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ABSTRACT 

 

The purpose of this research is to present a way to compare interventions by collecting all 

available drug clinical trials for a disease of interest. The assessment is done using Meta-Analysis, 

a method for evaluating data from several studies to arrive at a combined estimate of treatment 

effect. The evaluation is done in R on a given set of studies to answer the question – which 

Alzheimer's Disease intervention (pharmaceutical vs. natural) show better outcomes and fewer 

adverse effects. The research covers many types of interventions across diverse patient 

populations. On a small subset of papers, natural treatments showed better overall improvements. 

The evaluation conducted is not medical research, and it lays no claims for determination which 

intervention is better, but the approach presented can be utilized in medical research provided a 

more representative dataset is used. The simple and portable way to do Meta-Analysis is presented. 

As it is not specific to the domain of disease interventions, it could be applied to other domains 

with minimal adjustments.  

Keywords: Meta-Analysis, Alzheimer's disease, Alzheimer's treatments  
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Introduction 

Alzheimer's Disease 

According to the World Health Organization, Alzheimer's Disease (AD) is the 5th leading 

cause of death around the globe [1]. Worldwide there are 50 million people living with dementia, 

and staggering 10 million annual cases of dementia are reported. Alzheimer's contributes to 

approximately a third of those cases [2]. The future predictions are very alarming - between 2017 

and 2025, every state in the US is expected to see at least a 14% rise in the prevalence of AD (in 

some states, the rise is greater than 40%) [2]. In 2018, the mortality rate due to Alzheimer's 

reached 37.3 deaths per 100,000 people [3]. Globally, the total number of people with dementia 

is expected to reach 82 million in 2030 and 152 million by 2050. Much of this increase is 

attributable to the rising numbers of people with dementia living in low- and middle-income 

countries and an overall population aging [4].  

It is important to understand and study all factors that contribute to the significant number 

of AD cases each year. As an example, one of the most feared long-term consequences of 

traumatic brain injuries (TBI) is dementia that often leads to more serious conditions [5]. By 

doing a better job at spreading awareness of the seriousness of head injuries and focusing more 

on their treatment and prevention, we can improve the Alzheimer's statistics and the quality of 

life of many seniors, gifting families more time and memories with their loved ones. Head 

injuries and age are not the only variables that can cause an AD diagnosis. Poor diet, genetic 

conditions, vascular disease, immune system deficiencies, etc., are all risk factors for 

Alzheimer's [6][7][8]. 

Alzheimer's Disease (AD) is an irreversible, progressive brain disorder that slowly 

destroys brain cells, causing a loss of the connections between neurons, and is the leading cause 
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of dementia around the globe [9]. AD has a severe negative impact on the quality of life, creates 

a difficult burden on family members, worsens cognitive functions, memory, and linguistic 

abilities. The behavioral patterns of severely affected patients closely resemble those of a 3-year-

old child that must not be left unattended.  

The disease can either be early-onset starting between the age of 30 to 60 or late-onset 

starting in the mid 60's [10]. The disease has seven distinct phases, the last one ending with 

death. The starting point of AD, stage one, is undetectable, and the second stage is the usual 

forgetfulness that is associated with aging, like misplacing a cell phone. The second stage is 

completely harmless, and family members, as well as the person experiencing the symptoms, 

will not be able to link this slightly fading of memory to AD. Stage three is called mild cognitive 

decline and is associated with increased forgetfulness, loss of focus, slight difficulty in 

communication. This stage may last many years before officially turning into early-stage 

dementia – stage four. This stage has a more noticeable cognitive decline; a person may have 

trouble managing a household and finances, traveling alone, or problem-solving. The average 

duration of stage four is approximately two years. Stage five already requires assistance with 

everyday tasks. At this stage, patients cannot be allowed to travel alone because they usually do 

not remember their address or phone number and may lose orientation. Stage five approximately 

lasts one and a half years. Stage six, severe cognitive decline, is the commonly associated level 

with Alzheimer's disease- limited memories of past life, trouble recognizing family, difficulty 

speaking with complete sentences.  At stage six, patients required round-the-clock care. This 

stage lasts approximately two and a half years. Late dementia is the final seventh stage. Patients 

can become immobile with almost no communication ability and can exist in this stage for 

approximately two and a half years until death [11].  
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Alzheimer's neuropathology is mainly characterized by two events - a high level of 

amyloid-beta (Aβ) plaques and neurofibrillary tangles inside neurons (tau protein aggregates) 

[12]. Amyloid-beta peptide is derived from a transmembrane protein known as an amyloid 

precursor protein (APP). In the correct biochemical pathway, the (Aβ) peptide is cleaved from 

the APP by the alpha or beta-secretase (protease enzyme which assists in protein/peptide 

breakdowns) and creates a shorter version peptide - Aβ 40. If the cleavage is done sequentially 

by beta and then gamma-secretase, it creates a long toxic type of the peptide – Aβ 42 [13]. The 

second hallmark of AD, neurofibrillary tangles (NFT), are formed by abnormally folded and 

hyperphosphorylated tau protein. This protein is involved in microtubule formation; however, 

when hyperphosphorylated, the tubules fall apart, that partitions form insoluble aggregates of tau 

protein and become the NFT's. Tangle formation is a good indicator of the disease stage - the 

more advanced the stage of the disease, the more tau tangles in the brain [14]. The Aβ 42 plaques 

together with NFTs cause neuronal damage and death, leading to the fatal ending of the disease. 

Treatments for Alzheimer's can fall into different categories: (1) cholinesterase inhibitors 

that try to block the breakdown of acetylcholine, which is the main neurotransmitter for both the 

peripheral nervous system and the central nervous system [15]; (2) antioxidants to minimize the 

damaging effect of free radicals [12]; (3) monoclonal antibodies (proteins mimicking immune 

system response) are used to target the amyloid-beta plaques and remove them [16]; (4) BACE1 

inhibitors target the APP beta-secretase cleaving enzyme directly to prevent new plaques from 

forming in the brain [17]. There are many more types of AD interventions in clinical trial stages. 

Alzheimer's interventions that were evaluated in this paper are presented in the table below. They 

are split by natural (common vitamins, natural diet, plant extracts) vs. non-natural (human-
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derived complexes and other compounds). Clinical trials containing other interventions that were 

originally collected but not covered by the Meta-Analysis are absent from this table.  

