yawmd: multiple
medium support and
performance
improvements for
wmediumd

Miguel José Meireles Moreira

Mestrado Integrado em Engenharia de Redes e Sistemas Informéticos
Departamento de Ciéncia de Computadores
2019/2020

Orientador
Rui Pedro de Magalhaes Claro Prior, Professor Auxiliar, FCUP

Coorientador
Eduardo Filipe Amaral Soares, Estudante de Doutoramento, FCUP

[BAPORTO

F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Todas as corregdes determinadas
pelo juri, e s6 essas, foram
efetuadas.

O Presidente do Juri,

Porto, / /

yawmd: multiple medium support and performance improvements for wmediumd [

Acknowledgements

| want to thank my advisors, Rui Prior and Eduardo Soares, for the suggestions and the help
provided over the course of the year. | also want to thank my friends and family, for they support,
friendship and belief, essential for this work to be brought to fruition.

yawmd: multiple medium support and performance improvements for wmediumd iii

Abstract

Wireless networks, comparatively to wired networks, suffer from higher error rates, faster sig-
nal attenuation and more interference. These effects can significantly limit the performance of
these networks, and for some applications, they can not be ignored when simulating commu-
nication using wireless links, if there is the expectation of obtaining accurate results. Network
simulators, network emulators and testbeds are tools primarily used for research, software de-
velopment and to test deployments. These tools offer different levels of abstraction of real
network components, which provide a cost reduction and a more practical comparison to real
environments. The focus of this thesis is wmediumd, a wireless medium simulator used in
the network emulator Mininet-WiFi. Wmediumd works in conjunction with mac80211_hwsim,
a device driver for Linux that can simulate multiple IEEE 802.11 interfaces. The objectives of
this thesis are to find areas where performance of wmediumd may be improved, find ways to
increase its scalability, and implement the solutions found.

Keywords: yawmd, wmediumd, mac80211_hwsim, Mininet-WiFi, performance, network emu-
lator, simulation

yawmd: multiple medium support and performance improvements for wmediumd v

Resumo

Redes sem fios, comparativamente as redes com fio, sofrem the maiores taxas de erro, atenu-
acao de sinal mais rapida e mais interferéncia. Estes efeitos podem limitar significativamente
o desempenho destas redes, e, para algumas aplicacoes, eles ndo podem ser ignorados na
simulagdo de comunicacgéo através de ligagbes sem fios, se se espera obter resultados pre-
cisos. Simuladores de rede, emuladores de rede e bancos de ensaio sdo ferramentas usadas
primariamente para pesquisa, desenvolvimento de programas e para testar implantacdes. Es-
tas ferramentas oferecem diferentes niveis de abstracao dos componentes de rede reais, o0 que
proporciona uma reducado de custos e uma comparacao mais pratica com ambientes reais. O
foco desta dissertacdo é o wmediumd, um simulador de meio sem fios usado no emulador
de rede Mininet-WiFi. O wmediumd trabalha em conjunto com o0 mac80211 hwsim, um contro-
lador de dispositivo para Linux que pode simular multiplas interfaces IEEE 802.11. Os objetivos
desta dissertacéo sao encontrar areas onde o desempenho do wmediumd pode ser melhorado,
encontrar formas de aumentar a escalabilidade, e implementar as solu¢des encontradas.

Palavras chave: yawmd, wmediumd, mac80211 hwsim, Mininet-WiFi, desempenho, emu-
lador de rede, simulacéo

yawmd: multiple medium support and performance improvements for wmediumd vii

Contents
Acknowledgements i
Abstract iii
Resumo v
List of Tables Xi
List of Figures XV
List of Listings xvii
Acronyms Xix
1 Introduction 1
2 State of the art 5
21 Mininet-WiFi L 5
2.2 mac80211l_hwsim e e 6
23 wmediumd e 7
2.3.1 Overview of the operation of mac80211_hwsim and wmediumd 8
2.3.2 Configuration optionso 8
2.3.3 Simulation 9
3 Performance analysis of wmediumd 17
3.1 Test 1: Determination of throughput 17
3.1.1 Configuration e 18
3.1.2 Results e 20
3.1.3 Resultsanalysis e e 22
3.2 Test 2: Behaviour with a fixed offeredload 24
3.2.1 Configuration 24
3.22 Results e 24
3.23 Resultsanalysis 25

3.3 Profiingwmediumd 26

viii yawmd: multiple medium support and performance improvements for wmediumd
4 yawmd - Yet Another Wireless Medium Daemon 29
4.1 yawmd v1: Improve the communication with mac80211_hwsim 29
4.2 Multiple simulated mediums: yawmd mediums and yawmd pthreads 30
4.2.1 yawmd mediums: Events for each medium 32

4.2.2 yawmd pthreads: One thread permedium 33

5 Performance analysis of yawmd 35
51 Test3:0nemedium. e 35
5.1.1 Configuration 36

5.1.2 Results e 37

5.1.3 Resultsanalysis 38

5.2 Test4: Multiple mediums 40
5.2.1 Configuration 40

5,22 Results e 40

5.2.3 Resultsanalysis 42

5.3 Results summary and final considerations 43

6 Conclusions 45
6.1 FutureWork e 46
Bibliography 48
A Test 1 complementary plots 49
Al Variation H e 49
A2 Variation W 51

B Test 2 complementary plots 53
B.1 VariationH e 53
B.2 Variation W 54

C Configuration files for wmediumd and yawmd 57
C.1 wmediumd configuration fileoptions 57
C.2 yawmd configuration file options L oL 59

D Medium access simulation simultaneous transmission 63
E Commands used 65
F Test 3 and Test 4 complementary information 67
F.1 Table summaries of the datausedinchapter5 67
F1.1 Test3:Onemedium. 67

F.1.2 Test4: Multiple mediums 71

F.2 Plots of mediumusage by QoSqueue 76

yawmd: multiple medium support and performance improvements for wmediumd iX
F21 Test3:Onemedium. i 76

F.2.2 Test4: Multiplemediums 78

F.3 Plots of medium usage by QoS queue with overlapping 80
F3.1 Test3:Onemedium. 80

yawmd: multiple medium support and performance improvements for wmediumd Xi
List of Tables
3.1 Average cumulative throughput in test 1 with variation H (mac80211_hwsim).. . 20
3.2 Average cumulative throughput in test 1 with variation W (wmediumd). 21
3.3 Cumulative target bitrates fortest2. oo L. 25
3.4 Resultsoftest2. e 25
D.1 Example of a timeline of frame arrival to show the overlapping transmissions
problem in the medium access simulation. 64
F.1 Results of wmediumd by QoS queueintest3. 67
F.2 Results of yawmd vl by QoS queueintest3. 68
F.3 Results of yawmd mediums by QoS queue intest3. 68
F.4 Results of yawmd pthreads by QoS queue intest3. 69
F.5 Results of wmediumd CPU and memory usage intest3. 69
F.6 Results of yawmd vl CPU and memory usage intest3. 70
F.7 Results of yawmd mediums CPU and memory usage intest3.. 70
F.8 Results of yawmd pthreads CPU and memory usage intest3. 71
F.9 Results of yawmd mediums by QoS queue intest 4, with S =10. 71
F.10 Results of yawmd mediums by QoS queue in test 4, with S =20. 72
F.11 Results of yawmd pthreads by QoS queue intest4, withS=10.. 72
F.12 Results of yawmd pthreads by QoS queue intest4, with S =20. 73
F.13 Results of yawmd mediums CPU and memory usage intest 4, with S =10. . . . 73
F.14 Results of yawmd mediums CPU and memory usage in test 4, with § =20. . . . 74
F.15 Results of yawmd pthreads CPU and memory usage intest 4, with § =10. . . . 74
F.16 Results of yawmd pthreads CPU and memory usage intest 4, with S =20. . . . 75

yawmd: multiple medium support and performance improvements for wmediumd Xiii
List of Figures
2.1 High level view of the interaction between Mininet-WiFi, wmediumd and
mac80211 hwsim. e e e e 6
2.2 Fork tree of wmediumd. All these versions maintained the name wmediumd. . . 8
2.3 Workflow of wmediumd. L 10
2.4 Steps to handle the two types of events in the event loop of wmediumd. 10
2.5 Netlink messages exchanged between mac80211 hwsim and wmediumd to per-
form the simulation of delivery ofoneframe. 11
2.6 Steps of the deliveryofaframe. 12
3.1 Example of the startup order of the iperf clientsintest1 andtest2. 19
3.2 Average cumulative throughput in test 1 for each instance N with variation H. 21
3.3 Average cumulative throughput in test 1 for each instance N with variation W. 21
3.4 Cumulative throughput in test 1 of the instance with 20 stations with variation H. 22
3.5 Cumulative throughput in test 1 of the instance with 20 stations with variation W. 22
3.6 Cumulative throughput in test 1 of the instance with 40 stations with variation H. 22
3.7 Cumulative throughput in test 1 of the instance with 40 stations with variation W. 22
4.1 Messages exchanged between yawmd and mac80211_hwsim to perform the de-
livery simulationofaframe. L 31
4.2 Evolution of the versionsof yawmd. 32
4.3 Events managed by the event loop in yawmd mediums. 33
4.4 Workflow of yawmd pthreads., 34
4.5 Events managed by the main thread and the medium threads event loops in
yawmd pthreads. e 34
5.1 Average of the medium utilization at each second during each instance of test 3. 38
5.2 Average of the CPU used at each second during each instance of test3. 39
5.3 Average of the memory used at each second during each instance of test 3. 40
5.4 Example ofthe setupusedintest4. 41
5.5 Average of the mediums average medium utilization at each second during each
instance oftest4. 41
5.6 Average of the CPU use at each second during each instance of test4. 42

Xiv yawmd: multiple medium support and performance improvements for wmediumd
5.7 Average of the memory use at each second during each instance of test4. . . . 43
A.1 Throughput of test 1 during variation H with 2 stations. 49
A.2 Cumulative throughput during test 1 in variation H with 4 stations. 49
A.3 Cumulative throughput during test 1 in variation H with 10 stations. 49
A.4 Cumulative throughput during test 1 in variation H with 20 stations. 49
A.5 Cumulative throughput during test 1 in variation H with 40 stations. 50
A.6 Cumulative throughput during test 1 in variation H with 60 stations. 50
A.7 Cumulative throughput during test 1 in variation H with 80 stations. 50
A.8 Throughput of the last pair of test 1 during variation H with 80 stations. 50
A.9 Throughput during test 1 in variation W with 2 stations. 51
A.10 Cumulative throughput during test 1 in variation W with 4 stations. 51
A.11 Cumulative throughput during test 1 in variation W with 10 stations. 51
A.12 Cumulative throughput during test 1 in variation W with 20 stations. 51
A.13 Cumulative throughput during test 1 in variation W with 40 stations. 52
A.14 Cumulative throughput during test 1 in variation W with 60 stations. 52
B.1 Packet loss ratio during test 2 in variation H with 2 stations. 53
B.2 Packet loss ratio during test 2 in variation H with 4 stations. 54
B.3 Packet loss ratio during test 2 in variation W with 20 stations. 54
B.4 Packet loss ratio during test 2 in variation W with 40 stations, with target data

rate mean 75. L e 55
B.5 Packet loss ratio during test 2 in variation W with 40 stations, with target data

rate mean 90. L e 55
B.6 Packet loss ratio during test 2 in variation W with 60 stations, with target data

ratemean 75. L e 56
B.7 Packet loss ratio during test 2 in variation W with 60 stations, with target data

rate mean 90. L e e 56

D.1 Representation of the order of delivery of packages of the situation described in
table D.1, which shows overlapping frame transmissions. 64

F.1 Average of the medium utilization by QoS queue, at each second, during each
instance of test 3withwmediumd. 76
F.2 Average of the medium utilization by QoS queue, at each second, during each
instance of test 3withyawmd vl. 76
F.3 Average of the medium utilization by QoS queue, at each second, during each
instance of test 3 with yawmd mediums. 77
F.4 Average of the medium utilization by QoS queue, at each second, during each
instance of test 3 with yawmd pthreads. 77

yawmd: multiple medium support and performance improvements for wmediumd

XV

F.5

F.6

F7

F.8

F.9

Average of the mediums average medium utilization by QoS queue, at each sec-
ond, during each instance of test 4 with yawmd mediums, with S =10.
Average of the mediums average medium utilization by QoS queue, at each sec-
ond, during each instance of test 4 with yawmd mediums, with § =20.
Average of the mediums average medium utilization by QoS queue, at each sec-
ond, during each instance of test 4 with yawmd pthreads, with S =10..
Average of the mediums average medium utilization by QoS queue, at each sec-
ond, during each instance of test 4 with yawmd pthreads, with S =20.
Average of the medium utilization by QoS queue, at each second, during each in-
stance of test 3, using wmediumd without the patch to prevent overlapping trans-
MISSIONS. o e e e e e e e

F.10 Average of the medium utilization by QoS queue, at each second, during each

instance of test 3, using yawmd v1 without the patch to prevent overlapping trans-
MISSIONS. o o e e e e e e e e e e e

F.11 Average of the medium utilization by QoS queue, at each second, during each

instance of test 3, using yawmd mediums without the patch to prevent overlapping
transmissSIoONS. L e

F.12 Average of the medium utilization by QoS queue, at each second, during each

instance of test 3, using yawmd pthreads without the patch to prevent overlapping
transSMISSIONS.

78

78

79

yawmd: multiple medium support and performance improvements for wmediumd XVii

List of Listings

2.1

2.2

3.1

Ci1l
c.2

Pseudocode of the frame transmission simulation in the procedure queue_frame()

ofwmediumd. 13
Pseudocode of the algorithm used for medium access simulation in the procedure

queue_frame() ofwmediumd. oL 15
Results of profiling wmediumd.o 27
Configuration file options for wmediumd. 57

Configuration file used by yawmd mediums and yawmd pthreads. 59

yawmd: multiple medium support and performance improvements for wmediumd XiX

Acronyms

ACK Acknowledgment

ACM Association for Computing Machinery
CCA Clear Channel Assessment

CPU Central Processing Unit

IBSS Independent Basic Service Set

IEEE |Institute of Electrical and Electronics Engineers
MAC Medium Access Control

OS Operating System

PHY Physical layer

QoS Quiality of Service

RSS Resident Set Size

SNR Signal to Noise Ratio

TCP Transmission Control Protocol

UDP User Datagram Protocol

Wi-Fi IEEE 802.11

yawmd Yet Another Wireless Medium Daemon

yawmd: multiple medium support and performance improvements for wmediumd 1

Chapter 1

Introduction

Wireless networks, comparatively to wired networks, suffer from higher error rates, faster signal
attenuation, more interference, among others. These effects can significantly limit the perfor-
mance of these networks, and for some applications, they can not be ignored when simulating
communication using wireless links, if there is the expectation of obtaining accurate results.

Network simulators, network emulators and testbeds are tools primarily used for research,
software development and to test deployments. These tools offer different levels of abstraction
of real network components, which provide a cost reduction and more practical comparison to
real environments, for different needs.

Mininet [7] is a network emulator that allows the creation of a network of virtual hosts,
switches, controllers and links on a Linux machine. An extension of Mininet, Mininet-WiFi [2],
adds support to wireless communications, by using virtualized Wi-Fi stations and access points.
A fundamental component for Mininet-WiFi is the device driver mac80211 hwsim. This driver
permits the simulation of multiple IEEE 802.11 radios in a single machine. These radios have
the particularity of being exposed as real network interfaces to Linux, opening the possibly to
use these simulated interfaces as if they were real ones, without need for special modifications
to the programs in upper network layers. The transmission of information that, in real inter-
faces, would happen through electromagnetic waves, is also simulated in a simplistic way: all
interfaces in the same frequency channel receive copies of the information transmitted by an
interface. This way, relevant information to an interface is processed, and irrelevant information
is discarded.

While for some applications mac80211_hwsim’s simulated inter-interface information trans-
mission is appropriate, others require a more realistic simulation of these mechanisms. For
these, there are simulators such as wmediumd, which works together with mac80211_hwsim to
provide a more realistic simulation of transmission of information between interfaces. This simu-
lation takes into consideration radio signal propagation limitations, as well as the characteristics
and limitations of the mechanisms implemented in real interfaces to work with the medium.

Another characteristic of the simulations in mac80211 hwsim and wmediumd is that they
must be carried out in real-time. Because of this, overheads in processing can cause the
throughput (traffic effectively received) to be lower than what the simulation restrictions deter-

2 yawmd: multiple medium support and performance improvements for wmediumd

mine, due to processing limitations. The primary objective of this work was to reduce overheads
in order to improve the performance and scalability of wmediumd. There were no particular ap-
plication requirements that were being sought with these improvements, but many possible
uses of Mininet-WiFi with wmediumd, or just wmediumd can benefit from larger instances and
smaller resource usage. For example [18], which uses wmediumd to evaluate the performance
of routing protocols in wireless mesh networks in a scenario of a natural disaster to restore com-
munications, is a good example of a situation where it is interesting to test with high numbers
of interfaces.

