
each of the seven cancers to those of the corresponding
metastases based on the karyotypic data listed in Figs. 8,
9, 10, 11, 12, 13, 14, 15. The results of these comparisons
are summarized in Table 2, which is shown below on
page 18. As can be seen in Table 2 the average numbers
of all chromosomes, like those of the aneusomies of all
seven metastases were almost identical to those of the
parental cancers. Even the clonal variabilities of these
numbers based on standard deviations were the same.
Accordingly each cancer-metastasis pair shared

Fig. 7 Cellular morphologies and karyotypes of melanoma IGR-39 (a, b) and of a corresponding metastasis IGR-37 (c, d). The comparisons show
once more that the primary melanoma IGR-39 and the corresponding metastasis IGR-37 have similar, but distinct cell morphologies (a, c) and that
their karyotypes are closely related but differ in ploidy number (b, d). The primary cancer has a hyper-tetraploid karyotype and the metastasis a
closely related, but hyper-triploid karyotype. The relationship is based on chromosome copy numbers that differ from each other by the ploidy
factor that sets apart the two karyotypes. The karyotypes also differ from each other in several individual chromosome numbers and in several
individual marker chromosomes (see Tables 1 and 2). The cells were propagated and karyotyped as described for Fig. 2 and in the text
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individual ratios of the numbers chromosomes to the
numbers of aneusomies.
There was but one partial exception to this rule that

cancer-specific complexity is conserved in metastasis,
namely the transformation of melanoma IGR-39 to the
metastasis IGR-37, which underwent an apparent ploidy
reduction during transformation to metastasis (Table 2).
This ploidy shift is indicated here in Table 2 by a decrease
in the ratio of chromosome numbers per aneusomies from
3.5 to 2.2. The apparent ploidy shift in metastasis M-425
reflects a loss of parental marker chromosomes and a gain
of copy numbers of corresponding intact chromosomes
(Fig. 12), thereby maintaining the overall complexity of
the cancer in the metastasis.
In view of this we note that karyotypic polyploidization

or de-polyploidization does not change the relative pro-
portions of genes within a karyotype and thus not change
phenotypes directly. But ploidy variation in cancer cells is
typically not exactly even, and is another independent

characteristic of cancer cells that may increase or decrease
oncogenicity by changing the dosage of genes evenly and
non-evenly [76, 77, 112–114]. Its occurrence also seems to
be proportional to the degree of cancer-specific aneu-
ploidy [76, 115]. Balanced ploidy changes also occur in the
development of some normal animal [116] and plant cells
[117] and thus enhance the general output of cells.
In sum our data support the hypothesis that the auton-

omy of individual cancers is maintained by the karyotype
as a whole and is therefore conserved in cancers and corre-
sponding metastases within narrow limits of variation (see
Fig. 1, Background). This hypothesis explains prior obser-
vations of the conservation of karyotypic complexity in
metastasis described by Pearse et al. [88] and us [43, 75].
Conservation of karyotypic and genetic complexity is

also observed in conventional Darwinian speciation of
mammals, in which new species share with predecessors
the same genetic complexity and similar karyotypes
[103, 118].

Fig. 8 Cellular morphologies and karyotypes of pancreatic cancer A13-B (a, b) and of two corresponding metastases, a pancreatic metastasis
A13-A (c, d) and a liver metastasis A13-D (e, f). The comparisons show once more that the primary cancer A13-B and the corresponding
metastases A13-A and A13-D have similar, but distinct cell morphologies (a, c, e) and karyotypes (b, d, f). The primary cancer and both
metastases have hyper-diploid karyotypes with similar numbers of chromosomes and of aneusomies. The primary and the two metastases
differ from each other in the total numbers of chromosomes and in the structures of some individual marker chromosomes see Tables 1 and 2). The
cells were propagated and karyotyped as described for Fig. 2 [103]
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In the following we ask, whether the qualitative karyo-
typic replacements of multiple cancer-specific aneusomies
by metastatic counterparts, shown in Tables 1 and 2, occur
simultaneously, in single steps or sequentially in multiple
independent steps.

Are metastases with multiple new aneusomies generated
in single or in multiple sequential steps?
The currently prevailing model of carcinogenesis and
progressions of cancers holds that normal karyotypes are
gradually converted to those of cancer cells - and from
cancer cells to variant cancer cells, such as metastases
by sequential gene mutations or karyotypic alterations
that alter the dosage or structures of certain genes [3, 4,
13, 69, 119–124]. According to this model the numbers
of precursors with cancer-specific aneusomies would
decrease with increasing numbers of linearly acquired
metastasis-specific aneusomies and thus form the
pyramids of intermediates predicted by the step-wise or
linear model [3, 4, 69]. To generate from cancers the

metastases with multiple metastasis-specific aneusomies
described in Table 1, 13 to 27 such steps would be
needed, because these metastases differ from parental
cancers in 13 to 27 metastasis-specific aneusomies. If so
many precursors do indeed exist, they should show up
among the many variants of parental cancer karyotypes
before or at metastasis. But no such hypothetical karyo-
typic precursors were found in our karyotype arrays of the
six cancers that spawned metastases with multiple aneuso-
mies (Table 1). This conclusion is based on complete ana-
lyses of all aneusomies of 20 karyotypes of the six cancers
from which metastases with multiple new aneusomies
arose (and even of corresponding metastases) that are
shown in Figs. 10c, 11c, 12c, 13d and e, 14c and 15d.
This result can, however, be explained by an alterna-

tive model, which holds that all chromosomal alterations
setting apart cancers from normal cells, and likewise all
chromosome alterations setting apart metastases from
cancers occur simultaneously in a single step. This pro-
posal is based on the absence of the many intermediates

Primary Breast Cancer HIM-2
and Metastatis HIM-5

HIM-2 HIM-5
Avg # of 

chromosomes ± SD
48±1 47±1.6

chromosome # copy no (% clonal)

1 2 (95) 2 (95)

2 2 (95) 2 (100)

3 2 (95) 2 (95)

4 2 (100) 2 (90)

5 2 (100) 2 (100)

6 2 (100) 2 (100)

7 3 (100) 3 (90)

8 2 (100) 2 (95)

9 2 (100) 2 (100)

10 3 (95) 2 (85)

11 2 (80) 2 (100)

12 2 (100) 2 (95)

13 2 (85) 2 (100)

14 2 (100) 2 (100)

15 2 (100) 2 (100)

16 2 (100) 2 (100)

17 2 (100) 2 (95)

18 2 (100) 2 (95)

19 2 (95) 2 (75)

20 2 (90) 2 (85)

21 2 (85) 2 (90)

22 2 (85) 2 (90)

X 2 (90) 2 (100)

Y - -
Total Clonal 
Aneusomies

23 23
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a HIM-2

b HIM-5

Total # of Chromosomes 73 73 73 75 71 71 71 71 71 75 73 75 71 71 71 71 71 71 71 71
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20

1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3
11 2 3 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
13 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2
14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
19 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2
20 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2
21 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1
22 2 2 2 2 1 2 2 2 2 3 2 1 2 2 2 2 2 2 2 2
X 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Average±SD

Non-Clonal Aneusomies 1 1 1 2 2 3 0 0 0 2 2 5 0 0 0 0 0 1 1 1 1±1
Aneusomies per Karyotype 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23±0

Total No of Chromosomes 42 42 46 45 46 47 47 47 46 47 47 46 47 47 45 45 47 45 47 49
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20

1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2
18 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
19 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2
20 2 1 3 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2
22 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2
X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Average±SD

