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Abstract

Biofilms are aggregations of bacteria that can thrive wherever there is a water-
surface or water-interface. Sometimes they can be beneficial; for example,
biofilms are used in water and waste-water treatment. The filter used to remove
contaminants acts as a scaffold for microbial attachment and growth. However,
biofilms could have bad effects, especially on a persons health. They can cause
chronic diseases and serious infections. The importance of biofilms in industrial
and medical settings, is the main reason of the mathematical studies performed
up to now, concerning biofilms.

Biofilms have been mathematical modelling targets over the last 30 years.
The complex structure and growth of biofilms make them difficult to study.
Biofilm formation is a multi-stage process and occurs in even the most unlikely
of environmental conditions. Models of biofilms vary from the discrete to the
continuous; accounting for one-species to multi-species and from one-scale to
multi-scale models. A model may even have both discrete and continuous
parts. The implication of these differences is that the tools used to model
biofilms differ; we present and review some of these models.

The aim in this thesis is to model the early initiation of biofilm formation.
This stage involves bacterial movement towards a surface and the attachment
to the boundary which seeds a biofilm. We use a diffusion equation to describe
a bacterial random walk and appropriate boundary conditions to model sur-
face attachment. An analytical solution is obtained which gives the bacterial
density as a function of position and time. The model is also analysed for
stability. Independent of this model, we also give a reaction diffusion equa-
tion for the distribution of sensing molecules, accounting for production by the
bacteria and natural degradation.

The last model we present is of Keller-Segel type, which couples the dy-
namics of bacterial movement to that of the sensing molecules. In this case,
bacteria perform a biased random walk towards the sensing molecules. The
most important part of this chapter is the derivation of the boundary con-
ditions. The adhesion of bacteria to a surface is presented by zero-Dirichlet
boundary conditions, while the equation describing sensing molecules at the
interface needed particular conditions to be set. Bacteria at the boundary also
produce sensing molecules, which may then diffuse and degrade. In order to
obtain an equation that includes all these features we assumed that mass is
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conserved. We conclude with a numerical simulation.
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Uittreksel

Biofilms is die samedromming van bakterieë wat kan floreer waar daar ’n wa-
teroppervlakte of watertussenvlak is. Soms kan hulle voordelig wees, soos
byvoorbeeld, biofilms word gebruik in water en afvalwater behandeling. Die
filter wat gebruik word om smetstowwe te verwyder, dien as ’n steier vir mikro-
biese verbinding en groei. Biofilms kan ook egter slegte gevolge hë, veral op ’n
persoon se gesondheid. Hulle kan slepende siektes en ernstige infeksies veroor-
saak. Die belangrikheid van biofilms in industriële en mediese omgewings,
is die hoof rede vir die wiskundige studies wat tot dusver uitgevoer is met
betrekking tot biofilms.

Biofilms is oor die afgelope 30 jaar al ’n teiken vir wiskundige modeller-
ing. Die komplekse struktuur en groei van biofilms maak dit moeilik om hul
te bestudeer. Biofilm formasie is ’n multi-fase proses, en gebeur selfs in die
mees onwaarskynlikste omgewings. Modelle wat biofilms beskryf wissel van
die diskreet tot die kontinu, inkorporeer een of meer spesies, en strek van een-
tot multi-skaal modelle. ’n Model kan ook oor beide diskreet en kontinue kom-
ponente besit. Dit beteken dat die tegnieke wat gebruik word om biofilms te
modelleer ook verskil. In hierdie proefskrif verskaf ons ’n oorsig van sommige
van hierdie modelle.

Die doel in hierdie proefskrif is om die vroeë aanvang van biofilm ontwikke-
ling te modeleer. Hierdie fase behels ’n bakteriële beweging na ’n oppervlak
toe en die aanvanklike aanhegsel wat sal ontkiem in ’n biofilm. Ons gebruik ’n
diffusievergelyking om ’n bakteriële kanslopie te beskryf, met geskikte rand-
voorwaardes. ’n Analities oplossing is verkry wat die bakteriële bevolkings-
digtheid beskryf as ’n funksie van tyd en posisie. Die model is ook onleed om
te toets vir stabiliteit. Onafhanklik van die model, gee ons ook ’n reaksie-
diffusievergelyking vir die beweging van waarnemings-molekules, wat insluit
produksie deur die bakterieë en natuurlike afbreking.

Die laaste model wat ten toon gestel word is ’n Keller-Segel tipe model,
wat die bakteriese en waarnemings-molekule dinamika koppel. In hierdie geval,
neem die bakterieë ’n sydige kanslopie agter die waarnemings molekules aan.
Die belangrikste deel van hierdie hoofstuk is die afleiding van die randvoor-
waardes. Die klewerigheid van die bakterieë tot die oppervlak word vvorgestel
deur nul-Dirichlet randvoorwaardes, terwyl die vergelyking wat waarnemings-
molekule gedrag by die koppelvlak beskryf bepaalde voorwaardes nodig het.

iv
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UITTREKSEL v

Bakterieë op die grensvlak produseer ook waarnemings-molekules wat diffun-
deer en afbreek. Om te verseker dat al hierdie eienskappe omvat is in ’n
vergelyking is die aanname gemaak dat massa behoud bly. Ter afsluiting is
numeriese simulasie van die model gedoen.
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Chapter 1

The biology of bacterial biofilms

A biofilm is an aggregation of cells that accumulate on a surface. The cells
live within a self-produced matrix generally composed of proteins, extracellular
DNA and polysaccharides. Within a biofilm the cells are more cooperative with
each other and behave differently than when they are in the free-state.

This thesis contains three main sections in addition to a discussion and
conclusion at the end. In this chapter, we will give a biological description of
bacterial biofilms. Our work will concern bacterial biofilms, that is prevalent
in natural environments, industrial areas and hospital settings. In Chapter 2,
we will study a variety of mathematical models of biofilm. We will discuss the
results obtained, as well as the biological assumptions required to build the
models. Chapter 3 introduces our own work, which is the mathematical mod-
elling of the bacterial attachment to surfaces. The chapter consists of studying
bacterial behaviour and sensing molecule motion separately. In Chapter 4, we
consider a model of Keller-Segel type, to describe coupled bacterial chemotaxis
and sensing molecule production. Keller-Segel type model describes bacterial
directed movement towards an attractant or a repellent (chemotaxis).

Before looking at mathematical models of biofilms, it is necessary to un-
derstand the biology that outlines the modelling problem. We will describe
biofilm components and explain the cellular behaviours within a biofilm. Some
biofilms that are present in our daily life, will be cited and described. We will
explain in detail the stages of biofilms formation. Then, end this chapter by
giving our motivation to study biofilm.

1.1 What is a biofilm?
Bacterial biofilms are composed of clusters of bacteria. Biofilms can be made
up of many different bacterial species. They surround themselves by a slime
they secrete, generally composed of extracellular DNA, proteins, and polysac-
charides in various configurations. Biofilms can also be made of other micro-
organisms, such as amoeba and algae.

1
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CHAPTER 1. BACTERIAL BIOFILM BIOLOGY 2

Bacteria within a biofilm behave very differently compared to their coun-
terparts in a free living state. Microbiologists have traditionally focused their
experiments on planktonic bacteria that grow in laboratory cultures until it
was realized, that most bacteria naturally aggregate as biofilms rather than
living in the free state. And so, biofilms are interesting topics to be studied in
microbiology [2]. It is estimated that the majority of bacteria live in biofilms.
They provide an easy way for bacteria to find food and nutrients, as well as
a high tolerance to antibiotics. In fact, bacteria of the same species are much
more antimicrobial resistant, within a biofilm than in the free-swimming state.
This is because of the high cooperation between the biofilm members. Two
positive facts making bacteria choose to live within a biofilm instead of the
planktonic state, are:

• The ability to differentiate into types that differ in their nutrient require-
ments. This means there are fewer competitors for a particular nutrient.

• When conditions deteriorate in a biofilm, some bacteria sacrifice them-
selves for the other bacteria to have a better life. They become planktonic
cells once again, looking for another surface and build another biofilm in
better conditions.

Biofilms exist wherever there is water attached to either an inert or living
surface [3, 4]. They represent a prevalent mode of bacterial life in natural,
industrial and hospital settings [5]. Some biofilms are beneficial, for example,
sewage treatment plants, uses biofilms to remove contaminants from water.
There are some biofilms that we may see every day, such as, the plaque on our
teeth. The accumulation of bacterial micro-organisms on the surface of our
teeth can cause dental diseases. The slippery slime on river stones that might
result in water pollution. Biofilms can also be the cause of damage to contact
lenses. Another place where biofilms thrive is in showers, since they provide a
warm environment for bacteria to live in.

1.2 How do biofilms form?
Biofilms are omnipresent in natural and industrial settings. They are usually
found on solid substrates submerged in, or exposed to, some aqueous solution
[6, 7, 8]. Biofilms are small communities of bacterial cells that can grow on
either, rich-nutrient or poor-nutrient surfaces. They can form floating mats on
liquid surfaces and also on interfaces like air-water interfaces. The development
a of biofilm is a multi-stage process, as shown in Figure 1.1.

There are five stages of the development of a biofilm, namely, the initial
attachment, where the bacteria move toward either a living or non-living sur-
face and attach to it. The irreversible attachment, the stage at which bacteria
produce the polysaccharide matrix to facilitate their movement to a swarming
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CHAPTER 1. BACTERIAL BIOFILM BIOLOGY 3

Figure 1.1: Description of the biofilm life cycle that occurs in five stages de-
scribed in details in the text (see the last paragraph, page 2).
Source: http://prometheus.matse.illinois.edu/glossary/biofilms/.

rather than a free-state. The third stage is a period of maturation, which
consists of growing as a initiated biofilm; bacteria proliferate and differentiate
and also welcome other bacteria to join them. The fourth stage is a second
maturation phase and the final stage in which bacteria disperse. This occurs
when the environmental conditions worsen and bacteria choose to detach from
the biofilm either to look for other surfaces or to join another biofilm.

1.3 Why study biofilm?
Biofilms are not all bad, they are a natural phenomenon that exists in our
everyday environments and can be found even in extremely hot and cold en-
vironment. Biofilm can be beneficial, where it can be used

• to help in the clean up of an oil spill,

• in waste water treatment,

• in soil remediation.

