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ABSTRACT 

 

The Electronic Systems Laboratory at Stellenbosch University is currently developing a fully 

3-axis controlled Attitude Determination and Control Subsystem (ADCS) for CubeSats. This 

thesis describes the design and development of an Onboard Computer (OBC) suitable for 

ADCS application. A separate dedicated OBC for ADCS purposes allows the main CubeSat 

OBC to focus only on command and data handling, communication and payload 

management.  

This thesis describes, in detail the development process of the OBC. Multiple 

Microcontroller Unit (MCU) architectures were considered before selecting an ARM Cortex-

M3 processor due to its performance, power efficiency and functionality. The hardware was 

designed to be as robust as possible, because radiation tolerant and redundant components 

could not be included, due to their high cost and the technical constraints of a CubeSat. 

The software was developed to improve recovery from lockouts or component failures 

and to enable the operational modes to be configured in real-time or uploaded from the 

ground station. Ground tests indicated that the OBC can handle radiation-related problems 

such as latchups and bit-flips. The peak power consumption is around 500 mW and the orbital 

average is substantially lower. The proposed OBC is therefore not only sufficient in its 

intended application as an ADCS OBC, but could also stand in as a backup for the main OBC 

in case of an emergency. 

 

Stellenbosch University http://scholar.sun.ac.za



 

iii 
 

OPSOMMING 

 

Die Elektroniese Stelsels Laboratorium by die Universiteit van Stellenbosch is tans besig om 

’n volkome 3-as gestabiliseerde oriëntasiebepaling en -beheerstelsel (Engels: ADCS) vir ’n 

CubeSat te ontwikkel. Hierdie tesis beskryf die ontwerp en ontwikkeling van ’n 

aanboordrekenaar (Engels: OBC) wat gebruik kan word in ’n ADCS. ’n Afsonderlike OBC 

wat aan die ADCS  toegewy is, stel die hoof-OBC in staat om te fokus op beheer- en 

datahantering, kommunikasie en loonvragbestuur.  

Hierdie tesis beskryf breedvoerig die werkswyse waarvolgens die OBC ontwikkel is. 

Verskeie mikroverwerkers is as moontlike kandidate ondersoek voor daar op ’n ARM Cortex-

M3-gebaseerde mikroverwerker besluit is. Hierdie mikroverwerker is gekies vanweë sy 

spoed, effektiewe kragverbruik en funksionaliteit. Die hardeware is ontwikkel om so robuust 

moontlik te wees, omdat stralingbestande en oortollige komponente weens kostebeperkings, 

asook tegniese beperkings van ’n CubeSat, nie ingesluit kon word nie.  

Die programmatuur is ontwikkel om van ’n uitsluiting en ’n komponentfout te kan 

herstel. Verder kan programme wat tydens vlug in werking is, verstel word en vanaf ’n 

grondstasie gelaai word. Grondtoetse het aangedui dat die OBC stralingverwante probleme, 

soos ’n vergrendeling (latchup) of bis-omkering (bit-flip), kan hanteer. Die maksimum 

kragverbruik is ongeveer 500 mW en die gemiddelde wentelbaankragverbruik is beduidend 

kleiner. Die voorgestelde OBC is dus voldoende as ADCS OBC asook hoof-OBC in geval van 

nood. 
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1 BACKGROUND 

1.1 MISSION 

The Cape Peninsula University of Technology (CPUT) has recently started working on a 

series of nanosatellite (CubeSat) missions which are detailed in [1]. Due to the importance of 

a robust Attitude Determination and Control System (ADCS) in most satellite missions, 

CPUT decided to collaborate with the University of Stellenbosch because of their experience 

in the ADCS field as well as satellite research in general. The University of Stellenbosch has 

been involved in the development of two satellites, namely the SUNSAT in 1999 [2] and the 

SumbandilaSat [3] in 2009. The first CubeSat by CPUT is to be a small (10 × 10 × 10 cm) 

satellite with a long antenna as its main payload and a relatively basic ADCS. The mission 

will be to calibrate the radar antenna patterns for the Hermanus Magnetic Observatory’s 

antenna array in Antarctica. A second, slightly larger satellite (3U CubeSat) will subsequently 

be developed. The payloads for this satellite still have to be determined. 

For the 3U CubeSat, the University of Stellenbosch will design a completely independent 

ADCS unit. This unit will control all the sensors and actuators, run all the algorithms and 

perform calculations in order to achieve the desired orientation which, through a high-level 

interface, can be set by the main Onboard Computer (OBC) and/or ground station. The two 

main reasons for implementing the ADCS in a separate unit are managing complexity and 

improving modularity.  

1. Complexity 

The ADCS is a very complex subsystem responsible for updating sensor data and 

controlling actuators, while running multiple models (sun, orbit, etc.), estimators and 

control algorithms. Because of the large amounts of computations and data being handled, 

the ADCS tends to dominate an OBC’s resources. In order to keep the main OBC free to 

react to mission-critical subsystems, such as power and communications, it is more 

desirable to implement the ADCS on a separate OBC. 

2. Modularity 

Modularity refers to the ability to add, with minimal effort, a unit or module to a system 

that improves the overall ability of that system. The idea of a CubeSat as a standard 

satellite bus for which expansion boards of a different subsystem can be added to extend 

the functionality of the satellite fits very well into this definition of modularity. The 
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ADCS unit takes that same trend one step further by grouping all ADCS-related 

expansion boards (sensors and actuators) and having them controlled by a separate OBC. 

This unit can then be added easily to any CubeSat for which an ADCS is required. 

Stellenbosch University’s Electronic Systems Laboratory (ESL) has already designed a 

horizon and sun sensor, called CubeSense, which is used in the STRaND CubeSat from 

Surrey Satellite Technology Limited (SSTL) [4] and can be seen in Figure 1.1. The actuators, 

OBC and ADCS algorithms are still in development. 

 

This thesis will document the design and development of the OBC required for the ADCS 

unit on the 3U CubeSat. The ADCS OBC will act as the interface between the main OBC and 

the orientation control of the satellite. The desired attitude controller and determination 

estimator of the satellite can be sent to the ADCS OBC via a telecommand. This will then be 

interpreted and the control algorithms together with sensor data will then compute the 

necessary output/commands for the actuators to achieve the desired attitude. The lack of 

space and power on a CubeSat impose strict limits on its design, which will be discussed later 

in Section 2.1. 

 

Figure 1.1: SSTL STRaND CubeSat. [4] 
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1.2 CUBESAT 

Traditional satellites tend to be large, complex and expensive systems. To maximise the value 

of a satellite, multiple payloads are fitted onto one bus. This forced designers to use redundant 

subsystems and radiation-hardened components to ensure reliability of the satellite which in 

turn increased the size and cost of the satellite. As the payloads continued to increase in 

number and complexity, the satellite bus and subsystems had to be redesigned for almost 

every mission. This made it difficult for academic institutions (such as universities) to start a 

satellite programme, because of the high cost and technical expertise that even a small 

satellite used to require. This increasing complexity and cost spiral is the main reason for the 

development of the CubeSat standard, according to [5]. 

The CubeSat approach is trying to change this by adhering to a satellite bus standard. A 

1U CubeSat bus is roughly 10 × 10 × 10 cm and weighs around 1 kg. Figure 1.1 shows an 

example of an 1U CubeSat with all its subsystems, excluding the body-mounted solar panels. 

These CubeSat units can be fit together to create a 2U (10 × 10 × 20 cm), 3U (10 × 10 × 30 

cm), etc. Examples of the chassis to contain these CubeSats are shown in Figure 1.2. There 

are two main advantages when working with CubeSats. Firstly, the standard size of the 

satellite structure has allowed for the design of a standard launch adapter (P-POD) which 

made it easier for CubeSats to piggyback on big satellite launches for a fraction of the price of 

a dedicated launch [6]. Secondly, it is possible to buy all the components and subsystems to 

create a space-ready CubeSat [7][8]. Therefore none of the components have to be specially 

made or developed; it is only necessary to add a payload to the CubeSat to do meaningful 

research.  
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The standard bus interface and protocol of a CubeSat makes it easier to design 

subsystems that can be used on multiple CubeSat missions. The use of Commercially 

available Off-The-Shelf (COTS) is encouraged to keep development costs to a minimum as 

well as to make use of the myriad of electronic components available on the market not 

necessarily aimed at the space industry. It is possible to manage the risk when not using space 

grade components on a satellite. This will be shown later in chapters 3 and 4. 

The size of a CubeSat makes it a very affordable satellite bus to design and launch but it 

is this size that limits the weight and power usage when designing a subsystem for a CubeSat. 

Subsystems have to be very compact to fit into a CubeSat and the small solar panel surface 

area on the outside of the CubeSat chassis does not generate large amounts of electric power 

which results in very strict power budgets for each subsystem.  

1.3 ADCS 

The ADCS is responsible for the orientation of the satellite within its orbit. This subsystem 

follows the same principle as most control loops and is shown in Figure 1.3. Sensors on the 

satellite provide the latest measurements regarding its orientation relative to sun (sun sensor), 

stars (star tracker), earth (horizon sensor and magnetometer) and/or spin rates (gyroscope). 

The measured data is then compared to reference values set by the main OBC. If an error 

exists due to sensor noise, external forces on the satellite (drag and solar pressure) and other 

perturbations (gravity from earth, moon and sun), the satellite can be realigned through the 

use of actuators such as magnetic torque rods, reaction/momentum wheels and even thrusters.  

 

Figure 1.2: Examples of CubeSat Unit Sizes. [44] 

Stellenbosch University http://scholar.sun.ac.za



BACKGROUND 5 

 

 

 

Being able to control the orientation of a satellite is very beneficial and might even be 

considered mandatory for some missions. The following are two common uses for an ADCS 

with examples: 

1. Pointing a device or payload towards a target.  

Examples: 

 Pointing an imager at a target for longer exposure and therefore higher quality 

images. 

 Pointing an antenna towards the ground station during an overpass to maximize 

transmission length and quality.  

2. Spinning the satellite around an axis at a specified rate.  

Examples: 

 Spinning the satellite around the axis normal to the orbit plane (Y-Thompson [9]) to 

stabilize it against external disturbance forces. 

 Spinning the satellite around the nadir axis (barbeque spin) to ensure that equal 

amounts of sunlight reach all the body-mounted solar panels (which also improves 

thermal stability). 

For a more in depth discussion of the advantages and implementations of ADCS for a 

satellite, refer to [10], pages 354-380.   

 

Figure 1.3: ADCS Control Loop for a Satellite. [7] 
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1.4 SPACE ENVIRONMENT 

Space is a hazardous environment. The following section will highlight the major challenges 

when designing electronic equipment, such as the ADCS OBC, for space. 

1.4.1 RADIATION EFFECTS 

Stars emit various forms of charged particles, known as radiation, during its fusion process. 

On the earth’s surface most of the radiation from space is diverted by the earth’s magnetic 

field. Most of the time satellites in Low Earth Orbit (LEO) are within the safety of the 

magnetic field, except when passing over the South Atlantic Anomaly (SAA). The SAA 

(shown in Figure 1.4) is a region where radiation from the Van Allen belts as well as other 

charged particles enters the atmosphere. This radiation causes undesired effects in electronic 

equipment, especially semiconductor devices. A summary of these affects are explained 

below which can be found in more detail in [11] and [12], pages 214-221. 

 

 Single Event Upset 

A Single Event Upset (SEU) occurs when a charged particle causes a change in the 

contents and/or state of a device without causing permanent damage to that device. [11] A 

common example is when the content of a memory cell is changed by a charged particle. 

This is referred to as a bit-flip. These upsets usually do not damage a device, but it could 

cause undesired effects within the operation of a device or system.  

 

Figure 1.4: Proton Flux Simulation Showing the South Atlantic Anomaly. [40] 
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 Single Event Latchup 

A Single Event Latchup (SEL) occurs when radiation causes a parasitic transistor within 

the device to switch on and result in excessive current flow. [11] This excessive current 

flow may damage the device, due to the heat generated locally, if the latchup is not 

removed by means of power cycling (switching power on and off to device).  

 Total Ionizing Dose 

The Total Ionizing Dose (TID) is the amount of radiation build-up a device can withstand 

before its operation is deemed unreliable. [11] The TID tolerance can be seen as a 

measure for determining the life expectancy of an electronic device. Some electronic 

devices have a radiation-hardened version which has a greater TID tolerance, but they are 

considerably more expensive. Some COTS do have a TID tolerance large enough to 

justify its use on a satellite with a short mission in LEO.  

1.4.2 REMOTENESS 

One of the major challenges when designing a satellite is to compensate for the fact that if a 

component or subsystem malfunctions in space, it cannot be brought in for repairs.  Some 

satellites have the ability to reconfigure their software during operation, but when a serious 

hardware error occurs it usually results in the loss of the satellite. Implementing redundancy 

and radiation-hardened components are ways in which reliability can be designed into a 

satellite according to [11] and [12]. 

 Redundancy 

One form of redundancy is when a satellite has one or more dormant subsystems that can 

take over in case of a failure. A special case of redundancy called Triple Modular 

Redundancy (TMR) is when three subsystems/devices operate simultaneously and a 

controller chooses the result based on a majority vote. 

 Radiation- Hardened Components 

One of the major reasons for a failure on satellites is components failing because of 

radiation (as explained in 1.4.1). Therefore the simplest way to incorporate reliability into 

a system is to use radiation-hardened components. Some electronic devices have 

radiation-hardened versions available from their manufactures, but they are much more 

expensive. 
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Other challenges for satellite design include thermal issues due to the lack of atmosphere 

which could cause massive temperature gradients (depending on which side is illuminated by 

the sun), micro meteorites, spacecraft charging, outgassing and many more which are 

described in [11], pages 22-27. These challenges will not be discussed in this thesis, because 

they do not directly influence the design of electronic subsystems, such as, in this case, an 

ADCS OBC. 

1.5 DOCUMENT OUTLINE 

The following section gives a short description of each chapter in this document.  

1. Background – An introduction to the mission and topics related to the project. 

2. Hardware Design – Details the requirement definition of the ADCS OBC and the 

system, subsystem and component level design. 

3. Software Development – Discusses the software development of the ADCS OBC which 

includes low level and user level interfaces. 

4. Tests and Measurements – Lists the results from the tests developed and measurements 

taken from ADCS OBC prototype. 

5. Conclusions and Recommendations – Discusses the results of the tests and 

measurements with regards to the requirements and any recommended changes to the 

ADCS OBC.  

6. Summary – A summary of the project. 
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2 HARDWARE DESIGN 

This chapter will discuss the techniques followed during the hardware design of the ADCS 

OBC. Firstly the requirements definition is presented, which served as the standard by which 

the entire system was designed. The next section covers the process of selecting the 

microcontroller. This is important for the design, because selecting the appropriate 

microcontroller directly and indirectly affects the rest of the OBC. Following that, an 

overview of the OBC will be provided, looking at the different subsystems: why they are 

there and what they will do. A lower-level overview will then follow which will briefly 

describe how all the subsystems were implemented and which components were used.  

