The Design of a Generic Signing Avatar
Animation System

by

Jaco Fourie

Thesis presented in partial fulfilment of the requirements
for the degree of Master of Science in Engineering at the
University of Stellenbosch

Department of Mathematical Sciences (Computer Science)
University of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Supervisors:

Dr. L. van Zijl Prof. B. Herbst Prof. PJ. Bakkes

November 2006

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my
own original work and that I have not previously in its entirety or in part sub-
mitted it at any university for a degree.

Signature:
J. Fourie

Date: ..o e

Abstract

The Design of a Generic Signing Avatar Animation System

J. Fourie

Department of Mathematical Sciences (Computer Science)
University of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (AM)
November 2006

We designed a generic avatar animator for use in sign language related projects.
The animator is capable of animating any given avatar that is compliant with the
H-Anim standard for humanoid animation. The system was designed with the
South African Sign Language Machine Translation (SASL-MT) project in mind,
but can easily be adapted to other sign language projects due to its generic de-
sign.

An avatar that is capable of accurately performing sign language gestures is
a special kind of avatar and is referred to as a signing avatar. In this thesis we
investigate the special characteristics of signing avatars and address the issue of

tinding a generic design for the animation of such an avatar.

ii

Samevatting

Die Ontwerp van 'n Generiese Gebaretaalkarakter

Animasiestelsel

J. Fourie

Departement Wiskundige Wetenskappe (Rekenaarwetenskap)
Universiteit van Stellenbosch
Privaatsak X1, 7602 Matieland, Suid-Afrika

Tesis: MscIng (TW)
November 2006

Ons het 'n generiese karakteranimasiestelsel ontwikkel vir gebruik in gebaretaal
verwante projekte. Die animasiestelsel het die vermoé om enige karaktermodel
wat met die H-Anim standaard versoenbaar is, te animeer. Die animasiestel-
sel is ontwerp met die oog op gebruik in die South African Sign Language Ma-
chine Translation (SASL-MT) projek, maar kan maklik aangepas word vir ander
gebaretaalprojekte te danke aan die generiese ontwerp.

'n Karaktermodel wat in staat is om gebare akkuraat te maak is 'n spesiale
tipe karaktermodel wat bekend staan as 'n gebaretaal avatar (Engels : signing
avatar). In hierdie tesis ondersoek ons die spesiale eienskappe van 'n gebare-
taal avatar en beskou die soektog na 'n generiese ontwerp vir die animering van
so 'n karaktermodel.

iii

Acknowledgements

‘‘The rule is, jam tomorrow and jam yesterday --
but never jam today.’’

€¢It MUST come sometimes to ‘jam-today,’’’ Alice
objected.
‘‘No, it can’t,’’ said the queen. ‘‘It’s jam every

other day: today isn’t any OTHER day, you know.’’

— Lewis Carol “Through the Looking-Glass”

A project of this magnitude is never a one-man enterprise and many individ-
uals deserve acknowledgement. I will start by thanking my mentor and study
leader, Dr. Lynette van Zijl, for the hard work and patience without which this
project would not have reached completion. I thank my parents for their assis-
tance (both financially and emotionally) and encouragement that kept me going
to the end.

I would also like to specially thank Dr. D. Cunningham and Prof. W. Strafier
for the assistance and guidance they gave me during my research in Tiibingen.

Most of all, I thank the Lord God for giving me the ability and for making
this all possible.

The financial assistance of the National Research Foundation (NRF) towards this
research is hereby acknowledged. Opinions expressed and conclusions arrived at, are

those of the author and are not to be attributed to the NRFE.

iv

Contents

Declaration i
Abstract ii
Samevatting iii
Acknowledgements iv
Contents v
List of Figures vii
1 Introduction 1
1.1 ThesisOutline o i 2

2 Literature Overview 3
2.1 Signing Avatars oo 4
2.2 Other Signing Avatar Projects 5
221 VISICAST o e 5

222 The Auslan Tuition System 6

223 The SYNENNOESE Project 7

224 Vcom3D Sign Smith Studioo 0L 9

225 The Thetos Project 9

2.3 Notation e 11
231 Stokoe 11

2.3.2 Sutton SignWriting 0 0oL 14

233 HamNoSys. 17

CONTENTS

234

The Nicene Notation

2.4 Avatar Animation Systems

3 Design Issues

3.1

3.2
3.3
3.4

Pluggable Avatars

3.1.1

The EAI Approach

3.1.2 The VRML File Loader Approach
Pluggable Input Notation

Generic Animator

Development Environment

4 Design and Implementation

Discrepancies between Real and Generated Gestures

Generic Animation in Varying Situations

4.1 The Three-level Design
42 TheParser
4.3 The Animator
44 TheRenderer.
4.5 Optimisations
5 Results
5.1 Issues Relating to Functionality . . .
5.1.1
5.1.2
5.1.3 The Input Notation Design .
5.14 Disadvantages of Euler Angles
5.1.5 Restrictions on Joint Rotations

52 FutureWork

6 Conclusions

A The SignSTEP DTD

Bibliography

vi

19
20

25
26
26
28
30
31
33

52
52
53
56
57
58
59
64

67

69

72

List of Figures

2.3.1 The phrase “"Don’t know” in Stokoe notation [17]. 12
2.3.2 The ASL phrase “Don’tknow” [4]. 13
2.3.3 The phrase “Don’t know” in SignWriting notation. 15
2.3.4 The sign for “difficult” transcribed with HamNoSys [23]. 17
2.3.5 The ASL sign for “difficult” [23]. 18
2.4.1 The H-Anim hierarchy of joints. Taken from [13]. 24
3.1.1 The VRML EAlinterface. 27

3.2.1 A diagram of the proposed method to implement pluggable notations. 31

4.1.1 The generic signing avatar animator design. 36
4.2.1 An example of nested queues.o Lo oL 39
42.2 The parsing process. i 40
4.3.1 An example of a partial Java3D scene graph. 43
4.3.2 The animation action is added to the scene graph. 44
4.5.1 Telemetry provided by the Netbeans profiler. 49
4.5.2 The amount of heap memory used as a function of time. 49
5.1.1 The difference between weight and maybe. 54
5.1.2 A comparison of the “Thank you” gesture. 55
5.1.3 The SASL sign for “home” using two different avatars. 57
5.1.4 An example illustrating that rotation is not commutative. 59
5.1.5 The neutral position. 61
5.1.6 Rotation about the x-axisis possible. 61
5.1.7 Rotation about the y-axisis possible. 62
5.1.8 Rotation about the z-axis is not possible. 62

vii

LIST OF FIGURES viii

5.1.9 Now, rotation about the z-axis is possible. 63
5.2.1 A screen shot from the sign editortool. 66

Chapter 1

Introduction

Science is built up with facts, as a house is
with stones. But a collection of facts is no more
science than a heap of stones is a house.

— J.H. Poincaré

The South African Sign Language Machine Translation project (SASL-MT), is
an ongoing project at the Department of Computer Science at the University of
Stellenbosch [35]. The aim of the project is to develop a prototype system that

can translate English text into South African Sign Language.

The objective of this study is the design and implementation of the signing
avatar animation system that forms part of the SASL-MT project. The sign-
ing avatar system forms the back-end of the SASL-MT project and receives as
input the sign language gestures that were translated from English text. The
gestures are received in a textual representation called an interlingual notation
[14, 15, 25]. The system then uses the gestures to animate a realistic anthropo-

morphic model also known as an avatar.

Previous machine translation systems for sign language can be found in current
literature [12, 14] and we will discuss these in more detail in chapter 2. A com-
mon characteristic shared by these existing systems is that the avatar animation

system cannot function independently from the rest of the encompassing ma-

1

CHAPTER 1. INTRODUCTION 2

chine translation system. Typically, this means that the system can only animate
specific custom built avatars. The gestures that it can animate are also limited by

the specific sign language that is translated to by the encompassing system.

In this study we propose a design for a generic signing avatar animation system.
The system is not constrained by limiting it to specific sign languages or to cus-
tom built avatars. The system also functions completely independently from the
translation system of which it forms a part. An implementation of this design is
also provided and the results thereof evaluated.

1.1 Thesis Outline

Chapter 2 is a overview of the applicable literature. Previous signing avatar
systems are discussed and evaluated. Other machine translation projects for

sign language are also evaluated.

Chapter 3 investigates the design issues that influenced the design of the signing
avatar system. The impact that the choice of development environment has, is
explored. We also explain the need for pluggable avatars and input scripts. The
design of the generic animator, the module that is central to the system, is also

discussed.

In chapter 4 we look at the implementation of the system that was discussed in
chapter three. The system is divided into three separate modules: the parser,
the animator and the renderer. These three modules function independently
from each other and communicate using certain interfaces that will be discussed.

Possible optimisations to the system are also investigated.

In chapter 5 the results of the system are evaluated. We examine the level of
pluggability in both the avatar and the input script. The most important result
is realistic animations that equate to recognisable sign language gestures. The

recognisability of these results is evaluated experimentally.

Chapter 2

Literature Overview

Knowledge is of two kinds: We know a subject
ourselves, or we know where we can find information
about it.

— Samuel Johnson, 1775

This project concerns the development of a generic signing avatar in the con-
text of the SASL-MT project. Hence, the literature background in this chapter is
divided into four sections. In the first section we give a definition of what we
mean by a signing avatar and how it fits into the SASL-MT project. In the sec-
ond section we investigate other previous and current projects involving signing
avatars. We specifically evaluate the signing avatar component of these projects.
The third section is an overview of current research in humanoid animation and
general avatar design. We examine avatar design in general and investigate how
these principles can be applied to the design of a signing avatar. In the fourth
section we examine various notations that were and are being developed to serve

as input for signing avatar systems.

CHAPTER 2. LITERATURE OVERVIEW 4

2.1 Signing Avatars

The term avatar, in our context, refers to the computer modelled representation
of a human being. Research into virtual reality human modelling and animation
has progressed greatly in terms of accuracy. It is now possible to model and
animate a virtual human being accurately enough so that gestures as subtle as
a change in facial expression can be noticed and understood by a real human
observer [12]. As we will see, this is of particular interest to the development of

signing avatars.

A signing avatar is used to communicate sign language gestures. Therefore, it
requires the ability to accurately reproduce any movements that a human signer
can perform. The movements that make up sign language gestures consist of
hand, arm and body movements combined with facial expressions [12, 25]. We
call these movements sign language gestures and divide them into two separate
categories called manual and non-manual gestures. The manual gestures are
those that are performed using the arms, hands and fingers, while the non-
manual gestures are those performed using facial expressions and other body
movements. Sign language gestures are fine motor movements, such as one
would find in high budget animated films. Gross motor movement, such as one
normally finds in computer games and internet 3D chat-rooms, would be in-
sufficient for accurate recognition of gestures. Fine motor movements require a
higher level of articulation in the avatar. Higher levels of articulation allow for
more complex movements but are more difficult to animate. A signing avatar
would need a high level of articulation and a sufficiently advanced animation

system to control its movements.

In the section that follows we take a critical look at previous signing avatar
projects. We investigate important design decisions like choice of notation, com-
putational animation models, avatar structural models and implementation plat-

form.

CHAPTER 2. LITERATURE OVERVIEW 5

2.2 Other Signing Avatar Projects

In the following five sections we evaluate and discuss five systems that make
use of a signing avatar to create sign language gestures. In most of these sys-
tems the avatar animation is only a small component in a larger machine trans-
lation project, but for the purposes of this study we concentrate on the avatar
animation component itself. The five systems that we discuss are: the VisiCAST
Translator, the Auslan Tuition System, the SYNENNOESE project, the Thetos
project and the Vcom3D Sign Smith Studio.

2.2.1 ViSiCAST

The VisiCAST translator was created as part of the European Union’s VisiCAST
project at the University of East Anglia [12]. Its aim was to translate English text
into British Sign Language (BSL) and serve as a research vehicle for translation
to German and Dutch Sign Language.

Before the English text is translated into BSL, it is first translated into an inter-
lingual notation called SiGML (Signing Gesture Markup Language) [15]. SiIGML
is then translated into animations that represent the BSL gestures. SiGML is an
XML encoded version of the HamNoSys notation (see section 2.3.3) for describ-
ing sign language gestures. The SiGML gestures are then sent to the Animgen
animation synthesiser which is the animation engine for the VisiCAST translator.

Since Animgen is part of a commercial project, the details of the design are not
publicly released. To the author’s knowledge, for each frame in the animation
sequence, the rotation for each joint in the avatar is computed. These frame-
by-frame rotation values are then applied to the avatar and rendered onto the
screen. Due to the lack of sufficient facial joints for accurate expressions, the
avatar used is not H-Anim compliant (see section 2.4 for more on the H-Anim
standard). For prototyping, Animgen can also generate animations in the form
of a VRML [18] avatar that is H-Anim compliant, but which lacks accurate facial

features.

In conclusion, the relevance that the ViSiCAST translator has to the avatar ani-

CHAPTER 2. LITERATURE OVERVIEW 6

mation system proposed by this thesis is found in the concept of the interlin-
gual notation. The interlingual notation divides the VisiCAST translator into a
component that translates English into SiGML and a component that translates
SiGML into animated gestures. The advantage of having separate modules is
that the module that translates from SiGML to animated gestures does not need
to be changed if the system is modified to translate from other oral languages.
For example, if the VisiCAST translator is modified to translate German into
BSL, only the module that translates into SiGML needs to be replaced. It is ex-
actly this kind of module based, generic design that we aim for in this thesis.
However, this strategy is only as generic as the interlingual notation itself. The
notation needs to be tested by transcribing a variety of different sign languages
to ensure that it is capable of representing any gesture. This aspect of notation
will be discussed further in section 2.3 when we investigate different notations
including SiGML.

2.2.2 The Auslan Tuition System

The Auslan Tuition System was designed as an educational tool for the teaching
of Australian Sign Language (Auslan) [39]. The system is divided into three
parts: the Human Modelling Module, the Model Rendering Module and the Model
Interpolation Module.

The Human Modelling Module is responsible for the creation and rendering of
the humanoid model. The model itself is defined using a proprietary XML for-
mat. A purely rotational hierarchical kinematic tree is built from the model in-
formation. This kinematic tree is similar to the scene graph structure found in
VRML and scene graph based 3D graphics libraries such as Java3D. The nodes
of the kinematic tree represent joints in the humanoid. In this way a structure
similar to the joint hierarchy defined in the H-Anim standard is formed.