Moreover, biofilms have a huge impact on our health. Many diseases and
infections are caused by biofilms. These infections are usually much more
difficult to treat than other non-biofilm infections resulting from the same
microbes not in a biofilm state. Biofilms can also be found in common sites of
infection in the human body. Once a biofilm reaches the bloodstream, it can
easily cause infections in any surface of the human body. Bacterial biofilms
may cause chronic infections which persist despite antibiotic therapy and are
characterised by persistent inflammation and tissue damage [8, 9].
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CHAPTER 1. BACTERIAL BIOFILM BIOLOGY 4

Figure 1.2: The reduction of bacteria in the presence of antibiotics in plank-
tonic (empty circles) and biofilm (black circles) states. The antibiotic acting is
rifampin and the bacteria is Staphylococcus epidermidis, for more explanations
look at the second paragraph, page 4. Source [10]

Development of a biofilm is initiated by the reversible attachment of plank-
tonic bacteria to a surface. At this stage the bacteria still show some suscep-
tibility to antibiotics. In the next stage, which is the irreversible attachment,
the biofilm grows in thickness to a mature biofilm. At this stage, biofilms show
maximum tolerance to antibiotics.

Staphylococcus epidermidis is a normal part of the human skin flora. Fig-
ure 1.2 shows the tolerance of this bacteria to an antibiotic under different
conditions. The y-axis shows the reduction of surviving number of bacteria on
a logarithmic scale. Effectively, the antibiotics kills planktonic bacteria, while
it has a little effect on biofilm even if after 2 days of continuous exposure.

Biofilm triggers inflammation and fibrosis (scar tissue formation) that make
some breast implants become hard and distorted. Recently, in Tamboto et al.
[11] small breast implants were implanted in a pig, where some of the implants
are injected with small amount of bacteria. The injections are enough to
cause a biofilm, but not enough to cause an infection. Thirteen weeks later,
the animals were inspected for capsules to analyse any biofilm found on the
breasts. 80.6% of the implants contained a biofilm that form a major capsular
contractor (that is an abnormal response of the human body immune system
to foreign materials). While some of the implants that were not injected with
bacteria at the beginning also went on to form a capsule. This means they
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CHAPTER 1. BACTERIAL BIOFILM BIOLOGY 5

also have biofilm formed, in this case the animal’s own skin bacteria were the
biofilm-forming organisms. This experimental study clearly links biofilms with
capsular contractors in breast implantation.

It is the importance of biofilms and the complexity of its nature that make
biofilm modelling a very challenging topic. In the following chapter we will
present some biofilm models and discuss their advantages and disadvantages.
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Chapter 2

A brief history of bacterial biofilm
models

There are several approaches to modelling biofilms mathematically. We can
model biofilm as a quantity that is continuous, discrete or both depending on
the situation described. Some models simply describe the shape of biofilms;
these have variously been described as looking like mushrooms, towers, fractals
or some other pattern. Most of the models are computational, based on the
movement and positions of bacteria within a well defined space.

Other models deal with biofilm growth. Either by considering the biofilm as
a continuum mass growing, or, by taking into account the interaction between
the individuals. These models vary from continuum to discrete models [1].

A third type, is those models that couple the biofilm and the surrounding
environment, usually a fluid. These studies include biofilm sloughing and shear
stress which also play an important role in biofilm life cycle. In general, these
models are discrete-continuum or fully coupled biofilm-fluid models [8, 12, 13,
14].

The development of biofilm is a complicated process since it depends strongly
on the surrounding environment. Over the last 30 years, good progress has
been made in the mathematical modelling of bacterial biofilms. These models
can be classified as shown in Table 2.1.

Table 2.1: Categories of biofilm models and time periods when they were
actively developed.

Models category Time period Reference
Low-dimensional continuum models 1980− 1985 [1]
Diffusion-limited aggregation models 1981− 1994 [8]
Continuum-discrete models 1982− 2006 [15]
Fully-coupled biofilm-fluid models 1994− 2008 [8, 16]

6
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CHAPTER 2. REVIEW OF BIOFILM MODELS 7

An example of each of the first three categories will be presented and briefly
reviewed in Sections, §2.1, §2.2 and §2.3.

2.1 One-dimensional continuum model
One-dimensional continuum models involve quantities assumed to be contin-
uous, in time and on one-dimensional space. This category of models usually
deals with steady-state biofilm growth dynamics, which includes: the biofilm’s
thickness; the spatial distribution of bacterial species, and substrate concen-
tration; as example of these models we will present the work done by Wanner
and Gujer [1].

Wanner and Gujer [1] (1985) presented a mathematical model involving a
continuum description of biofilm. The multispecie biofilm model considers the
biomass to be a continuum, by averaging the concentration of microbial species,
as well as other similar quantities. It predicts the biofilm’s thickness evolution,
the spatial distribution of microbial species and substrate concentration, as
well as, the biofilm detachment due to shear stress and sloughing [1]. This
section will present the mathematical model, where all the parameters and
variables used are given in Table 2.2 with their descriptions.

Table 2.2: State parameters and variables from a model presented by Wanner
and Gujer [1].

Parameter Description
A Cross-sectional area
Di Diffusion coefficient of the i-th substrate
Dli Diffusion coefficient in the bulk liquid
fi Volume fraction of the i-th species

(volume of the i-th specie over the total volume)
gi Mass flux of the i-th species in the z-direction
L Biofilm thickness
Ll Substrate transfer layer thickness
ns Substrates
nx Microbial species
ri Substrate conversion rate
Si Substrate concentration
Sli Substrate in the bulk liquid
u Velocity of the microbial mass displacement
µoi Observed specific growth rate
ρi Constant density for the i-th species
σ Velocity
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Figure 2.1: Flux of biomass through a differential volume element of an ex-
panding biofilm. The scheme indicates the displacement of flux gi, into and
out of the differential volume Adz. Source [1]

Wanner and Gujer [1] assume that a biofilm is composed of nx different
microbial species within a well defined volume. The differential equation de-
scribing a mass balance of each species i at a differential volume Adz is given
by,

∂ [Adzρifi(t, z)]

∂t
= Adzµoi(t, z)ρifi(t, z)+Agi(t, z)−A

[
gi(t, z) +

∂gi(t, z)

∂z
dz

]
.

(2.1.1)
This is equivalent to saying that, the change in the quantity ρifi (mass balance
of the species i) within the volume Adz is equal to the species growth, with
the appropriate amounts entering or leaving the volume added or removed (see
Figure 2.1). Dividing (2.1.1) by Adzρi gives the differential equation,

∂fi
∂t

= µoifi −
1

ρi

∂gi
∂z

. (2.1.2)

The flux gi can be written as gi(t, z) = u(t, z)ρifi(t, z). Thus, Equation (2.1.2)
becomes,

∂fi
∂t

=

(
µoi −

∂u

∂z

)
fi − u

∂fi
∂z

. (2.1.3)

By summing over all the nx microbial species, Equation (2.1.3) will be,

∂u(t, z)

∂z
= µ̄o(t, z), where µ̄o(t, z) =

nx∑
i=1

µoi(t, z)fi(t, z). (2.1.4)
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Then we determine the velocity u by the mean observed specific growth rate
of the biomass µ̄o(t, z) as,

u(t, z) =

∫ z

0

µ̄o(t, z′)dz′, (2.1.5)

where u(t, 0) = 0. The biofilm thickness L, changes as the biofilm grows or
shrinks while the film-water interface moves at a velocity defined by,

uL(t) ≡ dL(t)

dt
, (2.1.6)

with respect to the film-support interface. The velocity of the film-water inter-
face is expressed by defining σ(t) as the velocity at which biomass is exchanged
between biofilm and bulk liquid, so that Equation (2.1.5) becomes,

uL(t) =

∫ L

0

µ̄o(t, z′)dz′ + σ(t). (2.1.7)

Equations (2.1.3) and (2.1.4) give the mass balance equation for fi,

∂fi
∂t

= [µoi(t, z)− µ̄oi(t, z)] fi(t, z)− u(t, z)
∂fi(t, z)

∂z
, i = 1, ..., nx− 1. (2.1.8)

On the other hand, the bulk liquid is assumed to contain ns different sub-
strates, so that a mass balance for the substrate i can be written as:

∂Si(t, z)

∂t
= ri(t, z) +

∂

∂z

(
Di
∂Si(t, z)

∂z

)
, i = 1, ..., ns, (2.1.9)

with Si as the concentration, ri, the observed conversion rate and Di, the
diffusion coefficient of each substrate i. Equation (2.1.9) shows the diffusion
and production of the substrate i. The boundary conditions used are, for the
film-support interface (z = 0),

dfi
dt

= (µoi − µ̄o)fi,
∂Si
∂z

= 0,

due to the no-flux at this interface. For the film-water interface (z = L),

∂Si
∂z

=
LDli

LlDi

(Sli − Si) or Si = Sli ,

The steady-state analysis of the presented mathematical model predicts
that the spatial distribution of a microbial species can be described by one
or more layers, whether the biofilm is homogeneous (mono-species biofilm)
or mixed (multi-specie biofilm). This result is valid for any given situation,
which means whether the species compete only for space or only for substrate.
The situation chosen for numerical simulations is a heterotrophic-autotrophic
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competition for the common resources, space and oxygen. Heterotrophic and
autotrophic are both microbial metabolisms that consist of getting carbon,
from, respectively, organic compounds and carbon dioxide. The study con-
sidered five cases, namely, 1) unrestricted growth; 2) changes in bulk liquid
substrate concentration; 3) biomass shear; 4) biomass sloughing; and 5) biofilm
in a completely mixed reactor with external mass transfer resistance. In each
case, the the biofilm’s thickness evolution with time and the substrates re-
moval from the bulk liquid were presented [8, 1]. The results show that the
biofilm composition depends on the microbial species kinetics, the concentra-
tion of substrate, and the reactor configurations and a biomass detachment
mechanism.

The advantages of the model are that it involves multiple microbial species
and substrates. It looks at the biofilm composition and growth, which makes
it one of the very interesting biofilm models.

The model has some disadvantages, like the fact that it did not consider
individual behaviours which play an important role in biofilm formation, es-
pecially in the very early biofilm stages.

In the next section we will give an example of biofilm computational models.

2.2 Diffusion limited aggregation model
Biofilm shape can be modelled using Diffusion limited aggregation model
(DLA). This is a computational model consisting of particles performing a
random walk to form aggregations. DLA models are used to describe the
shape of fractal-like biofilms [8].

The rule of a DLA algorithm consists of considering a square lattice on a
plane, where a particle is set to be the origin. A second particle is released
far from the origin , that moves randomly (see Figure 2.2 left graph). When
it reaches the origin’s neighbouring sites, it becomes stationary. A third par-
ticle is released and it moves until it arrives at the neighbouring site near
by the cluster made of the two previous particles. The process is repeated
continuously until the cluster grows as a randomly-branched structure. The
right graph on Figure 2.2 is a result of computational simulation of a DLA
algorithm.

Bacillus subtilis(B.subtilis) bacteria are able to grow at a very low nutrient
level on an agar plate to form randomly-branched structures that could be
compared to numerical results of a DLA model (see Figure 2.3).

