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Abstract 
 
The preliminary development of a FM radio receiver module is discussed. An existing narrowband 

system operating between 48MHz and 50MHz will be replaced. Digital components were 

investigated, compared and used with analogue techniques to build a more flexible two-way radio 

receiver system. A direct digital synthesizer was considered as a replacement for the current 

synthesized phased lock loop local oscillator and much attention was given to the local oscillator 

and mixer design, characteristics and measurement procedures. 

 
A detailed study of receiver systems was undertaken to determine the specifications needed for 

every receiver component to achieve satisfactory receiver performance in the end. Receiver 

characteristics as well as receiver measurement procedures are defined. A software tool was 

developed to aid the design process, establishing computationally whether the receiver 

specifications are met prior to the final design.  

 

The complete design process, from fundamental specifications through to the developed final 

receiver module is discussed. A modular design approach was used to guarantee easy 

manufacturing, substitution and testing. This approach comprises the break-down of the receiver 

into well defined components that are each matched to 50O. The separate components of the 

system were designed, measured and characterized to make it possible to replace only a single 

component instead of the entire system when a part becomes redundant. 
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Opsomming 
 
Die grondslag vir die ontwikkeling van ‘n FM radio ontvanger module word in hierdie dokument 

gelê. ‘n Bestaande noubandstelsel wat tussen 48MHz and 50MHz ontvang word vervang deur 

hierdie nuwe stelsel wat aangewend sal kan word in die bestaande tweerigtingradio se omhulsel. 

Digitale komponente is ondersoek, vergelyk en gebruik saam met analoogtegnieke om ‘n meer 

buigsame radiostelsel te bewerkstellig. ‘n Direkte digitale sintitiseerder is oorweeg as ‘n 

vervanging vir die huidige fasesluitlus ossillator met heelwat klem op die oscillator-en 

mengerontwerp, komponent spesifikasies en metingsprosedures. 

 
‘n Diepgaande studie van ontvangerstelsels is gedoen om te bepaal wat die tipiese spesifikasies 

vir elke ontvangerstadium is, sodat die finale ontvanger se spesifikasies behaal kan word. 

Ontvanger eienskappe en meetprosedures word volledig gedefinieer. ‘n Sagtewareprogram is 

ontwikkel om die ontvanger-ontwerpsproses te vergemaklik deur vooraf te kan vasstel watter 

ontvangerspesifikasies bereik sal kan word al dan nie. 

 

Die volledige ontwerpsproses, vanaf fundamentele spesifikasies tot by die finale ontvanger word 

omskryf. ‘n Modulere-ontwerp prosedure is gebruik ter versekering van die maklike vervaardiging, 

vervanging en toetsing van elke komponent. Die radio is tydens ontwerp opgebreek in 

boublokkies wat elkeen aangepas word na 50O. Elke aparte boublokkie van die ontvangerstelsel 

is afsonderlik ontwerp, gemeet en volledig gespesifiseer om dit moontlik te maak om slegs een 

komponent te vervang in plaas van die hele stelsel wanneer ‘n enkele komponent nie meer 

beskikbaar is nie.  
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1 Introduction 

The incredible growth of portable wireless communication over the past decade has created a 

demand for portable wireless devices that are smaller, lighter, and cheaper and that still have 

high performance. Luckily, advances in radio frequency architecture are allowing this reduction of 

size and cost by replacing analogue components with their digital counterparts. Progress that was 

essential includes the development of improved integrated mixers and of higher performance 

analogue to digital converters. Conventional analogue techniques, however, are still used in two-

way radios today because of their low power consumption. It has not been possible to replace 

these components with their digital counterparts, which tend to need more current. Replacement 

of analogue with digital components, if possible, would allow for much more flexibility in two-way 

radios. The effect that recently developed digital components would have in the system’s 

performance and power consumption needs to be investigated [1] [2] [3].  

 

Most portable equipment is optimized for either high performance or power-efficient operation, but 

increasingly modern applications require both. Thus, the challenge is to develop flexible, high 

performance receivers with low power consumption, low cost and small size. Energy consumption 

and receiver performance are inseparably linked in portable RF communications and, 

consequently, designers have to consider power constraints throughout the design process [1] [2] 

[4].   

 

The aim of this work was to develop a preliminary radio module to improve an existing radio 

module for military use. The new system will replace the present narrowband system operating 

between 48MHz and 50MHz and provide a two-way radio that can be used in the existing radio 

housing with the specifications listed in Table 1-1. Digital components were investigated, 

compared and used with analogue techniques to build a more flexible two-way radio transceiver. 

A Direct Digital Synthesizer (DDS) has been considered as a replacement for the current 

synthesized phased lock loop (PLL) local oscillator and a lot of attention was given to the local 

oscillator and mixer designs.  
 
The receiver was broken up into well-defined components that were matched to 50O. This 

modular design approach was used to guarantee easy manufacturing, substitution and testing. 

The flexibility also enables the designer to upgrade, increase capacity or bandwidth or reorganize 

the receiver easily in the future. The separate components of the system were designed, 

measured and characterized to make it possible to replace only a single component instead of 

the entire system when a part becomes obsolete.  
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A software tool was also developed to aid this replacement process by establishing whether a 

certain new characterized component would be useful in the system and how the system’s 

performance would be affected. Amongst other things attention was given to the calculations of 

the signal-to-noise ratio, sensitivity, selectivity and spurious responses of the receiver. This will 

help to make intelligent and informed decisions concerning component replacement. This will 

also enable the designer to evaluate the receiver system in the preliminary design component 

and determine if the specifications are met. 

 

Attention was given to minimizing the size and power consumption of the product throughout the 

design process while maximizing performance. 

 

Maximum usable sensitivity <0.5µV SINAD  (20dB) 
113dBm⇒ −  in a 50O system 

Maximum AF output power >200mW into 8 Ohm. 
AF response 300Hz to 2.7kHz (-6dB) 

Image rejection Better than 70dB 

IF rejection Better than 70dB 

Adjacent channel rejection Better than 70dB 

Volume control 6 stepped volumes 

Receiver distortion 6% max at audio output of 1.42Vrms  

Table 1-1 Receiver specifications. 

 

The channel spacing requirement is 12.5kHz  for frequencies between 30MHz  and 300MHz  [5]. The 

maximum permissible frequency deviation for this 12.5kHz  channel spacing is 2.5kHz±  [5-7].  

 

1.1    Thesis structure 
 

This thesis is ordered as follows: 
 

§ Chapter 2 provides an overview of the necessary background principles. Receiver 

characteristics are defined and explained. The receiver components that influence every 

receiver characteristic are summarized. Receiver topology is discussed from a systems 

point of view and the main design restrictions and objectives of every receiver component 

are discussed. The chapter concludes with an essential discussion of noise theory, which 

will enable the designer to calculate the signal-to-noise ratio and the sensitivity of the 

receiver system, prior to the design.  

§ Chapter 3 introduces the computer software tool, , which was written to 

help the designer to determine if receiver specifications will be met. This helps to predict 

system performance and aids the theoretical replacement of redundant or costly parts. 
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Detailed descriptions are given to show how the program calculates the receiver 

characteristics. 

§ Chapter 4 provides a detailed description of the hardware design for every receiver 

component. Due to the modular design approach used, every component needs to be 

measured and characterized thoroughly.  More than one unit is developed for every 

receiver component, each with different characteristics. This enables comparison of their 

influence on the receiver performance.  This chapter also gives detailed descriptions of 

local oscillator and mixer terminology, characteristics and measurement methods. Phase 

noise is also investigated thoroughly.  

§ Chapter 5 describes the measurement procedures of the receiver characteristics. The 

receiver performance is measured while interchanging the different well-defined receiver 

components that were discussed in chapter 4. The influence of every component on the 

receiver characteristics can be confirmed with those anticipated in chapter 2. After this the 

measured receiver characteristics is compared to those calculated by using the software 

tool described in chapter 3. Conclusion are made concerning the utility . 

§ Chapter 6 concludes with a summary and recommendations for future work.  
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2 Background principles 

 
2.1    Receiver characteristics and overview 

 
A receiver is essentially a system that is used to recover information signals from high frequency 

radio signals. Many different topologies can be used to perform this function. Amongst these is 

the direct conversion receiver, which uses a mixer and an oscillator, at the radio frequency (RF), 

to down-convert the signal directly to base band. This receiver is constantly being investigated by 

the competitive cellular market, because of its small size, weight, simplicity, low external parts 

count, low cost and its potential to form a single radio receiver chip. The super heterodyne 

receiver, shown in Figure 2-1, is still the most popular receiver because of its superior 

performance. This receiver uses a mixer and an oscillator to perform frequency down-conversion 

to an intermediate frequency (IF) that is usually between the RF signal and the base band. This 

allows sharp cut-off filters to improve selectivity as well as higher gain due to the IF amplifier. 

Tuning is accomplished by varying the frequency of the local oscillator. It can also be a single or 

double conversion receiver in which the down-conversion to an IF frequency is done once or 

twice [1] [8] [9] [10]. 

 

1st IF filter

1st Mixer

1st Local

Oscillator

RF amplifier

2nd IF filter

2nd Local

Oscillator

1st IF amplifier 2nd Mixer 2nd IF amplifier

Demodulator

Audio out

 
 
 

Figure 2-1 Block diagram of a double down-conversion super heterodyne receiver. 

 

If a super heterodyne receiver utilizes a first IF frequency that is greater than the received RF 

frequency, it is said to be an up-conversion receiver, while a down-conversion receiver converts a 

high RF frequency to a lower first IF frequency.  

 
A brief summary of the receiver characteristics follows. The different components and their most 

important functions and design restrictions are summarized in chapter 4. 
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2.1.1. Receiver characteristics 
 
The most important receiver performance specifications are sensitivity, selectivity, distortion, 

audio frequency (AF) response, AF output power, IF and image rejection. Receiver 

characteristics are normally specified. The designer must be knowledgeable as to how to 

measure and attain them. These receiver properties are briefly defined in this section. Measuring 

techniques are described in chapter 5 [1] [8] [9]. 

 

2.1.1. a Sensitivity 

 
Receiver sensitivity is, in essence, the quality that allows the reception of weak signals. This is 

not the ability of the receiver to amplify small signals, but rather the ability of the receiver to 

respond to weak signals, without the internal noise masking those signals. Sensitivity thus deals 

with the noise figure of the receiver [1] [8] [9] [11]. 

 

This minimum detectable signal power (or the voltage derived from the minimum detectable 

signal power), is specified for a specific required output signal-to-noise ratio (SNR) or signal plus 

noise and distortion-to-noise and distortion ratio (SINAD). 
  

This important figure of merit does not depend on the gain of the receiver, because the signal and 

noise are amplified nearly equally. Therefore, careful consideration must be given to devices 

choices in the front-end of the receiver to achieve a good noise figure. To optimize the noise 

figure and, consequently, the sensitivity, these devices should have a low noise figure. If the 

sensitivity of a receiver system is not as good as expected, more transmitter power might be 

necessary to achieve the same performance, which can be a concern, especially in portable 

equipment that have restrictions on their power consumption [1] [8] [9] [11] [32]. 

 

2.1.1. b Spurious responses  

 
A spurious response is an unwanted frequency that produces a demodulated output in the 

receiver if it is encountered at a high power level. Spurious responses occur:  [44] 

§ when a signal is received at a frequency where it is not transmitted. 

§ when a signal passes through to the IF stage due to insufficient RF selectivity (image and 

IF rejection). 

§ when signals appear to be received, but actually originate within the LO. 

§ when interfering signals cause cross modulation and desensitization . 
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The front-end of broadband receivers need to be broadband if they are not tuneable. Thus, 

undesired spurious responses are especially a problem in broadband receivers [1]. 

 

Most receiver responses result from the harmonics that is generated in the mixing process. These 

harmonics are called intermodulation products and can be calculated for a down-conversion 

receiver by using the equation [1] [9] 

 IM RF LOf mf nf= −  (2.1) 

where m  and n  are positive integers and the order of these products is m n+ . RFf  and LOf  are 

the respective frequencies of the incoming RF signal and the local oscillator signal.  

 

Most of these spurious responses fall outside the pass band of the IF, but some may fall inside 

the pass band. The amount of power contained in a specific intermodulation product decreases 

as the order increases. Therefore, they are usually negligible if their order is higher than 

approximately 6 [9]. 

 

The most important spurious responses include: 

§ Image – can be predicted by the image rejection. 

§ Half IF – rejection predicted by the mixer IP2. 

§ IF – Susceptibility for direct IF feed through predicted by IF rejection. 

§ Second image in dual conversion receivers – suppressed by the first IF filter. 

§ LO spurious responses. 

§ High order spurious responses close to the receiver frequency. 

 

Three of the most important subcases of this broad definition of spurious responses is discussed 

next, namely the selectivity, IF rejection and image rejection. 

i. Selectivity / Adjacent channel rejection 

 
The receiver selectivity is the capability of the receiver to differentiate between the desired signal 

and interfering signals that appear at adjacent channel frequencies. This is determined by the 

selectivity of the IF filter, the oscillator phase noise, the synthesizer spurious responses, the IF 

bandwidth and the required SNR at the demodulator input. Selectivity is gradually becoming more 

important as regulations are moving towards narrower channel spacing. The narrowband 

requirements of a filter to achieve high selectivity is usually not achievable at the higher receive 

frequencies and, therefore, is applied at the IF frequency [1] [20] [40] [42]. 

 

Selectivity can be calculated by using the following formula [1] 
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 ( )( ) ( )( ) ( )( )/10 /10 /1010log 10 10 10IFsel f Spurs f L f
outputSelectivity SNR B dB∆ ∆ ∆− − = − − + + ×     

 (2.2) 

where 
 
§ outputSNR  is the signal-to-noise ratio at the detector input for a specified receiver output 

performance e.g. 12dB SINAD dB   . 

§ f∆  is the frequency offset of the adjacent channel. 

§ ( )selIF f∆  is the IF filter rejection at the adjacent channel dB   . 

§ ( )Spurs f∆  is the LO spurious signals present in the IF bandwidth at IFf f∆±  as shown in 

Figure 2-2 dBc   . 

§ ( )L f∆  is the single sideband (SSB) phase noise at a frequency offset equal to the channel 

spacing /dBc Hz   . 

§ B  is the IF filter noise bandwidth (approximately IF bandwidth) Hz   . 

 

 

ffLO fδfLO + Adjacent channel
frequency offset

P
hase noise

S
purs

BIF filter bandwidth-

 

Figure 2-2 LO signal definitions for selectivity predictions [1]. 

 

ii. Image rejection 
 
Mixers generate signals at the sum and difference frequencies of the input signals. If a down-

conversion mixer is used, LO RFf f<   and 

 RF LO IFf f f= +  (2.3) 
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An RF frequency at RF image LO IFf f f f= = −  if replaced into (2.3), will give an IF frequency of 

IFf−  [9].  

 

Mathematically this frequency is identical to the IF frequency because of the fact that the Fourier 

spectrum of a real signal is symmetric about zero frequency, and thus contains negative as well 

as positive frequencies. This RF frequency is defined as the image frequency and is defined 

as image LO IFf f f= −  for high side injection, where LO RFf f<  and image LO IFf f f= +  for low side 

injection, where LO RFf f>  [9] [22] [21] [44]. 