Type Intervention Treatment Description 

natural Huperzine A Natural cholinesterase inhibitor derived from the Chinese 
herb Huperzia serrata 

natural Crocus sativus Saffron 

natural Extract of Salvia 
officinalis/lavandulaefolia 

Sage. Essential oil composed almost exclusively of 
monoterpenoids 

natural EGb761 Ginko biloba extract 
natural Prolonged-release melatonin (PRM) Hormone secreted by the pineal gland at night 
natural Melissa officinalis Herb extract 

natural Folic acid 5 mg, vitamin B12 1 mg, 
vitamin B6 25 mg 

High-dose vitamin supplements 

natural Vitamin E, memantine Alpha tocopherol; moderate-affinity NMDA antagonist 
natural DHA Algal docosahexaenoic acid (DHA) 
non-natural Bryostatin Activator of protein kinase C epsilon 
non-natural Verubecestat Oral BACE-1 inhibitor 

non-natural Rosiglitazone Agonist of the peroxisome proliferator-activated receptor-
gamma 

non-natural Bapineuzumab 
Humanized N-terminal-specific anti-AB monoclonal 
antibody 

non-natural Donepezil Cholinesterase inhibitor 

non-natural Tramiprosate 
The modified amino acid that binds to soluble amyloid-beta 
and inhibits the formation of neurotoxic aggregates 

non-natural Edonerpic maleate Low-molecular-weight compound that protects against 
neurotoxic effects preserves synapses 

non-natural Solanezumab Humanized immunoglobulin G1 monoclonal antibody 
non-natural RGm Resveratrol with glucose and malate 
non-natural ABT-126 Novel a7 nicotinic acetylcholine receptor agonist ABT-126 

non-natural Vitamin E, vitamin C, alpha-lipoic acid Antioxidants  

non-natural Forasyn Connect Multinutrient combination 
non-natural Semagacestat Small molecule gamma-secretase inhibitor 

Table 1. List of included Alzheimer's treatments with a brief description of the treatment. 

It is hard to imagine that such a common disease that has been known for more than 100 

years still to this day has no cure and is the only disease in the top 10 causes of death that cannot 

be prevented or controlled. If many drugs to date have no noticeable positive impact on the 
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patients, perhaps, science has been moving in the wrong direction? Can natural treatments be the 

future of AD? If natural treatments have higher success rates, can this relieve the heavy burden 

of caregiving and cut costs? In 2020 alone, Alzheimer's and other dementia-related healthcare 

cost the nation $305 billion, including $206 billion in Medicare and Medicaid payments. By 

2050, Alzheimer's is projected to cost more than $1.1 trillion unless a remedy will be available 

[18]. 

There are two independent goals in this project: to present a simple way to do Meta-

Analysis in R and to evaluate if Meta-Analysis is a reliable approach for rating Alzheimer's 

interventions individually and by type and to assess whether natural treatments for AD perform 

better than pharmaceutical treatments. Meta-Analysis was chosen as a useful tool that allows 

working with large amounts of data. 

Meta-Analysis 

Meta-Analysis is a statistical procedure for combining data from multiple studies first 

introduced in the 1970s by Gene V Glass [19]. By extracting data from several studies, the goal 

of a Meta-analysis is to arrive at a combined estimate of treatment effect (effect size) – summary 

measures that represent the difference in average scores between intervention and control groups 

[20]. Generally, effect estimates of the results of an applied intervention from different treatment 

studies are combined using a weighted average, generating a single statistic with a confidence 

interval that encapsulates how effective the experimental intervention was with respect to control 

groups. Meta-Analysis is advantageous because it enhances precision by combining information 

from multiple studies. It could also be used to address a question that is either different from or 

broader than those targeted by the individual studies. The target question of a Meta-Analysis can 

address a broader range of interventions and populations. Finally, Meta-Analysis can resolve 
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conflicts presented by the conclusions of individual studies or fill in the gaps missed by 

individual studies. However, the disadvantage of Meta-Analysis is the potential to be misleading, 

as there are numerous design-related decisions that must be made and documented and many 

sources of bias that must be considered. Specifically, aspects of design such as the selection of 

studies and data, inclusion/exclusion criteria, and the appropriate comparison of interventions 

must be carefully considered [21]. Moreover, the data preparation phase of Meta-Analysis is 

extremely time-consuming because it is a manual and labor-intensive process requiring careful 

reading and data extraction from each study. 

To conduct a comprehensive Meta-Analysis, one must calculate the effect size, make a 

choice of the correct statistical model to use (fixed-effect vs. random effect or others), 

understand the concepts of and variables that quantify heterogeneity, then produce a forest plot 

that shows estimated results along with corresponding statistics, and finally interpret the results 

[22]. Additional steps include creating a funnel plot and conducting tests on publication bias.  

The effect size identifies the magnitude and direction of a treatment effect compared to 

the placebo. The calculation of the effect size depends on the type of data – continuous or 

dichotomous. When the experimental and control intervention responses are continuous, studies 

typically report the mean (𝜇̂#$, 𝜇̂&$), standard deviation (𝑠#$, 𝑠&$), and sample size (𝑛#$, 𝑛&$) for 

the experimental and control groups for studies k = 1, …. K. When all outcomes are reported on 

the same cognitive assessment scale, the mean difference may be used as a measure of the effect. 

When study outcomes are reported on different scales (e.g., some studies report Alzheimer's 

Disease Assessment Score - cognitive subscale (ADAS-cog), others Clinical Dementia Rating-

Sum of Boxes, etc.), the standardized mean difference, a dimensionless effect measure, is instead 

used since mean differences cannot be pooled directly. This paper uses continuous data only. 
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For a study k, the estimated mean difference is given by  

𝜇̂$ = 	 𝜇̂#$ −	 𝜇̂&$ 

and the variance estimate by   

𝑉𝑎𝑟/ (𝜇̂$) = 	
𝑠#$2

𝑛#$
+	
𝑠&$2

𝑛&$
 

An approximate (1 – α) two-sided confidence interval is then 

𝜇̂#$ −	 𝜇̂&$ 	± 𝑧67	82
9
𝑠#$2

𝑛#$
+	
𝑠&$2

𝑛&$
	 

where 𝑧67	:;
 is the 1 −	8

2
 quantile of the standard normal distribution. 

A common version of the standardized mean difference is the Hedge's g, given by  

𝑔>$ = (1 −	
3

4𝑛$ − 9
)

𝜇̂#$ −	𝜇̂&$

9((𝑛#$ − 1)𝑠#$
2 + (𝑛&$ − 1)𝑠&$2 )
(𝑛$ − 2)

 

where 𝑛$ = 𝑛#$ + 𝑛&$ and a correction for bias in the estimated standard error is 

achieved via (1 −	 C
DEF7G

).  The variance of 𝑔>$ is 

𝑉𝑎𝑟/ (𝑔>$) = 	
𝑛$

𝑛#$ ∙ 	𝑛&$
+	

𝑔>$2

2(𝑛$ − 3.94)
 

and the two-sided (1 – α) confidence interval is calculated by  

𝑔>$ 	±	𝑧67	82
	𝑆. 𝐸. (𝑔>$) 
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where 𝑆. 𝐸. (𝑔>$) = 	L𝑉𝑎𝑟/ (𝑔>$) and 𝑧67	:;
 is the 1 −	8

2
 quantile of the standard normal 

distribution [23]. 

There are two commonly used modes: fixed effect model and random effect model. 

A fixed effect model is used when all studies k = 1, ... K are estimating the same value, 

share an identical protocol, share the same effect size, and come from one homogenous 

population. The main model assumption is that every study is evaluating a common treatment 

effect [12].  Let 𝜃N$ be the intervention effect from study k and θ unknown intervention effect in 

the population, our goal for estimation.  Furthermore, let 𝜎>$2 be the sample estimate of 𝑉𝑎𝑟P𝜃N$Q. 

The fixed effects model is then  

𝜃N$ = 	𝜃 +	𝜎$𝜖$,											𝜖$~𝑁(0,1) 

where 𝜖$  are independent and identically distributed. 