Despite the good agreement between the DLA models and experimental
results, we should mention that this type of model does not include any of
the environmental conditions that play an important role in biofilm formation
in real life. This type of model studies the shapes of biofilm based on simple
assumptions.

However, there exist other type of models that are more realistic and in-
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Figure 2.2: A DLA computational model. The left figure shows the rule of a
DLA growth, where the solid cell is the origin, the grey cell is a new cell released
(see paragraph 2, page 10). The right figure shows the computer simulation
of a DLA model, where the cluster is consisting of 100, 000 particles.

Figure 2.3: A fractal-like biofilm made by B. subtilis bacteria growing on an
agar plate under very low nutrient conditions. The colony was photographed
21 days after inoculation. Its diameter is about 47 mm. Source: [8]

clude more biological features of biofilms. Among these we present a continuum-
discrete model in the following section.

2.3 Continuum-discrete model
Discrete-continuum models (also called Cellular Automaton models) consist
of a regular grid of cells, each in one of a finite number of states. The grid is
in any finite number of dimensions. The state of a cell at time t depends on
the states of its neighbourhood cells at time t− 1, where time is also discrete.
Each time the rules are applied to the whole grid and a new generation of
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Figure 2.4: Observed patterns of B. subtilis grown colonies (See text in the
last paragraph, page 12 for details), Source [17].

cells is created. In this section we will review this type of model by reviewing
Ben Jacob et al. [17].

The continuum-discrete model includes bacterial movement and the dif-
fusion of nutrients. The bacteria are presented by small aggregations (called
walkers) rather than individuals. The study will be based on a comparison
between experimental results and numerical simulations for the mathematical
model. We will start by a description of the experiment done on B. subtilis
bacteria.

Figure 2.4 shows bacterial colonies grown under different conditions. The
nutrients level ranges from a very low level (d) to a very rich mixture (a). The
medium vary from a soft agar (a) to a hard agar (d). The growth started with
a droplet inoculation at the center of the Petri dishes. The growth pattern
described are of bacteria derived from B. subtilis [15, 17]. The colonies shapes
vary as growth conditions are varied (see Figure 2.4). At a high peptone level,
the pattern is very dense with wide branches. The patterns become more
ramified (b and c), as the peptone level is decreased; even at lower peptone
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levels, the patterns become denser again (d), this phenomenon is expected to
result from chemotaxis signalling.

Ben Jacob et al. [17] included the following generic features in the model:
the diffusion of nutrients and substrates (as continuous quantities), the move-
ment of bacteria described by walkers positions (discrete quantity). The walk-
ers perform a random walk within a well-defined envelope. The local intracel-
lular communication between bacteria was also included to perform the last
feature found in the experiment.

The biological assumptions involved in this model are summarized as fol-
lows:

• Movement of the nutrient is obtained by solving the diffusion equation
for nutrient concentration c, on a triangular lattice.

• Bacteria are presented by walkers that are small aggregations of bacteria,
each of which is viewed as a mesoscopic unit.

• Each walker is presented by its location ~ri, and an interval of degree of
freedom (‘ internal energy Wi ’).

• The internal energy of walkers is increased by consuming nutrients at a
fixed rate cr, when food is abundant. Otherwise, the walker consumes
the available amount of food. The walker loses its internal energy at a
fixed rate e.

• When there is lack of food for an interval of time (so that Wi drops
to zero), the walker becomes stationary. When food is again available,
Wi increases, and when it reach a threshold tr, the walker proliferates
(reproduction).

The nutrient concentration is given by the solution to,

∂c(~r, t)

∂t
= Dc∇2c(~r, t)−

∑
active walkers

δ(~r − ~ri) min(cr, c(~r, t)), (2.3.1)

where Dc is the diffusion constant of the nutrients, the equation shows the
diffusion and consumption of the nutrient by the active walkers. The evolution
of Wi in time is represented by,

dWi

dt
= min(cr, c(~ri, t))− e. (2.3.2)

The active walkers move randomly within a well-defined envelope at step-size
d and angle θ ∈ [0, 2π]. Thus, we obtain the new location ~r′i by,

~r′i = ~ri + d(cos θ, sin θ). (2.3.3)
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The numerical results show the pattern shapes that differ as the peptone
level and the agar concentration changed. At high peptone levels the patterns
are compact and change to fractal when nutrient level decreases, which is
similar to the obtained experimental results. While, if the peptone level is fixed
and the agar concentration varies, the obtained numerical patterns become
more ramified as the agar concentration is increased.

Comparing the numerical results of the model and the experimental results
some differences are found. The most important one is the bacterial ability
to develop organized patterns at very low peptone levels. Compare this to
the graph (d), Figure 2.4, which is missing by this model. The reason why
the model did not capture the last feature, is because as the environmental
conditions become worse (low nutrients or hard surface), the colony become
highly cooperative. This fact makes the intracellular communication between
the individuals needed to be included into the model.

For that a simple version of chemotactic communication is included in the
model, in the hope of identifying the generic feature that it induces. In order
to fix that another assumption is taken into account. At low peptone levels,
the walkers become stationary and start producing a signalling molecules at a
fixed rate sr to drive active walkers away from the low nutrient region. The
active walkers consume the chemical at a fixed rate cc. The communication
chemicals concentration is represented by,

∂s(~r, t)

∂t
= Ds∇2s(~r, t) +

∑
stationary walkers

δ(~r − ~ri)sr

−
∑

active walkers

δ(~r − ~ri) min(cc, s(~r, t)),

where the equation shows the diffusion, consumption and production of
communication chemicals by the walkers. Bacterial movement changes from a
pure random walk to a biased random walk, in the direction of the signalling
molecules. After including the bacterial communication into the model the
results changed so that the patterns formed at low peptone level are denser
than obtained in experiment. This simplified version is sufficient to capture
the feature needed but a more realistic model would include a dependence on
the rates sr and cc, on the concentration of nutrients.

In this chapter, we have looked at the variety of mathematical models of
biofilms. Each particular example has its own assumptions and its own com-
putational and mathematical tools used. These models usually considers that
biofilm’s structure is determined by the substrate concentration and bacterial
movement. This fact make theme generally governed by the diffusion pro-
cess. However, the hydrodynamics of the bulk fluid plays an important role in
shaping the structure of biofilms. Here comes the importance of biofilm-fluid
models, which are governed by physical concepts such as, momentum conser-
vation and transfer, mass conservation, fluid velocity and viscosity [8, 18].
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In Chapter 3, we will model biofilm in a different way, by looking at the
early stages of its formation. We will consider bacterial movement toward
surfaces that is the first step of biofilm formation, and give the biological
description of bacterial behaviour during this step. The tools used in our work
will be similar to those used in the models discussed in this chapter. A good
understanding of these models will inform our work even if the models are
dealing with different stages of biofilm. We are interested in the early stage of
biofilm, but the mathematical tools used remain similar.
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Chapter 3

Modelling bacterial motility,
surface attachment and sensing
molecule distribution

In this chapter we will present a new contribution to the field of biofilm mod-
elling. This phenomenon involves two main elements, bacteria and sensing
molecules. Two models are presented separately, describing bacterial motility
and molecular diffusion. The models are studied by: analysing the steady-
state and stability properties, and; performing a numerical simulation. The
coupled model that considers the interactions between bacteria and sensing
molecules will be described in Chapter 4.

First, we will give a more detailed biological description of the biofilm stage
we are modelling.

3.1 Attachment of bacteria to surfaces
In the natural world, bacteria are more likely to grow and survive in organized
communities than to be found as isolated cells [19]. In the life and times of the
biofilm, the initial adhesion of the planktonic bacterial cell to a conditioned
surface is considered as a random event [20]. This free-living bacteria pro-
duce sensing molecules as they move through the bulk fluid. These chemicals
become significantly concentrated as the population of bacteria grows, they
diffuse radially away from the floating cells and get reflected once they reach
the surfaces. At this stage, bacteria sense their proximity to these surfaces be-
cause diffusion had become limited on that side [5, 16, 21]. The bacteria keep
moving toward the nearest surface where they get stuck, resulting in more sens-
ing molecules produced at the boundaries. This increased production causes
an escalation in the recruitment of bacteria to the pioneering colonies, which
will merge to form the biofilm. Figure 3.1 illustrates this behaviour that will
be the subject of our mathematical modelling.

16
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Bacteria

Sensing chemicals

Figure 3.1: Illustration of bacterial attachment to the surface. Bacteria (rep-
resented by the oval empty circles) are distributed within a circle where the
surface is situated in the circle boundaries. They move randomly and produce
sensing molecules (black squares), to sense their proximity to the surface. Once
bacteria reach the surface it get stuck and keep producing the sensing molecules
to attract other bacteria

3.2 Assumptions that shape the model
Before we start presenting our models, we give a brief description of how we link
the biology of biofilm formation with the mathematics of modelling. In the first
two models, the phenomenon that we want to model includes bacterial random
walk toward the surface. This will be presented by the diffusion equation that
has as a variable, bacterial density which depends on time and space, and as
a parameter, bacterial diffusivity coefficient.

In addition to that, bacteria get stuck once the surface is reached. To
present this phenomenon mathematically we will consider that bacteria disap-
pear from the free-space once they reach the surface. This will be represented
by zero-Dirichlet boundary conditions. The bacteria that reached the surface
will belong to another bacterial population situated on the boundaries and
depends only on time.

For the model representing sensing molecules, we describe sensing molecules
random movement by a diffusion equation for their concentration that depends
on time and space. The sensing molecules degrades, so our mathematical
model will contain a function to describe that. This function will depend on
sensing molecules concentration and the fixed rate of degradation. The sensing
chemicals are assumed to have a source at the boundaries, mathematically this
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will be presented by constant-Dirichlet boundary conditions.
Furthermore, the model assumptions will change to considering both bac-

teria and sensing molecules in the same mathematical model, and involving
sensing molecules production by both free-bacteria and stuck-bacteria. The
movement of free-bacteria will change from a pure random walk to a biased
random walk toward sensing molecules. This will introduce a new concept
called chemotaxis to our model, which become of Keller-Segel type described
later in Chapter 4. The production of sensing molecules will occur in the free-
space and at the surface, in both places it will be represented by functions
that depend on bacterial densities and fixed rates of production. For sensing
molecules degradation and bacterial stickiness, they will be defined similarly.
While the function describing sensing chemicals at the surface (boundary con-
ditions) will be explained in details in Chapter 4, Section §4.2 and it will be
our main contribution in this work. Up to now we did not consider bacterial
growth, this will be the subject in the next chapter.

3.3 Modelling bacterial motility and
attachment with a diffusion equation

The bacteria is performing a random walk, also named, Brownian motion,
within a well-bounded medium, and once they reach the boundaries they get
stuck. One way of modelling this behaviour is to make use of the Fokker-
Planck equation for the description of Brownian motion of a particle, (in our
case the bacterium), in a fluid [3, 22, 23].

