

The Design and Development

of an ADCS OBC for a CubeSat

By

Pieter Johannes Botma

Thesis presented in partial fulfilment of the requirements for the degree

Master of Science in Engineering

at the Faculty of Engineering, Stellenbosch University

Supervisor: Prof. W.H. Steyn

Department of Electrical and Electronic Engineering

December 2011

DECLARATION

By submitting this thesis electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof (save to

the extent explicitly otherwise stated), that reproduction and publication thereof by

Stellenbosch University will not infringe any third party rights and that I have not

previously in its entirety or in part submitted it for obtaining any qualification.

Date: December 2011

Copyright © 2011 StellenboschUniversity

All rights reserved.

Stellenbosch University http://scholar.sun.ac.za

ii

ABSTRACT

The Electronic Systems Laboratory at Stellenbosch University is currently developing a fully

3-axis controlled Attitude Determination and Control Subsystem (ADCS) for CubeSats. This

thesis describes the design and development of an Onboard Computer (OBC) suitable for

ADCS application. A separate dedicated OBC for ADCS purposes allows the main CubeSat

OBC to focus only on command and data handling, communication and payload

management.

This thesis describes, in detail the development process of the OBC. Multiple

Microcontroller Unit (MCU) architectures were considered before selecting an ARM Cortex-

M3 processor due to its performance, power efficiency and functionality. The hardware was

designed to be as robust as possible, because radiation tolerant and redundant components

could not be included, due to their high cost and the technical constraints of a CubeSat.

The software was developed to improve recovery from lockouts or component failures

and to enable the operational modes to be configured in real-time or uploaded from the

ground station. Ground tests indicated that the OBC can handle radiation-related problems

such as latchups and bit-flips. The peak power consumption is around 500 mW and the orbital

average is substantially lower. The proposed OBC is therefore not only sufficient in its

intended application as an ADCS OBC, but could also stand in as a backup for the main OBC

in case of an emergency.

Stellenbosch University http://scholar.sun.ac.za

iii

OPSOMMING

Die Elektroniese Stelsels Laboratorium by die Universiteit van Stellenbosch is tans besig om

’n volkome 3-as gestabiliseerde oriëntasiebepaling en -beheerstelsel (Engels: ADCS) vir ’n

CubeSat te ontwikkel. Hierdie tesis beskryf die ontwerp en ontwikkeling van ’n

aanboordrekenaar (Engels: OBC) wat gebruik kan word in ’n ADCS. ’n Afsonderlike OBC

wat aan die ADCS toegewy is, stel die hoof-OBC in staat om te fokus op beheer- en

datahantering, kommunikasie en loonvragbestuur.

Hierdie tesis beskryf breedvoerig die werkswyse waarvolgens die OBC ontwikkel is.

Verskeie mikroverwerkers is as moontlike kandidate ondersoek voor daar op ’n ARM Cortex-

M3-gebaseerde mikroverwerker besluit is. Hierdie mikroverwerker is gekies vanweë sy

spoed, effektiewe kragverbruik en funksionaliteit. Die hardeware is ontwikkel om so robuust

moontlik te wees, omdat stralingbestande en oortollige komponente weens kostebeperkings,

asook tegniese beperkings van ’n CubeSat, nie ingesluit kon word nie.

Die programmatuur is ontwikkel om van ’n uitsluiting en ’n komponentfout te kan

herstel. Verder kan programme wat tydens vlug in werking is, verstel word en vanaf ’n

grondstasie gelaai word. Grondtoetse het aangedui dat die OBC stralingverwante probleme,

soos ’n vergrendeling (latchup) of bis-omkering (bit-flip), kan hanteer. Die maksimum

kragverbruik is ongeveer 500 mW en die gemiddelde wentelbaankragverbruik is beduidend

kleiner. Die voorgestelde OBC is dus voldoende as ADCS OBC asook hoof-OBC in geval van

nood.

Stellenbosch University http://scholar.sun.ac.za

iv

ACKNOWLEDGEMENTS

The author would like to thank and acknowledge the following for their contribution towards

this project:

 Prof W.H. Steyn for his knowledge, guidance and patience throughout this project.

 All the people of the ESL, especially Hanco Loubser, AM de Jager, Arno Barnard and

Johan Arendse, for their helpful inputs.

 My family and friends, especially Elzaan Kotzé, for their support and understanding

during my long hours at work.

 God, for giving me the talents and opportunities to follow my dream.

Stellenbosch University http://scholar.sun.ac.za

v

CONTENTS

Declaration ... i

Abstract ... ii

Opsomming .. iii

Acknowledgements .. iv

Contents ... v

List of Figures .. ix

List of Tables .. xi

Nomenclature .. xii

1 Background ... 1

1.1 Mission .. 1

1.2 CubeSat ... 3

1.3 ADCS .. 4

1.4 Space Environment .. 6

1.4.1 Radiation Effects ... 6

1.4.2 Remoteness .. 7

1.5 Document Outline ... 8

2 Hardware Design ... 9

2.1 Requirement Definition ... 9

2.1.1 Performance ... 9

2.1.2 Efficiency .. 9

2.1.3 Reliability .. 9

2.2 Microcontroller Selection .. 10

2.2.1 8-Bit vs. 16-Bit vs. 32-Bit MCUs .. 10

2.2.2 Microcontroller Comparisons .. 11

2.2.3 EFM Gecko MCU ... 13

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vi

2.3 System Overview and Design ... 19

2.3.1 MCU .. 19

2.3.2 External Memory Subsystem... 22

2.3.3 Power Subsystem ... 27

2.3.4 Monitoring Subsystem ... 29

2.3.5 Communication Subsystem ... 31

3 Software Development .. 33

3.1 Hardware Abstraction Layer ... 33

3.2 Drivers ... 34

3.2.1 External Bus Interface ... 34

3.2.2 Direct Memory Access .. 35

3.2.3 Analog to Digital Converter .. 37

3.2.4 Real-Time Clock ... 38

3.2.5 Watchdog ... 39

3.2.6 UART .. 40

3.2.7 SPI ... 40

3.2.8 I2C ... 41

3.3 Error Detection and Correction ... 42

3.3.1 Linear Block Codes ... 42

3.3.2 Reed-Muller Code ... 44

3.3.3 Implementation .. 45

3.3.4 Error Handling ... 46

3.4 Bootloader ... 47

3.4.1 Program Types... 48

3.4.2 Implementation .. 48

3.5 Operating System .. 50

3.5.1 Foreground Application ... 50

3.5.2 Background Tasks/Services .. 51

4 Tests and Measurements .. 53

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vii

4.1 Background Services ... 53

4.1.1 RTC ... 53

4.1.2 Telemetry Logging .. 54

4.1.3 Single Event Upsets ... 55

4.1.4 Single Event Latchup .. 58

4.1.5 Communication ... 59

4.2 Hardware In The Loop .. 60

4.2.1 Setup .. 60

4.2.2 PC Communication Protocol ... 62

4.2.3 Results ... 63

4.3 Power Consumption .. 64

5 Conclusions and Recommendations .. 66

5.1 Conclusions ... 66

5.2 Recommendations ... 67

5.2.1 Layout .. 67

5.2.2 Microcontroller .. 67

5.2.3 EEPROM ... 68

5.2.4 Protocol ... 69

5.2.5 Real-Time Operating System .. 70

6 Summary ... 71

A Hardware Design Details ... 73

A.1 Hardware Design Guidelines ... 73

A.2 Current Sensor Design ... 73

B Schematics ... 74

B.1 MCU .. 74

B.2 FPGA ... 75

B.3 Memory Bus .. 76

B.4 Memory Power .. 77

B.5 Power Supply .. 78

Stellenbosch University http://scholar.sun.ac.za

CONTENTS viii

C PCB Layout ... 79

C.1 CubeSat Layout Standard .. 79

C.1.1 Electrical Layout Standard (Header Pin Allocation) 79

C.1.2 Mechanical Layout Standard (PCB Design) ... 79

C.2 ADCS OBC Layout ... 81

C.2.1 Top Layer .. 81

C.2.2 Bottom Layer ... 82

C.2.3 ADCS OBC Photo ... 83

D Detailed Driver Descriptions ... 84

D.1 Real Time Clock .. 84

D.2 Watchdog ... 85

D.3 Analog to Digital Converter .. 86

D.4 MicroSD .. 87

D.5 External Bus Interface ... 88

D.6 Universal Asynchronous Receiver / Transmitter ... 89

E EDAC Design .. 91

E.1 EDAC FPGA Implementation ... 91

E.2 Example ... 94

F Support Files CD ... 97

Bibliography .. 98

Stellenbosch University http://scholar.sun.ac.za

ix

LIST OF FIGURES

Figure 1.1: SSTL STRaND CubeSat. [4] .. 2

Figure 1.2: Examples of CubeSat Unit Sizes. [44] .. 4

Figure 1.3: ADCS Control Loop for a Satellite. [7] .. 5

Figure 1.4: South Atlantic Anomaly. [40] ... 6

Figure 2.1: Cortex-M Energy Efficiency Solution. [10] ... 11

Figure 2.2: Diagram of EFM32 Gecko MCU. [12] ... 14

Figure 2.3: Cortex-M3 Processor Core. [17] .. 15

Figure 2.4: Cortex-M3 Memory and Bus System. [16] .. 16

Figure 2.5: Cortex-M3 System Address Space. [16] .. 17

Figure 2.6: Energy Mode Indicator. [16] .. 19

Figure 2.7: ADCS OBC Block Diagram. .. 20

Figure 2.8: External Memory System of ADCS OBC. ... 22

Figure 2.9: SRAM Isolation Design Diagram. .. 26

Figure 2.10: OBC Power System Block Diagram. .. 28

Figure 2.11: Current Sensor Implementation. [28] ... 31

Figure 3.1: ARM CMSIS Structure. [9] .. 34

Figure 3.2: EBI Read Operation. [12] ... 35

Figure 3.3: EBI Write Operation. [12] .. 35

Figure 3.4: Flowchart of DMA Transfer for ADC. ... 36

Figure 3.5: SRAM Latchup Detection. .. 38

Figure 3.6: Logic Loop. ... 39

Figure 3.7: Logic Loop Prevention. .. 39

Figure 3.8: Interface between an Application and the MicroSD Card. [45] 41

Figure 3.9: Multi Master Bus. ... 42

Figure 3.10: Time Shared Bus. .. 42

Figure 3.11: Separate Buses. ... 42

Figure 3.12: Error Detection and Correction Subsystem on FPGA. 45

Figure 3.13: Proposed Bootloader Sequence. .. 49

Figure 3.14: Operating System Flow Diagram for the ADCS OBC. 50

Figure 4.1: External Watchdog Toggle Line. .. 53

Figure 4.2: Text Retrieved from MicroSD Driver Test File. ... 54

Figure 4.3: Text Retrieved from Telemetry Logging Test File. .. 55

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135107
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135108
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135109
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135110
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135111
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135112
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135113
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135114
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135115
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135116
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135117
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135118
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135119
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135120
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135121
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135122
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135123
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135124
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135125
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135126
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135127
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135128
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135129
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135130
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135131
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135132
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135133
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135134
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135135
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135136
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135137
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135138

LIST OF FIGURES x

Figure 4.4: Encoding Process of EDAC. ... 57

Figure 4.5: Decoding Process of EDAC with No Errors. .. 57

Figure 4.6: Decoding Process of EDAC with One Error. ... 57

Figure 4.7: Decoding Process of EDAC with Two Errors. ... 58

Figure 4.8: Decoding Process of EDAC with Uncorrectable Errors. 58

Figure 4.9: SRAM Supply Voltage Toggled by MCU. ... 59

Figure 4.10: OBC Telemetry Data Output to UART. ... 60

Figure 4.11: Hardware In the Loop Test Process. ... 62

Figure 4.12: OBC and PC Estimated Body Rates for HIL Test. ... 63

Figure 4.13: OBC and PC Actuator Control Values for HIL Test. ... 64

Figure 4.14: Test Setup for Power Consumption Measurements. ... 64

Figure C.1: CubeSat Proposed Electrical Layout Standard (PC/104 Based). [23] 79

Figure C.2: CubeSat Mechanical Layout Standard (PC/104 Based). [23] 80

Figure C.3: ADCS OBC Prototype. .. 83

Figure E.1: Top Level Implementation of EDAC on FPGA ... 94

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135139
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135140
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135141
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135142
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135143
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135144
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135145
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135146
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135147
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135148
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135149
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135150
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135151
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135152
file:///C:/Documents%20and%20Settings/14867745/My%20Documents/MScIng/Tesis/botma_design_2011.docx%23_Toc309135153

xi

LIST OF TABLES

Table 2.1: MCU Comparison (current measurements @ 3.3 V). .. 12

Table 2.2: Comparison of MCU features. ... 13

Table 2.3: EFM32 Gecko Energy Mode Properties. [16] .. 18

Table 3.1: ADC Driver Functions. .. 37

Table 3.2: RTC Driver Functions. ... 39

Table 3.3: Watchdog Driver Functions. .. 40

Table 3.4: MicroSD Driver Functions. .. 41

Table 3.5: Error Signal Code Descriptions and MCU Reaction. ... 46

Table 4.1: Transmission Protocol from PC to OBC. ... 62

Table 4.2: Transmission Protocol From OBC to PC ... 63

Table 4.3: Power Consumption Test Results... 65

Table 5.1: EFM32 Gecko and Giant Gecko Comparison. ... 68

Table 5.2: Flash and EEPROM Comparison. .. 69

Stellenbosch University http://scholar.sun.ac.za

xii

NOMENCLATURE

Abbreviations and Acronyms

 ADCS – Attitude Determination and Control Subsystem

 ADC – Analog to Digital Converter

 CMSIS – Cortex Microcontroller Software Interface Standard

 CPUT – Cape Peninsula University of Technology

 COTS – Commercially available Off-The-Shelf

 DAC – Digital to Analog Converter

 DMA – Direct Memory Access

 EPS – Electronic Power System

 ESL – Electronic Systems Laboratory

 HAL – Hardware Abstraction Layer

 I2C – Inter-Integrated Circuit

 IGRF – International Geomagnetic Reference Field

 ISR – Interrupt Service Routine

 LEO – Low Earth Orbit

 MCU – Microcontroller Unit

 OBC – Onboard Computer

 OS – Operating System

 RCO – Resistor-Capacitor Oscillator

 RTC – Real-Time Clock

 RTOS – Real-Time Operating System

 SAA – South Atlantic Anomaly

 SEE – Single Event Effects

 SEL – Single Event Latchup

 SEU – Single Event Upset

 SGP4 – Simplified General Perturbation no.4

 SPI – Serial Peripheral Interface

 SRAM – Static Random Access Memory

 SSTL – Surrey Satellite Technology Limited

 TID – Total Ionizing Dose

 TLE – Two Line Elements

Stellenbosch University http://scholar.sun.ac.za

NOMENCLATURE xiii

 TMR – Triple Modular Redundancy

 UART – Universal Asynchronous Receiver/Transmitter

 USART – Universal Synchronous/Asynchronous Receiver/Transmitter

 XO – Crystal Oscillator

Stellenbosch University http://scholar.sun.ac.za

1

1 BACKGROUND

1.1 MISSION

The Cape Peninsula University of Technology (CPUT) has recently started working on a

series of nanosatellite (CubeSat) missions which are detailed in [1]. Due to the importance of

a robust Attitude Determination and Control System (ADCS) in most satellite missions,

CPUT decided to collaborate with the University of Stellenbosch because of their experience

in the ADCS field as well as satellite research in general. The University of Stellenbosch has

been involved in the development of two satellites, namely the SUNSAT in 1999 [2] and the

SumbandilaSat [3] in 2009. The first CubeSat by CPUT is to be a small (10 × 10 × 10 cm)

satellite with a long antenna as its main payload and a relatively basic ADCS. The mission

will be to calibrate the radar antenna patterns for the Hermanus Magnetic Observatory’s

antenna array in Antarctica. A second, slightly larger satellite (3U CubeSat) will subsequently

be developed. The payloads for this satellite still have to be determined.

For the 3U CubeSat, the University of Stellenbosch will design a completely independent

ADCS unit. This unit will control all the sensors and actuators, run all the algorithms and

perform calculations in order to achieve the desired orientation which, through a high-level

interface, can be set by the main Onboard Computer (OBC) and/or ground station. The two

main reasons for implementing the ADCS in a separate unit are managing complexity and

improving modularity.

1. Complexity

The ADCS is a very complex subsystem responsible for updating sensor data and

controlling actuators, while running multiple models (sun, orbit, etc.), estimators and

control algorithms. Because of the large amounts of computations and data being handled,

the ADCS tends to dominate an OBC’s resources. In order to keep the main OBC free to

react to mission-critical subsystems, such as power and communications, it is more

desirable to implement the ADCS on a separate OBC.

2. Modularity

Modularity refers to the ability to add, with minimal effort, a unit or module to a system

that improves the overall ability of that system. The idea of a CubeSat as a standard

satellite bus for which expansion boards of a different subsystem can be added to extend

the functionality of the satellite fits very well into this definition of modularity. The

Stellenbosch University http://scholar.sun.ac.za

BACKGROUND 2

ADCS unit takes that same trend one step further by grouping all ADCS-related

expansion boards (sensors and actuators) and having them controlled by a separate OBC.

This unit can then be added easily to any CubeSat for which an ADCS is required.

Stellenbosch University’s Electronic Systems Laboratory (ESL) has already designed a

horizon and sun sensor, called CubeSense, which is used in the STRaND CubeSat from

Surrey Satellite Technology Limited (SSTL) [4] and can be seen in Figure 1.1. The actuators,

OBC and ADCS algorithms are still in development.