2.1 REQUIREMENT DEFINITION 

It is important to clearly define the requirements before starting any design. Requirements 

need to take into account not only the main objective of the design, but the challenges it 

presents as well. For this project the objective is to design an ADCS OBC for a CubeSat. The 

following requirements were defined while taking into account the aspects discussed in the 

previous chapter, such as the complexity of an ADCS, the limitations of a CubeSat and the 

harsh space environment: 

2.1.1 PERFORMANCE 

ADCS is a very complex subsystem. Therefore the OBC has to be powerful enough to handle 

all the complex computations (control algorithms, Kalman filters), precise control (floating-

point and double data types) and large amounts of data (telemetry, models and sensor data). 

2.1.2 EFFICIENCY 

A CubeSat is very limited in power and space. This means that the OBC has to be very 

efficient and designed as cost effective as possible in terms of power usage and size. Low-

power components should be used where possible and if a component or subsystem is not 

used it should be powered down to conserve energy.  The OBC is also required to use less 

than 1 Watt power during peak operation.  

2.1.3 RELIABILITY 

On a satellite mission, reliability is always a major requirement because if a failure occurs in 

space it cannot be repaired and usually results in the end of the mission. The two most 

common implementations for reliability are to either use radiation-hardened components 

and/or include redundant components or subsystems. However, neither of these are an option 
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for the CubeSat. Radiation-hardened components are too expensive and redundancy takes up 

too much space. 

The only way to ensure reliability is to design the OBC to be robust.  Robustness is the ability 

to adapt and survive in case of an emergency. From a design point of view this means 

including error-detection measures that will respond by either trying to rectify or isolate these 

errors. The OBC should be robust on both the hardware as well as the software level in order 

to cope with the hazardous space environment. 

2.2 MICROCONTROLLER SELECTION 

The Microcontroller (MCU) is the most important component on an OBC. The features of the 

MCU usually dictate how the rest of the OBC is designed, because it acts as the interface 

between the majority of the components. Due to the ever-growing electronic market, 

especially in terms of efficiency, many different MCUs are available to choose from.  

2.2.1 8-BIT VS. 16-BIT VS. 32-BIT MCUS 

An 8-Bit MCU is used in designs where power usage is considered vital. Its small architecture 

allows it to control a system with minimal power usage, but also limits its mathematical 

capabilities, especially with large data types such as floats and doubles.  

A 32-Bit MCU is mostly used for application purposes where large amounts of data are 

being processed and power is a secondary (or not even a) factor. It is very capable at math 

handling due to its larger registers and bus widths.  

A 16-Bit MCU fills the slot between these two extremes. It is much better at math and 

floating-point handling, compared to 8-bit MCUs, while still maintaining efficiency and 

power consumption.  

Taking the above into account, a 16-bit MCU would seem the logical choice for the 

ADCS OBC. However, a recent shift in the market has occurred. Manufactures, such as ARM 

[13] and Atmel [14], are providing 32-bit processors aimed at the low-power (8-bit / 16-bit) 

market. These MCUs do not only perform better, but their power usage is comparable (and 

even superior in some cases) to the 16-bit MCUs. This is possible because a 32-bit MCU will 

generally complete the same tasks and computations faster than a 16-bit MCU and therefore 

spend more time in an optimized “sleep mode” which results in less energy being used, as 

illustrated in Figure 2.1.  
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The new generation low-power 32-bit MCU was identified as an ideal candidate for the 

ADCS OBC. It is more than capable at handling the computational requirements of the ADCS 

algorithms but also includes enough energy-saving features which will be required on the 

limited power budget of a CubeSat. 

2.2.2 MICROCONTROLLER COMPARISONS 

Table 2.1 compares most of the current low-power 32-bit MCUs from various manufacturers, 

except for two: the MSP430 is a 16-bit MCU and AT91SAM7 is based on an older 32-bit 

MCU architecture.  

The MSP430 is used in the CubeSat main OBC from Pumpkin (FM430 [15]) and is very 

competitive with regards to energy consumption. This, in fact, highlights how efficient some 

of these low-power 32-bit MCUs actually are as they have better active and sleep efficiency 

than the MSP430. Even though the 16-bit and 32-bit MCUs have comparable power usage, 

the 32-bit MCUs have a clear advantage regarding performance. 

It is interesting to note the similar performance of the EFM32 Gecko, LCP13x and 

STM32L MCUs. They are all based on ARM’s next generation low-power 32-bit architecture 

called the Cortex-M3 range. The Atmel AT91SAM7A3 is based on the older generation 

ARM7TDMI architecture and is also included to showcase the differences between the 

current (Cortex-M3) and previous (ARM7) generation of low-power 32-bit MCUs. The 

ARM7TDMI architecture has flight heritage in space, onboard the UTIAS SFL’s CanX range 

of satellites [16], which will hopefully translate into the new generation of ARM MCUs. 

  

 

Figure 2.1: Cortex-M Energy Efficiency Solution. [10] 

Stellenbosch University http://scholar.sun.ac.za



HARDWARE DESIGN 12 

 

 

Table 2.1: MCU Comparison (current measurements @ 3.3 V). 

Manufacturer MCU Speed Performance Active Sleep 

  MHz DMIPS/MHZ uA/MHz uA 

Energy Micro EFM32 Gecko* 32 1.25 180 0.6 

STM STM32L* 32 1.04 230 10.4 

NXP LPC13x* 72 - 236 30 

Atmel AT32UC3Lx 50 1.28 300 3.5 

TI MSP430F16x 8 1.5 330 1.1 

Microchip PIC32MX3/4 80 1.56 688 25 

Freescale MCF521 80 0.95 801 5.38 

Atmel AT91SAM7A3 60 0.9 1167 175 

 

*  Cortex-M3-Based Architectures Microcontrollers 

 

Table 2.1 shows that the Cortex-M3-based MCUs are superior in terms of efficiency, 

closely followed by the AT32UC3L, which is based on the Atmel AVR architecture. These 

four MCUs have been evaluated further, as summarized in Table 2.2, based on the features of 

each MCU, which might be useful on an ADCS OBC. These include: 

 On-chip memory 

This includes the amount of available SRAM and flash memory on the chip. This will be 

required for code and program/user data. The ADCS program works with large data types 

(float and double) and contains large models, arrays and variables. Therefore, more on-

chip memory will allow for larger and more feature rich ADCS programs to be executed.  

 External Bus Interface 

The External Bus Interface (EBI) is an interface that allows the MCU to extend its 

memory capabilities by accessing external memory. This external memory can usually be 

accessed by the user the same way in which the internal memory is accessed. This is 

useful when more memory might temporarily be required (telemetry data) or for storing 

multiple programs the MCU can execute. 

 Inter-Integrated Circuit 

The Inter-Integrated Circuit (I2C) is a popular bus-based communication channel also 

referred to as “two wire interface”, because it only uses two IO lines for communication 

(clock and data).  The I2C is the main communication channel on the CubeSat and links 

the different subsystems. It would therefore be beneficial for the MCU to include an 
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internal I2C controller, which would reduce the amount of chips on the PCB since an 

external I2C module will not be needed.  

 Serial Peripheral Interface 

The Serial Peripheral Interface (SPI) is a point-to-point-based communication channel 

which can transfer data at high speeds. This is useful on a satellite when large amounts of 

data need to be transferred between two subsystems without clogging up the main 

communication bus. 

 Analog to Digital Converter 

The Analog to Digital Converter (ADC) is a unit that samples analog signals (usually 

voltage) and converts it to a digital value. An ADC unit has a resolution which determines 

the accuracy of the digital value. ADCs are useful on a satellite because they can be used 

to measure currents and voltages for telemetry purposes. 

Table 2.2: Comparison of MCU features. 

Features  AT32UC3L EFM32 STM32L LPC13xx 

Flash (kB) 64 128 128 32 

SRAM (kB) 16 16 16 8 

EBI N Y Y N 

I2C 2 1 2 1 

SPI 1 2 2 1 

ADC (Resolution) 12-bit 12-bit 12-bit 10-bit 

 

Taking the data in Table 2.2 into account, the EFM Gecko MCU was chosen because of 

its energy efficiency as well as offering all the features that could prove useful on an ADCS 

OBC for a CubeSat.  

2.2.3 EFM GECKO MCU 

This section will discuss the EFM32 Gecko MCU (EFM32G) in further detail, especially 

looking at its core architecture, energy management schemes, memory and bus system and, 

finally, peripherals. Figure 2.2 presents a block diagram of the EFM32 MCU on system level. 

The different colours indicate the different energy modes, which will be further explained 

later in this section. 
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2.2.3.1 ARM CORTEX-M3 CORE 

The ARM Cortex-M3 core, shown in Figure 2.3, is based on a high-performance processor 

core and designed to optimize efficiency. The following are some of the features included 

with the Cortex-M3 processor.  

 3-Stage Pipeline 

Most processor instructions consist of three stages, namely the instruction fetch (IF), 

decode and execute stages. The use of a 3-stage pipeline enables the processing of 

different stages in different pipelines simultaneously. This generally ensures that the 

processor is completing an instruction per cycle instead of waiting three cycles, for all 

three stages, to complete a single instruction. 

 Harvard Architecture 

The Harvard architecture uses different memory busses for code and data. On MCUs 

where there is no cache memory, the Harvard architecture effectively doubles the 

memory throughput, because the instruction and data (usually stored in separate memory 

locations such as flash and SRAM) can be fetched simultaneously. 

 

Figure 2.2: Diagram of EFM32 Gecko MCU. [12] 
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 Hardware Division and Single-Cycle Multiplication 

The Cortex-M3 processor core implements hardware division that is able to execute 

signed and unsigned division operations between two and 12 cycles. Together with a 

single cycle 32-bit multiplication, this allows for very efficient arithmetic computations, 

which are usually the most demanding responsibility of an MCU. 

 Interrupt Handling 

The Cortex-M3 processor includes a nested vector interrupt controller (NVIC) and 

wakeup interrupt controller (WIC). These controllers allow the MCU to handle 

interrupts during deep sleep modes, which lowers its energy consumption. 

 Thumb-2 Instruction Set 

The Thumb-2 instruction set is used by the Cortex-M3 processor and offers excellent 

code density. Even though the Cortex-M3 is a 32-bit MCU, the majority of its 

instructions are 16-bit [13]. The 32-bit registers and bus width decrease the program size 

 

Figure 2.3: Cortex-M3 Processor Core.  [17] 
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further because fewer instructions are required when working with larger data types 

(such as floating-point and double data types). 

The Cortex-M3 includes many other features, such as a memory protection unit and extensive 

debugging capabilities, which can be studied further in the following references: [17] [18]. 

2.2.3.2 MEMORY AND BUS SYSTEM 

The EFM32G uses an AMBA High-performance Bus (AHB) bus which allows its four bus 

masters to interact with the system through a memory-mapped address space. The four 

masters are: 

 I-Code – for instruction fetches to code memory 

 D-Code – for data and debug access to code memory 

 System – for instruction fetches, data and debug access to system space 

 DMA – for memory transfers to and from the entire memory space 

Figure 2.4 is a block diagram of the Cortex-M3 memory and bus system. The four bus 

masters are shown on the left, with the system components on the right. The peripherals are 

connected to the AHB through the AHB-to-APB bridge. The system is memory mapped and 

the address space is shown in Figure 2.5. 

 

 

Figure 2.4: Cortex-M3 Memory and Bus System.  [16] 
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2.2.3.3 PERIPHERALS 

The EFM32G includes a wide variety of peripherals as well as a few specially developed low-

energy peripherals. These peripherals are the following: 

1. General Purpose Input/Output 

The EFM32G includes up to 90 General Purpose Input/Output (GPIO) pins, depending 

on the package size. The EFM32G pins allow for multiple configurations of the 

peripherals to maximize the use of pins and peripherals. They also allow for up to sixteen 

asynchronous interrupt channels.  

2. Timers and Counters 

The EFM32G includes three general purpose 16-bit timers. These timers can either be 

configured as counters, or used for input capture, output compare or Pulse Width 

Modulation (PWM). A watchdog timer and a separate low-energy 16-bit timer are also 

included, both of which can be used during sleep modes when most other peripherals are 

disabled.  

 

Figure 2.5: Cortex-M3 System Address Space.  [16] 
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3. Analog 

The EFM32G includes a 12-bit ADC with a sample rate of one million samples per 

second. The ADC can choose as input one of eight external pins or six internal signals. A 

12-bit DAC is included which can either be used in two single-ended modes or in 

differential mode. A voltage comparator can be used to monitor or compare eight external 

pins with three internal references. A supply voltage monitor and temperature sensor is 

included as well for monitoring purposes.  

4. Communication 

The EFM32G includes the UART communications protocol, which is usually used for 

debugging purposes. Two low-energy UARTs are also available that are able to operate 

independently from the main processor during sleep mode by means of the DMA 

controller. Two further USARTs are included as well and can each be configured either 

as a UART or an SPI port. The EFM32G further has an I2C module that includes address 

recognition, even during deep sleep modes.  

This list is only a summary of the peripherals available on the EFM32G. For an in-depth look 

at the peripherals and features available on the EFM32G, please refer to [17]. 

2.2.3.4 ENERGY MANAGEMENT 

The EFM32G has five well-defined energy modes, EM0 – EM4. A variety of wake-up 

triggers and low latency switching between these modes, allow for the maximum amount of 

time in the lowest possible energy mode which is key to saving energy. Table 2.3 provides a 

summary of the properties of the different energy modes available in the EFM32G. 

Table 2.3: EFM32 Gecko Energy Mode Properties. [17] 

Energy Mode EM0 
Run 

EM1 
Sleep 

EM2 
Deep Sleep 

EM3 
Stop 

EM4 
Shutoff 

Current consumption 180 uA/Mhz 45 uA/MHz 0.9 uA 0.6 uA 20 nA 

Wake-up time 0 0 2 us 2 us 163 us 

Core On     

HF peripherals On On    

LF peripherals On On On   

Register & RAM retention On On On On  

Reset detectors On On On On On 

 

For a better understanding of which peripherals are available during a specific energy 

mode, compare Figure 2.6 with Figure 2.2. The peripherals are colour coded, where each 

colour represents the lowest energy mode in which the peripheral will respond to activity.  
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2.3 SYSTEM OVERVIEW AND DESIGN 

Figure 2.7 shows the ADCS OBC system in block diagram form. The MCU is the core of the 

OBC with four subsystems (power, monitoring, memory and communication) built around it. 

In the following sections each of these subsystems will be discussed in further detail with 

regards to their functions as well as their implementation.  

2.3.1 MCU 

As mentioned in the previous section, the MCU directly and indirectly affects the other 

subsystems in the following ways: 

 Power – The MCU requires a stable power supply from the power subsystem. 

 Monitoring – The MCU actively samples and processes the monitored channels with its 

ADC peripheral unit. 

 Memory – The MCU is the only component responsible for storing and retrieving data 

from the external memory.  

 Communication – The MCU connects to external subsystems (main OBC, sensors and 

actuators) where it either receives data from, or transmits data to. 

The significance of the MCU in the OBC necessitates the implementation of extra reliability 

and accuracy in its design. An external watchdog will add reliability against undesired lock-

ups and external real-time and high-frequency crystal oscillators will generate more precise 

clock signals. 

