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Abstract

Introduction: Biomarker-based cross-sectional incidence estimation requires a Recent Infection Testing Algorithm (RITA)
with an adequately large mean recency duration, to achieve reasonable survey counts, and a low false-recent rate, to
minimise exposure to further bias and imprecision. Estimating these characteristics requires specimens from individuals with
well-known seroconversion dates or confirmed long-standing infection. Specimens with well-known seroconversion dates
are typically rare and precious, presenting a bottleneck in the development of RITAs.

Methods: The mean recency duration and a ‘false-recent rate’ are estimated from data on seroconverting blood donors.
Within an idealised model for the dynamics of false-recent results, blood donor specimens were used to characterise RITAs
by a new method that maximises the likelihood of cohort-level recency classifications, rather than modelling individual
sojourn times in recency.

Results: For a range of assumptions about the false-recent results (0% to 20% of biomarker response curves failing to reach
the threshold distinguishing test-recent and test-non-recent infection), the mean recency duration of the Vironostika-LS
ranged from 154 (95% CI: 96–231) to 274 (95% CI: 234–313) days in the South African donor population (n = 282), and from
145 (95% CI: 67–226) to 252 (95% CI: 194–308) days in the American donor population (n = 106). The significance of gender
and clade on performance was rejected (p2value = 10%), and utility in incidence estimation appeared comparable to that of
a BED-like RITA. Assessment of the Vitros-LS (n = 108) suggested potentially high false-recent rates.

Discussion: The new method facilitates RITA characterisation using widely available specimens that were previously
overlooked, at the cost of possible artefacts. While accuracy and precision are insufficient to provide estimates suitable for
incidence surveillance, a low-cost approach for preliminary assessments of new RITAs has been demonstrated. The
Vironostika-LS and Vitros-LS warrant further analysis to provide greater precision of estimates.
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Introduction

Incidence (the rate of new infections) provides a more direct and

current indication of the spread of the Human Immunodeficiency

Virus (HIV) than prevalence (the fraction of the population in an

infected state). Incidence estimates are key to monitoring

epidemics, assessing outbreaks, and targeting and evaluating

interventions. Prospective longitudinal studies, which allow for

the direct counting of new infections in cohorts of individuals, are

costly, logistically difficult to set up and maintain, and prone to

capturing unrepresentative behaviours. Consequently, estimation

of incidence using cross-sectional surveys [1–3] has attracted much

interest over recent years.

Recent Infection Testing Algorithms (RITAs), often referred to

as Serologic Testing Algorithms for Recent HIV Seroconversion

(STARHS) [2], classify infections as recently or non-recently

acquired. Incidence is then related to the prevalence of RITA-

defined recent infection [1–11] as estimated in a cross-sectional

survey.

RITAs traditionally employ the laboratory measurement of

HIV viral or host biomarkers which evolve with time after

infection. Antibody avidity, titre, or HIV-specific proportion is

typically considered, with a measurement below a chosen

threshold indicative of recent infection [12–14].

Immune responses vary for individuals, with each individual

experiencing a unique evolution of the biomarker. There are two
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performance characteristics which determine a RITA’s utility in

population-level incidence estimation.

1. The RITA-defined state of recent infection should not be too

transient. This ensures that the proportion of the population in

this state may be estimated with good statistical power in

surveys with feasible sample sizes. Therefore, the average time

spent in the state of recent infection, termed the mean
recency duration, v, should be large (typically, at least six

months [15]).

2. For many RITAs, there is evidence that some long-infected

individuals are classified as recently infected [12,13]. Although

the phenomenon of false-recency may, in principle, be

accounted for without introducing bias, adjustments result in

considerable loss of statistical precision of incidence estimates

[15]. The proportion of long-standing infections classified by

the RITA as recent, termed the false-recent rate, e, should

therefore be as low as feasible.

Increasing the threshold (the biomarker cutoff used to discriminate

recent from non-recent infection) increases the mean recency

duration, but generally also results in a higher false-recent rate.