The maximum likelihood estimate of θ is given by  

𝜃NV = 	
∑ 𝜃N$ 𝜎>$2⁄Y
$Z6
∑ 1 𝜎>$2⁄Y
$Z6

= 	
∑ 𝑤$𝜃N$Y
$Z6
∑ 𝑤$Y
$Z6

 

This method is called the inverse variance method, since 𝜃NV is a weighted average of 𝜃N$ , 

the individual effect estimates and the weights 𝑤$ = 	1 𝜎>$2⁄ . The variance of 𝜃NV is  

𝑉𝑎𝑟/ P𝜃NVQ = 	
1

∑ 𝑤$Y
$Z6

 

and a (1 – α) confidence interval for 𝜃NV is  

𝜃NV 	±	𝑧67	82
	𝑆. 𝐸. (𝜃NV) 
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where 𝑆. 𝐸. P𝜃NVQ = 	\𝑉𝑎𝑟/ P𝜃NVQ and 𝑧67	:;
 is the 1 −	8

2
 quantile of the standard normal 

distribution.  

The test statistic 𝜃NV 𝑆. 𝐸. (𝜃NV)⁄  may then be used to test for an overall treatment effect 

[16]. 

A random effects model, on the other hand, has a completely different sampling frame – 

assumes a universe of populations, random sampling, and variation in effects. The main model 

assumption is that the true treatment effects of the individual studies may be different from each 

other [12]. The random effects model is typically used when a Meta-Analysis combines studies 

that use different protocols/test groups and are part of a systematic review. If we elect to use a 

random effects model, we are assuming that the effect estimates, 𝜃N$Vary more than under a fixed 

effects model.  

The random effects model is 

𝜃N$ = 	𝜃 + 𝜇$ +	𝜎$𝜖$  

where 𝜖$~𝑁(0,1)	and 𝜇$~𝑁(0, 𝜏2) are independent, identically distributed, and 

independent of one another.  

The maximum likelihood estimate is given by the DerSimonian-Laird estimator 𝜏̂2  

(describes between-study variability and does not increase with K or sample size). 

𝜏̂2 = 	
𝑄 − (𝐾 − 1)

𝑆  

𝑆 = 	`𝑤$ −	
∑ 𝑤$2Y
$Z6

∑ 𝑤$Y
$Z6

Y

$Z6
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But if Q < (K – 1), 𝜏̂2 = 0 and 𝜃Na = 	𝜃NV. 

According to the inverse variance method, the random effects estimate and variance are 

given by 

𝜃Na = 	
∑ 𝑤$∗𝜃N$Y
$Z6
∑ 𝑤$∗Y
$Z6

 

𝑉𝑎𝑟/ P𝜃NaQ = 	
1

∑ 𝑤$∗Y
$Z6

 

respectively, with weights 𝑤$∗ = 	1 (𝜎/$
2 +	 𝜏̂2)⁄ .  

The (1 – α) confidence interval for 𝜃Na is  

𝜃Na 	±	𝑧67	82
	𝑆. 𝐸. (𝜃Na) 

where 𝑆. 𝐸. P𝜃NaQ = 	\𝑉𝑎𝑟/ P𝜃NaQ and 𝑧67	:;
 is the 1 −	8

2
 quantile of the standard normal 

distribution.  

The test statistic 𝜃Na 𝑆. 𝐸. (𝜃Na)⁄  may then be used to test for an overall treatment effect 

[16]. 

Heterogeneity is a measure of the variation among effect sizes. For example, if one of the 

studies were conducted on mice and the other on humans, a high heterogeneity is expected and 

would suggest that different subgroups (mice vs. humans) are present. In this example, there was 

known heterogeneity, however, in real life, Meta-Analysis unexplained differences between the 

studies can be a cause of concern.  
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There are a few important variables that measure heterogeneity in a Meta-Analysis: 𝜏2, 

𝐼2, and Cochran's Q with a p-value [24][25]. The Q-statistic (Cochran's Q) is defined as the 

weighted sum of squared differences between the observed effects and the weighted average 

effect [26]. 	

𝑄 = 	`𝑤$(𝜃N$ −	𝜃NV)2
Y

$Z6

	

where 𝐾 is the number of studies, 𝑤$ = 	1 𝜎>$2⁄  , 𝜃N$  the intervention effect and 𝜃NV  is a weighted 

average of 𝜃N$.  

Under the null hypothesis (no heterogeneity), Q follows a Chi-Square distribution with df 

= K – 1. Greater heterogeneity among studies is indicated by large Q and 𝜏̂2. 

Two additional commonly used statistics are  

𝐻2 = 	
𝑄

𝐾 − 1 

𝐼2 = e
𝐻2 − 1
𝐻2 𝑖𝑓	𝑄 > (𝐾 − 1)
0					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where large 𝐻2 indicates higher heterogeneity, and H = 1 signifies homogeneity. 𝐼2 measures a 

proportion of observed variance and is independent of K and ranges between 0% and 100%, with 

larger 𝐼2 indicating greater heterogeneity. By convention, 𝐼2 greater than 30% is considered 

heterogeneous [23][27]. 

Lastly, two visual representations are commonly used. Forest plots are the gold standard 

for the visual representation of Meta-Analysis data. The forest plots show the full comparison of 

all studies with confidence intervals, the overall effect, and can provide the statistics described 

above (𝜏̂2, 𝐼2, p-value). One of the most important statistics on the forest plot is the confidence 
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interval (CI) for each study, which shows a margin of error for the result and p-value, 

representing the statistical significance of the study. If the study results cross over the middle (no 

effect) line, they are not statistically significant. The plot also shows the "weight" of each study, 

the bigger the block, the more weight is given to the study and usually depends solely on the 

sample size [29][30]. 

 

Figure 1. How to read a forest plot.  
This is an example forest plot with five results. The bigger "block" of the the result, the more 
"weight" (influence on the result) was given to the study. For example, (c) has the most weight, 
and (e) has the lowest weight. The x-axis scale is the scale for the statistic (standard mean 
difference is used in this paper). If positive results on the scale mean that the treatment is 
effective, then all the studies to the right show effective treatments. The studies that have no 
crossing with the line of no effect are considered statistically significant. 

 

Funnel plots are the visual representation of the present publication bias in the study, and 

if it is present, the plot will look asymmetrical [28]. The y-axis is usually the standard error of 

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8 1

The 95% confidence 
interval of the result

The result of the study
Line of null effect

The effect measure scale 
(SMD in our case)

(a)

(b)

(c)

(d)

(e)
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the effect estimate, and the x-axis is the effect estimator. Larger studies with a higher power are 

placed towards the top. Lower powered studies are placed towards the bottom. The lines of the 

triangle represent the 95% confidence interval. 

 

Figure 2. How to read a funnel plot. 
The funnel plot can check if publication bias is present (if it is, it will look asymmetrical). The 
standard error (y-axis) provides a measure of the precision of the effect size as an estimate of the 
population parameter. More precise studies (smaller standard error) are on top, and others are 
scattered widely towards the bottom. 