Non-Clonal Aneusomies 5 5 3 2 1 0 0 0 1 0 0 1 0 0 2 2 0 2 0 1 1.3±1.6
Aneusomies per Karyotype 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23±0

c Complete karyotypes of 20 HIM-2 cells

d Complete karyotypes of 20 HIM-5 cells

Fig. 9 a, b, c, d Karyotypic evidence that the brain metastasis HIM-5 is an individual subspecies of the breast cancer HIM-2. The karyotypic theory
of metastasis predicts that metastases have individual clonal karyotypes that differ from those of parental cancers in individual metastasis-specific
aneusomies. To test this theory we have compared karyotype-arrays of the brain metastasis HIM-5 to that of the primary cancer HIM-2. Karyotype
arrays are three-dimensional tables of 20 karyotypes, which list the chromosome numbers of arrayed karyotypes on the x-axis, the copy numbers
of each chromosome on the y-axis, and the number of karyotypes arrayed on the z-axis, as detailed in Results (Section, Metastases are karyotypic
subspecies of cancers). Figure 9 a, b and the attached table show that 85 to 100% of the chromosomes of the cancer HIM-2 and the metastasis
HIM-5 were clonal, and that cancer and metastasis formed very similar clonal patterns. The karyotype of the metastasis differed from that of the
primary only in the loss of trisomy 10. The copy numbers of the non-clonal chromosomes differed from the clonal averages typically ± 1 (see Fig. 9 a,b
and specifically Fig. 9 c,d). These non-clonal copy numbers represent the ongoing karyotypic variation predicted by the inherent variability of cancer-
specific aneuploidy (Background). We conclude that the brain metastasis HIM-5 is a subspecies of the parental breast cancer HIM-2
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or precursors predicted by the linear model, which are
probably absent, because they are not viable [43, 76, 77,
125–127] and the finding of others that all aneusomies
of the cancers analyzed carried genetic markers only
from one, instead of both sets of normal parental chro-
mosomes of an organism [128, 129].
This single-step model predicts that (1) there would

be no stable precursors of metastases with less than the
full set of authentic metastasis-specific aneusomies, and
that (2) all metastases retain the karyotypic complexity
of parental cancer as a whole, despite metastasis-specific
aneusomic variations (see previous section). At the same
time the single-step model also predicts there would be
no precursors of the many non-clonal, non-metastatic
variants of cancer-karyotypes with multiple non-parental
aneusomies (See Figs. 8, 9, 10, 11, 12, 13, 14, 15).
As pointed out above and summarized in Table 2 our

karyotypic analyses shown in Figs. 10, 11, 12, 13, 14,
15 exactly confirm these predictions of the single-step
model: (1) There were no intermediates of metastases
with subsets of the aneusomies of authentic metastases
in Figs. 10, 11, 12, 13, 14, 15; and (2) The karyotypic
complexity of metastases with multiple non-parental

aneusomies was practically the same as that of parental
cancers (Table 2).
This absence of precursors of metastases confirms previ-

ous results from others including us [43, 76, 77, 126, 127].
In addition our results confirm the predicted absence of
precursors of the many non-metastatic variants with mul-
tiple aneusomies and with the same complexities as their
metastatic counterparts (Figs. 10, 11, 12, 13, 14, 15). In
view of this we conclude that our data support the single-
step model of metastasis.
In agreement with the single-step model we found, un-

expectedly, one specific cell, in which the whole karyo-
type of the metastatic medulloblastoma M-425 with all
of its 24 individual aneusomies was already or was still
present in the primary cancer, M-458 (marked yellow in
Fig. 12c). This result argues against the sequential the-
ory, because predictably more precursors with less than
the 24 new metastasis-specific aneusomies of M-425
should have been present in this cancer than the 1 in
20 with all 24 M-425-specific aneusomies we found.
But this was not the case.
The simplest explanation for this result suggests that

metastasis is a stochastic single-step variation of the

Fig. 10 a, b, c Karyotypic evidence that the metastasis WM-266-4 is an individual subspecies of melanoma WM-115. The karyotypic theory of
metastasis predicts that metastases have individual clonal karyotypes that differ from those of parental cancers in individual metastasis-specific
aneusomies. To test this theory we have compared karyotype-arrays of the melanoma metastasis WM-266-4 to that of the primary cancer WM-115
prepared as described for Fig. 9. Figure 10 a, b and the attached table show that 80 to 100% of the chromosomes of the metastasis WM-266-4 and of
the cancer WM-115 were clonal, and that cancer and metastasis both formed very similar clonal patterns. The karyotype of the metastasis differed from
that of the primary cancer in about 13 of an average of 31 aneusomies (Fig. 10 a, b, c and Table 1). The copy numbers of the non-clonal chromosomes
differed from clonal averages ± 1; there were also several non-clonal marker chromosomes (Fig. 10 a, b, c). These non-clonal chromosomes represent
the ongoing karyotypic variation predicted by the inherent variability of cancer-specific aneuploidy (see Fig. 10 a, b and specifically Fig. 10c, and
Background). We conclude that the melanoma metastasis WM-266-4 is a subspecies of the parental melanoma WM-115
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parental cancer karyotype, which expands the host-range
of the parental clone to non-native tissues and thus fa-
vors metastasis while retaining its native host range. So
this M-425 ‘metastasis’ would have continued to repli-
cate in the primary cancer after a sibling had metasta-
sized to a new site. Thus, this observation lends further
support to our theory that metastases are single-step
karyotypic variants of clonal cancer karyotypes.
By contrast generation of metastases by independent

sequential karyotypic variations of precursors, would
predict metastases with unpredictable complexities that
would not necessarily match those of parental cancers.
In addition the sequential model would predict interme-
diates with aneusomies shared with authentic metastases
in M-458, which we did not observe, as shown by the
complete karyotypic analyses of M-458 in Fig. 12c.

Is metastasis a model for Darwinian speciation?
Our results on the karyotypic evolution of metastatic
subspecies from cancers may also serve as an experimental

model for theories that karyotypic alterations, rather than
gene mutations [130], have generated new conventional
species such as those proposed by Goldschmidt (1940)
[131], White (1978) [118], King (1993) [132], Vincent
(2011) [90] and Heng (2015) [133].
In contrast to these karyotypic theories of speciation,

the evolution of Darwinian species is widely presented
as a stepwise accumulations of genetic mutations
[130], much like the currently established models of
carcinogenesis [3, 4]. But testable mutations of this
“Neo-Darwinian theory” have not been described
[103, 130]. Moreover, the Neo-Darwinian theory does
not explain the karyotypic individuality of all species
[103] and of all cancers [75]. Instead, mutations predict
common targets on common karyotypes rather than
karyotypic individuality [90, 134].
Thus our results on the origins of metastases from

cancers offer a testable karyotypic model for the origins
of conventional species, especially the mammals, from
their immediate precursors [103, 118].
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a H2P

b H2M

Primary Liver Cancer H2P and Metastatis 
H2M

H2P H2M
Avg # of 

chromosomes ± SD
78±7 86±4

chromosome # copy no (% clonal)
1 3 (45) 4 (75)
2 3 (50) 3 (70)
3 3 (70) 4 (60)
4 0 0 (95)
5 2 (40)/4 (35) 4 (80)
6 2 (70) 3 (55)
7 4 (50) 5 (85)
8 2 (80) 3 (85)
9 2 (65) 4 (85)
10 3 (50) 4 (65)
11 3 (70) 3 (80)
12 4 (60) 4 (55)
13 2 (70) 2 (90)
14 3 (75) 3 (50)
15 3 (70) 3 (90)
16 2 (80) 2 (50)
17 3 (60) 3 (95)
18 4 (60) 2 (45)/3 (35)
19 3 (75) 3 (70)
20 4 (70) 4 (80)
21 2 (40)/3 (40) 3 (70)
22 3 (90) 4 (50)
X 2 (75) 3 (65)
Y 2 (75) 1 (75)

clonal markers - -
der(1;17) 2 (50) 2 (80)
der(4;7) 2 (95) 2 (90)
der(4) 2 (100) 2 (80)

der(6;13) 3 (70) 2 (65)
der(8;19) 2 (55) 2 (95)
der(16;19) 2 (90) 2 (70)
der(13;5) 2 (55) -
der(14) - 1 (85)

Total Clonal 
Aneusomies

31 31
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Chromosomes

Total # of Chromosomes 80 83 86 86 85 81 68 73 64 86 74 64 74 81 80 74 70 78 83 87
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20