Therefore, as the threshold varies, there is a trade-off between the

two performance characteristics. Since population-level surveil-

lance is of interest, rather than each individual’s diagnosis, a

sensitivity-specificity trade-off (with recent infection defined by a

fixed duration) is not an appropriate threshold optimisation

criterion (Kassanjee et al, working paper, 2011).

Both calibration data and cross-sectional survey data are

required to estimate incidence. Calibration data is used to estimate

the RITA characteristics, namely the mean recency duration, v,

and false-recent rate, e. Cross-sectional data is used to estimate the

proportions of recently infected, non-recently infected and healthy

individuals in the population, denoted by PR, PNR and PH

respectively.

The incidence estimator, relating the population proportions

and RITA characteristics to incidence, I, is

I~
PR{

e

1{e
PNR

vPH

: ð1Þ

This has been derived in an analysis by McWalter and Welte

[8], shown to be the maximum likelihood estimator by Wang and

Lagokos [9], and generalised by Welte et al [15]. See McWalter

and Welte [16] for a comparison of this estimator to the previously

proposed estimators of McDougal et al [5] and Hargrove et al [6].

Ideally, the RITA should perform similarly in a number of

populations, allowing for the reuse of RITA characteristic

estimates. However, differences in the stage of the epidemic, or

viral subtype or clade, may necessitate the estimation of these

critical parameters in relevant populations for each study. For

example, the proportions of individuals who are elite controllers

(whose immune systems successfully suppress viraemia in the

absence of treatment), have advanced immunodeficiency or are

receiving antiretroviral therapy may vary, and these individuals

have a propensity to produce false-recent classifications [12,13].

Traditionally, methods of estimating the mean recency duration

have relied on the testing of serial samples from acutely infected

subjects [1–6,9,13,17]. This typically requires at least one pre-

seroconversion and multiple post-seroconversion samples, with

short intervals between follow-up so that the seroconversion and

threshold-crossing times may be estimated with minimal uncer-

tainty. Such panels of data are costly and difficult to capture,

requiring precisely the demanding longitudinal studies that cross-

sectional incidence estimation seeks to circumvent.

Despite being more easily obtained, specimens from serocon-

verting subjects with relatively long intervals between follow-up

have been largely overlooked. Obtaining such specimens from

repeat blood donors provides unique efficiencies as the collection

of blood for transfusions is ongoing in most countries, and

therefore procuring specimens does not require the establishment

of new surveillance. Although the prevalence and incidence of

HIV are generally lower in blood donors than the general

population, the large-scale collection of blood and routine testing

of serial donations for HIV (RNA and antibodies) provide a

relatively large sample of seroconverting donors. Furthermore,

large volumes of plasma, derived from routinely prepared frozen

plasma components, are obtained.

In this investigation, data captured on seroconverting blood

donors in South Africa and the USA is used to demonstrate the

characterisation and optimisation of RITAs.

Methods

Ethics Statement
The research and the incidence testing were approved by the

University of California, San Francisco (UCSF); American Red Cross

(ARC) and South African National Blood Service (SANBS) institutional

review boards or ethics committees.

Specimen Collection and RITA Testing
Specimens were collected by the South African National Blood

Service (SANBS) of South Africa and the American Red Cross (ARC) of

the USA, and tested by the Blood Systems Research Institute (BSRI) of

the USA. Repeat donors who were observed to seroconvert were

tested (by the RITA) using the specimens collected at the times of

the first seropositive donations.

The investigation was performed for the less-sensitive Vironos-

tika assay (Vironostika-LS) [18], the RITA for which more data is

available, and thereafter, the currently-used less-sensitive Vitros

assay (Vitros-LS) [19] was characterised. These RITAs are both

based on ‘less-sensitive’ versions of diagnostic tests that measure

antibody titre, a concept introduced by Janssen et al [2]. For each

RITA, recent infection is indicated by a standardized optical

density (SOD) below a chosen threshold.