Meta-Analysis Approach 

When studies provide data for multiple interventions (for example, varying dose of 

medicine), there are several possible venues for analysis: 

• Combine intervention groups into a single group; 

• Pair intervention one by one with the control; 
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• Partition the shared (control) group into more groups such that pairwise comparisons are 

independent; 

• Perform Network Meta-Analysis comparing all interventions simultaneously. 

The first option is generally recommended, though the last option makes the most 

efficient use of the data and will generally produce a similar result to the first option [21]. Both 

the first and last options are used in this paper. 

To combine two interventions into a single intervention group, the following formulas are 

applied [21]. 

 Group 1 Group 2 Combined groups 
Sample 
Size 𝑁6 𝑁2 𝑁6 +	𝑁2 

Mean 𝑀6 𝑀2 
𝑁6𝑀6 +	𝑁2𝑀2

𝑁6 +	𝑁2
 

SD 𝑆𝐷6 𝑆𝐷2 o
(𝑁6 − 1)𝑆𝐷62 + (𝑁2 − 1)𝑆𝐷22 +	

𝑁6𝑁2
𝑁6 +	𝑁2

(𝑀6
2 +	𝑀2

2 − 2𝑀6𝑀2)

𝑁6 +	𝑁2 − 1
 

Table 2. Formulas used for calculating combined groups sample size, mean and standard 
deviation. 

Network Meta-Analysis generalizes Pairwise Meta-Analysis and focuses on addressing 

the question of how a set of treatments for a particular diagnosis compare to one another by 

combining direct and indirect evidence. This assumes that (1) studies are independent, and (2) 

the underlying effects are consistent (so-called transitivity assumption). Network Meta-Analysis 

allows for the treatments to be ranked based on their summary results in a single analysis [31]. 

The data collected may be visualized in a network graph. For example, if studies compare three 

interventions, A, B, C, the network could look like the following graph: 
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Figure 3.  Building a Network Meta-Analysis from direct and indirect evidence [32].  
When studies are found directly comparing interventions, the following relationship can be 
demonstrated: A versus B (green) and B versus C (orange). Each circle represents an 
intervention, and lines represent direct comparisons. Dashed lines are for indirect comparison. A 
global effect value is generated for each comparison (direct or indirect). Indirect evidence is 
generated by using B as a common comparator for the comparison of A versus C. 

In Figure 1, the connecting lines between the two treatments mean that there are one or 

more studies in the data set that compare the treatments. A network is consistent when direct and 

indirect evidence between two treatments does not differ. The goal of a Network Meta-Analysis 

for the above network would be to estimate the treatment differences and their standard errors 

[33][34]. 

Risk of Bias 

The small-study effect may introduce bias into Meta-Analysis, as smaller studies often 

show larger treatment effects compared to large studies. This often occurs because smaller 
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studies with larger treatment effects are more likely to be published. Other reasons for the small-

study effect include outcome selection bias, clinical heterogeneity, and coincidence. The small-

study effect is usually examined via a funnel plot, which shows the estimated treatment effects 

against their standard errors. If no small-study effect is present, treatment effects will scatter 

about the average regardless of the size of the study. In the absence of extreme between-study 

heterogeneity, small studies will scatter more widely due to their larger standard errors, 

generating the funnel plot in the shape of the symmetric triangle. If the funnel plot is instead 

asymmetric, this is evidence of the small-study effect. There are additional statistical tests for the 

small-study effect that test for funnel plot asymmetry, specifically Begg and Mazumdar's non-

parametric tests utilizing rank-correlation methods and Egger's tests using regression [35][36]. 

Adjustments for the small-study effects include the trim-and-fill method, a non-

parametric method that provides an estimated number of missing studies, and adjusted treatment 

effects. This method does not explicitly model selection bias. The Copas method, models 

publication bias by setting up a model for the treatment effect and a model for the probability of 

study selection for publication [37]. Another adjustment could be made via regression and 

shrinkage [23]. 

Other types of bias include publication bias (positive studies having a higher chance of 

being published), search bias (how the papers were searched and filtered), and selection bias 

(inclusion criteria) [38]. Although publication bias is independent of the person performing the 

Meta-Analysis, both search and selection bias can be easily and unintentionally introduced. 

Specifically, with an Alzheimer's Disease study, it is given that the patients of the clinical trials 

are at least over 50 years old, and the sampling frame does not include children and young 
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adults. This automatically cancels out the assumption of a random sample from the population 

and introduces bias. 

Analysis Goal 

One of the goals of this research is to perform a Meta-Analysis on literature to evaluate 

the efficacy of Alzheimer's Disease treatments. All studies chosen are randomized clinical trials 

and were largely multi-arm, with two or more treatment groups. In this case, the best options are 

(1) to combine treatment groups into a single treatment group or split the control group such that 

a Pairwise Meta-Analysis is possible or (2) to perform a Network Meta-Analysis. Since some of 

the treatment groups were not simply different dosages but rather different treatments or 

combinations of treatments, Network Meta-Analysis is a more reasonable approach.  

Studies included in the research did not report the same outcomes because they were 

based on different types of scales, and as a result, effect estimates cannot be pooled. Therefore, 

the standardized mean difference is used as an effect measure. A further complication is that for 

some of the scales, higher scores indicate better cognitive function, whereas, for others, higher 

scores indicate greater cognitive impairment. To resolve this issue, two Meta-Analyses were 

performed. One Meta-Analysis utilized a single outcome from each study where higher scores 

signified better cognitive outcomes. The second Meta-Analysis utilized a single outcome from 

each study, where higher scores signified poorer outcomes. Only a single outcome was selected 

per study per Meta-Analysis. Network Meta-Analysis sometimes has problems with 

heterogeneity and inconsistency, so the use of two Network Meta-Analyses provides a more 

robust approach.  

To provide insight into overall trends and incorporate more studies into the analysis, a 

comparison of study conclusions by treatment type (natural vs. non-natural) was performed. 
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Adverse effects were evaluated graphically rather than incorporated into the Meta-Analysis. As a 

supplementary analysis and to examine group-based differences between natural and non-natural 

treatments, treatment groups were combined into a single treatment such that Pairwise 

Continuous Outcomes Meta-Analysis could be followed by Subgroup Meta-Analysis. 

Methods  

Data Extraction 

63 studies collected from Pubmed and Clinicaltrials.gov were examined for treatment and 

placebo differences from baseline. For studies that reported summary statistics, this baseline 

difference was the most common and consistent result reported. For example, if a study was 

evaluating ADAS-cog change due to treatment, the mean and standard deviation of the change in 

ADAS-cog was provided for both the treatment and placebo groups. If standard error or 95% 

confidence intervals were reported, the standard deviation was derived with two different 

formulas depending on the sample size. For large sample size (over 60): 

 SD = ((upper CI – lower CI) *SQRT(sample size)) / 3.92 

and for a small sample size (less that 60) need to use t distribution with degrees of freedom: 

 SD = ((upper CI  – lower CI) *SQRT(sample size)) / t value 

the t value in Excel =tinv(1-0.95, N-1), where N is the sample size [39].   

When the number of patients in each group was not provided in tabular form or in the 

body of the paper, the number of patients extracted from the graphs was used in the analysis. 