 

Figure 2.6: Energy Mode Indicator.  [16] 
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2.3.1.1 WATCHDOG 

An external watchdog is implemented on the OBC for the MCU. According to [19], the 

watchdog is a component with an internal countdown timer and is connected to the reset line 

of the MCU. Unless the watchdog is periodically toggled by the MCU (to reset the internal 

timer) it will cause the MCU to reset.  

The MCU already includes an internal watchdog that should allow the MCU to reset in 

case the MCU becomes unresponsive due to a software error (runtime exception). Adding an 

external watchdog would add another level of reliability to the OBC with very little overhead 

(2.90 × 2.80 × 1.20 mm and 500 uA for the STWD100 [20]). 

The watchdog used in this design is the STWD100 from ST Microelectronics [20]. The 

internal timer of the watchdog has to be reset within 1.6 s after the previous reset, which can 

easily be done when the real time clock generates an interrupt every second. If the internal 

 

Figure 2.7: ADCS OBC Block Diagram.  
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timeout is reached, the watchdog will reset the MCU for 210 ms which should allow the 

MCU to recover from its erroneous state. 

2.3.1.2 CRYSTAL OSCILLATOR 

Oscillators generate the signals that drive the MCU core and peripherals. The MCU includes 

internal Resistor-Capacitor Oscillators (RCOs). The high-frequency RCO has a configurable 

frequency range of 1 – 28 MHz and the real-time RCO has a frequency of 32.768 kHz. On a 

satellite many of the subsystems depend on the accuracy, precision and stability of the 

oscillator signals, also known as frequency stability. The following two examples illustrate 

the importance of frequency stability. 

1. Real-Time Clock Synchronization 

For multiple OBCs it is important that the respective Real-Time Clocks (RTCs) are 

synchronized and increment at the same rate. If not, one OBC could schedule a task for 

another OBC at a time stamp that might have already elapsed according to its real-time 

clock. On an ADCS OBC, the need for an accurate RTC is even more important since 

some algorithms require the absolute time (SGP4) and a large time error will result in 

inaccurate ADCS control.  

2. Communication Synchronization  

For communication peripherals a stable clock source on both the receiver and the 

transmitter is important. If the oscillator signals start to drift, the receiver might latch a 

data bit when the transmitter data is still changing its state. If the error is detected the 

data has to be retransmitted, or worse, the error is not detected and undefined data could 

cause a larger error somewhere else in the system. 

These are two examples showing the importance for the use of stable oscillators. 

Unfortunately, the frequency stability of RCOs is sensitive to temperature, supply voltage and 

load variations, which are very difficult to control in the harsh space environment. The 

solution is to use Crystal Oscillators (XOs) which deliver better frequency stability even 

under varying conditions. 

The OBC design includes the following two external crystal oscillators: 

1. High-Frequency Crystal Oscillator 

A high-frequency, 32 MHz, oscillator is responsible for driving the core and all the high-

frequency peripherals (ADC, EBI, I2C, etc). By using a High-Frequency Crystal 
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Oscillator (HFXO), the MCU core is also able to operate at its maximum frequency 

range of 32 MHz, which the internal RCO (maximum of 28 MHz) will not be capable of.  

2. Low-Frequency Crystal Oscillator 

A low-frequency, 32.768 kHz, oscillator is responsible for all the low-frequency 

peripherals including the real-time clock. A Low-Frequency Crystal Oscillator (LFXO) 

will make it easier to keep the RTCs synchronized between the main OBC and ADCS 

OBC. 

For a detailed view of MCU and how it interfaces with the rest of the ADCS OBC refer to 

Appendix B.1. 

2.3.2 EXTERNAL MEMORY SUBSYSTEM 

The ADCS OBC includes an external memory subsystem. The MCU internally includes 256 

kB of flash and 16 kB of SRAM memory. For an ADCS OBC, this might not be enough 

memory to implement all the required features. The OBC might need to have multiple 

programs for the bootloader to choose from, depending on the situation (safe mode, full 

operation, etc.). Large program stacks (multiple kilobytes as confirmed by testing) are 

required due to the complex ADCS algorithms, models, large data types and various telemetry 

related data. To ensure all of these features can be implemented, an external memory 

subsystem is added on the OBC, which is shown diagrammatically in Figure 2.8. 

 

2.3.2.1 MEMORY TYPES 

Before the memory subsystem will be discussed in further detail, the differences between the 

SRAM and flash memory (the two main memory types used for most OBC designs) in terms 

 

Figure 2.8: External Memory System of ADCS OBC. 
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of performance and reliability will be looked at to understand the role they can fulfil and the 

challenges they will pose.   

 Flash 

Flash memory is a non-volatile memory unit, in other words it retains its value even 

when not powered. It has very fast access speeds, but writing to flash memory is 

considerably slower than reading from it. Flash memory is also very resistant to radiation 

effects when being accessed, but it is susceptible to Single Event Effects (SEEs), such as 

SEU and SEL, when being programmed according to study done in [21]. Taking the 

above into consideration, flash memory is a very good storage candidate for program 

code. An MCU is programmed very seldom, therefore negating its weakness of slow 

programming time and SEEs. When continuously accessed during program execution it 

is very resistant to SEEs. 

 SRAM 

Static Random Access Memory (SRAM) is a volatile memory unit. Unlike flash memory 

it retains its data only when powered. However, it has very fast read and write times 

which makes it an ideal candidate for storing program data which either rapidly changes 

their values or are merely temporarily allocated. Examples of these data types are 

variables used in the ADCS calculations, telemetry data temporarily stored before being 

transmitted to ground and sensor data which are periodically updated.  Unfortunately 

SRAM is susceptible to radiation effects (SEEs) during both read and write operations 

[11]. To counteract the SEEs for this design an Error Detection and Correction (EDAC) 

module will be implemented for the SEUs and a robust power system will be 

implemented for the SELs. 

2.3.2.2 EXTERNAL MEMORY REGIONS 

The MCU includes an External Bus Interface (EBI) with four chip select lines which are used 

to access four external memory modules, each with a specific function. 

1. Flash 0 – Safe Mode 

A flash memory module will be dedicated to storing a default safe mode operation 

program. This should be a simple program that will allow the satellite to make contact 

with the ground station, from where it will receive further commands. This should be the 

default program the ADCS OBC falls back on after a reset from an unresponsive state. 
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Because Flash 0 will only be storing one operating program, its capacity did not have to 

be as large as Flash 1 and was therefore chosen as one megabyte. 

2. Flash 1 – Multiple Operating Programs 

An additional flash memory module will be used to store different programs which will 

execute after the safe mode program and the ground station have checked all the systems 

of the ADCS OBC. The reason for having multiple programs is that different programs 

are needed to handle different situations. Multiple programs can be used for reliability as 

well by storing the same program in three different memory locations as a form of triple 

mode redundancy. Extra programs can be uploaded from the ground station and stored in 

flash, either as corrections to existing programs or programs with different objectives. 

Because multiple programs will be stored on Flash 1, its capacity was chosen as four 

megabytes. 

3. SRAM – Program Data 

An SRAM memory module is used for program data by the MCU. It is much safer to let 

the MCU store important data in the external memory, because of the safety measures 

implemented (EDAC and separate controllable power lines). If an SEU would occur 

while using the internal SRAM it can go unnoticed and could cause a serious error. If a 

SEL should occur while using the internal SRAM it would force the entire system 

(ADCS OBC) to reset. Therefore the internal SRAM will be powered down and only the 

external SRAM will be used. An SEU in the external SRAM will be detected by the 

EDAC and a SEL will prompt the MCU to try and recover the SRAM (by power 

cycling) before resetting the system. Besides the added safety of using the external 

SRAM, the internal SRAM is limited to 16 kB of memory while external SRAM can 

store much more data (2 MB is used for this design). 

4. SRAM – Backup 

An extra SRAM memory module will be implemented as a backup due to the 

susceptibility of SRAM to radiation effects in space. This allows the MCU to reboot and 

use the extra SRAM module for the important data if a latchup should render the primary 

SRAM module unresponsive. This prolongs the time before it becomes necessary to use 

the internal SRAM of the MCU. This is important since the internal SRAM of the MCU 

has no form of EDAC and is therefore very susceptible to radiation effects. A SEL in the 

SRAM of the MCU could render the ADCS OBC useless. 
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2.3.2.3 EXTERNAL MEMORY INTERFACE 

The EFM32G MCU used for the ADCS OBC includes an EBI which uses 16 GPIO lines for 

address and data transmissions to external asynchronous devices. This allows for a maximum 

8-bit address and 8-bit data single-cycle throughput. To increase the range of the EBI, a 

multiplexed read/write operation can be implemented utilizing a latch. This allows for two 

additional EBI configurations: 16-bit address/data and 24-bit address/8-bit data. This design 

uses the 24-bit address/8-bit data configuration to maximize the memory map for each chip 

select line and therefore the maximum size of each memory module. The control of the latch 

and access to these external memories are fully automated and discussed during the driver 

implementations of the EBI. 

2.3.2.4 ERROR DETECTION AND CORRECTION 

An Error Detection and Correction (EDAC) subsystem is implemented to compensate for the 

susceptibility of SRAM to Single Event Upsets (SEUs) caused by the increased radiation level 

in space. The EDAC is very important since most of the data (not code) for the ADCS OBC is 

stored in SRAM and an undetected SEU (corrupt data) can cause undesired effects in the 

operation of the ADCS OBC. 

Various forms of EDAC exist that can be implemented on an embedded system.  

 Software Based 

A software-based EDAC system implements all the EDAC code within the MCU in the 

form of a driver between the program and memory. This removes the autonomous usage 

of the data stack by the MCU, which presents an extra overhead every time the SRAM is 

accessed for data. This is, however, very difficult to implement.  

 Hardware Based 

Some manufacturers offer hardware implementations for flow-through EDAC systems, 

like the Atmel EDAC (29C516E [22]). These units are located between the MCU and 

SRAM on the data bus and work fast enough to enable them to encode and decode the 

data during a read or write cycle. However, they are usually expensive and inflexible 

which forces the memory design around these units. 

 FPGA 

The FPGA-based EDAC system follows a hardware-based approach, but can be tailored 

to suit the requirements of a specific embedded design. A flow-through EDAC 

implementation can be designed that does not interfere with memory access. The FPGA 
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can also be used to implement other custom controllers needed on the OBC, such as an 

extra I2C controller, or port expander.  

From the above descriptions, the FPGA-based EDAC system is the method best suited for this 

ADCS OBC design, due to its speed, flexibility and customization options. The ESL has 

experience in using FPGA-based EDAC systems in on-board satellite OBCs [23][24], which 

provided the necessary background and expertise to develop one for this project. 

The EDAC system is implemented on an Igloo Nano (AGL030) FPGA from Actel [25]. 

This FPGA is designed for very low-power applications (efficiency) and the AGL030 version 

has no embedded SRAM which makes it less susceptible to radiation effects, ensuring 

reliability. The FPGA is also used on the CubeSense board design by the ESL [26].  

2.3.2.5 SRAM BUS ISOLATION 

Figure 2.9 shows the design for isolating the SRAM modules from the data and address bus. 

When an SRAM has been damaged due to a latchup and its power supply is turned off, the 

module can still draw current via the address/data bus lines and even affect the data on the 

bus. This happens because no supply current is available to drive the input/output pins of the 

SRAM module into high impedance. It is therefore important that the system is able to isolate 

the SRAM module completely from the address/data bus if it is powered down. This is 

achieved in this design by using bus switches which can be toggled by the MCU to either 

connect the SRAM module to the bus, or isolate it, by driving the ports to high impedance.  

 

2.3.2.6 SD CARD STORAGE 

The memory subsystem further includes a 2 GB microSD storage card. The SD storage is a 

non-volatile memory based on NAND flash technology and has exceptional capacity. The 

MCU uses the SPI interface to communicate with the microSD card. The SD storage offers 

 

Figure 2.9: SRAM Isolation Design Diagram. 
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another form of long-term storage that could be used to log various telemetry data to be 

requested by the ground station at a later time.  At the time of conducting this research, 

microSD cards do not have any flight heritage in space and is added as an experiment. 

For a detailed view of Memory Subsystem and how it interfaces with the rest of the ADCS 

OBC refer to Appendix B.2. 

2.3.3 POWER SUBSYSTEM 

The power subsystem is responsible for providing all the components on the OBC with their 

required supply voltage and regulating the current during operation. The main Electronic 

Power System (EPS) supplies to all the subsystems a 5 V and 3.3 V power line which can be 

used to power most of the components on the ADCS OBC. However, a separate power 

system was specifically designed on the ADCS OBC to power the components. This 

improves reliability in two key areas, namely stability and control. 

1. Stability 

When a power line is under heavy load (i.e. drawing heavy current) the supply voltage 

can drop due to undesired series resistance in the power line. This voltage drop can cause 

unwanted behaviour and even damage sensitive components. This can be prevented by 

regulating the required supply lines (3.3 V and 1.5 V) down from the 5 V power line 

supplied by the EPS. The output voltage will be very resistant to input voltage 

fluctuations as long as the input voltage drop remains above the specified dropout voltage 

of the regulator. The end result is a more stable supply voltage. 

2. Control 

The advantage of designing a separate power system is that it supplies a means of control. 

The OBC can monitor the power system and detect if a too large current is being drawn 

or if a supply voltage is dropping too low. The OBC can then respond by power cycling 

the problematic power line to attempt to fix the latchup, or even switch it off completely. 

The OBC will then lose those components, but not the entire system. 

Figure 2.10 shows the design of the power system in diagrammatic form, which will be 

broken down and discussed further below. 
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2.3.3.1 POWER SUPPLY LINES 

A 5 V power line from the EPS is split into five power lines which are used in the ADCS 

OBC. These power lines are then used to power the various components. 

 General 5 V 

This power line is the regulated 5 V power line supplied by the EPS. It is used to power 

the 5 V components on the OBC.  

 FPGA 1.5 V 

This power line is regulated down from the 5 V power line supplied by the EPS. It is 

used to power the FPGA, which is the only component in the OBC that operates on a 1.5 

V supply voltage. 

 General 3.3 V 

This power line is regulated down from the 5 V power line supplied by the EPS. It is 

used to power the MCU and all other 3.3 V components, except the SRAM modules, 

which have their own power lines. 

 

Figure 2.10: OBC Power System Block Diagram. 
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 SRAM 3.3 V 

Each SRAM module has its own power line. These power lines are regulated down from 

the 5 V power line supplied by the EPS. They power only their respective SRAM 

modules. The reason for this is that the power lines can individually be power cycled or 

disabled if a latchup should occur.  

2.3.3.2 REGULATORS 

The 3.3 V and 1.5 V lines are regulated using low-dropout linear regulators. The Texas 

Instruments (TI) TPS76733 [27] and TPS73215 [28] were used in this design for the 3.3 V 

and 1.5 V lines respectively. Both regulators offer exceptional voltage regulation at 0.01% 

change in output voltage over change in input voltage. 

The 3.3 V and 1.5 V regulators have a current limit of 1 A and 250 mA respectively. Both 

of these limits are far higher than the required current according to preliminary power 

calculations. In the final version of the OBC, a regulator with a current limit closer to the 

nominal operating current can be selected. Therefore, if one of the components draws 

excessive amounts of current the supply voltage will drop and the brown-out-reset of the 

MCU will respond by resetting the OBC. 