In one spatial dimension x, the Fokker-Planck equation for a process with
diffusion D(x, t) and without drift is,

∂

∂t
b(x, t) =

∂2

∂x2
[D(x, t)b(x, t)]. (3.3.1)

Equation (3.3.1) is also called Diffusion equation which; by considering a linear
bacterial diffusivity, Db, could be written as,

∂

∂t
b(x, t) = Db

∂2

∂x2
b(x, t). (3.3.2)

The biological assumptions considered by the mathematical model are sum-
marized as follows:

• Bacteria perform a random walk within a normalized one-dimensional
space [0, 1].

• Surface is located at the boundaries.

• Bacteria stick to the surface once reached [21].
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We consider that free-bacteria get absorbed by the surface (wall) at the bound-
aries, so that zero-Dirichlet boundary conditions are used to express that
absorbed bacteria are actually the bacteria stuck to the walls. As a result,
these bacteria disappear from the free-space and appear at the surface as wall-
bacteria, named later on bwall.

∂b

∂t
= Db

∂2b

∂x2
, 0 < x < 1, t > 0, (3.3.3)

b(0, t) = b(1, t) = 0, t > 0, (3.3.4)
b(x, 0) = b0, 0 < x < 1, (3.3.5)

where Db is bacterial diffusivity and b0 is a positive constant describing bacte-
rial initial density, the problem is well defined and has a positive solution [24]
for positive initial condition.

We use the separation of variables method [25] to solve analytically Equa-
tion (3.3.3). We start with,

b(x, t) = X(x)T (t), (3.3.6)

and we note −λ the separation constant to get the two following qualities,

X ′′

X
=

T ′

DbT
= −λ, (3.3.7)

which lead to the two ordinary differential equations,

X ′′ + λX = 0, (3.3.8)
T ′ +DbλT = 0. (3.3.9)

Before solving Equations (3.3.8) and (3.3.9), we note that the boundary con-
ditions (3.3.4) applied to Equation (3.3.6), are,

b(0, t) = X(0)T (t) = 0, b(1, t) = X(1)T (t) = 0. (3.3.10)

Expecting that T (t) 6= 0 for t > 0, implies that the boundary conditions are
only satisfied if,

X(0) = 0 and X(1) = 0.

For the solution of (3.3.8), we shall consider three cases, namely,

case 1: λ < 0 We write λ = −α2 where α denotes a positive number, the
auxiliary equation of Equation (3.3.8) is given by,

m2 − α2 = 0,

its roots are, respectively, m1 = α and m2 = −α. Since we are working in a
finite domain, the solution is hyperbolic and given by,

X(x) = A cosh(αx) +B sinh(αx),
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where A and B are constants in R which become A = 0 and B = 0 when we
apply the boundary conditions. As a result, the solution of Equation (3.3.8)
is the trivial one,

X ≡ 0,

which means,
b(x, t) ≡ 0,

as well.

case 2: λ = 0 The solution is linear written as,

X(x) = Ax+B, (3.3.11)

which together with the boundary conditions, leads to A = 0 and B = 0. Then
the solution is again the trivial one.

case 3: λ > 0 In this case, we write λ = α2, where α is a positive number.
The auxiliary equation is of the form,

m2 + α2 = 0, (3.3.12)

which has complex roots m1 = iα and m2 = −iα. The general solution of
(3.3.8) is elliptic of the form,

X(x) = A cos(αx) +B sin(αx), (3.3.13)

as before, by using the boundary condition X(0) = 0, we get that A = 0, so,

X(x) = B sin(αx). (3.3.14)

Using X(1) = 0 we get that B sin(α) = 0, which gives us two cases, either
B = 0 and in this case,

X ≡ 0, (3.3.15)

or if we require B 6= 0, then sinα = 0 is satisfied whenever α is an integer
multiple of π,

α = nπ ⇔ λn = α2
n = n2π2, n = 1, 2, 3, ... (3.3.16)

Then for any B 6= 0, the solution of (3.3.8) is given by,

X(x) = B sin(nπx), (3.3.17)

and because of the linearity of Equation (3.3.8), the sum of the solutions over
n is also a solution.

Hence, (3.3.8) has non-trivial solutions when,

α = nπ, ⇔ λn = α2
n = n2π2, n = 1, 2, 3, .... (3.3.18)
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These values of λ are called eigenvalues of the problem, and the solutions
X(x) = B sin(nπx) are called the associated eigenfunctions. On the other
hand, solving (3.3.9) gives rise to,

T (t) = C exp(−n2π2Dbt). (3.3.19)

Finally, we obtain,

bn = X(x)T (t) = An exp(−n2π2Dbt) sin(nπx). (3.3.20)

Therefore, by superposition principle, the solution of Equation (3.3.3) is given
by,

b(x, t) =
∞∑
n=1

bn =
∞∑
n=1

An exp(−n2π2Dbt) sin(nπx). (3.3.21)

The final step is to apply the initial conditions, namely,

b(x, 0) =
∞∑
n=1

bn =
∞∑
n=1

An sin(nπx) = b0, (3.3.22)

We convert to Fourier series by multiplying the equation by sin(mπx) where
m is an integer, and integrating between 0 and 1. Thus, we obtain,

An = 2

∫ 1

0

b0 sin(nπx)dx =
2b0

nπ
(1− cos(nπ)),

for all positive integers, n.
Finally, the solution is,

b(x, t) =
∞∑
n=1

2b0

nπ
(1− cos(nπ)) exp(−n2π2Dbt) sin(nπx), (3.3.23)

it describes the movement of bacteria in the free-space. While the bacteria
stuck to walls, bwall(t) at a given time t, will be calculated by the following
equation,

bwall(t) =

∫ 1

0

b0dx−
∫ 1

0

b(x, t)dx = b0 −
∫ 1

0

b(x, t)dx, (3.3.24)

because b0 is a constant and
∫ 1

0

dx = 1, this result is supported by the con-

servation of mass law.
Now we found the explicit solutions our mathematical model describing

bacterial density. In the next section we will study the convergence and sta-
bility of the steady state solution.
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3.4 Convergence and stability analysis of the
bacterial diffusion equation

Proposition 3.4.1. Under the presented assumptions we show that the bacte-
rial population is almost zero everywhere in the free-space (0, 1). For that, we
show the following limit,

lim
t→∞

bwall(t) = b0 ⇔ lim
t→∞

∫ 1

0

b(x, t)dx = 0.

Proof. We set,

bn(x, t) =
2b0

nπ
(1− cos(nπ)) exp(−n2π2Dbt) sin(nπx),

so that,

b(x, t) =
∞∑
n=1

bn(x, t) =
∞∑
n=1

2b0

nπ
(1− cos(nπ)) exp(−n2π2Dbt) sin(nπx).

We need to compute,

lim
t→∞

∫ 1

0

b(x, t)dx = lim
t→∞

∫ 1

0

(
∞∑
n=1

bn(x, t)

)
dx.

Let t0 > 0, so for n ∈ N∗, and t ≥ t0 we have that,

bn(x, t) ≤ 4b0

π
exp(−n2π2Dbt),

≤ 4b0

π
exp(−π2Dbt) exp(−(n2 − 1)π2Dbt),

≤ 4b0

π
exp(−π2Dbt) exp(−(n2 − 1)π2Dbt0).

Thus for t ≥ t0,
∞∑
n=1

bn(x, t) ≤ 4b0

π
exp(−π2Dbt)

∞∑
n=1

exp(−(n2 − 1)π2Dbt0),∫ 1

0

∞∑
n=1

bn(x, t)dx ≤ 4b0

π
exp(−π2Dbt)

∞∑
n=1

exp(−(n2 − 1)π2Dbt0).

Since,
lim
t→∞

exp(−π2Dbt) = 0,

we conclude that,

lim
t→∞

∫ 1

0

b(x, t)dx = lim
t→∞

∫ 1

0

∞∑
n=1

bn(x, t)dx = 0,
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Definition Let f be a well defined function. We define the norm of f on the
Lebesgue space Lp(0, 1) by:

‖ f ‖p:=
(∫ 1

0

| f |p dµ
)1/p

<∞,

where 1 ≤ p <∞ and µ is the space measure.

Corollary 3.4.2. The solution b(x, t) converges to the trivial stable steady-
state in L1(0, 1),

lim
t→∞

∫ 1

0

b(x, t)dx = 0⇔ lim
t→∞
‖ b(x, t)− 0 ‖L1(0,1)= 0. (3.4.1)

In the following we will plot bacterial density and emphasize the analytical
results.

3.5 Numerical illustration of bacterial densities
To illustrate the analytical solution, we plot the density evolution in time (see

Figure 3.2); the bacterial density in the free-space (

∫ 1

0

b(x, t)dx) and at the

walls (bwall(t)) can be seen.
With the given parameter values, the bacterial density is decreasing in the

free-space and increasing at the surface and the total density sums to b0 at
each time.

At around T ≈ 103, half of the population reach the boundaries, where at
T ≈ 104, most of the population are stuck to the boundaries and negligible
number of bacteria are free which agree with analytical result,

lim
t→∞

∫ 1

0

b(x, t)dx = 0.

In the next section, the same analysis will be done to study the dynamics
of sensing molecules.

3.6 Sensing molecule distribution modelled as
a reaction-diffusion process

Before considering the coupled model that involve both bacteria and sensing
molecules, we may model the sensing molecules on their own to look at the
evolution of their distribution profile then, the bacterial distribution will be
driven by the concentration profile of sensing molecules. The mathematical
model will be derived under the following biological assumptions:
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Figure 3.2: Bacterial density evolution over time for both bacteria in the free-
space and bacteria on the surface. The total bacteria were in the free-space
in the starting point t = 0. As time gets larger, the free-bacterial density de-
creases to make the stuck-bacterial density increase since more bacteria attach
to the surface. The parameters used are Db = 0.025 and b0 = 0.5.

• sensing molecules diffuse within a one-dimensional space [0, 1].

• sensing molecules degrade.

• A fixed source exists at the surface (walls) situated at the boundaries.

We consider the following boundary value problem,

∂s

∂t
= Ds

∂2s

∂x2
− λs, 0 < x < 1, t > 0, (3.6.1)

s(0, t) = s(1, t) = c, t > 0, (3.6.2)
s(x, 0) = s0, 0 < x < 1, (3.6.3)

where Ds is the sensing molecules diffusivity, λ is a degradation coefficient, s0

is the initial sensing molecules concentration and c is the production rate at
the walls.
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The boundary conditions used are called inhomogeneous Dirichlet bound-
ary conditions. Using a simple change of variables we can write Equation
(3.6.1) as an inhomogeneous equation in order to get homogeneous Dirichlet
boundary condition that are easier to deal with. For that we set,

u(x, t) = s(x, t)− c (3.6.4)

thus Equations (3.6.1), (3.6.2) and (3.6.3) are equivalent to,

∂u

∂t
= Ds

∂2u

∂x2
− λu− λc, 0 < x < 1, t > 0, (3.6.5)

u(0, t) = u(1, t) = 0, t > 0, (3.6.6)
u(x, 0) = s0 − c = u0, 0 < x < 1. (3.6.7)

Since the amount of sensing chemicals become interesting when more bac-
teria are attached. We need to look at the long time behaviour of sensing
molecules rather than finding the exact solution. This results to a steady-
state analysis performed in the next section.