This thesis will document the design and development of the OBC required for the ADCS

unit on the 3U CubeSat. The ADCS OBC will act as the interface between the main OBC and

the orientation control of the satellite. The desired attitude controller and determination

estimator of the satellite can be sent to the ADCS OBC via a telecommand. This will then be

interpreted and the control algorithms together with sensor data will then compute the

necessary output/commands for the actuators to achieve the desired attitude. The lack of

space and power on a CubeSat impose strict limits on its design, which will be discussed later

in Section 2.1.

Figure 1.1: SSTL STRaND CubeSat. [4]

Stellenbosch University http://scholar.sun.ac.za

BACKGROUND 3

1.2 CUBESAT

Traditional satellites tend to be large, complex and expensive systems. To maximise the value

of a satellite, multiple payloads are fitted onto one bus. This forced designers to use redundant

subsystems and radiation-hardened components to ensure reliability of the satellite which in

turn increased the size and cost of the satellite. As the payloads continued to increase in

number and complexity, the satellite bus and subsystems had to be redesigned for almost

every mission. This made it difficult for academic institutions (such as universities) to start a

satellite programme, because of the high cost and technical expertise that even a small

satellite used to require. This increasing complexity and cost spiral is the main reason for the

development of the CubeSat standard, according to [5].

The CubeSat approach is trying to change this by adhering to a satellite bus standard. A

1U CubeSat bus is roughly 10 × 10 × 10 cm and weighs around 1 kg. Figure 1.1 shows an

example of an 1U CubeSat with all its subsystems, excluding the body-mounted solar panels.

These CubeSat units can be fit together to create a 2U (10 × 10 × 20 cm), 3U (10 × 10 × 30

cm), etc. Examples of the chassis to contain these CubeSats are shown in Figure 1.2. There

are two main advantages when working with CubeSats. Firstly, the standard size of the

satellite structure has allowed for the design of a standard launch adapter (P-POD) which

made it easier for CubeSats to piggyback on big satellite launches for a fraction of the price of

a dedicated launch [6]. Secondly, it is possible to buy all the components and subsystems to

create a space-ready CubeSat [7][8]. Therefore none of the components have to be specially

made or developed; it is only necessary to add a payload to the CubeSat to do meaningful

research.

Stellenbosch University http://scholar.sun.ac.za

BACKGROUND 4

The standard bus interface and protocol of a CubeSat makes it easier to design

subsystems that can be used on multiple CubeSat missions. The use of Commercially

available Off-The-Shelf (COTS) is encouraged to keep development costs to a minimum as

well as to make use of the myriad of electronic components available on the market not

necessarily aimed at the space industry. It is possible to manage the risk when not using space

grade components on a satellite. This will be shown later in chapters 3 and 4.

The size of a CubeSat makes it a very affordable satellite bus to design and launch but it

is this size that limits the weight and power usage when designing a subsystem for a CubeSat.

Subsystems have to be very compact to fit into a CubeSat and the small solar panel surface

area on the outside of the CubeSat chassis does not generate large amounts of electric power

which results in very strict power budgets for each subsystem.

1.3 ADCS

The ADCS is responsible for the orientation of the satellite within its orbit. This subsystem

follows the same principle as most control loops and is shown in Figure 1.3. Sensors on the

satellite provide the latest measurements regarding its orientation relative to sun (sun sensor),

stars (star tracker), earth (horizon sensor and magnetometer) and/or spin rates (gyroscope).

The measured data is then compared to reference values set by the main OBC. If an error

exists due to sensor noise, external forces on the satellite (drag and solar pressure) and other

perturbations (gravity from earth, moon and sun), the satellite can be realigned through the

use of actuators such as magnetic torque rods, reaction/momentum wheels and even thrusters.

Figure 1.2: Examples of CubeSat Unit Sizes. [44]

Stellenbosch University http://scholar.sun.ac.za

BACKGROUND 5

Being able to control the orientation of a satellite is very beneficial and might even be

considered mandatory for some missions. The following are two common uses for an ADCS

with examples:

1. Pointing a device or payload towards a target.

Examples:

 Pointing an imager at a target for longer exposure and therefore higher quality

images.

 Pointing an antenna towards the ground station during an overpass to maximize

transmission length and quality.

2. Spinning the satellite around an axis at a specified rate.

Examples:

 Spinning the satellite around the axis normal to the orbit plane (Y-Thompson [9]) to

stabilize it against external disturbance forces.

 Spinning the satellite around the nadir axis (barbeque spin) to ensure that equal

amounts of sunlight reach all the body-mounted solar panels (which also improves

thermal stability).

For a more in depth discussion of the advantages and implementations of ADCS for a

satellite, refer to [10], pages 354-380.

Figure 1.3: ADCS Control Loop for a Satellite. [7]

Stellenbosch University http://scholar.sun.ac.za

BACKGROUND 6

1.4 SPACE ENVIRONMENT

Space is a hazardous environment. The following section will highlight the major challenges

when designing electronic equipment, such as the ADCS OBC, for space.

1.4.1 RADIATION EFFECTS

Stars emit various forms of charged particles, known as radiation, during its fusion process.

On the earth’s surface most of the radiation from space is diverted by the earth’s magnetic

field. Most of the time satellites in Low Earth Orbit (LEO) are within the safety of the

magnetic field, except when passing over the South Atlantic Anomaly (SAA). The SAA

(shown in Figure 1.4) is a region where radiation from the Van Allen belts as well as other

charged particles enters the atmosphere. This radiation causes undesired effects in electronic

equipment, especially semiconductor devices. A summary of these affects are explained

below which can be found in more detail in [11] and [12], pages 214-221.

 Single Event Upset

A Single Event Upset (SEU) occurs when a charged particle causes a change in the

contents and/or state of a device without causing permanent damage to that device. [11] A

common example is when the content of a memory cell is changed by a charged particle.

This is referred to as a bit-flip. These upsets usually do not damage a device, but it could

cause undesired effects within the operation of a device or system.

Figure 1.4: Proton Flux Simulation Showing the South Atlantic Anomaly. [40]

Stellenbosch University http://scholar.sun.ac.za

BACKGROUND 7

 Single Event Latchup

A Single Event Latchup (SEL) occurs when radiation causes a parasitic transistor within

the device to switch on and result in excessive current flow. [11] This excessive current

flow may damage the device, due to the heat generated locally, if the latchup is not

removed by means of power cycling (switching power on and off to device).

 Total Ionizing Dose

The Total Ionizing Dose (TID) is the amount of radiation build-up a device can withstand

before its operation is deemed unreliable. [11] The TID tolerance can be seen as a

measure for determining the life expectancy of an electronic device. Some electronic

devices have a radiation-hardened version which has a greater TID tolerance, but they are

considerably more expensive. Some COTS do have a TID tolerance large enough to

justify its use on a satellite with a short mission in LEO.

1.4.2 REMOTENESS

One of the major challenges when designing a satellite is to compensate for the fact that if a

component or subsystem malfunctions in space, it cannot be brought in for repairs. Some

satellites have the ability to reconfigure their software during operation, but when a serious

hardware error occurs it usually results in the loss of the satellite. Implementing redundancy

and radiation-hardened components are ways in which reliability can be designed into a

satellite according to [11] and [12].

 Redundancy

One form of redundancy is when a satellite has one or more dormant subsystems that can

take over in case of a failure. A special case of redundancy called Triple Modular

Redundancy (TMR) is when three subsystems/devices operate simultaneously and a

controller chooses the result based on a majority vote.

 Radiation- Hardened Components

One of the major reasons for a failure on satellites is components failing because of

radiation (as explained in 1.4.1). Therefore the simplest way to incorporate reliability into

a system is to use radiation-hardened components. Some electronic devices have

radiation-hardened versions available from their manufactures, but they are much more

expensive.

Stellenbosch University http://scholar.sun.ac.za

BACKGROUND 8

Other challenges for satellite design include thermal issues due to the lack of atmosphere

which could cause massive temperature gradients (depending on which side is illuminated by

the sun), micro meteorites, spacecraft charging, outgassing and many more which are

described in [11], pages 22-27. These challenges will not be discussed in this thesis, because

they do not directly influence the design of electronic subsystems, such as, in this case, an

ADCS OBC.

1.5 DOCUMENT OUTLINE

The following section gives a short description of each chapter in this document.

1. Background – An introduction to the mission and topics related to the project.

2. Hardware Design – Details the requirement definition of the ADCS OBC and the

system, subsystem and component level design.

3. Software Development – Discusses the software development of the ADCS OBC which

includes low level and user level interfaces.

4. Tests and Measurements – Lists the results from the tests developed and measurements

taken from ADCS OBC prototype.

5. Conclusions and Recommendations – Discusses the results of the tests and

measurements with regards to the requirements and any recommended changes to the

ADCS OBC.

6. Summary – A summary of the project.

Stellenbosch University http://scholar.sun.ac.za

9

2 HARDWARE DESIGN

This chapter will discuss the techniques followed during the hardware design of the ADCS

OBC. Firstly the requirements definition is presented, which served as the standard by which

the entire system was designed. The next section covers the process of selecting the

microcontroller. This is important for the design, because selecting the appropriate

microcontroller directly and indirectly affects the rest of the OBC. Following that, an

overview of the OBC will be provided, looking at the different subsystems: why they are

there and what they will do. A lower-level overview will then follow which will briefly

describe how all the subsystems were implemented and which components were used.

2.1 REQUIREMENT DEFINITION

It is important to clearly define the requirements before starting any design. Requirements

need to take into account not only the main objective of the design, but the challenges it

presents as well. For this project the objective is to design an ADCS OBC for a CubeSat. The

following requirements were defined while taking into account the aspects discussed in the

previous chapter, such as the complexity of an ADCS, the limitations of a CubeSat and the

harsh space environment:

2.1.1 PERFORMANCE

ADCS is a very complex subsystem. Therefore the OBC has to be powerful enough to handle

all the complex computations (control algorithms, Kalman filters), precise control (floating-

point and double data types) and large amounts of data (telemetry, models and sensor data).

2.1.2 EFFICIENCY

A CubeSat is very limited in power and space. This means that the OBC has to be very

efficient and designed as cost effective as possible in terms of power usage and size. Low-

power components should be used where possible and if a component or subsystem is not

used it should be powered down to conserve energy. The OBC is also required to use less

than 1 Watt power during peak operation.

2.1.3 RELIABILITY

On a satellite mission, reliability is always a major requirement because if a failure occurs in

space it cannot be repaired and usually results in the end of the mission. The two most

common implementations for reliability are to either use radiation-hardened components

and/or include redundant components or subsystems. However, neither of these are an option

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 10

for the CubeSat. Radiation-hardened components are too expensive and redundancy takes up

too much space.

The only way to ensure reliability is to design the OBC to be robust. Robustness is the ability

to adapt and survive in case of an emergency. From a design point of view this means

including error-detection measures that will respond by either trying to rectify or isolate these

errors. The OBC should be robust on both the hardware as well as the software level in order

to cope with the hazardous space environment.

2.2 MICROCONTROLLER SELECTION

The Microcontroller (MCU) is the most important component on an OBC. The features of the

MCU usually dictate how the rest of the OBC is designed, because it acts as the interface

between the majority of the components. Due to the ever-growing electronic market,

especially in terms of efficiency, many different MCUs are available to choose from.

2.2.1 8-BIT VS. 16-BIT VS. 32-BIT MCUS

An 8-Bit MCU is used in designs where power usage is considered vital. Its small architecture

allows it to control a system with minimal power usage, but also limits its mathematical

capabilities, especially with large data types such as floats and doubles.

A 32-Bit MCU is mostly used for application purposes where large amounts of data are

being processed and power is a secondary (or not even a) factor. It is very capable at math

handling due to its larger registers and bus widths.

A 16-Bit MCU fills the slot between these two extremes. It is much better at math and

floating-point handling, compared to 8-bit MCUs, while still maintaining efficiency and

power consumption.

Taking the above into account, a 16-bit MCU would seem the logical choice for the

ADCS OBC. However, a recent shift in the market has occurred. Manufactures, such as ARM

[13] and Atmel [14], are providing 32-bit processors aimed at the low-power (8-bit / 16-bit)

market. These MCUs do not only perform better, but their power usage is comparable (and

even superior in some cases) to the 16-bit MCUs. This is possible because a 32-bit MCU will

generally complete the same tasks and computations faster than a 16-bit MCU and therefore

spend more time in an optimized “sleep mode” which results in less energy being used, as

illustrated in Figure 2.1.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 11

The new generation low-power 32-bit MCU was identified as an ideal candidate for the

ADCS OBC. It is more than capable at handling the computational requirements of the ADCS

algorithms but also includes enough energy-saving features which will be required on the

limited power budget of a CubeSat.

2.2.2 MICROCONTROLLER COMPARISONS

Table 2.1 compares most of the current low-power 32-bit MCUs from various manufacturers,

except for two: the MSP430 is a 16-bit MCU and AT91SAM7 is based on an older 32-bit

MCU architecture.

The MSP430 is used in the CubeSat main OBC from Pumpkin (FM430 [15]) and is very

competitive with regards to energy consumption. This, in fact, highlights how efficient some

of these low-power 32-bit MCUs actually are as they have better active and sleep efficiency

than the MSP430. Even though the 16-bit and 32-bit MCUs have comparable power usage,

the 32-bit MCUs have a clear advantage regarding performance.

It is interesting to note the similar performance of the EFM32 Gecko, LCP13x and

STM32L MCUs. They are all based on ARM’s next generation low-power 32-bit architecture

called the Cortex-M3 range. The Atmel AT91SAM7A3 is based on the older generation

ARM7TDMI architecture and is also included to showcase the differences between the

current (Cortex-M3) and previous (ARM7) generation of low-power 32-bit MCUs. The

ARM7TDMI architecture has flight heritage in space, onboard the UTIAS SFL’s CanX range

of satellites [16], which will hopefully translate into the new generation of ARM MCUs.

Figure 2.1: Cortex-M Energy Efficiency Solution. [10]

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 12

Table 2.1: MCU Comparison (current measurements @ 3.3 V).

Manufacturer MCU Speed Performance Active Sleep

 MHz DMIPS/MHZ uA/MHz uA

Energy Micro EFM32 Gecko* 32 1.25 180 0.6

STM STM32L* 32 1.04 230 10.4

NXP LPC13x* 72 - 236 30

Atmel AT32UC3Lx 50 1.28 300 3.5

TI MSP430F16x 8 1.5 330 1.1

Microchip PIC32MX3/4 80 1.56 688 25

Freescale MCF521 80 0.95 801 5.38

Atmel AT91SAM7A3 60 0.9 1167 175

* Cortex-M3-Based Architectures Microcontrollers

Table 2.1 shows that the Cortex-M3-based MCUs are superior in terms of efficiency,

closely followed by the AT32UC3L, which is based on the Atmel AVR architecture. These

four MCUs have been evaluated further, as summarized in Table 2.2, based on the features of

each MCU, which might be useful on an ADCS OBC. These include:

 On-chip memory

This includes the amount of available SRAM and flash memory on the chip. This will be

required for code and program/user data. The ADCS program works with large data types

(float and double) and contains large models, arrays and variables. Therefore, more on-

chip memory will allow for larger and more feature rich ADCS programs to be executed.

 External Bus Interface

The External Bus Interface (EBI) is an interface that allows the MCU to extend its

memory capabilities by accessing external memory. This external memory can usually be

accessed by the user the same way in which the internal memory is accessed. This is

useful when more memory might temporarily be required (telemetry data) or for storing

multiple programs the MCU can execute.

 Inter-Integrated Circuit

The Inter-Integrated Circuit (I2C) is a popular bus-based communication channel also

referred to as “two wire interface”, because it only uses two IO lines for communication

(clock and data). The I2C is the main communication channel on the CubeSat and links

the different subsystems. It would therefore be beneficial for the MCU to include an

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 13

internal I2C controller, which would reduce the amount of chips on the PCB since an

external I2C module will not be needed.

 Serial Peripheral Interface

The Serial Peripheral Interface (SPI) is a point-to-point-based communication channel

which can transfer data at high speeds. This is useful on a satellite when large amounts of

data need to be transferred between two subsystems without clogging up the main

communication bus.

 Analog to Digital Converter

The Analog to Digital Converter (ADC) is a unit that samples analog signals (usually

voltage) and converts it to a digital value. An ADC unit has a resolution which determines

the accuracy of the digital value. ADCs are useful on a satellite because they can be used

to measure currents and voltages for telemetry purposes.

Table 2.2: Comparison of MCU features.

Features AT32UC3L EFM32 STM32L LPC13xx

Flash (kB) 64 128 128 32

SRAM (kB) 16 16 16 8

EBI N Y Y N

I2C 2 1 2 1

SPI 1 2 2 1

ADC (Resolution) 12-bit 12-bit 12-bit 10-bit

Taking the data in Table 2.2 into account, the EFM Gecko MCU was chosen because of

its energy efficiency as well as offering all the features that could prove useful on an ADCS

OBC for a CubeSat.

2.2.3 EFM GECKO MCU

This section will discuss the EFM32 Gecko MCU (EFM32G) in further detail, especially

looking at its core architecture, energy management schemes, memory and bus system and,

finally, peripherals. Figure 2.2 presents a block diagram of the EFM32 MCU on system level.

The different colours indicate the different energy modes, which will be further explained

later in this section.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 14

2.2.3.1 ARM CORTEX-M3 CORE

The ARM Cortex-M3 core, shown in Figure 2.3, is based on a high-performance processor

core and designed to optimize efficiency. The following are some of the features included

with the Cortex-M3 processor.

 3-Stage Pipeline

Most processor instructions consist of three stages, namely the instruction fetch (IF),

decode and execute stages. The use of a 3-stage pipeline enables the processing of

different stages in different pipelines simultaneously. This generally ensures that the

processor is completing an instruction per cycle instead of waiting three cycles, for all

three stages, to complete a single instruction.

 Harvard Architecture

The Harvard architecture uses different memory busses for code and data. On MCUs

where there is no cache memory, the Harvard architecture effectively doubles the

memory throughput, because the instruction and data (usually stored in separate memory

locations such as flash and SRAM) can be fetched simultaneously.