2.3.3.3 LOAD SWITCHES 

Since SRAMs are the components on the OBC most susceptible to latchups, being able to 

switch the power to them on and off adds another layer of reliability. Power switches can be 

implemented with a simple PMOS circuit. However, a load switch from Fairchild 

Semiconductors (FPF2124 [29]) was chosen due to its current-limiting ability. For this design 

the current limit was configured to 200 mA, which is the rated latchup current for the Cypress 

Semiconductor SRAM (CY62167DV30 [30]) modules used in this design. When this current 

limit is reached and maintained for 10 ms the FPF2124 switches off the power line until it is 

toggled from an external controller (the MCU in the case of this design). 

For a detailed view of Power Subsystem and how it interfaces with the rest of the ADCS OBC 

refer to Appendix B.5. 

2.3.4 MONITORING SUBSYSTEM 

Due to the harsh space environment, mentioned in section 1.4, the ability to continuously 

monitor the state of a system is very important. This allows the OBC to detect any 

abnormalities in the system which might be caused by faulty components or operations. These 

errors can either be fixed or even isolated before any serious damage is caused to the system. 
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The monitoring process should be sensitive and responsive: sensitive, in order for it to pick up 

the slightest change that could be a symptom of a larger problem and responsive, to be able to 

react quickly when a problem is detected. 

As mentioned previously, the most common problem on an OBC is the susceptibility of 

SRAM to latchups due to radiation. This causes the SRAM to stop functioning as well as 

draw an excessive amount of current. This current, if not quickly dealt with, can damage the 

SRAM as well as other components on the OBC. A separate power line, with a current sensor 

and a load switch, was therefore implemented to try and isolate the SRAM modules in case of 

a latchup. 

Figure 2.10, which illustrates the power system design, also shows how the monitoring 

system is implemented. The supply current and voltages are monitored which, from a 

hardware point of view, is the easiest way to detect any failures or malfunctions. The 

monitoring channels are as follows: 

 Voltage Sensors 

The 3.3 V line and 1.5 V line is fed through a simple voltage divider circuit to the ADC 

unit of the MCU. The voltage measurements will be used for telemetry purposes. The 

MCU can also be configured to reset if the supply voltage drops below a certain 

threshold.  

 Current Sensors 

The current from the general 3.3 V power line, 1.5 V FPGA power line and both SRAM 

power lines are monitored by current shunt sensors. These currents are sampled as 

voltages over output resistors and fed through an op-amp buffer to the ADC unit. This 

implementation of a current sensor is shown in Figure 2.11 and discussed in more detail 

in Appendix A.2. 

 Temperature 

The MCU has an internal temperature sensor which will be used by the monitoring 

subsystem. The temperature measurements will be used mainly for telemetry purposes to 

assess the thermal situation in the ADCS unit and CubeSat.  
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All the above mentioned monitoring channels are sampled by the ADC unit of the MCU. The 

data gathered is stored for telemetry purposes, but could also be processed and allow the 

MCU to react autonomously to expected problems. Two examples used in this design are 

power cycling SRAM modules after a latchup and brown-out reset for the MCU. 

2.3.5 COMMUNICATION SUBSYSTEM 

The communication subsystem is responsible for allowing the ADCS to communicate with 

other subsystems on the CubeSat. These typically include the main OBC, sensors and 

actuators. The communication subsystem for this design is very simple from a hardware point 

of view because all the required communication peripherals are included with the EFM32G 

MCU. The following communication interfaces were implemented. 

2.3.5.1 UART 

The Universal Asynchronous Receiver/Transmitter (UART) is a simple point-to-point 

communication interface. Data is serially transmitted on one channel and received on another. 

Transmission is asynchronous in the sense that it can start at any time, but both transmitter 

and receiver should be set up with the same speed for operation. 

In this design, the UART interface will be used mainly for debugging purposes. It can 

also be configured to program the MCU or merely used as a simple communication method 

for outputting data during the development of drivers and control modes. 

2.3.5.2 I2C 

The Inter-Integrated Circuit (I2C) is a high-speed bus-based communication interface. A 

master can access one of many slaves by using an address identifier to notify the correct slave 

of an incoming transmission. Through the use of arbitration, clock synchronization and 

 

Figure 2.11: Current Sensor Implementation. [28] 
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stretching, it is possible to allow for multiple bus masters if required. The I2C uses two IO 

lines for communication: a communal clock signal and a data bus line. The features of the 

MCU I2C controller is explained in more detail in [17]. 

In this design, the I2C bus is used as the communal bus where telecommands and 

telemetry data are transmitted to and from the main OBC to the rest of the CubeSat 

subsystems. In order for the ADCS OBC to communicate with its own subsystems (sensors 

and actuators) the I2C can either be shared, via time slots or arbitration, or a separate I2C bus 

can be used between the ADCS subsystems, which include the ADCS OBC, sensors and 

actuators.   

2.3.5.3 SPI 

The Serial Peripheral Interface (SPI) is a high-speed point-to-point communication interface. 

By synchronizing the communication between the transmitter and the receiver with a 

dedicated clock signal, transfer speed is only limited by the clock signal generated by the 

MCU. The SPI uses four IO lines for communication: a clock signal, a chip select signal, a 

transmit line and a receive line.  

In this design, one SPI channel is used to communicate with the microSD card. Another 

could also be used for point-to-point access to a subsystem where large amounts of data 

transfer needs to take place. An example would be the ADCS OBC receiving an image file 

taken by a camera onboard the sun sensor or horizon sensor for telemetry or debugging 

purposes. Transmitting this large file over the communal shared bus (I2C in the case of most 

CubeSats) would unnecessarily occupy it for a long period of time and possibly prevent 

important communication to take place between the other satellite subsystems.  
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3 SOFTWARE DEVELOPMENT 

The development of competent software is just as, if not more, important than the hardware 

design of an OBC. Software is responsible for instructing the different hardware components 

how and when to execute. The way in which these instructions are ordered (by means of a 

program) has to allow the system to achieve its intended purpose, which in the case of this 

project is the attitude and determination control of a CubeSat. Software programs are very 

complex and there are usually multiple implementations that achieve the same objective. It 

was therefore important that the software implementations for this project take into account 

the design requirements (performance, efficiency and reliability), because they apply to 

software as well as hardware. 

This chapter starts from a low-level perspective by looking at the hardware abstraction 

layer supplied by ARM for its Cortex-M range architecture. A quick summary will then be 

given of all the drivers that were developed in order to utilize the hardware that was designed 

in the previous chapter. After that a section will be dedicated to the development of the error 

detection and correction algorithm and code that was implemented on the FPGA for the 

SRAM. Lastly, higher-level software will be discussed by looking at the operation of the 

bootloader and operating system with its control loop and background tasks. 

3.1 HARDWARE ABSTRACTION LAYER 

ARM uses a Hardware Abstraction Layer (HAL) called the Cortex Microcontroller Software 

Interface Standard (CMSIS) [13]. A HAL is low-level software that supplies a simple 

interface to access hardware features from various vendors or manufacturers. In the case of 

ARM, this standard is called the CMSIS and the interface allows access to the processor and 

peripherals on all microcontrollers based on the ARM Cortex-M architecture. Figure 3.1 

shows the structure of the CMSIS and how it fits between user-developed code and Cortex-M 

processor-based MCUs. 

The advantage of using a HAL is that it is backed by a large software community. 

Previously there were separate communities for each ARM-based microcontroller vendor. 

However, the Cortex-M community is now vendor independent, because all the software is 

based on the CMSIS. This greatly improves the ease with which code can be developed for a 

Cortex-M-based microcontroller due to the amount of code available and the ease at which it 

can be re-used. The EFM32G, the MCU used for this design, is a Cortex-M3-based MCU and 

its software is also based on the ARM CMSIS. Even though the EFM32G was released in 
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2009, a large pool of application code is already available due to the ease of developing code 

for the Cortex-M based MCUs, which can be found on their website [31]. 

 

3.2 DRIVERS 

A device driver is a piece of code that allows the operating system or user application to set 

up, access and utilize a specific hardware device and/or peripheral. Drivers are very useful 

since they allow an application to access the features of the OBC without any low-level 

knowledge such as registers, protocols and timings. The use of the CMSIS has greatly 

increased the ease with which drivers for the Cortex-M-based MCUs are developed, because 

of the simple and standard interface to low-level structures such as registers and interrupts. 

For the EFM32G MCU, drivers for most of the peripherals and MCU features have 

already been developed. However, for this project, most of the drivers were either modified or 

redeveloped around the design requirements for the ADCS OBC in order to maximize the 

performance, efficiency and reliability of the peripherals, hardware components and the 

overall system. The following subsections are summaries of all drivers developed and used by 

the ADCS OBC in this project. 

3.2.1 EXTERNAL BUS INTERFACE 

The External Bus Interface (EBI) is responsible for interfacing the MCU with the external 

memory (flash and SRAM) on the OBC. The driver configures the settings that allow the 

MCU to read from and write to these external memories as well as the location of these 

 

Figure 3.1: ARM CMSIS Structure. [9] 
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memories within the system memory map. After the driver has been set up, the external 

memory can be accessed by software the same way in which the internal memory is accessed. 

The most important setting in the EBI is the synchronization of the read and write cycles 

between the MCU and the flash/SRAM. The timings between the different control signals 

(EBI_ALE, EBI_CSn, EBI_WEn, EBI_REn) and address/data bus (EBI_ADD[0:15]), shown 

in Figure 3.2 and Figure 3.3, can be configured in clock cycles of the MCU’s high-frequency 

core clock. These timings need to be slack enough to allow both flash and SRAM to function 

within its operational limits, yet tight enough not to waste any MCU clock cycles and 

therefore power and performance.  

 

 

3.2.2 DIRECT MEMORY ACCESS 

The Direct Memory Access (DMA) is responsible for transferring data between peripherals 

and memory without the intervention of the MCU core.  Some of the tasks on the OBC fit this 

description (monitoring and data transmission) and by utilizing the DMA capabilities of the 

 

Figure 3.3: EBI Write Operation. [12] 

 

Figure 3.2: EBI Read Operation. [12] 
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EFM32G, the MCU core can spend more time in a lower energy mode, which results in better 

efficiency.  

For a DMA transfer to take place a channel has to be set up between the two involved 

parties (peripheral/memory and memory/peripheral) and a call has to be made that signals the 

start of the transfer. The DMA can also be configured to execute a special function (callback 

function) whenever a DMA transfer is complete. Figure 3.4 shows the implementation of the 

DMA in the UART driver during data transmission. 

 

 

Figure 3.4: Flowchart of DMA Transfer for UART. 
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3.2.3 ANALOG TO DIGITAL CONVERTER 

The ADC is responsible for sampling the analog channels for the monitoring subsystem. 

These channels include supply voltages (3.3 V, 1.5 V), load currents (3.3 V, 1.5 V, SRAM 

1&2) and temperature (on-chip sensor). 

The ADC is implemented on the ADCS OBC in the following two ways: 

 Periodic 

Some of the ADC channels are sampled periodically. The sample period and channels to 

be scanned can be defined by a telecommand from the main OBC. After each period, the 

ADC is set up and scans the selected channels. The sampled values are then stored for 

telemetry purposes. The ADC is configured to sample at maximum frequency which 

allows it to finish as fast as possible. A DMA transfer is initialized before the scan, which 

allows the MCU to either process another task or to enter Stop Mode (EM1) to conserve 

energy. 

 Continuous 

Some of the analog channels are continuously monitored with an analog comparator and 

compared to reference values. If this reference, or threshold, value is exceeded, an 

interrupt is generated and the MCU can react accordingly. An example of using the 

analog comparator on this OBC is for detecting a latchup in the external SRAM modules. 

The SRAM current for each module is continuously monitored. If the sampled current 

exceeds the rated SRAM latchup current, an interrupt is generated to the MCU which 

addresses the problem. This process is shown in Figure 3.5. 

Table 3.1 shows the different functions supplied by the ADC driver, which are described in 

more detail in Appendix D.3. 

Table 3.1: ADC Driver Functions. 

Function Name Description 

BSP_ADC_Init Initializes the clock, DMA channel and settings for the ADC. 

BSP_ADC_Scan Starts ADC scan of all channels. 

BSP_ADC_IsScanComplete Returns true if a scan is in progress, otherwise false. 

BSP_ADC_GetAllData Returns all the values of the latest ADC scan.  

BSP_ADC_GetData Returns the latest sampled value of the specified ADC channel. 
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3.2.4 REAL-TIME CLOCK 

The RTC allows the OBC to have an independent time keeping system. This is important on 

satellites, especially those with multiple OBCs, for avoiding conflicts. Implementing and 

synchronizing an accurate RTC onboard all the required subsystems (ADCS OBC, main OBC 

and ground station) will result in cooperation throughout the satellite. 

The RTC in this design uses the external crystal oscillator due to the extra stability it 

offers over an RC oscillator. The RTC creates an interrupt every second which is used to tick 

the Unix Time Counter (UTC) and clock-calendar system, if enabled. The UTC timestamp is 

the time in seconds passed since 00:00 on 1 January 1970 [32]. These timestamps are popular 

in software programs because they allow time to be represented as one variable and not as 

days, hours, minutes, seconds, etc. which holds not as much significant value for a computer 

program as a human being. 

Table 3.2 shows the different functions supplied by the RTC driver, which are described 

in more detail in Appendix D.1. 

  

 

Figure 3.5: SRAM Latchup Detection Algoritm. 
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Table 3.2: RTC Driver Functions. 

Function Name Description 

BSP_RTC_Init Initializes the clock, counter and interrupt for RTC. 

BSP_RTC_SetUnixTime Sets the Unix time counter value. 

BSP_RTC_GetUnixTime Gets the Unix time counter value. 

BSP_RTC_IncUnixTime Increments the Unix time counter with a predefined value. 

 

3.2.5 WATCHDOG 

The OBC design includes two watchdogs, one internal and one external. Both watchdogs 

have to be periodically toggled within a certain time period; otherwise it will force the MCU 

to reset. This is an important reliability feature that safeguards the MCU against a software 

lockup, which will put the MCU, and therefore the OBC, in an unresponsive state. The MCU 

is the core of the OBC and in order for it to survive the harsh environment of space, as much 

reliability as possible should be implemented. 

In this design, the two watchdogs are toggled in separate areas of the operating system 

(foreground and background). This prevents the MCU from entering a logic loop, which can 

occur if both watchdogs are toggled in the background by an interrupt while the foreground 

application is in an unresponsive state. This is illustrated in Figure 3.6 and Figure 3.7.  

 

 

Table 3.3 shows the different functions supplied by the watchdog driver, which are 

described in more detail in Appendix D.2. 

 

Figure 3.7: Logic Loop Prevention. 

 

Figure 3.6: Logic Loop. 
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Table 3.3: Watchdog Driver Functions. 

Function Name Description 

BSP_WDG_Init Initializes both the internal and external clock and their timers. 

BSP_WDG_ToggleExt Toggles the external watchdog to reset its counter. 

BSP_WDG_ToggleInt Toggles the internal watchdog to reset its counter. 