3.7 Distribution of sensing molecules at
equilibrium

In this part, we will illustrate sensing molecules dynamics as time gets larger.
In order to do so, we need to find the stationary and study its stability. We
set,

∂u

∂t
= 0⇔ Ds

d2u(x)

dx2
− λu(x)− λc = 0. (3.7.1)

The aim of this part is to transform a second-order ordinary differential equa-
tion into a system of two first-order ordinary differential equations, for that
we consider the following change of variables,

du

dx
= v, (3.7.2)

dv

dx
=
d2u

dx2
=

λ

Ds

u+
λ

Ds

c, (3.7.3)

we define,

X =

(
u
v

)
⇒ X ′ =

(
u′

v′

)
so that we can write Equations 3.7.2 and 3.7.3 as follows,

X ′ = AX + f, (3.7.4)
X(x0) = X0, (3.7.5)
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where,

A =

 0 1
λ

Ds

0

 f =

 0
λ

Ds

 .

Definition A matrix function Φ(x) is a fundamental matrix of the system
X ′ = A(x)X if it solves the matrix system X ′ = A(x)X and det Φ(x) 6= 0.

Theorem 3.7.1. [26] If f is continuous and Φ is a fundamental matrix of
X ′ = AX + f , then,

X ′ = AX + f (3.7.6)

has a particular solution,

Xp(x) =

∫ x

0

Φ(x− s)f(s)ds, (3.7.7)

Theorem 3.7.2. [26] The initial-value problem,

X ′ = AX + f X(x0) = X0 (3.7.8)

has the unique solution,

X(x) = Xp(x) + Φ(x)X0, (3.7.9)

where Φ is a normalized fundamental matrix of the complementary system,
X ′ = AX at x0 and,

Xp(x) =

∫ x

0

Φ(x− s)f(s)ds, (3.7.10)

In our case, the fundamental matrix is given by Φ(x) = eAx and f is continuous
so that we can apply both theorems to find the solution.

Lemma 3.7.3. If the matrix A is diagonalizable, then there exists a diagonal
matrix D such that,

A = PDP−1 and eAx = PeDxP−1, (3.7.11)

where P and P−1 are invertible matrices satisfying PP−1 = I.

Fundamental matrix Φ(x) The eigenvalues of the matrix A are given by,

r1 =

√
λ

Ds

r2 = −
√

λ

Ds

.

We have that A is a (2, 2) matrix that has exactly 2 distinct eigenvalues, so A
is diagonalizable and its diagonal matrix is,

D =

(
r1 0
0 r2

)
,
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since the associated eigenvectors are as follows,

R1 =

(
1
r1

)
R2 =

(
1
r2

)
,

then the invertible matrix P is as follow,

P =

(
1 1
r1 r2

)
,

thus,

Φ(x) =

 cosh(r1)
1

r1

sinh(r1x)

r1 sinh(r1x) cosh(r1)

 . (3.7.12)

Now we calculated the fundamental matrix and we already have the form of
the particular solution which will lead us to find the general solution in the
next paragraph.

General solution X(x) The particular solution of the stationary equation
is given by:

Xp(x) =

∫ x

0

Φ(x− s)f(s)ds, (3.7.13)

which after some calculations gives rise to,

Xp(x) =

(
−c+ c cosh(r1x)
r1c sinh(r1x)

)
. (3.7.14)

Thus we can write the solution as follows,

X(x) = Xp(x) + Φ(x)X0, (3.7.15)

since the solution X(x) =

(
u(x)
v(x)

)
is unique, we have only one X0 =

(
a
b

)
that

verify u(0) = 0 and u(1) = 0 which come from the boundary conditions of the
original model. To find a and b, we need to solve the following system,{

X1(0) = 0,

X1(1) = 0,
(3.7.16)

then, {
Xp1(0) + Φ11(0)a+ Φ12(0)b = 0,

Xp1(1) + Φ11(1)a+ Φ12(1)b = 0,
(3.7.17)

yields to,

a = 0; b =
c− c cosh(r1)

1
r1

sinh(r1)
. (3.7.18)
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As a result,

X(x) =

−c+ c cosh(r1x) +
c− c cosh(r1)

sinh(r1)
sinh(r1x)

cr1 sinh(r1x) +
c− c cosh(r1)

sinh(r1)
r1 cosh(r1x)

 .

Our interest is in the first component of the vector X, that is u(x), which
leads to the stationary solution s∗ of Equation 3.6.1 by setting,

s∗(x) = u(x) + c, (3.7.19)

As a result,

s∗(x) = c cosh(r1x) +
c− c cosh(r1)

sinh(r1)
sinh(r1x). (3.7.20)

Theorem 3.7.4. If s(x, t) is any solution of Equation (3.6.1), and s∗(x) is
the stationary solution, then,

i All solutions s tend to s∗ as time tends to infinity.

ii The stationary solution s∗ is stable.

Proof. We want to show that each solution of 3.6.1 tends to the stationary
solution s∗ as time gets larger. For that, we define,

ε(x, t) = s(x, t)− s∗(x), (3.7.21)

which means that ε verify the following equations,
∂

∂t
ε = Ds

∂2

∂x2
ε− λε, 0 < x < 1, t > 0, (3.7.22)

ε(0, t) = ε(1, t) = 0, t > 0, (3.7.23)
ε(x, 0) = ε0, 0 < x < 1, (3.7.24)

which can be solved using the separation of variables method to gives rise to,

ε(x, t) =
∞∑
n=1

2ε0

nπ
(1− cos(nπ)) exp(−n2π2Dst) exp(−λt) sin(nπx), (3.7.25)

from that we can deduce that for n ∈ N∗ and t > t0,

lim
t→∞
|s− s∗| = lim

t→∞
|ε|,

= lim
t→∞
|
∞∑
n=1

2ε0

nπ
(1− cos(nπ)) exp(−n2π2Dst) exp(−λt) sin(nπx)|,

= lim
t→∞
| exp(−λt)

∞∑
n=1

2ε0

nπ
(1− cos(nπ)) exp(−n2π2Dst) sin(nπx)|,

= lim
t→∞
|4ε0

π
exp(−(λ+ π2Ds)t)

∞∑
n=1

exp(−(n2 − 1)π2Dst0) sin(nπx)|,

= 0.
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Thus any solution of Equation 3.6.1 tends to the stationary solution s∗.

The analytical results will be well understood by looking at the numerical
simulations of the sensing molecule concentration presented in the following.

3.8 Numerical simulation of sensing molecule
concentration in time

In this section we present the numerical solution of the reaction-diffusion equa-
tion for different time steps. The aim of this is to show that as time gets larger
the profile of the solution is the same as the stationary solution.

The left side of Figure 3.3 shows the evolution of sensing molecules distri-
bution profile (s(x, t)) as time goes on, starting from the dark green curve until
the light green one. This last one is identical to the graph of the stationary
solution (s∗(x)) on the right side.

Figure 3.4 shows the evolution of sensing molecule concentration in time.
The concentration in the free-space starts uniform s0 = 2.5, while the concen-
tration at the surface is lower. As time goes on, the concentration in the free-
space decreases, due to the degradation, until it becomes uniform at around
T ≈ 3000, then drop again to smaller values. At the surface, the concentration
remains uniform becomes the highest than the free-space concentration at the
end.

If we look at the profile of the stationary solution, we see how it is larger
near the boundaries where the source is situated. This fact could be explained
by the sensing molecules production at the boundaries. If the shape of sensing
molecules is always similar to the stationary solution, we get that the direction
of bacterial movement in the coupled model will be towards the surface.

We have been modelling each element on its own to have an idea about bac-
terial behaviour and sensing molecules profile during biofilm initiation. This
will help us building the coupled model that will be the interest of the next
chapter. Which will be about constructing the mathematical model for both
bacteria and sensing molecules, in a three-dimensional space with spherical co-
ordinates. Furthermore, we will introduce bacterial growth to the model and
we will perform numerical analysis and discuss the results for both models.
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Figure 3.3: Sensing molecules profile in different time steps and the stationary
solution distribution. On the top graph we see the sensing molecules profile
changes for different time steps. The red curve T = 0 represents our initial
condition. The rest of time steps range from the light gray curve to the black
curve which is identical to the stationary solution in the bottom graph. The
parameters used for both simulations are given by: c = 2, λ = 0.3, Ds = 0.25
and s0 = 2.5.
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Figure 3.4: The time evolution of sensing molecule concentration, for c = 2,
λ = 0.3, Ds = 0.25 and s0 = 2.5. The red curve represents the boundaries
where the surface is situated. Because of the space symmetry some curves are
identical. All the curves cross at around T ≈ 3000, the concentration there is
almost uniform as shown in the top figure of Figure 3.3.
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Chapter 4

A coupled model of bacterial
chemotaxis and sensing molecule
diffusion

We have seen how the bacteria move randomly and stick to the surface once
they reach the boundaries. But in reality, there are other facts that occur
during the bacterial attachment to surfaces and biofilm initiation that need to
be considered simultaneously by the model, such as:

• The production of sensing molecules in the free-space and at the surface.

• The diffusion and degradation of sensing molecules over time, and space.

• Bacterial movement towards sensing molecules, this biological behaviour
is called chemotaxis [16, 27].

This chapter will be about the coupled model that is of Keller-Segel type
[28, 29, 30].

Keller-Segel model is a mathematical model for bacterial chemotaxis. It is
composed of two pdes, the first involves bacterial density diffusion, chemotaxis
toward the attractant as well as the growth and death. The second concerns
the attractant (or the repellent) diffusion degradation and production. The
quantities are left in their general form so that they can fit any biological
context.

Our model will be presented in a three-dimensional space using Spheri-
cal coordinates and will be solved numerically using Matlab [31]. The equa-
tions will be presented in detail, starting with the main model equations, the
boundary conditions which represent our main contribution and the initial
conditions. We non-dimensionalize the model equations to remove the units.
Then we present and discuss the numerical solutions. Furthermore, bacterial
growth will be introduced into the model, the study will be similar to the
first model except that here we will just consider a one-dimensional space in

32
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Cartesian coordinates that will be solved numerically using the Fipy library in
Python [32]. The following section is for presenting the main model equations
and their description.