The Rendering Module is responsible for displaying the avatar graphically. It
accomplishes this task by using the OpenGL 3D graphics library [19]. The kine-
matic tree is traversed and each node in the tree is associated with a polygonal
model representing the surface of the body segment that follows that node. Each

CHAPTER 2. LITERATURE OVERVIEW 7

segment is rendered as it is encountered in the tree using OpenGL polygonal

primitives.

Smooth and visually pleasing animation is created by the Model Interpolation
Module. Since most of the animation tree is purely rotational, effective interpo-

lation between rotations is all that is needed for smooth animation.

The Auslan Tuition System is the only system that we discuss that does not make
use of an interlingual notation. The system was not designed to be generic but
rather to be fast and effective in the visualisation of Auslan. The avatar was
custom designed for use only in this system and is not user customisable. Since
there is no clear intermediate step between the animation of the avatar and the
rest of the system, it would take significant modification to adapt the system to
other sign languages.

In conclusion, the Auslan Tuition System is different from the other systems
that we discuss in almost every way. Even though the design is module based,
the modules depend on each other and cannot function independently from the
other modules. As was seen, this design does not lead to a generic system. In this
thesis we propose a design where the modules are kept independent from one
another by restricting interaction between modules to clearly defined interfaces
(see chapter 4 for further details).

2.2.3 The SYNENNOESE Project

The SYNENNOESE project is a Greek national project addressed to Greek Deaf
pupils in primary schools [3]. The aim is to create a Greek Sign Language signing

avatar as an educational tool for early primary school pupils.

The designers of the project chose the STEP [11] language (Scripting Technology
for Embodied Persona) as an interlingual notation to interact with the avatar. As
we saw in the VisiCAST translator, translation to the interlingual notation and
animation of the avatar are two separate steps in the project. Unlike SiGML,
STEP does not describe gestures by using a pre-defined set of hand shapes, but

rather uses more generic movements. STEP was designed to describe any type

CHAPTER 2. LITERATURE OVERVIEW 8

of human motion by representing the motion as a collection of joint translations
and rotations. The STEP notation is not as compact as SiGML, but can describe
almost any possible human motion and thus supports all sign languages equally

well.

Rendering of the avatar is done in two different ways. The first method imple-
mented was to use an H-Anim compliant VRML avatar and a VRML browser.
The animation is embedded as JavaScript code in the VRML avatar and is dis-
played using readily available VRML browsers. One advantage of this approach
is that the animated result can easily be made into a standard HTML page and
published on the internet. In this way the system is immediately accessible to
any user with a VRML enabled browser.

Another advantage of the first rendering method is that any H-Anim compatible
avatar can be embedded with the JavaScript animations and can be rendered in
exactly the same way. One must realise, however, that the end user that wants
to use his own H-Anim avatar would not be able to use his custom avatar before
the JavaScript modifications to the avatar have been done. Usually, these mod-
ifications cannot be done by the user and needs to be done by the programmer.

This effectively limits the user to use only the avatars that the system provides.

The second method that the SYNENNOESE project used to render the avatar is
by modelling the avatar using the MPEG-4 SNHC standard [22]. Unlike H-Anim
that only provides for basic expressions, the MPEG-4 SNHC standard fully sup-
ports facial animation. The MPEG-4 SNHC standard is a set of body and facial
animation parameters that can be used to animate avatars using body animation
parameter (BAP) and facial animation parameter (FAP) players. By using BAP
and FAP players, H-Anim compatible avatars can also be animated. However, to
fully take advantage of the advanced facial animation supported by the MPEG-
4 SNHC standard, the facial model of the H-Anim avatar needs to be altered.
The advantage gained by supporting a pure H-Anim model is that a user of the
system can now use his custom built H-Anim avatar without having to change
it in any way. This enables the system to be easily used in a variety of applica-
tions. Note that this advantage is gained at the expense of more realistic facial

animations gained from the altered H-Anim model.

CHAPTER 2. LITERATURE OVERVIEW 9

The SYNENNOESE system was designed to be more generic than most other
systems that we investigated. The use of the STEP notation as interlingual nota-
tion makes the animation system more generic, since any sign language that can
be represented in STEP notation can be animated using this system. The avatar
renderer is also designed generically as the animation can be applied to any H-
Anim avatar with little or no modification. Rendering of the animations are only
restricted by the capabilities of the VRML browser or the MPEG-4 player. A sys-
tem that is as generic in its design as this one, but without the need for BAP/FAP
players or VRML browser plugins, is what we are aiming for in this study.

2.24 Vcom3D Sign Smith Studio

The Vcom3D Sign Smith Studio was developed as an authoring tool for creating
multimedia that incorporate sign language gestures [36]. Since this is a com-
mercial product, no design or implementation details are available. Instead, we
discuss the features of the product and evaluate it purely on its ability to accu-
rately render sign language gestures.

The software allows the user to construct sign language gestures using a library
of 2000 hand gestures and facial expressions. The user can then export his ges-
tures as video files that can be played back without the need of the software.
Sign Smith Studio also gives the option of exporting gestures as animated VRML
models that can be embedded in a HTML web page and viewed using a VRML
compliant web browser.

The animations are smooth and accurate and the authoring interface is intuitive
and easy to use. The user can choose between twelve different avatars to sign
the constructed gestures, but the system does not support custom made avatar

models. This is the only disadvantage to an otherwise well designed system.

2.2.5 The Thetos Project

The purpose of the Thetos project was to improve the social integration of the
Polish Deaf Community into the larger community of Polish speaking people [6].

CHAPTER 2. LITERATURE OVERVIEW 10

The project was designed to translate Polish text into Polish Sign Language ges-
tures.

Similar to the previous translation systems that were discussed, the designers of
the Thetos translator chose to separate their system into two components. The
first component performs a full linguistic analysis of the textual input and trans-
lates it to an interlingual notation. The interlingual notation used in this sys-
tem is the Szczepankowski’s gestographic notation [6]. The Szczepankowski’s
gestographic notation was designed to be easy to read and understand. It was
designed this way in order to simplify the task of compiling the gesture dic-
tionary. At the same time it is also descriptive enough that all gestures can be
accurately defined.

The second component is responsible for the animation of the avatar. It accom-
plishes this task by interpreting the gesture notation and generating from it the
key frames that make up the finished animation. The key frames specify static
configurations of the avatar, together with the time intervals needed to pass from
one configuration to the next. Each configuration is defined as a set of joint
angles that is similar to the angles specified in the H-Anim standard. Smooth
motion is achieved by interpolating all the rotation angles in time. In this way

intermediate key frames are generated and the motion appears smoother.

For the purposes of this study, the most interesting component of the Thetos
system is the interlingual notation that is used. The notation is described as be-
ing a trade-off between the SignWriting notation (see section 2.3.2) that is simple
to use by humans, and the HamNoSys/SiGML notation (see section 2.3.3) that
is detailed and easy to parse by computer. This notation would be a practical

choice for the input notation of our system.

The choice of notation is important and affects both the interface to the system
and the ability of the system to animate a variety of sign languages. In the section
that follows we will further investigate interlingual notations and the effect that

the choice of notation has on an avatar animation system.

CHAPTER 2. LITERATURE OVERVIEW 11

2.3 Notation

In order to modularise and simplify the task of machine translation to sign lan-
guage, most developers of a machine translation system have proposed a writ-
ten form of sign language. One must realise that such abstractions of real sign
language will cause some detail of the language to be lost [12]. Deciding which
detail can acceptably be sacrificed is of cardinal importance and makes the de-

sign of the script notation a critical step.

Sign language has no standard written form but has its own unique grammar.
This means that a system that aims to translate a spoken language like English
into sign language, will need a computational linguistic component to generate
a script that controls the movement of the avatar. The best notation for such a

script is still an open area of research.

The notations discussed in this section are all known as interlingual notations.
By interlingual notation we refer to the notation that is used to describe a sign
language phrase [25]. This notation will be interpreted by a computer program,
which will then generate the appropriate animations. In the rest of this section
we investigate four different interlingual notations, namely, the Stokoe notation,
Sutton SignWriting, HamNoSys and the Nicene notation.

2.3.1 Stokoe

The Stokoe notation [26] was one of the earliest (1976) description methods for
sign language. It was designed by the linguist Dr. William Stokoe with the
intention of having a written representation of sign language to aid in linguistic

research on sign language.

The Stokoe notation is a written form of sign language that consists of a combi-
nation of Roman letters and invented symbols. It divides all gestures into four
parts: a hand shape, a movement, a place of articulation and an orientation. The
gesture is written in a near-linear fashion with the place of articulation indicated
tirst, followed by the hand shape, orientation and any movement indicators.

An example of the American Sign Language (ASL) phrase “Don’t know” tran-

CHAPTER 2. LITERATURE OVERVIEW 12

scribed in Stokoe notation can be seen in figure 2.3.1. The figure clearly points
out the four parts of the pictograph.

Place of articulation ‘
Hand Shape

Figure 2.3.1: The phrase "Don’t know” in Stokoe notation [17].

The first part of the pictograph is the place of articulation. It indicates where in
the signing space! the gesture should be “articulated”. In the example in figure
2.3.1, the place of articulation indicates that the gestures should be articulated
over the area in front of the forehead. The second part of the pictograph is the
hand shape. The Stokoe notation uses hand shapes based on the international
one-handed finger spelling hand shapes. In our example the Bt glyph? indicates
that the international one-handed finger spelling hand shape for the letter “B”
should be used. The subscripted “T” indicates the orientation of the hand. The
tinal part of the pictograph is the movement indicators. In our example there are
three separate movement indicators. The “X” indicates that contact is made. The
glyph that looks almost like the letter “D” indicates that movement is directed
away from the signer. The L glyph shows that the palm is turned down as
movement is made away from the signer. Figure 2.3.2 on page 13 shows an

illustration of this sign.

IThe signing space is the space in front of the signer where sign language gestures are per-
formed or articulated. It extends in an arc from the left of the signer to the right and reaches
from the top of the head to the waist [4].

2By glyph we mean a character or symbol that is used to represent a movement,

CHAPTER 2. LITERATURE OVERVIEW 13

DON'T KNOW

Figure 2.3.2: The ASL phrase “Don’t know” [4].

Stokoe notation lacks completeness, since its set of possible hand shapes is not
sufficient to describe all the gestures found in sign languages [25]. The system
also lacks finger orientation information as well as information on non-manual
signs like facial expression and movement of the shoulders. Smith and Edmond-
son [25] showed that the movements are too vague to be accurately reproduced
by a computer, given only the information captured by the notation.

In conclusion we see that the Stokoe notation would not be a practical choice for
our interlingual notation. To be used as a computational base for our system,
the interlingual notation needs to be well defined and should never be vague or
incomplete. Stokoe provided a written form for sign language and showed that
sign language is not just a signed version of English or “pictures in the air” but
was structured like any other human language with its own unique grammar.
The Stokoe notation forms a basis for two of the notations that we investigate in

the sections that follow and clearly shows the complexity and non-triviality of

orientation or hand shape in a particular notation.

CHAPTER 2. LITERATURE OVERVIEW 14

the design of such a notation.

2.3.2 Sutton SignWriting

Sutton SignWriting was invented by the dancer and movement notator Valerie
Sutton [29]. The notation was developed when the University of Copenhagen
asked her to adapt her notation for recording dance steps. They wanted a nota-
tion to record sign language gestures for linguistic research. Her notation was

called DanceWriting and was the predecessor to what later became SignWriting.

SignWriting takes a unique approach to the recording of sign language gestures.
Unlike most other notations such as Stokoe and HamNoSys (see section 2.3.3),
it does not use of a set of pre-determined hand shapes. Instead it uses the
schematic “see and draw” approach where the only goal is to record movement
without even needing to know that language is being recorded.

We use figure 2.3.3 on page 15 to illustrate the way gestures are recorded using
the SignWriting notation. Once again, the gesture is divided into four logical

parts namely: hand shape, movement, location and orientation.

Instead of the normal taxonomic approach to hand shape definition, SignWriting
uses a schematic or pictorial approach. The taxonomic approach would define
a finite number of hand shapes and assign an arbitrary symbol for each hand
shape. We saw this approach in the Stokoe notation where Roman characters
were used to represent hand shapes. The problem with this approach is that
all possible hand shapes have to be matched to one of the symbols in this fi-
nite set, even if some of them do not match exactly. The schematic approach of
SignWriting solves this problem by defining hand shapes as schematic diagrams
where each part of the hand is represented independently. In the example of fig-
ure 2.3.3 on page 15, the hand shape refers to a straight outstretched palm with

all the fingers straight and pointing in the same direction.

Orientation is indicated by taking advantage of the fact that the back of the hand
is darker than the palm. If the hand shape is coloured in black it indicates that the
back of the hand is turned towards the signer. If the hand shape is not coloured

CHAPTER 2. LITERATURE OVERVIEW 15

Non-manual grammatical

signals
\ Movement arrows

N

I.\ Ff.‘
N\ /
Hand shape, location and
arientation

Figure 2.3.3: The phrase “Don’t know” in SignWriting notation.

in and left white, it indicates that the palm of the hand is turned towards the
signer. If the hand shape is half coloured it indicates that the hand is turned half
way between the previous two positions. Orientation is also indicated by the fact
that the symbols can be rotated to point in any direction. In this way the hand
shape can be rotated to point in a specific direction with relation to the signer’s
head. This intuitive approach simplifies reading the signs. In our example, the
half coloured hand shape indicates that the side of the hand is turned towards
the signer. Notice that the hand shape is also rotated to indicate the direction

that the fingers are pointing.

The visual approach of SignWriting is most clearly seen in the way it indicates
location. It has no arbitrary symbols for location as other notations have. In-
stead of the characters being written linearly from left to right, the characters
are written in whatever relationship they actually take in the sign. If the hands
appear on top of each other in the actual sign, the hand shapes are written down
one underneath the other. In this way one can say that the symbol for location
in SignWriting is the image itself. In our example, the large circle indicates the
signer’s head. The hand shape is therefore located at the top-right side of the
signer’s head.