The Vironostika-LS is a modification of the Vironostika HIV-1

microELISA diagnostic test (bioMérieux, Marcy l’Étoile, France)

[18]. The laboratory procedures and threshold of 1 specified by

Rawal et al [18] were used. Seroconverting blood donors were

tested using the Vironostika-LS until 2007, as production of the

Vironostika assay ceased in the year thereafter [13]. Manufactur-

ing of the assay has since been resumed by Avioq (Rockville, MD)

[20].

The Vitros-LS is based on the Ortho Vitros ECi anti-HIV 1+2

instrument (Ortho-Clinical Diagnostics, Raritan, NJ) [19]. The

BSRI established the laboratory conditions that result in the closest

agreement to classifications by the Vironostika-LS, using a

threshold of 20 [19].

The datasets consist of the SOD at the time of the first

seropositive donation, and the interval between the last seroneg-

ative (and RNA negative) and first seropositive donation, termed

the inter-donation (ID) interval, for each seroconverting blood

donor. Three datasets (Supplemental Digital Content (SDC) S1,

Section A) were used for the analysis: The Vironostika-LS was

applied to samples of South African donors (October 2005 -

September 2007, sample size of n = 485) and North American
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donors (November 2001 - December 2005, n = 176); the Vitros-LS

was applied to a sample of South African donors (October 2007 –

December 2009, n = 199).

Analysis
RITA characteristics were estimated using a maximum

likelihood method. Rather than fitting a curve describing the

evolution of the SOD with time after seroconversion, the overall

probability of the RITA classifications at the first seropositive

donations in the sample was maximized [21]. The likelihood

function is derived below (more detail provided in SDC S1,

Section B).

Assuming that the time of seroconversion is uniformly

distributed in the ID interval, the probability, pi, that the ith

seroconverter, with ID interval Di, is classified as recently infected

at the time of the first seropositive donation is

pi~

Ð Di

0
SR(t) dt

Di

, ð2Þ

where SR(t) is the probability of being in the RITA-defined state of

recent infection when tested a time t after seroconversion.

The likelihood, L, to be maximised, of all RITA classifications in

a sample of n seroconverters is

L ~ P
n

i~1
(pi)

xi (1{pi)
1{xi , ð3Þ

where xi = {1 if RITA-recent, 0 if RITA-non-recent} is the

observed result for the ith seroconverter.

The analyses of McDougal et al [5], McWalter and Welte [8]

and Wang and Lagakos [9] assume that individual SOD curves

either cross the threshold (distinguishing test-recent from test-non-

recent infection) and remain above it or fail to ever reach the

threshold, and therefore SR(t) in (2) approaches some constant

value, a, which is the proportion of SOD curves that fail to reach

the threshold, for large t. SR(t) may then be expressed as

SR(t) ~ az(1{a) SR0 (t): ð4Þ

The mean recency duration, v, is the mean of the times taken to

cross the threshold for those SOD curves that do cross the

threshold, as described by SR’(t).

Substituting (4) into (2), pi becomes

pi ~ az(1{a)

Ð Di
0 SR0 (t) dt

Di

: ð5Þ

This approach also facilitates non-parametric inference, by

considering only individuals with large Di. For a time cutoff T

such that

SR0 (t) ~0 i:e: SR(t) ~ að Þ V twT ð6Þ

if Di.T, then

ðDi

0

SR0 (t) dt ~

ð?
0

SR0 (t) dt ~ v ð7Þ

is the mean recency duration.

Substituting (7) into (5), pi becomes a function of the RITA

characteristics,

pi ~ az(1{a)
v

Di

, 8ð Þ ð8Þ

and no assumptions about the shape with which the biomarker

grows after seroconversion (full characterisation of SR’(t)) is

required. The estimated RITA characteristics maximise the

likelihood L, which is now a function of v, and a (if there is no

input estimate of a).