To achieve the objective of improving performance and scalability, it is required an under-
standing of the simulation that wmediumd carries out, on what information relies, and the way it
interacts with mac80211_hwsim and Mininet-WiFi. Results from [1, chapter 4] seem to indicate
that wmediumd shows a slow throughput as well as scalability problems. To confirm and to
analyse these results more in depth, more tests were made in the context of this thesis. The re-
sults, exposed and discussed in chapter 3, confirmed the previous work results, and pointed to
the communication between wmediumd and mac80211_hwsim being a probable source. This
directed the efforts to analyse this communication, were was found room for improvement.

A more complete and detailed list of the initial objectives is presented now:

1. Explore and test options for communication between Linux kernel-space and user-space:

(a) Implement prototypes for the options adequate to the simulation necessities;

(b) Implement in wmediumd and mac80211 hwsim the best determined communication
option;

2. Create tests for multiple configurations of wmediumd and, in particular, for the communi-
cation between mac80211 hwsim and wmediumd;

3. Document:

(a) wmediumd simulation requirements (of data and timing);
(b) Changes made and their implications;
(c) wmediumd and mac80211_hwsim limitations;

(d) wmediumd and mac80211_hwsim communication and simulation architecture;
4. Reduce the load related to communication between wmediumd and mac80211 hwsim;
5. Improve the traffic delivery capacity of wmediumd,;
6. Maintain inter-operability with Mininet-WiFi.

The initial objectives were mainly directed to improving the communication between
mac80211 hwsim and wmediumd, due to an incorrect understanding that it was the main
factor limiting the capacity of the medium simulated by wmediumd. This was later found

yawmd: multiple medium support and performance improvements for wmediumd 3

not to be correct, so no communication options between mac80211 hwsim and wmediumd
were explored beyond improving what was already available. The focus was then directed to
providing multiple mediums, also identified in [1] as an area needing improvement, replacing
the objective 1 (testing other communication options).

The contributions of this thesis are the following:

« a more efficient and scalable communication protocol with mac80211 hwsim;

 two approaches to simulate multiple mediums, one with a single thread, and another with
a thread for the simulation of each medium;

» documentation of the operation and simulation of wmediumd and of its interaction with
mac80211 hwsim.

The remaining of this thesis is structured as follows: chapter 2 provides an explanation of the
operation of Mininet-WiFi, wmediumd and mac80211_hwsim, and details about the simulation
performed in wmediumd; chapter 3 describes tests to wmediumd and mac80211 hwsim, and
provides an analysis of the results used to guide the changes to wmediumd; in chapter 4 explains
the changes proposed, named yawmd, to overcome the problems of performance and scalability
of wmediumd; in chapter 5 a new performance analysis to the changes introduced by yawmd
and a comparison with wmediumd is presented; and finally chapter 6 provides the conclusions.

yawmd: multiple medium support and performance improvements for wmediumd 5

Chapter 2

State of the art

Network simulators, network emulators and testbeds are tools mainly used to reduce costs and
simplify testing or development of network protocols, algorithms and applications. They provide
different levels of abstraction and functionality to better fit different needs.

A network simulator is a software that abstracts a network or parts of a network, such as a
device or a protocol stack with models of their behaviour. The models may accept parameters to
control characteristics of the model, such as delay and packet loss. These simulators provide
repeatability and a cheap and controlled environment for experiments but are limited to the
accuracy of the abstractions and are unable to interact with real implementations.

A network emulator builds upon the benefits of a network simulator by extending its ability
with the capacity to operate with real workloads. The simulated components are realistic enough
to interact with real implementations without adaptations. A network emulator can effectively
replace part of a real network, and the real components interact seamlessly with the emulated
components. Network emulators must run in real time, while network simulators can run faster
or slower, according to the needs and demands of the simulation.

A testbed is made of real devices, with real operating systems and applications. They can
provide the most realistic results, if the setup environment can provide the relevant character-
istics. Testbeds tend to be the more expensive of these three tools, because of the cost of
the devices, their software and physical configuration, the costs of the location, and the higher
difficulty of access to different users.

In this chapter, the focus is the network emulator Mininet-WiFi, especially the programs it
uses to perform the network traffic delivery simulation, wmediumd, and to simulate the IEEE
802.11 (Wi-Fi) radios, mac80211_hwsim.

2.1 Mininet-WiFi

Mininet-WiFi [2] is an extension to the network emulator Mininet [7], which provides support for
IEEE 802.11 (Wi-Fi) networks. Mininet allows the creation of a network of virtual hosts, switches,
controllers and links in a Linux machine. To do this, it uses network namespaces, a lightweight

6 yawmd: multiple medium support and performance improvements for wmediumd

configuration file

configuration \

Mininet-WiFi updates Wrgs::i\/l:rmd update wmediumd
add/remove parameters
\l/ interface

delivery decision
hwsim_mgmt

user space

. kernel space
add/remove interface

mac80211_hwsim

Figure 2.1: High level view of the interaction between Mininet-WiFi, wmediumd and mac80211_hwsim.

virtualization mechanism provided by the Linux kernel, which allows the existence of multiple
network stacks. Processes in one network namespace can only see the network resources in
that namespace, therefore by having all resources related to a device (such as a host) in one
namespace, with several network namespaces, it is possible to have several devices.

Mininet-WiFi adds support to wireless communications, with virtualized Wi-Fi stations and
access points, provided by mac80211 hwsim, a device driver capable of simulating an arbitrary
number of IEEE 802.11 radios. While maintaining support to Mininet’s functionalities, Mininet-
WiFi adds support to simulation of movement and signal propagation effects, characteristic of
mobile stations.

In order to simulate signal propagation, Mininet-WiFi can use Traffic Control to configure the
kernel packet scheduler, or use wmediumd, to which mac80211_hwsim is capable of delegating
the traffic delivery simulation, becoming wmediumd’s responsibility to decide the details of the
delivery of each frame. This work focuses in the operation of the wmediumd.

Mininet-WiFi and wmediumd can communicate through a server started by wmediumd. This
server allows the dynamic addition and deletion of interfaces, as well as to update wmediumd’s
internal simulation parameters (see figure 2.1). This way, Mininet-WiFi can have its own in-
ternal simulations, such as movement and signal propagation, and only update wmediumd’s
simulation parameters, which will then affect the frame delivery decisions.

2.2 mac80211 hwsim

Mac80211 hwsim is a kernel module that simulates an arbitrary number of IEEE 802.11 radios
for Linux. It was initially developed by Jouni Malinen to test mac80211 and is maintained and
comes with the Linux kernel [15].

Mac80211_ hwsim’s simulated radios are seen by the operating system as real devices,
which allows the use of standard network commands to configure the simulated interfaces.
By default, all radios receive all the frames transmitted by any radio in the same frequency

yawmd: multiple medium support and performance improvements for wmediumd 7

channel. No simulation of the wireless medium constraints (such as signal propagation delays
or interference), nor hardware constraints (such as signal to noise ratio), nor signal modulation
constraints (such as bitrate) exist.

Mac80211_hwsim can also be used together with wmediumd, in which mac80211 hwsim
hands over the control of the frame by frame delivery decision, that is, wmediumd becomes
responsible for informing mac80211_hwsim which interfaces, if any, are supposed to receive a
frame.

2.3 wmediumd

Wmediumd is a user-space simulator for mac80211_hwsim that performs per frame delay and
delivery decision. This is attained by simulating some CSMA/CA mechanisms, as well as trans-
mission errors due to wireless medium conditions.

Wmediumd was originally developed by Cozybit®, which later ceased operation and “decided
"2 Since then multiple persons did modifications based on
either the original wmediumd developed by Cozybit, or on previous modifications of the original
(see figure 2.2). Cozybit's wmediumd has two major modifications. One by Alberto lllan that
expanded the probability based simulation with path loss and mobility simulation [4], and another
by Bob Copeland 2, with extensive changes to the code and simulation, which most notoriously
added more types of simulation models, adding options beyond the original probability models
for frame delivery decisions. The work of Bob Copeland was the basis for the work of Patrick
GroRe 4 which added the possibility of external configuration during runtime. Mininet-WiFi's °
wmediumd [16] is based in the work of Patrick Grof3e, which, among others, added support to
more path-loss models, made some updates to the communication with mac80211 hwsim, and
made some adaptations to work with new Mininet-WiFi features.

A review of the literature with search keywords “wmediumd OR mac80211 hwsim” in IEEE
Xplore® with full-text search and up to the end of 2019, returned 19 results. Of these, 15 cor-
respond to works that used either mac80211 hwsim or both, and 4 are references to related
or future work. Of the 15, 6 used Mininet-WiFi with wmediumd as the simulator, 5 only used
mac80211_hwsim, and 4 used wmediumd. Some of these works made adaptations to fit their
specific needs. Some works [6, 13, 14] correspond to emulators, but provide no relevant in-
formation to the type of changes intended to wmediumd. The same search was made in ACM
digital library’, which returned 2 results, both relative to works also published in IEEE. [4] is the
only published work found whose topic was changes to wmediumd. As previously referred, this

to move on to other adventures

https://github.com/cozybit/wmediumd
2http://cozybit.com/
Shttps://github.com/bcopeland/wmediumd/
“https://github.com/patgrosse/wmediumd/
Shttps://github.com/intrig-unicamp/mininet-wifi
Shttps://ieeexplore.ieee.org/Xplore/home.jsp
"https://dl.acm.org/

https://github.com/cozybit/wmediumd
http://cozybit.com/
https://github.com/bcopeland/wmediumd/
https://github.com/patgrosse/wmediumd/
https://github.com/intrig-unicamp/mininet-wifi
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/

8 yawmd: multiple medium support and performance improvements for wmediumd

cozybit) Alberto Illan
(inactive - 2013) (inactive - 2013)

v

Bob Copeland > Patrick GroR3e
(active - 2020) (inactive - 2017)

:

Ramon Fontes
(active - 2020)

Figure 2.2: Fork tree of wmediumd. All these versions maintained the name wmediumd.

work based on cozybit's wmediumd, expanded the probability based simulation with path loss
and mobility simulation 8.

2.3.1 Overview of the operation of mac80211 hwsim and wmediumd

After loading the module mac80211_hwsim, the interfaces can be configured and wmediumd
can be started. Wmediumd begins by reading and loading the configuration, and then performs
the registration protocol with mac80211 hwsim. This registration indicates to mac80211_hwsim
that wmediumd is available and ready to handle the traffic delivery for all of its interfaces. From
this point, wmediumd receives copies of the frames from all mac80211_hwsim’s interfaces,
controls which interfaces receive each frame, and imposes transmission restrictions. Then
wmediumd sends back to mac80211 hwsim copies of the frame and to which interface it should
be delivered. Only the receivers of the frame can receive a copy, and other interfaces in range
don’t get one.

Wmediumd replaces the default mac80211_hwsim behaviour, in which all interfaces with the
same radio channel as the transmitter, receive a copy of any frame transmitted in that channel.
Wmediumd’s behaviour permits avoiding some frame copies because, generally, the frames
that are not addressed for an interface (or broadcasted) are discarded °.

2.3.2 Configuration options

Wmediumd can be configured to operate in three modes:

1. standalone: configuration file determines the simulation parameters. Configuration can
not be altered during runtime.

8https://github.com/amarti2038/wmediumd
%An interface may be specifically configured to also capture frames not addressed to it, called promiscuous

mode, but in this case, with wmediumd, this mode will make no difference, since no copies are being provided.
Mac80211_hwsim would still work as expected.

https://github.com/amarti2038/wmediumd

yawmd: multiple medium support and performance improvements for wmediumd 9

2. dynamic: no initial configuration is provided. All configuration is made and updated
through messages to a server started by wmediumd.

3. hybrid: configuration file determines initial simulation conditions and can receive new
configuration during runtime.

The configuration file, used by standalone and hybrid mode, follows libconfig [8] format and
is parsed by it. For details about the configuration file options refer to appendix C.1. Of the
possible contents of the file, it is required the list of MAC addresses of the interfaces for which
traffic delivery is intended to be simulated. The optional fields permit to enable interference,
and select and tune the signal propagation model. The types of propagation model available
are SNR, probability and path-loss.

The model type SNR can use a default value for all interfaces, or use information from the
configuration file, using the configured Signal to Noise Ratio (SNR) values between pairs of
interfaces.

The model type probability works in a similar way to model type SNR. Instead of SNR values,
it receives probability of error values for each possible combination of interfaces. The error
probability values can be asymmetric for the same pair.

The final model type, path-loss, requires the definition of initial positions and of signal trans-
mission power. Optionally, the model permits the use of a simple movement model in a 2D
environment, based on direction vectors. The movement happens at a fixed time interval. The
models supported are free-space [3], log distance [12], log-normal shadowing [12], and ITU [5].

2.3.3 Simulation

As was previously explained, first mac80211 hwsim is started and then wmediumd can be
started. After wmediumd loading the configuration and preparing its data structures, it is almost
ready to handle the frame delivery simulation (see figure 2.3). For this to happen, wmediumd
must perform the registration protocol with mac80211_hwsim, so that mac80211_hwsim knows
wmediumd is available and ready. After this, wmediumd uses an event loop, managed by
libeventl [9] that handles two types of events, namely new message from mac80211_hwsim,
and frame ready for delivery.

All communication between mac80211 hwsim and wmediumd happens using netlink sock-
ets to perform a message based protocol. Wmediumd uses libnI3 [10] to handle communication
on its end, while mac80211_hwsim uses the netlink’s kernel API. The reception of a new netlink
message, in wmediumd, triggers the event new message from mac80211_hwsim.

Simplifying the process a bit, for a frame ready for delivery event to happen, first the frame
must be received, then stored, then the delivery simulation is performed, it must then wait until
the timestamp determined by the simulation, which when reached will trigger the frame ready
for delivery event, and finally the frame is sent back to mac80211_hwsim to be received by the
destination(s) of the frame. More details regarding the delivery simulation will be provided later.

10 yawmd: multiple medium support and performance improvements for wmediumd

load configuration initialize events, event 1o cleanu
and setup data structures timers and netlink P p

Figure 2.3: Workflow of wmediumd.

Netlink Message Timer expired

move interfaces

copy frame to internal
data structures

J

[simulate transmission}

deliver expired
frames

update timer

and interference

J

simulate medium access
and queue frame for delivery

update timer

Figure 2.4: Steps to handle the two types of events in the event loop of wmediumd.

As previously explained, wmediumd’s main loop consists in responding to two types
of events, managed by libevent, the frame ready for delivery and new message from
mac80211_hwsim. Libevent monitors the events and handles them sequentially.

The event frame ready for delivery is caused by a timer expiring. The timer used is timerfd,
a system call provided by the Linux kernel. This timer delivers expiration notifications, through
a file descriptor, that libevent is monitoring. The timer is set/updated every time a new frame is
received, after the medium access simulation takes place, and notifies that a frame is ready to
be delivered. This triggers the frame delivery procedure, that will search for the frame(s) ready
to be delivered and send them to mac80211 hwsim. The right side of figure 2.4 depicts this.

The event new message from mac80211_hwsim is caused by the presence of new data in
the netlink socket. This triggers the procedures to simulate frame transmission and medium
access, that will calculate the timestamp for the frame be sent to mac80211_hwsim for delivery.
The left side of figure 2.4 depicts this.

The delivery simulation performed by wmediumd can be split in three steps, which for the
purposes of this description will be called medium access simulation, transmission simulation
and interference simulation. The messages traded by wmediumd and mac80211 hwsim can
be seen in figure 2.5, and figure 2.6 shows the entire delivery simulation process.

yawmd: multiple medium support and performance improvements for wmediumd 11

‘ mac80211_hwsim |

HWSIM_CMD_FRAME

HWSIM_CMD_FRAME
0..N

HWSIM_CMD_TX_INFO_FRAME

B ey N e
S ey S L

Figure 2.5: Netlink messages exchanged between mac80211_hwsim and wmediumd to perform the simulation of
delivery of one frame. The message HWSIM_CMD_FRAME contains the frame, and is sent from mac80211_hwsim to
wmediumd so that wmediumd can extract information for the simulation. When it is ready to be delivered, it is sent
a copy to each of the receivers, that may be none (out of range, interference, ...). The message HWSIM_TX_INFO
reports transmission details to the transmitter interface.

Transmission simulation

The transmission simulation (see listing 2.1 for the algorithm pseudocode) performs attemps
to transmit a frame using the SNR value, derived from conditions of the medium, to determine
transmission error probability. The objective of this simulation is to determine how much time
is used to transmit, or fail to transmit, this frame. The transmissions or retransmissions depend
on the options provided by mac80211 hwsim for the signal modulation used in the attempt
of transmission, and on the number of retransmissions performed with each signal modulation
option. Each signal modulation option provides different bitrates and different transmission error
probabilities.

The conditions of the medium influence the value of the SNR used to determine the prob-
ability of transmission error for each type of signal modulation. Different values for the config-
uration key model. type (SNR, prob and path_loss) of wmediumd, affect how the probability
of transmission error is calculated. If the model type SNR is used, the SNR value for the pair
transmitter/receiver provided in the configuration file is used to calculate the error. If the model
type is path-loss, the distance between the transmitter and the receiver, the transmission power
and the antenna gains affect the SNR value used to calculate the error. If the model type prob-
ability is used, the SNR value is not relevant, and the error probability is the value from the
configuration file, which remains constant, independently of the signal modulation used.