1 3 3 3 3 3 2 2 2 1 4 4 2 1 2 3 1 3 3 3 4
2 4 4 3 4 4 3 3 4 2 3 3 3 3 3 4 3 3 5 4 4
3 3 3 4 3 3 3 3 3 3 3 2 2 3 2 4 3 2 3 3 3
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 4 4 4 3 4 4 3 2 2 2 3 3 2 2 2 2 4 3 4 2
6 2 2 2 2 2 2 2 2 1 2 3 2 3 3 2 3 2 2 2 5
7 4 3 4 3 5 4 3 3 3 4 3 3 4 4 4 4 3 3 4 4
8 2 3 2 2 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2
9 3 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 3 2 3 3
10 3 3 4 4 3 3 3 4 2 3 3 2 4 4 4 4 3 3 3 4
11 3 3 3 3 3 3 3 3 3 4 3 3 3 3 2 3 2 2 4 4
12 4 3 4 4 4 4 2 4 2 3 4 3 4 4 4 4 3 2 4 3
13 2 2 2 2 2 2 1 2 1 2 1 2 1 2 2 1 2 2 2 3
14 3 3 3 3 3 3 1 1 2 3 3 1 3 3 3 3 2 3 3 3
15 2 3 3 3 3 3 3 2 3 3 2 2 2 3 3 2 3 3 3 3
16 2 2 3 2 2 2 2 2 1 2 1 1 2 2 2 2 2 2 2 2
17 3 3 3 4 2 3 1 3 3 3 3 1 2 3 3 2 1 2 3 3
18 4 4 4 4 4 4 3 4 4 5 3 3 3 4 3 3 4 2 4 4
19 3 3 3 3 3 3 4 3 3 3 3 3 3 2 2 3 2 3 2 3
20 4 4 4 4 4 4 2 4 4 5 3 4 4 5 4 4 4 3 4 5
21 2 3 3 3 3 2 3 2 1 2 1 1 2 2 3 2 2 3 3 1
22 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 2 3
X 2 2 2 1 2 2 2 1 1 2 2 1 2 2 2 2 2 1 2 2
Y 1 2 2 2 2 2 2 2 2 2 2 2 0 1 3 0 2 2 2 2

der(1;17) 2 1 2 2 2 2 1 0 1 1 2 1 1 2 2 1 1 2 2 1
der(4;7) 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
der(4) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

der(6;13) 3 3 3 2 3 3 3 3 2 3 2 3 3 3 2 3 1 3 3 0
der(8;19) 1 2 2 1 2 3 1 1 2 2 2 2 1 2 2 1 1 1 2 2
der(16;19) 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2
der(13;5) 0 2 2 2 2 0 2 2 1 3 2 1 0 1 0 0 2 2 2 2

i(5q) 1 1 1 1 1
der(10;15) 2

dic(16;9;17) 1
dic(7;9) 1
der(5) 1
del(9q) 1 1
dic(7;8) 1
der(6;5) 1
der(5;?) 1
del(Xq) 1
del(8q) 1

der(9;17) 1
del(10p) 1
dic(1;9) 1

der(17;21) 1
dic(9;1;17) 1

der(14;1;12) 1
der(X;9) 1
dic(2;9) 1

der(5;17)long 1
der(5;17)short 2

der(8;18) 1
der(7;20) 1
der(9;21) 1

der(1;17)small 1
del(1p) 1 1
del(1q) 1 1

der(2;17) 1
der(1) 1

der(19;17) 1
der(9;11) 1
der(2;17) 1
del(17q) 1
del(7p) 1

der(10;7) 1
mar(X?) 3
der(5;17) 1
der(17;5) 2
der(18;21) 1 Average±SD

Non-clonal Aneusomies 6 8 4 14 5 5 11 12 16 9 17 16 15 12 11 15 12 13 5 14 12±4
Aneusomies per Karyotype 32 34 32 37 33 33 31 33 32 34 34 32 34 33 32 34 32 34 31 34 33±1

c Complete karyotypes of liver cancer H2P 

Fig. 11 a, b, c Karyotypic evidence that the metastasis H2M is an individual subspecies of liver cancer H2P. The karyotypic theory of metastasis
predicts that metastases have individual clonal karyotypes that differ from those of parental cancers in individual metastasis-specific aneusomies.
To test this theory we have compared karyotype-arrays of the metastasis H2M to that of the primary cancer H2P prepared as described for Fig. 9.
Figure 11 a, b and the attached table show that 45–80% of the chromosomes of cancer H2P and 50–90% of the chromosomes of metastasis
H2M were clonal, and that cancer and metastasis formed similar clonal patterns. The karyotype of the metastasis differed from that of the
primary cancer in about 15 of an average of 31 H2M aneusomies (Fig. 11 a, b, c and Table 1). The copy numbers of non-clonal chromosomes
including marker chromosomes differed from clonal averages ± 1 (see Fig. 11 a, b and specifically Fig. 11c). The chromosomes with non-clonal copy
numbers represent the ongoing karyotypic variation predicted by the inherent variability of cancer-specific aneuploidy (See Fig. 11c and Background).
We conclude that the metastasis H2M is a subspecies of the parental liver cancer H2P
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Conclusions
The theory that cancer-specific aneuploidy catalyzes the
karyotypic evolution of metastases from cancers, ex-
plains the following characteristics of metastasis, which
are not predictable by the competing mutation theory:

1) The dependence of metastasis on the degree of
cancer-specific aneuploidy, because aneuploidy
catalyzes karyotypic variations from which metastases
arise at aneuploidy-dependent rates: the more
aneuploid the cancer the higher its proclivity to
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Primary Medulloblastoma M-458
and Metastasis M-425

M-458 M-425
Avg # of 

chromosomes ±
SD

81±2.5 85±2

chromosome # copy no (% clonal)
1 4 (80) 3 (85)
2 4 (55) 4 (85)
3 2 (70) 3 (100)
4 3 (60) 4 (80)
5 4 (70) 3 (100)
6 2 (60) 4 (95)
7 4 (65) 4 (85)
8 3 (65) 3 (100)
9 1 (65) 3 (80)
10 3 (95) 3 (100)
11 3 (50) 3 (70)
12 3 (90) 4 (70)
13 4 (75) 4 (75)
14 3 (95) 3 (90)
15 3 (75) 4 (90)
16 3 (90) 4 (85)
17 2 (95) 2 (90)
18 2 (60) 4 (70)
19 4 (55) 3 (85)
20 3 (70) 4 (80)
21 3 (90) 4 (80)
22 4 (80) 4 (100)
X 3 (85) 3 (90)
Y 1 (75) 0

clonal markers - -
der(8;10) 1 (60) 2 (85)

i(17q) 1 (90) 2 (100)
del(9p) 1 (70) 1 (100)
der(6;3) 3 (50) -
der(3) 1 (95) -

der(4;6) 1 (80) -
der(9;18) 1 (70) -
der(Y;18) 1 (70) -
der(15) 1 (90)

der(9;17) 1 (85) -
Total Clonal 
Aneusomies

34 28
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Total # of Chromosomes 79 77 79 81 84 83 83 78 78 82 77 80 81 81 78 83 82 86 79 79
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20

1 4 4 4 3 4 4 4 4 4 4 4 3 4 2 4 4 4 3 4 4
2 2 3 3 4 4 4 4 3 4 4 4 4 4 3 2 5 3 4 3 4
3 2 2 2 1 2 2 2 1 1 2 2 1 1 2 2 2 2 3 2 2
4 3 3 2 2 3 3 3 3 2 3 3 3 2 2 2 3 3 4 2 3
5 4 4 4 3 4 4 4 4 4 4 3 4 4 3 4 3 3 3 4 4
6 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 4 1 2
7 3 3 4 3 4 4 4 4 4 3 4 3 3 3 4 4 4 4 4 4
8 2 2 3 3 3 3 3 2 3 3 3 3 3 3 3 4 4 3 2 2
9 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 0
10 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
11 3 1 2 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3 3 2
12 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 4 3 3
13 4 4 4 2 3 4 4 4 3 4 4 2 3 4 4 4 4 4 4 4
14 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
15 2 3 2 3 3 3 3 2 3 3 3 2 3 3 3 3 3 4 3 3
16 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 4 3 3
17 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2
18 2 2 2 2 2 1 2 2 2 2 1 2 2 3 3 4 4 4 1 2
19 4 3 4 4 4 4 4 3 4 3 3 4 4 3 3 2 4 3 4 3
20 2 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 2 4 2 3
21 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3
22 3 4 4 4 4 4 3 3 4 4 3 4 4 4 4 4 4 4 4 4
X 3 2 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3
Y 1 1 1 2 1 1 1 1 1 1 1 1 2 1 2 1 1 0 2 1