McDougal et al [5], McWalter and Welte [8] and Wang and

Lagakos [9] additionally assume that post-seroconversion survival

is independent of the shape of the SOD curves. When the above-

mentioned assumptions are obeyed, a = e in the incidence

estimator (1). More generally, SR(t) may not remain constant for

t.T. A false-recent rate may then be defined as the proportion of

individuals, seropositive for longer than T, that is classified as

recently infected [15]. In this case, the above procedure that

produces an estimate of a likely overestimates the false-recent rate

if SOD curves cross the threshold after T or underestimates it if

SOD curves move back below the threshold at times since

seroconversion greater than that captured in the dataset. The

estimated RITA characteristics, a and v, therefore provide

unrefined estimates for the false-recent rate and mean recency

duration.

Uniformly distributed seroconversion times are reasonable

when the timing of donations and exposures to HIV are

independent. Test-seeking behaviour (the donation of blood soon

after exposure specifically to receive HIV testing) or deferral of

donations (the delay of donations soon after exposure) could

therefore bias estimates. In the USA, an investigation, which

highlighted test-seeking behaviour among homosexual men, noted

little indication of test-seeking behaviour among blood donors

[22], while evidence of deferred donations has been observed [23].

Behaviour in the South African donor population may vary due to

the large scale of the epidemic and stigma associated with HIV.

In this work, various analyses involving the parametric and non-

parametric inference of the RITA characteristics for the

Vironostika-LS and Vitros-LS were performed. Parametric

inference was performed by maximising the likelihood function

based on the probability of being recently infected expressed in (5),

assuming forms for SR’(t) and using all data; non-parametric

inference was performed using a likelihood function based on (8)

and only including data satisfying Di.T. Using simulated data,

estimates obtained from the parametric and non-parametric

approaches were compared. Differences in RITA characteristics

for specific subpopulations were explored. The utility of the RITA

for obtaining precise incidence estimates was also investigated.

Asymptotic maximum likelihood theory was used to estimate

confidence intervals (CIs) and confidence regions (CRs), and test

the significance of parameters (based on the distribution of the

deviance statistic and using the loglikelihood ratio test) [24]. Chi-

squared goodness of fit tests were used to assess the agreement

between data and assumptions [25]. All tests used a significance

level of 5%.

Results

Characterisation of the Vironostika-LS
The estimated RITA characteristics (using a threshold of 1) are

shown (Fig. 1), for both estimation assuming a known a, and

simultaneous estimation of v and a. Observations with Di.T = 1

Recency Test Characteristics in Blood Donors
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year were used (the maximum duration in the state of recency has

been estimated to be 200 days [26] and 1 year [17]), resulting in

sample sizes of n = 282 and n = 106 for the South African and

American datasets respectively. A comparison of the observed

percentages of seroconverters who were recently infected to the

expected percentages (by substituting the estimated RITA

characteristics into (8)), as functions of ID interval, suggests good

agreement under simultaneous estimation of the RITA charac-

teristics (SDC S1, Section C). When exploring the sensitivity of

results to T, when T was increased to 2.5 years, estimates from the

South African dataset varied by at most 10% (n = 189), while the

large uncertainty in estimates from the relatively small American

dataset (n = 53) did not support meaningful inference.

The estimated a is large, consistent with the results from the

application of this method to assess the BED assay [21(results not

shown)]. Estimation of v using an input estimate of a is preferable.

In the extreme case of all ID intervals being equal, v and a cannot

be simultaneously estimated as the likelihood function may be kept

at its maximum while arbitrarily increasing the estimate of v by

appropriately decreasing the estimate of a. Furthermore, using a

value of T that is too low (SOD curves cross the threshold after T)

would bias estimates of a upwards and v downwards under the

assumptions of McDougal et al [5], McWalter and Welte [8] and

Wang and Lagakos [9], with larger T required at higher

thresholds.