Additionally, the model type path-loss supports interface mobility, which affects the distances
between the interfaces and, consequently, the SNR values provided by the path-loss model.
The position updates can only occur at fixed time intervals.

Medium access

The medium access simulation (see listing 2.2 for pseudocode) consists in finding the frame
with the latest delivery timestamp among the frames with the same or higher delivery priority.

12 yawmd: multiple medium support and performance improvements for wmediumd

mac80211_hwsim

wmediumd

Frame

send netlink message
HWSIM_CMD_FRAME

&

HWSIM_CMD_FRAME

receive netlink message

V!

Frame

\/

Deliver frame at
receiver interface

&

HWSIM_TX_INFO

receive netlink message

\/

Report transmission details
to transmitter interface

®

receive netlink message
HWSIM_CMD_FRAME

V!

Frame

store frame

[simulate transmission J

and medium access

set delivery
timer

for each destination
% of the frame

delivery timer
expired

Frame

[if frame
reception]

[unsuccessful]
[successful]

send netlink message
HWSIM_CMD_FRAME

Report transmission
details to transmitter

send netlink message
HWSIM_TX_INFO

%

Figure 2.6: Steps of the delivery of a frame, with the communication between wmediumd and mac80211_hwsim,

and the simulation performed by wmediumd.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

yawmd: multiple medium support and performance improvements for wmediumd 13

Listing 2.1: Pseudocode of the frame transmission simulation in the procedure queue_frame () of wmediumd (in
wmediumd/wmediumd.c of [16]). This pseudocode keeps the bug, present in wmediumd, of not counting the ACK
transmission time when the frame is successfully transmitted. To be correct, line 34 should be before line 30.

void queue_frame(struct wmediumd env, struct frame frame) {
int ack_time = transmission_time(ACK_LENGTH,

frame.transmission_rates[0].bitrate);

int send_time = 0;
int snr = DEFAULT_SNR; // MT_PROB
if (env.model_type == MT_PATH_LOSS)

snr = power_at_receiver(env, frame.transmitter, frame.receiver)
- NOISE_LEVEL;

else if (env.model_type == MT_SNR)

snr = power_at_receiver(env, frame.transmitter, frame.receiver);

int i = 0;
while ((i < length(frame.transmission_rates)) and (not frame.acked)) {

b

// Probability of the frame being received with uncorrectable
// errors.
double error_prob;
if (env.model_type == MT_PROB) // From configuration file
error_prob = get_error_prob(env, frame.transmitter,
frame.receiver);
else // Calculated
error_prob = calc_error_prob(snr, frame.length,
frame.transmission_rates[i]);
int j = 0;
while (j < frame.transmission_rates[i].retransmission_attempts) {
send_time = send_time + transmission_time(frame.length,
frame.transmission_rates[i].bitrate);
if (no_ack(frame.flags)) {
frame.acked = true;
break;
}
if (normal_distrib_random() > error_prob) {
frame.acked = true;
break;
}
send_time send_time + ack_time;
send_time = send_time + backoff_time(frame, i, j);
J=1+L

}
i

=i+ 1;

frame.duration = send_time;
/S

14 yawmd: multiple medium support and performance improvements for wmediumd

Then the delivery timestamp of the frame is the timestamp found plus the frame transmission
duration. This creates a “perfect” medium access control for the interfaces, since the interfaces
can sense the presence of a transmission even when out of their range. An alternative view of
this is: from the medium access simulation point of view, all interfaces are in the same place,
independently of any other configuration.

There is a problem with the medium access algorithm, because it allows successful frame
transmissions to overlap. This is presented in more detail at appendix D.

Interference simulation

Interference simulation is an option that may be enabled for the model type path-loss. As was
previously presented, the medium access simulation guarantees a “perfect” busy medium sens-
ing, even beyond range. As isimplemented, interference reduces the SNR value used calculate
the probability of transmission error of the frame.

A frame may have its SNR value affected by interference, if there have been previous trans-
missions on the medium in which the frame signal power was below CCA_THRESHOLD. The
probability that a frame will be affected by interference depends on the sum of the duration of
the frames transmitted previously with signal power below CCA_THRESHOLD, and the signal
power of the interference will be the signal power of the last frame transmitted in these condi-
tions.

For more details, see the procedures queue_frame(), deliver_frame(),
set_interference_duration() and get_signal_offset_by_interference() of
[16] at wmediumd/wmediumd. c.

yawmd: multiple medium support and performance improvements for wmediumd 15

Listing 2.2: Pseudocode of the algorithm used for medium access simulation in the procedure queue_frame() of
wmediumd (in wmediumd/wmediumd. c of [16]).

void queue_frame(struct wmediumd env, struct frame frame) {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

VI

// Priority of the frame according to its QoS type (lower value means
// higher priority: range 0 to 3). The frame may not have QoS info, and
// in that case, it has the highest priority, 0.
int frame_priority = get_priority(frame);
struct time now = get_time();
struct time timestamp = now;
// We want to obtain the latest timestamp of the queued frames, but if
// it 1s 1in the past or there are no frames queued we want '"now'.
int priority_queue = 0;
while (priority_queue <= frame_priority) {
// queue_max_all_interfaces(): find the latest timestamp in the
// queue of priority "priority_queue" from all interfaces. If they
// are empty returns 0 (always < "now").
timestamp = max(timestamp,
gueue_max_all_interfaces(env, priority_queue));
priority_queue = priority_queue + 1;
}
// Delivery timestamp marks when the frame finishes using the medium, and
// the time after which it may be sent to mac80211_hwsim.
frame.delivery_timestamp = timestamp + frame.duration;

// find the frame with closest delivery timestamp and set timer
// accordingly.
queue_for_delivery(frame);

yawmd: multiple medium support and performance improvements for wmediumd 17

Chapter 3

Performance analysis of wmediumd

To demonstrate the scalability of Mininet-WiFi, Fontes performed several tests, namely memory
usage, startup time, delay and throughput [1, section 4.3]. Of particular interest for this work is
the throughput test results with wmediumd. Itis not exactly clear what Fontes’ throughput results
represent, but it is assumed that the values reported correspond to the cumulative throughput of
the stations. Comparing the results with wmediumd to those without, the results with wmediumd
degrade faster and more abruptly, as the number of stations increases.

In order to better explore these results, two new tests were conducted, both with the two ways
of interest to simulate the wireless medium, just mac80211 hwsim, and mac80211 hwsim with
wmediumd. The objective of test 1 was to determine the capacity of the simulators, that is, the
amount of traffic mac80211 hwsim and wmediumd can deliver. The objective of test 2 was to
analyse the packet loss ratio when the traffic was set below the values determined in test 1.

Additionally, it was made an analysis to wmediumd with a profiler. The main objective of all
these tests was to identify bottlenecks, overheads, and areas where the performance might be
improved.

3.1 Test 1: Determination of throughput

This test measures the throughput of mac80211_hwsim’s built-in method and of wmediumd’s
wireless medium simulation. Throughput is a measure of traffic effectively received at the re-
ceiver, which may be lower that the traffic offered to the network, by the transmitter.

The test permits to see how the throughput changes as the number of stations us-
ing the medium increases. (A station is an abstraction of a real device that has one of
mac80211_hwsim’s simulated interfaces). The stations are grouped in pairs, that will establish
a wireless link. The number of pairs with traffic load progressively increases until they all are
communicating, and then progressively decreases until they are all stopped.

This test allows not only to observe the effects of multiple stations communicating simul-
taneously, but also to observe the effects on the throughput of having more stations, even if
idle.

18 yawmd: multiple medium support and performance improvements for wmediumd

The objective of using the throughput values was to measure the capacity of the medium (by
adding the throughput of all the stations), and have an idea of how the capacity was affected with
the increase of the number of stations, due to overheads. A lowering of the capacity meant that
the overheads were increasing. This was later found not to be the correct way to see the effects
of overheads in capacity of the medium. Instead, the data from this test is more appropriate
to determine if mac80211 hwsim is a limiting factor in the performance, and at which number
of stations performance problems show. A more effective methodology to see the effects of
overheads was later developed, and its results can be seen at chapter 5.

3.1.1 Configuration

The test was run in a machine with the following characteristics and software: CPU AMD Ryzen
51600, (3.2 GHz, 3.6 GHz with Precision Boost, 6 cores, 12 threads), RAM 16 GiB DDR4 2667
MHz, OS Arch Linux with kernel version 5.4.6-arch3-1, iperf version 3.7 1 and a copy of wmedi-
umd from [16]. The CPU had the Precision Boost and Simultaneous Multithreading enabled.
Since wmediumd has no release versions, the commit hash? from the version control system
is most likely the best identifier of the code used in the test. The version of mac80211 hwsim
used is the one provided by the kernel [15].

The mac80211 hwsim simulated interfaces were left with their default configuration, using
IEEE 802.11g, which has bitrates up to 54 Mb/s.

The test had two variations, variation H and variation W, that determine how the wireless
medium is simulated. This is the only change in the configuration between variations.

For variation H, it was used the mac80211_hwsim’s simulation of the medium. The medium
simulation of mac80211 hwsim consists in copying frames to all simulated interfaces in the
same frequency channel as the transmitting interface. Mac80211_hwsim is configured by its
radio parameter, whose range is limited from 2 to 100.

For variation W, it was used the simulation provided by wmediumd. To more closely match
the conditions of mac80211 hwsim'’s perfect medium, and to avoid additional variables, wmedi-
umd was configured with model type probability. This model does not simulate interference, and
the transmission simulation calculates the probability of error in the transmission of the frame,
using the values provided in the configuration file. This value was set to 0, so the transmission
is always successful. The medium access simulation is not configurable 3. For details about the
simulation performed by wmediumd see section 2.3.3, and for details about the configuration
options see section 2.3.2.

A station has one of mac80211 hwsim’s simulated interfaces, and is isolated in a different
Linux network namespace. A network namespace provides an independent IP protocol stack,

thttps://iperf.fr/
2commit hash: d56b9ee55d1ch6975630ba832a482e72225d754f
3From the medium access simulation point of view, all interfaces are in the same place, independently of any

other configuration.

https://iperf.fr/
https://github.com/ramonfontes/wmediumd/tree/d56b9ee55d1cb6975630ba832a482e72225d754f

yawmd: multiple medium support and performance improvements for wmediumd 19

iperf client 3

I I
I L
| |
I |
: :iperf client 2

:iperf client 1 :

{T sec} | {T sec} | {T sect J {T sec} | {T sec}
1 N N 1 ~1

N T

Time >

Figure 3.1: Example of the startup order of the iperf clients in test 1 and test 2. The lines indicate the iperf clients
execution duration. The iperf client connects to the iperf server of the station pair that was previously started. There
is only one interval T in which all iperf clients are active.

routing table, firewall rules and sockets for each namespace. Consequently, processes exe-
cuting in a namespace, only see the resources of that namespace. Namespaces were used in
order to prevent in-host routing of the packets at the network layer level (OSI layer 3), since the
destination IP address would be in the same host.

Each station establishes an IEEE 802.11 ad-hoc link (IBSS) with one other station, forming
a station pair. Each station pair uses a different IBSS network. All interfaces (and consequently
their stations) use the same frequency channel. Ad-hoc networks were chosen because of the
simple configuration.

In addition to different variations, a test also has instances with different even numbers of
stations, N, where N € {2,4,10, 20, 40, 60, 80}. Each variation is tested with all the instances, N.
For each instance of the test, N, the number of pairs communicating progressively increases
until all pairs are communicating simultaneously, and then the number of pairs progressively
reduces until they are all stopped. More specifically, the pairs orderly start to communicate,
each pair starting T seconds after the last one until they are all simultaneously communicating.
They all maintain communication during at least T seconds and then, by startup order, they stop
communicating, always at intervals of T seconds after the last pair stopped. So if the number
of interfaces is n, there are p = n/2 pairs, each pair is communicating for T X p seconds and the
test duration is 2(T X p) — T, (see figure 3.1 for an example). It was used T = 20 seconds.

To measure the throughput between two stations, it was used iperf, a tool designed for that
purpose. One station of the pair acts as an iperf server and the other as an iperf client. The
client was configured to transfer the data over TCP. The Transmission Control Protocol (TCP)
was chosen because of its ability to automatically adapt the data rate and to use all the available
capacity.

As per default configuration of iperf3, when the client starts, it connects to the server and
sends to it packets, as fast as possible. The client and the server record the amount of traffic sent
and received, respectively. The information report rate used in iperf was 1 second, therefore
the data acquired is the average throughput per second.

20 yawmd: multiple medium support and performance improvements for wmediumd

3.1.2 Results

The values of throughput were obtained from the iperf server of each station pair. The cumu-
lative throughput for each second of the test is measured by summing the throughput values
from the iperf server of each pair of stations that is transmitting at that second.

The results obtained are summarized in tables 3.1 and 3.2, and plotted on figures 3.2
and 3.3. The plots of the cumulative throughput values over time for the instances with 20 and
40 stations of both variations are at figures 3.4 to 3.7. Additionally, the plots of the cumulative
throughput over time of all the instances are available at appendix A.

Assuming that the duration of an instance of a test is d seconds, the 10 seconds to which
tables 3.1 and 3.2 description refers to and are labelled as “all stations” in the tables, correspond
to [Ld/2] -5, d/2] + 4].

No results for instance N = 80 with variation W are presented because, despite the three
runs with that variation, the results indicated that the iperf server of at least one pair crashed
during each run of the test.

The results presented correspond to statistics from a single run. Other runs were made and
showed similar results.

After collecting this data, it was noticed that the simulation performed by wmediumd, was
not correctly accounting for the transmission time of the Acknowledgment (ACK) frame. This
means that the cumulative throughput results presented here are higher than they should have
been, but this makes no significant difference in the analysis. This bug was corrected for the
execution of the tests in chapter 5.

Table 3.1: Average cumulative throughput in test 1 with variation H (mac80211_hwsim), during the entire test and
over a period of 10 seconds when all station pairs iperf servers and iperf clients were communicating. Values of
mean, J, and standard deviation, o, presented.

entire test all stations

N p(Mb/s) o (Mb/s) p(Mb/s) o (Mb/s)

2 3720,863 210,063 3674,158 251,02

4 2559,442 157,626 2729,833 76,145
10 1304,149 55,335 1350,202 4,048
20 614,987 46,01 542,965 4,311
40 274,113 30,633 247,265 16,252
60 165,115 37,82 159,863 38,961
80 116,425 35,804 113,685 15,918

yawmd: multiple medium support and performance improvements for wmediumd 21

Table 3.2: Average cumulative throughput in test 1 with variation W (wmediumd), during the entire test and over a
period of 10 seconds when all station pairs iperf servers and iperf clients were communicating. Values of mean, y,
and standard deviation, o, presented.

entire test all stations

N p(Mb/s) o (Mb/s) u(Mb/s) o (Mb/s)

2 35,417 0,817 35,558 0,727

4 35,178 1,093 35,239 1,010
10 34,112 2,341 34,334 1,178
20 31,570 2,697 30,568 1,832
40 22,408 4,134 22,925 1,946
60 10,997 5,071 12,464 3,307
80

4,000 ———

—e—mac80211_hwsim |

3,000 |

2,000 |-

1,000

Average throughput (Mb/s)

0

\ \ \ \ \ \ y
0 10 20 30 40 50 60 70 80

Number of stations

Figure 3.2: Average cumulative throughput in test
1 for each instance N with variation H. The values

plotted correspond to “entire test” from table 3.1.

30|

20

10

Average throughput (Mb/s)

0

I I I I
—=—wmediumd

0 10 20 30 40 50 60 70 80

Number of stations

Figure 3.3: Average cumulative throughput in test
1 for each instance N with variation W. The values
plotted correspond to “entire test” from table 3.2.

22 yawmd: multiple medium support and performance improvements for wmediumd

B e Tl

) L'IIFE&E!!!"III
200 | N,!I!!. e - Lm I
- ““&.I“ILJ

0 100 200

600 |

Cumulative throughput (Mb/s)
Cumulative throughput (Mb/s)

Time (s)

Figure 3.4: Cumulative throughput of the instance Figure 3.5: Cumulative throughput of the instance
with 20 stations with variation H. The throughput val- with 20 stations with variation W. The throughput val-
ues from each server are stacked and plotted with ues from each server are stacked and plotted with
different colours, (which repeat). different colours, (which repeat).

2 @ ~ }

e e

é 300 Hﬂ“}&q | ‘h “ }m ‘m i l mm J.h“"\l“ il | ?2: 30 1 ‘ ‘ |

2 2

z % |
2 200 | L 220]| TR
S N o WII " I ”W[W
£ £

o o

= 2

g 100 | g 10] [l
> >S5

g E \
s L 3

0 200 400 600 0 200 400 600
Time (s) Time (s)

Figure 3.6: Cumulative throughput of the instance Figure 3.7: Cumulative throughput of the instance
with 40 stations with variation H. with 40 stations with variation W.