Figure 2.2: Diagram of EFM32 Gecko MCU. [12]

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 15

 Hardware Division and Single-Cycle Multiplication

The Cortex-M3 processor core implements hardware division that is able to execute

signed and unsigned division operations between two and 12 cycles. Together with a

single cycle 32-bit multiplication, this allows for very efficient arithmetic computations,

which are usually the most demanding responsibility of an MCU.

 Interrupt Handling

The Cortex-M3 processor includes a nested vector interrupt controller (NVIC) and

wakeup interrupt controller (WIC). These controllers allow the MCU to handle

interrupts during deep sleep modes, which lowers its energy consumption.

 Thumb-2 Instruction Set

The Thumb-2 instruction set is used by the Cortex-M3 processor and offers excellent

code density. Even though the Cortex-M3 is a 32-bit MCU, the majority of its

instructions are 16-bit [13]. The 32-bit registers and bus width decrease the program size

Figure 2.3: Cortex-M3 Processor Core. [17]

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 16

further because fewer instructions are required when working with larger data types

(such as floating-point and double data types).

The Cortex-M3 includes many other features, such as a memory protection unit and extensive

debugging capabilities, which can be studied further in the following references: [17] [18].

2.2.3.2 MEMORY AND BUS SYSTEM

The EFM32G uses an AMBA High-performance Bus (AHB) bus which allows its four bus

masters to interact with the system through a memory-mapped address space. The four

masters are:

 I-Code – for instruction fetches to code memory

 D-Code – for data and debug access to code memory

 System – for instruction fetches, data and debug access to system space

 DMA – for memory transfers to and from the entire memory space

Figure 2.4 is a block diagram of the Cortex-M3 memory and bus system. The four bus

masters are shown on the left, with the system components on the right. The peripherals are

connected to the AHB through the AHB-to-APB bridge. The system is memory mapped and

the address space is shown in Figure 2.5.

Figure 2.4: Cortex-M3 Memory and Bus System. [16]

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 17

2.2.3.3 PERIPHERALS

The EFM32G includes a wide variety of peripherals as well as a few specially developed low-

energy peripherals. These peripherals are the following:

1. General Purpose Input/Output

The EFM32G includes up to 90 General Purpose Input/Output (GPIO) pins, depending

on the package size. The EFM32G pins allow for multiple configurations of the

peripherals to maximize the use of pins and peripherals. They also allow for up to sixteen

asynchronous interrupt channels.

2. Timers and Counters

The EFM32G includes three general purpose 16-bit timers. These timers can either be

configured as counters, or used for input capture, output compare or Pulse Width

Modulation (PWM). A watchdog timer and a separate low-energy 16-bit timer are also

included, both of which can be used during sleep modes when most other peripherals are

disabled.

Figure 2.5: Cortex-M3 System Address Space. [16]

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 18

3. Analog

The EFM32G includes a 12-bit ADC with a sample rate of one million samples per

second. The ADC can choose as input one of eight external pins or six internal signals. A

12-bit DAC is included which can either be used in two single-ended modes or in

differential mode. A voltage comparator can be used to monitor or compare eight external

pins with three internal references. A supply voltage monitor and temperature sensor is

included as well for monitoring purposes.

4. Communication

The EFM32G includes the UART communications protocol, which is usually used for

debugging purposes. Two low-energy UARTs are also available that are able to operate

independently from the main processor during sleep mode by means of the DMA

controller. Two further USARTs are included as well and can each be configured either

as a UART or an SPI port. The EFM32G further has an I2C module that includes address

recognition, even during deep sleep modes.

This list is only a summary of the peripherals available on the EFM32G. For an in-depth look

at the peripherals and features available on the EFM32G, please refer to [17].

2.2.3.4 ENERGY MANAGEMENT

The EFM32G has five well-defined energy modes, EM0 – EM4. A variety of wake-up

triggers and low latency switching between these modes, allow for the maximum amount of

time in the lowest possible energy mode which is key to saving energy. Table 2.3 provides a

summary of the properties of the different energy modes available in the EFM32G.

Table 2.3: EFM32 Gecko Energy Mode Properties. [17]

Energy Mode EM0
Run

EM1
Sleep

EM2
Deep Sleep

EM3
Stop

EM4
Shutoff

Current consumption 180 uA/Mhz 45 uA/MHz 0.9 uA 0.6 uA 20 nA

Wake-up time 0 0 2 us 2 us 163 us

Core On

HF peripherals On On

LF peripherals On On On

Register & RAM retention On On On On

Reset detectors On On On On On

For a better understanding of which peripherals are available during a specific energy

mode, compare Figure 2.6 with Figure 2.2. The peripherals are colour coded, where each

colour represents the lowest energy mode in which the peripheral will respond to activity.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 19

2.3 SYSTEM OVERVIEW AND DESIGN

Figure 2.7 shows the ADCS OBC system in block diagram form. The MCU is the core of the

OBC with four subsystems (power, monitoring, memory and communication) built around it.

In the following sections each of these subsystems will be discussed in further detail with

regards to their functions as well as their implementation.

2.3.1 MCU

As mentioned in the previous section, the MCU directly and indirectly affects the other

subsystems in the following ways:

 Power – The MCU requires a stable power supply from the power subsystem.

 Monitoring – The MCU actively samples and processes the monitored channels with its

ADC peripheral unit.

 Memory – The MCU is the only component responsible for storing and retrieving data

from the external memory.

 Communication – The MCU connects to external subsystems (main OBC, sensors and

actuators) where it either receives data from, or transmits data to.

The significance of the MCU in the OBC necessitates the implementation of extra reliability

and accuracy in its design. An external watchdog will add reliability against undesired lock-

ups and external real-time and high-frequency crystal oscillators will generate more precise

clock signals.

Figure 2.6: Energy Mode Indicator. [16]

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 20

2.3.1.1 WATCHDOG

An external watchdog is implemented on the OBC for the MCU. According to [19], the

watchdog is a component with an internal countdown timer and is connected to the reset line

of the MCU. Unless the watchdog is periodically toggled by the MCU (to reset the internal

timer) it will cause the MCU to reset.

The MCU already includes an internal watchdog that should allow the MCU to reset in

case the MCU becomes unresponsive due to a software error (runtime exception). Adding an

external watchdog would add another level of reliability to the OBC with very little overhead

(2.90 × 2.80 × 1.20 mm and 500 uA for the STWD100 [20]).

The watchdog used in this design is the STWD100 from ST Microelectronics [20]. The

internal timer of the watchdog has to be reset within 1.6 s after the previous reset, which can

easily be done when the real time clock generates an interrupt every second. If the internal

Figure 2.7: ADCS OBC Block Diagram.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 21

timeout is reached, the watchdog will reset the MCU for 210 ms which should allow the

MCU to recover from its erroneous state.

2.3.1.2 CRYSTAL OSCILLATOR

Oscillators generate the signals that drive the MCU core and peripherals. The MCU includes

internal Resistor-Capacitor Oscillators (RCOs). The high-frequency RCO has a configurable

frequency range of 1 – 28 MHz and the real-time RCO has a frequency of 32.768 kHz. On a

satellite many of the subsystems depend on the accuracy, precision and stability of the

oscillator signals, also known as frequency stability. The following two examples illustrate

the importance of frequency stability.

1. Real-Time Clock Synchronization

For multiple OBCs it is important that the respective Real-Time Clocks (RTCs) are

synchronized and increment at the same rate. If not, one OBC could schedule a task for

another OBC at a time stamp that might have already elapsed according to its real-time

clock. On an ADCS OBC, the need for an accurate RTC is even more important since

some algorithms require the absolute time (SGP4) and a large time error will result in

inaccurate ADCS control.

2. Communication Synchronization

For communication peripherals a stable clock source on both the receiver and the

transmitter is important. If the oscillator signals start to drift, the receiver might latch a

data bit when the transmitter data is still changing its state. If the error is detected the

data has to be retransmitted, or worse, the error is not detected and undefined data could

cause a larger error somewhere else in the system.

These are two examples showing the importance for the use of stable oscillators.

Unfortunately, the frequency stability of RCOs is sensitive to temperature, supply voltage and

load variations, which are very difficult to control in the harsh space environment. The

solution is to use Crystal Oscillators (XOs) which deliver better frequency stability even

under varying conditions.

The OBC design includes the following two external crystal oscillators:

1. High-Frequency Crystal Oscillator

A high-frequency, 32 MHz, oscillator is responsible for driving the core and all the high-

frequency peripherals (ADC, EBI, I2C, etc). By using a High-Frequency Crystal

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 22

Oscillator (HFXO), the MCU core is also able to operate at its maximum frequency

range of 32 MHz, which the internal RCO (maximum of 28 MHz) will not be capable of.

2. Low-Frequency Crystal Oscillator

A low-frequency, 32.768 kHz, oscillator is responsible for all the low-frequency

peripherals including the real-time clock. A Low-Frequency Crystal Oscillator (LFXO)

will make it easier to keep the RTCs synchronized between the main OBC and ADCS

OBC.

For a detailed view of MCU and how it interfaces with the rest of the ADCS OBC refer to

Appendix B.1.

2.3.2 EXTERNAL MEMORY SUBSYSTEM

The ADCS OBC includes an external memory subsystem. The MCU internally includes 256

kB of flash and 16 kB of SRAM memory. For an ADCS OBC, this might not be enough

memory to implement all the required features. The OBC might need to have multiple

programs for the bootloader to choose from, depending on the situation (safe mode, full

operation, etc.). Large program stacks (multiple kilobytes as confirmed by testing) are

required due to the complex ADCS algorithms, models, large data types and various telemetry

related data. To ensure all of these features can be implemented, an external memory

subsystem is added on the OBC, which is shown diagrammatically in Figure 2.8.

2.3.2.1 MEMORY TYPES

Before the memory subsystem will be discussed in further detail, the differences between the

SRAM and flash memory (the two main memory types used for most OBC designs) in terms

Figure 2.8: External Memory System of ADCS OBC.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 23

of performance and reliability will be looked at to understand the role they can fulfil and the

challenges they will pose.

 Flash

Flash memory is a non-volatile memory unit, in other words it retains its value even

when not powered. It has very fast access speeds, but writing to flash memory is

considerably slower than reading from it. Flash memory is also very resistant to radiation

effects when being accessed, but it is susceptible to Single Event Effects (SEEs), such as

SEU and SEL, when being programmed according to study done in [21]. Taking the

above into consideration, flash memory is a very good storage candidate for program

code. An MCU is programmed very seldom, therefore negating its weakness of slow

programming time and SEEs. When continuously accessed during program execution it

is very resistant to SEEs.

 SRAM

Static Random Access Memory (SRAM) is a volatile memory unit. Unlike flash memory

it retains its data only when powered. However, it has very fast read and write times

which makes it an ideal candidate for storing program data which either rapidly changes

their values or are merely temporarily allocated. Examples of these data types are

variables used in the ADCS calculations, telemetry data temporarily stored before being

transmitted to ground and sensor data which are periodically updated. Unfortunately

SRAM is susceptible to radiation effects (SEEs) during both read and write operations

[11]. To counteract the SEEs for this design an Error Detection and Correction (EDAC)

module will be implemented for the SEUs and a robust power system will be

implemented for the SELs.

2.3.2.2 EXTERNAL MEMORY REGIONS

The MCU includes an External Bus Interface (EBI) with four chip select lines which are used

to access four external memory modules, each with a specific function.

1. Flash 0 – Safe Mode

A flash memory module will be dedicated to storing a default safe mode operation

program. This should be a simple program that will allow the satellite to make contact

with the ground station, from where it will receive further commands. This should be the

default program the ADCS OBC falls back on after a reset from an unresponsive state.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 24

Because Flash 0 will only be storing one operating program, its capacity did not have to

be as large as Flash 1 and was therefore chosen as one megabyte.

2. Flash 1 – Multiple Operating Programs

An additional flash memory module will be used to store different programs which will

execute after the safe mode program and the ground station have checked all the systems

of the ADCS OBC. The reason for having multiple programs is that different programs

are needed to handle different situations. Multiple programs can be used for reliability as

well by storing the same program in three different memory locations as a form of triple

mode redundancy. Extra programs can be uploaded from the ground station and stored in

flash, either as corrections to existing programs or programs with different objectives.

Because multiple programs will be stored on Flash 1, its capacity was chosen as four

megabytes.

3. SRAM – Program Data

An SRAM memory module is used for program data by the MCU. It is much safer to let

the MCU store important data in the external memory, because of the safety measures

implemented (EDAC and separate controllable power lines). If an SEU would occur

while using the internal SRAM it can go unnoticed and could cause a serious error. If a

SEL should occur while using the internal SRAM it would force the entire system

(ADCS OBC) to reset. Therefore the internal SRAM will be powered down and only the

external SRAM will be used. An SEU in the external SRAM will be detected by the

EDAC and a SEL will prompt the MCU to try and recover the SRAM (by power

cycling) before resetting the system. Besides the added safety of using the external

SRAM, the internal SRAM is limited to 16 kB of memory while external SRAM can

store much more data (2 MB is used for this design).

4. SRAM – Backup

An extra SRAM memory module will be implemented as a backup due to the

susceptibility of SRAM to radiation effects in space. This allows the MCU to reboot and

use the extra SRAM module for the important data if a latchup should render the primary

SRAM module unresponsive. This prolongs the time before it becomes necessary to use

the internal SRAM of the MCU. This is important since the internal SRAM of the MCU

has no form of EDAC and is therefore very susceptible to radiation effects. A SEL in the

SRAM of the MCU could render the ADCS OBC useless.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 25

2.3.2.3 EXTERNAL MEMORY INTERFACE

The EFM32G MCU used for the ADCS OBC includes an EBI which uses 16 GPIO lines for

address and data transmissions to external asynchronous devices. This allows for a maximum

8-bit address and 8-bit data single-cycle throughput. To increase the range of the EBI, a

multiplexed read/write operation can be implemented utilizing a latch. This allows for two

additional EBI configurations: 16-bit address/data and 24-bit address/8-bit data. This design

uses the 24-bit address/8-bit data configuration to maximize the memory map for each chip

select line and therefore the maximum size of each memory module. The control of the latch

and access to these external memories are fully automated and discussed during the driver

implementations of the EBI.

2.3.2.4 ERROR DETECTION AND CORRECTION

An Error Detection and Correction (EDAC) subsystem is implemented to compensate for the

susceptibility of SRAM to Single Event Upsets (SEUs) caused by the increased radiation level

in space. The EDAC is very important since most of the data (not code) for the ADCS OBC is

stored in SRAM and an undetected SEU (corrupt data) can cause undesired effects in the

operation of the ADCS OBC.

Various forms of EDAC exist that can be implemented on an embedded system.

 Software Based

A software-based EDAC system implements all the EDAC code within the MCU in the

form of a driver between the program and memory. This removes the autonomous usage

of the data stack by the MCU, which presents an extra overhead every time the SRAM is

accessed for data. This is, however, very difficult to implement.

 Hardware Based

Some manufacturers offer hardware implementations for flow-through EDAC systems,

like the Atmel EDAC (29C516E [22]). These units are located between the MCU and

SRAM on the data bus and work fast enough to enable them to encode and decode the

data during a read or write cycle. However, they are usually expensive and inflexible

which forces the memory design around these units.

 FPGA

The FPGA-based EDAC system follows a hardware-based approach, but can be tailored

to suit the requirements of a specific embedded design. A flow-through EDAC

implementation can be designed that does not interfere with memory access. The FPGA

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 26

can also be used to implement other custom controllers needed on the OBC, such as an

extra I2C controller, or port expander.

From the above descriptions, the FPGA-based EDAC system is the method best suited for this

ADCS OBC design, due to its speed, flexibility and customization options. The ESL has

experience in using FPGA-based EDAC systems in on-board satellite OBCs [23][24], which

provided the necessary background and expertise to develop one for this project.

The EDAC system is implemented on an Igloo Nano (AGL030) FPGA from Actel [25].

This FPGA is designed for very low-power applications (efficiency) and the AGL030 version

has no embedded SRAM which makes it less susceptible to radiation effects, ensuring

reliability. The FPGA is also used on the CubeSense board design by the ESL [26].

2.3.2.5 SRAM BUS ISOLATION

Figure 2.9 shows the design for isolating the SRAM modules from the data and address bus.

When an SRAM has been damaged due to a latchup and its power supply is turned off, the

module can still draw current via the address/data bus lines and even affect the data on the

bus. This happens because no supply current is available to drive the input/output pins of the

SRAM module into high impedance. It is therefore important that the system is able to isolate

the SRAM module completely from the address/data bus if it is powered down. This is

achieved in this design by using bus switches which can be toggled by the MCU to either

connect the SRAM module to the bus, or isolate it, by driving the ports to high impedance.

2.3.2.6 SD CARD STORAGE

The memory subsystem further includes a 2 GB microSD storage card. The SD storage is a

non-volatile memory based on NAND flash technology and has exceptional capacity. The

MCU uses the SPI interface to communicate with the microSD card. The SD storage offers

Figure 2.9: SRAM Isolation Design Diagram.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 27

another form of long-term storage that could be used to log various telemetry data to be

requested by the ground station at a later time. At the time of conducting this research,

microSD cards do not have any flight heritage in space and is added as an experiment.

For a detailed view of Memory Subsystem and how it interfaces with the rest of the ADCS

OBC refer to Appendix B.2.

2.3.3 POWER SUBSYSTEM

The power subsystem is responsible for providing all the components on the OBC with their

required supply voltage and regulating the current during operation. The main Electronic

Power System (EPS) supplies to all the subsystems a 5 V and 3.3 V power line which can be

used to power most of the components on the ADCS OBC. However, a separate power

system was specifically designed on the ADCS OBC to power the components. This

improves reliability in two key areas, namely stability and control.