4.1 Coupling bacterial chemotaxis and sensing
molecules production

In this section we will present the coupled model describing bacterial density
and sensing molecules concentration. We will define the main equations while
the boundary and initial conditions we be presented later on.

We consider a spherical domain, Ω, of center 0 and radius R. The param-
eters used throughout this chapter are presented in Table 4.1.

Table 4.1: State parameters and variables used in this chapter, with their
description and units

Parameter Description Unit
a Bacterial growth rate 1/s
b, B,B0 Bacterial density kg/m3

Db Bacterial diffusivity m2/s
Ds Sensing molecules diffusivity m2/s
F Logistic function of bacterial density kg/m3

g Proportion of stuck-bacteria per time t mol/m2 s
K Bacterial carrying capacity kg/m3

L Non-dimensionalized parameters No unit
M Non-dimensionalized parameters No unit
s, S, S0 Sensing molecules concentration mol/m3

α Sensing molecules production rate in the free-space mol/kg s
β Sensing molecules production rate in the boundaries m mol/kg s
λ Sensing molecules degradation rate 1/s
µ Fixed rate of bacterial stickiness 1/m kg
χ Chemotactic coefficient m5/mol s
π Intermediate function kg/m3

The mathematical model does not consider bacterial growth and is pre-
sented in Cartesian coordinates by,

∂b

∂t
(x, t) = Db

∂2b

∂x2
− χ ∂

∂x
(b
∂s

∂x
), in Ω× (0,+∞),

∂s

∂t
(x, t) = Ds

∂2s

∂x2
− λs+ αb, in Ω× (0,+∞),
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where all the parameters are constants and presented in Table 4.1 and x =
(x, y, z) ∈ Ω. The first equation describes bacterial random walk using the dif-

fusion equation. Bacterial chemotaxis is presented by the term −∂Jc
∂x

, where Jc

is the chemotactic flux given by Jc = χb
∂s

∂x
with χ the chemotactic coefficient.

In the second equation we describe sensing molecules diffusion, degradation
and production.

For simplicity, it is better to write the model in spherical coordinates so
that the uniform initial distribution of bacterial density and sensing molecules
concentration insure a radial symmetry for our variables, which means that
the dependence will be only with respect to the sphere radius. Let us consider
the following change of variables

b(x, y, z, t) = b(r sin θ cosϕ, r sin θ sinϕ, r cos θ, t) = B(r, θ, ϕ, t), (4.1.1)
s(x, y, z, t) = b(r sin θ cosϕ, r sin θ sinϕ, r cos θ, t) = S(r, θ, ϕ, t), (4.1.2)

where r ∈ [0, R], θ ∈ [0, 2π] and ϕ ∈ [0, π]. Because of the radial symmetry we
have that,

B(r, θ, ϕ, t) = B(r, t), (4.1.3)
S(r, θ, ϕ, t) = S(r, t), (4.1.4)

and the model will be written as

∂B

∂t
=
Db

r2

∂

∂r
(r2∂B

∂r
)− χ(

∂B

∂r

∂S

∂r
+
B

r2

∂

∂r
(r2∂S

∂r
)), 0 < r < R, t > 0,

(4.1.5)
∂S

∂t
=
Ds

r2

∂

∂r
(r2∂S

∂r
)− λS + αB, 0 < r < R, t > 0.

(4.1.6)

Once our main equations are defined we should give the appropriate boundary
and initial conditions to the model. This will be the subject of the next section.

4.2 Initial and boundary conditions
This section concerns bacterial density and sensing molecules dynamics at the
surface. Bacteria are assumed to be stuck once the surface is reached, which
means that we will use absorbing boundary conditions. While for sensing
molecules we have more than one behaviour happening at the same time.
They diffuse, get produced and they degrade at the surface. To express this
mathematically we need to build our own boundary conditions, and this is
what we explain in this section.
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At r = 0: Starting from a uniform distribution for both bacteria and sensing
molecules, we have that our variables are radially symmetric which insure that
the flux coming in at r = 0 is the same as the one going out. For that we have
zero-Neumann boundary conditions at r = 0 given by,

∂B

∂r
(0, t) = 0, t > 0, (4.2.1)

∂S

∂r
(0, t) = 0, t > 0. (4.2.2)

At r = R: For bacteria we are going to use zero-Dirichlet boundary condi-
tions at r = R. Assuming that the surface where bacteria get stuck is actually
the sphere surface, i.e.

B(R, t) = 0, t > 0. (4.2.3)

For sensing molecules, the boundary condition at r = R is much more compli-
cated, since there are many facts happening simultaneously. At the surface,
sensing molecules degrade, diffuse and are produced by both free-bacteria and
stuck-bacteria. To distinguish between the two we will consider sensing pro-
duction by free-bacteria as their growth and stuck-bacteria as a source.

To derive the equation at the boundaries we need to use the conservation
equation, which needs to be defined in a given volume. In our case we take a
spherical cap V to be our domain. V is defined as follows,

V = {(r, θ, ϕ), R−∆r ≤ r ≤ R; Θ−∆θ ≤ θ ≤ Θ+∆θ; Φ−∆ϕ ≤ ϕ ≤ Φ+∆ϕ},

so that after tending ∆r, ∆θ and ∆ϕ to zero, we obtain the equation of sensing
molecules at the point (R, θ, ϕ) which will be the same for all the points on
the sphere surface. The conservation equation gives,

∂

∂t

∫
V

SdV︸ ︷︷ ︸
F

= −
∫
∂V

J∂V︸ ︷︷ ︸
Sensing chemicals flux

+

∫
V

f(S,B)dV︸ ︷︷ ︸
Growth and degradation

+

∫
∂V

g(t)∂V︸ ︷︷ ︸
Source at surface︸ ︷︷ ︸

♠

,

(4.2.4)
where, 

∂V = Sbase + Slateral + Stop,

f(S,B) = −λS + αB,

g(t) = βBwall(t) = β(B0 −
∫ R

0

B(r, t)dr).

The Sbase and Stop are the base and top surfaces of the spherical cap, and
the Slateral are the four surfaces around the spherical cap defined by θ and ϕ.
Because of the radial symmetry, the fluxes coming into the volume V through
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the lateral surfaces are equal to the fluxes going out, so that they cancel each
other. On left side, the quantity noted by F leads to,

∂

∂t

∫
V

SdV =

∫
V

∂S

∂t
dV,

=

∫
V

Ds
∂2S

∂r2
dV +

∫
V

f(S,B)dV,

using the Divergence theorem we obtain,∫
V

Ds
∂2S

∂r2
dV +

∫
V

f(S,B)dV =

∫
∂V

Ds
∂S

∂r
∂V +

∫
V

f(S,B)dV,

=

∫
Sbase

Ds
∂S

∂r
dS +

∫
Slateral

Ds
∂S

∂r
dS +

∫
Stop

Ds
∂S

∂r
dS

+

∫
V

f(S,B)dV,

since the lateral fluxes cancel each other, the final expression is given by,
∂

∂t

∫
V

SdV =

∫
Sbase

Ds
∂S

∂r
dS +

∫
Stop

Ds
∂S

∂r
dS +

∫
V

f(S,B)dV. (4.2.5)

On the right side, the quantity noted by ♠ gives rise to,

−
∫
∂V

J∂V︸ ︷︷ ︸
Sensing chemicals flux

= −{
∫
Sbase

JdS +

∫
Slateral

JdS +

∫
Stop

JdS},

∫
V

f(S,B)dV︸ ︷︷ ︸
Growth and degradation

=

∫
V

f(S,B)dV,

∫
∂V

g(t)∂V︸ ︷︷ ︸
Source at surface

=

∫
Sbase

g(t)dS +

∫
Slateral

g(t)dS +

∫
Stop

g(t)dS,

we only have a source from the stuck-bacteria which make lateral and base
sources equal to zero, again the lateral fluxes cancel each other and there is no
flux coming from the top surface, so that we can write,

−
∫
∂V

J∂V︸ ︷︷ ︸
Sensing chemicals flux

= −
∫
Sbase

JdS =

∫
Sbase

Ds
∂S

∂r
dS,

∫
V

f(S,B)dV︸ ︷︷ ︸
Growth and degradation

=

∫
V

f(S,B)dV,

∫
∂V

g(t)∂V︸ ︷︷ ︸
Source at surface

=

∫
Stop

g(t)dS,
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which is equivalent to,

−
∫
∂V

J∂V︸ ︷︷ ︸
Sensing chemicals flux

+

∫
V

f(S,B)dV︸ ︷︷ ︸
Growth and degradation

+

∫
∂V

g(t)∂V︸ ︷︷ ︸
Source at surface

=

∫
Sbase

Ds
∂S

∂r
dS +

∫
V

f(S,B)dV

+

∫
Stop

g(t)dS,

together with Equation (4.2.5), let Equation (4.2.4) becomes,∫
Sbase

Ds
∂S

∂r
dS+

∫
Stop

Ds
∂S

∂r
dS+

∫
V

f(S,B)dV =

∫
Sbase

Ds
∂S

∂r
dS+

∫
V

f(S,B)dV+

∫
Stop

g(t)dS,

thus, ∫
Stop

Ds
∂S

∂r
dS =

∫
Stop

g(t)dS, (4.2.6)

which we integrate in spherical coordinates as follows,∫
Stop

Ds
∂S

∂r
dS =

∫
Stop

g(t)dS,

⇒ Ds

∫ ϕ+∆ϕ

ϕ−∆ϕ

∫ θ+∆θ

θ−∆θ

∂S

∂r
r2 sin θdθdϕ =

∫ ϕ+∆ϕ

ϕ−∆ϕ

∫ θ+∆θ

θ−∆θ

g(t)r2 sin θdθdϕ,

⇒ Ds
∂S

∂r
r22∆ϕ(−2 sin θ sin ∆θ) = r2g(t)2∆ϕ(−2 sin θ sin ∆θ)

thus,

Ds
∂S

∂r
(R, t)− β(B0 −

∫ R

0

B(r, t)dr) = 0, t > 0. (4.2.7)

This type of boundary conditions is called Robin boundary conditions. Our
boundary conditions at r = R are summarized as follows,

B(R, t) = 0, t > 0, (4.2.8)

Ds
∂S

∂r
(R, t)− β(B0 −

∫ R

0

B(r, t)dr) = 0, t > 0. (4.2.9)

To explain the biological interpretation of Equation (4.2.9) we consider the
following,

Ds
∂S

∂r
(R, t)− β(B0 −

∫ R

0

B(r, t)dr) = 0, (4.2.10)

⇒ ∂S

∂r
(R, t) =

β

Ds

(B0 −
∫ R

0

B(r, t)dr), (4.2.11)

⇒ S(R, t)− S(R−∆r, t)

∆r
=

β

Ds

(B0 −
∫ R

0

B(r, t)dr), (4.2.12)

⇒ S(R, t)− S(R−∆r, t) =
β

Ds

∆r(B0 −
∫ R

0

B(r, t)dr). (4.2.13)
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Depending on the sensing molecules diffusivity Ds and the production rate β
we have four cases:

When βincreases ⇔ S(R, t) � S(R − ∆r, t): It means that we have
high production of sensing molecules at the surface so that the sensing molecules
concentration at the surface is much higher than in the free-space.