3.1.3 Results analysis

Analysing the cumulative throughput change with variation H between instances of different
N, (see table 3.1 and figure 3.2), the results indicate that instances with more stations
have a lower cumulative throughput, which is not surprising, given the mode of operation
of mac80211 hwsim. Its traffic delivery method consists in copying the frames from one
interface to all other interfaces that share the same frequency channel (which is how they were
configured). The more interfaces there are, the more copies of each frame are made, which
justifies the drop in cumulative throughput registered. Also, there is the effect of the link layer
traffic inherent to the increase in the number of interfaces but, this was not measured here, so
its impact is unknown.

yawmd: multiple medium support and performance improvements for wmediumd 23

Variation W results (see table 3.2 and figure 3.3) show a relatively close but decaying cumu-
lative throughput with the rise of N for instances with N < 10, a slight drop in N = 20 and more
pronounced drops in N = 40 and N = 60. The results for N > 40 also show other irregularities
that will be analysed later. Contrarily to mac80211_hwsim’s delivery method, wmediumd is per-
forming the medium access simulation, (described in section 2.3.3), which limits the capacity of
the medium and consequently the cumulative throughput. Also, wmediumd only sends copies
of the frame to the destination(s).

With variation W, with the increase in the number of stations, N, the cumulative throughput
values decrease, irrespective of the fact the stations are transmitting or not. As can be seen
in figure 3.5, the values of throughput achieved with one station pair (first 20 seconds) are
maintained (with a bit more irregularity) throughout the instance of the test. The reason behind
the drop of the cumulative throughput with the increase in the number of stations present, is
probably a mix between increased overhead of handling more stations and bigger share of the
capacity used by the link layer traffic. Section 3.3 describes an attempt to find the sources of
overhead in wmediumd.

Looking at the plots of cumulative throughput over the duration of an instance, for both vari-
ations, when N > 40, they show an unexpected high variability in the values. For example
compare figure 3.4 with figure 3.6 and figure 3.5 with figure 3.7. The reason for the high vari-
ability became evident when the results of each pair were analysed. The iperf clients output
indicated that, on occasion, multiple seconds went by were no traffic was sent, with the same
behaviour for the iperf servers, as figure A.8 of the iperf output from one station illustrates.

A comparison of the values from tables 3.1 and 3.2 of “entire test” and “all stations”, in both
variations, shows no significant difference between the values throughout the test and when all
stations were communicating, except for variation H with N = 20, which shows a cumulative
throughput lower that the average when the number of simultaneous communications is higher.
Analysing the plots of variation H (see figures A.4 to A.6), before the high variability zone begins,
there was a trend in the throughput values lowering as the number of stations communicating
increased, and later of a throughput rise as the number of stations communicating decreased.
These results, along with the anomalies previously referred, might indicate that the system was
struggling to handle so many demanding processes.

These anomalies may be related to two relevant variables not controlled, noticed after per-
forming these tests (also applies to test 2), present because of the methodology used to acquire
the data. The first one related to the data being collected at the application layer, which means
that there are many intermediaries, in the protocol stack, that might be responsible for the ef-
fects seen, therefore they are not necessarily attributable to wmediumd or mac80211 hwsim.
These effects may also be related to TCP retransmissions, because the values used corre-
spond to new data transmitted. This first variable is eliminated in the tests of chapter 5, with the
data collected directly at wmediumd. The second variable is related to the CPU Precision Boost
being enabled, because for example in the case of wmediumd, if the simulation is sometimes
executed with the Precision Boost and sometimes it isn’t, during the periods when the Precision

24 yawmd: multiple medium support and performance improvements for wmediumd

Boost is enabled, there will be more capacity in the medium, because the overhead effect will be
lowered, which can lead TCP to send more packets. But when the simulation is later executed
without the Precision Boost, wmediumd will no longer be able to handle the same amount of
frames, which will lead to some being retained in the protocol stack queues, inhibiting additional
transmissions. This second variable is present in all tests of this thesis.

In conclusion, the results of cumulative throughput with mac80211_hwsim (variation H),
show that it is an unlikely source of performance problems in wmediumd, given that it has
much higher throughputs than the ones achieved with the simulation from wmediumd (variation
W). With the higher numbers of stations, mac80211_hwsim showed some irregularity in the
cumulative throughput that was also visible in wmediumd. Given that mac80211 hwsim was
performing copies to all interfaces, with wmediumd’s delivery method of providing copies only to
the receivers, this irregular effect might disappear, if the performance of wmediumd is improved.

3.2 Test 2: Behaviour with a fixed offered load

This test is similar to test 1. The objective is to obtain the values of packet loss ratio in loads
below the maximum throughputs measured in test 1, because of the high variability detected
in the results with more interfaces. The target bitrates selected for this test are fractions of
the average values from tables 3.1 and 3.2, concretely uy X 0.9, referred to as mean 90 and
un %x0.75, referred to as mean 75. These fractional values of the average cumulative throughput
were selected arbitrarily.

3.2.1 Configuration

The configuration was the same as in test 1 except for the use of UDP instead of TCP in iperf.
The cumulative target bitrates for each instance were the values of table 3.3, which determines
as targets for each station pair, for each N, V/(N/2), where V is the value of mean 90 or mean
75. Since the pairs start communicating at different times, the values of table 3.3 are only
achieved and maintained after all station pairs have started, during T = 20s, moment after
which the pairs gradually stop communicating.

3.2.2 Results

The results of packet loss ratio obtained from the iperf servers are summarized in table 3.4.

The values presented for variation W with values of N € {40,60} were only obtained in
second and third runs. The reason for this was the presence of pairs that showed “error -
unable to read from stream socket: Resource temporarily unavailable” and iperf servers that
crashed during the test, which lead to discarding the previous runs for those instances. The
reasons that caused this are unknown.

yawmd: multiple medium support and performance improvements for wmediumd 25

Table 3.3: Cumulative target bitrates for test 2.

Variation H Variation W

N mean 90 (Mb/s) mean 75 (Mb/s) mean 90 (Mb/s) mean 75 (Mb/s)

2 3348.776 2790.647 31.875 26.563

4 2303.498 1919.582 31.660 26.383
10 1173.734 978.112 30.701 25.584
20 553.488 461.240 28.413 23.677
40 246.702 205.585 20.168 16.806
60 148.603 123.836 9.897 8.247
80 104.782 87.319

Table 3.4: Results of test 2.

Variation H Variation W

mean 90 mean75 mean 90 mean 75

N lost (%) lost (%) lost (%) lost (%)

2 0.0102 0.0013 0.0000 0.0000

4 0.0109 0.0028 0.0000 0.0000
10 0.0001 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0249 0.0034
40 0.0000 0.0000 24.2699 21.9631
60 0.0000 0.0000 43.3497 42.5203
80 0.0000 0.0000

The results presented correspond to statistics from a single run, with the already referred
exceptions. Other runs showed similar results.

3.2.3 Results analysis

Variation H results (see table 3.4) show a low frame loss ratio for instances of N < 10. Results
from other runs showed no losses in some instances while others had about the same loss
ratios. Analysis of the moments these losses occurred (see figure B.1 and figure B.2) indicate
that these occurred without pattern. This might be related to other process activity on the system
that did not allow mac80211 hwsim to handle all the packets fast enough.

Results from multiple runs with variation W show significant losses for N > 40 (see table 3.4
and figures B.3 to B.7). The cumulative throughput results from test 1 for these instance sizes
already showed a descending trend, and since the target bitrates for these tests are based on
the values from test 1, it is an indication that these targets were still too high. These packets must

26 yawmd: multiple medium support and performance improvements for wmediumd

have been dropped by arriving at a full queue of the protocol stack, including mac80211 hwsim,
since wmediumd does not drop packets (as was configured). This is likely caused by a limit (in
mac80211 hwsim) in the frames that are transmitted to wmediumd to perform simulation, but
this process in not understood. Unlike the results from test 1, in this test there were no intervals
with no packets received.

3.3 Profiling wmediumd

As the results from the previous tests indicate, mac80211_hwsim has a significantly higher
throughput than wmediumd, which suggests that it is comfortable handling large amounts of
frames, making it a highly unlikely responsible for loss of medium capacity in wmediumd.

In order to have a better idea of what are wmediumd’s biggest cpu cycle spenders, a per-
formance analysis with a profiler was conducted. The profiler used was perf 4 [11], and the
data collected was relative to its metric cpu-cycles. The configuration of wmediumd was the
same as test 2 (section 3.2), using 10 stations and the target bitrate of mean 90.

The results indicate that about 47% of cpu-cycles were spent sending and receiving
frames (see listing 3.1). These results show that a considerable amount of time is spent han-
dling communication with mac80211_hwsim. Based on this data, it was attempted to improve
wmediumd'’s performance by improving the communication with mac80211 hwsim (described
in section 4.1).

“perf version 5.4.9219d54332a09

yawmd: multiple medium support and performance improvements for wmediumd

27

Listing 3.1: Output from perf report of profiling wmediumd. Values of __libc_sendmsgand __1ibc_recvmsg
indicate the load of functions associated with netlink communication.

Samples: 393K of event
Self Command

Children

+

93.
66 .
47.87% O
+ 28.10% ___libc_sendmsg
+ 17.40% __libc_recvmsg
+ 2.16% nl_recvmsgs_report

26%
35%

0.
65.29%

00%

'cycles'

wmediumd
wmediumd

14.89% 0x1000006000

+ 14.87% epoll_wait
.39% 0x55856c1478f0

Event count (approx.): 41811239984

Shared Object
[unknown]
[kernel.kallsyms]

+ 1.05% entry_SYSCALL_64_after_hwframe
0.65%

+ + + + + + o+

48,
26.
19.
17.
12.
. 02%
.69%

69%
51%
75%
62%
83%

0.60%

© © 0 w o o N

.93%
. 24%
.84%
.06%
. 94%
.96%
.60%

wmediumd
wmediumd
wmediumd
wmediumd
wmediumd
wmediumd
wmediumd
wmediumd

libpthread-2.30.so0
libc-2.30.s0

wmediumd
1ibnl-3.50.200.26.0
libevent-2.1.s0.7.0.0
libm-2.30.s0
[mac860211_hwsim]
[vdso]

yawmd: multiple medium support and performance improvements for wmediumd 29

Chapter 4

yawmd - Yet Another Wireless Medium
Daemon

Mininet-WiFi communicates with wmediumd through a configuration file and network messages.
Given that this communication is merely intended to change parameters of the simulation hap-
pening in wmediumd, and that all relevant simulation configurations can be achieved through
the configuration file, it was decided to focus efforts on improving performance and scalability
in wmediumd’s operation while attempting to maintain the external interface of the wmediumd’s
server and the configuration file unchanged.

There are plenty of modifications of wmediumd, as was described in section 2.3 and fig-
ure 2.2 shows. For this reason, the modifications of wmediumd presented in this chapter, re-
ceived a new program name, Yet Another Wireless Medium Daemon, yawmd for short.

Three modifications were made!, yawmd v1, yawmd mediums and yawmd pthreads.
In overview, yawmd vl eliminates a waste of resources in the communication with
mac80211 hwsim, yawmd mediums adds support to more than one medium, and yawmd
pthreads adds multi-threading to the multi-medium simulation of yawmd mediums. The effect
of these changes in the performance is analysed in chapter 5.

4.1 yawmd v1: Improve the communication with mac80211_hwsim

As was previously explained (in section 2.3.3), wmediumd receives a copy of the frame to simu-
late its delivery (in the message HWSIM_CMD_FRAME), and when the frame is ready to be deliv-
ered, it sends to mac80211_hwsim, for each receiver, a message with a copy of the frame (also
with type HWSIM_CMD_FRAME). Along with this, a message (HWSIM_CMD_TX_INFO_FRAME)
with the transmission details (such as successful transmission and number of retransmissions),
is sent to mac80211 hwsim to be reported to the transmitter interface. See figure 2.5 for an
illustration of this process.

The copies of the frame from wmediumd to mac80211_hwsim are not necessary, since the

1The source code will be made available at https://github.com/mjmoreira/yawmd/

https://github.com/mjmoreira/yawmd/

30 yawmd: multiple medium support and performance improvements for wmediumd

frame is kept in the transmitter interface queue until the message with the transmission details
of the frame is received from wmediumd 2. This means that mac80211_hwsim can perform a
copy of the frame to the receiver interfaces, by retrieving the frame from the transmitter. Then,
it is only required to be able to identify the frame in mac80211_hwsim and make that infor-
mation known to wmediumd, so that wmediumd can inform mac80211 hwsim in the message
HWSIM_CMD_FRAME which frame must be received by which interface(s). This way, instead of
sending a copy of the frame, wmediumd sends the identifier. This frame identifier is already
available, provided in the message HWSIM_CMD_FRAME, so that the transmission details re-
ported in the message HWSIM_CMD_TX_INFO_FRAME can be assigned to the right frame.

Furthermore, it is not necessary to provide wmediumd with a copy of the entire frame.
Wmediumd only requires fields from the header of the frame, and so the size and amount of
data sent from mac80211 hwsim to wmediumd can also be reduced, by only providing a copy
of the header instead of a copy of the frame.

Yet another change introduced was merging the messages to mac80211_hwsim,
HWSIM_CMD_FRAME and HWSIM_CMD_TX_INFO_FRAME, into just one (see the original
flow in figure 2.5 and the updated in figure 4.1). The way wmediumd works does not require
separate messages, and there is no challenge in mac80211 hwsim handling the delivery of the
frames and transmission report at the same time. This change requires wmediumd to create
a list of receivers, instead of sending a HWSIM_CMD_FRAME message for each one, which can
lead to a significant reduction of messages, if a frame has many receivers.

All these changes in the information traded between mac80211_hwsim and wmediumd, in-
tend to make a more efficient use of the resources by eliminating unnecessary copies of in-
formation and reducing the number of messages. The results of these changes are explored
in chapter 5. The changes were implemented together, therefore the individual contribution of
each is unknown. These changes resulted in yawmd version 1, also referred to as yawmd v1.

4.2 Multiple simulated mediums: yawmd mediums and yawmd
pthreads

As wmediumd and yawmd v1 are implemented, all interfaces share the same medium, inde-
pendently of the distance between them. The fact that a interface is out of range for the signal to
be detected and allow frame delivery, does not stop an interface from detecting the other trans-
missions, for the purposes of medium access. (These details were presented in section 2.3.3).
Given that not all deployments would be in conditions of medium access contention, it is an
interesting feature to have support for multiple mediums.

Allowing yawmd to support multiple mediums (with the same implementation as in wmedi-
umd), while not a perfect solution, gives the user some flexibility for deployments that would

2This change was inspired by the solution to a similar issue with cozybit's wmediumd, https://github.com/
cozybit/wmediumd/issues/2.

https://github.com/cozybit/wmediumd/issues/2
https://github.com/cozybit/wmediumd/issues/2

yawmd: multiple medium support and performance improvements for wmediumd 31

‘ mac80211_hwsim |

|
HWSIM_YAWMD_TX_INFO I|
|

|
[
|
|
|
I HWSIM_YAWMD_RX_INFO I
| |
| |

Figure 4.1: Messages exchanged between yawmd and mac80211_hwsim to perform the delivery simulation of
a frame. The message HWSIM_YAWMD_TX_INFO contains the frame header, the identifier for the frame, along
with other fields. The message HWSIM_YAWMD_RX_INFO contains the transmission details for the transmitter, the
identifier of the frame, and the list of addresses of the receivers of the frame. To deliver a frame, mac80211_hwsim
finds the frame in the transmitter’s interface queue using the identifier, and then makes copies for each of the
receivers from the list.

not “share” the medium with one another, such as distant groups of interfaces, or interfaces in
non-interfering radio channels 3.

A test (not reported in this thesis) that bypassed the frame delivery simulation, showed that
there was unused communication capacity between yawmd and mac80211 hwsim. This test
removed the simulation from yawmd v1, thatis, as soon as a frame was received and processed,
the delivery information was immediately sent to mac80211 hwsim, instead of simulating trans-
mission and queueing the frame for delivery at a later time. Without the limitations the simula-
tion imposed, the throughput values rose to values beyond 200 Mb/s, meaning that the Netlink
communication between yawmd v1 and mac80211_ hwsim is not a bottleneck. As is, a medium
normally achieves a throughput around 35 Mb/s, with IEEE 802.11g. This means that there is
enough capacity for yawmd to be used with versions of IEEE 802.11 with higher throughput, or
with more mediums simultaneously, without imposing reductions in the throughput, as a conse-
quence of the capacity of the netlink communication between yawmd and mac80211 hwsim.

This available communication capacity in the link with mac80211_hwsim, means that there
is no immediate need to explore other communication options between wmediumd/yawmd and
mac80211_hwsim, as was initially planned. It was considered more interesting to provide the
ability to use multiple mediums, than attempt to improve the communication capacity and per-
formance.

In order to support multiple mediums, it is required to change the configuration file format.
The changes made in the file options are quite extensive, therefore instead of adapting the
old parsing code, new code was produced. This also allowed to fix some problems with the
existing code and introduce some features. The objective was to make the configuration more
flexible and more preventive of failings because of (accidental) incorrect configuration. The new
features introduced include:

3Even if the radio channels were in conditions to cause interference with one another, the current implementation
of interference does not take this into account. See section 2.3.3 for details of the implementation of the interference.