The estimated mean recency durations, for a number of

thresholds (holding T at 1 year), are compared to published

estimates (Fig. 2):

1. Busch et al [27] utilised the directly measured incidence in the

repeat donor population to estimate v. With known incidence;

proportions PR, PNR and PH (determined by testing repeat

donors); and assuming e = 0%; a ‘back-calculation’ for v using

the incidence estimator was performed. Since the possibility of

false-recent results was neglected, overestimation of v is

expected, with greater bias at higher thresholds. Methodolog-

ically, estimation of v by ‘back-calculation’ requires an existing

estimate of e for the same threshold, with such data currently

unavailable. Furthermore, uncertainty in the estimate of v

Figure 1. Estimated RITA characteristics for the Vironostika-LS
in the repeat donor population. The estimates of the mean recency
duration, v, under both the simultaneous estimation of v and a, and
when using an input a, for T = 1 year, are provided. For the latter
estimation, the estimated v is plotted as a function of the assumed a.
The 95% confidence regions (CRs) for v and a (simultaneous
estimation) and confidence intervals (CIs) for v (assuming a, and not
accounting for uncertainty in a) are displayed. Part A shows the results
for the South African repeat donor sample, while Part B shows the
results for the USA repeat donor sample.
doi:10.1371/journal.pone.0020027.g001

Figure 2. Comparison of mean recency duration estimates for
the Vironostika-LS to previously published estimates. Estimates
of the mean recency duration, v, under both the simultaneous
estimation of v and a, and when assuming a = 0%, for T = 1 year, are
compared to published estimates (by ‘back-calculation’ in the repeat
donor population [27] and using seroconversion panels [18,27]) as a
function of test threshold. The minimum and maximum v occurring in
the 95% confidence regions (CRs) for v and a (simultaneous
estimation), as well as 95% confidence interval (CI) limits for v
(assuming a = 0%, with no uncertainty) are also displayed. Estimates
shown in Part A pertain to the South African population, while those in
Part B pertain to the USA population.
doi:10.1371/journal.pone.0020027.g002
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arises from uncertainty in the estimated incidence; proportions

PR, PNR and PH; and e.

2. The Centers for Disease Control and Prevention (CDC) utilised

seroconversion panels to estimate v in an American population

[18,27].

Parametric versus non-parametric approach
The need for parametric assumptions about the shape of the

antibody titre response curve is circumvented by using only data

with large ID intervals. This has two consequences:

1. Estimation of v is less prone to bias arising from poor

parametric assumptions.

2. The dataset used for the estimation is reduced in size,

decreasing the precision (increasing the variability) of estimates

of v.

The characterisation of the Vironostika-LS in the South African

repeat donor population was revisited, using all data. The

probability that a seroconverter is recently infected at the first

seropositive donation is given by (5), which assumes a parametric

form for SR’(t).

For SR’(t) = SR’(h,t), where h is a vector of parameters, the

maximum likelihood estimator of v is

v̂v ~

ð?
0

SR0 (ĥh,t) dt, ð9Þ

where h is estimated to maximise the likelihood function.

A number of forms for SR’(t) were assumed, ranging from a fixed

recency duration for all individuals, to a fat-tailed Pareto

distribution (for the time spent in the state of recency). Widely

varying estimates of v (SDC S1, Section D) were obtained, even

after excluding estimates for which assumptions and data poorly

agreed. Since the true underlying dynamics of the data are

unknown, the extent of bias is unclear.

Simulated data was therefore used to explore the trade-off

between greater precision from larger samples and greater

potential for bias from poor parametric assumptions, when using

all data. Assuming a number of forms for SR’(t), 100 datasets (of

500 seroconverters each) were simulated. For each dataset, v was

estimated using a number of parametric assumptions. The results

of the investigation (SDC S1, Section D) suggest that power to

reject ‘incorrect’ parametric assumptions is at times poor and large

bias in estimates may occur. When the assumptions leading to (8)

hold, estimates using the non-parametric approach are unbiased,

although less precise.

Despite the reduction in sample size (approximately 40% for

T = 1 year) when using the non-parametric method of estimation,

bias arising from indistinguishably poor parametric assumptions is

eliminated, leading to more accurate estimates.