 

The desired and the image frequencies are separated by 2 IFf . If the front-end filtering of the 

receiver is not sufficient the receiver will not be able to differentiate between the desired signal 

and the interfering image signal [9] [21]. 

 
The image rejection of the receiver is thus essentially the property that will determine how well an 

interfering signal at the image frequency will be rejected. The insertion loss of a filter with a sharp 

cut-off frequency is usually higher. Therefore, the image reject filter is usually placed after the RF 

amplifier, where it will have a smaller effect on the noise figure of the system, because the 

insertion loss before an amplifier will degrade the noise figure of the amplifier [56] [9] [21]. 

iii. IF rejection 
 

A receiver's ability to reject signals at the receiver's first IF is its IF rejection property. Due to 

imperfect isolation between mixer ports, the signals present at the RF port of the mixer will pass 

through to the IF port. If a high interfering signal at the IF frequency is present at the RF port, it 

will pass through to the IF circuitry and cause desensitization and interference. IF rejection 

problems are serious because the receiver will receive the interfering signal at the IF frequency, 

no matter where the receiver is tuned. The IF rejection of the receiver is determined by both the 

mixer’s RF-IF isolation as well as the frequency response of the front-end components [14] [20]. 

 

2.1.1. c Audio frequency response 

 
Audio bandwidth should be limited by an audio filter to attenuate interference as well as the IF 

noise that originates in the receiver after the first IF filter. This will enhance the receiver signal-to-

noise ratio. Audio frequencies should typically be between ±300Hz and ±2500Hz for voice 

communications [11]. 
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2.1.1. d Audio frequency output power 

This property specifies the available power [normally in W or mW] that should be available from 

the output of the audio amplifier, to drive the speaker or headphones. This property is usually 

defined for a load impedance of 8O [8]. 

2.1.1. e Dynamic range 

 
The dynamic range of a receiver is set by the difference between the maximum allowable signal 

and the minimum detectable signal of the receiver. This quality expresses the ability of the 

receiver to deliver high performance in the presence of strong signals. The maximum allowable 

signal can be either the 1dB compression point or the third order intercept point. Th e dynamic 

range depends on the noise characteristics and the required SNR of the receiver, as well as on 

the compression and intercept points of the different components [9] [11] [24]. 

2.1.1. f Receiver distortion 

 

Distortion is any difference between the original signal and the demodulated signal. Harmonic 

distortion occurs when the input signal power level of a component exceeds the 1dB compression 

point of that component and spurious responses are added to the signal at integral multiples of 

the original frequency [8] [9] [20] [23] [31]. 

 

Intermodulation distortion occurs when spurious responses, at the sums and differences of two 

input frequencies, are added to the original signal. Input signals exceeding the 3rd order intercept 

point will cause intermodulation distortion [8] [9] [23] [31]. 

 

Filters are not ideal and will therefore cause linear amplitude or frequency distortion by altering 

the existing frequency component amplitudes. Filters also cause phase or delay distortion, by 

delaying the different frequency components of a signal by various amounts, depending on their 

frequency. Excellent phase response and a sharp amplitude cut-off response tend to be 

incompatible goals in a filter. Phase and delay distortion is not so important where speech signals 

are received, because the human ear is not sensitive to small changes in phase [8] [9] [31]. 

 

Care must be taken to minimize the distortion in a receiver, by designing for a high dynamic 

range, reducing the signal levels into devices, minimizing the number of gain components, 

increasing selectivity and taking distort ion that is added to the signal due to certain filter 

topologies, into account [8] [24]. 
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2.1.1. g Conclusion 

 
The different receiver characteristics that were defined and discussed in this section are 

influenced by certain characteristics of the different components of the receiver. A summary of 

the receiver characteristics and the different components that influences them are given in Table 

2-1. 
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PRE-SELECT FILTER:             
Bandwidth    x x  x  x x   
Insertion loss x     x       
Insertion loss at Image x    x x       
Noise figure x     x       
Noise figure at Image x     x       

RF AMPLIFIER (LNA):            x 

Noise figure  x     x       
Noise figure at image x     x       

Gain x   x  x x      
Gain at image x    x x       

1dB compression point     x  x       

IP3    x  x       
Bandwidth     x  x      

Reverse isolation  x       x    

IMAGE FILTER:             

Selectivity -bandwidth    x x  x  x x   

Insertion loss x     x       
Insertion loss at image  x    x x       

Noise figure x     x       
Noise figure at image x     x       

1st MIXER:     x       x 
Conversion gain/loss x   x  x       
Noise figure x     x       
1dB compression point     x  x       
IP3    x  x       
IP2    x  x    x   
Noise balance x     x       
LO-RF isolation         x    
RF-IF isolation       x      
LO-IF isolation             

INJECTION FILTER:             
Selectivity -bandwidth x     x       
FIRST OSCILLATOR:            x 
LO power x     x       
Phase noise x x    x       
Wideband AM noise x x    x       
Spurious signals  x  x         
IF FILTER:             
Selectivity -Bandwidth x x x   x       
Insertion loss x   x  x     x  
Noise figure x     x       

IF AMPLIFIER:            x 
Gain x   x  x       
Noise figure x     x       
DETECTOR PROPERTIES:            x 
Required SNR at input  x x    x       

AUDIO FILTER:             
Bandwidth x  x x  x       

AUDIO AMPLIFIER:            x 
Gain   x x  x  x     

Table 2-1 Receiver properties and characteristics of the different components that influences them. 
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2.1.2. The receiver 
 
 

The receiver system topology that was implemented is shown in Figure 2-3. This system is a 

double down-conversion super heterodyne receiver, which uses low side injection. The second IF 

circuitry, including the modulator, is implemented using a single IC. The system had to be 

designed for low power consumption to make it practical for portable equipment. This adds 

constraints to the receiver performance, and intermodulation distortion (IMD) occurs more easily 

[11]. 

IF filter

1st Mixer

Local Oscillator

Preselect filter

RF amplifier / LNA IF subsystem
Audio ampilifier Speaker

IF amp Limiter

Audio out

Filtered IF signal

Image filter

Injection filter

Audio filter

Demodulator

 

Figure 2-3 Block diagram of the receiver system that was used. 

 
 

The main functions and most important design considerations of the different receiver 

components are given in the table below. 
 

 
Device Main objectives Other functions Design restrictions 

 
Pre-select 

filter 

§ Prevents strong 

interfering signals to 

saturate RF amplifier 

or mixer. 

§ Minimize IM distortion. 

§ Attenuate fIF to 

improve IF rejection. 

§ Suppress LO energy. 

§ Low attenuation of 

receiver spurious 

responses e.g. image. 

§ Placed before RF amplifier, 

thus insertion loss should 

be minimized to optimize 

overall noise figure.  

§ Filter will not have a sharp 

cut-off (high insertion loss 

associated with sharp cut-

off). 
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Image 

reject filter 

§ Reject image 

frequency. 

§ Attenuate fIF increase 

IF rejection. 

§ Reduce harmonic 

distortion. 

§ Suppress LO energy. 

§ Suppress 2nd 

harmonic of RF 

amplifier. 

§ Placed after RF amplifier, 

thus insertion loss will have 

less effect on noise figure 

of system, but should still 

be minimized. 

 

 
RF 

amplifier 

§ Important for good 

sensitivity. 

§ Provides amplification 

of small RF signal. 

§ Isolate pre-select and 

image filter : Improve 

selectivity. 

§ Attenuate LO signal 

power with high 

reverse isolation. 

§ Low noise figure critical for 

overall low system noise 

figure. 

§ High compression point to 

limit distortion & improve 

dynamic range. 

§ Gain >20dB is not 

desirable: -can cause 

instability -require high 

mixer compression point. 

Mixer 

§ Translate signal from 

one frequency to 

another. 

§ Suppress LO signal 

power : LO-IF 

isolation. 

§ Attenuate signals at fIF 

to improve IF rejection 

: RF-IF isolation. 

§ Noise balance will affect 

AM noise rejection from LO 

– influence sensitivity. 

§ Conversion gain/ loss will 

affect sensitivity. 

§ High IP3 and compression 

point will limit 

intermodulation distortion 

(IMD): Have the highest 

input power levels in the 

receiver.  

Oscillator 

§ Generate signals at 

fLO for mixer - used to 

process receiver 

signals. 

 

§ Phase noise influences 

adjacent channel selectivity 

performance. 

§ Wideband noise will 

influence sensitivity. 

§ Will cause receiver 

spurious responses if high 

spurious responses 
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present. 

§ Should oscillate despite 

temperature and power 

supply variations. 

§ LO power needed depends 

on mixer. 

Injection 
filter 

§ Placed between LO 

and mixer to attenuate 

wideband AM noise 

around LO frequency 

and harmonics. 

§ Attenuate 2nd order 

intercept point. 

§ The need for this filter is 

determined by the LO 

output power and spurious 

responses, as well as by 

the input power needed for 

the LO mixer port. 

IF filters 

§ Provides adjacent 

channel rejection. 

§ Sets overall noise 

bandwidth of the 

system. 

§ Remove unwanted 

mixer products. 

§ Attenuation of 2nd 

image. 

§ Bandwidth determines 

modulation bandwidth. 

§ Can obtain selectivity from 

previous filters, but 

bandwidth and cut-off 

requirements are 

impractical to realize at RF 

frequencies, and insertion 

loss will have a more 

significant effect on the 

overall noise figure in the 

front-end. 

IF amp § High gain component.  

§ IP3 must be high, 

especially if no IF filter is 

used. 

Table 2-2 Important functions and design restrictions of different radio components [8] [1] [9] [27]. 

 

2.2    Noise theory 
 
The designer of a new receiver should be able to evaluate his/her system concerning signal and 

noise to be sure that his/her system’s output SNR is sufficient to meet specifications.  Accurate 

prediction of the noise figure of a system is extremely important to avoid unnecessary re-design 

of the system to achieve a better sensitivity, especially for high performance receivers. This 

section will explain how these important calculations can be done [32] [56]. 
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Thermal noise can be defined as the small random currents in a conductor, due to thermal 

agitation, which competes with the desired signal current. Noise that competes with the desired 

signal causes degradation in the desired signal-to-noise ratio between the input and output of a 

certain component. This is called the linear noise factor (F) of the component. The noise figure 

(NF) of a component is defined as 

 10logNF F dB=     (2.4) 

 

The sensitivity of the receiver is closely related to the overall noise figure of the receiver (as 

stated in the previous section). A single number is, as a rule, not adequate to describe how well a 

receiver will function in all circumstances. These sensitivity calculations remain simply an 

estimation of the noise performance and, therefore, of the sensitivity of the system [8] [25] [26] 

[27] [56]. 

 

The noise figure of a system depends on the  

§ different component gains and noise figures. 

§  the image noise. 

§  local oscillator wideband noise  [1] [32]. 

 

The noise figure of a system is sometimes predicted by only using the cascaded noise factor as 

discussed in 2.2.1. a. This is a risky prediction and can result in sensitivity specifications not 

being met [32]. 

 

Descriptions of these different noise contributions and their role in the bigger picture will be given 

in this section, as well as a description of how to calculate the receiver sensitivity from this 

predicted noise figure. The local oscillator phase noise will be discussed in detail in chapter 4.  

2.2.1. Noise figure calculations 
 
The total linear noise factor of the system that is used to calculate the receiver sensitivity is given 

by  

 tot stages image LOnoiseF F F F= + +  (2.5) 

where    
§ stagesF   is the linear noise factor calculated from the cascaded component gains and noise 

factors. 
§ imageF  is the linear noise factor contributed by using the image frequency. 

§ LOwidebandF  is the linear noise factor contribution from the LO wideband noise [1]. 
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Local oscillator (LO) wideband noise contributes significantly to the sensitivity degradation of the 

receiver. The image noise contribution is usually very small, but can still be of paramount 

importance, especially in very sensitive receivers [1] [32]. 

2.2.1. a Cascaded noise factor  

 
The desired signal in a receiver system travels through a cascade of many stages, each 

degrading the signal-to-noise ratio in a way. The linear cascaded system noise factor can be 

calculated if every component gain and noise figure is known from 

 

 32
1

1 1 2 1 2 3 1

11 1
...

...
K

stages
K

FF F
F F

G G G G G G G −

−− −
= + + +  (2.6) 

 

kF is the linear noise factor and kG  is the gain of every component where 1,2,3...k K=  and K  is 

the number of components up to but excluding the demodulator [1] [26] [56]. 

 
It can be seen from (2.6) that the first component should have a low noise figure and at least 

moderate gain for a good overall system noise figure. Thus, the noise factor is dominated by the 

first component because the effect of the following components is minimized by the gains of the 

previous components. If the first component of the receiver system is a low noise amplifier, as 

shown in Figure 2-3, the noise performance of the system will be improved.  On the other hand, an 

attenuator directly before an amplifier will degrade the noise figure. Therefore, the filter prior to 

the low noise amplifier in the super heterodyne receiver shown in Figure 2-3 will degrade the noise 

performance of the receiver system significantly [26] [56]. 

2.2.1. b Noise factor contribution from image noise 

 
The noise at the image frequency, that is present at the first mixer’s input port, will down-convert 

to the IF band as demonstrated in Figure 2-4 [1] [56]. 
 

 

Figure 2-4  Image noise. 
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The noise factor contribution due to the image noise can be predicted as follows  

 1 32
1

1 1 2 1 2 1

1

1 11
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F Fi
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−

=
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− −−

= + + +
∏

 
 
 

 (2.7) 

 
where nF is the noise factor and nG  is the gain of every component at the desired frequency, nFi  

is the noise factor and nGi  is the gain of the components at the image frequency. 1,2,3...n N=  

where N  is the number of components up to but excluding the detector [1]. 

 

The image filter attenuates the image be reflection. Thus, this filter is not matched at the image 

frequency. Conventional cascaded noise figure analysis, assumes that all the components are 

matched and that the noise figure of a passive component is equal to its loss. This assumption is 

not true in the mismatched case. If the mixer input port termination is reactive it will produce no 

thermal noise and a zero noise figure can be assigned to the image filter- 1nFi =  ( 0NF dB= ) [56] 

[1]. 

 

For well designed multiple conversion receivers with a high gain front-end, the thermal noise 

amplified by the components that follow is negligible. Therefore, the analysis can only be carried 

out up to the first mixer [1]. 

 

2.2.1. c  The noise contribution as a result of wideband LO noise 

 
Local oscillator wideband noise separated from the LO frequency and its harmonics by ±fIF will 

mix with a higher conversion loss than the desired signal. This will produce noise at the IF output 

as demonstrated in Figure 2-5 [1] [10]. 

 

 

Figure 2-5 Down-conversion of noise (Figure 2.5 p20 [10]). 
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The noise figure contribution as a result of the LO AM wideband noise is calculated from [1] 

 
[( )/10]

1
0

1

10

1000

LO s s sP W L MM

LOwideband Ns
j

j

F
kT G

+ − −

=

=

= Σ
∏

 (2.8) 

where  LOP  is the local oscillator power [dBm]. 

 sW  is the wideband noise level of sideband s [dBc/Hz]. 

 sL  is the loss of the injection filter at sideband s [dB] - 0s dBL =  for no injection filter. 

 sM  is the mixer noise balance for sideband s. 