 

3.2.6 UART 

The Universal Asynchronous Receiver/Transmitter (UART) is used in this design primarily 

for debugging purposes. Since the UART is only an interface for communication, it is ideal 

for testing inter-subsystem communication, protocols and synchronization because it is simple 

to implement and able to interface with a Personal Computer (PC) to emulate any other 

subsystem. PC emulation is very important because it allows the design to be debugged to a 

certain degree without having the full satellite system available.  

For the OBC UART to communicate with the PC, its signals should be converted to 

RS232 voltage levels used by the serial port interface on the PC. An RS232-to-UART 

converter was designed and used only between the OBC and a PC. This was not implemented 

onboard the OBC, because it will not be required in the satellite and therefore only waste 

power. The debug drivers were developed to emulate communication with any subsystem 

(sensor, actuator and OBC) and to periodically or asynchronously output the OBC’s telemetry 

to the PC.  

3.2.7 SPI 

The Serial Peripheral Interface (SPI) is used in this design to interface with the microSD 

card. It offers a high-speed synchronized link between the MCU and the SD storage. The 

MCU includes two other SPI interfaces that can be used for large point-to-point data transfers 

between the MCU and another subsystem, for example the transfer of images between the 

ADCS OBC and the CubeSense (sun and nadir sensor) for debugging purposes. 

The microSD card is accessed by an application through the File Allocation Table File 

System (FATFS). The FATFS accesses the microSD card through a DiskIO driver which was 

supplied by Energy Micro. This DiskIO driver is a specially modified driver only intended for 

use by the FATFS. The interface between an application and the microSD card is shown in 

Figure 3.8. 
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Table 3.4 lists the different functions supplied by the microSD driver which are described in 

more detail in Appendix D.4. 

Table 3.4: MicroSD Driver Functions. 

Function Name Description 

BSP_MSD_Init Initializes the SPI, microSD card and FATFS. 

BSP_MSD_Write Writes data to the LOG file on the microSD card. 

BSP_MSD_Read Reads data from LOG file into buffer variable. 

BSP_MSD_Test Executes a test program for the microSD card. 

 

3.2.8 I2C 

The Inter-Integrated Circuit (I2C) is used in this design to interface with the main 

communication bus, which is used mainly by the main OBC (master) to communicate with all 

the other major subsystems (slaves).  

Because the ADCS OBC also has to interact with its own subsystems (sensors and 

actuators) the main I2C bus must allow for multi-master usage. The ADCS OBC already has 

the required features (arbitration and clock synchronization) to communicate simultaneously 

with the main OBC, but an easier solution would be to allow each OBC a specified time slice 

within which it has to communicate with its subsystems. Another option would be to have the 

ADCS OBC implement a separate I2C bus for communicating with its subsystems, while still 

acting as a slave on the main I2C bus for telecommands. The different I2C bus 

implementations are shown in Figure 3.9, Figure 3.10 and Figure 3.11. 

 

Figure 3.8: Interface between an Application and the MicroSD Card. [45] 
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The multi-master bus configuration will allow the main and ADCS OBC access to all 

subsystems but it will be the most complex of the three configurations to implement due to 

potential bus conflicts. The time-shared bus configuration will be easier to implement and 

avoid any potential bus conflicts but will not maximise the throughput of the bus. A separate 

bus configuration will allow both main and ADCS OBC maximum throughput but at the cost 

of isolating some of the subsystems from the main OBC. Therefore, the I2C bus configuration 

will not be fixed for the ADCS OBC unit since the final implementation should take into 

account the requirements for and limitations of the CubeSat system and the mission for which 

it will be used. The eventual I2C driver will therefore depend on the bus configuration being 

used. 

3.3 ERROR DETECTION AND CORRECTION 

The Error Detection and Correction (EDAC) subsystem is implemented as a flow-through 

EDAC situated on the data bus between the SRAM and MCU. A flow-through EDAC has the 

advantage of converting the data (detecting and correcting) in real-time without affecting the 

read/write commands of the MCU. This simplifies the programming of the MCU and adds no 

memory access overhead. The EDAC design in this system uses linear block codes, which is 

implemented on an FPGA, to encode and decode data between the MCU and SRAM. When 

errors are detected and/or corrected, the FPGA signals the MCU which then reacts 

accordingly. 

3.3.1 LINEAR BLOCK CODES 

A popular form of EDAC used on embedded systems is Linear Block Codes (LBC). 

Generally for LBCs a codeword c exists for every data word d. These words can be 

represented as vectors: 

 

Figure 3.11: Separate Buses. 

 

Figure 3.10: Time Shared Bus. 

 

Figure 3.9: Multi Master Bus. 
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  (          )   (          ) (   ) (3.1) 

The amount of data digits, k, divided by the amount of code digits, n, is known as the LBC’s 

information rate.  

A codeword c can be obtained by multiplying its data word d by a (   ) generator 

matrix G, using modulo-2 arithmetic. A special form of G exist which generates a codeword 

in systematic form. This type of generator matrix G consists of an (   ) identity matrix I 

and a (   ) matrix P, where m = n – k. A codeword in systematic form is the same as its 

data word for the first k digits, while the remaining m digits are linear combinations of the 

data word, called the parity-check digits cp.  

     

  [  (   )  (   )] 

 [    ] 

(3.2) 

 

(3.3) 

 

(3.4) 

 

When a codeword r is retrieved, it is uncertain if and how many errors it contains. A (   ) 

parity check matrix H exists for which the following condition holds: 

      (3.5) 

If this condition is true for r, then r = c and the codeword does not contain any errors. If the 

codeword c is in systematic form it can be decoded by only using the first k digits of c, which 

is equal to the data word d.  

      

     [    ] 

   [          ] 

(3.6) 

(3.7) 

(3.8) 

If Equation (3.5) is not true for a received codeword r, due to an error signal e, the resultant 

row vector s in Equation (3.10) is known as the syndrome. If only one error is made, it can be 

corrected by comparing the syndrome s to the parity check matrix H. The row vector which 

the syndrome corresponds to within    is the digit in codeword r that has to be corrected (i.e. 

flipped). 

  (           ) 

      

  (   )   

(3.9) 

(3.10) 

(3.11) 
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Because of Equation (3.5), 

        =     

  [       ] [
       
   
       

] 

(3.12) 

(3.13) 

A single bit error in digit  , 

  [            ] 

   [             ] 

(3.14) 

 

(3.15) 

If more than one error has occurred in codeword r, up to a certain limit, the syndrome s will 

not correspond to any of the row vectors in    but a non-zero value will indicate a detected 

error. 

This is a very short description of linear code theory. For a more in-depth description, 

please refer to [33], page 729. 

3.3.2 REED-MULLER CODE 

Many LBCs exist which vary in their code lengths, parity generator matrices and the amount 

of detectable and correctable errors. For this design, the following three requirements were set 

for an LBC: 

 Reliability – The LBC shall correct at least one error and detect as many as possible.  

 Performance – The LBC shall generate systematic codewords which can easily be 

decoded using the first 8-bits of a codeword. 

 Efficiency – The LBC shall have an information rate of fifty percent which corresponds 

to the MCU data bus (8-bits) over the SRAM data bus (16-bits) and therefore does not 

waste memory space. 

The Reed-Muller- (RM) (1, 3) code [34] fulfils the above criteria as it can correct one error 

and detect up to three errors and because it has a systematic codeword generator matrix and 

an information rate of fifty percent. However, RM (1, 3) only produces an 8-bit codeword 

(four data digits and four parity check bits), while a 16-bit codeword (eight data digits and 

eight parity check bits) is required for optimal SRAM usage. This can be compensated for by 

splitting the received data word from the MCU into two 4-bit data words and implementing 

the RM (1, 3) LBC twice within the FPGA (shown in Figure 3.12). Two RM (1, 3) LBCs 

together will produce a 16-bit codeword and have an added advantage of being able to correct 
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up to two errors simultaneously, which a single LBC would not have been able to achieve 

without noticeable coding overhead. 

3.3.3 IMPLEMENTATION 

The EDAC is implemented on the FPGA as shown in Figure 3.12. Depending on the read 

/write command from the MCU, the data can flow through the FPGA in the following two 

ways: 

 

1. Write Command 

For a write command the data flows from the MCU data bus into the bidirectional buffer. 

The data is split up into two 4-bit channels, due to the Reed-Muller (1, 3) block length, 

and sent to the Generator Matrices G. The resulting codewords c1 and c2 are interleaved 

together to produce a 16-bit data word which passes through the bidirectional buffer to be 

written in the SRAM. 

2. Read Command 

For a read command the 16-bit data word flows from the SRAM bus through the 

bidirectional buffer and into the deinterleaver. The resulting codewords r1 and r2 is 

multiplied by the parity check matrices H to produce the syndromes s1 and s2. These 

syndromes are then inspected to validate the codewords r1 and r2. If an error is detected 

and corrected, a signal is flagged for the MCU. If errors are detected but could not be 

corrected, a different signal is flagged for the MCU. If no errors are detected, the 

 

Figure 3.12: Error Detection and Correction Subsystem on FPGA. 
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codewords are decoded and passed through the bidirectional buffer onto the MCU data 

bus.  

The function of the interleaver is to spread out the codewords c1 and c2 evenly throughout the 

SRAM data word. This is to reduce the likelihood of one high-energy particle causing 

multiple upsets (errors) within the same codeword and should subsequently increase the 

effectiveness of the EDAC subsystem. 

3.3.4 ERROR HANDLING  

The FPGA error signals (default high) are driven low according to Table 3.5 whenever an 

error is detected by the RM (1, 3) LBC. These signals are connected to the MCU and generate 

an interrupt when they change from their default value (1111b), i.e. on falling edge. The 

signal values are then interpreted and the MCU reacts accordingly. 

Table 3.5: Error Signal Code Descriptions and MCU Reaction. 

Error Signal Value Error Signal Description MCU Reaction 

1111b No errors detected None 

1110b / 1101 b 

1011b / 0111b 

One error detected and corrected Memory Wash 

1010b / 1001b 

0110b / 0101b 

Two errors detected and corrected Memory Wash 

00xxb / xx00b Multiple errors detected and not corrected Variable Integrity Check 

 

xx = error values for other RM(1,3) code block 
  

When an error signal is received by the MCU, it can respond to the error in the following 

ways: 

 Memory Wash 

When one or two correctable errors are detected by the FPGA, the MCU will schedule a 

memory wash. A memory wash is when the MCU reads and re-writes all data on an entire 

memory module. This will clean all detectable and correctable errors which will prevent a 

build up of errors within a memory module. Memory washes can also be scheduled to run 

every few seconds even if no errors were detected on accessed memory. This will prevent 

the build up of errors in the memory module and especially bytes which might not be 

accessed as often.  
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 Variable Integrity Check 

When multiple uncorrectable errors are detected by the FPGA, the MCU will schedule a 

variable integrity check. Because the majority of data in SRAM are temporary variables 

created on the program stack, or variables updated every control loop cycle (sensor data, 

actuator commands), corrupt data will not necessary negatively affect the operation of 

ADCS. However, some data are considered critical, such as the operating parameter of 

the ADCS, and if an uncorrectable error is detected, a variable integrity check will be 

initialized that scans these critical variables. Each critical variable will have a copy which 

can be used for correction if it has become corrupt. If both the critical variable and its 

copy are corrupt, the ADCS OBC will have to be reset. 

3.4 BOOTLOADER 

The bootloader is a small program that runs every time the MCU resets. The function of a 

bootloader is to load a selected operating program into memory for execution. This allows the 

OBC to have more than one operating program. This has two major advantages for an OBC: 

1. Flexibility 

An operating program is usually developed with a certain situation, responsibility and 

requirements in mind. By having multiple operating programs, each with a different 

focus, the OBC can better adapt to a situation by booting the appropriate program instead 

of developing one complex program to try and handle every situation. For this design, the 

OBC will have an operating program developed with ADCS as its focus while another 

backup program could allow the OBC to act as a main OBC in case of emergency. 

2. Reliability 

When designing software programs, some logic errors or limitations only emerge during 

in-flight usage. The ability to upload operating programs from the ground station to the 

satellite after launch allows the developers to change the operation program to correct 

errors and compensate for limitations. 

A bootloader adds flexibility and reliability to a system, but care must be taken to create a 

failsafe boot sequence. It is possible for a poorly designed bootloader to enter a state referred 

to as a “reboot loop” which lets the OBC continuously boot from a broken operating program 

without allowing any form of intervention from the outside.  
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3.4.1 PROGRAM TYPES 

The OBC has two different types of programs which the bootlader can boot the MCU from: 

 Safe Mode 

The safe mode program is a simple operating program that aims to put the satellite in a 

stable orientation using the minimum amount of sensors and actuators. This program is 

stored in a reliable memory module (Flash 0) separated from other operating programs. 

The safe mode program should be the default program the ADCS OBC falls back on 

when an unexpected reset or error occurs. 

 Nominal Programs 

A nominal program is a more complex operating program developed to make full use of 

the ADCS OBC’s subsystems and features to achieve its goal. More than one nominal 

program can be uploaded and stored on the OBC. The nominal programs are stored within 

a table structure on a flash memory module (Flash 1); each at a separate index. To boot 

from a specific nominal program, a boot index variable must be changed to the index of 

the desired program which the bootloader will then load into the internal flash memory of 

the MCU after a reset.  

3.4.2 IMPLEMENTATION 

The bootloader sequence proposed for this design is presented in Figure 3.13. After a reset, 

the bootloader starts by configuring the EBI of the MCU as both the safe mode program and 

nominal operating programs are stored in the external memory. The bootloader waits a few 

seconds for a telecommand from the main OBC which indicates which operating program to 

boot from. If no command is received, the bootloader reads a counter which counts the 

amount of times the bootloader has recently been executed. If this value exceeds a certain 

threshold, it indicates that the bootloader has entered a reboot loop. 

A reboot loop is when the bootloader boots a faulty program which is eventually reset by 

the watchdog. After the reset the bootloader executes and reloads the faulty program which 

eventually resets again and again. This might occur when a program has a logic error which 

will not be detected by a CRC check, but will cause the program to stall and force the 

watchdog to reset the OBC. After each reset, the bootloader will increment the counter and an 

unexpected high value for the counter will indicate to the bootloader that it has entered a 

reboot loop. The bootloader will respond by booting the safe mode program until commanded 

otherwise from the main OBC. The counter can be reset via a telecommand from the main 
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OBC if the ground station has verified that the program is running correctly or a new program 

has been uploaded for execution. 

 

If the counter has not exceeded the threshold value, it reads a special byte, in protected 

memory of Flash 1, which stores the boot table index of the next program to be loaded into 

the flash memory of the MCU for execution. The value of this index defines what the 

bootloader does next: 

 0xFF – The bootloader executes the current program in the flash memory of the MCU. 

 0x00 – The bootloder executes the safe mode program located in Flash 0. 

 0xXX – The bootloader loads a new program into the flash memory of the MCU which is 

located in Flash 1 at index XX of the boot table. 

After the program is loaded into the Flash of the MCU (or not in the case of 0xFF), a CRC 

check is done to verify the integrity of the program in internal MCU Flash. If this check is 

unsuccessful, which indicates that the program is corrupt, the bootloader boots the safe mode 

program.  