Of the 63 studies, 26 reported treatment and placebo differences from baseline either as 

mean and standard deviation, standard error, or 95% confidence intervals. Data were manually 

extracted from these 26 studies and used in the Network Meta-Analysis. 
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From the remaining studies, six studies reported mean and standard deviation at baseline 

and after treatment for both treatment and placebo groups. Although the difference in means and 

standard deviation of the difference in means can be derived, this assumes the two populations 

(baseline, after treatment) are independent. In the case of all these studies, that assumption is 

clearly violated, and so these six studies were not incorporated into the analysis. 

The remaining 31 studies did not include mean differences and standard deviations. Of 

these, two were reviews that provided no mean difference data. Three studies presented results in 

figures with mean difference data not included in tabular form or in the body of the paper. Seven 

studies were protocols with ongoing trial status and therefore presented no data at all because the 

clinical trial has not yet been completed, and results reported. Four studies presented hazard 

ratios rather than mean differences. Six studies did not use a placebo and were excluded because 

no reasonable comparison to treatment can be made in this situation. Three studies reported 

adherence or safety/tolerability rather than effectiveness. One study provided results as medians 

with quartiles rather than mean with standard deviation. Four studies were missing data, either 

not providing the number of patients in each group, not providing standard deviations, or 

reporting only for control. One study provided comparisons between groups by time point rather 

than between time points for each group. 
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Figure 4. A diagram of study inclusion. 
This diagram shows how many studies were originally collected and the stages/reasons for 
studies being rejected. The final step shows how many studies were included in the Higher-is-
Better and Higher-is-Worse scales. 

Adverse effects were also manually extracted as the percent of patients in each group 

with a specific adverse effect (that is the format studies reported). If any study made a conclusion 

regarding the effectiveness of treatment, this was recorded as a binary variable to be used for 

descriptive purposes. All treatments were labeled as natural or non-natural. 

Excel Spreadsheets 

 Six Excel Spreadsheets were created during the project to extract and organize data 

from each study. They are available on GitHub [40]. 

The Data Standardized Mean Diff sheet catalogs basic information about each study, 

including a unique numerical ID, name, authors, and year. Outcome variables present as a 

change in score from baseline for placebo, and interventions were recorded. Studies provided 
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either arithmetic means or least-square means (estimated from a linear model). All applicable 

outcomes were recorded along with treatment doses. Reference controls/placebo group results 

were also recorded in a pairwise fashion, even though for many studies, the control/placebo was 

a reference for two or more arms of the study. Sample size, mean, standard deviation, standard 

error, or 95% confidence intervals were recorded. Standard deviations were derived from 

standard errors and 95% confidence intervals when necessary. 

The Standardized Mean Diff sheet is a cleaned-up version of Data Standardized Mean 

Diff, including only one outcome variable per study per type of scale (either higher better scales 

or higher worse scales). 

The Combined Groups Analysis sheet replicates the Standardized Mean Diff only it 

presents the data for the combined groups. Groups were combined using the formulas in the table 

in the "Combined Groups" section of the introduction, implemented as R functions. Studies in 

which donepezil was used as placebo were excluded. Only studies that used true placebos were 

included to minimize bias. 

The Excluded Standardized Mean Diff and Need to Derive Mean Diff sheets catalog 

studies that were excluded and the reason for exclusion. All studies in the Need to Derive Mean 

Diff sheet were excluded because post-treatment to baseline difference in placebo and 

intervention groups were not able to be calculated and were not provided in the paper. 

The Data Binary sheet provides an overview of studies that presented an efficacy 

conclusion. If the intervention was judged to be efficacious, 1 was placed in the Treatment 

Superior column (otherwise, it was 0). 
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The Adverse Effects sheet catalogs adverse effects per study. Only adverse effects and no 

severe adverse effects were recorded, though sometimes the distinction between the two was 

ambiguous in studies. As a result, only the top adverse effects were used for comparison. 

Treatment Effects 

Outcome scales used are presented in the table below. 

Higher-is-Better Higher-is-Worse 

MMSE (Mini-Mental State Examination) 
ADAS-Cog (Alzheimer's Disease Assessment 
Score - cognitive subscale) 

ADCS-ADL (Alzheimer's Disease Cooperative 
Study Activities of Daily Living scale) 

CDR-SB, CDR-SOB (Clinical Dementia Rating-
Sum of Boxes) 

SIB (Severe Impairment Battery) NPI (Neuropsychiatric Inventory) 

Delayed word Recall (number) 4 hr Simple RT (ms) 4 hr 

Table 3. List of scales used to measure the outcome of studies. 
This is a collection of the commonly used cognitive measurement scales for the studies included 
in the project. The effect of treatment was evaluated based on these scales. 

Each outcome was cataloged for studies that reported treatment and placebo differences 

from baseline. These outcomes were then partitioned based on scale type into Higher-is-Better 

scales (e.g., ADCS-ADL) or Higher-is-Worse scales (e.g., ADAS-cog). For each study, a single 

outcome was selected for inclusion in the Higher-is-Better group or to the Higher-is-Worse 

group. Outcomes were prioritized by frequency. ADAS-cog was the most frequent outcome used 

in the Higher-is-Worse group, and this outcome was selected whenever possible, followed by 

CDR-SB and NPI. MMSE was the most common outcome used in the Higher-is-Better group, 

and this outcome was selected whenever possible, followed by ADCS-ADL and SIB. This 

resulted in two data sets of one outcome per study with mean, standard deviation, and patient 

number for placebo and treatment groups. 
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All data manipulation, processing, and analysis were performed in R. The data was 

structured according to the format presented in [23], such that for each study, each group 

(treatment, placebo) was accompanied by the number of patients, mean, and standard deviation. 

From this, the treatment effect and standard error of the treatment effect were calculated for each 

pairwise grouping. This data processing step was performed twice, for the Higher-is-Better group 

and then for the Higher-is-Worse group. 

A Network Meta-Analysis was performed using the standardized mean difference 

function of the netmeta R package [41], once for the Higher-is-Better group and once for the 

Higher-is-Worse group. Both fixed and random effects models were fitted, and the results were 

examined as forest plots with treatments labeled as natural vs. non-natural. Heterogeneity was 

evaluated using the Q statistic. Publication bias was assessed using a funnel plot, which was 

tested by a linear regression test of funnel plot asymmetry and method of moments linear 

regression test of funnel plot asymmetry. In general, the method of moments allows us to solve 

for parameters by equating sample and theoretic moments. The R documentation states that "the 

test statistic is based on a weighted linear regression of the treatment effect on its standard error 

using the method of moments estimator for the additive between-study variance component. The 

test statistic follows a t distribution with the number of studies – 2 degrees of freedom." [42] 

A simple Pairwise Meta-Analysis was performed using the netmeta R package [41]. 

Fixed and random effects models were fitted for both the Higher-is-Better group and the Higher-

is-Worse group. Results were summarized using forest plots. Heterogeneity was evaluated using 

the Q statistic. Publication bias was assessed using funnel plots and rank, linear regression, and 

method of moments tests. Subgroup analysis was performed to determine whether natural 

interventions were more efficacious than non-natural interventions. 
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Network Meta-Analysis and simple Pairwise Meta-Analysis were used because they are 

the recommended methods when studies present multi-arm results [21]. Network Meta-Analysis 

makes more efficient use of the data, while simple Pairwise Meta-Analysis presents a more 

conclusive winner when evaluating natural vs. non-natural interventions. 