CHAPTER 2. LITERATURE OVERVIEW 16

SignWriting uses arrow symbols to indicate movement. Just as with location,
SignWriting takes advantage of the spatial arrangement of the symbols to add
detail. Arrows are rotated to indicate the path that the movement should take
and arrows that indicate circular motion are curved in the appropriate direction.
Complex movement like looping is indicated by curving the tail of the arrow in
on itself. If vertical movement instead of forward-backward movement is to be
indicated, the tail of the arrow doubles. The arrowhead also changes to indi-
cate whether the movement should be done with the left, right or both hands.
The arrows shown in the example of figure 2.3.3 indicate that the hand rotates

outward as it moves away from the signer.

The last aspect that we will discuss on the SignWriting notation is non-manual
grammatical signals. These non-manual gestures are important to the meaning
of sign language adverbs, relative clauses and other important grammatical con-
structs. Accurate representation of these constructs would not be possible with-
out non-manual gestures. The non-manual grammatical signals consist mostly
of facial expression but also includes the movement of the shoulders, head and
body. The two double tail arrows of our example in figure 2.3.3 is a non-manual
gesture indicated by a sideways head shake.

The graphical nature of SignWriting makes it a practical notation for easy human
understanding and reading. However, it is this graphical nature that also makes
the notation difficult to parse with a computer. The notation will need to be
adapted to use only standard ASCII characters or be encoded in a markup lan-
guage such as XML to be practical for computer animation. Such an adaptation
has been done and the result is SWML (SignWriting Markup Language) [29].
SWML is a XML version of the SignWriting notation and was designed with the
digitisation of SignWriting in mind. SWML would be a practical choice for our
input notation. However, the author that has to transcribe gestures in this nota-
tion would still require knowledge of the SignWriting notation since SWML is
merely an XML adaptation of SignWriting.

CHAPTER 2. LITERATURE OVERVIEW 17

2.3.3 HamNoSys

HamNoSys was developed by researchers at the University of Hamburg in Ger-
many [15, 23]. It was designed to be used by sign language researchers to record

sign language gestures.

Like most other sign language notations, HamNoSys uses hand shape, position,
orientation and movement for the description of gestures. Just like the Stokoe
notation, a sign is transcribed linearly from left to right as can be seen in the

example of figure 2.3.4. An illustration of this sign can be seen in figure 2.3.5.

E’FQE.IJ'_

handshape
handposition
location

action: a movement
with modification

Figure 2.3.4: The sign for “difficult” transcribed with HamNoSys [23].

There are twelve standard hand shapes in the HamNoSys notation. These stan-
dard hand shapes can be modified by bending or moving individual fingers for
more complicated hand shapes. This iconic approach is similar to what we saw
in SignWriting but is not nearly as customisable.

Location is described by defining a set number of positions on and around the
human body. The position indicators also contain information on the distance
from the specified position where the sign should be articulated. Several hun-
dred positions on the human body have been defined in HamNoSys.

CHAPTER 2. LITERATURE OVERVIEW 18

Figure 2.3.5: The ASL sign for “difficult” [23].

Orientation is specified in two ways. Firstly, “extended finger direction” refers to
the direction the fingers would be pointing if they were straight. The twenty-six
possible values of “extended finger direction” have been defined as the direc-
tions from the centre of a cube to its face centres, edge midpoints and vertices.
The second way orientation is specified, is with palm orientation. Palm orienta-
tion can be one of eight values corresponding to the directions from the centre
of a square to its edge midpoints and vertices.

The movement descriptions used in HamNoSys are varied and can take many
forms. Movement through space can be in a straight line, curved, circular or
directed to a specific location or body position. Straight line movement can be
in any of the twenty-six directions defined for “extended finger direction” and
is indicated by an arrow pointing in the applicable direction, for example (—).
Curved movement is indicated by an arc following the movement arrow and
can be oriented in any of the eight directions defined for palm orientation. Wavy
or zigzag movement is indicated by wavy arrows (~~) and circle arrows (O).
Other possible movements include wrist oscillation about three different axes
and movement called “fingerplay” where fingers are waggled as if crumbling
something between the fingers and thumb [14]. Further possibilities are found
by combining these movements sequentially or in parallel.

Non-manual grammatical signals are not implicitly supported by HamNoSys.

CHAPTER 2. LITERATURE OVERVIEW 19

Its main scope is arm and finger movement which it describes well. Head move-
ment is the only non-manual grammatical signal supported and is indicated by

a circle (), representing the head, preceding the movement indicators.

HamNoSys is used as an interlingual notation for the VisiCAST project [15].
Since the notation uses special characters that are not easily parsed with a com-
puter, SiIGML was defined [14] (see section 2.2.1). SiGML (Signing Gesture Markup
Language) is an XML encoded version of HamNoSys and contains exactly the
same amount of information as HamNoSys. A tool used to translate HamNoSys
into SiGML has been developed and is used to translate all HamNoSys tran-
scriptions to SiGML prior to insertion into the VisiCAST system. This approach
has the advantage of having both a notation that is easily understandable by hu-
man readers and one easily parsed by computers. The only disadvantage is the
extra step of translation that is needed.

2.3.4 The Nicene Notation

The Nicene notation was developed by Smith and Edmondson [25]. It was de-
signed specifically with computer representation in mind. This notation does
not suffer from the problems that the previous notations suffered from, as it is
not based on hand shapes and is designed in such a way as to be completely
general and able to describe almost any gesture. The notation is divided into
three layers: thought, word and deed.

The first layer, called the thought layer, provides a rich description of the sign
on a high level. It is composed of six vectors: two for the hands, two for the
arms, one for the face and one for the movement of the sign. The two hand con-
tiguration vectors are defined using the Stokoe notation, as it is accurate enough
for this high level description and is easy to use. The arm configuration vectors
contain information on wrist, elbow and shoulder positions. It also defines any
points of contact from the hands. The non-manual features of the sign is covered
by the face vector and includes information on lip, mouth, tongue, eye, cheeks
and nose movement. The last vector is the movement vector that describes the
trajectory of the hands and arms through the configurations described by the

CHAPTER 2. LITERATURE OVERVIEW 20

other vectors. This vector also contains information on wiggling, repetition of

movement or any contact made during these movements.

The second layer is called the word layer and takes the anatomical vectors from
the thought layer and converts them to matrix form with numerical parameters.
The matrix parameters define angles for every joint of the five fingers of the
hands. The arm vectors are also translated into joint-angle matrices with three
angles for the shoulder, two angles for the elbow and two angles for the wrist.
The movement vector is composed of one or more velocity vectors which are
in turn composed of a speed and a direction vector. The direction vector is a
three dimensional vector that describes the path that the hands will follow. The
vector retains any information on repetition of movement and possible points of

contact.

The final layer, called the deed layer, ensures smooth transition between sub-
sequent signs by bringing in the temporal aspects of the sign. It links the tra-
jectories and target positions by attaching them to points along a timeline and
using the movement vectors from the previous layer to link between targets.

Computer interpolation is used were movement is unspecified.

Like the SignWriting notation, the Nicene notation was designed to be generic.
It was designed to be able to represent any sign language gesture from any sign

language.

In summery, a generic notation is needed if we are to design a generic signing
avatar system. The notation also needs to be easy to parse using a computer.
It is exactly for this reason that SWML was developed as a computer readable
version of the SignWriting notation.

2.4 Avatar Animation Systems

There is an ongoing interest in the development and realistic animation of hu-
manoid avatars [33]. Applications for research into humanoid avatar animation
include entertainment, computer graphics and multimedia communication [33].

More sophisticated avatars are used in military applications where avatars are

CHAPTER 2. LITERATURE OVERVIEW 21

used in realistic battle simulations [2]. Realistic avatar animation have also been

developed to simulate the movements of athletes [9].

We start our discussion on avatar animation systems by investigating the most
general avatar animation systems. We do this in order to find the most generic
solutions and the issues that are common to all avatar animation systems in

general.

Yang, Petrui and Whalen proposed an hierarchical control system for the ani-
mation of avatars [38]. In their control system, they use avatars that are com-
patible with the H-Anim[13] standard for humanoid animation (see figure 2.4.1
on page 24 for the H-Anim skeleton). The control hierarchy is a three-tier sys-
tem with the lowest layer responsible for joint and segment movements and the
highest layer interpreting the storyboard-based behaviour script.

In the lowest layer of the hierarchy, the control system directly manipulates the
humanoid joints defined by the H-Anim standard. The H-Anim standard de-
tines a humanoid as a collection of predefined joints and segments. According to
this standard individual humanoids differ only in the shape of their segments
and the position of their joints. No assumptions are made about the avatar ap-
pearance or the type of application in which it is used. The appearance of the
avatar is determined by the texture that is applied to the segments and is not
defined in the standard. This means that a generic avatar animation system can
be created by simply making sure that the system animation is based on the
H-Anim standard.

The second layer of the hierarchy defines basic actions (such as run, jump and
walk) using the joint movements defined in the lower layer. These basic actions
are then combined together in a storyboard in the highest layer of the hierarchy
using some user-driven behaviour script. The avatars themselves are defined
in the VRML language. VRML is a well-known language used for describing
interactive 3D objects [33]. VRML is not a programming language and can only
define simple behaviours. This makes VRML an impractical language for the
implementation of high-level complex animations. Yang et al. proposed two

means of solving this problem.

CHAPTER 2. LITERATURE OVERVIEW 22

One approach is to use the external authoring interface (EAI) to communicate
with the VRML nodes using a high level programming language like Java to
write the animations. For every joint, defined as VRML nodes in the model, a
Java animation script is written that runs in its own thread, waiting for input
from the master animation system. The master animation system is written in

Java and controls the H-Anim joints through the EAI Java animation scripts.

This approach is cumbersome in many ways. With this approach the user inter-
face to the system is a VRML web browser. The VRML browser loads the VRML
avatar, that in turn loads the Java animation scripts through the EAIL This step
already compromises the generality of the animation system, since the avatar
needs to be injected® with the Java script nodes that represent the rest of the ani-
mation system. Also, since each joint is controlled separately in its own thread
by the applicable Java script class, perfect timing in the joint movements are
needed for smooth and realistic looking animations. The overhead that the slow
interface between Java and VRML creates in rendering time, causes the system
to slow down considerably and makes real-time animation impossible without
high-end dedicated graphics processing [38].

The second approach that Yang suggested is to use the Java3D API [28] and a
VRML file loader. Java3D is a high level scene graph-based 3D API that runs
on Java and seamlessly integrates with a Java animation system. In this ap-
proach the VRML objects are first loaded using a VRML file loader. Yang et
al. used the CyberVRML97 [30] loader. The loader converts the VRML object
into a Java3D scene graph that can be rendered without the need for a VRML
browser using Java and Java3D. This means that the model, and the animation
system that animates it, are now seamlessly combined into one environment.
With this approach the joint controller can communicate directly with the H-
Anim joints without communication overhead. Generality is not lost, since any
VRML file can be loaded using the file loader, and once the model is converted
into a Java3D scene graph the animation system works the same way for all
avatars. This approach is therefore more practical in our situation and is dis-
cussed further in chapter 4.

3We use the term inject to refer to the action of adding references of the corresponding Java
animation scripts to the various joints in the VRML model.

CHAPTER 2. LITERATURE OVERVIEW 23

Whalen [20] conducted research into the effective animation of Java3D H-Anim
models. A Java3D model representation is a directed acyclic graph (DAG) of ge-
ometry and control nodes. To animate such a model, one simply inserts move-
ment nodes at the appropriate place into the graph. In the system that Whalen
describes, Java3D motion interpolaters are used to smooth the animation. These
interpolation nodes are inserted with the movement nodes (called Transform
nodes in Java3D) at the appropriate place in the scene graph. In this case the
appropriate place is the parent node of the H-Anim joint that is to be animated.
The same child-parent relationship that VRML nodes have in the H-Anim stan-
dard is also present in the Java3D implementation. Just as with a VRML scene
graph, transforms done on a parent node also affects all the children of that par-
ent in a Java3D scene graph. This is an important feature of the scene graph
structure and allows one to easily translate from the H-Anim joint hierarchy to
the corresponding scene graph in Java3D.

In conclusion, Yang, Petrui and Whalen showed that a generic animation system
can be constructed using the H-Anim standard. If the assumption can be made
that the joints specified by the standard are always present, animations can be
performed on any avatar. An efficient animation strategy was also proposed us-
ing a file loader and the Java3D APL This animation strategy can be combined
with Whalen’s independent research on effective animation in Java3D using mo-
tion interpolaters. This thesis discusses exactly such a system and further details
can be found in chapters 3 and 4.

In the next section the design issues that were specific to the design of a generic
signing avatar system for the SASL-MT project will be discussed. These issues
will be resolved by using the techniques that were discussed in the investigation
of the signing avatar systems presented in this chapter.

CHAPTER 2. LITERATURE OVERVIEW

-+- skull_tip
Sullbass I_e_vebrow_joi@_eyebmw
|_evelid
|_eyelid _ioint)@
|_eveball _joint |_eveball

jaw
temporom andibul a

cervicd

jaw_tip [chin]
skull

*
Simple Facial Objects

Horasic

I_F» metacarpa *
I_Frproximd
I_Er middle

I_(F) distal
1_{F) digtal_tip

H-ANIM 1.1
|\ _thumb_proximd Joints Segments Sites
| _thumb_distd

\ Joint
|_thumb_distd_fip O !

lumbar

Spinal Joint Recommended
by Spec
Typical Mnimal Hmmanoid
Joints
w Indicates Children of Joint
8 . Segment + Example Sites *
. !
@é‘ .Q_.\'.“" Objects with names beginning with
\r_\\ 1 hawe a corresponding object with

aname starting with r_ {left/rght)k

* Indicates Ttems Added in L1

F F @
Py &“5‘ 5@ Created to support designers using information in the
o & H-fnim Specification, http:fjece uwatedoo caj~h-anim
s \f\ Chait by 1, Bic Mason and “vranica Pola, W Teecom, Inc,

Figure 2.4.1: The H-Anim hierarchy of joints. Taken from [13].

24

Chapter 3

Design Issues

Design and programming are human activities;
forget that and all is lost.

— B. Stroustrup, 1991

In this chapter we investigate the three key features that led to the design of the
avatar animator that is the topic of this thesis. We discuss why these features are
important and provide possible ways to implement them.