 

Figure 3.13: Proposed Bootloader Sequence. 
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3.5 OPERATING SYSTEM 

The Operating System (OS) is responsible for managing the different tasks that need to be 

executed by the OBC. These tasks usually fall into one of two categories: foreground 

application and background services. The operating system, together with the ADCS 

application and background services, are shown in Figure 3.14.  

 

3.5.1 FOREGROUND APPLICATION  

The foreground application is a collection of tasks which aim at achieving a single goal. 

These tasks can each be separately responsible for utilizing different subsystems or 

components of the OBC (communication, memory, core, etc.); however the result of all the 

foreground tasks should accomplish the same goal.  

 

Figure 3.14: Operating System Flow Diagram for the ADCS OBC. 
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The foreground application for this design periodically executes the ADCS control loop. 

The control loop starts by reading the latest sensor values. From these measurements the 

control algorithms generate commands for the actuators which orientate the satellite 

accordingly. After the actuator commands are transmitted, the foreground application is put in 

sleep mode until it is scheduled to start again (more or less every second for this design). This 

is merely a summary of the control loop which is currently being developed, at time of 

writing, by another masters student in the ESL.  

3.5.2 BACKGROUND TASKS/SERVICES 

The background tasks, also known as background services, are additional tasks responsible 

for housekeeping, emergency responses and interrupts. These services do not directly 

contribute to the goal of the foreground application, but are nonetheless essential for the 

operation of the OBC. 

The background services for this design gain access to the by means of an interrupt. The 

background service that generated the interrupt is then processed by running its Interrupt 

Service Routine (ISR). Each ISR was developed to execute as fast as. This helps the 

foreground application (main ADCS loop) to execute deterministically, i.e. no long 

unexpected delays due to interrupts. Short ISRs will also prevent the likelihood of data loss 

during communication since long delays may cause the IO interface to not be serviced before 

the next data packet arrives.  

The background services for this design are as follows: 

 RTC Counter 

The RTC counter generates an interrupt every second. The ISR of the RTC increments 

the UTC timestamp of the system, which indicates when some tasks, such as the control 

loop, are scheduled to start.  

 I2C Communication 

The I2C communication generates an interrupt whenever it receives a data-packet. If the 

transmission is not dealt with immediately, the data could be dropped. This is undesirable 

since a telecommand from the main OBC could contain settings (orientation, schedules, 

etc.) that should be updated on the ADCS OBC as soon as possible.  
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 SRAM SEU Detection 

The SRAM SEU detection generates an interrupt when it receives a signal from the 

FPGA indicating an error has been detected or corrected. In case of a correction, the ISR 

logs the error and schedules a memory wash, described in Section 3.3.4. If multiple 

uncorrectable errors are detected within a word, the ISR logs the error and performs a 

variable integrity check, described in Section 3.3.4. If a critical variable is corrupt and 

cannot be corrected, the MCU is reset. 

 SRAM SEL Detection 

The SRAM SEL detection generates an interrupt when the current from the SRAM power 

supply exceeds a certain threshold (latchup) value. The ISR immediately power cycles the 

SRAM module to attempt to fix the SEL. If the SEL persists the OBC will switch to the 

backup SRAM module for normal operation. 

 Telemetry Logging 

The telemetry logger is a background service that periodically logs all OBC telemetry 

(voltages, currents, temperature, etc.) and ADCS telemetry (vectors and parameters). This 

information can be requested by the main OBC to be downloaded to the ground station 

for further inspection. 

The above mentioned OS structure should more than suffice for the purpose of an ADCS 

OBC. This will be illustrated later during Hardware In the Loop (HIL) tests in section 4.2. As 

more complex control algorithms, sensors and actuators are implemented for the ADCS 

CubeSat unit, the foreground application, background services and protocol will expand, but 

not the manner in which they are managed and executed. However, in order for the ADCS 

OBC to stand in as a backup main OBC, a more robust OS structure has to be used. 
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4 TESTS AND MEASUREMENTS 

It is important to thoroughly test all subsystems of an embedded design, even more so in the 

case of satellite electronics. This chapter will discuss tests that were designed for the ADCS 

OBC and show the results these tests obtained. Important measurements will then be shown 

indicating the performance and efficiency of the OBC during operation. 

During the software development phase of the ADCS OBC many small driver tests were 

written to test out all the components on the OBC. The following tests were specifically 

developed to highlight the operation of the ADCS OBC as shown in Figure 3.14 in Section 

3.5 on where the operating system is discussed. Short tests were developed for the different 

background services and a larger Hardware In the Loop (HIL) test was developed for the 

foreground application (control loop). 

4.1 BACKGROUND SERVICES 

4.1.1 RTC 

The RTC was configured to generate an interrupt every second. The ISR of the RTC 

increments the UNIX time counter which is used to indicate the time of execution for certain 

scheduled tasks. The ISR also toggles the external watchdog to ensure it does not reset the 

MCU. Figure 4.1 shows the GPIO line used to toggle the external watchdog and the accuracy 

of the RTC which corresponded to one second when measured with an Oscilloscope. 

  

 

Figure 4.1: External Watchdog Toggle Line. 
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4.1.2 TELEMETRY LOGGING 

The telemetry logging background service is a scheduled task that logs both ADCS telemetry 

and OBC telemetry which can be requested by the ground station for further inspection. The 

telemetry data is stored in the microSD card for this design.  

A driver test was developed for the microSD card and the resultant text file message is shown 

in Figure 4.2.  

 

To test telemetry logging on the ADCS OBC a test program periodically samples all the 

ADC channels used by the monitoring subsystem. The OBC telemetry data is then logged to 

the microSD card as shown in Figure 4.3. The test program stored all the data using string 

formatting in order to make the test results more readable. However, during satellite operation 

telemetry data will likely be stored in raw data formats (bytes, integers and double data types) 

to minimize the amount of data stored and transmitted on the satellite. The test program 

shows ADC values for current (milli-Amperes), voltage (milli-Volts) and on-chip temperature 

measurements every second. 

 

Figure 4.2: Text Retrieved from MicroSD Driver Test File. 
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4.1.3 SINGLE EVENT UPSETS 

Before the SEU detection was tested, the EDAC first had to be verified. Test waveforms were 

generated by ModelSim (supplied with IDE for FPGA) based on the after-layout (i.e. real-

world) operation of the FPGA. 

The first line in the waveforms is the chip-select (nCS) line for the SRAM module. If the 

chip select is not asserted, the output/input bus of the FPGA is put in a high impedance state. 

The following two lines are the encode (enc) and decode (dec) control lines, which are 

directly mapped to the read and write control lines of the MCU EBI. When data is written, the 

encode line is asserted and when data is read, the decode line is asserted. The next line is the 

8-bit data bus from the MCU followed by the 16-bit codeword bus from the SRAM modules. 

Lastly, the error signals generated by the EDAC subsystem are also shown to indicate if an 

error (SEUs) occurred and if it was correctable. 

 

Figure 4.3: Text Retrieved from Telemetry Logging Test File. 
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The following figures (Figure 4.4 – Figure 4.8) show the simulation results of the EDAC 

for different error conditions: 

 Encoding 

Figure 4.4 shows the encoding process of the EDAC subsystem. A data word is supplied 

by the MCU data bus and is then converted to a codeword when the write control line is 

asserted. The codeword generated might not seem to be in systematic form, but it is, 

because the data word is split before being encoded and interleaved after being encoded. 

 Decoding – No Errors 

Figure 4.5 shows the decoding process of the EDAC subsystem with no errors in the 

codeword. The codeword is the same as the one generated during the encoding process 

and the error signals indicate no errors.  

 Decoding – One Error 

Figure 4.6 shows the decoding process of the EDAC subsystem with one error. The error 

is corrected (same data word as Figure 4.4) by the FPGA, which indicates the error to the 

MCU through the error signal lines. 

 Decoding – Two Errors Correctable 

Figure 4.7 shows the decoding process of the EDAC subsystem with two errors. The 

errors are in separate codewords within the large codeword and both errors can therefore 

be corrected by the EDAC. The two errors are indicated to the MCU through the error 

signal lines. 

 Decoding – Two Errors Uncorrectable 

Figure 4.8 shows the decoding process of the EDAC subsystem with two errors that 

cannot be corrected. The errors are in the same smaller codeword within the large 

codeword. The resulting data word is different from the one generated by the encoding 

process in Figure 4.4. However, the EDAC does detect the errors and generates the error 

signals to indicate to the MCU that the data retrieved from the SRAM module is corrupt. 
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Figure 4.6: Decoding Process of EDAC with One Error. 

 

Figure 4.5: Decoding Process of EDAC with No Errors. 

 

Figure 4.4: Encoding Process of EDAC. 
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To physically test the SEU detection on the OBC a bit flip had to be simulated. The 

FPGA code was modified to manually flip a specified bit before writing it to the SRAM 

module. This same codeword was read by the MCU and the resulting error signals from the 

FPGA caused an interrupt on the MCU. The interrupt service routine can read the values of 

the error signals and respond by either scheduling a memory wash for a correctable error, or a 

variable integrity check for uncorrectable errors. 

The latency involved with encoding and decoding the data between the MCU and SRAM 

databus was also sufficiently small enough that it was not necessary to add extra read and 

write hold cycles to a normal read and write cycles of the EBI. The EDAC implementation 

can therefore be seen as flow-through. 

4.1.4 SINGLE EVENT LATCHUP 

When a latchup occurs in an SRAM module, the module draws an excessive amount of 

current. This current spike can be used to detect the latchup by continually monitoring the 

SRAM current. The MCU can be configured to generate an interrupt whenever a threshold 

value is exceeded. The resulting ISR will then isolate the SRAM module from the address and 

data bus by turning off the disabling IO buffers and disabling the load switch supplying the 

 

Figure 4.8: Decoding Process of EDAC with Uncorrectable Errors. 

 

Figure 4.7: Decoding Process of EDAC with Two Errors. 
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SRAM module. Figure 4.9 shows the SRAM supply voltage, from a load switch, toggled by 

the MCU with a test program.  

 

4.1.5 COMMUNICATION 

During the software development process of the ADCS OBC, the UART was used 

extensively for debugging purposes. Figure 4.10 shows the OBC telemetry data output to the 

PC through the UART.  

 

Figure 4.9: SRAM Supply Voltage Toggled by MCU. 
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The UART was used during the HIL tests to communicate with the PC. A small protocol 

was implemented for the UART to more accurately simulate in system operation. The HIL 

test will be discussed in more detail in the following section. 

4.2 HARDWARE IN THE LOOP 

A HIL test was devised to test the ADCS OBC performance under “real-world” conditions, or 

as close to it as possible. A HIL test simulates closed loop system operation and should 

receive realistic data inputs. The HIL test is an ideal method to test the performance and 

accuracy of the foreground application, i.e. its ability to perform the attitude determination 

and control for a CubeSat.  

4.2.1 SETUP 

The setup and flow of the HIL test is shown in Figure 4.11. The OBC was interfaced with a 

PC, which simulated all other needed ADCS subsystems, and a protocol was used to transmit 

and receive data between them. The OBC will request sensor data (generated by the PC) 

through the communication subsystem. The ADCS algorithms will then compute the needed 

actuator values. The ADCS telemetry (torque times, estimated rates etc.) will be transmitted 

to the PC which will be compared to similar values generated by the PC simulation program.  

 

Figure 4.10: OBC Telemetry Data Output to UART. 
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The accuracy of the ADCS OBC will be tested during the HIL test, but the computation 

time is also of importance. The faster the control loop can be executed, the more time can be 

spent in a lower energy mode and/or the more complex algorithms can be implemented. The 

control loop for the HIL test consists of the following ADCS algorithms: 

 SGP4 – A Simplified General Perturbation no.4 (SGP4) model calculates the satellite 

position vector using Two-Line-Elements (TLE) of the satellite orbit. 

 IGRF – An International Geomagnetic Reference Field  (IGRF) model calculates 

the magnetic field vector at the satellite’s position.  

 Kalman Filter – A Kalman filter is used to calculate the estimated angular body rates of 

the satellite. 

 BDOT – A BDOT controller is used to calculate the required actuator torque times 

needed to detumble the satellite. 
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4.2.2 PC COMMUNICATION PROTOCOL 

The protocol used for the HIL test, shown in Table 4.1 and Table 4.2, consists of 

Identification (ID) and data packets. This is a very simple and specific protocol that was setup 

and used for the purpose of the HIL tests. It is loosely based on the protocol used on board 

SumbandillaSat for its ADCS OBC.  

Table 4.1: Transmission Protocol from PC to OBC. 

ID Data length Data content Unit 

$ 3 × (short int) 6 bytes Magnetometer readings  uTesla 

& 1 × (char) 1 bytes Controller mode 0-256 

# 1 × (short int) 2 bytes Reference Y-spin rate m-deg/sec 

% 1 × (char) 1 bytes Controller sample time 0-256 (sec) 

@ only identifier 0 bytes Acknowledgement 
 

 

 

Figure 4.11: Hardware In the Loop Test Process. 
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Table 4.2: Transmission Protocol From OBC to PC 

ID Data length Data content Unit 

R only identifier 0 bytes Request sensor measurements  
 

T 3 × (short int) 6 bytes Torquer rod on times sec 

W 3 × (short int) 3 bytes Estimated body angular rates m-deg/sec 

N 3 × (double) 24 bytes Magnetic torque  Nm 

 

4.2.3 RESULTS 

During the HIL test, the average execution time for a control loop iteration was calculated as 

22 ms. For the CubeSat ADCS being developed at the ESL, a control loop only needs to be 

executed every one second. Even though the control loop for the HIL test was a simple 

detumbling procedure for a CubeSat, it still means the ADCS OBC requires very little of its 

allocated time (< 3% for the HIL test) to do the needed ADCS calculations. This will result in 

the OBC spending more of its time (> 97% for the HIL test) in a lower energy state, such as 

stop (EM1) or sleep (EM2) mode, which require less power.  

In terms of accuracy the ADCS OBC also calculated the same values as simulated by the 

PC, which was expected since they both are running the same algorithms. In both Figure 4.12 

(estimated body rates produced by the Kalman filter) and Figure 4.13 (actuator control values 

produced by the BDOT controller) the OBC-generated values (coloured dots) closely follow 

the PC-simulated-values (solid black lines). 

 

 

 

Figure 4.12: OBC and PC Estimated Body Rates for HIL Test. 
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4.3 POWER CONSUMPTION 

It is important for any OBC design to determine its power consumption under various 

operating conditions. This is even more important for an OBC in a CubeSat due to its limited 

power budget. 

The power consumption of the ADCS OBC will be determined by measuring the current 

drawn from the power supply. Figure 4.14 shows the test setup that was used. Between the 

ADCS OBC and its power supply a 1.8Ω resistor is added in series. By measuring the voltage 

drop over this resistor, the current flowing through it can be calculated. 

 

Different tests were written for the OBC to perform while its power consumption was 

measured. Some of the tests focused on the MCU under different conditions and some were 

focussed on the various peripherals. The results are shown in Table 4.3. The OBC draws a 

minimum power of 130mW during sleep mode and peaks at 435mW while accessing the 

 

Figure 4.14: Test Setup for Power Consumption Measurements. 