 231.38 10 [ / ]k J K= ×  - Bolzmann’s constant. 
 0 290T K= . 

jG  is the gain of the components at the desired frequency. 

1,2,3...j N=  and N  is the number of components up to and including the mixer. 
 1,2,3,...s M=  where M  is the number of sidebands taken into account. 
 

This will degrade the sensitivity of the receiver significantly and has to be taken into account 

when the overall noise figure is predicted [1] [10]. 

  

2.2.2. Sensitivity calculation 
 
As stated previously, sensitivity is the minimum detectable signal power (in dBm) or voltage 

(usually in µV) which will give a specified SNR or SINAD. The minimum detectable signal power 

or receiver sensitivity can be calculated by using the overall predicted noise figure from [1] [9] 

 

 
min 0
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i

o

S
S kBT F

N

 
=    

 (2.9) 

where   F  is calculated using (2.5). 

 231.38 10 [ / ]k J K= ×  - Bolzmann’s constant. 
 0 290T K= . 
 outSNR  is the required linear signal-to-noise ratio at the detector input. 
 B  is the equivalent noise bandwidth of the system [Hz]. 
 

miniS  is the minimum detectable signal power at the input of the receiver in watt. Thus, the 

sensitivity is 
min

310log( /10 ) [ ]iS dBm− . 

 
The minimum detectable signal voltage can be calculated by using  

 02i i rmsV Z S V=     (2.10) 

where 0Z  is the characteristic impedance of the system (normally 50O) [9]. 

 
The IF filter, usually the narrowest filter in the system, sets the overall noise bandwidth of the 

system. As the cut-off of a filter becomes sharper, its noise equivalent bandwidth approaches its 
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3dB bandwidth. Thus, the noise bandwidth of the system is usually approximated by using the 

bandwidth of the IF filter [1] [9] [31]. 

 

The sensitivity of a practical receiver system will be improved to represent the sensitivity 

predicted if the different components are well matched to each other and if the different 

components are perfectly tuned to the desired frequency. Appropriate matching filters in a system 

tend to optimize the SNR by narrowing the bandwidth and by removing LO AM wideband noise 

as well as image noise. Filters can increase the noise figure of the system by introducing loss and 

attenuating the signal while the noise stays the same [56]. 
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3  ReceiverCALC 1.1 

Prior to the design of a new receiver system, the designer should be able to evaluate his/her 

system to predict performance. This will enable him to determine if specifications are met, and to 

use different components to improve performance.  

 

Existing systems that need to use new components due to part replacement because of 

redundancy, cost or improvement can also be evaluated to determine i f the characteristics of the 

new component are comparable with the original.  

 

The computer program, , was written in Delphi [53] to predict the specifications 

of a receiver system. This program is easy to use and enables the system designer to compare 

different components and their effects on the overall receiver performance easily.   

 

In this chapter  and all its functions and advantages will be discussed. A copy of 

this program is given as an appendix CD in the folder ‘ReceiverCALC’. The Delphi[53] code is 

also provided on this CD in the folder ‘Delphi programming code’, and can be viewed in Delphi 

6[53].  

 

3.1    The user interface 
 
 

 predicts the performance specifications of dual down-conversion receivers. The 

designer first has a choice between a dual conversion receiver with discreet components and a 

dual conversion receiver with the second IF circuitry integrated on a single chip (as shown in 

Figure 3-1). Each of these options opens a new window (with corresponding flexible system) that 

will be able to predict the most important specifications of the system. 

 

Both of these receiver systems can be changed to fit the chosen receiver topology by selecting or 

deselecting the checkboxes in the system properties box at the bottom of the screen. This will 

activate or eliminate chosen components in the given topology. Warnings are given to show 

which system specifications will be influenced if a certain receiver component is eliminated. 

System properties are automatically calculated and updated each time a component is eliminated 

or inserted.   
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Figure 3-1 The user interface and possible systems. 
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Component properties can be seen and changed by clicking on the corresponding component. 

For example, a click on the RF amplifier opens up the dialogs box given below in Figure 3-2. The 

properties of the RF amplifier can now be changed. If any property value is left empty or an 

unrealistic value is given, an error will be given when the OK button is pressed. If the exit icon in 

the right top corner is used, a warning is shown and the value is restored to its default. All the 

other component properties can be changed likewise. 

 

 

Figure 3-2 RF amplifier properties 
dialog box. 

 

The active form and all its properties and settings in all the dialog boxes can be saved by 

selecting File/Save, typing a file name into the save dialog box and the clicking OK. If the file 

already exists, an option will be given to replace the file or not. The format of the files that is 

saved is text files. To open a file just click on File/Open and select the desired file as shown in 

Figure 3-3. The file is tested, to see if it was written by . If the file is the correct 

format, it will be opened and all the corresponding settings will be loaded. To start a new file, 

select File/New, and all the properties will be restored to their default values. To close the 

program, click on the exit icon in the top right corner or select File/Close. 
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Figure 3-3 Opening a file. 

 

 can be used to calculate the receiver selectivity (adjacent channel rejection), 

sensitivity, spurious responses and dynamic range. A power diagram, to determine the power 

levels throughout the receiver, can also be drawn. Each of these calculations can be done by 

clicking on the corresponding calculation under the Calculate menu button and are discussed in 

the next section. The sensitivity, selectivity and dynamic range can also be calculated by clicking 

on the calculate properties button.  

 

When calculating spurious responses, it is important to know what the receiver frequency range 

and channel spacing is and whether a doubly balanced mixer is used or not (certain spurious 

responses are rejected if a doubly balanced mixer is used). This can be selected in the dialog 

boxes under Calculate/Spurs or Calculate/Selectivity or under Options/System Properties as 

shown in Figure 3-4. The properties in these dialog boxes are similar and, if they are changed in 

one dialog box, they automatically change in the other, and in all the component properties dialog 

boxes where applicable. 
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Figure 3-4 The Options/System properties dialog box. 

 

The calculations that can be done with  are discussed in the section. 

 

 
 
3.2    Calculation of receiver performance 
 
Calculation of the receiver selectivity, sensitivity, spurious responses, distortion and dynamic 

range are possible with . These calculated receiver specifications are only 

predictions because they will never be able to predict a system’s performance accurately in 

reality. Calculation of the input and output power levels throughout the receiver is important to 

determine if harmonic or intermodulation distortion will occur.  The dynamic range is predicted by 

calculating the minimum detectable input power and the maximum input power without harmonic 

or intermodulation distortion occurring. 

3.2.1.  Receiver sensitivity 
 
The receiver sensitivity is predicted or calculated with equations as described in section 2.2.2. 

The calculations done by  will, by default, take the noise contributions of the 

component gains and the noise figures into account as well as the noise contribution because of 

the image and wideband LO-noise. This will give a more accurate prediction of the sensitivity than 

the one that is normally predicted by only considering the cascaded component gain and noise 

figure contributions.  

 

If this is not preferred, or if not all the required component properties are known, the noise figure 

contributions that must be taken into account by the calculator can be selected under 

Calculate/Calculation options. The checkboxes in this dialog box can be checked or unchecked to 

specify your specific need as shown Figure 3-5. If these checkboxes are enabled or disabled, the 

corresponding properties in the component properties dialog boxes will be disabled.  
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The antenna noise temperature is by default room temperature but can also be changed here. 

The noise bandwidth of the system can also be changed in this dialog box, and will automatically 

be updated in all relevant dialog boxes.  

 

 

Figure 3-5 The calculation options dialog 
box. 

 

The disabling of these noise figure contributions is not encouraged, because it will result in less 

accurate results. Accurate prediction of sensitivity is essential to prevent  

§ re-design of the expensive receiver front-end. 

§ requirement of more transmitter power to achieve the same performance, especially in 

portable equipment that requires low power consumption. 

§ over-design of the receiver to achieve a low noise figure at the expense of other receiver 

specifications. 

§ the use of unnecessary expensive low noise front-end components or unnecessary 

complex time consuming design of amplifiers with a low noise figure [1] [8] [32]. 

 

It should be remembered that the noise figure of a passive component would be approximately 

equal to the loss of the component. Thus, the noise figures of passive mixers and filters should be 

easy to specify. Noise figures and gains of the relevant active components should be specified on 

the datasheets of the components. Different receiver components will require certain noise 

figures, which will  achieve the overall system sensitivity specification. Therefore, the noise figure 

requirement of a certain receiver component can be predicted with , before 

designing the component [25] [26]. 

 

The selectivity of a system is reliant on the bandwidth and cut-off characteristic of the IF filter, 

which implies that these filters should have sharp cut-off characteristics. As the cut-off of a filter 
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becomes sharper, its noise equivalent bandwidth approaches its bandwidth. Thus the noise 

equivalent bandwidth of the system is predicted by  according to the bandwidth 

of the IF filter. If the IF filter is not present the designer should enter the noise equivalent 

bandwidth in the Calculate/Calculation options dialog box [9] [31]. 

 

3.2.2. Receiver selectivity/adjacent channel rejection 
 
Receiver selectivity is fast becoming one of the most important design considerations (and 

restrictions), as regulations are getting more stringent. As previously stated in 2.1.1. bi this 

property depends on the selectivity of the IF filter, the oscillator phase noise, synthesizer spurious 

responses, IF bandwidth and required SNR at the detector input. Selectivity of the system is 

predicted by  by using equation (2.2). If more than one filter is present, the first 

one’s bandwidth and selectivity will be used and if no IF filters are activated this property will only 

be given as poor.  

 

Prediction of the selectivity of the receiver is important to determine  

§ What is an acceptable oscillator phase noise. 

§ What the restrictions should be on the IF filter. 

§ How significant oscillator spurious responses are. 

 

3.2.3. Dynamic range and power diagrams to predict distortion 
 
The dynamic range of the receiver system is one of its most important design considerations 

because it will determine how the receiver will operate in the presence of strong and very weak 

input signals. Poor dynamic range will cause desensitization and distortion [9] [11]. 

 

The dynamic range of a receiver can be calculated by using [9] [11] 

detDynamic range dB Maximum allowable signal power dBm Minimum ectable signal power dBm= −               (3.1) 

The minimum detectable input signal power (sensitivity) is calculated by using the noise figure as 

described in section 3.2.1. The maximum allowable signal power can be calculated by calculating 

the signal levels throughout the receiver for a specific input power, to determine if the 

compression point or the intercept point of any device is exceeded. The input signal is chosen as 

the highest intercept point in the receiver and decreased repeatedly until the signals throughout 

the receiver do not exceed component 1dB compression or intercept points. This is the maximum 

allowable input signal power [9]. 
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 also enables the designer to calculate the receiver power levels throughout the 

receiver by plotting a diagram of power levels. A typical diagram is shown in Figure 3-6. 

 

 

Figure 3-6 Calculated power levels throughout the receiver, with an input power of  –20dBm. 

 

This very powerful tool enables the designer to determine the effect of changing component 

specifications and makes it easy to see if 1dB compression points or intercept points are 

exceeded. Messages will warn the designer if these points are exceeded as shown in Figure 3-7 

[9]. The maximum allowable and minimum detectable signal levels throughout the receiver can 

also be plotted on similar diagrams.  
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Figure 3-7 Calculated power levels, with an input power of 0dBm. Note warnings when the 

compression or intercept point of a component is exceeded. 

3.2.4. Spurious responses 
 
The calculation of receiver spurious responses, as defined in the previous chapter, is essential to 

determine if some of them will fall in the IF pass band. There is a large combination of responses 

to check. Therefore, it is helpful to have a computer program determine the responses [9]. 

 
For a single frequency receiver, there is only a single known RFf  and LOf . Therefore, the 

intermodulation products can simply be calculated by using IM RF LOf mf nf= −  where 1,2,3...m M=  

and 1,2,3...n N= . 

 

A multi channel receiver is built to receive a specified RF frequency range and demodulate it to a 

certain known IF. This receiver will have a certain known channel spacing, f∆ . Intermodulation 

products can be calculated by firstly calculating the specific RF frequencies that are spaced by 

the known channel spacing f∆ . The LO frequency for each individual RF frequency is calculated 

next, with LO RF IFf f f= − . Intermodulation product frequencies can now be calculated for every 

RFf  and LOf  with IM RF LOf mf nf= −  where 1,2,3...m M=  and 1,2,3...n N= . The order of these 

products is m n+ . M and N are the upper limits of the maximum orders to be searched and are 
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usually sufficient if greater than 6. This is because the magnitude of the intermodulation products 

decreases with increasing order and usually products greater than 6 are negligibly small [1] [9]. 

 

A graph is drawn with these calculated spurious responses. Another graph with only the IF pass 

band is also drawn to determine if any spurious responses falls inside the IF pass band. A typical 

graph is shown below in Figure 3-8. 

 

 

Figure 3-8 Spurious response chart for a single frequency receiver with 
50RFf MHz= , 10.7IFf MHz=  and 3N M= = . 

 

3.3    Conclusion 
 
The equations used to predict the system performance assume that the component properties 

are linear and that all components are perfectly matched to each other. This will definitely not be 

the case in an actual system. Therefore, it is very important to remember that the receiver 

specifications that will be calculated with  are only predictions. In reality, one 

value will never be sufficient to predict a receiver system’s performance in all conditions.   

 

Every component as shown in the previous chapter has its own unique functions. Insertion of 

every new component in the system will always involve a trade-off between different system 

specifications. This can be potentially dangerous  because, while one property might seem to 

improve significantly and the system seems simpler and less expensive,  it can be so easily 

forgotten that this will be at the expense of another important receiver specification. This can be 
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illustrated by removing the image reject filter, before the first mixer. Even though the receiver 

sensitivity will be improved, the image rejection specification might not be achieved as a result. 

The designer will, however, be warned to consider this when removing components of the 

system. 

 

Predictions of the receiver performance, on the other hand, are essential to aid the designer in 

evaluating the receiver system prior to the design of the receiver. This is very important to prevent 

over-designing for certain specifications, thus compromising others, as well as to prevent trying to 

improve performance afterwards by using different components, resulting in extra cost, 

complexity and time consumption.  
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4 Development of the receiver components 

A modular design approach was used to design the receiver. The receiver is divided into 

components that are each designed, built and matched to 50O and then measured and 

characterized separately. This modular design approach enables the designer to upgrade easily 

to increase bandwidth or replace parts when components become obsolete in the future. 

Impedance matching in high frequency networks is necessary to ensure maximum power 

transfer. Power at high frequencies is expensive and should not be wasted. Impedance matching 

in high frequency networks is also important to improve the signal-to-noise ratio [26].  

 

This chapter discusses the theory of the individual receiver components and then provides a 

hardware design description for every receiver component. An overview of the chapter is shown 

in Figure 4-1.  

 

Due to the modular design approach used, every component needs to be measured and 

characterized thoroughly.  More than one unit was developed for every receiver component, 

some with better characteristics than others. This information is critical to enable the comparison 

of their influence on receiver performance in the next chapter.  

 

 

Figure 4-1 Structure of chapter 4. 