The first feature we investigate is pluggable avatars. By pluggable avatars we
mean that the user should be able to provide his own custom avatar and that
the system must not be constrained to animate only a set number of proprietary

avatars.

The second feature investigated is pluggable input notation. Similar to the first
feature, this refers to the ability of the user to describe the gestures to be ani-
mated in a notation of his choosing. We want the input notation to be as flexible
as possible and users should be able to introduce a new input notation into the

system with as little modification to the system as possible.

The final feature we discuss is generic animation. This is the most important

feature of the system and the aim is to animate an abstract representation of an

25

CHAPTER 3. DESIGN ISSUES 26

avatar in such a way that it is completely independent from both the notation

used to instruct it, and the avatar that is animated.

At the end of this chapter we also investigate various development environ-
ments to find the one most suitable for the implementation of our animation
system. Specifically, we discuss the advantages and disadvantages of various

programming languages and 3D graphics libraries.

3.1 Pluggable Avatars

In chapter 2 we investigated the methods that other animation systems used to
implement pluggable avatars. In both the ViSiCAST and the SYNENNOESE sys-
tems the H-Anim standard was used as a reasonable constraint on the choice of
avatar. The animator could animate any avatar as long as it was compliant with
the node hierarchy set by the H-Anim standard. As we explained in section 2.4
on page 20, the H-Anim standard provides an abstract way to describe any hu-
manoid. By describing a humanoid as a collection of segments and joints, the
size and appearance of the avatar becomes irrelevant. In the sections that fol-
low we investigate two ways that the H-Anim standard can be used to provide
pluggable avatar functionality.

3.1.1 The EAI Approach

H-Anim compliant avatars are usually built using VRML [33] (Virtual Reality
Modelling Language) or the XML encoding of VRML called X3D [33]. VRML
models are typically displayed by embedding them in normal HTML web pages.
To correctly view these web pages, they need to be opened using a VRML com-
pliant web browser. VRML compliant web browsers are readily available and

most can be downloaded for free!.

Because the animation capabilities of VRML is too simplistic for the complex

IBlaxxun Interactive is one good example and can be downloaded from http://www.
blaxxun.com .

http://www.blaxxun.com
http://www.blaxxun.com

CHAPTER 3. DESIGN ISSUES 27

animations needed in signing avatar systems, developers typically use the Ex-
ternal Authoring Interface (EAI) [18] to animate VRML avatars. The EAI enables
developers to use VRML script nodes to communicate with the VRML model us-
ing other programming languages like Java or C++. This allows the developer to
build the avatar animator using a language that is more suited to the task or that
is easier to program. The avatar is animated through script nodes that reference

the external avatar animator. This process is illustrated in figure 3.1.1.

q—ITML web page A

Embedded VRML avatar A

References external animator

Avatar Animator 3| VRML script
node

Figure 3.1.1: The VRML EAI interface.

One disadvantage of using the EAl is that the entry point into the signing avatar
system is now the avatar itself. The user accesses the system by typing the
URL of the VRML embedded web page into his VRML compliant browser. This
means that all interfacing must be done through the VRML model itself. The
controls that allow the user to choose gestures and perhaps avatar appearance
will need to be implemented as VRML interactions and embedded into the avatar
itself. A workaround for this disadvantage was proposed by the designers of the
SYNENNOESE project [3]. Interfacing with the system can be done by design-

ing the system in such a way that it dynamically configures the avatar and its

CHAPTER 3. DESIGN ISSUES 28

animations beforehand, based on previous user input. Before the avatar is ren-
dered, the user first chooses which gestures should be signed and also possibly
the avatar appearance. After this data is submitted to the animator, the avatar is
configured and the user is redirected to the correctly configured avatar.

Another disadvantage of the EAI approach was pointed out by Yang, Petrui and
Whalen [38]. They showed that the animation frame rate suffers from the over-
head caused by the EAIL They proposed another method that does not use the
EAI and showed that a much higher frame rate can be accomplished by not us-
ing the EAI In the section that follows we will investigate this method.

The solution presented in this section does not allow for completely pluggable
avatars, since the VRML avatar has to be embedded with the correct script nodes
in order to correctly reference the external avatar animator. A user will not be
able to use his own custom built avatar before the necessary modifications have
been made to it. The only way to make this solution truly pluggable is to add
an extra step to the software that would automatically embed the user provided
avatar with the necessary nodes beforehand.

3.1.2 The VRML File Loader Approach

Another way of displaying VRML models is to convert them to some other suit-
able format and delegate the rendering of the model to the most convenient
rendering mechanism for that format. This conversion is typically done using
VRML file loaders. Suitable formats to convert to are formats that share the
VRML hierarchical scene graph structure. By converting to such a format the
hierarchical structure of the model is kept in the original configuration. This is
important when working with H-Anim humanoids since the structure of the H-
Anim skeleton as an hierarchy of VRML nodes is critical to the correct animation

of the avatar.

One format that is convenient for the reasons given above is the Java3D [28]
scene graph format. Java3D is a 3D graphics library for the Java programming
language. It is based on an hierarchical scene graph structure that is similar to
the scene graph structure used in VRML. When a VRML model is converted into

CHAPTER 3. DESIGN ISSUES 29

a Java3D model, the structure of the scene graph is kept intact. The relationship
that the VRML nodes have with each other in the VRML scene graph is not
changed and the same relationship can be found in the corresponding Java3D
scene graph.

The main advantage of converting to a Java3D scene graph is that, once the scene
graph is converted, all the advanced functionality of the Java3D library is avail-
able to the developer. Also, the rendering of the animated avatar can now be
done without the need for a VRML browser and the EAl is not needed. Since the
EAI is not needed, the avatar does not need to be embedded with extra script
nodes. This means that any avatar can be loaded and animated without the
need for any further modifications. Therefore, pluggable avatars are possible

without the need for any extra programming.

The disadvantage of using a VRML file loader is the computational overhead of
the loading process. The conversion between formats is a computationally ex-
pensive operation, since the entire scene graph needs to be traversed and rebuilt
in a node-by-node fashion. An H-Anim compliant VRML avatar that is suffi-
ciently articulated for accurate animation of sign language typically consists of
hundreds of nodes. The conversion of such an avatar from one format to an-
other can significantly increase the time that it takes the animator to load a new
avatar. This also severely increases the memory footprint of the animation sys-
tem. Notice, however, that the overhead only affects the initial loading time of a

new avatar and that the animation frame rate is not affected.

In conclusion, we discussed two possible approaches for using the H-Anim stan-
dard to provide pluggable avatar functionality for our signing avatar animator.
The VRML file loader is easier to implement and offers a cleaner and more el-
egant design at the cost of an increased loading time. As we mentioned, the
overhead caused by the file loader only affects the initial loading time and the
frame rate of the animations is not affected. The EAI solution does not suffer
from computationally expensive format conversions, but does suffer from the
overhead caused by the EAI. This overhead does not affect loading times sig-
nificantly but it does slow down the frame rate of the animations. It is for this

reason, and also for the sake of a neater design, that we opted to use a VRML file

CHAPTER 3. DESIGN ISSUES 30

loader in the implementation of our avatar animator. Details on how this was

implemented can be found in chapter 4.

3.2 Pluggable Input Notation

Several notations for the representation of sign language have been suggested.
We investigated a few of these in section 2.3 on page 11. Sign language linguists
are still debating on which of these notations is the best for use as an input nota-
tion to a signing avatar animator. For this reason it would be a useful feature in

an avatar animation system if the choice of input notation were pluggable.

In this study we propose the following method to implement pluggable input
notations. Instead of having the animator directly parsing the input notation,
we use an interface notation. The interface notation resides between the input
notation and the animator. It is designed to be easy to parse by the animator
and does not need to be user readable. Our notation is primarily a list of joints
and their corresponding movements. It also includes temporal information that
consists of rotation speed and start times for the various joint movements. The
start times are synchronised by specifying them relative to a global clock.

The input notation is parsed by a separate module. This module generates in-
structions for the animator in the form of the interface notation. It is the respon-
sibility of the parser module to translate the input notation into the simplified
instructions of the interface notation. In this way pluggable input notations are
achieved by introducing new input notation parsers into the system. The ani-
mator is designed to work using input from the interface notation and can thus
animate using instructions from any input notation that can be parsed into the
interface notation. The process is illustrated diagrammatically in figure 3.2.1 on
page 31.

The interface notation should not be limited by the input notation but should
be designed with the animator in mind to ensure that all animations producible
by the animator can be represented in the interface notation. The purpose of
the interface notation is to separate the animator from the input notations in

CHAPTER 3. DESIGN ISSUES 31

(s

Input notation
parser

Y
D

Input notation |
parser
-

Input notation |
parser

-

Interface
notation/Data
structure

Animator

Multiple input notations

Figure 3.2.1: A diagram of the proposed method to implement pluggable notations.

order to remove all coupling between the animation algorithm and any specific
input notation. Notice that since the interface notation is never authored by a
human, it can be implemented as an internal data structure and does not need
to be parsed in file form. The parsing process is significantly faster if it does not

require any disc access, and is done completely in memory.

The critical component in the implementation of pluggable notations, is the de-
sign of the interface notation itself. Whether the notation is implemented as a
data structure in memory or as a notation that is written to a file, it must be
able to represent any possible animation. The temporal aspects of the animation
must also be accurately recorded. All this must be done in as compact a way as
possible to minimise the computational overhead. In sections 4.2 and 4.3 we will

discuss the implementation that was used in our avatar animator.

3.3 Generic Animator

In the previous two sections we showed how to make our animation system
more generic by adding pluggable functionality. In this section we investigate
the characteristics that the animator needs in order to function in such a plug-

gable environment.

CHAPTER 3. DESIGN ISSUES 32

The animator has two input sources. It receives input from the interface nota-
tion that is converted into animations, and it receives input in the form of an
avatar model that is to be animated. The primary responsibility of the animator
is to build animations on the avatar using the instructions that come from the
interface notation.

Even though the avatar model is pluggable, the animator assumes that all avatar
models follow a known standard. The standard that we opted to use in our
implementation is the H-Anim standard. If the animator can assume that all
avatars are H-Anim compliant then it knows that certain joints are always present
and can always be referenced using predetermined names that are set by the
standard. For example, if the instructions from the interface notation indicates
that the left shoulder should be rotated, the animator knows that this can be
done by rotating the joint that is referenced by the name “1_shoulder” in the

avatar 2.

It is important to realise that the H-Anim standard defines multiple levels of
articulation and that some joints do not need to be defined if the level of ar-
ticulation is low. For example, figure 2.4.1 on page 24 defines all the joints in
a humanoid that has the highest level of articulation. A humanoid that has a
lower level of articulation would normally only have a few of the joints of the
spinal column defined, and none of the joints of the fingers. This is the level
of articulation that is typically found in 3D Internet chat rooms. However, this
level of articulation is too low for all but the most basic sign language gestures.
Typically, signing avatars have a high level of articulation close to the maximum
that H-Anim provides.

The animator needs to check whether the user-selected avatar is of high enough
articulation for the desired animations. If the desired animations require joints
that are not defined in the user selected avatar, the user is notified with a warn-
ing that indicates the specific joint that needs to be defined. Therefore, the ani-
mator can only animate avatars that are sufficiently articulated and are H-Anim

compliant.

If we follow the approach recommended by Yang, Petrui and Whalen (see sec-

2See figure 2.4.1 on page 24 for a list of H-Anim reference names.

CHAPTER 3. DESIGN ISSUES 33

tion 3.1.2) and use VRML file loaders, it is important that the joint references
from the original VRML model are kept intact. Not only must the joint hierarchy
be kept intact, but the reference names that were set by the H-Anim standard still
have to refer to the same joints that were referred to in the original VRML model.
Most VRML loaders only focus on the geometry and the relationship between
nodes of the model and do not implicitly keep name references intact. Many
loaders, for example the Xj3D [34] loader, store the named references separately
and do not load them by default. In this case a hash table can be constructed us-
ing the information provided by the loader. The hash table maps joint names to
the corresponding nodes created by the loader. In this way the standard H-Anim
joint names can be used to refer to the applicable nodes created by the loader.
The way that VRML loaders are used to create workable models is discussed in

more detail in sections 4.2 and 4.3.

Once the model has been constructed, the instructions from the interface nota-
tion can be used to generate animations. Each joint in the avatar can be moved
at its own speed independent from the speed of other joints. This means that
each joint has its own animation clock that determines start and end times for
the animations of that joint. A global animation clock is also created to control
the global animation speed and also to synchronise the separate animations of
each joint. Synchronisation is done to ensure that the start and end times of con-
secutive animations flow smoothly from one animation to the next. Once all the
animations have been synchronised to the global animation clock they can be
applied to the avatar and rendered onto the screen.

3.4 Development Environment

When designing avatar animation systems, the choice of development environ-
ment is driven by the language in which the avatar is modelled. In our case
this is VRML. In section 3.1 we mentioned two ways that VRML models can be

incorporated into an animation system.

If the EAI approach is used to animate the VRML avatar, 3D animation libraries
are not needed since all the animation is done by the VRML engine. The VRML

CHAPTER 3. DESIGN ISSUES 34

nodes are controlled directly through external scripts (see figure 3.1.1 on page 27).
The only factor remaining in the development environment is the choice of pro-
gramming language. This depends on the languages that the EAl enabled VRML
browser supports as script languages. Most EAI enabled VRML browsers pro-

vide Java EAl libraries and only support Java or JavaScript as script language.

The developer has more flexibility when the VRML file loader approach is used.
As we mentioned in section 3.1.2, the VRML model gets converted to another 3D
modelling format. The choice of this format is the primary factor in the choice of

programming language for the animator.

The format in question is usually an entire 3D graphics library. Two of the most
popular 3D graphics libraries today are OpenGL [19] and DirectX [31]. Both of
these have been tested and proven in industry and are good choices for devel-
oping an avatar animator. Both libraries have C++ bindings and C++ is the most
popular choice when working with these libraries. OpenGL can also be used in
Java by using wrapper classes, but suffers from a slight decrease in performance
due to the overhead caused by the wrapper classes. The disadvantage of con-
verting our VRML model to an OpenGl or DirectX model is that neither OpenGl
nor DirectX defines models using the scene graph structure seen in VRML. As
we mentioned before, it is important for the design of the animator that the scene
graph structure is kept intact and that the relationship that joints have with each
other in the VRML model is not lost.