32 yawmd: multiple medium support and performance improvements for wmediumd

wmediumd yawmd v1 yawmd mediums yawmd pthreads

Figure 4.2: Evolution of the versions of yawmd. yawmd v1 introduced overhead reduction in the communication with
mac80211_hwsim. yawmd mediums introduced support for multiple isolated mediums of communication. yawmd
pthreads executes the simulation of each medium in a separate thread.

« different model types and model configurations for each medium;

» some previously hardcoded parameters can be set for each medium (NOISE_LEVEL,
MOVE_INTERVAL, ...);

« introduction of warnings for unused options — a sign that the configuration might not be
doing what was intended. Previously, some of these were silently ignored;

« indication of file and line where an error or invalid value is found.

The old file format can be seen at appendix C.1 and the new at appendix C.2. The new file
format is read by libconfig [8], (as was the old).

Two approaches were taken to support multiple mediums. The first approach, named
yawmd mediums, adds the multiple mediums, but maintains a single thread to handle all the
events. The second approach, named yawmd pthreads, improves the first approach by using
one thread to perform the simulation of each medium. Both approaches are built on top of
yawmd v1 (see figure 4.2). The mediums are implemented by running multiple (independent)
instances of the simulation described in section 2.3.3. Each medium is composed by a
non-intersecting subset of the interfaces simulated by mac80211 hwsim.

4.2.1 yawmd mediums: Events for each medium

In wmediumd and yawmd v1 there are two types of events: new message and timer expired.
The timer expired is associated with frame delivery and interface position updates. For yawmd
mediums, the old timer expired event was replaced by two separate timers, movement timer
and frame delivery timer. Figure 4.3 shows the new events. For the events in wmediumd refer
to figure 2.4.

In yawmd mediums, there are timers for movement and frame delivery for each medium.
All the events triggered by these timers are managed by the same libevent event loop, and run
on a single thread. Another change introduced is the update from libevent version 1 to libevent
version 2 [9].

The primary objective of these changes was to improve the flow and understandability of the
code, while also preparing the code to work with threads. There were also some functionalities
lost, mainly due to time constraints, hamely interference, dynamic changes to the configura-
tion, and packet error rate probabilities from values in a file. All these functionalities can be
reintegrated.

yawmd: multiple medium support and performance improvements for wmediumd

33

new netlink message

!

copy frame header to
internal data structures

J

simulate transmission
and interference

J

[simulate medium access]

for each medium)

frame delivery timer expired

!

send delivery information
of expired frames to

mac80211_hwsim

set the timer to the
closest frame delivery
timestamp of all the
interfaces in the medium

movement timer expired

move interfaces

update path-loss
calculations

\I/ set timer to the next
move timestamp
queue frame for
delivery and set
medium timer

thread 1

Figure 4.3: Events managed by the event loop in yawmd mediums. Each medium has frame delivery and movement
events, (if enabled), for itself.

4.2.2 yawmd pthreads: One thread per medium

Yawmd pthreads makes use of parallelism in an attempt to minimize the decay of performance
associated with the increase of concurrent mediums. Yawmd pthreads is a maodification on top
of yawmd mediums, that instead of handling all the mediums in one thread, uses one thread
for each medium. These threads are not completely independent, because mac80211_hwsim
does not know about the division of mediums. The concept of multiple mediums exists entirely
in yawmd mediums/pthreads. This means that mac80211_hwsim can not send the message to
perform the delivery simulation, HWSIM_YAWMD_TX_INFO (see figure 4.1), directly to the thread
handling the simulation for the medium.

The approach chosen consists in having one thread, the main thread, to receive the mes-
sages from mac80211 hwsim, and process the messages to figure out which medium the trans-
mitter interface belongs, so that it can inform the medium thread that a new frame is available,
to perform the delivery simulation. Each medium has a thread to manage its events, with an
event loop of its own (see figure 4.4). The medium events are signaled by three timers. Two of
the timers are the ones already available for each medium in yawmd mediums, and a new one,
frame ready for simulation, set by the main thread to trigger immediately when a new frame
header is placed in the frame queue of the medium thread (see figure 4.5). The frame queue
is a list of frames headers, queued by the main thread, to be processed by the medium thread,
to perform all the steps of the delivery simulation.

34

yawmd: multiple medium support and performance improvements for wmediumd

?

load
configuration

initialize data structures,
libevent, netlink and
message events

start medium
threads
<@

main thread

register with
mac80211_hwsim

event IoopH cleanup]

®

initialize libevent,
frame queue, mutexes
and timers

event loop

®

medium thread

Figure 4.4: Workflow of yawmd pthreads.

new netlink message

!

frame ready for simulation

timer $

frame delivery timer expired

4 N\
copy frame to internal
data structures

4 N\

queue the frame for
processing at the
_transmitter's medium)

simulate transmission
and interference

J

.

send delivery information
of expired frames to
mac80211_hwsim

simulate medium
access and queue
frame for delivery

e - A
announce the existence
of a new frame to the
\transmitter's medium

é

J

set delivery timer

4 N

set the timer to the
closest frame delivery
timestamp of all the

\interfaces in the medium/

movement timer expired

move interfaces

update path-loss
calculations

set timer to the next
move timestamp

é

main thread

medium thread [1..N_Mediums

Figure 4.5: Events managed by the main thread and the medium threads event loops in yawmd pthreads. The main
thread receives the messages from mac80211_hwsim and distributes the simulation of the frame to the respective
medium thread. Each medium has its own events and event loop. The medium thread is responsible for the simu-
lation and for sending the transmission report to mac80211_hwsim.

yawmd: multiple medium support and performance improvements for wmediumd 35

Chapter 5

Performance analysis of yawmd

Having implemented the changes to wmediumd as described in chapter 4, it is now time to test
them and assess their impact in the performance. To do this, three new metrics were collected:
medium utilization to assess the impact of overheads in the capacity of the medium; CPU and
memory usage to assess the impact on the system.

Two new tests were made: test 3 was executed with wmediumd and all three versions
of yawmd, to compare the performance with one medium; test 4 was executed with yawmd
mediums and yawmd pthreads, to compare the implementations with multiple mediums. These
tests collect different data and use a different methodology than the ones of chapter 3 to address
several issues detected during the analysis of the data and later during development of yawmd.

5.1 Test 3: One medium

The objective of this test is to compare the performance of wmediumd, yawmd v1, yawmd
mediums and yawmd pthreads, when one medium is being simulated. This comparison is
based on three metrics: medium utilization, CPU usage and memory usage.

The medium utilization data is collected directly at wmediumd/yawmd, and provides infor-
mation about the fraction of the transmission time available effectively used. More precisely,
each frame has a duration, also referred as send time (see listing 2.1), that includes not only the
frame’s transmission time, but also wait times required for the transmission. For example, if T
is the timestamp of the end of transmission of the last scheduled frame on the queue, and two
new frames arrive, where frame;.duration = L, and frame,.duration = L,, frame; will finish
being transmitted at Ty + L;, and frame, will finish being transmitted at (T + L;) + L,. This
means that the sum of the duration of all frames transmitted in a time interval, divided by the
time interval, provides the fraction of the time the medium was used.

Medium utilization is a good way to get a detailed picture of the medium simulation, in par-
ticular of the effects due to overheads, because it is based on the value used to limit the amount
of frames that are transmitted, because all sources of traffic are accounted for (not just the iperf
traffic as in test 1), and because this value is not affected by the intermediaries of the protocol

36 yawmd: multiple medium support and performance improvements for wmediumd

stack (from the view point of what is happening in the simulation).

The CPU and memory usage data allows seeing the difference of usage in these resources,
and of particular interest, the effect of reducing the amount of data being transmitted, (by com-
paring yawmd v1 with wmediumd), and the effect of execution with threads, (by comparing
yawmd pthreads with yawmd mediums).

In this test iperf is still being used, not to collect data, as in test 1, but to add load to the
network.

5.1.1 Configuration

The configuration used for this test follows the same principles as section 3.1 (Test 1: Determi-
nation of throughput), but with the changes listed here.

The machine used was the same as in chapter 3, with updates to the software. The CPU Pre-
cision Boost and Simultaneous Multithreading were enabled. The operating system was Arch
Linux, with kernel version 5.8.7. It was also used iperf version 3.7 and libevent version 2.1.12
[9]. For the test with wmediumd, the version of mac80211_hwsim used was the one provided
with the kernel, and for the tests with yawmd, it was used a modified version to accommodate
the changes from section 4.1.

The definitions of station, station pair, instance and variation used in the previous tests
remain.

This test was run with four variations, wmediumd, yawmd v1, yawmd mediums and yawmd
pthreads, which use the programs of their name. To facilitate the writing, the term variation will
be skipped, using just the name of the variation.

The test was run with instances of N stations, which form N/2 station pairs, where N €
{2,4,6,8,10, 20, 30,40, 50, 60, 70, 80, 90, 100}.

The simulation of wmediumd and yawmd was patched to correctly account the ACK frame.
The transmission simulation (see section 2.3.3) includes in the transmission time associated
with a frame, the time of the transmission of the ACK. The original algorithm had a bug that
prevented the ACK frame from being counted when the transmission was successful. The patch
corrects the code of listing 2.1, which should have line 34 before line 30. This means that now
the frames which require an ACK, have a higher transmission time associated, which reduces
the throughput.

The problem with the medium access part of the simulation, which allowed transmissions
of frames at the same time, described in appendix D, was also patched. The patch forced all
frames to be placed in only one of the Quality of Service (QoS) queues, which eliminates the
conditions necessary for the overlapping transmissions to happen. The frames’ QoS type is not
modified, they are just placed in the “wrong” queue.

The configuration of wmediumd and yawmd was the same as variation W in test 1 (see
section 3.1), where the simulation uses a probability of error in the transmission of a frame
equal to 0.

yawmd: multiple medium support and performance improvements for wmediumd 37

All interfaces use the same frequency channel, and use the same IBSS network. In yawmd
mediums and yawmd pthreads, all interfaces are in one medium.

The way the iperf servers and clients are started and the duration of execution was changed.
Each iperf clients executes during 90 seconds and starts sequentially, 0.3 seconds after the pre-
vious client. The communication between the iperf client and iperf server is over TCP, without
restrictions, once again to leverage TCP’s capability to adapt the data rate to the capacity avail-
able.

To collect the medium utilization data used to assess the impact of the changes made,
it was made an addition to wmediumd and yawmd, to report every second, the sum of the
duration of all the frames transmitted by each QoS queue. This sum is reported by adding
the field frame.duration, (see listing 2.1), which accounts the time of transmission and wait
associated with a frame, of all the frames sent to mac80211 hwsim. To report the data, a hew
event was added to the main loop (the loop is explained in section 2.3.3), triggered by a timer
similar to the other timers already used by wmediumd and yawmd.

To collect the CPU and memory usage during the execution of wmediumd and yawmd it was
used pidstat from the sysstat package. It was used sysstat[17] version 12.4.0.

See appendix E for the commands and options used.

5.1.2 Results

The medium utilization values used in the analysis were derived from values of total transmission
time by QoS queue reported by wmediumd/yawmd. The values of CPU and memory usage were
reported by pidstat. The values presented for CPU usage correspond to the percentage of
usage of the total CPU time available, and the memory to the Resident Set Size (RSS) value.
All the values used were reported at intervals of one second.

The iperf clients of the station pairs run for 90 seconds. Of the 90 seconds of data, it is
selected a 60 seconds interval, after the iperf clients of all the station pairs are active, for analysis
of the data of medium utilization reported by wmediumd/yawmd. The iperf reports are not used
in the analysis.

This test was run twice. The results of run 1 are plotted at figures 5.1 to 5.3. A lower
level view of the data of medium utilization by QoS queue plotted at figure 5.1, is available at
appendix F.2.1. Additionally, the results of medium, CPU and memory usage, for both runs,
with information of mean and standard deviation, are available at appendix F.1.1.

This test was made with the CPU Precision Boost and Simultaneous Multithreading enabled,
which adds some uncertainty to the results, because these settings can have an effect in the
magnitude of the values reported, and in the difference between the variations.

38 yawmd: multiple medium support and performance improvements for wmediumd

—e— wmediumd
20 —— yawmd vl .
—a— yawmd mediums
—— yawmd pthreads

O e T T O s T S B S |

0 10 20 30 40 50 60 70 80 90 100
Number of stations

100 |- :
g | |
c 80 |
i)
= i i}
N
5 60 :
e
= r)
D
e 40+ i
()
(@)]
]
o
<

Figure 5.1: Average of the medium utilization at each second during each instance of test 3.

5.1.3 Results analysis

First, a note about the medium utilization metric: the simulation aims at always using the medium
at 100% as long as there are enough frames available, (which should not be an issue, since iperf
is running in TCP mode), therefore lower values mean that there is some component underper-
forming, and imposing a limitation, which will be called overhead . The effect of overhead is
particularly noticeable in data that was collected with the same configuration as this test, but
without the patch to avoid transmission overlapping. This data will not be analysed, but its
plots are available at appendix F.3. The overhead effect is seen in the linear drop of medium
utilization after the inversion point around the peak.

Looking at the results of medium utilization, (see figure 5.1), the baseline, wmediumd, shows
the worse results. For instances with more than 40 stations, the medium utilization drops rapidly,
and for instances with more than 60 stations, some iperf clients report communication failures
with the iperf server of their station pair, therefore these results were discarded. With its opti-
mizations to the communication with mac80211 hwsim, yawmd v1, presents a significant im-
provement over wmediumd, not only because it maintained a medium utilization of 100% up
to 60 stations, but also because it successfully finished the test with the instances up to 100
stations. However, it was unable to maintain the medium utilization at 100% for instances with
70 or more stations. Finally, yawmd mediums and yawmd pthreads managed to obtain better
results than the version they are based upon, yawmd v1, with an 100% medium utilization for
all instances. None of the changes introduced in yawmd mediums and pthreads was made

1The values reported can be lower than 100%, even with full medium utilization, because there are no fractional
transmissions of a frame.

yawmd: multiple medium support and performance improvements for wmediumd 39

I L L A L L L L DL D
3.5 |-+ wmediumd :
I |—=— yawmd vl

3 - | = yawmd mediums
—— yawmd pthreads

Average CPU usage (%)

O N e T T O S N S |

0 10 20 30 40 50 60 70 80 90 100
Number of stations

Figure 5.2: Average of the CPU used at each second during each instance of test 3.

with the intention of improving their performance, but the update of libevent[9] from version 1 to
version 2 is a very likely candidate for these results 2.

Looking now at the results of CPU usage (see figure 5.2), they all increase with the number
of interfaces, which is expected. Wmediumd and yawmd v1 show the fastest CPU use increase
trends, but wmediumd starts with higher usage. As in medium utilization, the changes to the
communication in yawmd v1 also show performance improvements. The best results are shown
by yawmd mediums and yawmd pthreads, by using less CPU and having a slower growth as
the instances get larger, which, again, is most likely related to the update of the version of
libevent used. The utilization of yawmd pthreads is slightly higher than yawmd mediums, which
is expected, given that it is already using two threads.

Focusing now in the results of memory usage (see figure 5.3), the changes observed in
the values are quite steep between instances, but rarely change during the execution of an
instance, and so they are most likely related to memory management. These results allow to
conclude that it is required about 3 MiB to execute wmediumd and yawmd.

Taking into consideration the results of medium, CPU and memory utilization, yawmd medi-

ums is the best option, because it combines an 100% medium utilization with the lowest CPU
usage.

2The improvement would then be associated with a more efficient management of the events of reception of
messages from mac80211_hwsim, and of the timer that signals the response (with the delivery information) to
mac80211_hwsim, as described in section 2.3.3.

40 yawmd: multiple medium support and performance improvements for wmediumd

T T T T T T T T T T T [T T T T [T T T T [T T T T [T T T T T T T T T T T T T T T]
3 [|
o
2 250 |
Q
(@)}
&
> 2 |
e
o
E 15 |
S
o | |
@ —e— wmediumd
:% —— yawmd vl
0.5 —=— yawmd mediums | |
—— yawmd pthreads
O N e T T O S N S |

0 10 20 30 40 50 60 70 80 90 100
Number of stations

Figure 5.3: Average of the memory used at each second during each instance of test 3.

5.2 Test 4: Multiple mediums

The objective of this test is to compare the performance of yawmd mediums and yawmd
pthreads when multiple mediums are being simulated. The methodology is the same used in
section 5.1 (Test 3: One medium).

5.2.1 Configuration

The configuration was the same used in section 5.1 (Test 3: One medium) with the following
differences.

The test was executed with two variations, yawmd mediums and yawmd pthreads, where
each variation uses the program of their name. Once again, they will only be referred by their
names.

The instances have two variables, M, the number of mediums, and S, the number of stations
in each medium. M € {1, 2, ...,10} and S € {10, 20}. Figure 5.4 shows an example of an instance
withS =4 and M = 2.

All stations are in the same frequency channel, and all stations that belong to a medium
share the same IBSS network, but each medium has a unique IBSS network.