 
4.1    The mixer 
 
Mixers are the primary devices that are used in communication systems to achieve frequency 

conversion without affecting the modulation properties of the signal at the RF input port. 

Operation of mixers is typically based on the non-linearity of a diode or a transistor. Important 

properties include dynamic range, conversion loss (or gain), image response, bandwidth, 
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intercept point, port isolation, noise figure, voltage standing wave ratio (VSWR) and LO noise 

rejection [35] [1] [9] [13] [24]. 

 

Mixer types and characteristics will be discussed in this section, followed by a description of the 

mixers that were designed and their measured performance. The section will conclude with a 

comparison of the various mixers. 

4.1.1. Theory of mixers  

4.1.1. a Active and passive mixers 

 
A passive mixer is a mixer where the energy for the frequency-translated output signal comes 

from the input signal and the LO supply. These mixers are usually implemented by using the non-

linear properties of diodes. These types of mixers have an inherent conversion loss due to the 

frequency translation process and the impedance matching at the three ports, which leads to 

resistive mixer losses [1] [9] [12] [16] [35]. 

 

The output power of an active mixer comes from a DC power supply, rather than from the LO and 

is generally implemented by using the non-linear properties of transistors. As a result, lower LO 

levels can be used and active mixers offer gain [1] [9] [12] [35]. 

 

Passive diode mixers and active transistor mixers are different and thus it is difficult to compare 

their performance. Active mixers may have a conversion gain, but also typically have a poorer 

noise figure than passive mixers. Comparisons of active and passive mixers should incorporate 

the cascade result of the subsequent components [1] [9] [35]. 

 

The greatest benefit of passive mixers is that they do the majority of tasks at least adequately, 

although not exceptionally well. Passive mixers generally require more LO power, have a better 

noise figure and a smaller dynamic range while they are broadband devices, with moderate 

distortion, conversion loss, port isolation, spurious response rejection, LO noise rejection and low 

phase noise  [1] [9] [35]. 

 

Active mixers on the other hand, may have a conversion gain, typically require less LO power, 

have a wider dynamic range and may present superior performance for some of these 

characteristics but not for all. Active mixers are also compatible with monolithic processes even 

though they are rather complex circuits with a typically poor noise figure [1] [9] [35]. 
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4.1.1. b Mixer characteristics 

 
As noted above the most important properties of mixers include conversion loss (or gain), image 

response, 1dB compression point, intercept point, port isolation, noise figure and LO noise 

rejection. A short description of the most important mixer properties, that will be measured, will be 

given in this section, as well as a description of why they are significant and how to measure 

them [9] [13] [57]. 

i. Conversion gain or loss 
 

The amount of attenuation or amplification of the signal from the RF input port to the IF 

output port of a mixer is referred to as the mixer’s conversion gain. This gain can be 

positive or negative (in which case it is referred to as conversion loss). This loss is 

inherent due to the frequency translation process and the impedance matching at the 

three ports, which lead to resistive mixer losses. Active mixers may amplify the input 

power. This important figure of merit for mixers is defined as follows: 

 

 [ ] [ ] [ ]c in outG dB RFpower dBm IFpower dBm= −  (4.1) 

  
The conversion gain of a mixer is extremely important, because the noise figure of a 

receiver may be minimized through minimizing the losses in the first RF components.  

This in return will influence the sensitivity of the receiver [9] [13] [57]. 

 

The instrumental set-up for measuring conversion gain is shown in Figure 4-2. The gain 

or loss is usually specified at a specific frequency and input LO power level. 

 

 

 

 

 

 

 

 

 

Figure 4-2 Set-up for measuring Conversion loss or 
gain and IP1. 
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ii. Isolation 
 

Isolation refers to the ability of a mixer to attenuate the coupling of RF power input at 

one port to another port of the mixer. High isolation between ports is preferred because 

unnecessary signal feed through in mixers will waste RF power, disguise the IF signal 

output and cause electromagnetic interference [9] [13] [22] [24]. 

 

LO-to-RF and LO-to-IF isolation are the most important and are generally the only 

characteristics specified. The LO-to-RF port isolation is extremely important, because 

LO power coupled to the RF port of the mixer will be radiated by the antenna, causing 

interference with other services or users. LO-to-IF isolation is essential, because high 

leakage of LO power through the mixer will mask the IF, especially when it falls in the 

IF band. In addition RF-to-IF isolation is specified, especially when high RF input power 

signals are used or if a broadband IF is used, thus allowing the RF feed through to fall 

in the IF band [9] [13] [22]. 

 

For measuring isolation, 50O impedances are required at the unused ports, while the 

mixer is still DC biased and driven at the LO input as normal.  Measurement set-ups 

shown in Figure 4-3 are used to measure different port-to-port isolations. The reduction 

of signal input power level between one port of the mixer and any other port is 

measured [18] [19] [22]. 
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Figure 4-3 Experimental set-ups for measuring isolation between ports (a) LO-RF isolation (b) LO-IF 
isolation (c) RF-LO isolation (d) RF-IF isolation [18] [19]. 
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iii. 1dB compression point 
 

Above a certain input power level, the output power level of a mixer will fail to follow 

input level changes linearly (illustrated in Figure 4-5). This happens because of device 

saturation and the fact that the losses in the mixer will now start to increase with 

increasing signal power. The 1 dB compression point of a mixer is the point where the 

output level of the mixer has fallen 1dB below the anticipated output level of the mixer if 

an ideal linear transfer function is assumed. This value is usually taken as the upper 

limit of the dynamic range and input power levels that exceed this value will cause 

harmonic distortion. The experimental set-up for measuring the 1dB compression point 

is the same as for conversion loss, as shown in  Figure 4-2. The 1dB compression point 

is specified for a specific LO input power level [1] [9] [22] [24] [26] [57]. 

iv. Intercept point 
 

An input signal consisting of two narrowly spaced frequencies (ω1 and ω2) into a non-

linear circuit will generate intermodulation products at its output of the form: [9] [19] 

 1 2IMproduct mF nF= ± ±  (4.2) 

The order of these products is m n+ . Thus  and 1 2 1 2 2 1 1 23 ;3 ; 2 ;2 ;2ω ω ω ω ω ω ω ω+ + −  and 

2 12ω ω−  are the six third order intermodulation products that will be generated as 

shown in Figure 4-4. The most critical of these products is 2 12ω ω−  and 1 22ω ω−  which 

fall very close to fRF, and will be down-converted into the IF pass band. This output is 

derived by first defining the two input signals of the mixer as [1] [9] [17]   

 ( )1 2cos cosi ov V t tω ω= +  (4.3) 

The output of a non-linear circuit can be modeled as a Taylor series. Therefore, the 

output signal can be expressed as: [9] 

( ) ( ) ( )2 32 3
0 1 0 1 2 2 0 1 2 3 0 1 2cos cos cos cos cos cos ...outv a a V t t a V t t a V t tω ω ω ω ω ω= + + + + + + + (4.4) 

The ( )3
1 2cos( ) cos( )t tω ω+  term in equation 4.4 will lead to the six third order 

intermodulation products derived earlier. It can be seen from this equation that an 

increase in the input voltage amplitude, 0V , leads to a 3
0V  increase in the amplitude of 

the third order intermodulation products [1][9][17]. 
 

 
Third order intercept point (IP3) is defined as the input or output power level where the 

desired signals and third order intermodulation products are equal in amplitude. When 

this is represented on a graph, with input power on the X-axis and output power on the 

Y-axis, the third order intermodulation products’ power will fall on a straight line with a 

slope of 3 and a desired output signal power on a straight line with a slope 1. The two 
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lines will intercept if the linear portions of these lines are extended. The XY coordinate 

of the point where they intercept are the respective input and output intercept point [1] 

[9] [13] [17] [24] [57]. 
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Figure 4-4 Mixer third order intermodulation products in the output signal [1] [9] [13] [57]. 

 
 
This point is extremely important, because input power levels in excess of the third 

order intercept point will cause intermodulation distortion. This intercept point is reliant 

on the LO and RF frequency and it is specified for a given LO power level. A device’s 

IP3 also depends very strongly on its terminating impedances at all ports. For this 

reason attenuators are included at each port during high performance mixer 

measurements [1] [9] [13] [17] [57]. 

 
 

When measuring IP3 of a mixer, the experimental set-up shown in Figure 4-6 is used. 

Two equivalent low amplitude RF input signals that are narrowly spaced are combined 

and fed into the mixer. The IF output spectrum of the mixer on the spectrum analyzer 

will include down-converted third order intermodulation products as well as the desired 

signals, as shown in Figure 4-4. The output intercept point (in dBm) can now be 

calculated by using the formula 

 3
2

IP out Pout
δ

= +  (4.5) 

Where Pout is the output power in dBm and δ is the difference between the desired 

output signal and the third order intermodulation products as shown in Figure 4-4 [1] [17] 

[24] [57]. 
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Figure 4-5 Illustrating Intercept and 1dB compression 
point - Figure 2-4 p18 [10]. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4-6 Experimental arrangement for the measurement of IP3 [1] [18] [19]. 

 
The input intercept point of the mixer can be calculated from the output intercept point 

by adding or subtracting the mixer conversion gain or loss. Mixer intercept point is 

usually specified with respect to input, while amplifier intercept point is generally 

specified as an output intercept point [1] [9] [17] [24] [57]. 

v. Noise figure 
 
The noise figure of a mixer is the difference between the RF input signal-to-noise ratio 

and the IF output signal-to-noise ratio in dB. The double sideband (DSB) noise figure 

includes signal and noise powers at the RF and image signal, while the single sideband 

(SSB) noise figure includes the noise power at image signal, but neglects the image 

signal power [9] [13] [57]. 
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In general, SSB noise figure is specified because only one of the signals that are 

produced in the mixing process is normally desired. If the mixer performance is the 

same at the image and wanted frequencies, SSB noise figure is twice (or 3dB more) 

that of the DSB noise figure, because half of the signal is discarded. This assumption is 

routinely used to specify the SSB noise figure, because DSB noise figure is frequently 

easier to measure. The measurement set-up to measure the noise figure of the 

receiver is shown in Figure 4-7 [9] [13] [57]. 

 

f

Signal
generator

RF

LO

IF

LO

Noise
source

Noise figure
meter

 

 

Figure 4-7 Measurement set-up to measure the noise figure of a mixer. 

 

vi. LO wideband AM noise rejection 
 
Local oscillator wideband noise separated from the LO frequency and its harmonics by 

±fIF will mix, with a higher conversion loss than the desired signal, to produce noise at 

the IF output as demonstrated in Figure 4-8. This will degrade the SNR and 

consequently the sensitivity of the receiver, and has to be measured separately at 

nfLO±fIF for each n.   

 

 

Figure 4-8 Down-conversion of noise (Figure 2-5 p20 [10]). 

 

This conversion loss for the relevant sideband from the LO port to the IF port is called 

mixer noise balance [9]. 
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Figure 4-9 Measurement set-up 
of the mixer noise balance [9]. 

 
The measurement set-up for measuring the mixer noise balance is shown in Figure 4-9. 

Any signal or noise at nfLO±fIF will be transferred to the mixers IF port. Thus, when 

measuring the mixer’s noise balance, a small signal is used, instead of noise. fLO stays 

fixed, while different signals, with a much lower power level than fLO, are applied at 

nfLO±fIF to the LO port of the mixer. The mixer noise balance at every nth LO harmonic 

is calculated using  

 s IF sM A A= −  (4.6) 

where AIF is the power level in dBm on the spectrum analyzer at fIF and As is the input 

level in dBm of the nfLO±fIF signal, after the combiner [9]. 

vii. Image response 

The noise at the signal’s image frequency will down-convert to the IF. This is usually 

with a similar conversion loss to the desired signal. This noise will increase the noise 

figure and degrade the sensitivity of the receiver. This can be dealt with by either using 

an image reject filter at the input of the mixer or by implementing an image reject mixer, 

which is a combination of balanced mixers and hybrids [1] [35]. 

4.1.1. c Types of mixers 

 
There are three general cat egories of mixers: single-ended or single device mixers, balanced 

mixers and doubly balanced mixers. Other mixer topologies e.g. triple balanced mixers are also 

available. Every category of mixers has advantages and disadvantages which will be discussed 

and compared in the following sections: 
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4.1.2. Designing, building and measuring different mixers  

4.1.2. a Balanced mixer (Singly balanced mixers) 

Balanced mixers consist of two single device mixers that are combined with a hybrid junction.  

This structure will lead to improved RF-LO isolation, good noise performance, low current 

consumption, the rejection of certain even order intermodulation products and the rejection of LO 

wideband AM noise [1] [35].  

 

Both RF and LO bandwidths are limited by the use of hybrids. The rat race hybrid (180-degree) 

has only 15% bandwidth, while a 90-degree hybrid has a bandwidth of up to 20%. The RF and 

LO frequencies should therefore be within ≤ 20% bandwidth of each other. This limits IF to ±15% 

of the RF and LO frequencies. Balanced mixers are therefore a poor choice when broadband IF 

is needed [1] [35] [26]. 

 

The U2796B balanced down-conversion mixer from ATMEL was built and measured to 

demonstrate typical advantages and disadvantages of balanced mixers in receivers.  

 

 

 

 

Figure 4-10 The circuit diagram of the U2796B mixer. 
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i. U2796B 

a Design 
 

The U2796B is a single-balanced mixer from ATMEL, specifically designed for down-

conversion of signals and works for frequency inputs of up to 2GHz. This mixer has a 

very low current consumption, which makes it attractive for portable equipment. The 

circuit diagram of the mixer component is shown in Figure 4-10. L2, C5 and C7 are part 

of a tapped capacitor impedance matched output network that was designed. The 

measured characteristics of this designed component are discussed next. 

b Measurements 

♦ Conversion gain 

The conversion gain of the component is measured as 7dB, which is good, 

although 2dB less than the expected gain. This is shown in Figure 4-11. According 

to the datasheets, some gain may be lost if a center tapped capacitor impedance 

matched output network is used.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-11 Measured conversion gain of the U2796B balanced mixer. 

♦ 1 dB compression point and third order intercept point 

The input 1dB compression point is measured as -16dBm. This is close to the 

expected -15dBm. The 1dB compression point measurement is shown in Figure 

4-12.  
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The measured output third order intercept point is 2dBm. Thus, the input third 

order intercept point is -5dBm, which is close to the expected input intercept point 

of -4dBm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4-12 The measured 1dB compression point of the U2796B balanced mixer. 

♦ Isolation 

The LO-RF isolation is measured as greater than 41dB for PLO>-30dBm, which is 

close to the expected 40dB. The measured RF-LO isolation is always more than 

61dB for an LO input power of -10dBm. 

 
The LO-IF isolation is 25dB as expected when PLO>-10dBm, while the RF-IF 

isolation is measured to be more than 22dB for an LO power of -10dBm 

♦ Noise figure 

The noise figure was measured as 9dB with the noise figure meter, which is 

exactly what was expected.  

♦ Power requirements 

The U2796B requires 5VDC to operate and draws 2.3mA current, which is less 

than the already low expected 3.2mA. This is very practical for a portable 

receiver.  