In this situation a better choice of 3D graphics library is Java3D. Java3D is a scene
graph based 3D graphics library for the Java programming language. Since it
is already scene graph based, it is much simpler to transform VRML models
into Java3D models than it is to transform VRML models to OpenGl or DirectX
models. As we will see in chapter 4, we opted not to use an OpenGl/C++ or
DirectX/C++ combination for our development environment but rather chose
to use a Java3D/Java environment. The animator was designed in Java and acts
on a Java3D model that was converted from an H-Anim VRML avatar using a
VRML file loader.

Chapter 4

Design and Implementation

There are two ways of constructing a software
design: one way is to make it so simple that there
are obviously no deficiencies; the other way is to
make it so complicated that there are no obvious
deficiencies.

— C.A.R. Hoare, 1985

In this chapter our implementation of an avatar animator is discussed in detail.
The design issues of chapter 3 were weighed against each other and a design was
constructed. The aim of this chapter is to provide a detailed design for a generic
avatar animation system in such a way that the reader can easily customise the

design and implement his own avatar animation system.

In section 4.1 we give an overview of the design of the animation system, and
discuss the motivations that led to this design. The design is then divided into
three parts that we discuss separately in the three sections that follow. In the last
section we investigate the computational bottlenecks that increase the loading
times and decrease the animation frame rate. We investigate possible ways in

which these bottlenecks can be mitigated or completely bypassed.

35

CHAPTER 4. DESIGN AND IMPLEMENTATION 36

4.1 The Three-level Design

As discussed in chapter 3, an important part of a generic design is the plugga-
bility of the avatar model and input notation. In our design we opted to use the
VRML file loader approach of section 3.1.2 to provide pluggable avatar function-
ality. We used the interface notation approach of section 3.2 to provide pluggable
input notation functionality.

The most logical way to combine these two approaches with a generic animator
is in a modular design. We propose a three-part design that consists of a parser, a
renderer and an animator. The parser module interprets the input notation and
communicates with the animator through an interface notation. The renderer
module serves a dual purpose. Its first responsibility is to provide the animator
with a model that it can animate. This is accomplished by converting a VRML
model into a Java3D model using a VRML file loader. The second responsibility
of the renderer is to set up a 3D canvas on which the animated avatar can be
rendered. The canvas has to be set up so that the user can rotate and translate
the avatar to the most suitable viewpoint for the specific gesture that is signed.
Figure 4.1.1 illustrates the modular design and the interfaces that are used for

communication between the three modules.

Avatar animations

A 4

Parser Animation queue Animator H-Anim Joints Renderer

A ~ ~

User starts the | animation sequence

User provides animation scﬂ'ipfl User Interface 1 User provides H-Anim avatar

Figure 4.1.1: The generic signing avatar animator design.

CHAPTER 4. DESIGN AND IMPLEMENTATION 37

From figure 4.1.1 we notice that the interface between the parser and the anima-
tor is called an animation queue. The animation queue is the data structure that
serves as the interface notation in our implementation. In the next section we
investigate the parser in more detail and we also explain the way in which the

animation queue is used as an interface notation.

4.2 The Parser

As we have already mentioned, it is the responsibility of the parser to interpret
the input notation and generate instructions in the form of the interface notation.

Our parser module is primarily made up of four Java classes, namely:

e NotationParser: This is a Java abstract class' and represents the attributes
and actions that are common to all parser implementations. Any specific

parser implementation has to extend this class to be useful for the animator.

o StepParser: This is an example implementation of the NotationParser
class. Specifically, this is a parser for the SignSTEP notation that we de-
veloped to demonstrate our system.

e AnimationQueue: This class represents the data structure that serves as

interface notation for the animator.

e AnimationAction: This class forms part of the interface notation and rep-

resents the smallest possible part of an animation.

We start our discussion with the animation queue. In essence, the animation
queue is a first-in-first-out (FIFO) linked list of animation actions represented by
the AnimationAction class. The animation queue is a temporal queue since ac-
tions at the front of the queue happen before actions that are at the back. If there
are actions that should execute concurrently, this is accomplished by setting a

special flag in the animation action itself.

In Java, an abstract class is a class that cannot be instantiated but is used as a common source
of inheritance for any classes that extend it.

CHAPTER 4. DESIGN AND IMPLEMENTATION 38

The animation action data structure contains information that describes the ani-
mation itself. This includes the joint name that the animation should act on,
the axis and angle of rotation, the animation speed and various other flags that
indicate special actions. One such important flag indicates that the action is con-
current with respect to the animation actions that precede it.

When multiple lists of sequential animation actions must be executed concur-
rently with respect to each other, nested animation queues are needed. For ex-
ample, consider the situation where we have two lists of sequential actions. The
first list specifies that the left elbow should be rotated followed by a rotation of
the left wrist. The second list specifies the exact same movements but for the
right elbow and wrist. If we want the left side and the right side of the body to
move concurrently, these two lists have to be inserted into the primary animation
queue as two separate queues, nested inside the primary animation queue. This
nested queue structure requires two separate animation actions. Both actions
have the concurrent flag set and both have the complex flag set. The complex
flag indicates to the animator that the animation action contains a nested queue
structure. We illustrate this process in the diagram of figure 4.2.1 on page 39. In
our example the nested queues from the two animation actions would contain

the elbow and wrist rotations for the left and right side of the body respectively.

We developed the SignSTEP notation to demonstrate how an animation queue
can be built from an input script. The SignSTEP notation is based on the STEP
and XSTEP notation for humanoid animation [11]. We customised the XSTEP

notation to meet our needs and called the result SignSTEP.

The XSTEP notation was designed to be a general notation for the animation of
humanoids. It supports high level dynamic logic for the control of humanoids.
For example, XSTEP supports the if-then-else and do-repeat constructs that
are commonly found in traditional programming languages. It is also possible
to embed meta-language statements for high-level interactions into the script?.
For our purposes we did not need this added functionality and wanted to keep
the script as simple as possible. We adapted XSTEP in order to make it easier to

2We refer to the file in which the gestures are specified, as the input script. This is the input
to our system and is transcribed using the input notation.

CHAPTER 4. DESIGN AND IMPLEMENTATION 39

Primary animation queue

Left
elbow

[1]
Left-side
animation action

Concurrent
action

Nested animation queues

F

Right
elbow

12]
Right-side
animation action

Figure 4.2.1: An example of nested queues.

parse by removing some of the high-level functionality. However, we also had
to add some extra joint definitions in order to support the fine motor movement
that our system requires. After the adaptations have been made, the result is
a streamlined version of XSTEP that supports fine motor movements such as

individual finger rotations.

The four most important elements of the SignSTEP notation are the seq, par,
turn and trans elements. The seq and par elements are grouping elements that
specify whether the action elements that are nested inside them, should be ex-
ecuted concurrently or sequentially. Elements nested inside a seq element are
executed sequentially and elements that are nested inside a par element are
executed concurrently. The two action elements are the turn and trans ele-
ments. The turn element represents a joint rotation and must contain speed
and rotation elements that specify the speed, axis of rotation and angle for the
rotation action. The trans element is similar and specifies a joint translation. It

CHAPTER 4. DESIGN AND IMPLEMENTATION 40

must contain speed and dir elements that specify the speed, direction and dis-
tance of translation. The interested reader can refer to Appendix A, that contains
the full SignSTEP DTD (Document Type Definition), for more detail.

SignSTEP is an XML notation and is therefore easily parsed using readily avail-
able XML libraries [32]. The Java Standard Developers Kit? (Java SDK) contains

built in libraries for the creation and parsing of XML documents.

The parsing process is made up of two steps. First, the data from the SignSTEP
input script is converted into a tree structure using standard Java XML parsers.
This tree structure is then recursively traversed and converted into an animation
queue with the corresponding animation actions correctly inserted. A diagram

depicting this process can be seen in figure 4.2.2.

Original Script XML Tree Animation Queue
<sgstep> N
<librarys> Action
<action>
<par>
<turn part="1 shoulder"> . .
<speed value="fast"> An;mt:ftlon
<rotation axis="x" angle="-1.57"> Par ction
</turn> XML Parser > After tree traversal Turn[1]
<turn part="r_shoulder"> ’
<gpeed value="fast">» . i
<rotation axis="x" angle="-1.57"> Anlm:ftlon
</turn> _?ctlo[;]
</par> urn
<faction> Turn[1] Turn[2]

</library>
</sgstep>

Figure 4.2.2: The parsing process.

In the SignSTEP example script of figure 4.2.2, only two rotations are specified.
They are represented as turn elements in the script and appear as turn nodes in
the XML tree. Notice that both furn elements are nested inside a par element. The
par element indicates that the actions nested inside it must execute concurrently.
This is also indicated in the XML tree as a par node that acts as the parent node
of the turn nodes. If the actions were sequential instead of concurrent, the par
node and par element would be replaced by a seq node and a seq element. The
parser generates an animation action for each of the turn elements and inserts

them into an animation queue to be sent to the animator. Notice that the parser

3The Java SDK can be downloaded from http://www.java.sun.com .

http://www.java.sun.com

CHAPTER 4. DESIGN AND IMPLEMENTATION 41

has to query the parent node of the turn element when generating animation
actions. The parent node indicates whether the animation action is concurrent

or sequential and hence also indicates whether nested queues are needed.

4.3 The Animator

As we have seen in figure 4.1.1 on page 36, the animator module receives two
input streams. It receives input from the parser in the form of an animation
queue and it receives input from the renderer in the form of a Java3D model and
a hash table of joint references. In turn, the animator has to use this input and
generate an animated avatar model that is sent to the renderer for rendering to
the screen.

The animator module consists of two Java classes:

e AnimationBuilder: This is the central part of the animator module and
contains the main algorithm that loops through the animation queue and

applies the animation actions to the avatar model.

e AnimationTracker: This class is responsible for synchronisation. It tracks
and records joint movements throughout the animation sequence. It main-
tains the position of all joints at all times and is also responsible for ensur-
ing that no joint is ever rotated or translated past its minimum or maxi-
mum range.

The animation process starts in the AnimationBuilder class. The animator is
initialised by setting the global animation clock to zero and creating a new ani-
mation tracker. The animation tracker is initialised by setting all joints to their
default positions and by initialising the lookup table that stores the minimum
and maximum rotations for all joints.

The primary animation loop starts by iterating over all the animation actions
in the animation queue that originated from the parser. Each action is first
checked to establish whether it is concurrent or sequential and whether it con-

tains nested queues. If the action contains a nested queue, the global animation

CHAPTER 4. DESIGN AND IMPLEMENTATION 42

clock is frozen and a temporary local clock is created for the nested queue. Once
the actions of the nested queue finish, the global clock is resumed and iteration
through the primary animation queue can continue. Based on the current value
of the global clock and depending on whether the animation action is concur-
rent or sequential, the start time for the animation action is calculated. The end
time is then calculated based on the start time and the animation speed that was

specified in the current animation action.

Once the start and end times have been set, the motion interpolators can be
constructed. We used the PositionInterpolator, RotationInterpolator and
Alpha Java3D classes to construct interpolators (see [27] for details). The inter-
polators are constructed in such a way that the animations are as smooth as
possible and that the transition from one animation to the next do not appear

unsteady.

The next step is to update the joint position in the animation tracker and to check
whether the new position is within the tolerated limits. This is done by first cal-
culating the expected position of the joint after the projected animation, based
on the current position stored in the animation tracker. This value is then com-
pared to the global minima and maxima for that joint. If the projected value falls
outside the tolerated limits, the user is informed and the minimum or maximum

value for that joint is used instead.

Before we can explain how the animation is applied to the avatar model, we
must first discuss scene graphs. Previously, we mentioned that Java3D uses a
scene graph to represent 3D models. Animation of a 3D model is accomplished
by adding certain nodes to the scene graph of the model. A scene graph is a

directed acyclic graph (DAG) that represents a 3D scene [27].

For the purposes of our explanation, a scene graph can contain any one of three
different kinds of nodes, namely, group nodes, geometry nodes or behavioural
nodes. Geometry nodes represent the geometry of the model, or more frequently
parts of the model, while group nodes assemble geometry nodes, that logically
fit together, into groups. For example, all the geometry from the fingers of the left
hand can be assembled together in a group node called the left hand. Figure 4.3.1
on page 43 shows an example of a scene graph in Java3D. The H-Anim nodes are

CHAPTER 4. DESIGN AND IMPLEMENTATION 43

examples of geometry nodes while the transform nodes are group nodes. The
animation nodes are examples of behavioural nodes.

|
hanim_41

e |
e A Trans%om:lNodes._,___7___\
~ - -~ .
. ;o -
'/ | Rotminnlntemo\atur. ‘ Transfol
/|
. . _ I
Animation Node
<
N T AnimNod
~Anim Nodes
[Transfor
/ \ // \\\\ / \
- [Brancheig / BranchGi" " *
| /j _ \\\\II
sem e hanim,_r_e*=*

Figure 4.3.1: An example of a partial Java3D scene graph.

Behavioural nodes are needed when the model is animated. Since a scene graph
is a directed graph, changing a node affects all its children nodes but does not
affect the rest of the graph. If we refer back to our left hand example, adding an
animation that moves the left hand group would also move the fingers of the left
hand. This seems logical, but the automatic animation of the fingers would fail
were it not for the relationship that the geometry nodes have with each other in
the scene graph. If the fingers of the left hand were not children nodes of the left
hand group, animating the left hand would leave the fingers stationary.

Depending on the VRML file loader used in the renderer module, the animator
adds either two or four nodes to the scene graph for every animation action in
the animation queue. In VRML each group node has a centre of rotation that
specifies around which point in 3D space a joint should rotate. Some VRML
file loaders create Java3D scene graphs that are optimised to keep the memory
footprint as small as possible. One of the side effects of this optimisation is that
the original centre of rotation from the VRML model is lost. This implies that
the animator first has to translate the joint to its centre of rotation before the

CHAPTER 4. DESIGN AND IMPLEMENTATION 44

animation can be correctly applied. After the animation is applied, the animator
then has to transform the joint back to its original position relative to the rest of

the model. We show an example of this process in figure 4.3.2.

[BranchGroup

First translation

\ Transfo Joint rotation

| Flutatiunlnterpnlatur.

Second translation

| hanim_r_shoulder |

Figure 4.3.2: The animation action is added to the scene graph.