5.2.2 Results

The medium utilization values used in the analysis were derived from the values of total trans-
mission time by QoS queue reported by yawmd. These values provide the average medium
utilization of each medium. It was then made an average of this value, deriving the average of

yawmd: multiple medium support and performance improvements for wmediumd

41

Station 1

Station 3

Interface 1 Interface 3
iperf3 server iperf3 server

Station 5

Station 7

Interface 5

iperf3 server

Interface 7

iperf3 server

Medium 1

Medium 2 |

iperf3 client iperf3 client iperf3 client iperf3 client
Interface 2 Interface 4 Interface 6 Interface 8
Station 2 Station 4 Station 6 Station 8

Figure 5.4: Example of the setup used in the test 4, where the number of stations per medium is S = 4, and the
number of mediums is M = 2.

the mediums average medium utilization, so that the medium utilization can be seen as a value
< 100%, independently of the number of mediums of the instance.

This test was run twice. The results of run 1 are plotted at figures 5.5 to 5.7. A lower
level view of the data of medium utilization by QoS queue plotted at figure 5.5, is available at
appendix F.2.2. Additionally, the results of medium, CPU and memory usage, for both runs,
with information of mean and standard deviation, are available at appendix F.1.2.

This test was made with the CPU Precision Boost and Simultaneous Multithreading enabled,
which adds some uncertainty to the results, because these settings can have an effect in the
magnitude of the values reported, and in the difference between the variations.

Average of the mediums average utilization (%)

100

80

60

40

20

. B— B o i
i —=— yawmd mediums 10 | |
B - «- yawmd mediums 20 | |
—— yawmd pthreads 10
i - - yawmd pthreads 20 | |
| | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Number of mediums

Figure 5.5: Average of the mediums average medium utilization at each second during each instance of test 4.

42 yawmd: multiple medium support and performance improvements for wmediumd

[y
12 —=— yawmd mediums 10
| |-*- yawmd mediums 20 k
__ 10| |——yawmd pthreads 10 .
S | |-+- yawmd pthreads 20
(O]
> 8
0
: |
)
D_ |
& 6
py i
S
g] % < s s S S AP e
< |
2 [
O | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10
Number of mediums

Figure 5.6: Average of the CPU use at each second during each instance of test 4.

5.2.3 Results analysis

Looking at the results of medium utilization, (see figure 5.5), yawmd pthreads performed better
in both cases, with S =10 and S = 20 interfaces per medium. With S = 10, yawmd pthreads was
capable of maintaining a medium utilization of 100% up to M = 10. This means that with S =10
and M =10, S x M =100 stations, has the same result of test 3 with N = 100 (which would be
equivalentto M =1 and S = 100 in this test). This same result, with S = 10, is not achieved
by yawmd mediums, as it shows results below 100% with M >= 7. With S = 20, neither was
able to maintain 100% medium utilization with the larger values of M, but the medium utilization
of yawmd pthreads shows a slower drop and starts with bigger values of M. It is clear with
yawmd mediums that the drop is caused by overheads, because yawmd pthreads achieved
better results. The source of the drop of yawmd pthreads with S = 20 is not clear. It is not
associated with a bottleneck in the communication link with mac80211 hwsim, because in that
case the addition of a new medium would cause a more pronounced drop in the values. It may
be associated with performance issues of mac80211 hwsim or yawmd, but there other possible
participants in the issue, such as the dozens of iperf clients and servers used.

Looking now at the results of CPU usage (see figure 5.6), they all increase with the number
of mediums, M, which is expected. The differences between yawmd mediums and yawmd
pthreads are more expressive in this test, with yawmd pthreads showing the most intensive
use, exposing the tradeoff between medium utilization, scalability and CPU usage. The rate
of increase of the CPU usage of yawmd mediums with M > 5 reduces, which matches with
drop of medium utilization. The same happens with yawmd pthreads, comparing the results of
S =20 with § =10, the CPU use of S = 20 deviates from the one of S =10 at M > 8, where the

yawmd: multiple medium support and performance improvements for wmediumd 43

3]
@® 25
=3
Q
g 2
(2]
=}
Py
g 1.5
GE) ¢
o 1 |
© —=— yawmd mediums 10
(] .
Z - «- yawmd mediums 20
0.5 —— yawmd pthreads 10 | |
- +- yawmd pthreads 20
0 | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10
Number of mediums

Figure 5.7: Average of the memory use at each second during each instance of test 4.

reduction of medium utilization becomes more visible. It is not clear what is the source of this
behaviour.

Focusing now in the results of memory usage (see figure 5.7), the changes observed in
the values are quite steep between instances, but rarely change during the execution of an
instance, and so they are most likely related to memory management. These results allow to
conclude that it is required about 3 MiB to execute yawmd mediums and yawmd pthreads, the
same value determined in test 3 with one medium.

Putting together the results of medium, CPU and memory utilization, yawmd pthreads shows
the best medium utilization and scalability, but at the expense of higher CPU usage. Yawmd
pthreads has an edge with higher M, and is the best choice if the higher CPU usage is accept-
able. When CPU usage is more contrained, yawmd might be the best choice.

5.3 Results summary and final considerations

Having looked at the results of test 3, with one medium, and of test 4, with multiple mediums, it is
clear that yawmd v1 provides a good improvement over wmediumd, and that yawmd mediums
provides a further improvement over yawmd v1, not only in terms of performance, but also
with the added support for multiple mediums. While the results point to yawmd mediums being
a great choice for configurations with one medium, the choice for configurations with multiple
mediums, between yawmd mediums and yawmd pthreads, is more dependent on the execution
environment and the configuration.

An important factor to consider when looking at the results of the tests, is that the data was

44 yawmd: multiple medium support and performance improvements for wmediumd

collected in only one machine. Different machines have different architectures and difference
performance, and that might cause one version of the program to perform better or to perform
worse than what is shown here, which might change what version is more adequate for the
situation. Another factor to consider is that the analysis is based on the results of only two runs
of the tests. Nevertheless, there is confidence in the results presented, because not only there
are no significant changes between runs, but also there are no sudden changes in the values
between instances. In short, these results serve the purpose of showing improvements, not of
their quantification.

yawmd: multiple medium support and performance improvements for wmediumd 45

Chapter 6

Conclusions

The primary objective of this thesis was to provide performance and scalability improvements
for wmediumd. This was achieved with the reduction of data used in the delivery simulation
protocol, in yawmd v1, and with the introduction of support to multiple mediums, with yawmd
mediums and yawmd pthreads.

Taking now a closer look at the objectives as enumerated in the introduction, the objective
to study other communication options, 1, was replaced by the introduction of multiple medium
support, in yawmd mediums and yawmd pthreads. The objective of creating tests to the various
functionalities provided, 2, was partially achieved with the tests in chapters 3 and 5. Objectives
3 (b) and (d) pertaining documentation were achieved in chapter 4 and section 2.3, respectively;
and (a), related to the simulation requirements, was also achieved in chapter 4, otherwise the
changes introduced with yawmd would not be possible. The objective of reducing the com-
munication load, 4, was achieved with yawmd v1 (section 4.1). The improvement to the traffic
delivery capacity, objective 5, was also achieved, as the data from chapter 5 shows, with the
improvement of medium utilization with one medium, and with the support for multiple medi-
ums. Finally, objective 6, maintaining interoperability with Mininet-WiFi, was only achieved with
yawmd v1 (section 4.1).

The main contributions of this thesis are a more efficient and scalable communication pro-
tocol with mac80211_hwsim (yawmd v1), two approaches to multiple mediums, one with a sin-
gle thread (yawmd mediums), and another with a thread for each medium (yawmd pthreads),
and the documentation of the operation and simulation of wmediumd and its interaction with
mac80211_hwsim.

While several limitations of the initial tests 1 and 2 of chapter 3 were overcome in the tests 3
and 4 of chapter 5, they were not completely eliminated, in particular, the CPU configuration in
the machine used to run the tests, which adds unnecessary and removable variables, and can
have some influence in the results. Another limitation is the amount of repetitions (previously
called runs) used in the tests, which increases the chance that some values are distant from
the real expected value. Nevertheless, there is confidence in the results, because the change
in the values between instances, (which are repetitions, but with different amount of stations),
does not deviate much from the trend.

46 yawmd: multiple medium support and performance improvements for wmediumd

6.1 Future Work

While dealing with wmediumd, several areas which might be targeted for improvement were
detected:

« Both wmedium and yawmd make no distinction between frequency channels to simulate
the medium access and the interference. The implementation of multiple mediums makes
this easier to fix.

« The current interference simulation relies only on the data transmitted in the medium to
determine the probability of interference. It could be interesting and more realistic to have
external sources of interference, either random or deterministic.

» The effect of interference in a frame is applied before the transmission simulation, there-
fore it impacts all the attempts of retransmission of a frame, while in reality it may only
affect on or some attempts.

» The possibility of overlapping successful transmissions in a perfect medium sensing algo-
rithm, as described in appendix D, because it creates an unrealistic situation with higher
throughputs.

Some areas in which the contributions of this thesis can be improved are:

* Make the tests, without the limitations found, with more repetitions, and in machines with
different hardware.

* Make a more detailed and deeper performance analysis to yawmd, for example with a
profiler.

* Reintroduce support for Mininet-WiFi in yawmd mediums and yawmd pthreads, and add
support for configurations with multiple mediums in Mininet-WiFi.

» Explore the feasibility of other options of communication between mac80211 hwsim and
wmedium/yawmd and their performance.

yawmd: multiple medium support and performance improvements for wmediumd a7

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

Fontes, Ramon R. “Mininet-WiFi: emulation platform for software-defined wireless net-
works = Mininet-WiFi: plataforma de emulagdo para redes sem fio definidas por soft-
ware”. PhD thesis. Campinas, Sdo Paulo, Brazil: Universidade Estadual de Campinas,
Faculdade de Engenharia Elétrica e de Computagéo, 2018.

Fontes, Ramon R. et al. “Mininet-WiFi: Emulating software-defined wireless networks”.
In: 2015 11th International Conference on Network and Service Management (CNSM).
Nov. 2015, pp. 384-389. DOI: 10.1109/CNSM. 2015.7367387.

Friis, Harald T. “A Note on a Simple Transmission Formula”. In: Proceedings of the IRE
34.5 (1946), pp. 254-256. DOI: 10.1109/JRPROC.1946 . 234568.

lllan, Alberto Martinez. “Medium and mobility behaviour insertion for 802.11 emulated
networks”. MA thesis. Universitat Politécnica de Catalunya, 2013.

ITU. Propagation data and prediction methods for the planning of indoor radiocommu-
nication systems and radio local area networks in the frequency range 900 MHz to 100
GHz. Recomendation ITU-R P.1238-2. International Telecommunication Union, 2001.

Kato, Arata, Mineo Takai, and Susumu Ishihara. “Design and implementation of a wire-
less network tap device for IEEE 802.11 wireless network emulation”. In: 2017 Tenth In-
ternational Conference on Mobile Computing and Ubiquitous Network (ICMU). Oct. 2017,
pp. 1-6. DOI: 10.23919/ICMU.2017.8330098.

Lantz, Bob, Brandon Heller, and Nick McKeown. “A Network in a Laptop: Rapid Prototyp-
ing for Software-Defined Networks”. In: Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks. Hotnets-IX. Monterey, California: Association for Com-
puting Machinery, 2010. DOI: 10.1145/1868447 .1868466.

Libconfig — library for processing configuration files. URL: https : //hyperrealm.
github.io/1libconfig/.

Libevent — an event notification library. URL: https://1libevent.org/.
Libnl — Netlink Library Suite. URL: https://github.com/thom311/1ibnl.

perf — Performance analysis utility. URL: https://git. kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree/tools/perf.

https://doi.org/10.1109/CNSM.2015.7367387
https://doi.org/10.1109/JRPROC.1946.234568
https://doi.org/10.23919/ICMU.2017.8330098
https://doi.org/10.1145/1868447.1868466
https://hyperrealm.github.io/libconfig/
https://hyperrealm.github.io/libconfig/
https://libevent.org/
https://github.com/thom311/libnl
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf

48

yawmd: multiple medium support and performance improvements for wmediumd

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Rappaport, Teodore S. Wireless Communications: Principles and Practices. Prentice Hall
PTR, 2002, pp. 138-141. ISBN: 9780130422323.

Rethfeldt, Michael et al. “ViPMesh: A virtual prototyping framework for IEEE 802.11s
wireless mesh networks”. In: 2016 IEEE 12th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob). Oct. 2016, pp. 1-7. DOI:
10.1109/WiMOB.2016.7763263.

Silvano, Gilles et al. “A Hybrid Architecture for Experimentation in Wireless Sensor Net-
works”. In: 2016 VI Brazilian Symposium on Computing Systems Engineering (SBESC).
Nov. 2016, pp. 116-121. DOI: 10.1109/SBESC.2016.025.

Source code of mac80211_hwsim. Linux Kernel Organization, Inc. URL: https://git.
kernel.org/pub/scm/ linux/kernel/git/torvalds/ linux.git/tree/
drivers/net/wireless/mac80211_hwsim.c.

Source code of wmediumd used in Mininet-WiFi. URL: https : / / github . com/
ramonfontes/wmediumd.

sysstat — System performance tools for the Linux operating system. URL: https://
github.com/sysstat/sysstat.

Tchinda, A. Paguem et al. “Performance analysis of WMN routing protocols for disas-
ter networks”. In: 2017 IEEE Symposium on Communications and Vehicular Technology
(SCVT). IEEE. 2017, pp. 1-6. DOI: 10.1109/SCVT.2017.8240309.

https://doi.org/10.1109/WiMOB.2016.7763263
https://doi.org/10.1109/SBESC.2016.025
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/wireless/mac80211_hwsim.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/wireless/mac80211_hwsim.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/net/wireless/mac80211_hwsim.c
https://github.com/ramonfontes/wmediumd
https://github.com/ramonfontes/wmediumd
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://doi.org/10.1109/SCVT.2017.8240309

yawmd: multiple medium support and performance improvements for wmediumd 49

Appendix A

Test 1 complementary plots

A.1 Variation H

=y

25004 A /\/\J/\M/\/\/\N\/\ A A A

w
s~ (\/v W \ AN
@ 3,000 =
ro) 2 2,000 |
= <
g o 1,500 | \
% 2,000 + E ’ m‘
S 21,000 |
£ 1,000 % ‘
g 500 ‘
&
0 J 0 ; | >
0 20 0 20 40 60
Time (s) Time (s)
Figure A.1: Throughput during variation H with 2 sta- Figure A.2: Cumulative throughput during variation
tions. H with 4 stations.

o

| el
4mﬂﬂ%twﬂ“ﬂl
i <%

600

W I
.

~wl L i
L

Cumulative throughput (Mb/s)
Cumulative throughput (Mb/s)

‘WWLMLM
0 : : ‘ 0
0 40 80 120 160 0 100 200 300
Time (s) Time ()

Figure A.3: Cumulative throughput during variation Figure A.4: Cumulative throughput during variation

H with 10 stations. H with 20 stations.

yawmd: multiple medium support and performance improvements for wmediumd

50

480 720 960

240

400 600

Time (s)

200

3 :
o o o o
o =] o
(9] (a\l L

(s/aw) indybnouyy saneinWND

Time (s)

Figure A.6: Cumulative throughput during variation

H with 60 stations.

Figure A.5: Cumulative throughput during variation

H with 40 stations.

800
Time (s)

400

(s/aiN) indybBnoayy aaeNWND

1,200

Figure A.7: Cumulative throughput during variation

H with 80 stations.

800

/

| M

i

bhill
i
600

300 400 500
Time (s)

200

S YT T T
|1 O R R AR R

A A A MARRTN

100

20 t
10 ¢
0

> o o
Lo <H (9}
(s/aw) indybnoay L

Figure A.8: Throughput values of the last pair to start communicating with 80 stations.

yawmd: multiple medium support and performance improvements for wmediumd 51

A.2 Variation W

Throughput (Mb/s)

30 ¢

20 |

10 |

20
Time (s)

Figure A.9: Throughput during variation W with 2

MWMMW

stations.

Cumulative throughput (Mb/s)

401

30 1

20 1

10 |

-
MWMHlll
WWWMMI
R

160
Time (s)

Figure A.11: Cumulative throughput during variation
W with 10 stations.

Cumulative throughput (Mb/s)

30 §

20 |

10 |

/MMMM(\/W\MMNN\MM/V\

L
W\/\ﬂm

0 20 40 60

Time (s)

Figure A.10: Cumulative throughput during variation
W with 4 stations.

Cumulative throughput (Mb/s)

50 |

40 |

30 |

20 |

10 {

Figure A.12: Cumulative throughput during variation
W with 20 stations.

yawmd: multiple medium support and performance improvements for wmediumd

52

O
F\O
(o)
| R
N
o
+®©
| <F
o
¥
(q\]
O
n o 1 o 1 o
(ql o\ — —
(s/q\) indybBnolayr aaneNnwnd
o
1S
\O
o
1S
<
o
S
IS\
(a»]

(S/aN) IndyBnoiyy aareINWND

Time (s)

Time (s)

Figure A.14: Cumulative throughput during variation

W with 60 stations.

Figure A.13: Cumulative throughput during variation

W with 40 stations.

yawmd: multiple medium support and performance improvements for wmediumd

53

Appendix B

Test 2 complementary plots

B.1 Variation H

0.1
——mean 90
5 ---mean 75
__8-10"
S
o
8 6-1072
(9]
3
7 4-1072
X
g
2-1072
0 }
0 20

Time (s)

Figure B.1: Packet loss ratio during variation H with 2 stations.