1. Stability

When a power line is under heavy load (i.e. drawing heavy current) the supply voltage

can drop due to undesired series resistance in the power line. This voltage drop can cause

unwanted behaviour and even damage sensitive components. This can be prevented by

regulating the required supply lines (3.3 V and 1.5 V) down from the 5 V power line

supplied by the EPS. The output voltage will be very resistant to input voltage

fluctuations as long as the input voltage drop remains above the specified dropout voltage

of the regulator. The end result is a more stable supply voltage.

2. Control

The advantage of designing a separate power system is that it supplies a means of control.

The OBC can monitor the power system and detect if a too large current is being drawn

or if a supply voltage is dropping too low. The OBC can then respond by power cycling

the problematic power line to attempt to fix the latchup, or even switch it off completely.

The OBC will then lose those components, but not the entire system.

Figure 2.10 shows the design of the power system in diagrammatic form, which will be

broken down and discussed further below.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 28

2.3.3.1 POWER SUPPLY LINES

A 5 V power line from the EPS is split into five power lines which are used in the ADCS

OBC. These power lines are then used to power the various components.

 General 5 V

This power line is the regulated 5 V power line supplied by the EPS. It is used to power

the 5 V components on the OBC.

 FPGA 1.5 V

This power line is regulated down from the 5 V power line supplied by the EPS. It is

used to power the FPGA, which is the only component in the OBC that operates on a 1.5

V supply voltage.

 General 3.3 V

This power line is regulated down from the 5 V power line supplied by the EPS. It is

used to power the MCU and all other 3.3 V components, except the SRAM modules,

which have their own power lines.

Figure 2.10: OBC Power System Block Diagram.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 29

 SRAM 3.3 V

Each SRAM module has its own power line. These power lines are regulated down from

the 5 V power line supplied by the EPS. They power only their respective SRAM

modules. The reason for this is that the power lines can individually be power cycled or

disabled if a latchup should occur.

2.3.3.2 REGULATORS

The 3.3 V and 1.5 V lines are regulated using low-dropout linear regulators. The Texas

Instruments (TI) TPS76733 [27] and TPS73215 [28] were used in this design for the 3.3 V

and 1.5 V lines respectively. Both regulators offer exceptional voltage regulation at 0.01%

change in output voltage over change in input voltage.

The 3.3 V and 1.5 V regulators have a current limit of 1 A and 250 mA respectively. Both

of these limits are far higher than the required current according to preliminary power

calculations. In the final version of the OBC, a regulator with a current limit closer to the

nominal operating current can be selected. Therefore, if one of the components draws

excessive amounts of current the supply voltage will drop and the brown-out-reset of the

MCU will respond by resetting the OBC.

2.3.3.3 LOAD SWITCHES

Since SRAMs are the components on the OBC most susceptible to latchups, being able to

switch the power to them on and off adds another layer of reliability. Power switches can be

implemented with a simple PMOS circuit. However, a load switch from Fairchild

Semiconductors (FPF2124 [29]) was chosen due to its current-limiting ability. For this design

the current limit was configured to 200 mA, which is the rated latchup current for the Cypress

Semiconductor SRAM (CY62167DV30 [30]) modules used in this design. When this current

limit is reached and maintained for 10 ms the FPF2124 switches off the power line until it is

toggled from an external controller (the MCU in the case of this design).

For a detailed view of Power Subsystem and how it interfaces with the rest of the ADCS OBC

refer to Appendix B.5.

2.3.4 MONITORING SUBSYSTEM

Due to the harsh space environment, mentioned in section 1.4, the ability to continuously

monitor the state of a system is very important. This allows the OBC to detect any

abnormalities in the system which might be caused by faulty components or operations. These

errors can either be fixed or even isolated before any serious damage is caused to the system.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 30

The monitoring process should be sensitive and responsive: sensitive, in order for it to pick up

the slightest change that could be a symptom of a larger problem and responsive, to be able to

react quickly when a problem is detected.

As mentioned previously, the most common problem on an OBC is the susceptibility of

SRAM to latchups due to radiation. This causes the SRAM to stop functioning as well as

draw an excessive amount of current. This current, if not quickly dealt with, can damage the

SRAM as well as other components on the OBC. A separate power line, with a current sensor

and a load switch, was therefore implemented to try and isolate the SRAM modules in case of

a latchup.

Figure 2.10, which illustrates the power system design, also shows how the monitoring

system is implemented. The supply current and voltages are monitored which, from a

hardware point of view, is the easiest way to detect any failures or malfunctions. The

monitoring channels are as follows:

 Voltage Sensors

The 3.3 V line and 1.5 V line is fed through a simple voltage divider circuit to the ADC

unit of the MCU. The voltage measurements will be used for telemetry purposes. The

MCU can also be configured to reset if the supply voltage drops below a certain

threshold.

 Current Sensors

The current from the general 3.3 V power line, 1.5 V FPGA power line and both SRAM

power lines are monitored by current shunt sensors. These currents are sampled as

voltages over output resistors and fed through an op-amp buffer to the ADC unit. This

implementation of a current sensor is shown in Figure 2.11 and discussed in more detail

in Appendix A.2.

 Temperature

The MCU has an internal temperature sensor which will be used by the monitoring

subsystem. The temperature measurements will be used mainly for telemetry purposes to

assess the thermal situation in the ADCS unit and CubeSat.

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 31

All the above mentioned monitoring channels are sampled by the ADC unit of the MCU. The

data gathered is stored for telemetry purposes, but could also be processed and allow the

MCU to react autonomously to expected problems. Two examples used in this design are

power cycling SRAM modules after a latchup and brown-out reset for the MCU.

2.3.5 COMMUNICATION SUBSYSTEM

The communication subsystem is responsible for allowing the ADCS to communicate with

other subsystems on the CubeSat. These typically include the main OBC, sensors and

actuators. The communication subsystem for this design is very simple from a hardware point

of view because all the required communication peripherals are included with the EFM32G

MCU. The following communication interfaces were implemented.

2.3.5.1 UART

The Universal Asynchronous Receiver/Transmitter (UART) is a simple point-to-point

communication interface. Data is serially transmitted on one channel and received on another.

Transmission is asynchronous in the sense that it can start at any time, but both transmitter

and receiver should be set up with the same speed for operation.

In this design, the UART interface will be used mainly for debugging purposes. It can

also be configured to program the MCU or merely used as a simple communication method

for outputting data during the development of drivers and control modes.

2.3.5.2 I2C

The Inter-Integrated Circuit (I2C) is a high-speed bus-based communication interface. A

master can access one of many slaves by using an address identifier to notify the correct slave

of an incoming transmission. Through the use of arbitration, clock synchronization and

Figure 2.11: Current Sensor Implementation. [28]

Stellenbosch University http://scholar.sun.ac.za

HARDWARE DESIGN 32

stretching, it is possible to allow for multiple bus masters if required. The I2C uses two IO

lines for communication: a communal clock signal and a data bus line. The features of the

MCU I2C controller is explained in more detail in [17].

In this design, the I2C bus is used as the communal bus where telecommands and

telemetry data are transmitted to and from the main OBC to the rest of the CubeSat

subsystems. In order for the ADCS OBC to communicate with its own subsystems (sensors

and actuators) the I2C can either be shared, via time slots or arbitration, or a separate I2C bus

can be used between the ADCS subsystems, which include the ADCS OBC, sensors and

actuators.

2.3.5.3 SPI

The Serial Peripheral Interface (SPI) is a high-speed point-to-point communication interface.

By synchronizing the communication between the transmitter and the receiver with a

dedicated clock signal, transfer speed is only limited by the clock signal generated by the

MCU. The SPI uses four IO lines for communication: a clock signal, a chip select signal, a

transmit line and a receive line.

In this design, one SPI channel is used to communicate with the microSD card. Another

could also be used for point-to-point access to a subsystem where large amounts of data

transfer needs to take place. An example would be the ADCS OBC receiving an image file

taken by a camera onboard the sun sensor or horizon sensor for telemetry or debugging

purposes. Transmitting this large file over the communal shared bus (I2C in the case of most

CubeSats) would unnecessarily occupy it for a long period of time and possibly prevent

important communication to take place between the other satellite subsystems.

Stellenbosch University http://scholar.sun.ac.za

33

3 SOFTWARE DEVELOPMENT

The development of competent software is just as, if not more, important than the hardware

design of an OBC. Software is responsible for instructing the different hardware components

how and when to execute. The way in which these instructions are ordered (by means of a

program) has to allow the system to achieve its intended purpose, which in the case of this

project is the attitude and determination control of a CubeSat. Software programs are very

complex and there are usually multiple implementations that achieve the same objective. It

was therefore important that the software implementations for this project take into account

the design requirements (performance, efficiency and reliability), because they apply to

software as well as hardware.

This chapter starts from a low-level perspective by looking at the hardware abstraction

layer supplied by ARM for its Cortex-M range architecture. A quick summary will then be

given of all the drivers that were developed in order to utilize the hardware that was designed

in the previous chapter. After that a section will be dedicated to the development of the error

detection and correction algorithm and code that was implemented on the FPGA for the

SRAM. Lastly, higher-level software will be discussed by looking at the operation of the

bootloader and operating system with its control loop and background tasks.

3.1 HARDWARE ABSTRACTION LAYER

ARM uses a Hardware Abstraction Layer (HAL) called the Cortex Microcontroller Software

Interface Standard (CMSIS) [13]. A HAL is low-level software that supplies a simple

interface to access hardware features from various vendors or manufacturers. In the case of

ARM, this standard is called the CMSIS and the interface allows access to the processor and

peripherals on all microcontrollers based on the ARM Cortex-M architecture. Figure 3.1

shows the structure of the CMSIS and how it fits between user-developed code and Cortex-M

processor-based MCUs.

The advantage of using a HAL is that it is backed by a large software community.

Previously there were separate communities for each ARM-based microcontroller vendor.

However, the Cortex-M community is now vendor independent, because all the software is

based on the CMSIS. This greatly improves the ease with which code can be developed for a

Cortex-M-based microcontroller due to the amount of code available and the ease at which it

can be re-used. The EFM32G, the MCU used for this design, is a Cortex-M3-based MCU and

its software is also based on the ARM CMSIS. Even though the EFM32G was released in

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 34

2009, a large pool of application code is already available due to the ease of developing code

for the Cortex-M based MCUs, which can be found on their website [31].

3.2 DRIVERS

A device driver is a piece of code that allows the operating system or user application to set

up, access and utilize a specific hardware device and/or peripheral. Drivers are very useful

since they allow an application to access the features of the OBC without any low-level

knowledge such as registers, protocols and timings. The use of the CMSIS has greatly

increased the ease with which drivers for the Cortex-M-based MCUs are developed, because

of the simple and standard interface to low-level structures such as registers and interrupts.

For the EFM32G MCU, drivers for most of the peripherals and MCU features have

already been developed. However, for this project, most of the drivers were either modified or

redeveloped around the design requirements for the ADCS OBC in order to maximize the

performance, efficiency and reliability of the peripherals, hardware components and the

overall system. The following subsections are summaries of all drivers developed and used by

the ADCS OBC in this project.

3.2.1 EXTERNAL BUS INTERFACE

The External Bus Interface (EBI) is responsible for interfacing the MCU with the external

memory (flash and SRAM) on the OBC. The driver configures the settings that allow the

MCU to read from and write to these external memories as well as the location of these

Figure 3.1: ARM CMSIS Structure. [9]

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 35

memories within the system memory map. After the driver has been set up, the external

memory can be accessed by software the same way in which the internal memory is accessed.

The most important setting in the EBI is the synchronization of the read and write cycles

between the MCU and the flash/SRAM. The timings between the different control signals

(EBI_ALE, EBI_CSn, EBI_WEn, EBI_REn) and address/data bus (EBI_ADD[0:15]), shown

in Figure 3.2 and Figure 3.3, can be configured in clock cycles of the MCU’s high-frequency

core clock. These timings need to be slack enough to allow both flash and SRAM to function

within its operational limits, yet tight enough not to waste any MCU clock cycles and

therefore power and performance.

3.2.2 DIRECT MEMORY ACCESS

The Direct Memory Access (DMA) is responsible for transferring data between peripherals

and memory without the intervention of the MCU core. Some of the tasks on the OBC fit this

description (monitoring and data transmission) and by utilizing the DMA capabilities of the

Figure 3.3: EBI Write Operation. [12]

Figure 3.2: EBI Read Operation. [12]

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 36

EFM32G, the MCU core can spend more time in a lower energy mode, which results in better

efficiency.

For a DMA transfer to take place a channel has to be set up between the two involved

parties (peripheral/memory and memory/peripheral) and a call has to be made that signals the

start of the transfer. The DMA can also be configured to execute a special function (callback

function) whenever a DMA transfer is complete. Figure 3.4 shows the implementation of the

DMA in the UART driver during data transmission.

Figure 3.4: Flowchart of DMA Transfer for UART.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 37

3.2.3 ANALOG TO DIGITAL CONVERTER

The ADC is responsible for sampling the analog channels for the monitoring subsystem.

These channels include supply voltages (3.3 V, 1.5 V), load currents (3.3 V, 1.5 V, SRAM

1&2) and temperature (on-chip sensor).

The ADC is implemented on the ADCS OBC in the following two ways:

 Periodic

Some of the ADC channels are sampled periodically. The sample period and channels to

be scanned can be defined by a telecommand from the main OBC. After each period, the

ADC is set up and scans the selected channels. The sampled values are then stored for

telemetry purposes. The ADC is configured to sample at maximum frequency which

allows it to finish as fast as possible. A DMA transfer is initialized before the scan, which

allows the MCU to either process another task or to enter Stop Mode (EM1) to conserve

energy.

 Continuous

Some of the analog channels are continuously monitored with an analog comparator and

compared to reference values. If this reference, or threshold, value is exceeded, an

interrupt is generated and the MCU can react accordingly. An example of using the

analog comparator on this OBC is for detecting a latchup in the external SRAM modules.

The SRAM current for each module is continuously monitored. If the sampled current

exceeds the rated SRAM latchup current, an interrupt is generated to the MCU which

addresses the problem. This process is shown in Figure 3.5.

Table 3.1 shows the different functions supplied by the ADC driver, which are described in

more detail in Appendix D.3.

Table 3.1: ADC Driver Functions.

Function Name Description

BSP_ADC_Init Initializes the clock, DMA channel and settings for the ADC.

BSP_ADC_Scan Starts ADC scan of all channels.

BSP_ADC_IsScanComplete Returns true if a scan is in progress, otherwise false.

BSP_ADC_GetAllData Returns all the values of the latest ADC scan.

BSP_ADC_GetData Returns the latest sampled value of the specified ADC channel.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 38

3.2.4 REAL-TIME CLOCK

The RTC allows the OBC to have an independent time keeping system. This is important on

satellites, especially those with multiple OBCs, for avoiding conflicts. Implementing and

synchronizing an accurate RTC onboard all the required subsystems (ADCS OBC, main OBC

and ground station) will result in cooperation throughout the satellite.

The RTC in this design uses the external crystal oscillator due to the extra stability it

offers over an RC oscillator. The RTC creates an interrupt every second which is used to tick

the Unix Time Counter (UTC) and clock-calendar system, if enabled. The UTC timestamp is

the time in seconds passed since 00:00 on 1 January 1970 [32]. These timestamps are popular

in software programs because they allow time to be represented as one variable and not as

days, hours, minutes, seconds, etc. which holds not as much significant value for a computer

program as a human being.

Table 3.2 shows the different functions supplied by the RTC driver, which are described

in more detail in Appendix D.1.

Figure 3.5: SRAM Latchup Detection Algoritm.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 39

Table 3.2: RTC Driver Functions.

Function Name Description

BSP_RTC_Init Initializes the clock, counter and interrupt for RTC.

BSP_RTC_SetUnixTime Sets the Unix time counter value.

BSP_RTC_GetUnixTime Gets the Unix time counter value.

BSP_RTC_IncUnixTime Increments the Unix time counter with a predefined value.

3.2.5 WATCHDOG

The OBC design includes two watchdogs, one internal and one external. Both watchdogs

have to be periodically toggled within a certain time period; otherwise it will force the MCU

to reset. This is an important reliability feature that safeguards the MCU against a software

lockup, which will put the MCU, and therefore the OBC, in an unresponsive state. The MCU

is the core of the OBC and in order for it to survive the harsh environment of space, as much

reliability as possible should be implemented.

In this design, the two watchdogs are toggled in separate areas of the operating system

(foreground and background). This prevents the MCU from entering a logic loop, which can

occur if both watchdogs are toggled in the background by an interrupt while the foreground

application is in an unresponsive state. This is illustrated in Figure 3.6 and Figure 3.7.

Table 3.3 shows the different functions supplied by the watchdog driver, which are

described in more detail in Appendix D.2.

Figure 3.7: Logic Loop Prevention.

Figure 3.6: Logic Loop.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 40

Table 3.3: Watchdog Driver Functions.

Function Name Description

BSP_WDG_Init Initializes both the internal and external clock and their timers.

BSP_WDG_ToggleExt Toggles the external watchdog to reset its counter.

BSP_WDG_ToggleInt Toggles the internal watchdog to reset its counter.

3.2.6 UART

The Universal Asynchronous Receiver/Transmitter (UART) is used in this design primarily

for debugging purposes. Since the UART is only an interface for communication, it is ideal

for testing inter-subsystem communication, protocols and synchronization because it is simple

to implement and able to interface with a Personal Computer (PC) to emulate any other

subsystem. PC emulation is very important because it allows the design to be debugged to a

certain degree without having the full satellite system available.

For the OBC UART to communicate with the PC, its signals should be converted to

RS232 voltage levels used by the serial port interface on the PC. An RS232-to-UART

converter was designed and used only between the OBC and a PC. This was not implemented

onboard the OBC, because it will not be required in the satellite and therefore only waste

power. The debug drivers were developed to emulate communication with any subsystem

(sensor, actuator and OBC) and to periodically or asynchronously output the OBC’s telemetry

to the PC.