When βdecreases ⇔ S(R, t) ≈ S(R − ∆r, t): Here the production is
very low so that the concentration is approximately the same in the free-space
and at the surface.

When Dsincreases ⇔ S(R, t) ≈ S(R−∆r, t): When the diffusivity is
high, the sensing molecules move very fast and are able to displace from the
surface where they are produced to the free-space.

When Dsdecreases ⇔ S(R, t) � S(R − ∆r, t): When diffusivity is
small the movement of sensing molecules is very slow which explain that they
spend more time at the surface before moving to the free-space.

For initial conditions, we assume that the bacteria start in a uniform dis-
tribution with a very low amount of sensing molecules present, so we have,

B(r, 0) = B0, 0 < r < R,

S(r, 0) = S0, 0 < r < R,

where B0 and S0 are constants defined in Table 4.1.

4.3 Non-dimensionalization
The mathematical model involves measured parameters and variables, the rea-
son why it should be non-dimensionalized before being studied. First, to re-
move the units and second to reduce the number of parameters used. To non-
dimensionalize Equations (4.1.5) and (4.1.6), we introduce the non-dimensional
variables B∗, S∗, x∗, and t∗ defined by,

t = ωt∗, B = B0B
∗, S = S0S

∗, r = Rr∗. (4.3.1)

In terms of these variables Equations (4.1.5) and (4.1.6) become,

R2

Dbω

∂B∗

∂t∗
=

1

r∗2
∂

∂r∗
(r∗2

∂B∗

∂r∗
)− χS0

Db

(
∂B∗

∂r∗
∂S∗

∂r∗
+
B∗

r∗2
∂

∂r∗
(r∗2

∂S∗

∂r∗
)), (4.3.2)

1

λω

∂S∗

∂t∗
=

Ds

R2λ

1

r∗2
∂

∂r∗
(r∗2

∂S∗

∂r∗
)− S∗ +

αB0

λS0

B∗, (4.3.3)
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with boundary conditions given as,

∂B∗

∂r∗
(0, t∗) =

∂S∗

∂r∗
(0, t∗) = 0, (4.3.4)

B∗(R, t∗) = 0,
∂S∗

∂r∗
(R, t∗) = − Rβχ

DsDb

B0 +
βλ

Dsα

∫ R

0

B∗(r∗, t∗)dr∗, (4.3.5)

and initial conditions,

B∗(r∗, 0) =
B0αχ

Dbλ
= B∗0 , (4.3.6)

S∗(r∗, 0) =
S0χ

Db

= S∗0 . (4.3.7)

This form suggests the choices,

ω =
Ds

Dbλ
, R =

√
Ds

λ
, S0 =

Db

χ
, B0 =

Dbλ

αχ
. (4.3.8)

Furthermore, we obtain the three non-dimensional parameters τ , L and M ,
defined by,

τ ≡ Db

Ds

, L ≡ RβχB0

DsDb

, M ≡ βλ

Dsα
. (4.3.9)

Using these new variables, on dropping the asterisks for simplicity, we obtain
the non-dimensionalized equations,

∂B

∂t
=

1

r2

∂

∂r
(r2∂B

∂r
)− (

∂B

∂r

∂S

∂r
+
B

r2

∂

∂r
(r2∂S

∂r
)),

τ
∂S

∂t
=

1

r2

∂

∂r
(r2∂S

∂r
)− S +B,

∂B

∂r
(0, t) =

∂S

∂r
(0, t) = 0,

B(R, t) = 0,
∂S

∂r
(R, t)− (L−M

∫ R

0

B(r, t)dr) = 0,

B(r, 0) = B0,

S(r, 0) = S0.

(4.3.10)

Our model is now ready to be studied, in the next section we will solve the
mathematical model numerically and present the obtained results.

4.4 Numerical simulation of the
non-dimensionalized coupled model

The model presented in this chapter involves both bacteria and the presence of
sensing molecules which direct bacterial movement, this phenomenon is known
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as chemotaxis. The presence of chemotaxis in the model makes it a Keller-
Segel type model that is difficult to study analytically. This is the reason why
we choose to study the model numerically. For that we non-dimensionalize
the equations to remove the units and reduce the number of parameters and
then implement the equations either by using Matlab or Python. Finally, we
present the obtained results.

Even numerically, it is not easy to study Problem (4.3.10). The term 1/r2

represents a singularity problem when r is very small. Fortunately,Matlab can
deal with such problems using the function Pdepe that solves initial-boundary
value problem for system of parabolic-elliptic partial differential equations, so
implementing the main equations is not a problem until now, the big challenge
comes when implementing the boundary equation of sensing molecules, namely,

∂S

∂r
(R, t)− (L−M

∫ R

0

B(r, t)dr) = 0, (4.4.1)

where the equation needs to be defined at a specified value of r, while the

integral
∫ R

0

B(r, t)dr needed to be calculated over all the interval of r-values,

i.e. [0, R]. To solve this problem we call an intermediate function π(r, t) that
does not appear at any of our equations except at the boundary condition of
sensing molecules when r = R. For that, we need to build the function π in
order for to verify,

π(R, t) =

∫ R

0

B(r, t)dr. (4.4.2)

This means that the intermediate function π(R, t) and the value of
∫ R

0

B(r, t)dr

are the same at the boundary. Since the integral value is the same as the value
of π at the points when r = R, there is no need to express the integral in
the boundary conditions. We will rather use the value of π which result from
solving the following problem,

D
∂π

∂t
=
∂2π

∂r2
− ∂B

∂r
, 0 < r < R, t > 0,

π(0, t) = 0,
∂π

∂r
(R, t)−B(R, t) = 0, t > 0,

π(r, 0) = rB0, 0 < r < R.

(4.4.3)

We consider that D = 0 and we easily solve Problem (4.4.3) to get,

π(r, t) =

∫ r

0

B(x, t)dx, (4.4.4)

which will be used in the numerical simulation instead of the complication we
had. The obtained numerical results are shown in Figure 4.1 and Figure 4.2.
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Figure 4.1: Two views of free-bacterial density distribution profile in space,
as well as the density evolution in time, for R = 1, τ = 2.5, L = 0.75 and
M = 0.7. The top graph shows that bacterial distribution starts uniform and
become of a Gaussian distribution shape to end up uniform that is almost zero
everywhere. The bottom plot shows the free-bacterial density evolution over
time which is the total density at the starting point and tends to zero as more
bacteria stick to the surface with time.
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Figure 4.2: Sensing molecule distribution profile in space (top graph) and
evolution in time (bottom graph), for R = 1, τ = 2.5, L = 0.75 and M = 0.7.
The top graph shows that the sensing molecules distribution starts very low
then increases everywhere except that it is much higher near the surface. For
the bottom graph, it shows that the sensing molecules concentration increases
exponentially with time.
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Figure 4.1 shows that bacterial density distribution is changing its curve
over time, the peak is decreasing and the shape is changing from uniform at
the beginning, to a Gaussian shape then to a uniform almost equal to zero.
The total density is decreasing over time and tending to zero. For sensing
molecules, we see in Figure 4.2 that the concentration profile is starting at
zero and then getting larger, especially near the boundaries.

The biological interpretation of these results is that bacterial distribution
profile changes as far as bacteria get stuck to the surface, it becomes of Gaus-
sian shape when sensing molecules concentration is still relatively small. Once
the amount of bacteria stuck is large, more sensing molecules are produced at
the surface which leads to more attracted bacteria the fact that explain the
passage from Gaussian shape to a uniform again but this time with a decrease
in the total bacterial density which means that the majority of the population
is at the surface and only a negligible amount remain in the free-space.

To improve our model we will introduce bacterial growth. The biological
assumptions will remain the same except that the total population of bacteria
will change with time in the free-space and at the surface. The effect that the
growth has on the models equation will be explained in the next section.

4.5 Adding growth to the coupled model of
chemotaxis

In this part, the model will be presented in one dimensional space [0, 1] and
we will consider a growing population of bacteria. The biological assumption
added to the model says that bacteria is performing a logistic growth in the
free-space and at the surface, for that the equations will have the form,

∂b

∂t
= Db

∂2b

∂x2
− χ ∂

∂x

(
b
∂s

∂x

)
+ abF (b), 0 < x < 1, t > 0,

∂s

∂t
= Ds

∂2s

∂x2
− λs+ αb, 0 < x < 1, t > 0,

dbwall
dt

= abwallF (bwall) + µg(t), 0 < x < 1, t > 0,

b(0, t) = b(1, t) = 0, t > 0,

Ds
∂s

∂x
(0, t) + βbwall(t) = 0, t > 0,

Ds
∂s

∂x
(1, t)− βbwall(t) = 0, t > 0,

b(x, 0) = b0, s(x, 0) = s0, bwall(0) = bwall0, 0 < x < 1,

(4.5.1)

where a, K and µ are defined in Table 4.1, while g(t) is the proportion of
bacteria stuck to the surface at each time t and for logistic growth we have
F (b) = 1− b/K. Since we are dealing with a growing population of bacteria,
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we remark that the expression of bacterial density at the surface is no more
the total density minus the stuck-bacteria, we rather need to solve an ordinary
differential equation to obtain bacterial density at the surface. Moreover, we
derive g(t) from the conservation equation of the total bacterial density in the
free-space that is,

∂

∂t

∫ 1

0

bdx = a

∫ 1

0

b(1− b/K)dx︸ ︷︷ ︸
Bacterial growth

− g(t),︸︷︷︸
Stuck−Bacteria

⇒
∫ 1

0

∂b

∂t
dx = a

∫ 1

0

b(1− b/K)dx− g(t),

⇒
∫ 1

0

{Db
∂2b

∂x2
− χ ∂

∂x
(b
∂s

∂x
) + ab(1− b/K)}dx = a

∫ 1

0

b(1− b/K)dx− g(t),

⇒
[
Db

∂b

∂x
− χ(b

∂s

∂x
)

]x=1

x=0

+

∫ 1

0

ab(1− b/K)dx = a

∫ 1

0

b(1− b/K)dx− g(t),

⇒Db

[
∂b

∂x
(1, t)− ∂b

∂x
(0, t)

]
= −g(t),

since our variables are symmetric we have that
∂b

∂x
(1, t) = − ∂b

∂x
(0, t), which

means that,

g(t) = 2Db
∂b

∂x
(1, t). (4.5.2)