der(8;10) 2 1 2 1 2 1 1 1 1 1 1 2 1 1 2 2 2 2 1 1
i(17q) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
del(9p) 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1
der(6;3) 1 3 2 3 2 2 3 3 3 3 3 3 3 2 2 2 2 0 2 3
der(3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

der(4;6) 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0
der(9;18) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1
der(Y;18) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1
der(15) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

der(9;17) 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1
der(19;11) 1
der(11;8) 1 1 1 1 1
der(12) 1 1 1 1 1 1 1 1
der(3;9) 1
der(1) 1 1

der(3;13) 1
der(13;3;6;16) 1

del(2p) 1
del(2q) 1

der(8;17) 1
der(17;8) 1
der(6;7) 1
der(8) 1 1 1
del(3q) 1
del(3p) 1

der(3)long 1 1
der(4) 1

der(13;21) 1
der(6;14?) 1
der(18;10) 1

der(10) 1
der(11;2) 1
der(4;1) 1
der(1;7) 1
der(1;3) 1
der(20;7) 1
der(19;5) 1

der(6) 1
mar(Y?) 2
del(Xq) 1
der(4) 1
mar(5) 2

der(6;16) 1 1
der(16;6;3;4;3;13) 1

t(18;20) 1
t(20;18) 1 Average±SD

Non-Clonal Aneusomies 16 9 4 12 6 6 3 10 8 6 9 10 8 22 13 12 12 24 13 5 10±5
Aneusomies per Karyotype 40 36 34 38 37 38 36 37 36 37 36 37 36 42 35 35 35 35 37 35 37±2

c Complete karyotypes of 20 M-458 cells

d Complete karyotypes of 20 M-425 cells
Total # of Chromosomes 85 84 86 87 85 85 85 82 89 81 87 83 85 86 84 85 87 81 84 84

Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20
1 3 3 3 3 3 3 3 3 4 3 3 3 3 4 3 4 3 3 3 3
2 3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 3 4 4 4 4 5 4 4 4 4 4 4 4 4 5 4 3 4 4
5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4
7 4 4 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 3 4 4
8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
9 3 2 3 3 3 3 3 3 3 4 3 3 3 3 2 3 3 3 3 2
10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
11 4 3 3 4 3 3 3 2 5 3 3 3 3 3 3 3 4 3 4 3
12 4 3 4 4 4 4 4 3 4 3 4 3 4 3 4 3 4 4 4 4
13 4 4 4 4 4 4 3 4 4 3 5 4 4 4 4 3 4 3 4 4
14 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
15 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4
16 4 3 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4
17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2
18 4 5 4 4 4 4 3 4 4 2 4 3 4 4 4 4 4 3 2 4
19 3 2 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 2 3 3
20 3 4 4 4 4 5 4 3 4 4 4 4 4 4 4 3 4 4 4 4
21 4 4 4 4 4 4 5 3 4 3 4 3 4 4 4 4 4 4 4 4
22 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
X 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

der(8;10) 2 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2
i(17q) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
del(9p) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

der(19;11) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(16) 1

der(12;2) 1
del(16p) 1
del(19q) 1
del(Xq) 1

der(2;17) 1
del(17q) 1

der(11;14) 1 Average±SD
Non-Clonal Aneusomies 5 10 0 1 3 3 5 4 2 8 1 3 1 4 2 7 1 7 3 4 3.7±2.6

Aneusomies per Karyotype 29 31 28 28 29 28 28 28 28 29 28 28 28 28 28 28 28 29 28 29 28±1

Fig. 12 a, b, c, d Karyotypic evidence that the metastasis M-425 is an individual subspecies of medulloblastoma M-458. The karyotypic theory of
metastasis predicts that metastases have individual clonal karyotypes that differ from those of parental cancers in individual metastasis-specific
aneusomies. To test this theory we have compared karyotype-arrays of the metastasis M-425 to that of the primary cancer M-458 prepared as
described for Fig. 9. Figure 12 a, b and the attached table show that 55–90% of the chromosomes of the cancer M-458 and 70–100% of the
chromosomes of the metastasis M-425 were clonal, and that cancer and metastasis formed similar clonal patterns. The fact that the karyotype of
M-425 was more clonal than that of M-458, again supports the view that M-425 is the metastasis and M-458 the original cancer (See comment
regarding this question in section "Karyotypic and phenotypic relationships between metastases and parental cancers"). The karyotype of the
metastasis differed from that of the primary cancer in about 17 of an average of 28 M-425 aneusomies (Fig. 12 a, b, c, d and Table 1). The
copy numbers of most non-clonal chromosomes including marker chromosomes differed from clonal averages ± 1 (see Fig. 12 a, b and specifically
Fig. 12 c, d). The chromosomes with non-clonal copy numbers represent the ongoing karyotypic variation predicted by the inherent variability of
cancer-specific aneuploidy (See Fig. 11c and Background). We conclude that the metastasis M-425 is subspecies of the parental medulloblastoma M-458
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a SW480-C1

b SW480-C2

c SW620

Primary Colon Cancer SW480-1, SW480-2 and Metastatis SW620
SW480-

C1
SW480-

C2
SW620

SW480-
C1

SW480-
C2

SW620

Avg # of chromosomes 
± SD

53±1 54±2 49±2 clonal markers copy no (% clonal)

chromosome # copy no (% clonal) der(20;5) 1 (100) 1 (95) 1 (100)
1 1 (100) 1 (100) 2 (95) der(5;20) 1 (100) 1 (100) 2 (65)
2 2 (84) 2 (95) 1 (100) der(2;12q) 1 (84) 1 (90) -
3 1 (95) 1 (100) 1 (100) der(10;12;3) 1 (100) 1 (100) -
4 2 (63) 1 (95) 1 (100) der(1;9) 1 (95) 1 (90) -
5 1 (100) 1 (90) 1 (100) der(8;9) 1 (100) 1 (100) -
6 2 (95) 2 (90) 1 (100) der(7;14) 1 (95) 1 (100) -
7 2 (79) 2 (95) 2 (65) der(7;20;5) 1 (100) 1 (95) -
8 1 (95) 1 (95) 0 der(19;8;19;5) 1 (100) 1 (100) -
9 1 (95) 1 (95) 2 (95) der(15;18) 1 (63) 1 (100) -

10 1 (89) 1 (95) 1 (100) i(12p) 1 (89) 1 (100) -
11 3 (95) 3 (86) 3 (85) der(1;9;7) 1 (32) 1 (100) -
12 1 (100) 1 (95) 2 (90) der(4;9) 1 (32) 1 (95) -
13 2 (53) 3 (86) 2 (75) der(3;8;18) - 1 (95) -
14 2 (95) 2 (90) 2 (90) mar(12) 1 (5) 1 (100) -
15 2 (84) 2 (90) 2 (100) der(3) 1 (100) - -
16 2 (89) 2 (100) 1 (95) der(9;1) 1 (63) - -
17 2 (79) 3 (95) 2 (85) der(8;19) 1 (79) - -
18 1 (95) 1 (100) 1 (95) del(3)(p14) - - 1 (100)
19 1 (100) 1 (90) 2 (95) der(3;16;10) - - 1 (100)
20 2 (100) 2 (95) 2 (90) der(8;13) - - 1 (100)
21 3 (95) 3 (90) 2 (100) der(6;7) - - 1 (95)
22 2 (89) 2 (95) 1 (90) der(10;13) - - 1 (100)
X 2 (95) 2 (95) 1 (85) der(X;6) - - 1 (85)
Y 0 0 0 der(8;17) - - 1 (100)

del(4)(q31.1) - - 1 (100)
der(17;21;18) - - 1 (100)

der(2;22) - - 1 (90)
der(7;3) - - 1 (90)

der(2;12p) - - 1 (95)
Total Clonal 
Aneusomies

38 39 38

Total # of Chromosomes 53 54 53 54 53 52 55 51 55 53 55 55 54 54 53 55 53 56 53
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2
3 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 1 1 1 2
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 2 2 1 2 2 2 1 2 2 2 2 2 2 2 1 2 2 1 2
8 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
10 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
11 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 2 0 3 2 2 1 1 2 2 2 3 1 2 2 1 3 2 3 2
14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
15 2 1 2 2 2 2 2 2 2 2 1 0 2 2 2 2 2 2 2
16 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2
17 2 3 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 3 2
18 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
22 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2
X 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