3.2.7 SPI

The Serial Peripheral Interface (SPI) is used in this design to interface with the microSD

card. It offers a high-speed synchronized link between the MCU and the SD storage. The

MCU includes two other SPI interfaces that can be used for large point-to-point data transfers

between the MCU and another subsystem, for example the transfer of images between the

ADCS OBC and the CubeSense (sun and nadir sensor) for debugging purposes.

The microSD card is accessed by an application through the File Allocation Table File

System (FATFS). The FATFS accesses the microSD card through a DiskIO driver which was

supplied by Energy Micro. This DiskIO driver is a specially modified driver only intended for

use by the FATFS. The interface between an application and the microSD card is shown in

Figure 3.8.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 41

Table 3.4 lists the different functions supplied by the microSD driver which are described in

more detail in Appendix D.4.

Table 3.4: MicroSD Driver Functions.

Function Name Description

BSP_MSD_Init Initializes the SPI, microSD card and FATFS.

BSP_MSD_Write Writes data to the LOG file on the microSD card.

BSP_MSD_Read Reads data from LOG file into buffer variable.

BSP_MSD_Test Executes a test program for the microSD card.

3.2.8 I2C

The Inter-Integrated Circuit (I2C) is used in this design to interface with the main

communication bus, which is used mainly by the main OBC (master) to communicate with all

the other major subsystems (slaves).

Because the ADCS OBC also has to interact with its own subsystems (sensors and

actuators) the main I2C bus must allow for multi-master usage. The ADCS OBC already has

the required features (arbitration and clock synchronization) to communicate simultaneously

with the main OBC, but an easier solution would be to allow each OBC a specified time slice

within which it has to communicate with its subsystems. Another option would be to have the

ADCS OBC implement a separate I2C bus for communicating with its subsystems, while still

acting as a slave on the main I2C bus for telecommands. The different I2C bus

implementations are shown in Figure 3.9, Figure 3.10 and Figure 3.11.

Figure 3.8: Interface between an Application and the MicroSD Card. [45]

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 42

The multi-master bus configuration will allow the main and ADCS OBC access to all

subsystems but it will be the most complex of the three configurations to implement due to

potential bus conflicts. The time-shared bus configuration will be easier to implement and

avoid any potential bus conflicts but will not maximise the throughput of the bus. A separate

bus configuration will allow both main and ADCS OBC maximum throughput but at the cost

of isolating some of the subsystems from the main OBC. Therefore, the I2C bus configuration

will not be fixed for the ADCS OBC unit since the final implementation should take into

account the requirements for and limitations of the CubeSat system and the mission for which

it will be used. The eventual I2C driver will therefore depend on the bus configuration being

used.

3.3 ERROR DETECTION AND CORRECTION

The Error Detection and Correction (EDAC) subsystem is implemented as a flow-through

EDAC situated on the data bus between the SRAM and MCU. A flow-through EDAC has the

advantage of converting the data (detecting and correcting) in real-time without affecting the

read/write commands of the MCU. This simplifies the programming of the MCU and adds no

memory access overhead. The EDAC design in this system uses linear block codes, which is

implemented on an FPGA, to encode and decode data between the MCU and SRAM. When

errors are detected and/or corrected, the FPGA signals the MCU which then reacts

accordingly.

3.3.1 LINEAR BLOCK CODES

A popular form of EDAC used on embedded systems is Linear Block Codes (LBC).

Generally for LBCs a codeword c exists for every data word d. These words can be

represented as vectors:

Figure 3.11: Separate Buses.

Figure 3.10: Time Shared Bus.

Figure 3.9: Multi Master Bus.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 43

 () () () (3.1)

The amount of data digits, k, divided by the amount of code digits, n, is known as the LBC’s

information rate.

A codeword c can be obtained by multiplying its data word d by a () generator

matrix G, using modulo-2 arithmetic. A special form of G exist which generates a codeword

in systematic form. This type of generator matrix G consists of an () identity matrix I

and a () matrix P, where m = n – k. A codeword in systematic form is the same as its

data word for the first k digits, while the remaining m digits are linear combinations of the

data word, called the parity-check digits cp.

 [() ()]

 []

(3.2)

(3.3)

(3.4)

When a codeword r is retrieved, it is uncertain if and how many errors it contains. A ()

parity check matrix H exists for which the following condition holds:

 (3.5)

If this condition is true for r, then r = c and the codeword does not contain any errors. If the

codeword c is in systematic form it can be decoded by only using the first k digits of c, which

is equal to the data word d.

 []

 []

(3.6)

(3.7)

(3.8)

If Equation (3.5) is not true for a received codeword r, due to an error signal e, the resultant

row vector s in Equation (3.10) is known as the syndrome. If only one error is made, it can be

corrected by comparing the syndrome s to the parity check matrix H. The row vector which

the syndrome corresponds to within is the digit in codeword r that has to be corrected (i.e.

flipped).

 ()

 ()

(3.9)

(3.10)

(3.11)

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 44

Because of Equation (3.5),

 =

 [] [

]

(3.12)

(3.13)

A single bit error in digit ,

 []

 []

(3.14)

(3.15)

If more than one error has occurred in codeword r, up to a certain limit, the syndrome s will

not correspond to any of the row vectors in but a non-zero value will indicate a detected

error.

This is a very short description of linear code theory. For a more in-depth description,

please refer to [33], page 729.

3.3.2 REED-MULLER CODE

Many LBCs exist which vary in their code lengths, parity generator matrices and the amount

of detectable and correctable errors. For this design, the following three requirements were set

for an LBC:

 Reliability – The LBC shall correct at least one error and detect as many as possible.

 Performance – The LBC shall generate systematic codewords which can easily be

decoded using the first 8-bits of a codeword.

 Efficiency – The LBC shall have an information rate of fifty percent which corresponds

to the MCU data bus (8-bits) over the SRAM data bus (16-bits) and therefore does not

waste memory space.

The Reed-Muller- (RM) (1, 3) code [34] fulfils the above criteria as it can correct one error

and detect up to three errors and because it has a systematic codeword generator matrix and

an information rate of fifty percent. However, RM (1, 3) only produces an 8-bit codeword

(four data digits and four parity check bits), while a 16-bit codeword (eight data digits and

eight parity check bits) is required for optimal SRAM usage. This can be compensated for by

splitting the received data word from the MCU into two 4-bit data words and implementing

the RM (1, 3) LBC twice within the FPGA (shown in Figure 3.12). Two RM (1, 3) LBCs

together will produce a 16-bit codeword and have an added advantage of being able to correct

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 45

up to two errors simultaneously, which a single LBC would not have been able to achieve

without noticeable coding overhead.

3.3.3 IMPLEMENTATION

The EDAC is implemented on the FPGA as shown in Figure 3.12. Depending on the read

/write command from the MCU, the data can flow through the FPGA in the following two

ways:

1. Write Command

For a write command the data flows from the MCU data bus into the bidirectional buffer.

The data is split up into two 4-bit channels, due to the Reed-Muller (1, 3) block length,

and sent to the Generator Matrices G. The resulting codewords c1 and c2 are interleaved

together to produce a 16-bit data word which passes through the bidirectional buffer to be

written in the SRAM.

2. Read Command

For a read command the 16-bit data word flows from the SRAM bus through the

bidirectional buffer and into the deinterleaver. The resulting codewords r1 and r2 is

multiplied by the parity check matrices H to produce the syndromes s1 and s2. These

syndromes are then inspected to validate the codewords r1 and r2. If an error is detected

and corrected, a signal is flagged for the MCU. If errors are detected but could not be

corrected, a different signal is flagged for the MCU. If no errors are detected, the

Figure 3.12: Error Detection and Correction Subsystem on FPGA.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 46

codewords are decoded and passed through the bidirectional buffer onto the MCU data

bus.

The function of the interleaver is to spread out the codewords c1 and c2 evenly throughout the

SRAM data word. This is to reduce the likelihood of one high-energy particle causing

multiple upsets (errors) within the same codeword and should subsequently increase the

effectiveness of the EDAC subsystem.

3.3.4 ERROR HANDLING

The FPGA error signals (default high) are driven low according to Table 3.5 whenever an

error is detected by the RM (1, 3) LBC. These signals are connected to the MCU and generate

an interrupt when they change from their default value (1111b), i.e. on falling edge. The

signal values are then interpreted and the MCU reacts accordingly.

Table 3.5: Error Signal Code Descriptions and MCU Reaction.

Error Signal Value Error Signal Description MCU Reaction

1111b No errors detected None

1110b / 1101 b

1011b / 0111b

One error detected and corrected Memory Wash

1010b / 1001b

0110b / 0101b

Two errors detected and corrected Memory Wash

00xxb / xx00b Multiple errors detected and not corrected Variable Integrity Check

xx = error values for other RM(1,3) code block

When an error signal is received by the MCU, it can respond to the error in the following

ways:

 Memory Wash

When one or two correctable errors are detected by the FPGA, the MCU will schedule a

memory wash. A memory wash is when the MCU reads and re-writes all data on an entire

memory module. This will clean all detectable and correctable errors which will prevent a

build up of errors within a memory module. Memory washes can also be scheduled to run

every few seconds even if no errors were detected on accessed memory. This will prevent

the build up of errors in the memory module and especially bytes which might not be

accessed as often.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 47

 Variable Integrity Check

When multiple uncorrectable errors are detected by the FPGA, the MCU will schedule a

variable integrity check. Because the majority of data in SRAM are temporary variables

created on the program stack, or variables updated every control loop cycle (sensor data,

actuator commands), corrupt data will not necessary negatively affect the operation of

ADCS. However, some data are considered critical, such as the operating parameter of

the ADCS, and if an uncorrectable error is detected, a variable integrity check will be

initialized that scans these critical variables. Each critical variable will have a copy which

can be used for correction if it has become corrupt. If both the critical variable and its

copy are corrupt, the ADCS OBC will have to be reset.

3.4 BOOTLOADER

The bootloader is a small program that runs every time the MCU resets. The function of a

bootloader is to load a selected operating program into memory for execution. This allows the

OBC to have more than one operating program. This has two major advantages for an OBC:

1. Flexibility

An operating program is usually developed with a certain situation, responsibility and

requirements in mind. By having multiple operating programs, each with a different

focus, the OBC can better adapt to a situation by booting the appropriate program instead

of developing one complex program to try and handle every situation. For this design, the

OBC will have an operating program developed with ADCS as its focus while another

backup program could allow the OBC to act as a main OBC in case of emergency.

2. Reliability

When designing software programs, some logic errors or limitations only emerge during

in-flight usage. The ability to upload operating programs from the ground station to the

satellite after launch allows the developers to change the operation program to correct

errors and compensate for limitations.

A bootloader adds flexibility and reliability to a system, but care must be taken to create a

failsafe boot sequence. It is possible for a poorly designed bootloader to enter a state referred

to as a “reboot loop” which lets the OBC continuously boot from a broken operating program

without allowing any form of intervention from the outside.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 48

3.4.1 PROGRAM TYPES

The OBC has two different types of programs which the bootlader can boot the MCU from:

 Safe Mode

The safe mode program is a simple operating program that aims to put the satellite in a

stable orientation using the minimum amount of sensors and actuators. This program is

stored in a reliable memory module (Flash 0) separated from other operating programs.

The safe mode program should be the default program the ADCS OBC falls back on

when an unexpected reset or error occurs.

 Nominal Programs

A nominal program is a more complex operating program developed to make full use of

the ADCS OBC’s subsystems and features to achieve its goal. More than one nominal

program can be uploaded and stored on the OBC. The nominal programs are stored within

a table structure on a flash memory module (Flash 1); each at a separate index. To boot

from a specific nominal program, a boot index variable must be changed to the index of

the desired program which the bootloader will then load into the internal flash memory of

the MCU after a reset.

3.4.2 IMPLEMENTATION

The bootloader sequence proposed for this design is presented in Figure 3.13. After a reset,

the bootloader starts by configuring the EBI of the MCU as both the safe mode program and

nominal operating programs are stored in the external memory. The bootloader waits a few

seconds for a telecommand from the main OBC which indicates which operating program to

boot from. If no command is received, the bootloader reads a counter which counts the

amount of times the bootloader has recently been executed. If this value exceeds a certain

threshold, it indicates that the bootloader has entered a reboot loop.

A reboot loop is when the bootloader boots a faulty program which is eventually reset by

the watchdog. After the reset the bootloader executes and reloads the faulty program which

eventually resets again and again. This might occur when a program has a logic error which

will not be detected by a CRC check, but will cause the program to stall and force the

watchdog to reset the OBC. After each reset, the bootloader will increment the counter and an

unexpected high value for the counter will indicate to the bootloader that it has entered a

reboot loop. The bootloader will respond by booting the safe mode program until commanded

otherwise from the main OBC. The counter can be reset via a telecommand from the main

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 49

OBC if the ground station has verified that the program is running correctly or a new program

has been uploaded for execution.

If the counter has not exceeded the threshold value, it reads a special byte, in protected

memory of Flash 1, which stores the boot table index of the next program to be loaded into

the flash memory of the MCU for execution. The value of this index defines what the

bootloader does next:

 0xFF – The bootloader executes the current program in the flash memory of the MCU.

 0x00 – The bootloder executes the safe mode program located in Flash 0.

 0xXX – The bootloader loads a new program into the flash memory of the MCU which is

located in Flash 1 at index XX of the boot table.

After the program is loaded into the Flash of the MCU (or not in the case of 0xFF), a CRC

check is done to verify the integrity of the program in internal MCU Flash. If this check is

unsuccessful, which indicates that the program is corrupt, the bootloader boots the safe mode

program.

Figure 3.13: Proposed Bootloader Sequence.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 50

3.5 OPERATING SYSTEM

The Operating System (OS) is responsible for managing the different tasks that need to be

executed by the OBC. These tasks usually fall into one of two categories: foreground

application and background services. The operating system, together with the ADCS

application and background services, are shown in Figure 3.14.

3.5.1 FOREGROUND APPLICATION

The foreground application is a collection of tasks which aim at achieving a single goal.

These tasks can each be separately responsible for utilizing different subsystems or

components of the OBC (communication, memory, core, etc.); however the result of all the

foreground tasks should accomplish the same goal.

Figure 3.14: Operating System Flow Diagram for the ADCS OBC.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 51

The foreground application for this design periodically executes the ADCS control loop.

The control loop starts by reading the latest sensor values. From these measurements the

control algorithms generate commands for the actuators which orientate the satellite

accordingly. After the actuator commands are transmitted, the foreground application is put in

sleep mode until it is scheduled to start again (more or less every second for this design). This

is merely a summary of the control loop which is currently being developed, at time of

writing, by another masters student in the ESL.

3.5.2 BACKGROUND TASKS/SERVICES

The background tasks, also known as background services, are additional tasks responsible

for housekeeping, emergency responses and interrupts. These services do not directly

contribute to the goal of the foreground application, but are nonetheless essential for the

operation of the OBC.

The background services for this design gain access to the by means of an interrupt. The

background service that generated the interrupt is then processed by running its Interrupt

Service Routine (ISR). Each ISR was developed to execute as fast as. This helps the

foreground application (main ADCS loop) to execute deterministically, i.e. no long

unexpected delays due to interrupts. Short ISRs will also prevent the likelihood of data loss

during communication since long delays may cause the IO interface to not be serviced before

the next data packet arrives.

The background services for this design are as follows:

 RTC Counter

The RTC counter generates an interrupt every second. The ISR of the RTC increments

the UTC timestamp of the system, which indicates when some tasks, such as the control

loop, are scheduled to start.

 I2C Communication

The I2C communication generates an interrupt whenever it receives a data-packet. If the

transmission is not dealt with immediately, the data could be dropped. This is undesirable

since a telecommand from the main OBC could contain settings (orientation, schedules,

etc.) that should be updated on the ADCS OBC as soon as possible.

Stellenbosch University http://scholar.sun.ac.za

SOFTWARE DEVELOPMENT 52

 SRAM SEU Detection

The SRAM SEU detection generates an interrupt when it receives a signal from the

FPGA indicating an error has been detected or corrected. In case of a correction, the ISR

logs the error and schedules a memory wash, described in Section 3.3.4. If multiple

uncorrectable errors are detected within a word, the ISR logs the error and performs a

variable integrity check, described in Section 3.3.4. If a critical variable is corrupt and

cannot be corrected, the MCU is reset.

 SRAM SEL Detection

The SRAM SEL detection generates an interrupt when the current from the SRAM power

supply exceeds a certain threshold (latchup) value. The ISR immediately power cycles the

SRAM module to attempt to fix the SEL. If the SEL persists the OBC will switch to the

backup SRAM module for normal operation.

 Telemetry Logging

The telemetry logger is a background service that periodically logs all OBC telemetry

(voltages, currents, temperature, etc.) and ADCS telemetry (vectors and parameters). This

information can be requested by the main OBC to be downloaded to the ground station

for further inspection.

The above mentioned OS structure should more than suffice for the purpose of an ADCS

OBC. This will be illustrated later during Hardware In the Loop (HIL) tests in section 4.2. As

more complex control algorithms, sensors and actuators are implemented for the ADCS

CubeSat unit, the foreground application, background services and protocol will expand, but

not the manner in which they are managed and executed. However, in order for the ADCS

OBC to stand in as a backup main OBC, a more robust OS structure has to be used.

Stellenbosch University http://scholar.sun.ac.za

53

4 TESTS AND MEASUREMENTS

It is important to thoroughly test all subsystems of an embedded design, even more so in the

case of satellite electronics. This chapter will discuss tests that were designed for the ADCS

OBC and show the results these tests obtained. Important measurements will then be shown

indicating the performance and efficiency of the OBC during operation.