♦ Mixer noise balance  

A summary of the measured mixer noise balance is given in Table 4-1.  
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 Frequency
39.3LOf MHz=

10.7IFf MHz=  

s IF sM A A= −

  

LO IFf f−  28.6 MHz  31 dB  
2 LO IFf f+  89.3 MHz  41 dB  
2 LO IFf f−  67.9 MHz  38 dB  
3 LO IFf f+  128.6 MHz  51 dB  
3 LO IFf f−  107.2 MHz  46 dB  

Table 4-1 Mixer noise balance of the 
U2796B balanced mixer. 

♦ Image response  

The gain at the image (28.6MHz) was measured to be 7dB. This is the same as 

at the desired frequency.  

 

 

 

Figure 4-13 Photo of the U2796B singly balanced 
mixer that was designed. 

 

c Conclusion 
 

This mixer component, shown in Figure 4-13, draws very little current, which makes it 

very attractive to use for portable receivers. It also has a moderate gain and good 

isolation characteristics. The characteristics of this mixer are summarized in Table 4-2. 
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Characteristics U2796B 
Type Active 

Singly 
balanced  

Expected 9 Conversion gain 
[dB] Measured 7 

Expected 40 LO-RF 
Measured >41 
Expected 25 LO-IF 
Measured >25 
Expected NS 

Isolation 
[dB] 

RF-LO 
Measured >61 
Expected -15 (in) 1 dB compression 

point [dBm]  Measured -16(in) 
Expected -4 (in) Intercept point 

[dBm] Measured -5(in) 
Expected 9 Noise figure [dB] 
Measured 9 

Average mixer noise balance 
[dB] 

41 

Gain at image dB] 7 
Expected 3.2 Current 

[mA] Measured 2.3 
DC 
power 
supply Voltage [V] 2.2 - 5.5 
Maximum RF power [dBm] 23 (5V DC) 
Maximum LO power [dBm] 0 
Minimum required LO power 
[dBm] 

-10 

Table 4-2 Summary of the measured characteristics of 
the U2796B singly balanced mixer. 

 

4.1.2. b Doubly balanced mixer 

If high port-to-port isolation, excellent LO, wideband AM noise rejection and suppression of all 

even harmonics of the RF and LO signal are required, a doubly balanced mixer is the answer.  

 

Doubly balanced mixers consist of two singly balanced mixers and thus, use twice as many 

diodes or transistors which means that doubly balanced mixers generally requires 3dB higher LO 

power than singly balanced mixers. Higher LO power in return causes a greater 1dB compression 

point, which is usually taken as the top of the dynamic range, and greater third order intercepts. 

Thus, doubly balanced mixers generally have a better dynamic range than singly balanced mixers 

[1] [9] [58] [16]. 

 

A high LO power also means high current consumption. This characteristic makes doubly 

balanced diode mixers less desirable for portable equipment than active balanced mixers that 

have good performance at lower LO input power [35] [1] [9] [52] [58]. 
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Balanced diode mixers have a significant conversion loss, which will increase the noise figure of 

the receiver and will influence the sensitivity of the receiver [52]. 

i. SA602  

a Design 
 

The SA602 is an active doubly balanced Gilbert cell mixer from Philips 

semiconductors. The mixer has low current consumption, operates for RF 

frequencies up to 500MHz and has an on board oscillator. Alternatively, an external 

LO signal between 200mVpp and 300mVpp can be applied to the chip via a DC 

blocking capacitor. The RF input and IF output ports can be single or double-ended 

[8] [65].  

 
Figure 4-14 Circuit diagram of the SA602 mixer component that was designed. 

 
The application circuit diagram is shown in Figure 4-14. C1, C2 and L1 are part of the 

tapped capacitor impedance matched network. This type of impedance match 

network is shown in Figure 4-15 [61] [63]. 

 

The measured characteristics of this component are discussed next. 
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Figure 4-15 A tapped capacitor impedance matching network [61] [63]. 

b Measurements  

♦ Conversion gain 
 

A conversion gain of 7dB was measured and is shown in Figure 4-16. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-16 Measured conversion gain of the SA602. 

♦ 1 dB compression point and third order intercept point 

A 1dB compression point of -25dBm was measured. This is approximately 15dB 

less than the third order intercept point, which is a rough estimation of what can 

be expected. The 1dB compression point is shown in Figure 4-17. 

 

The output third order intercept point that was measured is -9.5dBm (-16.5dBm 

input intercept point). The expected input intercept point is -13dBm. 
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Figure 4-17 1dB compression point of the SA602 doubly balanced mixer. 

♦ Isolation 

The LO-RF isolation always measured greater than 103dB, which is excellent. 

The RF-LO isolation is not specified on the datasheets, and measures greater 

than 32dB for an LO input power of -10dBm. The LO-IF isolation is also very 

good and was measured greater than 72dB. The RF-IF isolation was measured 

to be more than 47dB for an LO power of -10dBm. 

♦ Noise figure 

A noise figure of 9.5dB was measured on the noise figure meter, while a noise 

figure of 5dB was expected. 

♦ Mixer noise balance  

The mixer noise balance measurement results are given below in Table 4-3. 
 
 Frequency

39.3LOf MHz=
10.7IFf MHz=  

s IF sM A A= −

  

LO IFf f−  28.6 MHz  69 dB  
2 LO IFf f+  89.3 MHz  82 dB  
2 LO IFf f−  67.9 MHz  80 dB  
3 LO IFf f+  128.6 MHz  82 dB  
3 LO IFf f−  107.2 MHz  82 dB  

Table 4-3 Measured mixer noise balance of 
the SA602. 
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♦ Power requirements 

The SA602 mixer component requires 5VDC and draws 1.2mA current when 

active, which is very little.  

♦ Image response  

A -20dB gain was measured at the image frequency (28.6MHz). A photo of this 

designed component is shown in Figure 4-18. 

 

 
Figure 4-18 Photo of the SA602 active mixer that was 
built. 

ii. SBL-1  

a Design 
 

The SBL-1 from Mini-Circuits is a passive doubly balanced mixer, which has little 

loss, relatively good isolation and can operate at frequencies of up to 1500MHz. This 

mixer is very easy to use, and only three DC blocking capacitors are needed at each 

port, to ensure that no DC enters the mixer.   

 

Figure 4-19 Photo of the SBL-1 passive mixer. 
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The measured characteristics of the SBL-1 passive mixer component are discussed 

next. 

b Measurements  

♦ Conversion gain 

As shown in Figure 4-20 a conversion gain of -5dB was measured, which is what 

can be expected, according to the datasheets. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4-20 Measured conversion gain of the SBL-1 doubly balanced mixer. 

 

♦ 1 dB compression point and third order intercept point 

An input 1dB compression point of 0.5dBm was measured, as shown in Figure 

4-21. The measured output third order intercept point is 10.5dBm, thus the input 

third order intercept point is 5.5dBm. 

♦ Isolation 

A minimum LO-RF isolation of 35dB was expected (typical 45dB), but a better 

isolation of 52dB was measured. The RF-LO isolation, which is not specified on 

datasheets, was measured as 52dB. 

 

The LO-IF isolation was expected to be a minimum of 25dB. This isolation should 

typically be 40dB. An isolation >40dB was measured. The RF-IF isolation is not 
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specified on datasheets, and 40dB isolation was measured with an LO power of 

7dBm. 

 

 
Figure 4-21 1dB compression point of the SBL-1 doubly balanced mixer. 

 

♦ Mixer noise balance  

The mixer noise balance results are given in the table below. 
 
 Frequency

39.3LOf MHz=

10.7IFf MHz=  

s IF sM A A= −

  

LO IFf f−  28.6 MHz  43 dB  
2 LO IFf f+  89.3 MHz  35 dB  
2 LO IFf f−  67.9 MHz  36 dB  
3 LO IFf f+  128.6 MHz  32 dB  
3 LO IFf f−  107.2 MHz  33 dB  

Table 4-4 Measured mixer noise balance of 
the SBL-1 doubly balanced mixer. 

 

♦ Image response  

A -5dB gain was measured at the image frequency, which is the same as the 

gain at the desired frequency.  
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iii. AD831  

a Design 
 

The AD831 is a doubly balanced active mixer from Analog Devices. The mixer has 

high intercept points, operates for RF and LO frequencies up to 500MHz and requires 

very little LO signal power (-20dBm). The circuit diagram for this mixer is shown in 

Figure 4-22.  

 

According to the datasheets the gain is set with the expression 

 4 3

3
20log

R R
GdB dB

R
 +

=   
 

 (4.7) 

4R  was chosen as 120Ω , while 2R  was chosen as 47Ω . Thus, the expected gain can 

be calculated with (4.7) and is 11dB .  

 
Figure 4-22 Circuit diagram of the AD831 mixer component. 

 
The measurements of the AD831 mixer component are discussed next. 

b Measurements   

♦ Conversion gain 

As shown in Figure 4-23, the conversion gain was measured as 16dB, which is 

much higher than the expected designed gain of 11dB. 
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Figure 4-23 Measure conversion gain of the AD831 doubly 
balanced mixer. 

♦ 1 dB compression point and third order intercept point 

An output 1dB compression point of 10dBm was expected, while an output 1dB 

compression point of 13dBm was measured. This is shown in Figure 4-24. 

 

 
Figure 4-24 Measured 1dB compression point of the AD831 
doubly balanced mixer. 

 
An output intercept point of 12.5dBm was measured.  
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♦ Isolation 

70dB LO-RF isolation was expected, 

according to datasheets. The LO-RF 

isolation was always measured to be 

greater than 70dB as shown in Figure 

4-25.The RF-LO isolation is not specified 

on the datasheets. Isolation more than 

70dB for an LO input power of -20dBm 

was measured 

. 

 
 Figure 4-25 LO-RF isolation. 

30dB LO-IF isolation is expected, 

according to datasheets. The measured 

isolation is more than 30dB for an LO 

input power of more than -6dB. For 

smaller LO input power the isolation 

decreases until zero for LO input power 

less than -32dBm as shown in Figure 4-26 

Figure 4-26 LO-IF isolation. 
 

An RF-IF isolation of 45dB is expected, while an isolation of more than 31dB was 

measured.  

♦ Noise figure 

A noise figure of 8.6dB was measured on the noise figure meter. According to 

the datasheets, a 10.5dB noise figure can be expected at 70MHz, thus an 8.6dB 

noise figure at 50MHz is feasible. 

♦ Mixer noise balance  

The mixer noise balance results are summarized in Table 4-5. 
 
 Frequency

39.3LOf MHz=

10.7IFf MHz=  

s IF sM A A= −

  

LO IFf f−  28.6 MHz  37 dB  
2 LO IFf f+  89.3 MHz  33 dB  
2 LO IFf f−  67.9 MHz  35 dB  
3 LO IFf f+  128.6 MHz  36 dB  
3 LO IFf f−  107.2 MHz  34 dB  

Table 4-5 Measured mixer noise balance of 
the AD831 doubly balanced mixer. 
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♦ Power requirements 

The AD831 requires 5VDC and 9VDC and consumes 96mA current when active, 

which is a lot and unpractical for portable equipment. 

 

A photo of the designed mixer component is shown in Figure 4-27. 

 

Figure 4-27 Photo of the AD831 active mixer that was 
built. 

iv. Conclusion and a comparison between the doubly balanced mixers 
 

All three the doubly balanced mixers built work well and have different strengths and 

weaknesses, which will influence the receiver performance.   

 

The SA602 has the best isolation and average mixer noise balance, the worst noise 

figure and uses very little power, which makes it ideal for a portable receiver. The 

AD831 on the other hand, unexpectedly has the highest conversion gain, requires the 

least LO input power and uses a lot of current, which makes it unpractical for portable 

equipment. The SBL-1 has the lowest noise figure, the lowest gain, uses no DC power 

and requires the most LO power. 

 

The influence of every mixers’ characteristics on the system’s performance will be 

evaluated in the next chapter. 

 

A summary of the expected and measured component characteristics is given in Table 

4-6. (All the 1dB compression points and intercept points are referred to as the input, 

unless otherwise specified.) 
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*NS - Not specified 

Table 4-6 Summary of the expected and measured characteristics of the doubly 
balanced mixers. 

4.1.2. c Single device mixer 

Single device mixers are devices that are used to translate frequency by using only a single non-

linear device. This group includes i.e. single diode mixers, single FET mixers and dual-gate 

MOSFET mixers [1] [35].  

 

Advantages of single device mixers are typically 

§ High conversion efficiency. 

§ Low noise. 

§ They are inexpensive [1] [35]. 

 

Disadvantages of single device mixers include: 

§ The need for special structures to combine the LO and RF signals. 

§ The need for a filter to achieve good LO-to-IF isolation. 

Characteristics AD831 SA602 SBL-1 
Type Active 

Doubly 
balanced  

Active 
Doubly 
balanced  

Passive 
Doubly 
balanced   

Expected 11 17 -5.6 Conversion gain 
[dB] Measured 16 7 -5 

Expected 70 *NS 35-45 LO-RF 
Measured >70 >103 >52 
Expected 30 *NS 25-40 LO-IF 
Measured 0-30 >72 >40 
Expected 45 *NS *NS 

Isolation 
[dB] 

RF-LO 
Measured >70 >32 52 
Expected -16 ≈ -28  *NS 1 dB compression 

point [dBm]  Measured -3 -25 0.5 
Expected 8 -13  *NS Intercept point 

[dBm] Measured -3.5 -16.5 5.5 
Expected ± 10.5 5 *NS Noise figure [dB] 
Measured 8.6 9.5 5 

Average mixer noise balance 
[dB] 

35 79 36 

Gain at image dB] 16 -20 -5 
Expected 100 2.4 Current 

[mA] Measured 96 1.2 
DC 
power 
supply Voltage [V] 5 & 9 5 

Passive 
device 

Maximum RF power [dBm] 19.5 *NS 1 
Maximum LO power [dBm] 10 -6.5 *NS  
Minimum required LO power 
[dBm] 

-20 -10 4  
Typical: 7 
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§ Local oscillator AM noise is not attenuated; therefore, an injection filter is required. 

§ The filters and drains, that are necessary at inputs and outputs of single device mixers, 

places impedance constraints on the input and output ports. This inherently requires that 

single-device mixers are narrowband [1] [35]. 

 

The dual-gate MOSFET mixer is one single device mixer that does not need special structures to 

combine the LO and RF signals. It has good LO-RF isolation, which avoids some of the 

impedance restrictions. These mixers are very sensitive to the drain impedance at their IF 

frequency. A dual-gate MOSFET mixer circuit was built and measured to demonstrate some of 

the characteristics of single device mixers This mixer was deliberately designed to be poor, to 

make comparison with a very poor mixer possible [1] [35].  

i.  BF982 dual-gate MOSFET mixer 

a Building and measuring the dual-gate MOSFET mixer 
 

The BF982 dual-gate MOSFET was used for this single device mixer. This dual-gate 

MOSFET was first biased and then coupling capacitors were added at every input 

and output port, to ensure that no DC enters the mixer. The circuit used is given 

below in Figure 4-28. 

 

 

Figure 4-28 The dual-gate MOSFET mixer 
circuit diagram [1] [35] [45]. 

 

Next, this mixer component is measured, with the techniques described in 4.1.1. b. 