54 yawmd: multiple medium support and performance improvements for wmediumd

0.2 ¢
——mean 90
---mean 75
g 0.15 |
.8
IS
2 0.1
°
g
3
a 5-107%
O T } I
0 20 40 60
Time (s)
Figure B.2: Packet loss ratio during variation H with 4 stations.
B.2 Variation W
11 ——mean 90
---mean 75
08
i)
s
2 0.6
°
8 04
(&)
©
o
0.2 ¢ | ;
NI . | HiE

0 40 80 120 160 200 240 280 320 360
Time (s)

Figure B.3: Packet loss ratio during variation W with 20 stations.

yawmd: multiple medium support and performance improvements for wmediumd

55

Packet loss ratio (%)

Packet loss ratio (%)

351
30 |
i

20 |

15 |

10 |

0 1 1 1] 1 1 1 1 1 1 1 1
0 60 120 180 240 300 360 420 480 540 600 660 720 780
Time (s)

Figure B.4: Packet loss ratio during variation W with 40 stations, with target data rate mean 75.

: | el

20 |

15 |

10 |

0 : : : : : : : : : : : :
0 60 120 180 240 300 360 420 480 540 600 660 720 780
Time (s)

Figure B.5: Packet loss ratio during variation W with 40 stations, with target data rate mean 90.

56

yawmd: multiple medium support and performance improvements for wmediumd

Packet loss ratio (%)

Packet loss ratio (%)

i MMW

0 120 240 360 480 600 720 840 960 1,080
Time (s)

10 |

Figure B.6: Packet loss ratio during variation W with 60 stations, with target data rate mean 75.

60 |
50 |
40 |
30 {
20 ¢
10 |
‘ ‘ 360 4é0

0 120 240

600 720 840 960 1,080
Time (S)

Figure B.7: Packet loss ratio during variation W with 60 stations, with target data rate mean 90.

yawmd: multiple medium support and performance improvements for wmediumd 57

Appendix C

Configuration files for wmediumd and yawmd

C.1 wmediumd configuration file options

Listing C.1: Configuration file options for wmediumd.

ifaces.ids is required. The other settings are optional.
ifaces:

{

ids = ["<mac address 1>", "<mac address 2>", "<mac address 3>"];
enable_interference = <true | false>;

indices correspond to the ifaces.ids position

links = ((<source index>, <destination index>, <snr>), ...);

+i

All the following are optional, but some are required once the
setting commented above is present.
model:
{
noise_threshold = <int>;
fading_coefficient = <int>;

type = < "snr" | "prob" | "path_loss" >;

.type = "path_loss"

name = < "free_space" | "log_distance" | "log_normal_shadowing" |
"two_ray_ground" | "itu" >;

Optional: used by .type = < "snr" | "prob" >

links = ((<source>, <destination>, <snr value | prob value>), ...);

Optional: used by .type = "prob"

default_prob = <float>;

Optional: used by .type = "snr'"

default_snr = <int>;

.type = "path_loss"

positions = ((<float_x>, <float_y>, <float_z>), ...);
.type = "path_loss"

58 yawmd: multiple medium support and performance improvements for wmediumd

tx_powers = [<float>, <float>, ...];

Optional: used by .type = "path_loss"

directions = ((<float_x>, <float_y>, <float_z>), ...);

Optional: used by .type = "path_loss"

isnodeaps = [<int>, <int>, ...];

The following are required if type = '"path_loss" and if name=x
.name = < "log _distance" | "log_normal_shadowing" >
path_loss_exp = <float>;

.name = "log_distance"

xg = <float>;

.name = <"free_space"| "log_normal_shadowing"| "two_ray_ground">
sL = <int>;

.name = "itu"

NFLOORS = <int>; 1F = <int>; pL = <int>;
i

yawmd: multiple medium support and performance improvements for wmediumd

59

C.2 yawmd configuration file options

Listing C.2: Configuration file used by yawmd mediums and yawmd pthreads.

medium =
(
{
required
id = 2;

required
interfaces = ["00:00:00:00:00:00",
"00:00:00:00:00:01",
"00:00:00:00:00:02",
"00:00:00:00:00:03"];
required
model =
{
required
type = "prob";
optional - (default_probability = 1.0)
probability defines the ERROR probability
default_probability = 0.5; # for the other interfaces
optional - all missing pairs have default_probability
links =
(#(transmitter, receiver, error probability)
(6, 1, 0.1),
(1, 0, 0.2),
(2, 0, 0.005),
(1, 3, 0.001)
)i

}

+

{
required
id = 1;

required
interfaces = ["00:00:00:00:00:04",
"00:00:00:00:00:05",
"00:00:00:00:00:06"];
required
model =
{
required
type = "snr'";

60 yawmd: multiple medium support and performance improvements for wmediumd
optional - default_snr = -100
default_snr = 110;
optional - all missing pairs have default_snr
links =
(#(transmitter, receiver, receiver signal)
(0, 1, 110),
(1, 0, 110),
(1, 2, 50)
)
}
+
{

required
id = 3;

required
interfaces

["00:00:00:00:00:07",
"00:00:00:00:00:08",
"00:00:00:00:00:09",
"00:00:00:00:00:0a"];

required

model =

{

required

type = "path_loss";

optional - simulate_interference = false;

simulate_interference = true;

optional - noise_level = -91

noise_level = -91; # dBm

optional - fading_coefficient = 0

fading_coefficient = 1;

required - (x,y,z). z for two_ray is antenna height

units: meters

positions = ((2.0, 3.0, 8.0), (4.0, 5.0, 0.0),
(1.0, 1.0, 0.0), (2.3, 5.1, 1.3));

optional (seconds > @) move_interval = 5.0

move_interval = 1.0;

optional. every move_interval: position += direction

directions = ((2.0, 3.0, 2.0), (5.0, 1.0, 1.0),
(0.0, 0.0, 0.0), (1.0, 0.0, 0.0));

required

tx_powers = [15, 20, 10, 30]; # int

optional antenna_gain = 0

antenna_gain = [3, 3, 5, 8]; # int - dBm

required: free_space | itu | log_distance |

log_normal_shadowing | two_ray_ground

yawmd: multiple medium support and performance improvements for wmediumd

61

)

model_name
model_name
model_name
model_name = "two_ray_ground";
model_name = "itu";

required - model_name parameters
model_params = # free_space

{

"free_space"; # string
"log_distance";

"log_normal_shadowing";

system_loss = 1; # int
}
model_params = # log _distance
{
path_loss _exponent = 0.1; # float
xg = 1.0; # float
}
mode l_params = # log_normal_shadowing
{
path_loss_exponent = 0.1; # float
system_loss = 1; # int

SR T T T N S R T N N

}

model_params = # two_ray ground

{

system_loss = 1; # int

model_params = # itu

{
n_floors = 0, # int

floor penetration factor

floor_pen_factor * n_floors
floor_pen_factor = 22; # int dBm

distance power loss coefficient (N)
power_loss_coefficient = 1; #int

FHOoH KR W W R K W ®w

}

yawmd: multiple medium support and performance improvements for wmediumd 63

Appendix D

Medium access simulation simultaneous
transmission

The medium access simulation determines when an interface will transmit a frame. It is de-
scribed in more detail at section 2.3.3. This algorithm suffers from a problem, because it allows
two or more frames to be transmitted at the same time, thus violating the objective of only one
frame be transmitted at one time. If a frame with higher priority arrives after a frame with lower
priority is already queued and not delivered, when calculating the delivery timestamp, the do-
main of the search is only the frames with same or higher priority, thus the lower priority frame
will be missed and both will be scheduled for delivery with overlapping time intervals. An ex-
ample of this behaviour can be seen in the situation described in table D.1 and represented
graphically in figure D.1.

64 yawmd: multiple medium support and performance improvements for wmediumd

Table D.1: This table represents a simplified hypothetical timeline of frame delivery that the algorithm used by
wmediumd/yawmd to simulate medium access (see listing 2.2) will allow. This example shows that if frames with
higher priority arrive after frames with lower priority that are still not delivered, simultaneous transmission may occur.
For this example the medium is shared by two interfaces, and each interface has two QoS queues. The following
abbreviations are used on the table. Ord: order of reception of the frame by wmediumd/yawmd; Rcv: timestamp of
reception of the frame by wmediumd/yawmd; Str: timestamp of start of frame transmission; End: timestamp of end
of frame transmission.

Interface 1 Interface 2

High Priority Low Priority High Priority Low Priority

Ord Rcv Str End Ord Rev Str End Ord Rev Str End Ord Rcev Str End

9 35 41 50 8 31 51 60
6 15 31 40 4 12 13 20 3 5 21 30
5 12 21 30 7 17 41 50 1 0 1 10 2 3 11 20

| | |
| | |
‘. 12, High | | |
| | |
O | 12, Low ! ! !
| | I | |
O— r_12.Low | | |
| | | |
1 (D12, High I I I
| l | | |
: O | 11, High : : : ordlerlof
| | | - | arriva
| O T T 11, High |
| | | |
! O— - H 1 tow |
| | | | |
| | Q | | oW
! ! ! O— 12, nign v
:10 :20 :30 :40 :50
| | | | |
>
time

Figure D.1: Representation of the order of delivery of packages of the situation described in table D.1. The circles
mark the time of reception of the frame by wmediumd/yawmd.

yawmd: multiple medium support and performance improvements for wmediumd 65

Appendix E

Commands used

iperf3:

server:

ip netns exec <net_namespace> iperf3 -s --json --logfile \
<out_file> -1

client:
ip netns exec <net_namespace> iperf3 -c <server_ip> -t <run_time> \
--json --logfile <out_file>

mac80211_hwsim

kernel

modprobe mac80211_hwsim radios=<number>
modprobe -r mac80211_hwsim

modified for yawmd

modprobe mac80211 # might not be required if it is already started
insmod <my_mac80211_hwsim.ko_path> radios=<number>

modprobe -r mac80211_hwsim

modprobe -r mac80211

1interface configuration

ip netns add <namespace>

iw phy <phy> set netns name <namespace>

ip netns exec <namespace> iw dev <wlan> set type ibss

ip netns exec <namespace> ip link set dev <wlan> up

ip netns exec <namespace> ip addr add <ip>/<mask> dev <wlan>
ip netns exec <namespace> ip route add default dev <wlan>

66 yawmd: multiple medium support and performance improvements for wmediumd

create/join network
ip netns exec <namespace> iw dev <wlan> ibss join <ibss_name> \
<channel_frequency>

collect cpu and memory usage by a process
pidstat is part of the sysstat package
pidstat -h -H -r -u -I -p <pid>

yawmd: multiple medium support and performance improvements for wmediumd

67

Appendix F

Test 3 and Test 4 complementary information

F.1 Table summaries of the data used in chapter 5

F.1.1 Test 3: One medium

Medium utilization

Table F.1: Results of wmediumd by QoS queue. Values of mean, y, standard deviation, o, and medium utilization =
VO, + BE,, presented. The QoS queues are voice, VO, and best effort, BE.

Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium

utilization (%) utilization (%)
(%) o(%) H(%) o (%) (%) o(%) H(%) o (%)

2 1.39 0.062 97.77 6.575 99.16 1.39 0.059 96.15 14.146 97.54
4 277 0119 96.08 9.014 98.85 2.76 0.126 94.49 15.231 97.25
6 416 0.193 9440 11.443 9855 4.16 0.170 94.39 11.293 98.56
8 554 0.237 9272 12.174 98.26 555 0.229 92.71 12.157 98.26
10 6.93 0.308 91.05 12.453 9798 6.93 0.302 91.06 12.447 97.98
20 13.85 0550 84.26 11.551 98.11 13.86 0.490 84.26 11.586 98.11
30 20.81 0.763 77.44 10.746 98.25 20.78 0.774 77.47 10.653 98.24
40 27.71 0.898 68.61 13.329 96.31 27.75 0.858 70.74 7.048 98.49
50 34.65 0.992 3225 16.050 66.90 3457 0.995 2533 12.617 59.90
60 41.38 1534 29.08 11.746 70.47 41.37 1.332 20.43 13.306 61.80
70 - - - - - - - - - -
80 - - - - - - - - - -
90 - - - - - - - - - -

100

68

yawmd: multiple medium support and performance improvements for wmediumd

Table F.2: Results of yawmd v1 by QoS queue. Values of mean, |, standard deviation, o, and medium utilization =
VOy + BEV, presented. The QoS queues are voice, VO, and best effort, BE.

Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium

utilization (%) utilization (%)
H(%) o(%) u(%) o (%) H(%) o (%) u(®%) o(%)

2 1.39 0.062 97.78 6.526 99.17 1.39 0.060 97.77 6.592 99.16
4 277 0.116 96.08 8.990 98.85 277 0.119 96.08 8.976 98.85
6 4,16 0.183 94.39 11.427 98.54 416 0.176 94.39 11.336 98.55
8 555 0.227 92.70 12.166 98.25 555 0.230 92.72 12.142 98.27
10 6.93 0.286 9257 3.874 99.50 6.93 0.274 9257 3.935 99.50
20 13.85 0.505 84.24 11.550 98.09 13.85 0.527 85.67 3.632 99.52
30 20.81 0.697 77.45 10.715 98.26 20.81 0.686 77.44 10.732 98.26
40 27.70 0.962 70.69 9.750 98.39 27.70 0.865 71.87 3.478 99.57
50 34.63 0.998 63.90 8.851 98.53 34.64 0.965 63.89 8.925 98.53
60 40.83 1.561 57.82 8.273 98.65 40.56 1.818 59.07 3.376 99.63
70 46.86 2.715 49.61 8.398 96.47 45.68 3.227 51.69 8.393 97.37
80 49.08 4.959 44.59 9.281 93.67 48.88 5.401 45.63 7.157 94.51
90 45.27 7.939 45.09 9.280 90.36 45.09 7.222 4552 8.521 90.61
100 4244 6.741 44.27 7.963 86.71 42.17 7.536 45.40 9.552 87.57

Table F.3: Results of yawmd mediums by QoS queue.
medium utilization = VO, + BE,, presented. The QoS queues are voice, VO, and best effort, BE.

Values of mean, pu, standard deviation, o, and

Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium
L) (%) (%) o (%) utilization (%) U6 o(%) (%) o (%) utilization (%)
2 1.39 0.060 96.16 14.121 97.55 1.39 0.060 97.77 6.555 99.16
4 277 0.121 96.08 8.984 98.85 2.77 0.121 96.08 9.012 98.85
6 4.16 0.174 9439 11.291 9856 4.16 0.180 94.39 11.358 98.55
8 555 0.225 9271 12.155 98.26 554 0.234 92.72 12.151 98.26
10 6.94 0.266 91.04 12.479 97.98 6.93 0.297 91.05 12.449 97.98
20 13.87 0.508 84.24 11.593 98.11 13.85 0.504 85.68 3.760 99.53
30 20.78 0.800 77.48 10.653 98.26 20.80 0.699 78.75 3.629 99.55
40 27.75 0.805 70.66 9.820 98.41 27.73 0.797 70.68 9.775 98.41
50 34.68 0.902 63.87 8.883 98.56 34.63 1.096 64.96 3.030 99.59
60 4155 1463 57.11 7.986 98.66 4156 1.089 57.14 7.921 98.69
70 48.44 1413 50.42 7.080 98.87 4846 1.336 51.26 2.740 99.72
80 5519 1.791 43.82 6.312 99.01 55.18 1.734 4457 2.739 99.75
90 60.96 2111 3815 5.770 99.11 60.90 2.180 38.87 2.905 99.77
100 61.36 2911 38.38 3517 99.74 6143 3.174 3761 6.151 99.05

yawmd: multiple medium support and performance improvements for wmediumd

69

Table F.4: Results of yawmd pthreads by QoS queue.
medium utilization = VOV + BE#, presented. The QoS queues are voice, VO, and best effort, BE.

Values of mean, u, standard deviation, o, and

Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium

utilization (%) utilization (%)
H(%) o(%) u(%) o (%) H(%) o (%) u(®%) o(%)

2 1.39 0.060 96.16 14.121 97.55 1.39 0.060 97.77 6.555 99.16
4 277 0.121 96.08 8.984 98.85 277 0.121 96.08 9.012 98.85
6 416 0.174 94.39 11.291 98.56 416 0.180 94.39 11.358 98.55
8 555 0.225 92.71 12.155 98.26 554 0.234 9272 12.151 98.26
10 6.94 0.266 91.04 12.479 97.98 6.93 0.297 91.05 12.449 97.98
20 13.87 0.508 84.24 11.593 98.11 13.85 0.504 85.68 3.760 99.53
30 20.78 0.800 77.48 10.653 98.26 20.80 0.699 78.75 3.629 99.55
40 27.75 0.805 70.66 9.820 98.41 27.73 0.797 70.68 9.775 98.41
50 34.68 0.902 63.87 8.883 98.56 34.63 1.096 64.96 3.030 99.59
60 4155 1.463 57.11 7.986 98.66 4156 1.089 57.14 7.921 98.69
70 48.44 1413 5042 7.080 98.87 4846 1.336 51.26 2.740 99.72
80 5519 1.791 43.82 6.312 99.01 55.18 1.734 4457 2.739 99.75
90 60.96 2.111 38.15 5.770 99.11 60.90 2.180 38.87 2.905 99.77
100 61.36 2911 38.38 3.517 99.74 6143 3.174 37.61 6.151 99.05

CPU and memory usage

Table F.5: Results of wmediumd CPU and memory usage. Values of mean, u, and standard deviation, o, presented.