During the software development phase of the ADCS OBC many small driver tests were

written to test out all the components on the OBC. The following tests were specifically

developed to highlight the operation of the ADCS OBC as shown in Figure 3.14 in Section

3.5 on where the operating system is discussed. Short tests were developed for the different

background services and a larger Hardware In the Loop (HIL) test was developed for the

foreground application (control loop).

4.1 BACKGROUND SERVICES

4.1.1 RTC

The RTC was configured to generate an interrupt every second. The ISR of the RTC

increments the UNIX time counter which is used to indicate the time of execution for certain

scheduled tasks. The ISR also toggles the external watchdog to ensure it does not reset the

MCU. Figure 4.1 shows the GPIO line used to toggle the external watchdog and the accuracy

of the RTC which corresponded to one second when measured with an Oscilloscope.

Figure 4.1: External Watchdog Toggle Line.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 54

4.1.2 TELEMETRY LOGGING

The telemetry logging background service is a scheduled task that logs both ADCS telemetry

and OBC telemetry which can be requested by the ground station for further inspection. The

telemetry data is stored in the microSD card for this design.

A driver test was developed for the microSD card and the resultant text file message is shown

in Figure 4.2.

To test telemetry logging on the ADCS OBC a test program periodically samples all the

ADC channels used by the monitoring subsystem. The OBC telemetry data is then logged to

the microSD card as shown in Figure 4.3. The test program stored all the data using string

formatting in order to make the test results more readable. However, during satellite operation

telemetry data will likely be stored in raw data formats (bytes, integers and double data types)

to minimize the amount of data stored and transmitted on the satellite. The test program

shows ADC values for current (milli-Amperes), voltage (milli-Volts) and on-chip temperature

measurements every second.

Figure 4.2: Text Retrieved from MicroSD Driver Test File.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 55

4.1.3 SINGLE EVENT UPSETS

Before the SEU detection was tested, the EDAC first had to be verified. Test waveforms were

generated by ModelSim (supplied with IDE for FPGA) based on the after-layout (i.e. real-

world) operation of the FPGA.

The first line in the waveforms is the chip-select (nCS) line for the SRAM module. If the

chip select is not asserted, the output/input bus of the FPGA is put in a high impedance state.

The following two lines are the encode (enc) and decode (dec) control lines, which are

directly mapped to the read and write control lines of the MCU EBI. When data is written, the

encode line is asserted and when data is read, the decode line is asserted. The next line is the

8-bit data bus from the MCU followed by the 16-bit codeword bus from the SRAM modules.

Lastly, the error signals generated by the EDAC subsystem are also shown to indicate if an

error (SEUs) occurred and if it was correctable.

Figure 4.3: Text Retrieved from Telemetry Logging Test File.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 56

The following figures (Figure 4.4 – Figure 4.8) show the simulation results of the EDAC

for different error conditions:

 Encoding

Figure 4.4 shows the encoding process of the EDAC subsystem. A data word is supplied

by the MCU data bus and is then converted to a codeword when the write control line is

asserted. The codeword generated might not seem to be in systematic form, but it is,

because the data word is split before being encoded and interleaved after being encoded.

 Decoding – No Errors

Figure 4.5 shows the decoding process of the EDAC subsystem with no errors in the

codeword. The codeword is the same as the one generated during the encoding process

and the error signals indicate no errors.

 Decoding – One Error

Figure 4.6 shows the decoding process of the EDAC subsystem with one error. The error

is corrected (same data word as Figure 4.4) by the FPGA, which indicates the error to the

MCU through the error signal lines.

 Decoding – Two Errors Correctable

Figure 4.7 shows the decoding process of the EDAC subsystem with two errors. The

errors are in separate codewords within the large codeword and both errors can therefore

be corrected by the EDAC. The two errors are indicated to the MCU through the error

signal lines.

 Decoding – Two Errors Uncorrectable

Figure 4.8 shows the decoding process of the EDAC subsystem with two errors that

cannot be corrected. The errors are in the same smaller codeword within the large

codeword. The resulting data word is different from the one generated by the encoding

process in Figure 4.4. However, the EDAC does detect the errors and generates the error

signals to indicate to the MCU that the data retrieved from the SRAM module is corrupt.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 57

Figure 4.6: Decoding Process of EDAC with One Error.

Figure 4.5: Decoding Process of EDAC with No Errors.

Figure 4.4: Encoding Process of EDAC.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 58

To physically test the SEU detection on the OBC a bit flip had to be simulated. The

FPGA code was modified to manually flip a specified bit before writing it to the SRAM

module. This same codeword was read by the MCU and the resulting error signals from the

FPGA caused an interrupt on the MCU. The interrupt service routine can read the values of

the error signals and respond by either scheduling a memory wash for a correctable error, or a

variable integrity check for uncorrectable errors.

The latency involved with encoding and decoding the data between the MCU and SRAM

databus was also sufficiently small enough that it was not necessary to add extra read and

write hold cycles to a normal read and write cycles of the EBI. The EDAC implementation

can therefore be seen as flow-through.

4.1.4 SINGLE EVENT LATCHUP

When a latchup occurs in an SRAM module, the module draws an excessive amount of

current. This current spike can be used to detect the latchup by continually monitoring the

SRAM current. The MCU can be configured to generate an interrupt whenever a threshold

value is exceeded. The resulting ISR will then isolate the SRAM module from the address and

data bus by turning off the disabling IO buffers and disabling the load switch supplying the

Figure 4.8: Decoding Process of EDAC with Uncorrectable Errors.

Figure 4.7: Decoding Process of EDAC with Two Errors.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 59

SRAM module. Figure 4.9 shows the SRAM supply voltage, from a load switch, toggled by

the MCU with a test program.

4.1.5 COMMUNICATION

During the software development process of the ADCS OBC, the UART was used

extensively for debugging purposes. Figure 4.10 shows the OBC telemetry data output to the

PC through the UART.

Figure 4.9: SRAM Supply Voltage Toggled by MCU.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 60

The UART was used during the HIL tests to communicate with the PC. A small protocol

was implemented for the UART to more accurately simulate in system operation. The HIL

test will be discussed in more detail in the following section.

4.2 HARDWARE IN THE LOOP

A HIL test was devised to test the ADCS OBC performance under “real-world” conditions, or

as close to it as possible. A HIL test simulates closed loop system operation and should

receive realistic data inputs. The HIL test is an ideal method to test the performance and

accuracy of the foreground application, i.e. its ability to perform the attitude determination

and control for a CubeSat.

4.2.1 SETUP

The setup and flow of the HIL test is shown in Figure 4.11. The OBC was interfaced with a

PC, which simulated all other needed ADCS subsystems, and a protocol was used to transmit

and receive data between them. The OBC will request sensor data (generated by the PC)

through the communication subsystem. The ADCS algorithms will then compute the needed

actuator values. The ADCS telemetry (torque times, estimated rates etc.) will be transmitted

to the PC which will be compared to similar values generated by the PC simulation program.

Figure 4.10: OBC Telemetry Data Output to UART.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 61

The accuracy of the ADCS OBC will be tested during the HIL test, but the computation

time is also of importance. The faster the control loop can be executed, the more time can be

spent in a lower energy mode and/or the more complex algorithms can be implemented. The

control loop for the HIL test consists of the following ADCS algorithms:

 SGP4 – A Simplified General Perturbation no.4 (SGP4) model calculates the satellite

position vector using Two-Line-Elements (TLE) of the satellite orbit.

 IGRF – An International Geomagnetic Reference Field (IGRF) model calculates

the magnetic field vector at the satellite’s position.

 Kalman Filter – A Kalman filter is used to calculate the estimated angular body rates of

the satellite.

 BDOT – A BDOT controller is used to calculate the required actuator torque times

needed to detumble the satellite.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 62

4.2.2 PC COMMUNICATION PROTOCOL

The protocol used for the HIL test, shown in Table 4.1 and Table 4.2, consists of

Identification (ID) and data packets. This is a very simple and specific protocol that was setup

and used for the purpose of the HIL tests. It is loosely based on the protocol used on board

SumbandillaSat for its ADCS OBC.

Table 4.1: Transmission Protocol from PC to OBC.

ID Data length Data content Unit

$ 3 × (short int) 6 bytes Magnetometer readings uTesla

& 1 × (char) 1 bytes Controller mode 0-256

1 × (short int) 2 bytes Reference Y-spin rate m-deg/sec

% 1 × (char) 1 bytes Controller sample time 0-256 (sec)

@ only identifier 0 bytes Acknowledgement

Figure 4.11: Hardware In the Loop Test Process.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 63

Table 4.2: Transmission Protocol From OBC to PC

ID Data length Data content Unit

R only identifier 0 bytes Request sensor measurements

T 3 × (short int) 6 bytes Torquer rod on times sec

W 3 × (short int) 3 bytes Estimated body angular rates m-deg/sec

N 3 × (double) 24 bytes Magnetic torque Nm

4.2.3 RESULTS

During the HIL test, the average execution time for a control loop iteration was calculated as

22 ms. For the CubeSat ADCS being developed at the ESL, a control loop only needs to be

executed every one second. Even though the control loop for the HIL test was a simple

detumbling procedure for a CubeSat, it still means the ADCS OBC requires very little of its

allocated time (< 3% for the HIL test) to do the needed ADCS calculations. This will result in

the OBC spending more of its time (> 97% for the HIL test) in a lower energy state, such as

stop (EM1) or sleep (EM2) mode, which require less power.

In terms of accuracy the ADCS OBC also calculated the same values as simulated by the

PC, which was expected since they both are running the same algorithms. In both Figure 4.12

(estimated body rates produced by the Kalman filter) and Figure 4.13 (actuator control values

produced by the BDOT controller) the OBC-generated values (coloured dots) closely follow

the PC-simulated-values (solid black lines).

Figure 4.12: OBC and PC Estimated Body Rates for HIL Test.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 64

4.3 POWER CONSUMPTION

It is important for any OBC design to determine its power consumption under various

operating conditions. This is even more important for an OBC in a CubeSat due to its limited

power budget.

The power consumption of the ADCS OBC will be determined by measuring the current

drawn from the power supply. Figure 4.14 shows the test setup that was used. Between the

ADCS OBC and its power supply a 1.8Ω resistor is added in series. By measuring the voltage

drop over this resistor, the current flowing through it can be calculated.

Different tests were written for the OBC to perform while its power consumption was

measured. Some of the tests focused on the MCU under different conditions and some were

focussed on the various peripherals. The results are shown in Table 4.3. The OBC draws a

minimum power of 130mW during sleep mode and peaks at 435mW while accessing the

Figure 4.14: Test Setup for Power Consumption Measurements.

Figure 4.13: OBC and PC Actuator Control Values for HIL Test.

Stellenbosch University http://scholar.sun.ac.za

TESTS AND MEASUREMENTS 65

microSD card. The ADCS OBC power consumption should average somewhere between

170mW (EM0 – Run Mode) and 130mW (EM2 – Sleep Mode) most of the time since it will

either be executing the control loop or sleeping.

Table 4.3: Power Consumption Test Results.

Test Type Voltage Drop

mV

Current

mA

Power

mW

Fibonacci Algorithm 61 34 170

while(1) 57 32 160

EM1 48 27 135

EM2 46 26 130

MSD (peak/avg) 156/110 87/62 435/310

UART 82 46 230

ADC 54 30 150

SRAM 55 31 155

Stellenbosch University http://scholar.sun.ac.za

66

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The tests in the previous chapter were designed to analyse and prove the capabilities of the

ADCS OBC which were designed and developed during Chapters 3 and 4. It was important

for these tests to reflect the design requirements of performance, efficiency and reliability in

order to confirm that they have been met. The test results for each requirement can be

summarized as follows:

 Performance

The HIL test confirms the performance of the ADCS OBC by performing a typical ADCS

control loop of updating sensor data, generating model and estimated values and

computing actuator output. The requirement for a typical CubeSat ADCS (being

developed in the ESL) is to execute a control loop every second. From the HIL test data,

the ADCS OBC easily achieves this goal by executing the control loop in 22 ms.

This short execution time has two implications for efficiency. Firstly, the MCU can sleep

for the majority of the control loop cycle, which will reduce the average efficiency of the

OBC. Secondly, the MCU can run at a lower frequency to reduce its peak power

consumption, but at the cost of a longer execution time.

 Efficiency

The current measurements during the different test programs show the efficiency of the

ADCS OBC in terms of peak power consumption and average power consumption. As

explained above, the MCU can be downclocked to decrease either the peak power

consumption or the average power consumption. However, the ADCS OBC should still

achieves a peak power consumption of less than half a Watt (435 for SD Card usage) and

an average power consumption of less than two hundred milli-Watt, which is well within

the expected power budget.

 Reliability

The majority of the background services (watchdog toggling, SEU and SEL detection and

telemetry logging) are implemented mainly for reliability purposes. Watchdogs prevent

the MCU from entering an undesired state, SEU and SEL detection methods protect the

OBC against SRAM failures due to radiation and OBC telemetry allows the OBC to be

Stellenbosch University http://scholar.sun.ac.za

CONCLUSIONS AND RECOMMENDATIONS 67

monitored by users on the ground. Tests were designed to illustrate the operation of these

background services which were developed to add an extra layer of reliability to the

ADCS OBC.

These tests and measurements indicate that the ADCS OBC in this design achieved the

requirements defined before the start of the project. However, some small alterations and

improvements will be needed before the ADCS OBC in this design can be used within a

CubeSat system.

5.2 RECOMMENDATIONS

This section will discuss recommendations regarding alterations and improvements that

should be made to the ADCS OBC before it is implemented into a CubeSat.

5.2.1 LAYOUT

It is important to take into consideration the PCB layout of the ADCS OBC due to space

constraints imposed by the standard size of a CubeSat structure. A standard PCB layout is

shown in Appendix C.1.2. The PCB of the ADCS OBC was not designed according to this

standard since it was considered a prototype. The prototype OBC has an external power

connecter, extra pin-outs for unused MCUs, FPGA pins (used for debugging purposes) and

larger dimensions (designed on a two layer PCB for reduced cost). If the ADCS OBC layout

is done on a four-layer PCB without the debugging components, it should be able to conform

to the standard layout proposed in Appendix C.1.2.

5.2.2 MICROCONTROLLER

During the hardware design of the ADCS OBC, the only available processor from Energy

Micro was the EFM32Gecko (EFM32G), which was used in this design. In late 2010/early

2011 Energy Micro released the EFM32GiantGecko (EFM32GG [36]). This MCU is also

based on the Cortex-M3 architecture, like the EFM32G, but has the following new features

that would improve the ADCS OBC design.

 Improved External Bus Interface

The external bus interface of the EFM32GG has the ability to translate read and write

commands, depending on the bus width of the external memory. This means that the

MCU autonomously converts the write command of 32-bit data into four write commands

for an 8-bit external memory device. The major advantage this has for the ADCS OBC is

that the MCU is now able to execute code directly from external memory. Currently the

ADCS OBC needs to copy an operating program from external flash into the MCU flash

Stellenbosch University http://scholar.sun.ac.za

CONCLUSIONS AND RECOMMENDATIONS 68

before booting from this program, which increases the likelihood of an SEU. With the

EBI of the EFM32GG, the bootloader can boot directly from external flash.

 Two I2C controllers

The EFM32GG has two I2C controllers compared to the EFM32G which only has one.

Currently the ADCS OBC will only be able to implement the multi-master and time-

shared I2C bus. The EFM32GG will however be able to implement the separate bus as

well, by having one I2C controller act as a slave on the main I2C bus and the other

controller act as a master on the bus connecting all the ADCS-related subsystems (sensors

and actuators).

The EFM32GG is pin compatible with the EFM32G and should therefore require only

minimal hardware design and layout changes. Due to the CMSIS the EFM32 drivers are built

upon, very few changes to the drivers and operating system should occur. Not only should the

EFM32GG be easy to implement, but its power consumption is roughly the same as the

EFM32G, as shown in Table 5.1.

Table 5.1: EFM32 Gecko and Giant Gecko Comparison.

Microcontroller EM0 EM1 EM2

EFM32 Gecko 180 uA/MHz 45 uA/MHz 0.9 uA

EFM32 Giant Gecko 200 uA/MHz 50 uA/MHz 1.2 uA

5.2.3 EEPROM

Electronic Erasable Programmable Read Only Memory (EEPROM) is a non-volatile memory

that is inherently resistant to radiation effects such as SEUs and SELs. EEPROM is usually

used to store important program code due to its radiation resistance. In this design, the safe

mode program (described in Section 3.4.1) is stored in flash memory, which is still

susceptible to SEUs. A more reliable design would be to store the safe mode program

separately in an EEPROM module, such as the ATMEL EEPROM (AT28C64B [37]), which

is virtually immune to SEUs. This will ensure the ADCS will always have a working backup

program to fall back on. This EEPROM module can be accessed via the EBI of the MCU the

same way as with flash and should be easily replaceable with one of the flash modules in the

ADCS OBC design with only minimal modifications. An EEPROM module either has a

longer read cycle or uses more current compared to a flash module (see Table 5.2), but the

added reliability should be worth the trade-off.

Stellenbosch University http://scholar.sun.ac.za

CONCLUSIONS AND RECOMMENDATIONS 69

Table 5.2: Flash and EEPROM Comparison.

Type Size Current Read Cycle

Flash S29AL008D [38] 1 MB 16 mA 70 ns

EEPROM
AT28BV25 [39] 256 kB 15 mA 200 ns

AT28HC256 [40] 256 kB 80 mA 70 ns

5.2.4 PROTOCOL

A protocol is a set of rules which defines how data is transmitted between subsystems

according to [10]. The rules define how information is encoded into transmission data. If the

receiver uses the same protocol as the transmitter, the transmission data can be decoded

successfully into meaningful information. It is important to have only one protocol on a bus to

avoid any confusion when transmitting data between subsystems. Because the protocol is a

standard set of rules, it is possible to develop a subsystem independently by only ensuring it

adheres to the protocol used on the system bus.