Population-specific performance
Significant systematic bias could be introduced to incidence

estimates if the RITA characteristics are not evaluated in a

population representative of that in which incidence estimation is

to occur [11,15]. Since most HIV antibody assays are based

primarily on clade B antigens, antibody-antigen reactivity may

vary when applying assays in populations in which other clades

occur [28], with differences in the performance of the Vironostika-

LS already observed [18,26,28–30]. Other factors, such as the

association between viral RNA levels and clade, and seroconver-

ters’ genetic backgrounds, may also affect results [4,12,13,28].

The significance of gender (male and female) and country

(South Africa and USA) on the performance of the Vironostika-LS

was assessed. Country differences are likely to be largely

representative of clade differences, as clade C infections are

predominant in South Africa, and clade B in the USA [31].

Investigations by SANBS on a sample of donors (data made

available to authors) and studies of North American donors

[32,33] indicate that a very small percentage (,5%) of infections

are not of the predominant clade.

The null hypothesis, that the performance of the Vironostika-

LS is common in all four groups (each pairing of gender and

country), is not rejected with a p-value of 10.48% (estimated

RITA characteristics in Fig. 3). However, in this investigation,

large uncertainty in estimates, arising from small samples of

seroconverters, would result in little power to identify significant

factors.

Optimisation of RITA design and comparison of RITAs
The ultimate objective is incidence estimation. The precision of

the incidence estimator (and hence power to detect changes in

incidence) increases with a larger mean recency duration and

smaller false-recent rate [15]. However, there is a fundamental

trade-off between these RITA characteristics as both parameters

Figure 3. Estimated RITA characteristics for the Vironostika-LS
in the repeat donor population by gender and country.
Estimates of v and a, under the simultaneous estimation of these
parameters, are shown for South African male donors, South African
female donors, USA male donors and USA female donors. 95%
confidence regions (CRs) for v and a are provided.
doi:10.1371/journal.pone.0020027.g003
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increase with increasing threshold, shown for the Vironostika-LS,

South Africa (Fig. 4A and Fig. 4B, a provides an indication of the

magnitude of the false-recent rate).

The coefficient of variation (CoV, ratio of standard deviation

to mean) of the incidence estimator [8], given the estimated

performance of the Vironostika-LS, is compared to that

achieved by a BED-like RITA (v = days and e = 5.6%, as

per BED package insert [34]), assuming e = a (Fig. 4C). HIV

incidence of 1.5% and prevalence of 17.5% are assumed, based

on the South African adult population [35,36]. With the CoV

ratio (Vironostika-LS to BED-like) indistinguishable from 1, at

all thresholds considered, the Vironostika-LS appears compara-

ble to a BED-like RITA. Additional data, such as captured

during the follow-up of seropositive individuals awaiting

treatment, could be used to explore whether systematic artefacts

in the estimation occur (for example, from individuals progress-

ing after T = 1 year).

Characterisation of the Vitros-LS
Preliminary RITA characteristic estimates of the currently used

Vitros-LS (using a threshold of 20), for the South African repeat

donor population, are shown (Fig. 5). The simultaneous estimation

of v and a, for a range of T, was performed (n = 108 for T = 1 year

reduces to n = 59 for T = 2.5 years). Observed and expected

percentages of seroconverters who were recently infected were also

compared (SDC S1, Section E).

Figure 4. Performance of the Vironostika-LS for incidence estimation, based on estimated RITA characteristics. The estimated
performance of the Vironostika-LS, for incidence estimation purposes, is shown, based on estimated RITA characteristics for the South African repeat
donor population. In Part A and Part B, estimates of v and a, respectively, under the simultaneous estimation of these parameters, for T = 1 year, are
plotted as a function of test threshold. The minimum and maximum v and a occurring in the 95% confidence regions (CRs) for these parameters are
also displayed. In Part C, the estimated precision of the incidence estimator using the Vironostika-LS is compared to the precision obtained by a BED-
like RITA (v = 155 days and e = 5.6% [34]), based on the estimated RITA characteristics (assuming e = a) and assuming constant HIV incidence of 1.5%
and prevalence of 17.5%. More specifically, the ratio of the coefficient of variation (CoV, ratio of standard deviation to mean) of the incidence
estimator, for the Vironostika-LS to the BED-like RITA, is plotted as a function of the Vironostika-LS test threshold. *A polynomial is fitted by least
squares to smooth estimates.
doi:10.1371/journal.pone.0020027.g004
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For the Vitros-LS, the RITA characteristics were plotted as a