Treatment Outcomes 

To assess the overall effectiveness of natural vs. pharmaceutical methods, conclusions 

regarding treatment effectiveness (effective vs. not effective or unsure) were compared between 

natural vs. non-natural studies using bar plots. There was a total of 49 studies used to determine 

the overall effect. This was done by reading the abstracts and conclusions of each clinical 

trial/paper to determine if treatment was effective. The total number of effective/non-effective 

natural and non-natural interventions were summed up and plotted. 

Adverse Effects 

The top 10 most commonly reported adverse effects were extracted. The percent of 

patients experiencing adverse effects was summarized using the mean within treatment arms of 

each study. Boxplots of the percent of patients experiencing adverse effects by type of treatment 

(natural vs. non-natural) and adverse effects were generated. 

Software Code 

To conduct the Meta-Analysis, five custom R scripts have been developed. 

1. GroupCombinationFormulas.R 

It contains helper functions to assist in filling Excel file AlzheimersData.xlsx with 

values calculated from studies' data.  

2. Summarize_Data.R 
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It produces two plots. The Adverse Effects by Natural and Non-Natural Treatments is 

plotted based on the Adverse Effects sheet of the AlzheimersData.xlsx file. The Overall 

Effectiveness is plotted based on the Data Binary sheet of the AlzheimersData.xlsx file. In 

addition to the readxl package [43] (to import data from Excel files), it uses the dplyr package 

[44]. This script creates figures 11 and 12. 

3. Run_NetworkAnalysis.R  

This script performs the Network Meta-Analysis based on the Standardized Mean Diff 

sheet of the AlzheimersData.xlsx file. It does it twice, first for the Higher-is-Better model, 

then for the Higher-is-Worse model. Both are done in the same manner by invoking 

make_network_ma_data(…) and do_network_ma(…) custom functions defined in the 

Custom_Functions.R script. The only package it uses is the readxl package [43] (to import data 

from Excel files). This script produces figures (5-10) and tables (4-7). 

4. Run_CombinedGroups.R  

It performs Continuous Effects Meta-Analysis for paired outcomes based on the 

Combined Groups Analysis sheet of the AlzheimersData.xlsx file. It does it twice, first for the 

Higher-is-Better model, then for the Higher-is-Worse model. Both are done in the same manner 

by invoking do_continuous_ma(…) custom function defined in the Custom_Functions.R script. 

The only package it uses is the readxl package [43] (to import data from Excel files). This script 

produces figures (13-18). 

5. Custom_Functions.R  

This script consists of functions to assist Run_NetworkAnalysis.R and 

Run_CombinedGroups.R scripts in properly organizing data and conducting Meta-Analysis, and 

producing data for tables and plots for figures presented in this project. It uses the dplyr [44], 

grid [45] and netmeta [41] packages. The actual Network Meta-Analysis is performed by the 
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netmeta function [46] of the netmeta package [41]. Tests for bias are performed by the metabias 

[47] function on the metagen function [48] results. Forest and funnel plots are produced for the 

forest [49] and funnel.netmeta [50] functions respectfully. The actual Continuous Outcome 

Meta-Analysis is performed by the metacont function [51]. 

The data in the AlzheimersData.xlsx file, the processing in the Summarize_Data.R and 

Custom_Functions.R scripts are specific to the project's subject. Although, the processing flow 

in the Summarize_Data.R and Custom_Functions.R scripts is generic. Moreover, the domain-

specific string constants are assigned to variables, thus enabling easy adaptation to conduct the 

Metra-Analysis in a different data domain.  

All R code, as well as the AlzheimersData.xlsx file, is placed on the GitHub public 

repository [40]. 

Results 

Treatment Effects – Network Meta-Analysis 

Higher-is-Better Scales - 18 studies with 28 treatments were used in a fixed and random 

effects Network Meta-Analysis. The multiarm tolerance was relaxed to 0.1. From the R 

documentation, multiarm tolerance is "A numeric for the tolerance for consistency of treatment 

estimates and corresponding variances in multi-arm studies which are consistent by design". The 

default is 0.001. Consistency is when the direct evidence for a treatment effect between two 

treatments does not differ from the indirect evidence. Therefore, by increasing tolerance, we are 

allowing it to differ a little [16]. The fitted fixed effects model is provided in Table 4, and the 

accompanying forest plot is in Figure 5. Heterogeneity was present (τ2 = 0.027, τ = 0.163, I2 = 

73.1% (95% CI: 24.2%, 90.4%)). Total Q was 11.14 (df = 3, p = 0.0110), within designs Q = 

11.21 (df = 3, p = 0.0106), and between designs Q = 0. The random effects model is provided in 
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Table 5, and the accompanying forest plot is in Figure 6. In Figures 5 and 6, P-scores are used to 

order treatments by effectiveness. In both fixed and random effects models, natural treatments 

like (huperzine A, PRM, and SL essential oil) as well as non-natural treatments like Bryostatin 

generated the highest difference (improvement) from placebo when assessing Alzheimer's 

Disease using scales like the MMSE, SIB, and ADCS-ADL. Figure 7 shows a funnel plot to 

assess publication bias. There is no evidence of publication bias in the plot, and a linear 

regression test of funnel plot asymmetry did not demonstrate evidence of funnel asymmetry (t = 

1.7, df = 44, p = 0.10). 
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Table 4. Fixed Effects Model results for the Higher-is-Better outcomes. This tables provides 
unranked SMD and CI for each study without rounding. 
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Figure 5. Higher-is-Better Fixed Effects Model Forest plot. 
Note donepezil is non-natural but listed as NA because some studies used this as a control. 
Interventions on the top are the highest performing treatments for the Fixed Effect Model.  
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Table 5. Random Effects Model results for the Higher-is-Better outcomes. 
This table provides unranked SMD and CI for each study without rounding. 

 



36 
 

 

Figure 6. Higher-is-Better Random Effects forest plot. 
Note donepezil is non-natural but listed as NA because some studies used this as a control. 
Interventions on the top are the highest performing treatments for the Random Effects model.  
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Figure 7. Higher-is-Better funnel plot. 
There is no evidence of publication bias in the funnel plot. 
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Higher-is-Worse Scales - 22 studies with 32 treatments were used in a fixed and random 

effects network Meta-Analysis. The multiarm tolerance was relaxed to 0.1. The fitted fixed 

effects model is provided in Table 6, and the accompanying forest plot is in Figure 8. 