Even though a simple protocol was defined for the HIL test in the previous chapter, it is

highly recommended that a fully-fledged protocol should be developed for the ADCS OBC

and its subsystem (sensors and actuators) in the ADCS unit. For a typical protocol a

transmission consists of the following sections:

 Header

The header section of a protocol contains fields which define how the transmission will

occur. Examples of typical fields used in header sections are an address field to identify

the sender/receiver, a size field to indicate the size of the data section, an indicator of the

data format and an acknowledgement from the receiver. For the protocol used in the HIL

test, the header section consists of one field, namely the ID byte.

 Data

The data section of a protocol contains the actual data being transmitted. The data can

either be sent all at once or sent as packets of smaller data, depending on the size of the

data, bus and sender/receiver buffer.

 Error Control

The error control section of a protocol usually contains a small amount of data which

allows the receiver to check if the main data became corrupted due to transmission errors.

A popular approach is to add a Cyclic Redundancy Check (CRC) at the end of a

Stellenbosch University http://scholar.sun.ac.za

CONCLUSIONS AND RECOMMENDATIONS 70

transmission. The receiver can use the CRC to check for any corrupt data. If an error is

detected, a retransmission can be initiated.

For this design a protocol was not created as it was not necessary for the design and

development of an ADCS OBC. However, for the ADCS OBC to be integrated into the

ADCS unit, a protocol should be defined and used for communication between the ADCS

subsystems.

5.2.5 REAL-TIME OPERATING SYSTEM

A Real-Time Operating System (RTOS), as described by [41], is developed to be more adept

at managing and executing multiple tasks. It uses a more advanced scheduling algorithm to

ensure each task receives an equal or weighted amount of processing time from the MCU

core. This scheduling produces a small overhead, but ensures all tasks can be processed closer

to “real-time”.

An RTOS is much more suited for the main OBC than the operating system used for the

ADCS OBC. Instead of having one goal, like the satellite’s ADCS does, the main OBC

should manage the operation of many subsystems (payload, power, communication, ADCS,

etc.) with almost equal importance. All these subsystems are interdependent and therefore if

one is neglected, it adversely affects the entire satellite.

An RTOS was not used for the ADCS OBC because it is not crucial for its operation, but

implementing the ADCS application on an RTOS would allow the OBC to adapt more easily

to the role of main OBC in case of emergency. Energy Micro, the manufacturer of the MCU

used in this design, has a source code example which shows an RTOS port (uC/OS-II from

Micrium) running on the EFM32G [31]. This example can be used as a basis to create a

RTOS tailored for the ADCS OBC.

Stellenbosch University http://scholar.sun.ac.za

71

6 SUMMARY

The goal of this project was to design and develop an ADCS OBC for a CubeSat. The process

followed to achieve this will be summarized in this section.

The first step was to clearly define the design requirements for the OBC. The project goal

can be broken into three parts and each part has an associated requirement attached to it.

Firstly, the OBC should be able to perform complex ADCS-related tasks. This translated to

performance as a requirement. Secondly, the OBC will be implemented on a CubeSat which

has very limited resources. This translated to efficiency as a requirement. Lastly, the OBC

will have to operate in space, which is a very harsh environment. This translated to reliability

as a requirement. These requirements were considered throughout the hardware design as well

as the software development of the ADCS OBC.

The core of the OBC hardware design is the MCU and care was taken in choosing the

most appropriate MCU for the ADCS OBC. The EFM32Gecko from Energy Micro, based on

the ARM Cortex-M3 architecture, was chosen due to its high performance and low power

consumption. It also offered various on-chip peripherals which were used in the OBC design.

A separate power system was designed to regulate the supply voltage and current to all the

components. An external memory subsystem was designed which consists of flash, SRAM

and a microSD card which stores code, data and telemetry. The OBC has a subsystem which

monitors the current, voltage and temperature of the board for telemetry purposes, but it can

also detect abnormalities and react accordingly. The OBC also includes various interfaces for

communicating with external and internal subsystems (I2C, UART, EBI and SPI).

The software development commenced with creating and/or modifynig all the drivers

needed to enable and access the different functions of the MCU and components on the

ADCS OBC. Cortex-M3 based MCUs, such as the EFM32G, uses the CMSIS, which

improves the turnaround time for developing drivers. The flow-through EDAC uses the Reed-

Muller(1,3) linear block codes which were developed in VHDL and implemented on the

FPGA. The bootloader algorithm was developed to ensure that the ADCS OBC will not be

able to reboot into a faulty operating program. The operating system structure consists of a

foreground application, the ADCS control loop, and background tasks which are responsible

for the clock, communication, telemetry and error detection and correction.

Tests were developed to confirm the operation of the ADCS OBC. Individual tests were

written for background tasks and a HIL test was designed to simulate in-system operation for

the ADCS OBC foreground application. The results of the test were analysed in terms of the

Stellenbosch University http://scholar.sun.ac.za

SUMMARY 72

design requirements defined at the beginning of the project. The conclusion reached after

testing was that the ADCS OBC prototype justified the design by meeting the design

requirements of performance, efficiency and reliability and that, with a few minor alterations

and improvements, the ADCS OBC could successfully be implemented into a CubeSat.

Stellenbosch University http://scholar.sun.ac.za

73

A HARDWARE DESIGN DETAILS

The hardware design of the different components such as smoothing capacitors, pull up- and

pull down resistors etc. were kept as close to the supplied hardware design guidelines

supplied by each component’s manufacturer. This ensured that all components functioned

when the ADCS OBC was built. In some cases, the design choice could be made which

altered the operation of certain components. These choices will be discussed in the following

section.

A.1 HARDWARE DESIGN GUIDELINES

The following hardware design guidelines where used in the design of the ADCS OBC.

 MCU – “Application Note: Hardware Design Considerations”.[42]

 SRAM – “SRAM System Design Guidelines”. [43]

 Voltage Regulator – Datasheets [28], pages 11-13, and [27], pages 15-17.

A.2 CURRENT SENSOR DESIGN

In the current sensor design, as shown in Figure 2.11, the value of resistors RS and RL are

designed to achieve an accurate output voltage for the range that includes normal operating

conditions and a latchup within a SRAM module.

The output voltage is determined by the following equation[44]:

 ()()()() (A.1)

IS would vary between 25mA at normal operating conditions and 200mA during a latchup

from an SRAM module. For the INA139 current sensor used in this design the input voltage

VS is accurate if below 0.5 V. The resistor value for RS was therefore chosen as 1 Ω which

ensures an input voltage of less than 0.5 V under latchup conditions and does not allow a too

large voltage drop on the power supply during normal operating conditions.

The output voltage of the INA139 is sampled by the ADC of the MCU. Therefore the

output voltage range should be within the sample range of the ADC under normal operating

conditions and during latchup. By choosing the value of RL as 10 kΩ, equation (A.1) gives an

output voltage of 250 mV for normal operating conditions (IS = 25 mA) and 2 V during a

latchup (IS = 200 mA). For a 12-bit sample from the MCU ADC, the resolution is less than 1

mV which will be accurate enough for telemetry purposes.

Stellenbosch University http://scholar.sun.ac.za

74

B SCHEMATICS

B.1 MCU

Stellenbosch University http://scholar.sun.ac.za

SCHEMATICS 75

B.2 FPGA

Stellenbosch University http://scholar.sun.ac.za

SCHEMATICS 76

B.3 MEMORY BUS

Stellenbosch University http://scholar.sun.ac.za

SCHEMATICS 77

B.4 MEMORY POWER

Stellenbosch University http://scholar.sun.ac.za

SCHEMATICS 78

B.5 POWER SUPPLY

Stellenbosch University http://scholar.sun.ac.za

79

C PCB LAYOUT

C.1 CUBESAT LAYOUT STANDARD

When designing the layout for a CubeSat expansion board it is necessary to try and stay

within the predefined specifications of the CubeSat standard, both electrically and

mechanically, to ensure compatibility with other CubeSat subsystems and the CubeSat

standard itself.

C.1.1 ELECTRICAL LAYOUT STANDARD (HEADER PIN ALLOCATION)

The CubeSat uses a stack through 104-pin main header that links most of the CubeSat

subsystems. These shared pins allow CubeSat subsystems to easily integrate with each other

with regards to power lines, communication lines and signals. At the moment no standard

exists that clearly defines the functions of all the pins on the main header. However, some

general guidelines do exist which are shown in Figure C.1. It is important to follow these

guidelines when designing the ADCS OBC as it allows compatibility with most other

CubeSat subsystems.

C.1.2 MECHANICAL LAYOUT STANDARD (PCB DESIGN)

The CubeSat expansion boards are based on the mechanical layout of the PC/104 standard

shown in Figure C.2. By adhering to this mechanical design when designing an expansion

Figure C.1: CubeSat Proposed Electrical Layout Standard (PC/104 Based). [23]

Stellenbosch University http://scholar.sun.ac.za

PCB LAYOUT 80

board, it will easily integrate with the rest of the subsystem in the CubeSat. The greatest

advantage of the mechanical standard of the CubeSat is that it makes use of the P-POD

launcher which allows for inexpensive piggyback launches.

Figure C.2: CubeSat Mechanical Layout Standard (PC/104 Based). [23]

Stellenbosch University http://scholar.sun.ac.za

PCB LAYOUT 81

C.2 ADCS OBC LAYOUT

The following section will provide the physical layout of the ADCS OBC.

C.2.1 TOP LAYER

Stellenbosch University http://scholar.sun.ac.za

PCB LAYOUT 82

C.2.2 BOTTOM LAYER

Stellenbosch University http://scholar.sun.ac.za

PCB LAYOUT 83

C.2.3 ADCS OBC PHOTO

Figure C.3: ADCS OBC Prototype.

Stellenbosch University http://scholar.sun.ac.za

84

D DETAILED DRIVER DESCRIPTIONS

The following section will give a detailed description of defines, enums and functions

developed for the ADCS OBC drivers, known as the Board Support Package (BSP).

D.1 REAL TIME CLOCK

The following is a detailed description of the RTC driver developed for the ADCS OBC.

Defines:

 #define BSP_RTC_IncSec 1

Description: The time in seconds between each interrupt for the RTC.

Functions:

 void BSP_RTC_Init (void)

Description: Initializes the RTC on the OBC by enabling its clock, setting the interrupt

interval, enabling the interrupt and resetting the UNIX time counter to zero.

Inputs: None.

Returns: None.

 void BSP_RTC_SetUnixTime (uint32_t newUnixTime)

Description: Sets the current UNIX time counter value to the given value.

Inputs:

 newUnixTime: New value for the RTC UNIX time counter.

Returns: None.

 uint32_t BSP_RTC_GetUnixTime (void)

Description: Gets the current UNIX time counter value.

Inputs: None.

Returns: Current UNIX time counter value.

Stellenbosch University http://scholar.sun.ac.za

DETAILED DRIVER DESCRIPTIONS 85

 void BSP_RTC_IncUnixTime (void)

Description: Increments the current UNIX time counter value with a predefined

value (BSP_RTC_IncSec).

Inputs: None.

Returns: None.

D.2 WATCHDOG

The following is a detailed description of the watchdog driver developed for the ADCS OBC.

Defines:

 #define extWDGPort gpioPortF

Description: The GPIO port group on the MCU the external watchdog input is allocated

to.

 #define extWDGPin 8

Description: The GPIO pin number within the port group on the MCU the external

watchdog input is allocated to.

Functions:

 void BSP_WDG_Init (void)

Description: The GPIO pin connected to the external watchdog is initialized and the

internal watchdog settings and counter value is initialized.

Inputs: None.

Returns: None.

 void BSP_WDG_ToggleExt (void)

Description: Toggles the external watchdog to reset it reset its timeout counter.

Inputs: None.

Returns: None.

Stellenbosch University http://scholar.sun.ac.za

DETAILED DRIVER DESCRIPTIONS 86

 void BSP_WDG_ToggleInt (void)

Description: Toggles the internal watchdog to reset it reset its timeout counter.

Inputs: None.

Returns: None.

D.3 ANALOG TO DIGITAL CONVERTER

The following is a detailed description of the ADC driver developed for the ADCS OBC.

Type Defines:

 enum ADC_Channel_TypeDef

Description: The different ADC channels that are sampled on the ADCS OBC.

Values:

 CURRENT_SRAM1 = 0

 CURRENT_SRAM2 = 1

 CURRENT_1V5 = 2

 CURRENT_3V3 = 3

Functions:

 void BSP_ADC_Init (void)

Description: The ADC clocks are enabled, the DMA channel is configured and the ADC

settings are configured.

Inputs: None.

Returns: None.

 void BSP_ADC_Scan (bool wait)

Description: Starts the ADC scan of all channels on the ADCS OBC which are copied to

memory by the DMA controller as they are sampled.

Inputs:

 wait: Indicates to the function whether it should return after ADC scan has started

or wait for it to complete.

Returns: None.

Stellenbosch University http://scholar.sun.ac.za

DETAILED DRIVER DESCRIPTIONS 87

 bool BSP_ADC_IsScanComplete (void)

Description: Returns true if an ADC scan is currently in progress otherwise false.

Inputs: None

Returns: True if an ADC scan is currently in progress otherwise false.

 uint16_t* BSP_ADC_GetAllData (void)

Description: Returns a pointer to the data array containing the values of the latest ADC

samples.

Inputs: None

Returns: Pointer to the data array containing the values of the latest ADC samples ADC.

 uint16_t BSP_ADC_GetData (ADC_Channel_TypeDef channel)

Description: Returns the latest sampled value of the specified ADC channel.

Inputs: None

Returns: The latest sampled value of the specified ADC channel.

D.4 MICROSD

The following is a detailed description of the microSD driver developed for the ADCS OBC.

Defines:

 #define TEST_FILENAME “test.txt”

Description: The filename of the text file created by the test program during microSD

test BSP_MSD_TEST().

 #define LOG_FILENAME “log.txt”

Description: The filename of the text file used to store all telemetry data.

Functions:

 void BSP_MSD_Init (void)

Description: Initialized the SPI interface, microSD card and FAT filesystem.

Inputs: None.

Returns: None.

Stellenbosch University http://scholar.sun.ac.za

DETAILED DRIVER DESCRIPTIONS 88

 int BSP_MSD_Write (int8_t* data, int size)

Description: Writes the specified data to the LOG file.

Inputs:

 data: The data in bytes to be written to the LOG file.

 size: The amount of bytes to be written to the LOG file.

Returns: 1 if the writing process is successfully completed otherwise 0.

 int8_t* BSP_MSD_Read (void)

Description: Reads data from log file into buffer variable.

Inputs: None.

Returns: A pointer to the buffer variable containing the data in the LOG file.

BSP_MSD_Read Reads data from log file into buffer variable.

 void BSP_MSD_Test (void)

Description: Executes a program to test the microSD card by initializing the microSD

card, creating a file, writing a string to the file, reading a string from the file and closing

the file. This function is used for debugging purposes.

Inputs: None.

Returns: None.

D.5 EXTERNAL BUS INTERFACE

The following is a detailed description of the EBI driver developed for the ADCS OBC.

Defines:

 #define EXT_SRAM_BASE_ADDRESS ((uint8_t*) 0x88000000UL)

Description: The pointer value of the base address for the external SRAM module.

Type Defines:

 enum EBI_SRAMSelect_TypeDef

Stellenbosch University http://scholar.sun.ac.za

DETAILED DRIVER DESCRIPTIONS 89

Description: Used to indicate a specific SRAM module.

Values:

 SRAM1 = 0

 SRAM2 = 1

Functions:

 void BSP_EBI_Init (void)

Description: Initialized the clocks, pins, timings and interrupts for the EBI.

Inputs: None.

Returns: None.

 void BSP_EBI_TogglePow (EBI_SRAMSelect_TypeDef module)

Description: Toggles the power to a specified SRAM module.

Inputs:

 module: The SRAM module’s power to be toggled.

Returns: None.

 void BSP_EBI_ToggleBuf (EBI_SRAMSelect_TypeDef module)

Description: Isolates a specified SRAM module from the address/data bus.

Inputs:

 module: The SRAM module to be isolated from the address/data bus.

Returns: None.

D.6 UNIVERSAL ASYNCHRONOUS RECEIVER / TRANSMITTER

The following is a detailed description of the UART driver developed for the ADCS OBC.

Functions:

 void BSP_UART_Init (void)

Description: Initializes the clock, DMA, pins and interrupt for the UART.

Inputs: None.

Returns: None.

 void BSP_UART_TxBuffer (uint8_t id, uint8_t* buffer, int size)

Description: Transmits an ID byte and specified amount of data bytes with the UART.

Inputs:

Stellenbosch University http://scholar.sun.ac.za

DETAILED DRIVER DESCRIPTIONS 90

 id: The identification byte of the following data. The ID byte is used by the

receiver to identify the incoming data.

 buffer: The data to be transmitted after the ID byte.

 size: The amount of bytes to be transmitted.

Returns: None.

 bool BSP_UART_IsTxComplete (void)

Description: Returns true if no transmission is in progress.

Inputs: None

Returns: True if no transmission is in progress, otherwise false.

Stellenbosch University http://scholar.sun.ac.za

91

E EDAC DESIGN

E.1 EDAC FPGA IMPLEMENTATION

The detail design of the EDAC system which was implemented on the FPGA will be shown

in the following section. The EDAC system consists of two Reed-Muller (1,3) linear code

blocks which were implemented on the FPGA in VHDL code. The code for one RM(1,3)

linear code block follows:

-- File: rm_13.vhd

-- Desc: A Reed-Muller (1,3) linear code block implementation.

Encodes a 4-bit data word in systematic form and decodes a 8-bit

codeword, detecting up to three errors and correcting up to one

error.

-- in: enc, dec, nCS - control signals from the MCU.

-- out: errors(0:3) - flag signal indicating if an error was

detected or corrected.