In the example of figure 4.3.2 we add a rotation to the right shoulder joint using
a VRML loader that does not keep the original VRML centre of rotations intact.
We see that three transform groups are added as parents of the joint we are ani-
mating. The first and second transform groups translate the centre of rotation
as explained in the previous paragraph, while the group referred to as the joint
rotation is the actual animation as specified in the animation action. The fourth
node thatis added is the rotation interpolator that acts on the joint rotation group
to create a moving animation. This node can be added either as a parent or a sib-
ling of the joint rotation group on which it acts. If the VRML file loader indicated
to the animator that it does in fact keep the original centre of rotation intact, only

the rotation interpolator and the joint rotation nodes are needed.

At this point the main animation loop has finished one iteration. The primary
animation clock is then updated and the animator moves on to the next anima-
tion action in the animation queue. For each animation action the animator goes

through the three stages explained in the previous paragraphs, namely:

CHAPTER 4. DESIGN AND IMPLEMENTATION 45

1. The start time and end time are calculated and an interpolator is con-

structed.

2. The validity of the rotation or translation is checked using the animation
tracker.

3. The scene graph is edited by adding animation nodes as parents of the joint
to be animated.

Once all the animation actions in the animation queue have been processed, the

animated avatar model is sent to the renderer module for rendering to the screen.

4.4 The Renderer

The renderer module has a two-fold responsibility. Firstly, it must provide the
animator module with a Java3D model of the avatar. This is done by converting
a VRML model using a VRML file loader. Secondly, it must create a platform
independent 3D canvas for the rendering of the animated avatar.

The renderer module consists of two Java classes, namely:

e AvatarLoader: This is a Java abstract class and represents the functionality
that all renderer implementations should provide to the animator module.
All renderer implementations must implement this class in order to inte-

grate with the animator module.

e VRMLLoader: This is an implementation of the AvatarLoader class that
loads H-Anim compliant VRML models.

Our implementation is divided into two steps. The first step is to create a 3D
canvas and initialise it with an empty scene. Since this is a simple scene, we can
use the Java3D helper class SimpleUniverse [27] to create a scene. In order to
give the user the ability to rotate and move the avatar in 3D space, we add some

navigational behaviours to the scene.

CHAPTER 4. DESIGN AND IMPLEMENTATION 46

Three navigational behaviours were added to allow the user to move the avatar
using the mouse. Java3D provides three classes that add basic mouse behaviour
to a scene, namely: MouseRotate, MouseTranslate and MouseZoon [27]. The com-
bination of rotation, translation and zoom functionality allows the user to view

the avatar from every angle and at any distance.

Now that we have created a 3D scene, we have to load an avatar model. We
do this using the Xj3D VRML loader package [34]. Xj3D is a library that pro-
vides loaders for both VRML and the newer XML version of VRML called X3D.
The Xj3D project is, however, still under development and the version that we
used (version M10) still has some outstanding issues and lacks some important
functionality. For example, the loader only supports raw files and cannot load
compressed models. VRML models can be rather large and it is common prac-
tice to distribute them in a compressed form. The reader may refer to chapter 5.2
for more detail on Xj3D (version M10) and the recently released Xj3D (version
1.0).

Another important feature that the current version lacks, is the ability to cus-
tomise the construction of the Java3D model. With the default configuration, the
Java3D model is constructed in such a way that the H-Anim joint name refer-
ences are lost. Also, the model is automatically optimised in such a way that the

joint centre of rotations are lost.

In order to compensate for the loss of H-Anim references, we construct a hash
map of all the nodes in the model and use the H-Anim joint names as keys to
the applicable nodes in the map. The getNamedObjects method from the Java3D
Scene class is used to create this map. The hash map is then sent with the model
to the animator module to be used as reference. We use a hash map in order
to minimise the lookup time of the nodes during the animation phase. Increas-
ing the lookup time during the animation phase would decrease our frame rate

during animation and would cause a loss in performance.

Compensating for the loss of the joint centre of rotations is a more difficult prob-
lem. Once again, we construct a hash map that is sent with our avatar model
from the renderer to the animator. Similar to our previous hash map, we also

use the joint names as keys, but now they refer to 3D coordinates instead of

CHAPTER 4. DESIGN AND IMPLEMENTATION 47

nodes in our model. We fill this hash map by iterating over all the nodes in the
original model and extracting the center field from each of them. The center
tield contains the centre of rotation from the original VRML model. A vector
of coordinates is then constructed from this information and is inserted into the

hash map.

Before the model is ready for animation, we have to address one last issue. When
the Xj3D loader constructs the Java3D model, it optimises the scene graph by us-
ing Link nodes. Link nodes minimise the amount of memory used by the scene
graph by re-using parts of the scene graph that are identical [27]. Link nodes
are always leaf nodes in a scene graph but refer to a special kind of group node
called a SharedGroup node. The SharedGroup node has no parent node but can
have child nodes. In other words, a SharedGroup node can never be added as a
child node anywhere in the scene graph but can act as a parent node for other
nodes. The only way a SharedGroup node can affect the scene graph is through
the Link node that references it. By using multiple Link nodes to refer to the
same SharedGroup, the section of the scene graph that has the SharedGroup as
parent, is re-used instead of duplicated. However, since the SharedGroup node
has no parent, it cannot be referenced from the root of the scene graph using tra-
ditional tree traversal algorithms that are based on the child-parent relationship
that all nodes in the scene graph have with each other. Hence, the use of Link
nodes in our scene graph makes traditional tree traversal algorithms impossi-
ble. Therefore, we must traverse the model to remove all Link nodes, before the
model can be animated.

The removal of Link nodes from the scene graph is done as a post-processing
step after the scene graph has been created. Link nodes are removed by travers-
ing the entire scene graph and replacing each Link node with a BranchGroup
node. A BranchGroup node is a type of group node (see section 4.3) and is used
to assemble nodes that logically fit together into one group. For every Link node
that is encountered in the scene graph, we construct a BranchGroup node that
contains the same children nodes as the SharedGroup node that is referred to by
the Link node. The Link node, and the SharedGroup node that it refers to, is then
deleted from the scene graph and replaced with the BranchGroup node that was

created using the children nodes of the SharedGroup node. This is a computa-

CHAPTER 4. DESIGN AND IMPLEMENTATION 48

tionally expensive process and is only performed when memory optimising file
loaders such as Xj3D are used.

Once the canvas has been initialised and the model has been made ready for ani-
mation, the model and the two hash maps are made available to the animator
module. When the animator has finished adding the necessary nodes for anima-
tion, the model becomes ready and the renderer can render the model to the 3D
canvas that was configured for this purpose. The user can then move the avatar
around inside the canvas and display the animations when ready.

4.5 Optimisations

The 20-80 rule of software engineering states that 80% of the runtime will take
place in 20% of the code. This system is no exception to that maxim. We used
the Netbeans profiler* from Sun Microsystems to analyse our program in order
to find the routines that would benefit most from optimisation. The profiler
showed that the majority of time is spent in the routine that uses the Xj3D file
loader to load in the VRML model. Figure 4.5.1 shows a screen shot of the CPU
telemetry window of the profiler. Here we see that 71.1% of the total CPU cycles
are spent in the loadfile method of the renderer module. By total CPU cycles
we refer to the total time that the CPU spends on processing one cycle of our
program, that is the time it takes to load an avatar, load an animation and render
the animated model to the screen.

We also used the profiler to find the data structures that are most responsible for
the large memory footprint that our system uses. The profiler showed that the
X0Object [] object, that forms part of the XPath package, is mostly to blame. The
XPath package is used to query the XML tree that is built from our input script in
the parser module. Figure 4.5.2 on page 49 shows a graph of the heap memory
used by our program as a function of time. We see that at a specific time the
amount of heap memory used suddenly jumps from about 15Mb to about 35Mb.
This point in time corresponds to the point where the parser module starts the

4http://www.netbeans.org

http://www.netbeans.org

CHAPTER 4. DESIGN AND IMPLEMENTATION 49

[Call Tree - Method 1| w Time [%a] J[_Time (B8]
=] al thresds I (i) |~

255 AWT-EventQueue-0 T)
EIE UL Signizenie$] .actionPerformed (java. awt event, ActionEvent)] lFEE) |
5 % UL SignGenie. access$000 (11, SianGenie, java,awt, event, ctionEver NI e e

(5% ULSignGenie.avatarButtonActionPerformed (java.ant event] LL[FEE%)

f—Jﬁ SGERenderer, YRMLLoader, <init > (java.io.File, java:.media. iz L [F13%)

(ﬁ SGRenderer VRMLLoader loadFile (java.io.Filz, boolear) | INGEEGIGTITGTG L)

---E com.sun. j3d. utils,universe, Simplelniverse. <init = (javar | CET)]

self time oo (0.196)

- % SGRenderer YRMLLoader, setupNavigation () L (098]

; SGRenderer. AvatarLoader. <init> () (i

: - %4 com,sun, j3d.utils,universe, YiewingPlatform, getYiewPlat v (098]

-5 com.sun.j3d. utils.universe, SimpleUniverse . getYWiewingPl T (i3]

- 5 com.sun. j3d. utils.universe, SimpleUniverse getWiewer () L (098]

----- Self time B e (B35)

& % com.sun.java.swing. SwingLtiities 2. drawsStringUnderlineCt | L [0.396)

: % com.sun.java.swing, SwingUtilities 242, create¥alue (javax.s. e (0,196
[_] v () com.sun.java,swing, SwinaUtilities2, strinaWidth (izvas,swin s (0] M

£ 1l >

Figure 4.5.1: Telemetry provided by the Netbeans profiler.

XML parser to build the XML tree.

40M

30M
Animation Loaded

W

20M

10M 4

oM

11:15:00 11:20:00 11:25:00

[Heap Size W Used Heap

Figure 4.5.2: The amount of heap memory used as a function of time.

We conclude that our animation system can benefit from two optimisations.
Firstly, the loadfile method of the renderer module must be optimised for
speed. The two primary factors that make this method computationally expen-
sive are the access to secondary memory that has to be made, and the conversion
between formats. Disk access is inherently slow, and therefore we need to rather

CHAPTER 4. DESIGN AND IMPLEMENTATION 50

concentrate on optimising the conversion process between the VRML model and
the Java3D model. This conversion is done using the Xj3D loader followed by
some post-processing that includes removal of the Link nodes (see section 4.4).
At the time when the renderer was implemented, the Xj3D loader was still un-
der development and the newest release at that time was version M10. Since
that time a new version of Xj3D was released (version 1.0). It is not known at
this time whether version 1.0 performs better than version M10 or whether it
offers the possibility of creating a Java3D model without using Link nodes. If
version 1.0 does perform better, modifying our renderer to use version 1.0 rather
than version M10 would significantly improve our overall performance. We ad-
dress this issue further in our section on future work in the next chapter (see

section 5.2).

The second optimisation that will be of benefit is the optimisation of the memory
usage of the XML parser that we use in the parser module. If we can decrease
the memory footprint of our program, less memory will need to be cached to the
hard drive by the operating system. The less memory that needs to be cached
by the operating system, the better the performance of our program will be.
One way to decrease the amount of memory our parser module uses, would
be to switch to a different kind of XML parser. XML parsers come in two vari-
eties, namely, SAX (Simple API for XML) and DOM (Document Object Model)
parsers [10]. Currently, we use a DOM parser, since the tree structure that a
DOM parser builds is a highly intuitive base from which we can construct our
animation queue. However, it is this tree structure that is responsible for our
large memory footprint. A SAX parser is event driven and does not build a tree
structure like a DOM parser does. If we adapt our parser module to use a SAX
parser instead of a DOM parser, we will gain performance due to the decrease in
memory footprint. However, we must not forget that using a SAX parser would
complicate our parser module, since we no longer have a XML tree from which
we can easily build our animation queue. This adaptation would only be sen-
sible if the performance gain due to the use of the SAX parser outweighs the
decrease in performance due to the extra calculations that need to be done.

In summery, we proposed two optimisations that could benefit our signing avatar

animation system. Neither optimisation is guaranteed to improve performance,

CHAPTER 4. DESIGN AND IMPLEMENTATION 51

but will need to be implemented and compared with the unoptimised version
to determine whether the performance was improved. The implementation of

these optimisations is included in the future work of this project.

Chapter 5

Results

One does not discover new lands without
consenting to lose sight of the shore for a very
long time.

— André Gide

In chapter 2 we explained the concept of a signing avatar animator and the func-
tionalities that it should include. In this chapter we summarise these capabilities
and investigate to what extent our avatar animator satisfies these requirements.
We also highlight the unique features of our design and the areas where func-
tionality is still insufficient. At the end of the chapter we discuss the future work
relating to this project.

5.1 Issues Relating to Functionality

In this section we discuss the most important issues that relate to the functional-
ity of our animation system. We discuss these issues from both the perspective of
the end user of our system and from the perspective of the designer that aims to
adapt our system to function in other sign language projects. More specifically,

we concentrate on the following issues:

52

CHAPTER 5. RESULTS 53

e possible discrepancies between real and generated gestures;

e generic animation in situations where multiple avatars with varying rela-
tive dimensions are used,;

the choice of input notation;

restrictions on various joint rotations; and

multiple rotations on a single joint that are not commutative.

5.1.1 Discrepancies between Real and Generated Gestures

The primary objective of a signing avatar animator is to generate recognisable
animated sign language gestures given an appropriately articulated avatar model
and a sufficiently descriptive gesture input script. For a gesture to be recognis-
able, the discrepancies between the generated gesture and the gesture as signed
by a real person, have to be kept to a minimum. Discrepancies can be classi-
fied into two categories. In the first category we have discrepancies that might
make the gesture unrecognisable but will not change the meaning of the gesture.
These discrepancies are also found between different signers and only make the
gesture unrecognisable in severe cases. In the second category we find the dis-
crepancies that can change the meaning of the gesture. These discrepancies are
the most important to avoid. The most common situation where this kind of
discrepancy occurs, is in gestures where the non-manual components of the sign
are important. It is often the case that the only difference between two signs is
the non-manual component. Non-manual gestures are linguistically meaningful
and are often used to indicate that a phrase is a question or to stress an idea [4].
For example, the only difference between the SASL sign for weight and maybe,
is in the non-manual component of the sign (see figure 5.1.1 on page 54). The
position and motion of the hands and arms are exactly the same for both weight
and maybe. However, in the sign for maybe, the head is tilted to the side, the facial
expression changes and the shoulders are raised upward. This example demon-
strates the importance of non-manual gestures and indicates that a system that

CHAPTER 5. RESULTS 54

supports only limited non-manual gestures would not be useful in situations
such as these.