Heterogeneity was present (τ2 = 0.0011, τ = 0.0336, I2 = 10.5% (95% CI: 0.0%, 73.9%)). Total Q 

was 6.70 (df = 6, p = 0.3494), within designs Q = 5.86 (df = 5, p = 0.3198), and between designs 

Q = 0.59 (df = 1, p = 0.4430).  The random effects model is provided in Table 7, and the 

accompanying forest plot is in Figure 9. In Figures 8 and 9, P-scores are used to order treatments 

by effectiveness. In both fixed and random effects models, largely natural treatments (Melissa 

officinalis, EGb, Crocus sativus, huperzine A, vitamin E, SL essential oil, and memantine) 

generated the highest difference (improvement) from placebo when assessing Alzheimer's 

disease using scales like the ADAS-cog, CDR-SB, and NPI.  Figure 10 shows a funnel plot to 

assess publication bias. There is no evidence of publication bias in the plot, and a linear 

regression test of funnel plot asymmetry did not demonstrate evidence of funnel asymmetry (t = 

1.11, df = 55, p = 0.27). 
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Table 6. Fixed Effects Model results for the Higher-is-Worse outcomes. 
This table provides unranked SMD and CI for each study without rounding. 
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Figure 8. Higher-is-Worse fixed effects model forest plot.  
Note: donepezil is non-natural but listed as NA because some studies used this as a control. 
Interventions on the bottom are the highest performing treatments for the Fixed effect model.  
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Table 7. Random Effects Model results for the Higher-is-Worse outcomes. 
This table provides unranked SMD and CI for each study without rounding. 
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Figure 9. Higher-is-Worse random effects model forest plot. 
Note: donepezil is non-natural but listed as NA because some studies used this as a control. 
Interventions on the bottom are the highest performing treatments for the random effect model.  
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Figure 10. Higher-is-Worse funnel plot. 
There is no evidence of publication bias. 
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Treatment Outcomes & Adverse Effects 

Figure 11 shows the boxplots of the percentage of patients with the top 10 adverse effects 

by the type of treatment, natural vs. non-natural. Among treatment patients, natural and non-

natural treatments result in a comparable percentage of patients with at least one adverse effect, 

however, more patients had at least one serious adverse effect and fall on natural treatments. The 

remaining adverse effects showed little difference among treated patients. Figure 12 shows that 

overall, more studies involving natural treatments found that the treatments were superior. In 

contrast, fewer studies involving non-natural treatments found that the treatments were superior. 
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Figure 11. Comparison of top 10 adverse effects by effect and type of treatment. 
Treatments are abbreviated as AE=at least one adverse event; sAE=at least one serious adverse 
event; F=Fall; H=Headache; Z=Dizziness/ Vertigo; N=Nausea; D=Diarrhea; V=Vomiting; 
U=UTI; A=Agitation). The patterns of adverse effects were consistent when comparing natural 
and non-natural—no significant findings.  
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Figure 12. Overall effectiveness (natural; non-natural). 
This plot included more studies than used in the Meta-Analysis (49 studies). This plot was done 
by evaluating the abstract/conclusion section of the studies to determine if an intervention was 
effective. More natural intervention clinical trials show an overall positive effect on a patients 

 

Treatment Effects – Pairwise Meta-Analysis 

Higher-is-Better Scales. The fixed effect SMD was 0.039 (z = 1.69, p = 0.0901) - Figure 

13. The random effect SMD estimate was 0.061 (z = 1.32, p = 0.187) - Figure 13. Q = 45.34 

supported heterogeneity (p = 0.0001) in the model, as did τ2 = 0.0176 and I2 = 64.7%. The funnel 

plot for Higher-is-Better pairwise Meta-Analysis is in Figure 14. The rank correlation test of 

funnel plot asymmetry (z = 1.8125, p = 0.07) and linear regression test of funnel plot asymmetry 

(t = 1.33, df = 15, p = 0.204) did not support asymmetry in the plot. The method of moments test 

did support asymmetry in the funnel plot (t = 2.36, df = 15, p = 0.032). Subgroup analysis 

yielded an SMD for natural treatments of 0.184 and an SMD for non-natural treatments of -0.002 

– Figure 15. The test of subgroup differences supported between-group differences (Q = 4.72, df 

= 1, p = 0.0298). 
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Figure 13. Forest plot for the paired outcomes analysis.  
This is for scales that indicate better function at higher scores. 
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Figure 14. Funnel plot for the paired outcomes analysis of scales that indicate better function at 
higher scores.  
The plot demonstrated mild asymmetry (not a favorable result). 
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Figure 15. Subgroup analysis for the Meta-Analysis of outcomes indicating better function at 
higher scale scores. 
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Higher-is-Worse Scales. The fixed effect SMD was -0.055 (z = -2.81, p = 0.0049) and 

the random effects SMD was -0.126 (z = -2.26, p = 0.0237) – Figure 16. Q = 131.41 supported 

heterogeneity (p < 0.0001) in the model, as did τ2 = 0.0476 and I2 = 84.8%. Funnel plot for the 

Higher-is-Worse paired comparisons model shows mild asymmetry (Figure 17). The rank 

correlation test of funnel plot asymmetry supported asymmetry in the funnel plot (z = -2.05, p = 

0.04), as did the linear regression test (t = -2.92, df = 19, and p = 0.009) and the method of 

moments test (t = -5.77, df = 19, p = 1.45e-05). The trim and fill method identified 7 additional 

studies needed for funnel symmetry. The linear regression method for bias adjustment adjust the 

random effect SMD estimate to 0.10 (95% CI 0.01, 0.18) (z = 2.25, p = 0.0243). Subgroup 

analysis yielded an SMD for natural treatments of -0.225 and an SMD for non-natural treatments 

of -0.015 (Figure 18). The test of subgroup differences supported between-group differences (Q 

= 4.01, df = 1, p = 0.0453). 
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Figure 16. Forest plot for the Higher-is-Worse paired comparisons model with fixed and random 
effects. 
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Figure 17. Funnel plot for the Higher-is-Worse paired comparisons model. 
The plot demonstrated high asymmetry mostly generated by a single outlier, indicating this 
outlier had a very substantial impact on publication bias (not a good result).  
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Figure 18. Subgroup analysis for the Higher-is-Worse paired comparisons model. 
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Discussion 

Models Assessing Better Function at Higher Scores 

In the Network Meta-Analysis fixed and random effects models, the highest positive 

effect was achieved by Bryostatin, followed by huperzine A, PRM, donepezil, resveratrol, and 

SL essential oil, in order of decreasing effect (Fig. 5-6). It is important to note that the sample 

size for Bryostatin was very small (9 patients total), and thus, the result may not be statistically 

significant. Smaller studies tend to show larger treatment effects. There was no support for 

publication bias. With the exception of Bryostatin and resveratrol, the top treatments were 

natural. 

In the Pairwise Meta-Analysis, treatments showing large improvements over placebo 

included Bryostatin, resveratrol, PRM, SL essential oil, and huperzine A. The overall effect was 

positive (indicating improvement) but not statistically significant for either the fixed effects or 

random effects models (Fig. 13). The funnel plot (Fig. 14) demonstrates mild asymmetry, and 

this, combined with the results of plot asymmetry tests, suggests publication bias is not a serious 

concern, though note should be taken that the method of moments test was significant for 

asymmetry. In the Subgroup Meta-Analysis (Fig. 15), natural treatments showed positive overall 

effects (0.17 for fixed effects and 0.18 for random effects) that were statistically significant (p < 

0.05), whereas the non-natural treatments showed lower positive overall effects (0.01 and 0 for 

fixed and random effects, respectively) that were not statistically significant (p > 0.05). 