Run 1 Run 2

N CPU usage Memory usage CPU usage Memory usage
(%) o(%) up(MiB) o(MiB) up(%) o(%) pMiB) o (MiB)
2 114 0.08 1.39 0.00 114 o011 1.27 0.00
4 112 0.16 1.39 0.00 116 0.13 1.27 0.00
6 116 0.10 1.27 0.00 102 0.22 2.32 0.84
8 110 0.19 1.79 0.70 119 0.10 1.27 0.00
10 1.10 0.23 3.03 0.00 118 0.18 3.10 0.00
20 154 0.19 3.03 0.00 158 0.13 3.05 0.00
30 181 0.36 3.04 0.00 193 031 2.96 0.00
40 230 0.29 3.00 0.00 231 0.28 2.89 0.00
50 2.73 0.18 2.94 0.00 270 0.20 3.03 0.00
60 321 0.20 3.04 0.00 316 0.21 3.00 0.00
70 - - - - - - - -
80 - - - - - - - -
90 - - - - - - - -

100

70 yawmd: multiple medium support and performance improvements for wmediumd

Table F.6: Results of yawmd v1 CPU and memory usage. Values of mean, y, and standard deviation, o, presented.

Run 1 Run 2
N CPU usage Memory usage CPU usage Memory usage
(%) o(%) pMiB) o(MB) p(%) o(%) d(MiB) o(MiB)
2 090 o0.10 1.39 0.00 0.92 0.06 1.26 0.00
4 078 0.22 1.39 0.00 093 0.04 1.27 0.00
6 090 0.13 1.33 0.00 081 0.19 1.27 0.00
8 091 0.06 1.27 0.00 0.93 0.04 1.33 0.00

10 091 o011 1.27 0.00 092 0.09 1.32 0.00
20 105 0.09 1.27 0.00 104 0.10 1.27 0.00
30 128 0.13 1.39 000 128 0.14 1.39 0.00
40 162 0.21 1.26 0.00 159 0.25 1.33 0.00
50 2.09 0.25 1.33 0.00 204 0.24 1.27 0.00
60 259 0.29 1.39 0.00 260 0.27 1.27 0.00
70 3.00 0.37 1.40 000 296 0.32 1.40 0.00
80 313 031 1.33 0.00 318 0.28 1.40 0.00
90 315 0.30 1.27 0.00 319 0.23 1.39 0.00
100 3.22 0.23 1.39 0.00 314 0.28 1.39 0.00

Table F.7: Results of yawmd mediums CPU and memory usage. Values of mean, y, and standard deviation, o,
presented.

Run 1 Run 2
N CPU usage Memory usage CPU usage Memory usage
H(%) o(%) p(MiB) o(MB) p(%) o(%) d(MiB) o(MiB)
2 077 0.06 1.32 0.00 0.74 0.14 1.26 0.00
4 079 0.05 1.39 0.00 0.71 0.11 1.27 0.00
6 073 0.14 1.39 0.00 0.77 0.09 1.39 0.00
8 074 0.13 1.26 0.00 0.68 0.14 1.33 0.00

10 0.76 0.09 1.27 000 0.72 011 1.26 0.00
20 0.78 0.07 1.39 0.00 0.70 0.13 1.27 0.00
30 081 o011 1.39 0.00 085 0.05 1.26 0.00
40 084 o011 1.27 0.00 0.83 0.09 1.27 0.00
50 0.78 0.13 1.33 0.00 0.80 0.10 1.39 0.00
60 0.78 0.13 1.27 000 085 011 1.39 0.00
70 094 0.17 1.32 0.00 091 0.14 1.39 0.00
80 111 0.17 2.70 0.00 105 0.16 2.64 0.00
90 123 0.20 2.71 0.00 122 0.19 2.74 0.00
100 137 0.16 271 0.00 136 0.15 2.69 0.00

yawmd: multiple medium support and performance improvements for wmediumd

71

Table F.8: Results of yawmd pthreads CPU and memory usage. Values of mean, y, and standard deviation, o,

presented.
Run 1 Run 2

N CPU usage Memory usage CPU usage Memory usage
(%) o(%) pMiB) o(MB) p(%) o(%) wd(MiB) o(MiB)
2 113 0.10 1.39 0.00 101 0.15 1.39 0.00
4 1.07 0.10 1.32 0.00 1.08 0.10 1.26 0.00
6 1.07 0.13 1.32 0.00 1.11 0.08 1.27 0.00
8 1.09 0.10 1.33 0.00 115 0.10 1.27 0.00
10 1.10 0.12 1.26 0.00 1.11 0.08 1.39 0.00
20 110 0.10 1.26 0.00 110 o011 1.39 0.00
30 110 0.13 1.32 0.00 107 011 1.39 0.00
40 1.13 0.13 1.33 0.00 118 0.1 1.39 0.00
50 1.13 0.08 1.27 0.00 122 0.10 1.26 0.00
60 1.20 0.09 1.39 0.00 130 0.09 1.32 0.00
70 142 0.13 1.26 0.00 137 0.10 1.39 0.00
80 140 0.13 2.68 0.00 150 0.09 2.79 0.00
90 150 0.17 2.73 0.00 157 0.17 2.67 0.00
100 161 0.18 271 0.00 165 0.14 2.77 0.00

F.1.2 Test 4: Multiple mediums

Medium utilization

Table F.9: Results of yawmd mediums by QoS queue, with S = 10 (10 stations per medium). Values of mean, y,
standard deviation, o, and medium utilization = VO, + BE,, presented. The QoS queues are voice, VO, and best

effort, BE.
Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium
U6 %) u(%) o %) utilization (%) U6 (%) u(%) %) utilization (%)
1 6.93 0.287 93.07 0.371 100.00 6.93 0.280 92.73 3.179 99.66
2 6.93 0.273 93.07 0.295 100.00 6.93 0.270 93.07 0.285 100.00
3 6.94 0.250 93.06 0.279 100.00 6.93 0.276 92.94 1.249 99.87
4 6.93 0.260 93.07 0.281 100.00 6.93 0.261 93.07 0.281 100.00
5 6.89 0.289 9311 0.290 100.00 6.87 0.289 93.13 0.295 100.00
6 6.63 0.477 9291 0.833 99.54 6.69 0.354 93.14 0.594 99.83
7 6.04 0.680 88.71 2.230 94.75 6.07 0.755 87.69 2.596 93.76
8 566 0.647 80.18 3.695 85.84 572 0.698 79.85 3.578 85.57
9 502 0.634 7416 3.867 79.17 5.16 0.713 74.01 4.223 79.16
10 456 0.725 70.24 4.605 74.80 4.63 0.637 70.09 3.936 74.72

72

yawmd: multiple medium support and performance improvements for wmediumd

Table F.10: Results of yawmd mediums by QoS queue, with S = 20 (20 stations per medium). Values of mean, p,

standard deviation, o, and medium utilization = VOV + BE

e

presented. The QoS queues are voice, VO, and best

effort, BE.
Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium
W) o) u(%) o (%) utilization (%) W) O%) W(%) (%) utilization (%)
1 13.86 0519 86.14 0.556 100.00 13.88 0.544 86.11 0.571 99.99
2 13.87 0.481 86.13 0.494 100.00 13.87 0.510 86.14 0.503 100.00
3 13.87 0.489 86.13 0.508 100.00 13.87 0.475 86.13 0.463 100.00
4 13.84 0.464 86.16 0.433 100.00 13.83 0.498 86.17 0.500 100.00
5 11.65 0.492 86.51 1.120 98.16 11.67 0.521 86.04 1.214 97.71
6 881 0.820 87.07 1.750 95.88 859 0.716 87.20 1.949 95.79
7 6.84 0912 82.68 2761 89.52 6.78 0.824 82.19 2.947 88.97
8 597 0.747 77.87 3.942 83.83 569 0.780 77.70 3.735 83.39
9 498 0.574 7260 3.578 7758 494 0.604 7297 3.104 77.91
10 436 0.620 68.13 3.823 7249 436 0.613 68.02 4.002 72.38

Table F.11: Results of yawmd pthreads by QoS queue, with S = 10 (10 stations per medium). Values of mean, y,
standard deviation, o, and medium utilization = VO, + BE,, presented. The QoS queues are voice, VO, and best

effort, BE.
Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium
L) o%) u(%) o (%) utilization (%) W) o) u(%) (%) utilization (%)
1 6.93 0285 9274 3.161 99.66 6.93 0.271 93.07 0.363 100.00
2 6.93 0.257 93.07 0.271 100.00 6.93 0.266 93.07 0.288 100.00
3 6.93 0.251 93.07 0.272 100.00 6.93 0.258 93.07 0.285 100.00
4 693 0.264 93.07 0.269 100.00 6.93 0.251 93.07 0.265 100.00
5 6.93 0.265 92.98 0.861 99.91 6.93 0.268 93.07 0.272 100.00
6 6.93 0.246 93.07 0.263 100.00 6.94 0.265 93.06 0.273 100.00
7 6.92 0.251 93.08 0.243 100.00 6.93 0.258 93.07 0.269 100.00
8 6.79 0.267 93.21 0.277 100.00 6.83 0.284 93.17 0.278 100.00
9 6.48 0.226 93.50 0.241 99.99 6.54 0.261 93.39 0.572 99.93
10 5.77 0.185 93.81 0.297 99.58 5.82 0.172 93.78 0.282 99.60

yawmd: multiple medium support and performance improvements for wmediumd

73

Table F.12: Results of yawmd pthreads by QoS queue, with S = 20 (20 stations per medium). Values of mean, p,

standard deviation, o, and medium utilization = VOV + BE

e

presented. The QoS queues are voice, VO, and best

effort, BE.
Run 1 Run 2

N VO QoS BE QoS Medium VO QoS BE QoS Medium
W) o) u(%) o (%) utilization (%) W) O%) W(%) (%) utilization (%)
1 13.86 0.555 86.14 0.592 100.00 13.88 0.556 86.12 0.593 100.00
2 13.87 0.494 86.13 0.504 100.00 13.88 0.448 86.12 0.478 100.00
3 13.86 0.499 86.14 0.507 100.00 13.87 0.495 86.13 0.483 100.00
4 13.87 0.477 86.13 0.482 100.00 13.86 0.503 86.14 0.501 100.00
5 11.95 0.449 88.05 0.451 100.00 11.90 0.428 88.10 0.472 100.00
6 9.92 0.368 89.94 0.395 99.86 9.88 0.370 89.93 0.413 99.81
7 847 0.331 90.67 0.564 99.14 845 0.330 90.71 0.579 99.16
8 7.38 0.268 90.12 0.777 97.50 7.38 0.263 90.33 0.842 97.71
9 656 0.265 88.83 0.944 95.39 6.56 0.193 88.67 0.880 95.22
10 591 0.153 86.27 1.305 92.18 591 0.160 85.67 1.376 91.59

CPU and memory usage

Table F.13: Results of yawmd mediums CPU and memory usage, with S = 10 (10 stations per medium). Values of

mean, W, and standard deviation, o, presented.

Run 1 Run 2

N CPU usage Memory usage CPU usage Memory usage
(%) o(%) u(MiB) o(MiB) u(%) o(%) p(MiB) o (MiB)
1 076 0.10 1.39 0.00 0.67 0.17 1.39 0.00
2 146 0.13 1.27 0.00 142 0.15 1.39 0.00
3 219 0.12 1.27 0.00 219 0.15 1.32 0.00
4 280 0.24 1.32 0.00 285 0.24 1.26 0.00
5 331 037 1.39 0.00 343 0.26 1.27 0.00
6 322 041 2.71 0.00 301 0.39 2.71 0.15
7 319 0.30 2.76 0.00 325 031 271 0.00
8 339 0.25 2.68 0.00 345 0.23 2.75 0.00
9 358 0.16 2.65 0.00 359 0.9 2.70 0.00
10 3.68 0.14 2.78 0.00 366 0.15 2.76 0.00

74 yawmd: multiple medium support and performance improvements for wmediumd

Table F.14: Results of yawmd mediums CPU and memory usage, with S = 20 (20 stations per medium). Values of
mean, {, and standard deviation, o, presented.

Run 1 Run 2

N CPU usage Memory usage CPU usage Memory usage
(%) o) pMiB) o(MiB) p(%) o(%) p(MiB) o(MiB)
1 077 0.09 1.32 0.00 0.78 0.08 1.32 0.00
2 153 0.10 1.39 0.00 147 0.15 1.27 0.00
3 213 0.23 1.39 0.00 223 0.10 1.27 0.00
4 279 0.23 1.39 0.00 285 0.17 2.68 0.00
5 3.08 0.32 2.77 0.00 313 0.29 2.70 0.00
6 329 024 2.67 0.00 326 0.29 2.64 0.00
7 338 0.26 2.75 0.00 343 0.23 2.68 0.00
8 350 0.21 2.75 0.00 354 0.21 2.71 0.00
9 365 013 2.71 0.00 366 0.14 2.77 0.00
10 3.73 0.12 2.76 0.00 375 0.15 2.70 0.00

Table F.15: Results of yawmd pthreads CPU and memory usage, with S = 10 (10 stations per medium). Values of
mean, [, and standard deviation, o, presented.

Run 1 Run 2

N CPU usage Memory usage CPU usage Memory usage

H(%) o(%) W(MB) o(MiB) p(%) o(%) u(MiB) o(MiB)
1 1.06 0.10 1.26 0.00 1.10 0.11 1.39 0.00
2 217 0.17 1.26 0.00 216 0.13 1.39 0.00
3 328 0.18 1.26 0.00 3.26 0.18 1.39 0.00
4 448 0.19 1.39 0.00 438 0.19 1.32 0.00
5 555 0.23 2.80 0.00 564 0.20 2.76 0.00
6 6.86 0.17 2.73 0.01 6.84 0.19 2.77 0.00
7 8.12 0.15 2.77 0.00 817 0.20 2.79 0.00
8 956 0.18 2.74 0.00 948 0.17 2.75 0.01
9 11.08 0.21 2.78 0.00 11.07 0.24 2.75 0.00

10 1210 0.33 2.64 0.00 1219 0.27 2.82 0.00

yawmd: multiple medium support and performance improvements for wmediumd 75

Table F.16: Results of yawmd pthreads CPU and memory usage, with S = 20 (20 stations per medium). Values of
mean, {, and standard deviation, o, presented.

Run 1 Run 2

N CPU usage Memory usage CPU usage Memory usage

H(%) o(%) u(MiB) o(MiB) p(%) o(%) u(MiB) o (MiB)
1 1.04 0.12 1.39 0.00 1.15 0.09 1.39 0.00
2 210 0.18 1.39 0.00 220 0.19 1.26 0.00
3 315 0.21 1.39 0.00 313 0.14 1.26 0.00
4 428 0.14 2.75 0.00 446 0.24 2.71 0.00
5 551 019 2.80 0.00 551 0.19 2.76 0.01
6 6.79 0.14 2.77 0.00 6.85 0.16 2.72 0.00
7 8.07 0.18 2.70 0.00 8.09 0.19 2.72 0.00
8 922 0.19 2.73 0.00 927 0.21 2.79 0.00
9 1032 0.18 2.63 0.00 10.37 0.19 2.63 0.00

10 10.82 0.16 2.59 0.00 10.82 0.25 2.79 0.00

76 yawmd: multiple medium support and performance improvements for wmediumd

F.2 Plots of medium usage by QoS queue

F.2.1 Test 3: One medium

g

< 100

>

] |
>

O

9 80

@4 |
>

o]

5 60

© i
N

S 40

€

> i
=

€ 20

g E3VO QoS | |
g = BE QoS
2

0 10 20 30 40 50 60 70 80 90 100
Number of stations

Figure F.1: Average of the medium utilization by QoS queue, at each second, during each instance, with wmediumd.

S

=~ 100

=)

() - i
>

O

9 80

o i |
2

5 60

= I |
g

540

IS

= - |
©

Q

£ 20

Q

[@)]

S i |
()]

z 0

0 10 20 30 40 50 60 70 80 90 100
Number of stations

Figure F.2: Average of the medium utilization by QoS queue, at each second, during each instance, with yawmd v1.

yawmd: multiple medium support and performance improvements for wmediumd 77

100

80

60

40

20

Average medium utilization by QoS queue (%)

0 10 20 30 40 50 60 70 80 90 100
Number of stations

Figure F.3: Average of the medium utilization by QoS queue, at each second, during each instance, with yawmd
mediums.

100

80

60

40

20

Average medium utilization by QoS queue (%)

0 10 20 30 40 50 60 70 80 90 100
Number of stations

Figure F.4: Average of the medium utilization by QoS queue, at each second, during each instance, with yawmd
pthreads.

78 yawmd: multiple medium support and performance improvements for wmediumd

F.2.2 Test 4: Multiple mediums

S
= 100
i)
=
N
S 80
Q
g