function of cutoff time T (Fig. 5) as no estimates for T were found

in the literature and the estimation appeared fairly sensitive to the

choice of T for this dataset. The widely varying estimates for the

RITA characteristics, and large uncertainty around them, indicate

the need for a larger dataset and an external estimate of a for a

carefully selected cutoff time T (large enough for the SOD curves

to cross the threshold) to get a more accurate and precise estimate

of the mean recency duration. Such data and estimates of a and T

are currently unavailable. While a value of T that is too small

would bias estimates of a upwards and v downwards, under the

above-mentioned assumptions, as the value of T increases, the

sample size reduces and interdonation intervals are more closely

clustered together, decreasing the power to perform simultaneous

estimation.

The large, albeit highly uncertain, estimates of a suggest that

one should be cautious about the utility of the Vitros-LS in

incidence estimation at this stage of the characterisation, noting

that a is not the false-recent rate in (1) for SR(t) not (approximately)

constant for t.T.

Discussion

Traditionally, the characterisation of RITAs (individual assays

and multiple-test algorithms) has relied on the use of serocon-

version panels. The scarcity of these panels is therefore an

obstacle to the development of RITAs for incidence estimation.

In this work, a source of more readily available specimens has

been identified, and an approach for obtaining preliminary

characterisations of RITAs using these specimens has been

demonstrated. Further refinement of the characterisation of only

the most promising RITAs may thereafter be performed, thus

conserving precious longitudinal specimens (and specimens from

populations with long-standing infections) for this purpose.

Utilising specimens from blood donors provides unique

efficiencies as relatively large samples of seroconverters and

high-volume specimens (125-250 ml of plasma per seroconverter)

are captured during routine blood collection procedures. Further-

more, specimens from seropositive individuals around the world

are collected, facilitating tests for population-specific performance

differences of a RITA.

The method of estimating the RITA characteristics (mean

recency duration and a proxy ‘false-recent rate’ for parameter

estimation purposes) does not require the follow-up of serocon-

verters. Moreover, by using data with large (pre-seroconversion)

follow-up intervals, non-parametric estimation is supported. To

obtain more accurate and precise estimates of the mean recency

duration, an external estimate of the proportion of SOD curves

that does not reach the threshold is desirable, as well as insight into

the maximum time seroconverters spend in the test-recent state.

For incidence estimation, the utility of the Vironostika-LS

appears comparable to a BED-like RITA, over the range of

thresholds considered. The precision of the incidence estimator

provides a criterion for both comparing RITAs as well as

identifying optimal thresholds. While additional data is required

for the Vitros-LS, preliminary results suggest prudence when

utilising the assay for incidence estimation.

The assumptions under which estimates are unbiased are strict.

Potential for systematic bias in estimates, such as that arising from

individuals remaining in the state of recency for prolonged periods,

or from non-uniformly distributed seroconversion times, should be

explored using additional data. This method of estimating the

RITA characteristics is not intended to provide final parameter

estimates required for incidence estimation, but rather for

providing cost-effective and efficient preliminary assessments of

RITAs. It is hoped that the concepts and tools demonstrated in

this work will contribute to the resourceful characterisation, and

subsequently focused development, of RITAs for population-level

incidence estimation.
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Figure 5. Estimated RITA characteristics for the Vitros-LS in the
South African repeat donor population. The estimates of the RITA
characteristics, v and a, under the simultaneous estimation of the
parameters are provided, as a function of the cutoff time T, for T = 1 year
to T = 2.5 years. In Part A and Part B, estimates of v and a are plotted,
respectively. The minimum and maximum v and a occurring in the 95%
confidence regions (CRs) for these parameters are also displayed. *A
polynomial is fitted by least squares to smooth estimates.
doi:10.1371/journal.pone.0020027.g005
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