The results are: 

♦ Conversion gain 

The conversion gain of the dual-gate MOSFET mixer is measured to be -22dB, 

as shown in Figure 4-29 which is very poor. This is because of the fact that there 
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is no resonant LC circuit at the drain. This mixer was deliberately designed to be 

poor, to make comparison with a very poor mixer possible. 

 

 
Figure 4-29 Conversion gain of the dual-gate MOSFET mixer. 

 

♦ 1 dB compression point and third order intercept point 

The expected input 1dB compression point is -5dBm as shown in Figure 4-30. The 

measured output third order intercept point is -11dBm (11dBm input intercept 

point) 

 

 
Figure 4-30 1dB compression point of the dual-gate MOSFET 
mixer. 

 



Chapter 4- Development of receiver components 

Valpré Kellerman                       58    
 

♦ Isolation 

The measured LO-RF isolation is always greater than 40dB for PLO>-20dBm. The 

RF-LO isolation measures as more than 24dB for an LO input power of 0dBm. 

LO-IF isolation is >19dB when PLO>-20dBm. Lastly the RF-IF isolation is 

measured to be more than 15dB.  

♦ Noise figure 

A noise figure of 13dB was measured on the noise figure meter. 

♦ Mixer noise balance  

The results are shown in Table 4-7 below. 
 

 Frequency
39.3LOf MHz=
10.7IFf MHz=  

s IF sM A A= −

  

LO IFf f−  28.6 MHz  22 dB  
2 LO IFf f+  89.3 MHz  18 dB  
2 LO IFf f−  67.9 MHz  19 dB  
3 LO IFf f+  128.6 MHz  16 dB  
3 LO IFf f−  107.2 MHz  17 dB  

Table 4-7 Mixer noise balance of the dual-
gate MOSFET mixer. 

♦ Power requirements 

The dual-gate MOSFET mixer component was operated from 9VDC. A 1.4mA 

current is drawn when active. 

 
Figure 4-31 The single device dual-gate 
MOSFET  mixer component that was 
designed. 
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♦ Image response  

The gain at the image frequency (28.6MHz) was measured to be -22dB. This is 

the same gain as at the desired frequency. 

 

ii. Conclusion 
 

The mixer component that was designed is shown in Figure 4-31. Even though this 

mixer does not have excellent characteristics, the influence of its specific 

characteristics on the receiver system will be compared with mixers with better 

characteristics in the next chapter. A summary of its characteristics is given in Table 4-8. 

 
Characteristics Dual-gate 

MOSFET 
Type Active 

Single 
device  

Conversion gain 
[dB] 

Measured  -22 

LO-RF Measured 41 
LO-IF Measured >19 

Isolation 
[dB] 

RF-LO Measured  >24 
1 dB compression 
point [dBm]  

Measured -5 

Intercept point 
[dBm] 

Measured -11(out) 

Noise figure [dB] Measured 13 
Average mixer noise balance 
[dB] 

18 

Gain at image dB] -22 
Current 
[mA] 

Measured 1.4 DC 
power 
supply Voltage [V] 9 
Maximum RF power [dBm] 8 
Maximum LO power [dBm] 1 
Minimum LO power [dBm]  

Table 4-8 Summary of the measured characteristics of 
the dual-gate MOSFET mixer. 

4.1.3. Conclusion concerning mixers 

 
The different mixer components built and characterized in this section, worked well and their 

influence on the receiver system’s performance will be compared in the next chapter. Certain 

advantages and disadvantages of mixers were predicted in 4.1.1. A summary of these 

advantages is given in Table 4-9.  
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 Advantages Disadvantages 

Single 
device  

§ Low distortion. 

§ Simple & inexpensive. 

§ LO-RF isolation of dual-gate MOSFET 

mixer good without the use of filters- 

avoids some of the impedance 

restrictions . 

§ Single diode mixers used at high 

microwave frequencies because other 

alternatives are not available or to costly. 

§ Port-to-port isolation depends on external 

filters. 

§ No inherent suppression of spurious 

responses . 

§ Local oscillator AM noise not attenuated-

requires an injection filter. 

§ Need special structures to combine RF and 

LO and requires some type of IF filter for 

good LO-to-IF isolation: LO-RF diplexer and 

IF filters limits applications . 

§ Filters and drains at inputs and outputs 

necessary - impedance cons traints inherently 

require that single-device mixers are 

narrowband. 

§ Decent noise figure and m oderate bandwidth. 

Balanced 

§ Rejection of certain even order IMD 

products and spurious responses . 

§ AM noise rejection of LO. 

§  High LO-RF isolation. 

§ Avoids LO-IF leakage. 

§ Rejection of LO energy from IF. 

§ Active balanced mixers generally has 3dB 

better interception point than active single 

device mixers . 

§ Poor choice when broadband IF is needed. 

§ RF/LO bandwidth less than 20%. 

§ RF-IF isolation depends on filters . 

§ Active balanced mixers generally require 3dB 

higher LO power than single device mixers. 

Doubly 
balanced 

§ High port-to-port isolation. 

§ Excellent LO wideband AM noise 

rejection. 

§ Suppress all even harmonics of the RF 

and LO signal. 

§ Wide RF and LO bands  

§ Broadband IF can partially overlap with 

RF and LO bands . 

§ Avoids LO-IF leakage. 

§ Active doubly balanced mixers generally 

have a higher third order intercept point 

than other types of mixers. 

§ Active balanced mixers perform  well at 

low LO power. 

§ Not ideal input matching at RF port. 

§ Active doubly balanced mixers generally 

require 6dB higher LO power than single 

device mixers .  

§ Passive doubly balanced mixers require a 

high LO power for linear performance. 

§ Circuit complexity of active doubly balanced 

mixers is higher than that of passive mixers , 

but they are compatible with monolithic 

processes . 

Table 4-9 Comparisons between different mixers [1] [9] [35]. 
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A summary of the measured mixer characteristics is given in Table 4-10 below. This clearly shows 

that the passive mixer has the smallest noise figure and that the single device mixer has the 

worst characteristics.   

Characteristics AD831 SA602 Dual-gate 
MOSFET 

SBL-1 U2796B 

Type Active 
Doubly 
balanced  

Active 
Doubly 
balanced  

Active 
Single 
device  

Passive 
Doubly 
balanced   

Active 
Singly 
balanced  

Conversion gain [dB] 16 7 -22 -5 7 
LO-RF >70 >103 41 >52 >41 
LO-IF 0-30 >72 >19 >40 >25 

Isolation 
[dB] 

RF-LO >70 >32 >24 52 >61 
1 dB compression point [dBm] -3 -25 -5 0.5 -16 
Intercept point [dBm] -3.5 -16.5 11 5.5 -5 
Noise figure [dB] 8.6 9.5 13 5 9 
Average mixer noise balance 
[dB] 

35 79 18 36 41 

Gain at image dB] 16 -20 -22 -5 7 
Current [mA] 96 1.2 1.4 2.3 DC 

power 
supply 

Voltage [V] 5 & 9 5 9 
Passive 
device 2.2 - 5.5 

Maximum RF power [dBm] 19.5 *NS 8 1 23 (5V DC) 
Maximum LO power [dBm] 10 -6.5 1 *NS  0 
Minimum required LO power 
[dBm] 

-20 -10 *NS 4 
Typical: 7 

-10 

*NS – Not specified 

Table 4-10 Comparison between the measured characteristics of the mixers. 

 
Mixer types and characteristics were discussed in this section. Five different mixer components 

were designed and their performance measured. This will enable a comparison of the influence of 

the mixer characteristics on receiver performance. A discussion of the front-end amplifiers follows 

in the next section as is shown in  Figure 4-32. 

 

 
Figure 4-32 Structure of chapter 4: 4.2 Front-end amplifier. 
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4.2    The front-end amplifier 
 

The front -end amplifier provides amplification of the incoming RF signal. This is important to 

improve the sensitivity of the receiver. Careful consideration must be given to the choice of the 

devices in the front-end of the receiver to achieve a good noise figure and consequently a 

practical sensitivity as discussed in section 2.1.1. a. To optimize the noise figure and 

consequently the sensitivity, these devices should have a low noise figure and a high dynamic 

range. The most critical part of the system, for an overall low system noise figure, is the front-end 

amplifier. Front-end amplifier characteristics will be discussed in this section. Different amplifier 

components were designed and their performance measured. This enables a comparison of the 

influence of the front-end amplifier characteristics on receiver performance.   

4.2.1. Theory 

Important characteristics of the RF amplifier include stability, noise figure, gain, 1dB compression 

point, intercept point and return loss. These are described briefly in this section. 

4.2.1. a Stability 

“Unconditionally stable” is a term applied to an amplifier that will not oscillate regardless of load or 

source impedance. One method to determine stability is the by plotting stability circles on the 

Smith chart. If all the stability circles lie outside the Smith chart, the device is unconditionally 

stable. On the contrary, stability circles inside the Smith chart indicate that the device can be 

stable for certain load and source impedances, but not for all. These source and load impedances 

can be determined from the Smith chart [9] [17] [25]. 

 

Another method to determine unconditional stability is by using Rollet’s condition. This states that 

a device is unconditionally stable if the conditions 

 
2 2 2

11 22

12 21

1
1

2
s s

K
s s

− − + ∆
= >  (4.8) 

and 
 11 22 1 2 2 1 1s s s s∆ = − <  (4.9) 

are simultaneously satisfied [9].  

4.2.1. b Noise figure and gain 

As previously discussed, the noise figure of the front-end amplifier is the main contributor to the 

noise figure of the receiver system. Therefore, the noise figure of the front -end amplifier has a 

major influence on the sensitivity of the system. An amplifier that is optimized for noise will not 

have optimum gain and visa versa. There is always a trade-off between noise figure and gain.  

The optimum source impedance, for which an amplifier will have minimum noise figure, is usually 
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specified by the manufacturer. On the contrary, an amplifier, which is designed for maximum 

gain, will have input and output impedances that are matched simultaneously.  

4.2.1. c 1dB compression point and intercept point 

The 1dB  compression point defines the output level at which the amplifier’s gain is compressed 

by 1dB  as illustrated in Figure 4-5. Input power levels that exceed this value will cause harmonic 

distortion. The experimental set-up for measuring the 1dB  compression point of an amplifier is 

shown in Figure 4-33. 

  

 

 
 

 

Figure 4-33 Measurement set-up for measuring 
the IP1 of an amplifier. 

 

Third order intercept point ( 3IP ) is a measure of third order products generated by a second 

signal arriving of a device such as an amplifier as discussed in section 4.1.1. The intercept point 

of an amplifier is extremely important because power levels in excess of the third order intercept 

point will cause intermodulation distortion.  

 

When measuring 3IP  of an amplifier the experimental set-up shown in Figure 4-34 is used. The  

3IP  of a device also depends very strongly on its terminating impedances at all ports. Therefore, 

attenuators are included at each port if high performance amplifier measurements are done. The 

intercept point can be calculated from 

 3
2

IP out Pout
δ

= +  (4.10) 

Where Pout is the output power in dBm and δ is the difference between the desired output signal 

and the third order intermodulation products as shown in Figure 4-4 [1] [17] [24] [57]. 

 
 
 
 
 
 
 
 
 
 

Figure 4-34 Measurement set-up, for measuring the IP3 of an amplifier. 
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The input intercept point can be calculated by subtracting the gain from the output intercept point. 

Amplifier intercept point is generally specified as an output intercept point [1] [9] [17] [24] [57]. 

4.2.1. d Return loss 

The return loss is calculated with the equation 

 20log inRL dB= − Γ     (4.11) 

For a perfectly matched load, no power will be reflected ( 0inΓ = ), and the return loss is infinity.  

4.2.2. Designing, measuring and building different front-end amplifiers 

4.2.2. a Design of a low noise amplifier 

 
The AT-41533, low noise NPN bipolar transistor from Hewlett Packard was used to design a low 

noise amplifier at 50MHz. This device has a good noise figure of less than 1dB and a reasonable 

gain at 50MHz.  

 

The design was done in several steps, namely: 

§ Design of a biasing network 

§ Determine stability and design a stable amplifier 

§ Design input and output matching networks 

§ Measure scattering parameters and confirm that the final amplifier is unconditionally stable 

 

The low noise amplifier design is discussed in detail in Appendix A. A photo of this component is 

shown in Figure 4-35. 

 

 

Figure 4-35 Photo of the designed AT-41533 single transistor low 
noise amplifier. 

 

Final measurements of the amplifier characteristics follows.    
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i. Measurements 

a Noise figure  
 
The most important design consideration for this front-end RF amplifier was the 

noise figure, and some of the gain had to be sacrificed for this. The noise figure 

was measured with the HP noise figure meter to be 1.6dB, which is a relatively 

low noise figure.  

b Gain 
 

The measured gain at 50MHz, where the amplifier was designed and matched is 

16dB, which is better than expected for a low noise amplifier.  

c 1dB compression point and intercept point 
 

The measured output compression point is -1dBm as shown in Figure 4-36.  

 

 
Figure 4-36 Measured 1dB compression point of the AT-41533 single transistor low 
noise amplifier. 

 
The measured third order output intercept point is -1dBm. 

d Return loss  
 

A big return loss is desirable, but is not expected here, because the amplifier is 

not that well matched to improve the noise figure. The return loss over the 

frequency band is shown in Figure 4-37. The return loss at 50MHz is 3.9dB. 
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Figure 4-37 Input return loss of the low noise amplifier. 

ii. Conclusion 
 

Property Measured value Comment 

Noise figure 1.6dB at 50MHz Reasonably low noise figure 

Stability Unconditionally 

stable 

The amplifier is unconditionally stable 

over the measured frequency band 

Return loss 3.9dB at 50MHz A lot of power is reflected, which is the 

sacrifice that has to be made to achieve a 

low noise figure 

Gain 16dB at 50MHz This is a good gain 

Matching 11 3s dB< −  and 

22 15s dB= −  at 

50MHz 

The input impedance is not that well 

matched, to achieve a better noise figure. 

The output impedance is very well 

matched, which will improve the gain. 

1dB compression 

point 

-1dBm  

Intercept point -1dBm  

Power supply 5ccV V=  and  

45ccI mA= . 

5cI mA< . 

The amplifier draws very little current 

3dB Bandwidth 49% Reasonable bandwidth 

Table 4-11 Measured LNA properties summary. 
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4.2.2. b Designing, building and measuring the GALI-S66 

 
An amplifier with a better input impedance match and a poorer noise figure was designed and 

built to determine how this will influence the performance of the receiver system. Many available 

amplifiers were investigated to find ones with a low noise figure, operating current and at least 

moderate gain, as shown in Table 4-12. The Gali-S66 was chosen, because of its relatively low 

noise figure and low current consumption, high gain and high return loss compared to other 

available RF amplifiers.  