-- inout: data - 4-bit data bus to the MCU bus.

-- code - 8-bit codeword to the SRAM bus.

library std;

library ieee;

use ieee.std_logic_1164.all;

entity rm13 is

port (

 enc,dec,nCS : in std_logic;

 errors : out std_logic_vector(1 downto 0);

 data : inout std_logic_vector(3 downto 0);

 code : inout std_logic_vector(7 downto 0)

);

end rm13;

architecture behaviour of rm13 is

signal syndrome : std_logic_vector(0 to 3);

begin

 process(nCS, enc, dec, syndrome)

 begin

 -- encoding process

 if (enc = '0' and nCS = '0') then

 data <= "ZZZZ";

 errors <= "ZZ";

 code(0) <= data(0);

 code(1) <= data(1);

 code(2) <= data(2);

 code(3) <= data(3);

 code(4) <= data(0) xor data(1) xor data(2);

 code(5) <= data(0) xor data(1) xor data(3);

 code(6) <= data(0) xor data(2) xor data(3);

 code(7) <= data(1) xor data(2) xor data(3);

Stellenbosch University http://scholar.sun.ac.za

EDAC DESIGN 92

 syndrome <= "ZZZZ";

 -- decoding process

 elsif (dec = '0' and nCS = '0') then

 code <= "ZZZZZZZZ";

 syndrome(0) <= code(1) xor code(2) xor code(3) xor

code(7);

 syndrome(1) <= code(0) xor code(2) xor code(3) xor

code(6);

 syndrome(2) <= code(0) xor code(1) xor code(3) xor

code(5);

 syndrome(3) <= code(0) xor code(1) xor code(2) xor

code(4);

 -- indicate errors by checking syndrome

 case syndrome is

 -- no errors

 when "0000" =>

 data <= code (3 downto 0);

 errors <= "11";

 -- one error in data bits

 when "0111" =>

 data(0) <= code(0);

 data(1) <= code(1);

 data(2) <= code(2);

 data(3) <= code(3);

 errors <= "01";

 -- one error in data bits

 when "1011" =>

 data(0) <= code(0);

 data(1) <= not code(1);

 data(2) <= code(2);

 data(3) <= code(3);

 errors <= "01";

 -- one error in data bits

 when "1101" =>

 data(0) <= code(0);

 data(1) <= code(1);

 data(2) <= not code(2);

 data(3) <= code(3);

 errors <= "01";

 -- one error in data bits

 when "1110" =>

 data(0) <= code(0);

 data(1) <= code(1);

 data(2) <= code(2);

 data(3) <= not code(3);

 errors <= "01";

 -- one error in parity check bits

 when "0001" =>

 data <= code (3 downto 0);

 errors <= "10";

 -- one error in parity check bits

 when "0010" =>

 data <= code (3 downto 0);

 errors <= "10";

 -- one error in parity check bits

 when "0100" =>

Stellenbosch University http://scholar.sun.ac.za

EDAC DESIGN 93

 data <= code (3 downto 0);

 errors <= "10";

 -- one error in parity check bits

 when "1000" =>

 data <= code (3 downto 0);

 errors <= "10";

 -- too many errors

 when others =>

 data <= code (3 downto 0);

 errors <= "00";

 end case;

 -- high impedance state

 else

 data <= "ZZZZ";

 code <= "ZZZZZZZZ";

 errors <= "ZZ";

 syndrome <= "ZZZZ";

 end if;

 end process;

end behaviour;

Two of these RM(1,3) LCB are implemented in the FPGA to encode the 8-bit MCU data bus

into the 16-bit codeword bus of the SRAM. The top level implementation of the FPGA is

shown in Figure E.1. The two RM(1,3) LBCs can be seen as well as how the codewords are

interleaved before being put on the SRAM bus.

Stellenbosch University http://scholar.sun.ac.za

EDAC DESIGN 94

E.2 EXAMPLE

The following section will go through an example which will showcase the functioning of the

EDAC subsystem.

1. Write / Encode

The MCU bus data, which is 8-bits, is split into two 4-bit data words which is separately

fed into their respective RM(1,3) linear code blocks.

 (E.1)

 (E.2)

The 4-bit data words are multiplied by the RM(1,3) generator matrix G in systematic

form to generate the respective codewords c1 and c2.

Figure E.1: Top Level Implementation of EDAC on FPGA

Stellenbosch University http://scholar.sun.ac.za

EDAC DESIGN 95

 [

]

(E.3)

 (E.4)

 (E.5)

The codewords c1 and c2 are interleaved before output to the SRAM data bus.

 (E.6)

2. Read / Decode

The SRAM bus data, which consists of 16-bits, is de-interleaved into two codewords r1

and r2.

 (E.7)

 (E.8)

Codewords r1 and r2 are then multiplied by their respective parity check matrix H to

generate the syndromes s1 and s2.

 [

]

(E.9)

 (E.10)

 (E.11)

The syndromes are compared with the parity check matrix H to see if an error has

occurred and if this error can be corrected. In this example a single bit error has occurred

in codeword r1, which corresponds to the syndrome matching a row vector in H
T,

 and no

error in codeword r2, which corresponds to a zero syndrome.

The bit flip is in codeword r1 is identified and corrected and the corresponding error

signals are flagged. The correct codewords are put together and output on the MCU data

bus.

 (E.12)

Stellenbosch University http://scholar.sun.ac.za

EDAC DESIGN 96

 [] [] (E.13)

Stellenbosch University http://scholar.sun.ac.za

97

F SUPPORT FILES CD

The following CD includes all the support files used in the design and development of the

ADCS OBC.

These include:

 Datasheets of all the components used for the ADCS OBC.

 Altium design files for the ADCS OBC.

 Source code for MCU and FPGA development for ADCS OBC.

Stellenbosch University http://scholar.sun.ac.za

98

BIBLIOGRAPHY

[1] CPUT, CubeSat Projects, http://active.cput.ac.za/fsati/public/index.asp?pageid=956, July 2011.

[2] Wikipedia, SUNSAT, http://en.wikipedia.org/wiki/SUNSAT, July 2011.

[3] Wikipedia, SumbandilaSat, http://en.wikipedia.org/wiki/SumbandilaSat, July 2011

[4] Surrey Satellite Technology LTD, Science & Exploration - STRaND Nanosatellite,

http://www.sstl.co.uk/Divisions/Earth-Observation---Science/Science---Exploration/STRaND-

nanosatellite/STRaND-1-Factsheet, October 2011.

[5] Mr. Hank Heidt, Prof. Jordi Puig-Suari, Prof. Augustus S. Moore, Prof. Shinichi Nakasuka, and Prof.

Robert J. Twiggs, CubeSat: A new Generation of Picosatellite for Education and Industry Low-Cost

Space, 14TH Annual/USU Conference on Small Satellites, North Logan, Utah, USA, 2000, pp. 1-2,6,18.

[6] Jordi Puig-Suari, Clark Turner, and William Ahlgren, Development of the Standard CubeSat Deployer

and a CubeSat Class PicoSatellite, Aerospace Conference, Big Sky, Montana, USA, 2001, pp. 1-3,6.

[7] Clyde Space, http://www.clyde-space.com/cubesat_shop/cubesat_platforms/3u_platform, July 2011.

[8] ISIS. CubeSatShop. [Online]. http://www.cubesatshop.com/, October 2011.

[9] W. T. Thompson, Spin stabilization of attitude against gravity torque, J. Astronaut. Sci., vol. 9, no. 1,

1962, pp. 31-33.

[10] James R. Wertz, Wiley J. Larson, et al, Space Mission Analysis and Design, 3rd ed., James R. Wertz and

Wiley J. Larson, Eds. California, USA: Microcosm Press, Kluwer Academic Publishers, 1999.

[11] H. Grobler, Aspects Affecting the Design of a Low Earth Orbit Satellite On-Board Computer, in

Engineering Masters Thesis, University of Stellenbosch, 2000.

[12] Kenneth A. LaBel, Michele M. Gates, Amy K. Moran, et al. Commercial Microelectronics Technologies

for Applications in the Satellite Radiation Environment, NASA/GSFC Radiation Effects & Analysis,

http://radhome.gsfc.nasa.gov/radhome/papers/aspen.htm., October 2011.

[13] ARM, http://www.arm.com/products/processors/cortex-m/index.php, August 2011.

[14] ATMEL,

Stellenbosch University http://scholar.sun.ac.za

http://active.cput.ac.za/fsati/public/index.asp?pageid=956
http://en.wikipedia.org/wiki/SUNSAT
http://en.wikipedia.org/wiki/SumbandilaSat
http://www.sstl.co.uk/Divisions/Earth-Observation---Science/Science---Exploration/STRaND-nanosatellite/STRaND-1-Factsheet
http://www.sstl.co.uk/Divisions/Earth-Observation---Science/Science---Exploration/STRaND-nanosatellite/STRaND-1-Factsheet
http://www.clyde-space.com/cubesat_shop/cubesat_platforms/3u_platform
http://www.cubesatshop.com/
http://radhome.gsfc.nasa.gov/radhome/papers/aspen.htm.
http://www.arm.com/products/processors/cortex-m/index.php

BIBLIOGRAPHY 99

http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=2138,

August 2011.

[15] Pumpkin, Flight Module FM430 Datasheet, Revision C, June 2008.

[16] eoPortal, CanX-6 (Canadian Advanced Nanosatellite eXperiment-6) / NTS,

http://events.eoportal.org/get_announce.php?an_id=10000802, April 2008.

[17] Energy Micro, EFM32G Reference Manual, Revision 1.10, April 2011.

[18] Energy Micro, Cortex-M3 Reference Manual, Revision 1.00, February 2011.

[19] Wayne Hendrix Wolf, Computers as Components, 2nd ed. Montana, USA: Morgan Kaufmann

Publishers, 2008.

[20] ST Microelectronics, Watchdog STWD100 Datasheet, Revision 5, 2008.

[21] Tetsuo Miyahira and Gary Swift, Evaluation of Radiation Effects in Flash Memories, in Military and

Aerospace Applications of Programmable Devices and Technologies Conference, Maryland, 1998, pp. 1-

4.

[22] ATMEL, EDAC 29C516E Datasheet, Revision E, 2007.

[23] Gregor Dreijer, The Evaluation of an ARM-based On-Board Computer for a Low Earth Orbit Satellite,

Engineering Masters Thesis, University of Stellenbosch, 2002.

[24] Christiaan Johannes Petrus Brand, The Developmnet of an ARM-Based OBC for a Nanosatellite,

Engineering Masters Thesis, University of Stellenbosch, 2007.

[25] Actel, IGLOO nano Low Power Flash FPGAs Datasheet, Revision 1.11, 2010.

[26] Hanco Evert Loubser, The development of Sun and Nadir sensors for a solar sail CubeSat, Engineering

Masters Thesis, University of Stellenbosch, 2010.

[27] Texas Instruments, Voltage Regulator TPS767xx Datasheet, January 2004 Revision.

[28] Texas Instruments, Voltage Regulator TPS732xx Datasheet, 2008, May 2008 Revision.

[29] Fairchild Semiconductors, Load Switch FPF2123-FPF2125 Datasheet, Revision F, 2008.

[30] Cypress Semiconductors, SRAM CY62167DV30 Datasheet, Revision C, 2003.

Stellenbosch University http://scholar.sun.ac.za

http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=2138
http://events.eoportal.org/get_announce.php?an_id=10000802

BIBLIOGRAPHY 100

[31] Energy Micro, http://www.energymicro.com/, October 2011.

[32] Wikipedia, Unix Time, http://en.wikipedia.org/wiki/Unix_time, August 2011.

[33] B. P. Lathi, Modern Digital and Analog Comunication Systems, Third Edition ed. New York, USA:

Oxford University Press, Inc., 1998.

[34] Wolfram Alpha, Reed-Muller (1,3), http://www.wolframalpha.com/input/?i=reed-muller+1%2C+3,

August 2011.

[35] Wikipedia, Non Blocking, http://en.wikipedia.org/wiki/Non-blocking_algorithm, September 2011.

[36] Energy Micro, EFM32GG Reference Manual, Revision 0.90, 2011.

[37] ATMEL, Parallel EEPROM (AT28C64B) Datasheet, October 2006 Revision.

[38] Spansion, S29AL008D Datasheet, Revision A.11, 2009.

[39] ATMEL, EEPROM AT28BV256 Datasheet, 2009 Revision.

[40] ATMEL, EEPROM AT28HC256 Datasheet, 2009 Revision.

[41] Wikipedia, RTOS, http://en.wikipedia.org/wiki/Real-time_operating_system, September 2011.

[42] Energy Micro, AN0002 - Hardware Design Considerations, Revision 1.31, 2011.

[43] Cypress Semiconductor, SRAM System Design Guidelines, October 2002 Revision.

[44] Texas Instruments, Current Sensor INA139 Datasheet, January 2003 Revision.

[45] Clyde Space LTD, User Manual: CubeSat 1U Electronic Power System and Batteries: CS-1UEPS2-NB/-

10/-20, Issue A, 2010.

[46] ALLSPACE, http://www.cubesat.de/downloads/cbs.pdf, August 2011.

[47] NASA, Radiation Belts, http://radbelts.gsfc.nasa.gov/outreach/Radbelts3.html, October 2011.

[48] Olmo A. M. Franco, The Robotics Institute of Yucatan, http://www.triy.org/ENG/CubeSat_Intro.htm,

September 2009.

[49] Energy Micro, AN0030 - FAT on SD Card, Revision 1.01, 2011.

Stellenbosch University http://scholar.sun.ac.za

http://www.energymicro.com/
http://en.wikipedia.org/wiki/Unix_time
http://www.wolframalpha.com/input/?i=reed-muller+1%2C+3
http://en.wikipedia.org/wiki/Non-blocking_algorithm
http://en.wikipedia.org/wiki/Real-time_operating_system
http://www.cubesat.de/downloads/cbs.pdf
http://radbelts.gsfc.nasa.gov/outreach/Radbelts3.html
http://www.triy.org/ENG/CubeSat_Intro.htm

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Background
	1.1 Mission
	1.2 CubeSat
	1.3 ADCS
	1.4 Space Environment
	1.4.1 Radiation Effects
	1.4.2 Remoteness

	1.5 Document Outline

	2 Hardware Design
	2.1 Requirement Definition
	2.1.1 Performance
	2.1.2 Efficiency
	2.1.3 Reliability

	2.2 Microcontroller Selection
	2.2.1 8-Bit vs. 16-Bit vs. 32-Bit MCUs
	2.2.2 Microcontroller Comparisons
	2.2.3 EFM Gecko MCU
	2.2.3.1 ARM Cortex-M3 Core
	2.2.3.2 Memory and Bus System
	2.2.3.3 Peripherals
	2.2.3.4 Energy Management

	2.3 System Overview and Design
	2.3.1 MCU
	2.3.1.1 Watchdog
	2.3.1.2 Crystal Oscillator

	2.3.2 External Memory Subsystem
	2.3.2.1 Memory Types
	2.3.2.2 External Memory Regions
	2.3.2.3 External Memory Interface
	2.3.2.4 Error Detection and Correction
	2.3.2.5 SRAM Bus Isolation
	2.3.2.6 SD Card Storage

	2.3.3 Power Subsystem
	2.3.3.1 Power Supply Lines
	2.3.3.2 Regulators
	2.3.3.3 Load Switches

	2.3.4 Monitoring Subsystem
	2.3.5 Communication Subsystem
	2.3.5.1 UART
	2.3.5.2 I2C
	2.3.5.3 SPI

	3 Software Development
	3.1 Hardware Abstraction Layer
	3.2 Drivers
	3.2.1 External Bus Interface
	3.2.2 Direct Memory Access
	3.2.3 Analog to Digital Converter
	3.2.4 Real-Time Clock
	3.2.5 Watchdog
	3.2.6 UART
	3.2.7 SPI
	3.2.8 I2C

	3.3 Error Detection and Correction
	3.3.1 Linear Block Codes
	3.3.2 Reed-Muller Code
	3.3.3 Implementation
	3.3.4 Error Handling

	3.4 Bootloader
	3.4.1 Program Types
	3.4.2 Implementation

	3.5 Operating System
	3.5.1 Foreground Application
	3.5.2 Background Tasks/Services

	4 Tests and Measurements
	4.1 Background Services
	4.1.1 RTC
	4.1.2 Telemetry Logging
	4.1.3 Single Event Upsets
	4.1.4 Single Event Latchup
	4.1.5 Communication

	4.2 Hardware In The Loop
	4.2.1 Setup
	4.2.2 PC Communication Protocol
	4.2.3 Results

	4.3 Power Consumption

	5 Conclusions and Recommendations
	5.1 Conclusions
	5.2 Recommendations
	5.2.1 Layout
	5.2.2 Microcontroller
	5.2.3 EEPROM
	5.2.4 Protocol
	5.2.5 Real-Time Operating System

	6 Summary
	A Hardware Design Details
	A.1 Hardware Design Guidelines
	A.2 Current Sensor Design

	B Schematics
	B.1 MCU
	B.2 FPGA
	B.3 Memory Bus
	B.4 Memory Power
	B.5 Power Supply

	C PCB Layout
	C.1 CubeSat Layout Standard
	C.1.1 Electrical Layout Standard (Header Pin Allocation)
	C.1.2 Mechanical Layout Standard (PCB Design)

	C.2 ADCS OBC Layout
	C.2.1 Top Layer
	C.2.2 Bottom Layer
	C.2.3 ADCS OBC Photo

	D Detailed Driver Descriptions
	D.1 Real Time Clock
	D.2 Watchdog
	D.3 Analog to Digital Converter
	D.4 MicroSD
	D.5 External Bus Interface
	D.6 Universal Asynchronous Receiver / Transmitter

	E EDAC Design
	E.1 EDAC FPGA Implementation
	E.2 Example

	F Support Files CD
	Bibliography