 

Figure 4.13: OBC and PC Actuator Control Values for HIL Test. 
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microSD card. The ADCS OBC power consumption should average somewhere between 

170mW (EM0 – Run Mode) and 130mW (EM2 – Sleep Mode) most of the time since it will 

either be executing the control loop or sleeping. 

Table 4.3: Power Consumption Test Results. 

Test Type Voltage Drop 

mV 

Current 

mA 

Power 

mW 

Fibonacci Algorithm 61 34 170 

while(1) 57 32 160 

EM1 48 27 135 

EM2 46 26 130 

MSD (peak/avg) 156/110 87/62 435/310 

UART 82 46 230 

ADC 54 30 150 

SRAM 55 31 155 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

The tests in the previous chapter were designed to analyse and prove the capabilities of the 

ADCS OBC which were designed and developed during Chapters 3 and 4. It was important 

for these tests to reflect the design requirements of performance, efficiency and reliability in 

order to confirm that they have been met. The test results for each requirement can be 

summarized as follows:  

 Performance 

The HIL test confirms the performance of the ADCS OBC by performing a typical ADCS 

control loop of updating sensor data, generating model and estimated values and 

computing actuator output. The requirement for a typical CubeSat ADCS (being 

developed in the ESL) is to execute a control loop every second. From the HIL test data, 

the ADCS OBC easily achieves this goal by executing the control loop in 22 ms.  

This short execution time has two implications for efficiency. Firstly, the MCU can sleep 

for the majority of the control loop cycle, which will reduce the average efficiency of the 

OBC. Secondly, the MCU can run at a lower frequency to reduce its peak power 

consumption, but at the cost of a longer execution time.   

 Efficiency 

The current measurements during the different test programs show the efficiency of the 

ADCS OBC in terms of peak power consumption and average power consumption. As 

explained above, the MCU can be downclocked to decrease either the peak power 

consumption or the average power consumption. However, the ADCS OBC should still 

achieves a peak power consumption of less than half a Watt (435 for SD Card usage) and 

an average power consumption of less than two hundred milli-Watt, which is well within 

the expected power budget. 

 Reliability 

The majority of the background services (watchdog toggling, SEU and SEL detection and 

telemetry logging) are implemented mainly for reliability purposes. Watchdogs prevent 

the MCU from entering an undesired state, SEU and SEL detection methods protect the 

OBC against SRAM failures due to radiation and OBC telemetry allows the OBC to be 
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monitored by users on the ground. Tests were designed to illustrate the operation of these 

background services which were developed to add an extra layer of reliability to the 

ADCS OBC.  

These tests and measurements indicate that the ADCS OBC in this design achieved the 

requirements defined before the start of the project. However, some small alterations and 

improvements will be needed before the ADCS OBC in this design can be used within a 

CubeSat system. 

5.2 RECOMMENDATIONS 

This section will discuss recommendations regarding alterations and improvements that 

should be made to the ADCS OBC before it is implemented into a CubeSat. 

5.2.1 LAYOUT 

It is important to take into consideration the PCB layout of the ADCS OBC due to space 

constraints imposed by the standard size of a CubeSat structure. A standard PCB layout is 

shown in Appendix C.1.2. The PCB of the ADCS OBC was not designed according to this 

standard since it was considered a prototype. The prototype OBC has an external power 

connecter, extra pin-outs for unused MCUs, FPGA pins (used for debugging purposes) and 

larger dimensions (designed on a two layer PCB for reduced cost). If the ADCS OBC layout 

is done on a four-layer PCB without the debugging components, it should be able to conform 

to the standard layout proposed in Appendix C.1.2. 

5.2.2 MICROCONTROLLER 

During the hardware design of the ADCS OBC, the only available processor from Energy 

Micro was the EFM32Gecko (EFM32G), which was used in this design. In late 2010/early 

2011 Energy Micro released the EFM32GiantGecko (EFM32GG [36]). This MCU is also 

based on the Cortex-M3 architecture, like the EFM32G, but has the following new features 

that would improve the ADCS OBC design.  

 Improved External Bus Interface 

The external bus interface of the EFM32GG has the ability to translate read and write 

commands, depending on the bus width of the external memory. This means that the 

MCU autonomously converts the write command of 32-bit data into four write commands 

for an 8-bit external memory device. The major advantage this has for the ADCS OBC is 

that the MCU is now able to execute code directly from external memory. Currently the 

ADCS OBC needs to copy an operating program from external flash into the MCU flash 
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before booting from this program, which increases the likelihood of an SEU. With the 

EBI of the EFM32GG, the bootloader can boot directly from external flash.  

 Two I2C controllers 

The EFM32GG has two I2C controllers compared to the EFM32G which only has one. 

Currently the ADCS OBC will only be able to implement the multi-master and time-

shared I2C bus. The EFM32GG will however be able to implement the separate bus as 

well, by having one I2C controller act as a slave on the main I2C bus and the other 

controller act as a master on the bus connecting all the ADCS-related subsystems (sensors 

and actuators). 

The EFM32GG is pin compatible with the EFM32G and should therefore require only 

minimal hardware design and layout changes. Due to the CMSIS the EFM32 drivers are built 

upon, very few changes to the drivers and operating system should occur. Not only should the 

EFM32GG be easy to implement, but its power consumption is roughly the same as the 

EFM32G, as shown in Table 5.1. 

Table 5.1: EFM32 Gecko and Giant Gecko Comparison. 

Microcontroller EM0 EM1 EM2 

EFM32 Gecko 180 uA/MHz 45 uA/MHz 0.9 uA 

EFM32 Giant Gecko 200 uA/MHz 50 uA/MHz 1.2 uA 

 

5.2.3 EEPROM 

Electronic Erasable Programmable Read Only Memory (EEPROM) is a non-volatile memory 

that is inherently resistant to radiation effects such as SEUs and SELs. EEPROM is usually 

used to store important program code due to its radiation resistance. In this design, the safe 

mode program (described in Section 3.4.1) is stored in flash memory, which is still 

susceptible to SEUs. A more reliable design would be to store the safe mode program 

separately in an EEPROM module, such as the ATMEL EEPROM (AT28C64B [37]), which 

is virtually immune to SEUs. This will ensure the ADCS will always have a working backup 

program to fall back on. This EEPROM module can be accessed via the EBI of the MCU the 

same way as with flash and should be easily replaceable with one of the flash modules in the 

ADCS OBC design with only minimal modifications. An EEPROM module either has a 

longer read cycle or uses more current compared to a flash module (see Table 5.2), but the 

added reliability should be worth the trade-off. 
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Table 5.2: Flash and EEPROM Comparison. 

Type  Size Current Read Cycle 

Flash S29AL008D [38] 1 MB 16 mA 70 ns 

EEPROM 
AT28BV25 [39] 256 kB 15 mA 200 ns 

AT28HC256 [40] 256 kB 80 mA 70 ns 

 

5.2.4 PROTOCOL 

A protocol is a set of rules which defines how data is transmitted between subsystems 

according to [10]. The rules define how information is encoded into transmission data. If the 

receiver uses the same protocol as the transmitter, the transmission data can be decoded 

successfully into meaningful information. It is important to have only one protocol on a bus to 

avoid any confusion when transmitting data between subsystems. Because the protocol is a 

standard set of rules, it is possible to develop a subsystem independently by only ensuring it 

adheres to the protocol used on the system bus. 

Even though a simple protocol was defined for the HIL test in the previous chapter, it is 

highly recommended that a fully-fledged protocol should be developed for the ADCS OBC 

and its subsystem (sensors and actuators) in the ADCS unit. For a typical protocol a 

transmission consists of the following sections: 

 Header 

The header section of a protocol contains fields which define how the transmission will 

occur. Examples of typical fields used in header sections are an address field to identify 

the sender/receiver, a size field to indicate the size of the data section, an indicator of the 

data format and an acknowledgement from the receiver. For the protocol used in the HIL 

test, the header section consists of one field, namely the ID byte.   

 Data 

The data section of a protocol contains the actual data being transmitted. The data can 

either be sent all at once or sent as packets of smaller data, depending on the size of the 

data, bus and sender/receiver buffer. 

 Error Control 

The error control section of a protocol usually contains a small amount of data which 

allows the receiver to check if the main data became corrupted due to transmission errors. 

A popular approach is to add a Cyclic Redundancy Check (CRC) at the end of a 
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transmission. The receiver can use the CRC to check for any corrupt data. If an error is 

detected, a retransmission can be initiated.  

For this design a protocol was not created as it was not necessary for the design and 

development of an ADCS OBC. However, for the ADCS OBC to be integrated into the 

ADCS unit, a protocol should be defined and used for communication between the ADCS 

subsystems. 

5.2.5 REAL-TIME OPERATING SYSTEM 

A Real-Time Operating System (RTOS), as described by [41], is developed to be more adept 

at managing and executing multiple tasks. It uses a more advanced scheduling algorithm to 

ensure each task receives an equal or weighted amount of processing time from the MCU 

core. This scheduling produces a small overhead, but ensures all tasks can be processed closer 

to “real-time”. 

An RTOS is much more suited for the main OBC than the operating system used for the 

ADCS OBC. Instead of having one goal, like the satellite’s ADCS does, the main OBC 

should manage the operation of many subsystems (payload, power, communication, ADCS, 

etc.) with almost equal importance. All these subsystems are interdependent and therefore if 

one is neglected, it adversely affects the entire satellite.  

An RTOS was not used for the ADCS OBC because it is not crucial for its operation, but 

implementing the ADCS application on an RTOS would allow the OBC to adapt more easily 

to the role of main OBC in case of emergency. Energy Micro, the manufacturer of the MCU 

used in this design, has a source code example which shows an RTOS port (uC/OS-II from 

Micrium) running on the EFM32G [31]. This example can be used as a basis to create a 

RTOS tailored for the ADCS OBC. 
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6 SUMMARY 

The goal of this project was to design and develop an ADCS OBC for a CubeSat. The process 

followed to achieve this will be summarized in this section. 

The first step was to clearly define the design requirements for the OBC. The project goal 

can be broken into three parts and each part has an associated requirement attached to it. 

Firstly, the OBC should be able to perform complex ADCS-related tasks. This translated to 

performance as a requirement. Secondly, the OBC will be implemented on a CubeSat which 

has very limited resources. This translated to efficiency as a requirement. Lastly, the OBC 

will have to operate in space, which is a very harsh environment. This translated to reliability 

as a requirement. These requirements were considered throughout the hardware design as well 

as the software development of the ADCS OBC. 

The core of the OBC hardware design is the MCU and care was taken in choosing the 

most appropriate MCU for the ADCS OBC. The EFM32Gecko from Energy Micro, based on 

the ARM Cortex-M3 architecture, was chosen due to its high performance and low power 

consumption. It also offered various on-chip peripherals which were used in the OBC design. 

A separate power system was designed to regulate the supply voltage and current to all the 

components.  An external memory subsystem was designed which consists of flash, SRAM 

and a microSD card which stores code, data and telemetry. The OBC has a subsystem which 

monitors the current, voltage and temperature of the board for telemetry purposes, but it can 

also detect abnormalities and react accordingly. The OBC also includes various interfaces for 

communicating with external and internal subsystems (I2C, UART, EBI and SPI).   

The software development commenced with creating and/or modifynig all the drivers 

needed to enable and access the different functions of the MCU and components on the 

ADCS OBC. Cortex-M3 based MCUs, such as the EFM32G, uses the CMSIS, which 

improves the turnaround time for developing drivers. The flow-through EDAC uses the Reed-

Muller(1,3) linear block codes which were developed in VHDL and implemented on the 

FPGA. The bootloader algorithm was developed to ensure that the ADCS OBC will not be 

able to reboot into a faulty operating program. The operating system structure consists of a 

foreground application, the ADCS control loop, and background tasks which are responsible 

for the clock, communication, telemetry and error detection and correction. 

Tests were developed to confirm the operation of the ADCS OBC. Individual tests were 

written for background tasks and a HIL test was designed to simulate in-system operation for 

the ADCS OBC foreground application. The results of the test were analysed in terms of the 
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design requirements defined at the beginning of the project. The conclusion reached after 

testing was that the ADCS OBC prototype justified the design by meeting the design 

requirements of performance, efficiency and reliability and that, with a few minor alterations 

and improvements, the ADCS OBC could successfully be implemented into a CubeSat. 
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A HARDWARE DESIGN DETAILS 

The hardware design of the different components such as smoothing capacitors, pull up- and 

pull down resistors etc. were kept as close to the supplied hardware design guidelines 

supplied by each component’s manufacturer. This ensured that all components functioned 

when the ADCS OBC was built. In some cases, the design choice could be made which 

altered the operation of certain components. These choices will be discussed in the following 

section.  

A.1 HARDWARE DESIGN GUIDELINES 

The following hardware design guidelines where used in the design of the ADCS OBC.  

 MCU – “Application Note: Hardware Design Considerations”.[42] 

 SRAM – “SRAM System Design Guidelines”. [43] 

 Voltage Regulator – Datasheets [28], pages 11-13, and [27], pages 15-17. 

A.2 CURRENT SENSOR DESIGN 

In the current sensor design, as shown in Figure 2.11, the value of resistors RS and RL are 

designed to achieve an accurate output voltage for the range that includes normal operating 

conditions and a latchup within a SRAM module.  

The output voltage is determined by the following equation[44]: 

     (  )(  )(        )(  ) (A.1) 

IS would vary between 25mA at normal operating conditions and 200mA during a latchup 

from an SRAM module. For the INA139 current sensor used in this design the input voltage 

VS is accurate if below 0.5 V. The resistor value for RS was therefore chosen as 1 Ω which 

ensures an input voltage of less than 0.5 V under latchup conditions and does not allow a too 

large voltage drop on the power supply during normal operating conditions.  

The output voltage of the INA139 is sampled by the ADC of the MCU. Therefore the 

output voltage range should be within the sample range of the ADC under normal operating 

conditions and during latchup. By choosing the value of RL as 10 kΩ, equation (A.1) gives an 

output voltage of 250 mV for normal operating conditions (IS = 25 mA) and 2 V during a 

latchup (IS = 200 mA).  For a 12-bit sample from the MCU ADC, the resolution is less than 1 

mV which will be accurate enough for telemetry purposes. 
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B SCHEMATICS 

B.1 MCU 
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B.2 FPGA 
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B.3 MEMORY BUS 

  

Stellenbosch University http://scholar.sun.ac.za



SCHEMATICS 77 

 

 

B.4 MEMORY POWER 
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B.5 POWER SUPPLY 

 

Stellenbosch University http://scholar.sun.ac.za



 

79 
 

C PCB LAYOUT 

C.1 CUBESAT LAYOUT STANDARD 

When designing the layout for a CubeSat expansion board it is necessary to try and stay 

within the predefined specifications of the CubeSat standard, both electrically and 

mechanically, to ensure compatibility with other CubeSat subsystems and the CubeSat 

standard itself. 