der(20;5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(5;20) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(2;12q) 1 1 1 1 1 1 1 0 2 1 1 1 1 1 0 1 1 1 1

der(10;12;3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(1;9) 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(8;9) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(7;14) 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

der(7;20;5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(19;8;19;5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

der(15;18) 2 1 1 2 1 2 1 1 1 2 1 1 2 2 1 1 2 1 1
i(12p) 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0

der(1;9;7) 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0
der(4;9) 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0
mar(12) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
der(3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

der(9;1) 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1
der(8;19) 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1

dic(8:16;10) 1
del(16p) 1
dic(X;6) 1

der(8;13) 1
der(13;9) 1
der(13;18) 1 1
der(13;15) 1 1
dic(1;9;18) 1

mar(18) 1 1 1 1
der(3;13) 1

dic(8;7;14) 1
der(4;13) 1
der(7;13) 1 1

i(18p) 1 1 1 1
dic(8;2;12) 1
der(9;17) 1

dic(10;12;10;12) 1
dic(15;18;22) 1

dic(8;22) 1
der(2;15) 1
der(17;18) 1
del(17q) 1

der(1;9;18) 1
der(15;17) 1

der(11) 1
mar(17) 1 1

der(15;2;12) 1
der(2;4) 1
der(16;4) 1
del(7q) 1
der(2) 1 Average±SD

Non-Clonal Aneusomies 6 12 10 1 2 7 10 10 2 4 10 11 1 1 12 6 6 11 2 6.5±4
Aneusomies per Karyotype 39 43 40 38 39 40 42 41 39 38 42 44 38 38 43 40 40 42 39 40±2

d Complete karyotypes of 20 cells of SW-480 C1

Total # of Chromosomes 57 55 55 55 55 55 55 54 56 53 54 55 51 55 55 55 53 51 46 55 55
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2
7 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2
8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
11 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 2 3 2 3 3
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
13 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 1 3 3
14 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2
15 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0 1 1
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2
21 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3
22 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2
X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

der(20;5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
der(5;20) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(2;12q) 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

der(10;12;3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(1;9) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
der(8;9) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(7;14) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

der(7;20;5) 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
der(19;8;19;5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

der(15;18) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i(12p) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

der(1;9;7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(4;9) 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

der(3;8;18) 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
mar(12) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

dic(15;2;12) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
dic(18;8;3;5;7;22) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

der(3;7;5) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
der(2;5) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
dup(21) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

dic(15;4;9) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
dic(X;10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

der(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
der(2;15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

der(2;12)short 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Average±SD
Non-Clonal Aneusomies 2 0 0 0 0 0 0 5 1 10 3 0 4 0 0 0 6 8 8 0 0 2±3

Aneusomies per Karyotype 39 39 39 39 39 39 39 41 39 42 40 39 39 39 39 39 41 41 39 39 39 40±1

e Complete karyotypes of 20 cells of SW-480 C2

Fig. 13 (See legend on next page.)
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metastasize. This explains the early studies summarized
in the Background that have linked the risk of
metastasis to the degrees of cancer-specific
aneuploidy. Catalysis by cancer-specific aneuploidy
further suggests that the “mutant alleles” thought
to “preordain” or “pre-determine” the proclivity of
cancers to metastasize [69, 74] are instead cancer-
specific aneuploidies.

2) The individuality of metastases as results of
unpredictable stochastic karyotypic variations that
convert cancers to metastases - much like random
karyotypic variantions explain the individuality of
conventional species.

3) The conservation of the complexities of cancer
karyotypes in metastasis - as in conventional
speciation [103].

(See figure on previous page.)
Fig. 13 a, b, c, d, e Karyotypic evidence that the metastasis SW-620 is an individual subspecies of SW-480 or of an unknown common precursor.
The karyotypic theory of metastasis predicts that metastases have individual clonal karyotypes that differ from those of parental cancers in individual
metastasis-specific aneusomies. To test this theory we have compared karyotype-arrays of the metastasis SW-620 to that of two clones of the presumed
primary SW-480, prepared as described for Fig. 9. Figure 13 a, b, c and the attached table show that 75 - 100% of the chromosomes of SW-620
and 53–100% of the chromosomes of SW-480 C1 and 75-100% of the chromosomes of SW-480 C2 were clonal, and that the two cancer clones and
the metastasis formed similar clonal patterns. The karyotype of the metastasis differed from that of the primary cancer SW-480 C1 in 25 of 38 average
SW-480 C1 aneusomies and differed from SW-480 C2 in 27 of 38 average aneusomies (Fig. 13a, b, c, d, e and Table 1). The copy numbers of most
non-clonal chromosomes including marker chromosomes differed from clonal averages ± 1 (Fig. 13a, b, c and specifically Fig. 13d, e). The
chromosomes with non-clonal copy numbers represent the ongoing karyotypic variation predicted by the inherent variability of cancer-specific
aneuploidy (See Fig. 11d, e and Background). We conclude that the metastasis SW-620 is a subspecies of the parental colon cancer SW-480 or of a
common unknown precursor
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Primary Melanoma IGR-39

and Metastatis IGR-37

IGR-39 IGR-37
Avg # of 

chromosomes ±
SD

111±3 73±4

chromosome # copy no (% clonal)

1 1 (95) 2 (75)

2 2 (60) 2 (90)

3 5 (80) 4 (85)

4 3 (100) 2 (90)

5 7 (85) 3 (70)

6 3 (100) 3 (60)

7 6 (70) 5 (35)/4 (35)

8 6 (65) 3 (50)

9 4 (90) 2 (95)

10 5 (85) 2 (100)

11 4 (90) 3 (75)

12 3 (75) 2 (100)

13
4 (45)/3 

(35) 0 (85)

14 4 (70) 2 (100)

15 5 (55) 3 (75)

16 1 (85) 2 (75)

17 4 (80) 2 (90)

18 3 (80) 3 (45)/2 (35)

19 4 (60) 2 (90)

20 8 (65) 4 (85)

21 4 (60) 4 (65)

22 6 (80) 4 (85)

X 3 (70) 2 (100)

Y 3 (75) 2 (70)

clonal markers - -

t(1;16) 3 (75) 2 (100)

t(16;1) 4 (85) 2 (55)

der(2;16) 3 (65) 2 (80)

der(9;12) 4 (50) 1 (70)

der(19;17) 2 (75) 2 (80)

del(16p) 1 (85) 0 (95)

i(13q) 1 (10) 2 (70)

der(15;7) - 1 (60)
Total Clonal 
Aneusomies

30 31

C
hr

om
os

om
e 

C
op

y 
N

um
be

r

N
o.

 o
f K

ar
yo

ty
pe

s

Chromosomes

Total # of Chromosomes 115 115 111 107 111 114 109 113 110 107 111 108 108 116 115 111 111 104 111 114
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 3 2 1 2 3 2 2 1 2 2 1 3 2 2 2 2 3 3
3 5 5 5 5 5 5 4 5 5 5 5 5 5 5 4 5 4 5 4 5
4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 7 7 8 7 7 7 7 7 7 7 6 7 7 7 7 7 7 5 7 7
6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
7 6 6 6 5 5 6 6 5 6 6 6 5 6 6 6 6 6 5 4 6
8 5 6 6 5 6 6 5 6 6 5 5 4 6 6 6 6 6 6 5 6
9 4 4 4 4 4 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4
10 5 5 5 5 4 5 5 5 5 5 5 5 4 5 4 5 5 5 5 5
11 4 4 4 4 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4
12 3 3 3 3 3 3 2 3 3 4 3 3 3 4 3 3 4 4 3 3
13 4 2 4 3 4 3 3 3 2 3 3 4 3 4 5 2 4 4 4 4
14 5 4 3 3 4 4 4 4 3 4 4 4 5 4 3 4 4 4 4 4
15 6 5 4 4 5 5 4 5 5 4 5 4 4 5 5 5 5 2 4 5
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 0 1 1 2
17 4 4 4 3 4 4 4 4 4 4 3 4 4 4 3 3 4 4 4 4
18 3 3 3 2 4 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3
19 4 4 4 3 5 4 3 4 3 3 4 4 4 4 3 3 4 4 5 4
20 8 7 8 8 7 8 7 7 6 4 8 7 8 8 8 8 8 8 8 8
21 4 4 3 4 5 4 4 4 4 4 4 3 4 4 5 4 3 2 3 3
22 6 6 5 6 6 6 6 6 6 6 6 5 6 6 6 6 5 6 7 6
X 2 3 3 2 2 3 3 3 3 3 2 3 2 3 3 3 1 3 3 3
Y 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 4 0 2 2