Consequently, it may be concluded that the natural treatments outperformed the non-

natural treatments as assessed by scales that reflect better function at higher scores. Furthermore, 

non-natural treatments had an overall effect of 0, indicating no improvement at all over 
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placebo/control, whereas natural treatments did have a positive impact. This surprising result 

may be significant for the Alzheimer's patient and physician communities. 

Models Assessing Poorer Function at Higher Scores 

In the Network Meta-Analysis fixed and random effects models, the highest negative 

effect (indicating improvement) was attained by Melissa officinalis, EGb 761, multi-nutrient 

drink, donepezil, Crocus sativus, huperzine A, Vitamin E, and Vitamin E and Memantine, in 

decreasing order of improvement. With the exception of the multi-nutrient drink, all of these 

treatments are natural (Fig. 8-9). There was no support for publication bias (Fig. 10). 

In the Pairwise Meta-Analysis, treatments showing large improvements over placebo 

included Melissa officinalis, EGb 761, a multi-nutrient drink, resveratrol, and vitamin E + 

memantine. The overall effect was negative (indicating improvement) and statistically significant 

(p < 0.05) for both the fixed and random effects models (Fig. 16). The funnel plot (Fig. 17) 

demonstrates high asymmetry mostly generated by a single outlier, indicating this outlier had a 

very substantial impact on publication bias. The linear regression method for bias adjustment 

adjusts the random effect SMD estimate to 0.10 (95% CI 0.01, 0.18) (z = 2.25, p = 0.0243), 

indicating worsening of the condition rather than improvement. Consequently, results from these 

models should be interpreted with caution. Subgroup Meta-Analysis showed that natural 

treatments had statistically significant and more negative (indicating greater improvement) fixed 

and random effects overall estimates, -0.22 and -0.37, respectively, than the non-natural 

treatments (-0.01 and -0.03 for overall fixed and random effects, respectively, and non-

significant) (Fig. 18). Overall, natural treatments outperformed non-natural treatments. 
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The confidence intervals and overall effect of the Melissa officinalis study look 

suspiciously perfect. The Melissa study reported that the change in ADAS-cog at endpoint 

compared to baseline was -6.40 (1.66) and 5.60 (1.40) the Melissa and placebo, respectively (SD 

is in parentheses).  So ADAS-cog decreased for Melissa while it increased for placebo by almost 

as much.  The sample size is 20/25, which is low, but it is not the lowest seen in the Meta-

Analysis. Based on this information, the treatment is actually not an outlier.  

Using both types of scales (Higher-is-Worse/Higher-is-Better), either one or more natural 

treatments generated the greatest differences and improvements in outcome from placebo. The 

overall descriptive view of the studies shown in Figure 12 supports this outcome. The difference 

in most commonly reported adverse effects does not appear to be related to the type of treatment 

(natural vs. non-natural), as patterns were generally consistent across placebo and treatment 

groups (Fig. 11). 

Study Limitations 

Out of 63 studies considered for this Meta-Analysis, only 26 were incorporated into the 

Meta-Analysis. This includes studies that reported least-squares means with standard error and/or 

confidence intervals, which may introduce additional bias into the results. These studies were 

only used to include as many studies in the Meta-Analysis as possible. Additionally, many 

studies had multiple arms and multiple outcome measures. Outcome measures were divided into 

two categories, based on whether the scale followed a ranking such that higher scores were better 

or higher scores were worse cognitive function. These outcome measures could not be pooled as 

their effects measure improvement in opposite directions, and the results would be confounded. 

As a result, one Meta-Analysis was performed for each group, (1) a higher score indicates better 

cognitive development and (2) a higher score indicates poorer cognitive development. The most 
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common scales were selected for each group. Only one outcome per study per group (Higher-is-

Better, Higher-is-Worse) was selected to adhere to independence assumptions. Because outcome 

measures were not consistent, the standardized mean difference was used as the effect measure 

across analyses. 

Given that many studies were multi-arm studies, either a network or combined groups 

approach is the recommended method for Meta-Analysis [12]. Network Meta-Analysis makes 

the most efficient use of the data but does not provide a clear answer regarding the efficacy of 

natural vs. non-natural treatments. As a result, the combined groups approach was used as a 

supplementary analysis. To combine groups, if the arms included different treatments (rather 

than different doses), one or more arms were removed. Studies that did not use a clear placebo 

were also removed to prevent the entry of additional bias into the Meta-Analysis. If there were 

more than two treatment groups with the same intervention and different doses, the two most 

extreme doses (highest and lowest) were used to provide a view of the average effect. The 

combined groups approach subjected to a subgroup analysis yielded natural treatments as the 

clear winner, though with substantial information discarded. However, the results were 

consistent with those from network Meta-Analysis. 

Ideally, a network Meta-Analysis should be done for each outcome independently, as 

there are clearly scale-based differences in outcome. However, this would reduce the number of 

studies entering the Meta-Analysis. A Network Meta-Analysis was selected to make the most 

efficient use of the information presented in the studies. The multiarm tolerance was relaxed to 

prevent estimates of 0 heterogeneity and removal of studies, which resulted in the need to fit 

meta-analytic models to account for separate sub-networks. 
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Conclusion 

Natural treatments generated greater improvements in Alzheimer's Disease as measured 

by the SIB, ADAS-cog, MMSE, ADCS-ADL, CDR-SB, and NPI. The most effective non-

natural treatment was Bryostatin, whereas the most effective natural treatments were huperzine 

A, Melissa officinalis, and EGb761. There was no evidence of higher adverse effects due to 

natural vs. non-natural treatment in placebo or treatment groups. 

As mentioned in the introduction, when describing the statistical models, the fixed effect 

model of this research should not be the basis of any medical conclusions or interventions. All of 

the studies selected are random, and there is no way the "one population" assumption could be 

valid. The fixed effect model was only used as a sanity check to see heterogeneity measurement 

and to see the overall difference between random effect vs fixed effect. If the analysis approach 

used in this research were to be repeated with a larger dataset to provide real answers in medical 

studies, only the random effect model should be considered. 

For Alzheimer's Disease clinical trials, the Network Meta-Analysis, together with 

Combined Groups Meta-Analysis is a robust way to measure the effectiveness of interventions. 

While performing Meta-Analysis of multiple studies requires more effort than assessing 

individual studies, it provides a more significant scientific value. The more interventions you can 

compare, the more confident you could be when choosing the “best” or most promising for 

further drug development. That is why some drugs now require a comprehensive Meta-Analysis 

for further certification. FDA provides a guidance document for applicants submitting 

investigational new drug applications [52]. 
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There are many patients that prefer not to take additional medication to avoid side effects 

or to avoid mixing new pills with daily prescriptions. If natural treatments are proving to be more 

efficient in this small-scale study, then this could be a "breakthrough" for the Alzheimer's 

community. Most natural treatments (vitamins and plant extracts) are much cheaper than 

pharmaceutical solutions and would not cause severe side effects.  If natural treatments are 

proven to help improve Alzheimer’s symptoms, this will significantly impact the projected $1.1 

trillion dollar spending on AD healthcare in 2050. The global population is aging, and robust 

solutions are needed now! Besides the substantial financial burden, there will be an even greater 

impact on the caregiving community. 
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