 

Model BW 
[MHz] 

 

Gain 
[dB] 

Impedance 
match 

NF 
[dB] 

DC 
current 
[mA] 

DC 
voltage  

[V] 

Comments  

Philips  
SA5204 200 20 50O 6 25 5 No external components 
RF micro devices 
RF2046 DC-3000 22 50O 3.8 35 3.5  
RF2336 DC-3000 20 50O 3.8 35 3.5  

RF2360 5-1000 20 75O 1.2 104 6-9 Low noise figure 
Large DC current 

Analog Devices 

AD603 DC-90 31 100O 8.8 12.5 5 
Voltage controlled amplifier 

Small DC current 
High gain and noise figure 

AD8350 DC-1000 20 200O 6 28 5-10  
Mini-circuits  

MAR-
6SM DC-2000 20 

VVSSWWRR::  
IInn 1.7:1  

OOuutt 1.7:1 
3 16 3.5 Small DC current 

MAR-
8SM DC-1000 32.5 Not 

matched 3.3 36 7.8 Conditionally stable 
High gain 

RAM-
6 DC-2000 20 

VVSSWWRR::  
IInn 1.4  

OOuutt 1.3 
2.8 16 3.5 Small DC current 

RAM-8 DC-1000 32.5 Not 
matched 

3 36 7.8 Conditionally stable 
High gain 

Gali-S66 DC-3000 22 
VVSSWWRR::  
IInn 1.25 
OOuutt 1.7  

2.7 16 3.5 Small DC current 

Gali-52 DC-2000 22.9 
VVSSWWRR::  
IInn 1.35 
OOuutt 1.4 

2.7 50 4.4 Large DC current 

VAM-6 DC-2000 19.5 
VVSSWWRR::  
IInn 1.6 

OOuutt 1.5 
3 16 3.3 Small DC current 

Table 4-12 Comparison of some available amplifiers. 

 

i. Design of the GALI-S66 amplifier 
 

The Gali-S66 amplifier of mini-circuits was chosen. A circuit was designed in Protel [55] 

and built. The schematic of the Gali-S66 circuit is shown in Figure 4-38.  
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Figure 4-38 Schematic of the Gali-S66 circuit. 

 
This circuit was built, measured, and worked well. A photo of the amplifier component 

is shown in Figure 4-39. 

 

Figure 4-39 Photo of the 
designed Gali-S66 amplifier 
component. 

ii. Measuring the Gali-S66 amplifier circuit 

a Noise figure  
 
The noise figure was measured with the HP noise figure meter as 2.2dB, which is 

lower than the 2.7dB specified on the datasheets.  

b Gain 
 

The transducer power gain can be calculated from the s-parameters and will 

reduce to 2
21TG s= if the input and output ports of the amplifier are perfectly 

matched and thus, no power is reflected. The magnitude of 11s  at the input of the 

Gali-S66 amplifier is 24dBm−  at 50MHz  and is plotted in Figure 4-40. This is much 

better than the impedance match ( 11 3s dB< − ) of the low noise amplifier in the 

previous section, which implies that the power that will be reflected from the Gali-
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S66 amplifier is much smaller. Thus, the calculated gain will be much closer to 

2
21s . The magnitude of 21s  is plotted in Figure 4-40 and is 21 21.266 21.3s dB dB= ≈  at 

50MHz . 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-40 Measured 11s  and 21s .
 

 

 

Figure 4-41 Gain of the amplifier over the frequency range. 

 

The amplifier gain was calculated and plotted over the entire frequency range 

with Matlab [54] and is shown in Figure 4-41. The calculated transducer gain at 

50MHz using the measured s-parameters, is 21.3dB  as was predicted by 2
21s . 
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c 1dB compression point and intercept point 
 
The output 1dB  compression point was measured at 3dBm− , while an output 

intercept point of 12.5dBm  was measured. 

 

 
Figure 4-42 1dB compression point of the Gali-S66 amplifier. 

d Return loss  
 

The return loss of the Gali-S66 was expected to be 19dB. Thus, the input 

impedance match is expected to be good.  

 
The return loss at 50MHz was measured as 16.5dB. The return loss over the 

frequency band is shown below. 

 

Figure 4-43 Return loss of the Gali-S66. 
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iii. Conclusion 
 

Property Measured value Comment 

Noise figure 2.2dB  Lower than the expected 2.8dB  

Stability Unconditionally 

stable 

 

Return loss 16.5dB   

Gain 21.3dB  High gain as expected 

Matching 11 24s dBm= −  and 

22 28s dB= −  at 

50MHz  

Good impedance match at output and 

input ports 

Output  1dB 

compression 

point at 50MHz  

3dBm−  Lower than the expected 1dBm  at 2GHz  

Output intercept 

point at 50MHz  

12.5dBm   

Power supply 9ccV V= , 

14.5ccI mA=  

Less than the expected 16mA 

Table 4-13 Summary of the measured Gali-S66 amplifier properties. 

 

4.2.3. Conclusion 

Both amplifiers work well at 50MHz and have different advantages and disadvantages. Th ese are 

summarized in Table 4-14. 

 

Property 

AT-41533 

transistor 

amplifier 

Gali-S66 amplifier 

Noise figure 1.6dB  2.2dB  

Stability 
Unconditionally 

stable 

Unconditionally 

stable 

Return loss 3.9dB  16.5dB  

Gain 16dBm  21.3dB  

Matching 
11 3s dB< −  and 

22 15s dB= −  at 

11 24s dBm= −  and 

22 28s dB= −  at 
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50MHz  50MHz  

Output  1dB 

compression 

point at 50MHz  

1dBm−  3dBm−  

Output 

intercept point 

at 50MHz  

1dBm−  12.5dBm  

Power supply 
5ccV V= , 46ccI mA=  

5cI mA=  

9ccV V= , 

14.5ccI mA=  

Table 4-14 Comparison between the characteristics of the 
designed Gali-S66 and the AT-41533 single transistor amplifiers. 

 

Front -end amplifier characteristics were discussed in this section, two amplifier components were 

designed, built and their performance measured. This will enable a comparison of the influence of 

these characteristics on receiver performance. A discussion of the local oscillator follows in the 

next section as shown in Figure 4-44.  

 

 

Figure 4-44 Structure of chapter 4: 4.3 Local oscillator. 

 
 
4.3    Local oscillator 

4.3.1. Theory  

Oscillators and frequency synthesizers are of paramount importance in receiver systems. They 

provide the signals that are used to demodulate received signals in receivers as well as the 

signals that are transmitted in transmitters [1] [9]. 
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In a super heterodyne receiver, frequency tuning is accomplished by varying the frequency of the 

local oscillator.  This can be done with a voltage-controlled oscillator (VCO) for low frequencies 

and wideband modes. Narrowband tuning at high frequencies on the other hand is nearly 

impossible to achieve with a VCO. This is because VCO frequency stability and precise 

frequency-tuning accuracy decreases as the VCO frequency increases [8].  

 

If a radio is only required to tune to a few channels, switched crystals can be used as shown in 

Figure 4-45. As the number of channels increase, the size and cost of the radio will increase 

rapidly. The number of crystals that are used can be decreased significantly by using a multi-

conversion receiver and placing a crystal bank at each LO [8]. 

 

A different approach to achieve precise narrowband frequency tuning at high frequencies, 

involves frequency synthesis. Frequency synthesizers derives exact high frequency signals, by 

using accurate reference oscillators e.g. crystal oscillators.  Direct digital synthesizers  (DDS) and 

phase lock loops (PLL) are examples of frequency synthesizers.  

 

IF filter IF amplifierRF amplifierFilter

 
Figure 4-45 Use of switched crystal oscillators to achieve frequency tuning in a super heterodyne 
receiver system. 

 

A short description of the different types of frequency generators, their most important 

characteristics and a comparison between the different options, that were built and measured, 

follows.  

4.3.1. a Types  

i. Oscillators 
 

An oscillator is a circuit that generates AC waveforms from DC power. Basic building 

blocks of oscillators include: [9] [26] 

§ A resonator that determines the frequency e.g. a LC circuit or crystal. 
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§ An active circuit with a negative resistance and a gain at the oscillator frequency 

e.g. an transistor or diode circuit. 

§ Components that limit  the amplitude and stabilize the oscillation. 

 

 

 

 

 

 

 

Figure 4-46 Concept of oscillator resistance [9] [26]. 

 
The two basic elements of an oscillator, namely the active circuit and the resonator, 

are shown in Figure 4-46. The input resistance of both of these blocks is of paramount 

importance, to enable oscillation and is defined in this figure. To enable oscillation the 

prerequisites that must be met, are: 

§ Condition 1:  

 

Since the resonator circuit is passive ( 0resR > ) the above condition will imply that 

0actR < . This condition will determine if the circuit oscillates  [9] [26]. 

§ Condition 2:  

 

 
 

The point where actX  intercept resX− , determines the frequency where the circuit 

will oscillate [9] [26]. 

 

Numerous oscillator topologies are available e.g. Hartley, Colpitts, Clapp, Pierce and 

Wien Bridge. A typical Colpitts oscillator circuit is shown in Figure 4-47. The oscillator is 

divided into the resonant and active circuit to illustrate the above conditions for 

oscillation. 

 

The resonator chosen in Figure 4-47 is a LC tank. The Q value of a resonator is a very 

important figure of merit, because it determines if the oscillator will have a steep 

resonating gradient and as a result, low phase noise. Therefore, a high Q factor is 

desirable in a resonator. A wide variety of resonator elements are available that can 

replace the LC tank in Figure 4-47. 
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Figure 4-47 Typical common emitter Colpitts oscillator divided into basic 
blocks. 

 
Resonators include: [1] [9] [26] [37] 

§ LC circuits are used up to 10GHz. Higher Q values are achievable at lower 

frequencies. 

§ Crystal resonators have very high Q values (typically 100 000). The highest 

frequency where crystals are available is approximately 200MHz 

§ Coaxial transmission line resonators are produced for high frequencies and have 

relatively high Q values. 

§ Dielectric resonators have high Q values (up to 5000) and are used at high 

frequencies. Applications are limited to products that would not be exposed to too 

much vibration, etc. 

§ Strip line resonators have low Q values (typically 100) and are used at high 

frequencies. 

§ Metal cavities work well at high frequencies but are not practical in applications 

where space is limited, because they are rather large (In the order of λ or λ/2). 

 

ii. Phase lock loops (PLL) 
 

Phase lock loops use feedback to control the output frequency of a VCO accurately. 

This closed frequency control system consist off a voltage controlled oscillator (VCO), a 

phase detector, a loop filter, stable frequency reference source and often an amplifier in 

addition, as shown in Figure 4-48.  
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When the loop is locked the high frequency output out reff Nf= , where N  is the number 

by which the frequency divider divides the output frequency and reff  is the frequency 

of the stable reference source.  

Phase
detector

Frequency
divider

VCOLoop filter
Stabile reference
frequency source

Stabile high
frequency output

 

Figure 4-48 Typical phase lock loop. 

 
Phase lock loops are typically implemented by combining a voltage-controlled oscillator 

(VCO), a phase lock loop IC, a stable reference frequency oscillator and a loop filter. 

The loop filter should set-up a trade-off between noise and settling time. PLL’s have 

good frequency accuracy and phase noise characteristics, but settling loop times 

between changes in frequency can be long [8] [9] [47]. 

iii. Direct digital synthesizer (DDS) 
 

Direct digital synthesizers generate precise frequency-tunable output waveforms, by 

dividing a high frequency reference clock by a factor set by a programmable tuning 

word. The output resolution is the smallest difference between the two frequencies at 

the output [43] [45] [46]. 

 

DDS operation can be explained with reference to Figure 4-49. It can be summarized as 

follows:  

§ A frequency tuning word is provided typically by a microprocessor or some form of 

a digital control unit and written into the frequency register.  

§ A frequency word from the frequency register is loaded into the phase register, at 

each clock pulse. This is used to calculate the phase of the waveform. The output 

of the phase accumulator is linear, as shown in Figure 4-49 and cannot be used to 

generate a waveform.  

§ The phase to amplitude converter will use this phase input to determine a data 

value, representing the amplitude of the waveform at this phase, as stored in the 

waveform memory. This is read and delivered to a digital to analog converter.  
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§ The digital to analog converter (DAC) will deliver an analog voltage, of the form 

stored in the waveform memory, and of the frequency, specified by the frequency 

control word.  

§ A low pass filter, which will remove the sampling effects on the signal, follows. The 

reference clock runs at a single fixed frequency, which will simplify the design of 

this filter. 

 

The reference clock of the DDS should be at least twice as high as the highest 

frequency that will be generated. Some DDS ICs includes a reference clock multiplier 

that reduces the frequency requirement on the precision reference clock. This will also 

enable the DDS to use existing system clock sources, thereby reducing costs [43] [46]. 

  

Reference
clock

 generator

Digital to analog
converter

Generated
analog output

signal

Phase
accumu-

lator

Phase-to-
amplitude
converter+ DAC

Filter

Tuning
word Wave form

memory
(ROM / RAM)

Frequency
register

 
Figure 4-49 DDS circuit block diagram [43] [45] [46]. 

 
Advantages of DDS include [43] [46]: 

§ The frequency stability and accuracy of the DDS is dependent on its reference 

oscillator. Thus, it can be as accurate as a crystal-controlled oscillator or even a 

temperature compensated crystal oscillator for extreme cases.  

§ High resolution enables the DDS to generate specific desired output frequencies, 

and make very precise changes in frequency, with no over or undershoot loop 

settling time abnormalities. 

§ Phase and amplitude can be controlled and changed precisely. 

§ Phase lock loops may need tuning due to temperature drift and component aging 

after a while. This will not be necessary for digital synthesizers. 

§ The DDS is capable of generating any arbitrary waveform, because it functions by 

recalling a waveform stored in its memory. Some synthesizers use RAM memory 
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for waveform storage in which case any arbitrary waveform can be built into the 

memory to be recalled.  

 

4.3.1. b Amplitude and phase noise of the local oscillator 

 
Oscillators are susceptible to phase and amplitude noise. Amplitude noise includes any 

differences in the amplitude, and is usually negligible, because it is typically fed into a limiter or 

mixer that removes the effect of the amplitude noise. Phase noise or timing jitter is the random 

fluctuation of the frequency of an oscillator signal [8] [9] [37] [42]. 

 

The cause of phase noise is changes in device temperature and noise or interfering signals 

elsewhere in the circuitry (EMI), which couple to the oscillator vi a the power supply or substrate 

[9] [40] [42] [43]. 

 

Frequency stability is critical in oscillators. The short-term stability of an oscillator can be seen on 

a spectrum analyzer. The discrete spikes in the spectrum viewed are caused by spurious signals 

coming from the oscillator harmonics, while the phase noise will appear as a wide continuous 

distribution restricted around the output signal. Without phase noise, all the signal power would 

be focused at the desired signal frequency [9] [38] [40] [42]. 

 

Phase noise will limit the selectivity of the receiver and cause down-conversion of signals that are 

located nearby the desired signal (reciprocal mixing). Since restrictions on receiver selectivity are 

becoming more important; this phenomenon is of paramount importance and can limit the system 

performance. Phase noise will also have an influence on the sensitivity of the receiver. Any 

noises close to LOf  will produce noise products close to IFf  and degrade sensitivity. The 

sensitivity of the receiver can be degraded by the phase noise, if the phase noise leaks through 

the mixer or mixes with the RF or LO signal to produce noise at the IF port [8] [1] [9] [33] [37] [39] 

[40] [41]. 
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Figure 4-50 Phase noise definition [24] [33-34] [37] 
[39] [40] [42]. 