t(1;16) 3 3 3 4 3 3 4 4 2 3 3 3 3 4 3 3 3 3 3 3
t(16;1) 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 3 4 3

der(2;16) 3 3 1 3 3 3 0 3 3 3 3 2 3 2 3 3 2 3 2 2
der(9;12) 4 5 4 4 2 4 4 3 4 3 3 4 2 3 4 4 2 4 3 3
der(19;17) 2 2 2 2 2 2 1 2 2 2 2 1 1 2 3 1 2 2 2 2
del(16p) 1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
i(13q) 1 1

der(2;1) 1
der(2;13) 1
der(3;15) 1 1
der(12) 1 1 1

der(11;7) 1
der(7) 1

der(1;14) 1
der(13;20) 1

der(1;16;18) 1
dic(9;15) 1

der(12;17) 1
der(2;21) 1
der(20;11) 1
der(18;8) 1
der(15;22) 1
der(9;13) 1
der(3;17) 1

der(5) 1
del(9p) 1

der(13;19;17) 1
del(Xq) 1
der(3p) 1
del(3q) 1

dic(16;15) 1
der(16;21) 1
der(Y;12) 1
der(9;17) 1 Average±SD

Non-Clonal Aneusomies 4 5 7 9 9 0 15 7 7 10 7 16 9 5 14 5 12 9 15 9 11±4
Aneusomies per Karyotype 30 31 30 30 30 30 34 32 32 32 32 35 31 30 33 31 33 31 33 32 32±1

c Complete karyotypes of 20 IGR-39 cells   

Fig. 14 a, b, c Karyotypic evidence that the metastasis IGR-37 is an individual subspecies of melanoma IGR-39. The karyotypic theory of metastasis
predicts that metastases have individual clonal karyotypes that differ from those of parental cancers in individual metastasis-specific aneusomies. To test
this theory we have compared karyotype-arrays of the metastasis IGR-37 to that of the primary cancer IGR-39 prepared as described for Fig. 9. Figure 14
a, b, c and the attached table show that 55–100% of the chromosomes of the parental cancer IGR-39 and 50–100% of the chromosomes of the
metastasis IGR-37 were clonal, and that cancer and metastasis formed similar clonal patterns. These patterns show, however, that metastasis
coincided with a reduction in the ploidy of the parental cancer from hyper-tetraploid to hyper-triploid. Moreover, the karyotype of the metastasis
differed from that of the primary cancer in about 27 of an average of 31 metastasis-specific aneusomies (Fig. 14 a, b, c and Table 1). Since the
ploidy-shift changed the relative chromosome copy numbers of many aneusomies, the percentage of metastasis-specific aneusomies is, however,
larger than if it were based on qualitative differences only (see Table 1). As in all other hyper-diploid cancers, the copy numbers of most non-clonal
chromosomes including marker chromosomes differed from clonal averages ± 1 (Fig. 14 a, b and specifically Fig. 14c). Again, the chromosomes with
non-clonal copy numbers represent the ongoing karyotypic variation predicted by the inherent variability of cancer-specific aneuploidy (See Background).
We conclude that the metastasis IGR-37 is a subspecies of the parental melanoma IGR-39

Bloomfield and Duesberg Molecular Cytogenetics  (2016) 9:90 Page 16 of 22



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
de

r (1
;5)

de
r (1

;11
)

de
r (1

4;1
6p

)
de

r(1
4;1

9?
;16

q)
de

r (3
;9)

de
r (7

;18
)

i(1
1p

)
de

r (8
;17

)
de

r(9
)

i(1
5q

)
de

r (1
;12

)
i(5

q)
de

r (8
;5)

de
r (8

)
de

r (1
2;1

6)
de

r(1
7;1

9)
i(5

p)
de

r (1
3;8

)
de

r(1
5)

de
r (1

7p
;19

)
de

r (2
;10

)
de

r (2
;19

)
de

r (1
0;2

)
de

r (1
0;3

)
de

r (1
;18

)
de

r(3
;1)

de
r (1

;3)
de

r(5
;20

)
de

r (1
9;1

2;1
9)

i(1
0q

)
de

r(1
9;2

0)
de

r(1
)

de
r(5

;12
)

de
r(1

4;8
q)

de
r(1

4;8
p)

i(1
2p

)
de

r(1
0;1

2)
dm

in(
18

) 
de

r(1
;2)

i(1
0p

)
i(1

9;1
2;1

9)
de

r(2
;5) i(2
q)

de
r(5

;3)
de

r(4
;15

)
i(1

8q
)

i(1
1q

)
de

r(1
1)

de
r(1

9;2
1)

de
r (8

;10
)

de
r (1

2;2
2;1

9)
de

r (5
;1)

de
r (1

5;3
)

i(1
2q

)
de

r(1
0q

)
de

r(1
0;1

5)
de

r (3
)

de
r(1

0) 
de

r(7
;12

)
de

r(1
6;1

7)
de

r(1
0+

)
de

r(2
;17

)
de

r(2
q)

dm
in(

11
)

de
r(2

;5)
de

r(?
)

dm
in(

10
)

de
r(8

;21
)

de
r(8

;20
)

de
r(9

)
de

r(2
q;5

q)
de

r(2
;12

)
de

r(1
8;1

9)
de

r(1
9;5

) K1

K20

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
de

r (1
;5)

de
r(1

;11
)

de
r (1

4;1
6p

)
de

r(1
4;1

9?
;16

q)
de

r (3
;9)

de
r (7

;18
)

i(1
1p

)
de

r(8
;17

)
de

r(9
)

i(1
5q

)
de

r(1
;12

)
i(5

q)
de

r (8
;5)

de
r (8

)
de

r (1
2;1

6)
de

r (1
7;1

9)
i(5

p)
de

r (1
3;8

)
de

r(1
5)

de
r (1

7p
;19

)
de

r (2
;10

)
de

r (2
;19

)
de

r (1
0;2

)
de

r (1
0;3

)
de

r (1
;18

)
de

r(3
;1)

de
r (1

;3)
de

r(5
;20

)
de

r(1
9;1

2;1
9)

i(1
0q

)
de

r(1
9;2

0)
de

r(1
)

de
r(5

;12
)

de
r(1

4;8
q)

de
r(1

4;8
p)

i(1
2p

)
de

r(1
0;1

2)
dm

in(
18

) 
de

r(1
;2)

i(1
0p

)
i(1

9;1
2;1

9)
de

r(2
;5) i(2
q)

de
r(5

;3)
de

r(4
;15

)
i(1

8q
)

i(1
1q

)
de

r(1
1q

)
de

r(1
9;2

1)
de

r (8
;10

)
de

r (1
2;2

2;1
9)

de
r (5

;1)
de

r (1
5;3

)
i(1

2q
)

de
r(1

0q
)

de
r(1

0;1
5)

de
r (3

)
dm

in(
10

)
de

r(2
)

de
r(3

;17
)

de
r(7

;6)
ca

n't
 te

ll
de

r(1
1;1

2)
de

r(3
;13

)
de

r(?
;14

)
de

r(4
;16

)
de

r(1
;18

)
de

r(1
;20

)
dm

in(
5)

de
r(3

;9)
de

r(9
;15

)
de

r(5
;21

)
de

r(1
6;2

)
de

r(8
;15

)
de

r(3
p)

de
r(3

q)
de

r(7
;12

)
de

r(1
3;?

) K10

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
de

r (
1;5

)
de

r (
1;1

1)
de

r (
14

;16
p)

de
r(1

4;1
9?