C.1.1 ELECTRICAL LAYOUT STANDARD (HEADER PIN ALLOCATION) 

The CubeSat uses a stack through 104-pin main header that links most of the CubeSat 

subsystems. These shared pins allow CubeSat subsystems to easily integrate with each other 

with regards to power lines, communication lines and signals. At the moment no standard 

exists that clearly defines the functions of all the pins on the main header. However, some 

general guidelines do exist which are shown in Figure C.1. It is important to follow these 

guidelines when designing the ADCS OBC as it allows compatibility with most other 

CubeSat subsystems. 

 

C.1.2 MECHANICAL LAYOUT STANDARD (PCB DESIGN) 

The CubeSat expansion boards are based on the mechanical layout of the PC/104 standard 

shown in Figure C.2. By adhering to this mechanical design when designing an expansion 

 

Figure C.1: CubeSat Proposed Electrical Layout Standard (PC/104 Based). [23] 
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board, it will easily integrate with the rest of the subsystem in the CubeSat. The greatest 

advantage of the mechanical standard of the CubeSat is that it makes use of the P-POD 

launcher which allows for inexpensive piggyback launches. 

 

  

 

Figure C.2: CubeSat Mechanical Layout Standard (PC/104 Based). [23] 
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C.2 ADCS OBC LAYOUT 

The following section will provide the physical layout of the ADCS OBC. 

C.2.1 TOP LAYER 
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C.2.2 BOTTOM LAYER 
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C.2.3 ADCS OBC PHOTO 

 

 

 

Figure C.3: ADCS OBC Prototype. 
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D DETAILED DRIVER DESCRIPTIONS 

The following section will give a detailed description of defines, enums and functions 

developed for the ADCS OBC drivers, known as the Board Support Package (BSP). 

D.1 REAL TIME CLOCK 

The following is a detailed description of the RTC driver developed for the ADCS OBC. 

Defines: 

 #define BSP_RTC_IncSec 1 

Description: The time in seconds between each interrupt for the RTC. 

Functions: 

 void BSP_RTC_Init (void) 

Description: Initializes the RTC on the OBC by enabling its clock, setting the interrupt 

interval, enabling the interrupt and resetting the UNIX time counter to zero. 

Inputs: None. 

Returns: None. 

 void BSP_RTC_SetUnixTime (uint32_t newUnixTime) 

Description: Sets the current UNIX time counter value to the given value.  

Inputs: 

 newUnixTime: New value for the RTC UNIX time counter.  

Returns: None. 

 uint32_t BSP_RTC_GetUnixTime (void)  

Description: Gets the current UNIX time counter value.  

Inputs: None.  

Returns: Current UNIX time counter value. 
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 void BSP_RTC_IncUnixTime (void) 

Description: Increments the current UNIX time counter value with a predefined 

value (BSP_RTC_IncSec). 

Inputs: None. 

Returns: None. 

D.2 WATCHDOG 

The following is a detailed description of the watchdog driver developed for the ADCS OBC. 

Defines: 

 #define extWDGPort gpioPortF 

Description: The GPIO port group on the MCU the external watchdog input is allocated 

to. 

 #define extWDGPin 8 

Description: The GPIO pin number within the port group on the MCU the external 

watchdog input is allocated to. 

Functions: 

 void BSP_WDG_Init (void) 

Description: The GPIO pin connected to the external watchdog is initialized and the 

internal watchdog settings and counter value is initialized.  

Inputs: None. 

Returns: None.  

 void BSP_WDG_ToggleExt (void) 

Description: Toggles the external watchdog to reset it reset its timeout counter.  

Inputs: None. 

Returns: None.  
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 void BSP_WDG_ToggleInt (void) 

Description: Toggles the internal watchdog to reset it reset its timeout counter.  

Inputs: None. 

Returns: None.  

D.3 ANALOG TO DIGITAL CONVERTER 

The following is a detailed description of the ADC driver developed for the ADCS OBC. 

Type Defines: 

 enum ADC_Channel_TypeDef 

Description: The different ADC channels that are sampled on the ADCS OBC. 

Values: 

 CURRENT_SRAM1  = 0 

 CURRENT_SRAM2  = 1 

 CURRENT_1V5  = 2 

 CURRENT_3V3  = 3 

Functions: 

 void BSP_ADC_Init (void) 

Description: The ADC clocks are enabled, the DMA channel is configured and the ADC 

settings are configured. 

Inputs: None. 

Returns: None.  

 void BSP_ADC_Scan (bool wait) 

Description: Starts the ADC scan of all channels on the ADCS OBC which are copied to 

memory by the DMA controller as they are sampled. 

Inputs:  

 wait: Indicates to the function whether it should return after ADC scan has started 

or wait for it to complete. 

Returns: None.  
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 bool BSP_ADC_IsScanComplete (void) 

Description: Returns true if an ADC scan is currently in progress otherwise false. 

Inputs: None 

Returns: True if an ADC scan is currently in progress otherwise false.  

 uint16_t* BSP_ADC_GetAllData (void) 

Description: Returns a pointer to the data array containing the values of the latest ADC 

samples. 

Inputs: None 

Returns: Pointer to the data array containing the values of the latest ADC samples ADC. 

 uint16_t  BSP_ADC_GetData (ADC_Channel_TypeDef channel) 

Description: Returns the latest sampled value of the specified ADC channel. 

Inputs: None 

Returns: The latest sampled value of the specified ADC channel. 

D.4 MICROSD 

The following is a detailed description of the microSD driver developed for the ADCS OBC. 

Defines: 

 #define TEST_FILENAME  “test.txt” 

Description: The filename of the text file created by the test program during microSD 

test BSP_MSD_TEST(). 

 #define LOG_FILENAME   “log.txt” 

Description: The filename of the text file used to store all telemetry data. 

Functions: 

 void BSP_MSD_Init (void) 

Description: Initialized the SPI interface, microSD card and FAT filesystem. 

Inputs: None. 

Returns: None.  
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 int BSP_MSD_Write (int8_t* data, int size) 

Description: Writes the specified data to the LOG file. 

Inputs: 

 data: The data in bytes to be written to the LOG file. 

 size: The amount of bytes to be written to the LOG file. 

Returns: 1 if the writing process is successfully completed otherwise 0.  

 int8_t* BSP_MSD_Read (void) 

Description: Reads data from log file into buffer variable. 

Inputs: None. 

Returns: A pointer to the buffer variable containing the data in the LOG file.  

 

BSP_MSD_Read Reads data from log file into buffer variable. 

 

 void BSP_MSD_Test (void) 

Description: Executes a program to test the microSD card by initializing the microSD 

card, creating a file, writing a string to the file, reading a string from the file and closing 

the file. This function is used for debugging purposes. 

Inputs: None. 

Returns: None.  

D.5 EXTERNAL BUS INTERFACE 

The following is a detailed description of the EBI driver developed for the ADCS OBC. 

Defines: 

 #define EXT_SRAM_BASE_ADDRESS ((uint8_t*) 0x88000000UL) 

Description: The pointer value of the base address for the external SRAM module. 

Type Defines: 

 enum EBI_SRAMSelect_TypeDef 
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Description: Used to indicate a specific SRAM module. 

Values: 

 SRAM1  = 0 

 SRAM2  = 1 

Functions: 

 void BSP_EBI_Init (void) 

Description: Initialized the clocks, pins, timings and interrupts for the EBI. 

Inputs: None. 

Returns: None.  

 void BSP_EBI_TogglePow (EBI_SRAMSelect_TypeDef module) 

Description: Toggles the power to a specified SRAM module. 

Inputs: 

 module: The SRAM module’s power to be toggled. 

Returns: None.  

 void BSP_EBI_ToggleBuf (EBI_SRAMSelect_TypeDef module) 

Description: Isolates a specified SRAM module from the address/data bus. 

Inputs: 

 module: The SRAM module to be isolated from the address/data bus. 

Returns: None.  

D.6 UNIVERSAL ASYNCHRONOUS RECEIVER / TRANSMITTER 

The following is a detailed description of the UART driver developed for the ADCS OBC. 

Functions: 

 void BSP_UART_Init (void) 

Description: Initializes the clock, DMA, pins and interrupt for the UART. 

Inputs: None. 

Returns: None.  

 void BSP_UART_TxBuffer (uint8_t id, uint8_t* buffer, int size) 

Description: Transmits an ID byte and specified amount of data bytes with the UART. 

Inputs: 
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 id: The identification byte of the following data. The ID byte is used by the 

receiver to identify the incoming data. 

 buffer: The data to be transmitted after the ID byte. 

 size: The amount of bytes to be transmitted. 

Returns: None.  

 bool BSP_UART_IsTxComplete (void) 

Description: Returns true if no transmission is in progress. 

Inputs: None 

Returns: True if no transmission is in progress, otherwise false.  

Stellenbosch University http://scholar.sun.ac.za



 

91 
 

E EDAC DESIGN 

E.1 EDAC FPGA IMPLEMENTATION 

The detail design of the EDAC system which was implemented on the FPGA will be shown 

in the following section. The EDAC system consists of two Reed-Muller (1,3) linear code 

blocks which were implemented on the FPGA in VHDL code. The code for one RM(1,3) 

linear code block follows: 

-- File:    rm_13.vhd 

-- Desc:    A Reed-Muller (1,3) linear code block implementation. 

Encodes a 4-bit data word in systematic form and decodes a 8-bit 

codeword, detecting up to three errors and correcting up to one 

error. 

-- in:      enc, dec, nCS - control signals from the MCU. 

-- out:     errors(0:3) - flag signal indicating if an error was 

detected or corrected. 

-- inout:   data - 4-bit data bus to the MCU bus. 

--          code - 8-bit codeword to the SRAM bus. 

 

library std; 

library ieee; 

 

use ieee.std_logic_1164.all; 

 

entity rm13 is 

port ( 

    enc,dec,nCS : in     std_logic; 

    errors      : out    std_logic_vector(1 downto 0); 

    data        : inout  std_logic_vector(3 downto 0); 

    code        : inout  std_logic_vector(7 downto 0) 

); 

end rm13; 

 

architecture behaviour of rm13 is 

 

signal syndrome : std_logic_vector(0 to 3); 

 

begin 

    process(nCS, enc, dec, syndrome) 

    begin     

        -- encoding process     

        if (enc = '0' and nCS = '0') then 

            data <= "ZZZZ"; 

            errors <= "ZZ"; 

            code(0) <= data(0); 

            code(1) <= data(1); 

            code(2) <= data(2); 

            code(3) <= data(3); 

            code(4) <= data(0) xor data(1) xor data(2); 

            code(5) <= data(0) xor data(1) xor data(3); 

            code(6) <= data(0) xor data(2) xor data(3); 

            code(7) <= data(1) xor data(2) xor data(3); 
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  syndrome <= "ZZZZ"; 

 

        -- decoding process                 

        elsif (dec = '0' and nCS = '0') then 

            code <= "ZZZZZZZZ"; 

            syndrome(0) <= code(1) xor code(2) xor code(3) xor 

code(7); 

            syndrome(1) <= code(0) xor code(2) xor code(3) xor 

code(6); 

            syndrome(2) <= code(0) xor code(1) xor code(3) xor 

code(5); 

            syndrome(3) <= code(0) xor code(1) xor code(2) xor 

code(4); 

 

            -- indicate errors by checking syndrome 

            case syndrome is 

                -- no errors 

                when "0000" =>  

                    data <= code (3 downto 0);  

                    errors <= "11"; 

                -- one error in data bits 

                when "0111" =>  

                    data(0) <= code(0); 

                    data(1) <= code(1); 

                    data(2) <= code(2); 

                    data(3) <= code(3); 

                    errors  <= "01"; 

                -- one error in data bits 

                when "1011" =>  

                    data(0) <= code(0); 

                    data(1) <= not code(1); 

                    data(2) <= code(2); 

                    data(3) <= code(3); 

                    errors  <= "01"; 

                -- one error  in data bits 

                when "1101" =>  

                    data(0) <= code(0); 

                    data(1) <= code(1); 

                    data(2) <= not code(2); 

                    data(3) <= code(3); 

                    errors  <= "01"; 

                -- one error in data bits 

                when "1110" =>  

                    data(0) <= code(0); 

                    data(1) <= code(1); 

                    data(2) <= code(2); 

                    data(3) <= not code(3); 

                    errors  <= "01"; 

                -- one error in parity check bits 

                when "0001" => 

                    data <= code (3 downto 0); 

                    errors  <= "10"; 

                -- one error in parity check bits 

                when "0010" => 

                    data <= code (3 downto 0); 

                    errors  <= "10"; 

                -- one error in parity check bits 

                when "0100" => 
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                    data <= code (3 downto 0); 

                    errors  <= "10"; 

                -- one error in parity check bits 

                when "1000" => 

                    data <= code (3 downto 0); 

                    errors  <= "10"; 

                -- too many errors 

                when others => 

                    data <= code (3 downto 0); 

                    errors  <= "00"; 

            end case; 

 

        -- high impedance state 

        else 

            data     <= "ZZZZ"; 

            code     <= "ZZZZZZZZ"; 

            errors   <= "ZZ"; 

      syndrome <= "ZZZZ"; 

        end if;        

    end process; 

end behaviour; 

 

Two of these RM(1,3) LCB are implemented in the FPGA to encode the 8-bit MCU data bus 

into the 16-bit codeword bus of the SRAM. The top level implementation of the FPGA is 

shown in Figure E.1. The two RM(1,3) LBCs can be seen as well as how the codewords are 

interleaved before being put on the SRAM bus.  
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E.2 EXAMPLE 

The following section will go through an example which will showcase the functioning of the 

EDAC subsystem. 

1. Write / Encode 

The MCU bus data, which is 8-bits, is split into two 4-bit data words which is separately 

fed into their respective RM(1,3) linear code blocks. 

                    (E.1) 

                  (E.2) 

The 4-bit data words are multiplied by the RM(1,3) generator matrix G in systematic 

form to generate the respective codewords c1 and c2. 

 

Figure E.1: Top Level Implementation of EDAC on FPGA 
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  [

        
        
        
        

] 

 

 

(E.3) 

     (E.4) 

                          (E.5) 

The codewords c1 and c2 are interleaved before output to the SRAM data bus. 

                            (E.6) 

2. Read / Decode 

The SRAM bus data, which consists of 16-bits, is de-interleaved into two codewords r1 

and r2.  

                            (E.7) 

                          (E.8) 

Codewords r1 and r2 are then multiplied by their respective parity check matrix H to 

generate the syndromes s1 and s2. 

  [

        
        
        
        

] 

 

 

(E.9) 

      (E.10) 

                    (E.11) 

The syndromes are compared with the parity check matrix H to see if an error has 

occurred and if this error can be corrected. In this example a single bit error has occurred 

in codeword r1, which corresponds to the syndrome matching a row vector in H
T,

 and no 

error in codeword r2, which corresponds to a zero syndrome.  

The bit flip is in codeword r1 is identified and corrected and the corresponding error 

signals are flagged. The correct codewords are put together and output on the MCU data 

bus. 

                          (E.12) 
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    [   ]    [   ]            (E.13) 
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F SUPPORT FILES CD 

The following CD includes all the support files used in the design and development of the 

ADCS OBC.  

These include: 

 Datasheets of all the components used for the ADCS OBC. 

 Altium design files for the ADCS OBC. 

 Source code for MCU and FPGA development for ADCS OBC. 
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