As in Section 4.3, we need to non-dimensionalize the model in order to
determine the relative importance of the mechanisms involved. We denote
non-dimensional quantities with hats and we rescale the variables using,

t = t∗/a, x = x∗/a, b = Kb∗, s =
αK

a
s∗, bwall = Kb∗wall, F (b) = F ∗(b∗);

we note that F ∗(b∗) = 1−b∗, which means that after the non-dimensionalization
the carrying capacity of bacteria becomes 1, and the model equations become,

∂b∗

∂t∗
= D∗b

∂2b∗

∂x∗2
− χ∗ ∂

∂x∗
(b∗

∂s∗

∂x∗
) + b∗F ∗(b∗), 0 < x∗ < 1, t∗ > 0,

∂s∗

∂t∗
= D∗s

∂2s∗

∂x∗2
− λ∗s∗ + b∗, 0 < x∗ < 1, t∗ > 0,

db∗wall
dt∗

= b∗wallF
∗(b∗wall) + µ∗

∂b∗

∂x∗
(1, t∗), 0 < x∗ < 1, t∗ > 0,

b∗(0, t∗) = b∗(1, t∗) = 0, t∗ > 0,

∂s∗

∂x∗
(0, t∗) + β∗b∗wall(t

∗) = 0, t∗ > 0,

∂s∗

∂x∗
(1, t∗)− β∗b∗wall(t∗) = 0, t∗ > 0,

b∗(x∗, 0) = b∗0, s
∗(x∗, 0) = s∗0, b

∗
wall(0) = b∗wall0, 0 < x∗ < 1,

(4.5.3)
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where D∗s = aDs, D∗b = aDb, χ∗ = αKχ, λ∗ = λ/a, µ∗ = 2µDb and β∗ =
β/αDs.

Furthermore, we drop the hats for simplicity and we implement the model.
We use FiPy which is an object oriented, partial differential equation (PDE)
solver, written in Python. Fipy uses the Finite Volume Method (FVM), a
method for writing PDE’s in the form of algebraic equations [33]. The name
“Finite Volume” refers to the small volume surrounding each node point on
a mesh. The method uses Gauss’ Divergence Theorem to convert volume
integrals in a partial differential equation that contains a divergence term to
a surface integrals. Then the terms are evaluated as fluxes at the surfaces of
each finite volume. The method is easily formulated to allow for unstructured
meshes and it is conservative, since the flux entering the volume is identical to
the one leaving the adjacent volume.

In one-dimensional space, the finite volume method is based on subdividing
the spatial domain into intervals (the “ finite volume” also called grid cells)
and finding an approximation to the integral of the functions over each of these
volumes. In each time step we update these values using approximations to
the flux through the endpoints of the intervals.

Using Fipy we implement the mathematical model for λ = 0.2, µ = 0.3,
χ = 0.9, β = 0.5, Ds = 0.5 and Db = 0.25. In Figure 4.3 we see the sens-
ing molecules concentration profile where in Figure 4.4 we have the bacterial
density in the free-space and at the surface as well as sensing molecules con-
centration evolution in time.

Even with a growing population of bacteria, the density is almost zero
as time gets larger so that the bacteria accumulates at the surface to start
growing as a biofilm. This fact also explains the shape that takes sensing
molecules concentration at the final time step, as we can see in Figure 4.3 the
concentration is much higher near the surface because of the high production
near the surface and the low production in the free-space.

Figure 4.4 shows that free-bacterial density takes a long time before drop-
ping to zero. This means that bacterial growth has kept bacteria in the free-
space longer. While stuck-bacteria also grow so that their density is increasing
but still bellow the carrying capacity. Being produced by both free and stuck-
bacteria, sensing molecules concentration is exponentially increasing. This
would attract more bacteria to the surface and facilitate biofilm initiation.

In the following chapter, the work done in this thesis will be discussed and
criticized. The results obtained will be presented in details. Then, we will end
the chapter by some possible extensions of our model as well as some other
perspectives.
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Figure 4.3: sensing molecules distribution profile in a discretized interval [0, 1],
at the final time step T = 40000. The simulation started with a very low
amount of sensing molecules present in the free-space s0 = 0.01 uniformly
distributed.
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Figure 4.4: the evolution of bacterial density in the free-space and at the sur-
face with the sensing molecules concentration. We start with bacteria in the
free-space that stick to the surface so that the density in the free-space drop to
zero and the density at the surface increases until it reaches the carrying ca-
pacity, for sensing molecules they are produced by both free and stuck bacteria
thus they increase exponentially.
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Chapter 5

Discussion, context and conclusion

In this chapter, we start by a summary of the work we perform throughout
this thesis. In the second section, we critically discuss our results and give
some perspectives. Then, we end with a small conclusion.

5.1 Summary of results
Chapter 2 describes the existing different ways of modelling bacterial biofilm,
which vary from computational models, to continuum or discrete models. The
aim of presenting these models, is to show the diversity of biofilm mathematical
models that motivate us to find another way of modelling biofilm.

By looking at the biological description of bacterial attachment to sur-
faces and biofilm initiation, we succeeded to build the mathematical model
describing this phenomenon. In Chapter 3, we started presenting our own
work which consists of three mathematical models. The first model describes
bacterial movement and attachment without including the presence of sensing
molecules. The second model is about sensing molecules dynamics, produc-
tion and degradation. While the third model that is presented in Chapter 4,
includes both bacteria and sensing molecules interacting with each other.

The model describing bacterial movement uses the Fokker-Planck equation
without drift that describes the Brownian motion of bacterial population. We
choose a uniform initial distribution, and boundary conditions that represent
bacterial stickiness. Using the separation of variable method and the super-
position principle, we solve the equation analytically. A steady-state analysis
was also performed to show that the total bacterial density tends to the stable
trivial equilibrium. This indicates that as time goes on the bacterial density
is almost zero everywhere. We plot the results and see the evolution of both
bacterial densities, at the surface and in the free-space over time. The bac-
terial density at the free-space tends to zero and the bacterial density at the
boundaries tends to the total density, which is similar to the analytical results.

Before moving to the coupled model, we model sensing molecules on their

48
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own. The model is a reaction-diffusion equation with a fixed source at the
boundaries. The equation describes sensing molecules movement, production
and degradation. A steady-state analysis was performed showing that all so-
lutions tend to a stable stationary solution obtained analytically. This result
explains that however the sensing molecules distribution starts, it will always
end up identical to the stationary solution. This result was emphasized by
the numerical simulation of sensing molecules concentration compared to the
stationary solution plot.

Finally, in Chapter 4, we consider a high bacterial population, so that the
amount of sensing molecules produced by the bacteria to sense their proximity
to the surfaces is significant. We have a coupled mathematical model of Keller-
Segel type, representing bacterial density and sensing molecules concentration,
in three-dimensional space. Bacteria perform a random movement directed by
the sensing molecules attractant. The sensing molecules diffuse, degrade and
are produced by both bacterial populations, at the surface and in the free-
space. We started by a fixed population of bacteria, then we added bacterial
growth to our model later on. It was very challenging to define the boundary
equations for sensing molecules, since they get produced at the surface, they
degrade and then diffuse and none of these behaviours could be neglected in
the equation describing the boundary conditions. The model’s equations are
very complicated to be studied analytically, so one way of studying this model
is through numerical analysis. For that, we non-dimensionalize the equations
to get rid of the units and reduce the number of parameters. We useMatlab for
numerical results which show the sensing molecules distribution and bacterial
density profile in space, as well as their evolution over time. A similar analysis
was performed for the model including bacterial growth.

5.2 Discussion and perspectives
Biofilm study is among the interesting topics in mathematical modelling, be-
cause of its importance in many industrial processes. In our model we showed
the importance of the first stages of biofilm formation. We started by describ-
ing the biology of these phases before presenting the mathematical model.
These stages are very important for constructing a biofilm and this was our
main motivation to build our model. Other modellers choose to model ei-
ther the final shape of biofilms, the biofilm growth or the interactions between
biofilm and the surrounding environment. These phenomena occurs within
the third and forth stages of biofilm, that are the the first and second biofilm
maturation as given in [8].

Our results show that bacterial density starts as a uniform distribution
within a well defined medium, then search for surfaces to stick to it. Since
we place the surface at the boundaries, we remark that as bacteria get stuck,
the shape of bacterial density distribution changes to a Gaussian before to
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return back to a uniform, this time almost zero everywhere. This means that
the majority of bacteria are stuck to the surface, the fact that agrees with
the biological description the nature of bacterial life given in [21]. It says
that the free-living bacteria look for, whether a living or non-living surface to
stick before aggregating as a biofilm. This explained the result showing the
evolution of the total bacterial density in time that tends to zero as time gets
larger meaning that the density distribution is almost zero everywhere.

It was also mentioned in [21] how the bacteria search for surfaces. They use
sensing molecules to sense their proximity to the surface before they attach to
it. This fact was also included in our model as chemotaxis [8], which means
that bacterial movement is a random walk directed by the sensing molecules
attractant. For sensing molecules, our results show that their concentration
gets higher near the surface as time goes on. Since the sensing molecules
are produced by bacteria and that bacterial density gets larger at the surface
then the production at the surface is much higher than the production in the
free-space. The presence of highly concentrated sensing molecules near the
surface is essential for biofilm construction. The bacteria will move towards
the high concentration of sensing molecules, get stuck to the surface and then
keep producing the sensing molecules to attract other bacteria to join the
aggregation. This explained the increasing sensing molecules concentration
with time obtained by showing sensing molecules concentration evolution in
time.

Our work gives rise to results that agree with the biological description
of the early stages of biofilm formation. However, our model do not include
some important elements that participate in building biofilm such as bacterial
nutrients and temperature. Of course including such elements will make the
model more realistic but also more complex to be studied, even for a numerical
study. But still, a more relevant work would be to do real experiments for one
or more bacterial species and look at their biofilm initiation then compare the
experimental results to the mathematical model, after that we will be able to
manipulate bacterial behaviour through mathematical studies.

For our model to be more useful in a medical or industrial point of view,
we should extend it to study the inhibition of the bacterial attachment to
surfaces. This model will help us to manipulate biofilm formation depending
on our needs, either to accelerate it formation when it is beneficial or to inhibit
its growth when it is bad. Other perspectives of our work could be to model
the next step that is the reversible attachment which consists of bacterial
swarming that is also a very interesting point to look at. All these topics are
important to be studied as a further work.
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5.3 Conclusion
The aim of our work was to model biofilm initiation and bacterial movement
toward surfaces. We successfully managed to find the appropriate boundary
conditions that describe the phenomenon at the surface. We believe that this
work may gain the attention of the experts in biofilms modelling, and may be
the motivation for the new ones in this field.
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