;16
q)

de
r (

3;9
)

de
r (

7;1
8)

i(1
1p

)
de

r (
8;1

7)
de

r(9
)

i(1
5)

de
r(1

;12
)

i(5
q)

de
r (

8;5
)

de
r (

8)
de

r (
12

;16
)

de
r(1

7;1
9)

i(5
p)

de
r (

13
;8)

de
r (

15
)

de
r (

17
p;1

9)
de

r (
2;1

0)
de

r (
2;1

9)
de

r (
10

;2)
de

r (
10

;3)
de

r (
1;1

8)
de

r(3
;1)

de
r (

1;3
)

de
r(5

;20
)

de
r (

19
;12

;19
)

de
r(1

0q
)

de
r (

19
;20

)
de

r (
1)

de
r(5

;12
)

de
r(1

4;8
q)

de
r (

14
;8p

)
i(1

2p
)

de
r(1

0;1
2)

dm
in(

18
) 

de
r(1

;2)
i(1

0p
)

i(1
9;1

2;1
9)

de
r(2

;5) i(2
q)

de
r(5

;3)
de

r(4
;15

)
i(1

8q
)

i(1
1q

)
de

r(1
1)

de
r(1

9;2
1)

de
r (

8;1
0)

de
r (

12
;22

;19
)

de
r (

5;1
)

de
r (

15
;3)

i(1
2q

)
de

r(1
0q

)
de

r (
10

;15
)

de
r (

3)
dm

in(
22

)
de

r(7
p)

de
r (

14
;5)

de
r (

5;1
0)

de
r (

19
;5)

de
r (

9;2
)

de
r (

10
;21

)
de

r (
16

)
de

r (
1;1

5)
dm

in(
10

)
de

r(?
;2)

de
r(?

;10
)

de
r(5

)
de

r(1
7p

)
de

r(1
9;1

0)
de

r(2
0;1

2)
de

r(2
;10

p) 
de

r(1
8;1

9)
de

r(8
;9)

de
r(1

9;2
)

de
r(1

0;1
4)

de
r(9

;12
)

de
r(6

;11
)

de
r(3

;8;
14

) K10

1

2

3

4

5

6

b A13-A

a A13-B

c A13-D

K20

K20

Primary Pancreatic Cancer A13-B and Metastases A13-A and A13-D

A13-B A13-A A13-D A13-B A13-A A13-D

Avg # of 
chromosomes ±

SD
64±6.0 62±3.6 62±1.8 Copy No (% clonal)

chromosome # Copy No (% clonal) der (8;5) 0 1(95) 0

1 2(55) 1(75) 2(80) der (8) 0 1(95) 0

2 1(80) 2(85) 2(90) der (12;16) 0 1(95) 0

3 2(80) 2(100) 2(100) der(17;19) 0 1(95) 0

4 2(90) 2(90) 2(100) i(5p) 0(90) 1(85) 1(80)

5 0(85) 1(75) 1(90) der (13;8) 1(85) 1(85) 1(95)

6 3(80) 3(95) 3(95) der(15) 1(90) 1(85) 1(85)

7 3(55) 3(85) 3(95) der (17p;19) 0 1(85) 0

8 0 0(95) 0 der (2;10) 0 1(80) 0

9 1(80) 1(95) 1(95) der (2;19) 0 1(80) 0

10 2(65) 1(80) 1(80) der (10;2) 0 1(75) 0

11 2(75) 1(95) 1(80) der (10;3) 0 1(70) 0

12 2(70) 2(95) 2(95) der (1;18) 0 1(50) 0

13 1(70) 1(90) 1(95) der (19;12;19) 1(80) 1(10) 1(80)

14 1(90) 1(90) 1(90) der(1) 0(80) 1(5) 1(85)

15 1(90) 2(90) 1(90) der(5;12) 1(100) 0 0

16 3(80) 2(85) 3(100) der(14;8q) 1(100) 0 0

17 2(85) 1(90) 2(95) der(14;8p) 1(95) 0 1(95)

18 1(80) 2(85) 2(95) i(12p) 1(95) 0 1(100)

19 2(80) 1(50) 2(80) der(10;12) 1(95) 0 0

20 4(75) 5(45) 4(100) dmin(18) 1(95) 0 0

21 3(70) 2(95) 2(90) der(1;2) 1(95) 0 0

22 1(95) 1(100) 1(100) i(10p) 1(85) 0 1(70)

X 1(95) 1(100) 1(100) i(19;12;19) 1(85) 0 0

Y 1(90) 1(100) 0 der(2;5) 1(85) 0 0

der (1;5) 1(90) 1(100) 1(90) i(2q) 1(80) 0 1(95)

der (1;11) 1(90) 1(100) 1(100) der(5;3) 1(80) 0 0

der (14;16p) 0(95) 1(100) 1(90) der(4;15) 1(75) 0 0
der(14;19?;16q) 0 1(100) 0 i(18q) 2(65) 0 0

der (3;9) 0 1(100) 0 i(11q) 1(60) 0 0

der (7;18) 1(80) 1(95) 1(100) der (8;10) 0 0 1(100)

i(11p) 0(95) 1(95) 1(75) der (12;22;19) 0 0 1(95)

der (8;17) 1(85) 1(95) 1(95) der (5;1) 0 0 1(90)

der(9) 1(90) 1(95) 1(95) der (15;3) 0 0 1(90)

i(15q) 1(90) 1(95) 1(80) i(12q) 0 0 1(90)

der (1;12) 1(90) 1(95) 0 Total Clonal 
Aneusomies

50 49 46
i(5q) 1(90) 1(95) 0(95)

Total # of Chromosomes 67 65 63 63 67 67 67 65 51 67 68 70 66 68 68 48 67 54 69 68
Chromosome # K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20

1 1 1 2 2 2 2 2 2 2 1 2 1 1 1 2 1 1 1 2 2
2 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 0 1 1 1 1
3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2
5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
6 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 2 3 2 3 3
7 4 2 3 4 2 3 3 3 1 3 3 3 2 2 3 2 3 3 3 2
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 0 0 1
10 2 1 2 3 3 3 2 2 2 2 2 3 2 2 2 1 2 1 2 2
11 2 2 2 2 3 2 2 0 1 2 2 2 3 1 2 2 2 2 2 2
12 2 2 1 2 2 3 2 2 1 2 2 2 2 2 2 1 2 1 2 4
13 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
14 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1
15 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
16 3 3 3 2 3 2 3 3 3 3 3 4 3 3 3 3 3 1 3 3
17 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2
18 1 1 1 2 1 1 2 0 1 1 1 1 1 1 1 1 1 0 1 1
19 2 3 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2
20 3 4 4 4 3 4 4 4 4 3 4 4 4 4 4 2 4 3 4 4
21 3 2 3 2 3 3 3 3 1 3 3 3 3 3 3 2 3 2 2 3
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Y 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

der (1;5) 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(1;11) 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
der (7;18) 1 1 1 0 1 0 1 1 1 1 1 1 1 2 1 0 1 1 1 1
der(8;17) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0

der(9) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1
i(15q) 1 1 1 1 2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

der(1;12) 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
i(5q) 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

der (13;8) 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
der(15) 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

der(19;12;19) 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1
der(5;12) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(14;8q) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(14;8p) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

i(12p) 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
der(10;12) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
dmin(18) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
der(1;2) 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i(10p) 1 2 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

i(19;12;19) 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1
der(2;5) 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

i(2q) 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
der(5;3) 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1
der(4;15) 1 1 0 1 0 1 1 1 0 1 1 2 1 1 1 1 1 0 1 1

i(18q) 2 2 1 0 2 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2
i(11q) 1 1 0 1 1 1 1 0 1 1 0 1 0 2 1 0 1 0 2 1

der(11q) 1 1 1 1
der(1) 1 1 2 1
i(5p) 1 1

der(19;21) 1 1
der (14;16p) 1

i(11p) 1
der(5;20) 1
dmin(10) 1

der(2) 1
der(3;17) 1
der(7;6) 1
can't tell 3

der(11;12) 1
der(3;13) 1
der(?;14) 1
der(4;16) 1
der(1;18) 1
der(1;20) 1
dmin(5) 1
der(3;9) 1
der(9;15) 1 1
der(5;21) 1
der(16;2) 1
der(8;15) 1
der(3p) 1 1
der(3q) 1 1

der(7;12) 1
der(13;?) 1 Average±SD

Non-Clonal Aneusomies 7 13 11 18 11 15 3 4 18 7 2 6 8 8 0 20 3 26 11 11 10±7
Aneusomies per Karyotype 52 53 53 52 50 52 50 51 51 53 51 51 52 51 50 51 51 57 54 54 52±2

d. Complete karyotypes of 20 A13-B cells

Fig. 15 (See legend on next page.)
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4) The “abrupt” origins and the “unpredictable” and
“independent” phenotypes of cancers in metastasis,
known as Foulds rules of progression [5], by the low
probability and phenotypic unpredictability of new
subspecies generated by random chromosomal
rearrangements - much like the abrupt origins of
new species in conventional speciation.