4 r

weight maybe

Figure 5.1.1: The difference between weight and maybe.

In figure 5.1.2 on page 55 we give an example of the ASL gesture “Thank you”.
The top section of the figure shows the gesture, as signed by a person fluent in
ASL, captured at two separate time steps. The bottom section of the figure shows
the same gesture, as generated by our animator, captured at approximately the
same time steps. We use this example to point out common discrepancies that
is found between our generated gestures and the actual gesture signed by a real
person.

As expected, we notice several discrepancies of the first category. At certain time
steps, the exact position of the hand, as well as the direction that the fingers are
pointing in, differ to some extent. This is mostly due to insufficient accuracy in
the input script, rather than a lack of accuracy in the animation process. Discrep-
ancies of this nature can easily be solved by fine-tuning the input script in the
areas where there are differences.

A more serious discrepancy is found in the facial expressions that accompany the
manual gesture. When signed by a real person, the signer adds subtle yet impor-
tant facial expressions to the manual gesture — for example, the smile at the end
of the gesture. The generated gesture does not include any facial expression. As

we mentioned, facial expression is an important linguistically meaningful com-

CHAPTER 5. RESULTS 55

Figure 5.1.2: A comparison of the “Thank you” gesture. Taken from [37].

ponent of sign language, but in our example the lack of facial expression does not
change the meaning the sign. However, it might make the sign unrecognisable
especially when used as part of a larger phrase. Sign language without facial ex-
pression is at best equivalent to a speaker speaking in a monotone unchanging
voice and at worst ambiguous and unrecognisable [4].

Currently, our animator only supports simple non-manual gestures such a head
tilts and shoulder movements. The lack of support for facial expression limits
our animator to only a few gestures in which the facial expression plays no role
in the meaning of the gesture. We discuss support for facial expression further

in section 5.2.

CHAPTER 5. RESULTS 56

5.1.2 Generic Animation in Varying Situations

In section 3.1 on page 26 we discussed our aim to add pluggable avatar func-
tionality to our design. Part of our goal was that the system should generate the
same animations on any compliant avatar given the same input script. However,
we only succeeded in this goal when the avatar that was used, followed the nor-
mal humanoid dimensions. This problem becomes especially apparent when
cartoon and realistic avatars are used interchangeably. We give an example of
such a situation in figure 5.1.3. The avatar on the left [7] is modelled following
normal humanoid dimensions and is considered realistic in that sense, while the
avatar on the right is modelled using cartoon dimensions and has exaggerated
hand and head size. We transcribed a SignSTEP input script for the SASL sign
“home” and applied the same script to both the cartoon avatar and the realistic
one. The script was designed with the cartoon avatar in mind and should show
straight hands with the fingers just touching at the centre of the body. From the
tigure we notice that this is indeed the case for the cartoon avatar but that the
fingers of the humanoid avatar do not touch as they do for the cartoon avatar.
This is due to the exaggerated finger length of the cartoon avatar. The elbow
rotation that causes the fingers to touch in the cartoon avatar is not enough to
make the fingers of the realistic avatar touch. The input script therefore has to
be fine tuned in the event where the user uses multiple avatars with varying

relative dimensions.

Notice that this problem can always be resolved by fine tuning the input script
when non-standard dimensions are used. The problem is not due to lack of
ability to animate generically, but is rather a lack of ability to dynamically fine-
tune the input script, depending on the avatar used. If the parser had prior
knowledge of the avatar model, this type of dynamic altering of the input script
would be possible. However, this would make the parser dependent on the

renderer and compromise the pluggability of the parser module.

CHAPTER 5. RESULTS 57

Figure 5.1.3: The SASL sign for “home” using two different avatars.

5.1.3 The Input Notation Design

The input notation that we developed to demonstrate our animation system
(SignSTEP) forces the author of the script to have knowledge of the coordinate
system that our animator uses. The author has to specify each joint rotation in
the gesture as a combination of rotations about the x, ¥ and z axes. In most cases
this is a non-trivial operation and usually requires that the author goes through
several test-and-fine-tune iterations. Ideally we would like to have a notation in
which the user can specify basic actions that make up gestures instead of specify-
ing joint rotations. This would allow the author to transcribe gestures efficiently
without prior knowledge of the coordinate system. In section 5.2 we discuss a
sign editor tool that is currently being developed in the SASL-MT project, that

will allow the author to specify joint rotations in a more user friendly manner.

CHAPTER 5. RESULTS 58

5.1.4 Disadvantages of Euler Angles

Regardless of the input notation used, the animator is based on the use of Euler
angles [8] for the specification of joint rotations. Euler angles are the simplest
way to specify a rotation and only requires an axis (x, y or z) and an angle to
be specified. It is also the easiest notation to visualise conceptually and would
therefore be a sensible choice for the notation used in the interface.

However, there are disadvantages to specifying rotations using Euler angles.
There are two main issues that one should be aware of when specifying angles
using Euler notation. Firstly, notice that all rotations are specified using only
three parameters that represent three actions performed sequentially:

(1). a rotation about the x axis,
(2). arotation about the y axis, and

(3). a rotation about the z axis.

It is important to notice that the order in which these operations are performed
is not commutative. The animator was designed to build up any rotation about
an arbitrary axis by dividing the rotation into three separate rotations about the
x, y and z axes. The author of an input script has to be aware of this and has
to carefully specify rotations in the correct order to avoid unexpected results
from the animator. Refer to the example in figure 5.1.4 on page 59. In the first
situation a vector, indicated by a red bar on the x-axis, is first rotated about the
z-axis, and then about the x-axis. It ends in a position indicated by the green
bar on the z-axis. We show that this sequence of rotations is not commutative
by switching around the order in the second situation. This time the vector is
tirst rotated about the x-axis but since the vector is positioned on the x-axis this
has no effect. The second rotation about the z-axis now causes the vector to end
on the y-axis instead of the z-axis as before. The situation that we encountered
the second time, when a vector lying directly on the x-axis was rotated about the

x-axis, illustrates our next issue, called gimbal lock.

Gimbal lock occurs when a vector is rotated such that it lies directly on either the
x, y or z axes [24]. Any further rotations about this axis will then have no effect

CHAPTER 5. RESULTS 59

and one degree of freedom is lost from the rotation transformation. This is what
happened in our example of figure 5.1.4. The rotation about the x-axis had no

effect since the vector was lying directly on the x-axis.

We can solve the problem of gimbal lock by representing rotations using quater-
nions instead of Euler angles. A quaternion is a 4-dimensional complex number
that specifies rotation using three degrees of freedom [5, 16]. Quaternions are
not as intuitive to visualise as Euler angles and is in that sense more difficult to
work with, but they do not suffer from gimbal lock. Also, since a rotation is not
divided into an x, y and z component, the non-commutativity of rotation is not
a problem. The Java3D library supports rotations specified as quaternions and
modification of the animator module to use quaternions instead of Euler angles
would be possible. We initially designed the animator to use the more intuitive
Euler angles for their intuitive simplicity, but a sensible adaptation would be to

modify the animator to optionally use quaternions instead of Euler angles.

FIRST SITUATION SECOND SITUATION
Y Axis Y Axis,
After first rotation After first rotation

- - < s (s)
20 d 4., 90 degrees rotation about the Z axis (first rotation) 90 degrees rotation about the Z axis (second rotation)
agrees rotation

abott the X axis (first rotation)

w .Original and second limb position
% Original limb position X Axis %

X Axis

) 30 degree rotation about the X axis (first rotation)
After second rotation

Z Axis Z Axis

Figure 5.1.4: An example illustrating that rotation is not commutative.

5.1.5 Restrictions on Joint Rotations

The last issue that we discuss concerns the restrictions that the animator places
on the rotation of joints. By restricting joint rotations to certain minimum and
maximum angles, the animator prevents the generation of joint rotations that

would be impossible for a real human signer. When the animator encounters

CHAPTER 5. RESULTS 60

a rotation that it deems impossible, it issues a warning and uses the maximum

allowable angle instead.

An example of an impossible rotation would be the head rotating 360°about
an axis that is perpendicular to the floor. In other words, the avatar would be
turning its head around all the way till it faces forward again. Clearly, the head

should not be able to rotate by more than 90°in each direction.

However, when some joints are rotated to a certain degree, it becomes easier to
describe gestures when the restrictions on that joint are relaxed. In the following
example we show that the elbow joint is an example of such a joint. Suppose
that the elbow starts in a position where it is not rotated at all (see figure 5.1.5).
In this position the arm is straight with the upper and lower arm in line. In this
position the elbow cannot rotate about the axis that is perpendicular to the chest
(see figure 5.1.8 on page 62), but can rotate in both the other axes (see figures 5.1.6
and 5.1.7 on pages 61 and 62).

Now suppose that we rotate the elbow by 90° so that the lower arm is perpen-
dicular to the upper arm. From this position the elbow joint rotates about all
three axes and the restriction of the rotation about the axis perpendicular to the
chest should be relaxed. We illustrate this situation in figure 5.1.9 on page 63.
Where it previously was not possible to rotate about the z-axis, it now becomes
possible. Notice that the z-axis appears to be the same axis as the y-axis in fig-
ure 5.1.7. These axes are not the same but appear this way because the whole

local coordinate system of the joint rotates by 90° when the elbow rotates.

In the current implementation we relax the restrictions as much as possible to
simplify the transcription of gestures. However, this means that seemingly im-
possible rotations can sometimes be generated. The system lacks a way to dy-
namically alter the restrictions on rotations, depending on the current position

of a joint.

CHAPTER 5. RESULTS

Figure 5.1.5: The neutral position.

Figure 5.1.6: Rotation about the x-axis is possible.

61

CHAPTER 5. RESULTS 62

Figure 5.1.7: Rotation about the y-axis is possible.

A
|

Impossil\le rotation!

\

—

Figure 5.1.8: Rotation about the z-axis is not possible.

CHAPTER 5. RESULTS

Figure 5.1.9: Now, rotation about the z-axis is possible.

63

CHAPTER 5. RESULTS 64

5.2 Future Work

In the previous section we highlighted issues that can be improved by future
work. The most important functionality that is still lacking from our animation
system is support for facial expressions. The H-Anim standard that we use as a
standard for all avatars only support severely limited joints for facial animation.
As we can see in figure 2.4.1 on page 24, H-Anim only supports joint positions
for the eyebrow, eyelid, eyeball and jaw. These joints are not sufficient to express
a smile, a frown or the puffing of the cheeks. In order to add facial expression
functionality to our animation system, we have two options. One option would
be to extend the H-Anim standard to include more facial joints. The second
option would be to use a different standard other than H-Anim, for example the
MPEG-4 SNHC standard [22] (see section 2.2.3). We chose to rather concentrate
on the first option as it would cause the least modification to the rest of our

animation system.

Accurate facial animation is a non-trivial extension to the H-Anim standard,
since the extensions have to be generic and function correctly with any facial
model. An example extension would be to add non-uniform rational basis-
splines (NURBS) [8] surfaces to the face of the avatar. Barker [1] has shown that
high quality facial expressions can be created from a face model that is based
on NURBS surfaces. However, he also mentions certain limitations of NURBS
surfaces. For example, certain facial movements like the puffing of the cheeks
are difficult to model using NURBS surfaces based on muscle models. Accurate
models for the tongue and teeth cause similar problems. The addition of the
NURBS surfaces would need to be assimilated into the concept of a joint and
surface, since the H-Anim standard is based on the fact that any avatar can be
described as a standard collection of joints and surfaces. If NURBS surfaces are
added to the avatar model without defining them as a collection of joints that
function similarly to the rest of the standard collection of joints, generic anima-

tion of the face would not be possible.

Another possibility would be to add multiple joints, that only translate instead
of rotate, to the face of the H-Anim joint hierarchy. Every joint is associated with

a surface that represents facial muscles and segments of skin. By translating a

CHAPTER 5. RESULTS 65

collection of these joints, one would be able to animate facial expression. The
accuracy of these animations depends on the number of joints that are available
in the face. If more joints are available, more accurate animations can be created.
However, as more joints are added to the face, the creation of the input script that
describes the facial expression, becomes more complex. Since a human author
has to transcribe the input script, it quickly becomes impractical to add more

joints.

The question of how to extend the H-Anim standard to include facial expressions
while maintaining the generic design of the standard, is one that requires further
research. This question must be answered before this design can be viable, since
a signing avatar requires facial animation in order to accurately communicate
sign language gestures.

A sign editor tool that will allow the user to generate input scripts, without the
need to manually work out the individual joint rotations that make up a gesture,
is currently being developed for the SASL-MT project [21]. The sign editor will
allow the user to create gestures using a GUI interface by directly manipulating
the limbs of the avatar and exporting the result as an input script to the anima-
tion system. This tool will facilitate the creation of sign language gestures, since
the author would not need any prior knowledge of the coordinate system or the
angle notation that the animation system uses. The tool is under development

but we include a screen shot from the current version in figure 5.2.1.

In the previous section we mentioned three other less important improvements
that can be made to the animation system. Firstly, future developers should find
a way to analyse the avatar model in order to determine the relative dimensions
of the humanoid it represents. This information should then be used to fine-
tune the animations specified in the input script in order to prevent the problem
mentioned in section 5.1.2. If this can be accomplished, input scripts would be
truly generic in the sense that they can be applied to any avatar without the
need for manual fine-tuning. The second improvement would be to adapt the
main animation module of our system to use quaternion angles instead of Euler
angles. The more intuitive Euler angle notation could still be used in the input

script, since Euler angles can be converted into quaternion representation us-

CHAPTER 5. RESULTS 66

Twist
i ————
Front Back
i ——
Bend

=W}

Transiate X
L

Translate Y

hanim_|_index0
hanim_vtg
ist

hanim_vt
hanim_1_pi

hanim_1_micidie2
hanim_g i

hanim_|_thumb2

Figure 5.2.1: A screen shot from the sign editor tool.

ing the Java3D library. However, adapting the animator module to rather use
quaternion representation would eliminate the gimbal lock problem and would
therefore generate more robust animations. It would also simplify integration
into other sign language projects, since users that wish to add parser modules
would not have to be concerned with the individual axes of rotation and the
order in which they should be processed. Lastly, if a way can be found to dy-
namically relax restrictions on joint rotations, the system would be made more
robust since users would not be able to accidentally generate impossible anima-

tions.