Methods
Origins of seven cancer cells and corresponding
metastases
(1) A near-diploid breast cancer, termed HIM-2 and a
brain metastasis, termed HIM-5 were a generous gift of
Elaine Mardis. They were isolated and sequenced as
described by her and her collaborators in 2010 [16].
(2) A hyper-triploid primary melanoma WM-115 and
a metastasis of undefined origin, termed WM-266-4
[21–23] were obtained from American Type Culture
Collection. (3) A liver cancer termed H2P and a

metastasis in the portal vein to the liver termed H2M
was isolated and provided by Xin-Yuan Guan [35]. (4)
A hyper-triploid medulloblastoma termed Med-458
and a metastasis from a cerebrospinal fluid relapse
termed Med-425 [95, 96] were kindly transferred to us
by the senior author of this study, Darell D. Bigner
(personal communication, 2014). (5) A hyper-diploid
colon cancer SW-480 and a lymph node metastasis
SW-620 [97–101] with evidence shown above that
both are metastases from an unknown common pre-
cursor were obtained from two sources, SW-480 was a
purchase from American Type Culture Collection and
SW-620 was a kind gift from Josh Nicholson (Virginia
Polytechnic Institute and State University, Blacksburg, Vir-
ginia). (6) A hyper-tetraploid melanoma from the leg,
termed IGR-39 and a hyper-triploid metastasis from the
groin of young male patient, termed IGR-37 [102] were
purchased from DSMZ-Deutsche Sammlung von Mik-
roorganismen und Zellkulturen GmbH, Braunschweig,

(See figure on previous page.)
Fig. 15 a, b, c, d Karyotypic evidence that the metastases A13-A and A13-D are individual subspecies of the pancreatic cancer A-13B. The
karyotypic theory of metastasis predicts that metastases have individual clonal karyotypes that differ from those of parental cancers in individual
metastasis-specific aneusomies. To test this theory we have compared the karyotype-arrays of the metastases A13-A and A13-D to that of the
primary cancer A-3B. The karyotype arrays were again prepared as described for Fig. 9. Figure 15 a, b, c and the attached table show that the
chromosomes of the cancer were 55–95% clonal and that of the chromosomes of metastasis A13-A were 75–100% and those of metastasis A13-D
were 75–100% clonal, and that all three cancers formed related clonal patterns. As shown in Table 1, the karyotype of the metastasis A13-A differed
from that of the primary cancer A13-B in 27 of 49 aneusomies and metastasis A13-D differed from that of the primary in 16 of 49 aneusomies (Fig. 15
a, b, c, d). The copy numbers of most non-clonal chromosomes including marker chromosomes differed from clonal averages ± 1 (Fig. 15 a, b, c and
specifically Fig. 15d). The chromosomes with non-clonal copy numbers represent the ongoing karyotypic variation predicted by the inherent
variability of cancer-specific aneuploidy (See Background). We conclude that the metastases A13-A and D are subspecies of the parental
pancreatic cancer A13-B

Table 1 Individual and shared clonal aneusomies of metastases
and parental cancers

Primary/Metastasis Total clonal
aneusomies

Aneusomies
shared with
cancer

Metastasis-specific,
clonal aneusomies
(% of total)

1)Breast, HIM-2
Metastasis, HIM-5

23
23

-
22

-
1 (4%)

2)Melanoma, WM-115
Metastasis, WM-266-4

30
31

-
18

-
13 (42%)

3)Liver, H2P
Metastasis, H2M

31
31

-
16

-
15 (48%)

4)Medulloblastoma
M-458
Metastasis, M-425

34

28 11 17 (61%)

5)Colon, SW480-C1
Colon SW480-C2
Metastasis, SW620 vs C1
SW620 vs C2

38
39
38
38

-
-
13
11

-
-
25 (66%)
27 (71%)

6)Melanoma, IGR-39
Metastasis, IGR-37

30
31

-
4

-
27 (87%)a

7)Pancreas, A13-B
Metastases, A13-A
and A13-D

50
49
46

22
30

27 (55%)
16 (35%)

aHigh percentage of individuality reflects ploidy shift (see below, Table 2)

Table 2 Conservation of karyotypic complexity of cancers in
metastasis based on their numbers of clonal chromosomes and
aneusomies

Cancer-Metastasis
pair

Average
numbers of
chromosomes ± SE

Average
numbers
of aneusomies ± SE

Ratio
chromosomes
per aneusomya

1)BrCa HIM-2
Metas HIM-5

48 ± 1
47 ± 1.6

23 ± 0
23 ± 0

2.1
2

2)Mela WM-115
Metas WM-266-4

86 ± 1
82 ± 2

30 ± 1
31 ± 1

2.9
2.7

3)Liver H2P
Meta H2M

78 ± 7
86 ± 4

33 ± 1
34 ± 2

2.4
2.5

4)Medullob - 458
Metas- 425

81 ± 2.5
85 ± 2

37 ± 2
28 ± 1

2.2
3.0

5)Colon SW480-C1
SW480-C2
Metas SW-620

53 ± 1
54 ± 2
49 ± 2

40 ± 2
40 ± 1
39 ± 1

1.3
1.4
1.3

6)Mela IGR-39
Metas IGR-37

111 ± 3
73 ± 4b

32 ± 1
33 ± 1

3.5
2.2

7)Panc A-13B
Metas A-13-A
Metas A-13-D

64 ± 6
62 ± 2.6
62 ± 1.8

52 ± 2
51 ± 1
48 ± 2

1.2
1.2
1.3

aNumbers of chromosomes divided by numbers of aneusomies generates a
form of ploidy; bploidy shift
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Germany. (7) A hypo-triploid pancreatic cancer termed
A13-B and two independent hypo-triploid metastases, a
pancreatic metastasis A13-A and a liver metastasis A13-D,
were obtained as described previously [43]. All cultures
were grown in RPMI 1640 medium (Sigma Co.) supple-
mented with 3 to 5% fetal calf serum and antibiotics as de-
scribed previously [101, 102].

Karyotype analyses
One to two days before karyotyping, cells were seeded at
about 50% confluence in a 5-cm culture dish with 3 ml
of the medium described above. After reaching ~75%
confluence, 250–300 ng colcemid in 25–30 μl solution
(KaryoMax, Gibco) was added to 3 ml medium. The cul-
ture was then incubated at 37 °C for 4–8 h. Subsequently
cells were washed once with 3 ml of physiological saline,
dissociated with trypsin, pelleted and then incubated in
0.075 molar KCl at 37 °C for 15 min. The cell suspension
was then cooled in ice-water, mixed (‘prefixed’) with 0.1
volume of the freshly mixed glacial acetic acid-methanol
(1:3, vol. per vol.) and centrifuged at 800 g for 6 min at
room temperature. The cell pellet was then suspended in
about 100 μl supernatant and mixed drop-wise with 5 ml
of the ice-cold acetic acid-methanol solution and then in-
cubated at room temperature for 15–30 min or overnight
at -20C. This cell suspension was then pelleted and was
then either once more re-suspended in fixative and pel-
leted, or was directly re-suspended in a small volume of
the acetic acid-methanol solution for microscopic
examination. For this purpose an aliquot of a visually
turbid suspension was transferred with a micropipette
tip to a glass microscope slide, allowed to evaporate at
room temperature and inspected under the microscope
at x 200 for an adequate, non-overlapping density of
metaphase chromosomes. Metaphase chromosomes at-
tached to glass slides were then hybridized to color-coded,
chromosome-specific DNA probes as described by the
manufacturer, MetaSystems (Newton, MA 02458). Karyo-
types were analyzed under a fluorescence microscope, as
described by us previously [17, 49].
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