Chapter 6

Conclusions

In everything one must consider the end.

—J. de la Fortaine (1621-1695)

The aim of this study was the design of a generic avatar animator for use in sign
language projects. Our design is aimed at the SASL-MT project [35] but, due to

its design, can easily be adapted for use in other sign language projects.

The primary difference between our design and most other avatar animator de-
signs, lies in the fact that our design is not specific to any sign language or to
any avatar appearance. The purpose was to design an avatar animator that is
generic enough to animate any reasonable avatar and to accept input in any ges-

ture notation with minimal adaptation.

In order to be as generic as possible, our design was separated into three mod-
ules that can operate independently from each other (see figure 4.1.1 on page 36).
The animator module is central to our design and receives input from both the
other modules, namely the parser and the renderer. Both the parser and renderer
module are pluggable. This means that they can easily be replaced by different
implementations without changing any code in the rest of the system. This is a
useful feature in the event where the system is to be adapted to use a different

input notation or a different avatar standard.

67

CHAPTER 6. CONCLUSIONS 68

In our current system we adopted the H-Anim standard [13] for humanoid ani-
mation as our standard for reasonable avatars. This means that any avatar that

conforms to the H-Anim standard can be animated with our current system.

We designed a simple gesture notation for illustrative purposes based on the
XSTEP notation [11] for humanoid animation, and called it SignSTEP. We used
XML to define SignSTEP and implemented a parser module that uses a readily
available XML parser to parse the input into the queue structure that the anima-
tor module requires.

We demonstrated that the system can produce recognisable gestures on H-Anim
compliant avatars using the SignSTEP notation. Due to the lack of facial expres-
sion support, we cannot animate all gestures and some gestures produce higher
quality animations than others. Many enhancements can be made to improve
the functionality and performance of the system but the primary goal of the

project, namely a working design, was accomplished.

Appendix A

The SignSTEP DTD

<!—
This is the SignSTEP DID
Author: Jaco Fourie
E-mail: jfourie@cs.sun.ac.za
This DID is based on the XSTEP DID that can be found at
http://wasp.cs.vu.nl/step/xstep/translation/step.dtd
Original authors of STEP can be contacted at http://wasp.cs.vu.nl/step/xstep/
—_—>
<!ENTITY % BodyPart "(1l_shoulder|r_shoulder|1l_hip|r_hip|l_elbow|r_elbow
|1_thumbl|1l_thumb2|1l_thumb3|r_thumbl|r_thumb2|r_thumb3
|1_index1|1_index2|1_index3|r_indexl|r_index2|r_index3
|1_middlel|1l_middle2|1l_middle3|r_middlel|r_middle2|r_middle3
|1 _ringl|l_ring2|1l_ring3|r_ringl|r_ring2|r_ring3
|1_pinkyl|1_pinky2|1l_pinky3|r_pinkyl|r_pinky2|r_pinky3
|1_kneel|lr_kneel|l_wrist|r_wrist|l_anklelr_ankle
|humanoidRoot | humanoid|skullbase|sacroiliac
|lower_neck|upper_neck) ">
<!ENTITY % Speed "(fast|slow|intermedialvery_fast|very_slow)">
<!ENTITY % Action "(seq | par | turn | tramns)">
<!ENTITY % TransElementl "((dir), (speed)) ">
<!ENTITY % TransElement2 "((speed), (dir))">
<!ENTITY % TransElement "(%TransElementl; | %TransElement2;)">
<!ENTITY % TurnElementl "((rotation) , (speed)) ">
<!ENTITY % TurnElement2 "((speed),(rotation))">
<!ENTITY % TurnElement "(%TurnElementl; | %TurnElement2;)">

69

APPENDIX A. THE SIGNSTEP DTD

<!ELEMENT signstep (head?, library+)>
<!ELEMENT head (world?,start?)>

<!ELEMENT world EMPTY>
<!ATTLIST world
url CDATA #REQUIRED
>

<!ELEMENT start EMPTY>
<!ATTLIST start
action CDATA #REQUIRED
library CDATA #IMPLIED
>

<!ELEMENT set_tempo EMPTY>
<!ATTLIST set_tempo
value CDATA #REQUIRED
>

<!ELEMENT library (action)* >
<!ATTLIST library
name CDATA #IMPLIED
>

<!ELEMENT action %Action; >
<!ATTLIST action
name CDATA #IMPLIED>

<!ELEMENT turn %TurnElement ;>
<!ATTLIST turn
part %BodyPart; ’1_shoulder’>

<!ELEMENT trans %ITransElement ;>
<!ATTLIST trans
part %BodyPart; ’1_shoulder’>

<!ELEMENT time EMPTY>
<!ATTLIST time
value CDATA #REQUIRED
unit (second|minute|beat) #REQUIRED>

70

APPENDIX A. THE SIGNSTEP DTD

<!ELEMENT speed EMPTY>
<!ATTLIST speed
value %Speed; #REQUIRED>

<!ELEMENT dir EMPTY>
<!ATTLIST dir
axis CDATA #REQUIRED
distance CDATA #REQUIRED>

<!ELEMENT rotation EMPTY>
<!ATTLIST rotation
axis CDATA #REQUIRED
angle CDATA #REQUIRED>

<!ELEMENT par (%Action;)+ >

<!ELEMENT seq (%Action;)+ >

71

Bibliography

[1] Barker, D. (2005). Computer Facial Animation for Sign Language Visualisation. Mas-

ter’s thesis, University of Stellenbosch. http://www.cs.sun.ac.za/~dbarker/.

[2] Dutton, J. A. (2001). Developing Articulated Human Models from Laser Scan
Data for Use as Avatars in Real-Time Networked Environments. Master’s thesis,
U.S. Naval Postgraduate School. http://www.stormingmedia.us/authors/Dutton_
James_A_.html.

[3] Efthimiou, E., Sapountzaki, G., Fortinea, S., and Karpouzis, K. (2004). Developing
an e-Learning Platform for the Greek Sign Language. Lecture Notes in Artificial Intelli-
gence, 3118:1107-1113.

[4] Fant, L. (1994). The American Sign Language Phrase Book. Contemporary Books, Lin-

colnwood, Chicago.

[5] Foley,]., Van Dam, A, Feiner, S., and Hughes, J. (1997). Computer Graphics Principles
and Practice. Addison-Wesley Publishing Company.

[6] Francik, J. and Fabian, P. (2002). Animating Sign Language in the Real Time. In 20th
IASTED International Multi-Conference on Applied Informatics (AI2002), pages 276-281.

[7] H-Anim Examples (2004). http://www.ballreich.net/vrml/h-anim/

h-anim-examples.html.

[8] Hill, E.J. (2001). Computer Graphics Using OpenGL. Prentice Hall, Upper Saddle River,
NJ 07458.

[9] Hodgins, J. K. (1998). Animating Human Motion. Scientific American, 278(3):64—69.

[10] Horstmann, C. (2006). Big Java. John Wiley & Sons.

72

http://www.cs.sun.ac.za/~dbarker/
http://www.stormingmedia.us/authors/Dutton_James_A_.html
http://www.stormingmedia.us/authors/Dutton_James_A_.html
http://www.ballreich.net/vrml/h-anim/h-anim-examples.html
http://www.ballreich.net/vrml/h-anim/h-anim-examples.html

BIBLIOGRAPHY 73

[11] Huang, Z., Aliens, A., and Visser, C. (2005). STEP: A Scripting Language for Em-
bodied Agents. http://wasp.cs.vu.nl/step/step.html.

[12] Huenerfauth, M. P. (2002). A Survey and Critique of American Sign Language
Natural Language Generation and Machine Translation Systems. Technical report,
Computer and Information Sciences University of Pennsylvania. http://www.seas.

upenn.edu/~matthewh/research.html.

[13] Humanoid Animation Group, T. (2006). The H-Anim Homepage. http://www.

h-anim.org.

[14] Kennaway, R. (2002). Synthetic Animation of Deaf Signing Gestures. Lecture Notes
in Artificial Intelligence, 2298:146-157.

[15] Kennaway, R. (2003). Experience with and Requirements for a Gesture Description
Language for Synthetic Animation. Lecture Notes in Artificial Intelligence, 2915:300-
311.

[16] Klingener, F. (2001). Summary of Dual and Quaternion Mathematics for Kine-

matics. www.BrockEng.com/VMech/Quaternions/kinemath.pdf.

[17] Martin, J. (2003). A Linguistic Comparison: Two Notation Systems for Signed Lan-
guages. Technical report, Western Washington University.

[18] Nadeau, D. R. (1998). The VRML Repository. http://vrml.sdsc.edu/.
[19] OpenGL (1998). The OpenGL Repository. http://www.opengl.org.

[20] Petriu, M., Georganas, N., and Whalen, T. (2003). Development of a Humanoid
Avatar in Java3D. In Proceedings of the IEEE International Workshop on Haptic, Audio and
Visual Environments and their Applications (HAVE'2003), volume I, pages 2033-2036.

[21] Potgieter, D. (2006). A Sign Editor Tool. http://www.cs.sun.ac.za/
~dpotgieter/.

[22] Preda, M. and Préteux, E. (2002). Critical Review on MPEG-4 Face and Body Ani-
mation. In Proceedings of the IEEE International Conference on Image Processing (ICIP
2002), pages 505-508.

[23] Prillwitz, S., Leven, R., Zienert, H., Hanke, T., and Henning, J. (2005). Ham-
NoSys version 4.0: HamNoSys Homepage. http://www.sign-lang.uni-hamburg.
de/Projekte/HamNoSys/HNS4.0de/Inhalt.html.

http://wasp.cs.vu.nl/step/step.html
http://www.seas.upenn.edu/~matthewh/research.html
http://www.seas.upenn.edu/~matthewh/research.html
http://www.h-anim.org
http://www.h-anim.org
www.BrockEng.com/VMech/Quaternions/kinemath.pdf
http://vrml.sdsc.edu/
http://www.opengl.org
http:// www.cs.sun.ac.za/~dpotgieter/
http:// www.cs.sun.ac.za/~dpotgieter/
http://www.sign-lang.uni-hamburg.de/Projekte/HamNoSys/HNS4.0de/Inhalt.html
http://www.sign-lang.uni-hamburg.de/Projekte/HamNoSys/HNS4.0de/Inhalt.html

BIBLIOGRAPHY 74

[24] Selman, D (2002). Java3D Programming. Manning Publications.

[25] Smith, K. C. and Edmondson, W. H. (2004). The Development of a Computational
Notation for Synthesis of Sign and Gesture. Lecture Notes in Artificial Intelligence,
2915:312-323.

[26] Stokoe, W. (1976). A Dictionary of American Sign Language on Linguistic Principles
(New Edition). Linstock Press, Silver Spring, Maryland.

[27] Sun Microsystems (2000). Getting Started with the Java3D API. Sun Microsystems
Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

[28] Sun Microsystems (2006). The Java3D APL. http://java.sun.com/products/
java-media/3D/.

[29] Sutton, V. (1996). Sign Writing Web Site. http://www.SignWriting.org.

[30] The CyberVRML97 Homepage (2005). http://www.cybergarage.org/vrml/cv97/
cv97java/index.html.

[31] The DirectX Homepage (2006). http://www.microsoft.com/directx.

[32] The W3C Consortium (2001). The W3C XML Homepage. http://www.w3c.org/

xml.
[33] The Web3D Consortium (2006). Web3D Homepage. http://wuw.web3d.org/.
[34] The Xj3D Development Team (2005). The Xj3D Homepage. http://www.xj3d.org.

[35] Van Zijl, L. (October 2006). South African Sign Language Machine Translation
Project. In 8'th International ACM SIGACCESS Conferance on Computers and Accessibility
(ASSETS’06).

[36] Vcom3D (2006). The Vcom3D Homepage. http://www.vcom3d. com.

[37] www.lifeprint.com (2006). http://www.lifeprint.com/asl1101/pages-signs/t/
thankyou.htm.

[38] Yang, X., Petriu, D., Whalen, T., and Petriu, E. (2005). Hierarchical Animation Con-
trol of Avatars in 3D Virtual Environments. IEEE Transactions for Instrumentation and
Measurement, 54:1333-1341.

http://java.sun.com/products/java-media/3D/
http://java.sun.com/products/java-media/3D/
http://www.SignWriting.org
http://www.cybergarage.org/vrml/cv97/cv97java/index.html
http://www.cybergarage.org/vrml/cv97/cv97java/index.html
http://www.microsoft.com/directx
http://www.w3c.org/xml
http://www.w3c.org/xml
http://www.web3d.org/
http://www.xj3d.org
http://www.vcom3d.com
http://www.lifeprint.com/asl101/pages-signs/t/thankyou.htm
http://www.lifeprint.com/asl101/pages-signs/t/thankyou.htm

BIBLIOGRAPHY 75

[39] Yeates, S., Holden, E.-J., and Owens, R. (2003). An Animated Auslan Tuition Sys-
tem. Machine Graphics & Vision International Journal, 12(2):203-214.

	Declaration
	Abstract
	Samevatting
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Thesis Outline

	Literature Overview
	Signing Avatars
	Other Signing Avatar Projects
	ViSiCAST
	The Auslan Tuition System
	The SYNENNOESE Project
	Vcom3D Sign Smith Studio
	The Thetos Project

	Notation
	Stokoe
	Sutton SignWriting
	HamNoSys
	The Nicene Notation

	Avatar Animation Systems

	Design Issues
	Pluggable Avatars
	The EAI Approach
	The VRML File Loader Approach

	Pluggable Input Notation
	Generic Animator
	Development Environment

	Design and Implementation
	The Three-level Design
	The Parser
	The Animator
	The Renderer
	Optimisations

	Results
	Issues Relating to Functionality
	Discrepancies between Real and Generated Gestures
	Generic Animation in Varying Situations
	The Input Notation Design
	Disadvantages of Euler Angles
	Restrictions on Joint Rotations

	Future Work

	Conclusions
	The SignSTEP DTD
	Bibliography