 
Phase noise ( ( )mL f ) is defined as the ratio of power, in a 1 Hz bandwidth, at a given offset mf  

from the signal, to the total signal power. Phase noise is expressed in decibels relative to the 

carrier power per Hertz of bandwidth [dBc/Hz] [9] [24] [34] [39] [41] [42]. 

 

The phase noise of an oscillator can be measured using a spectrum analyzer, with a 1Hz 

resolution bandwidth. The signal power is measured first and then the phase noise power at a 

particular offset mf  from the carrier is measured. The ratio of these two powers is the normalized 

power, referred to the signal, at a frequency offset, mf . This ratio is the SSB phase noise and is 

calculated using [33] [40] 

 ( ) 10log S
m

SSB

P
L f

P
=  (4.12) 

 
where SP  is the signal power, and SSBP  is the phase noise power, in a 1 Hz bandwidth, at a 

frequency offset mf  from the carrier.  

 
The maximum phase noise, at a given offset, mf , that is required to achieve a specified adjacent 

channel rejection can be predicted with [9] [42] 

 ( ) 10log [ / ]mL f SNR S B dBc Hz= − −  (4.13) 

where   

§ SNR  is the desired signal-to-noise ratio at the output of the receiver [ ]dB  

§ S  is the specified adjacent channel rejection / selectivity [ ]dB  

§ B  is the bandwidth of the IF filter in [ ]Hz  
 

A high Q of the tank in a LC oscillator, will cause low phase noise and visa versa [37]. 
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In phase lock loop systems phase noise can be caused by the leakage of the reference signal, 

harmonics of the VCO, spurious frequencies generated by the phase detector and noise within 

the pass band of the oscillator feedback circuit that will be amplified [9] [42]. 

 

The output signal quality of a DDS is dependent on the signal quality of the reference clock that is 

driving the DDS.  The phase noise of the reference signal of the direct digital synthesizer is 

reduced in the output. Therefore, the 30MHz output signal of the DDS will have less phase noise 

than the 120MHz reference clock. There is however a limit to this reduction, called the residual 

phase noise. If the phase noise of the reference clock is better than the residual phase noise, the 

DDS output signal will not exceed this. Thus, one should not make to much of an a effort to limit 

the phase noise of the reference clock just to have an overall DDS output phase noise that is still 

approximately the same [43]. 

 

Reference clock multipliers, that can be enabled, are included in some DDS ICs. The advantages 

of these reference clock multipliers are: 

§ The DDS can use another existing system clock, which will simplify the system and 

reduce costs. 

§ A low frequency reference clock can be used, which means a reduction in complexity and 

cost of the clock oscillator [43] 

 

This frequency multiplication will however, degrade the phase noise of the reference clock. On 

the other hand, oscillators at lower frequencies typically have a lower phase noise than oscillators 

at high frequencies [42] [43]. 

 
The frequency stability of the local oscillator is extremely important, because it will determine 

whether the desired frequency will be received or not. The oscillator frequency should be 

insensitive to DC changes. 

 

4.3.2. Designing, building and measuring different frequency generators 

 
A DDS and a crystal oscillator was designed next. The phase lock loop was not designed here, 

but instead the Rohde & Schwarz SML03 signal generator was used. This signal source has a 

PLL on the inside that was used to do the comparisons with in the next chapter. The estimated 

phase noise of this signal generator measured with the spectrum analyser at 12.5kHz is                      

-108dBc/1Hz.  
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4.3.2. a Designing, building and measuring the DDS  

 
An AD9851 direct digital frequency synthesizer from Analog Devices was built. This is a DDS IC 

with a six-time reference clock enable function, a built in 10 bit digital to analog converter and a 

tuning resolution of approximately 0.04Hz. Reference clock rates of up to 180MHz can be 

accommodated. It produces a sine wave that can be used directly as a frequency source.  

 

The AD9851 is essentially a digitally controlled oscillator, which will generate an output frequency 

dependent on the contents of its 40-bit register. The contents of this 40-bit register and thus, the 

output frequency of the AD9851 were chosen in this application to be controlled by the low-power 

ATmega8L microcontroller from the ATMEL AVR family of microcontrollers. The ATmega8L was 

chosen for its low power consumption, which is a major consideration in portable devices.  

 

The hardware and software design of this possible digital replacement for the local oscillator is 

discussed in detail in Appendix B.  

 

The circuit diagram of this frequency source component is shown in Figure 4-51 and a photo of the 

component is shown in Figure 4-52.  

 

 

Figure 4-51 Circuit diagram of the AD9851 direct digital synthesizer component 
that was designed. 
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Figure 4-52 Photo of the designed direct 
digital synthesizer component. 

 

i. Measurements 
 

The output signal of the DDS was investigated next, using a spectrum analyzer and the 

Tektronix TDS 380 oscilloscope. The unfiltered DDS output spectrum is shown in Figure 

4-53, when the DDS is programmed to generate an output signal at 39.3MHz . The 

unfiltered output amplitude of the DDS is 2dBm . The harmonics of the output signal can 

be seen clearly in the spectrum at 78.6MHz , 117.9MHz  and at 157.2MHz . The reference 

signal that leaks through is also seen at 20MHz  as well as its harmonics at  

60,100,140&180MHz . The unfiltered DDS Tektronix TDS 380 oscilloscope output is 

shown in Figure 4-54. This signal is modulated quite badly by these high frequency 

signals and is difficult to distinguish.  

 

  
Figure 4-53The unfiltered DDS spectrum 
analyzer output. 

 

Figure 4-54 The unfiltered DDS oscilloscope 
output. 
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Next, the Chebyshev injection filter that will be discussed in section 4.4.3 was coupled 

to the DDS output. The filtered output spectrum is shown in Figure 4-55. The output 

amplitude of this filtered DDS output is 0dBm± . Thus, the filter filters out all the DDS 

harmonics but introduces a 2dBm  insertion loss. The sinusoidal output of the DDS as 

seen on the Tektronix TDS 380 oscilloscope is shown in Figure 4-56. This signal is 

much more useful than the unfiltered signal.  

 

  
Figure 4-55The Chebyshev filtered DDS 
spectrum analyzer output. 

 

Figure 4-56 The Chebyshev filtered DDS 
oscilloscope output. 

 
The Butterworth injection filter that will be discussed in section 4.4.3 was coupled to the 

output of the DDS. The filtered output spectrum is shown and output amplitude of this 

filtered DDS output is 1dBm . Thus, the filter introduces a conversion loss and filters out 

the DDS harmonics, at the expense of a phase delay and as a result, the signal is 

slightly distorted. The output of the DDS as seen on the Tektronix TDS 380 

oscilloscope is shown in Figure 4-58.  

 

  
Figure 4-57The Butterworth filtered DDS 
spectrum analyzer output. 

 

Figure 4-58 The Butterworth filtered DDS 
oscilloscope output. 
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The phase noise of the DDS was measured at offsets of 12.5kHz±  from the carrier 

frequency (thus at 39.3125MHz  and 39.2875MHz ), with a HP8562A spectrum analyzer. 

The smallest resolution bandwidth of this spectrum analyzer is 100Hz , so the phase 

noise was measured per 100Hz  and then the phase noise per 1Hz  was estimated by 

subtracting 20dB  (divided by 100 ) The results are summarized in Table 4-15.  

 

Unfiltered DDS output ( )12.5 110 /L kHz dBc Hz= −  

Chebyshev filtered DDS output ( )12.5 110 /L kHz dBc Hz= −  

Butterworth filtered DDS output ( )12.5 110 /L kHz dBc Hz= −  

Table 4-15 Measured phase noise of the DDS output. 

 

 
Figure 4-59  Saved output spectrum of the DDS, with the 
Chebyshev filter at the output of the DDS, if the 
microcontroller tunes the DDS frequency to vary 
between  39.25MHz  and  39.35MHz , in steps of 12.5kHz . 

 
The output spectrum of the DDS when the microcontroller that tunes the DDS output 

frequency, vary the frequency between  39.25MHz  and  39.35MHz , in steps of 12.5kHz , is 

shown in Figure 4-59. The DDS and ATmega8L microcontroller, which tunes the 

frequency, collectively draw 90mA current when active.   

ii. Conclusion 
 

The designed DDS component works better than expected. It was easy to program but 

it draws a lot of current, which is a problem when used for portable devices. It should 

however function well in the receiver system. This will be tested in the following section.  
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4.3.2. b Design of a crystal oscillator 

i. Designing and simulating 
 

A crystal oscillator that oscillates at 38MHz was built, using the principles discussed in 

4.3.1. ai, to make comparison with the other local oscillators possible. The common 

base Colpitts oscillator configuration was chosen and simulated in Microsim. The circuit 

diagram is shown in Figure 4-60. 

 

 

Figure 4-60 Common base Colpitts oscillator that was 
simulated. 

 
The FFT of this simulated signal is shown in Figure 4-61. It can be seen that this circuit 

oscillates at 38MHz.  
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Figure 4-61 FFT of the simulated emitter oscillator signal. 

 
To build a crystal oscillator, the LC resonator needs to be replaced with a crystal 

resonator at 38MHz. If one of the over tone modes of the crystal is used, it is better to 

put the crystal in the feedback path. That way, the circuit will only oscillate at the over 

tone, because the rest of the circuit is designed for this frequency.  

 

A crystal can be seen as a high impedance at all frequencies except at the oscillating 

frequency. If a high impedance is placed in the feedback path, oscillation will stopped 

and the oscillator will have no output signal. However, at the oscillating frequency, 

there will be feedback and the circuit will oscillate. The circuit that was built is shown in 

Figure 4-62.  

 

 

Figure 4-62 Circuit diagram of the crystal oscillator circuit component. 

 



Chapter 4- Development of receiver components 

Valpré Kellerman                       87    
 

Next, the measurements of this circuit are discussed.  

ii. Measurements 

The crystal oscillator that was built is shown in Figure 4-63. This circuit oscillated the first 

time round.  

 

 
Figure 4-63 Photo of the crystal oscillator 
component. 

 

The output frequency of this oscillator was measured on the HP8562A spectrum 

analyzer and is shown in Figure 4-64. The integer multiples of the output frequency can 

be seen clearly. The output signal has a frequency of 38MHz and an amplitude of 

1dBm.  

 

Figure 4-64 The output spectrum of the crystal oscillator. 
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The phase noise was measured per 100Hz on the HP8562A spectrum analyzer and 

estimated as -112dBc/1Hz.  

 

This frequency source draws 20.8mA current when active.  

iii. Conclusion 

The crystal oscillator that was simulated and built works well. This oscillator will be 

used in the receiver system in the next chapter. The oscillator is not sensitive to the DC 

voltage and the frequency remains stable for slight changes in voltage.  

 

4.3.3. Comparison and conclusion 

The DDS draws much more current than the crystal oscillator, but can tune over a wide frequency 

range, while the crystal oscillator can only be used at one frequency but has less phase noise. 

Switched crystal oscillators can also be used to tune to different frequencies, but this approach 

can be more expensive and difficult to implement and will again draw more current.  

 

Both a DDS and a crystal oscillator were designed. In the next chapter these two components as 

well as a Rohde & Schwarz SML03 signal generator instead of a PLL will be used to compare the 

influence of the local oscillator component on the receiver’s measured performance. 

 

Next, the design of the receiver filters will be discussed, as shown in Figure 4-65. 

 

 

 

Figure 4-65 Structure of chapter 4: 4.4 Receiver filters. 
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4.4    Receiver filters 

4.4.1. Front-end filters 
 

The main functions of the two front-end filters, the pre-select filter and image filter, as discussed in 

section 2.1.2 are: [1] [8] [9] 

• To prevent strong interfering signals from saturating the RF amplifier or mixer and thus, 

minimizing the IM distortion. 

• To reject the image frequency. 

• To attenuate receiver spurious responses e.g. IF rejection. 

• To suppress the LO signal energy power. 

 

It is of vital importance at this point in the receiver chain to minimize the insertion loss of these 

filters to optimize the overall noise figure of the receiver. Thus, these filters will typically not have 

a sharp cut-off, as high insertion loss is usually associated with a sharp cut-off characteristic. An 

inductor-capacitor (LC) filter is typically sufficient, and will reduce the cost and complexity of the 

system. Losses can further be reduced by choosing components with little losses e.g., an 

inductor with a high Q core. Parasitic components should be taken into account by reducing the 

length of component pins and by keeping the length of the transmission lines as short as possible 

[1] [8] [9].  

 

Some wideband receivers use electronically tuned resonant circuits that use a varactor diode 

tuned by a control voltage as the receiver operating frequency is changed. Other receivers might 

provide one or more front-end components that are shifted for different frequency ranges [8]. 

4.4.1. a Designing, building and measuring the front-end filters  

 
Three front-end filters were designed, namely a 3rd order Butterworth filter, a 5th order Chebyshev 

filter with 0.5dB ripple and a simple LC filter.  

 

After these low pass filters were impedance scaled and transformed, they were simulated in 

Microwave Office [50], to determine their response. The simulated and measured results of these 

filters are discussed next. 
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Figure 4-66 Photo of the third order Butterworth 
filter. Center frequency at  0 50f MHz= . 
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Figure 4-67 Third order Butterworth filter. 
Center frequency of 0 50f MHz= . 

The Butterworth filter component is shown in Figure 4-66 and the circuit diagram can be seen in 

Figure 4-67. This filter was designed to be a third order filter with a 3dB pass band of almost 

20MHz. The loss in the pass band is almost zero as can be seen in the simulated results in Figure 

4-68, while the filter is matched well between 45MHz and 58MHz with 11 22& 10s s dB< − . In reality, 

the filter is not ideal, but still has almost no loss in the pass band and a good impedance match 

between 45MHz and 58MHz with 11 22& 10s s dB< − . This is shown in Figure 4-69. 
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Figure 4-68 Simulated s-parameters of the third 
order Butterworth filter. Center frequency at 

0 50f MHz= . 

Figure 4-69 Measured s-parameters of the third 
order Butterworth filter. Center frequency at 

0 50f MHz= . 

 
Figure 4-70 Photo of the fifth order Chebyshev filter. 
Center frequency at 0 50f MHz= . 
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The Chebyshev filter component is shown in Figure 4-70 and the simulated and built circuit 

diagram can be seen in Figure 4-71 below. 

 

 
 
 
 
 
 
 
 

Figure 4-71 The fifth order Chebyshev filter. Center frequency at 0 50f MHz= . 

 
This filter was designed to be a fifth order filter with a maximum of 0.5dB ripple in the 3dB pass 

band (between 40MHz and 61MHz). It has a sharper cut-off response outside the pass band than 

the third order Butterworth filter, because of its higher order as can be seen in Figure 4-72. The 

measured filter is not ideal, with more loss in the pass band (42MHz and 60MHz). The filter has a 

good impedance match as is shown in the measured results in Figure 4-73. 
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Figure 4-72 Simulated s-parameters of the fifth 
order Chebyshev filter. Center frequency at 

0 50f MHz= . 

 

Figure 4-73 Measured s-parameters of the fifth 
order Chebyshev filter. Center frequency at 

0 50f MHz= . 

 
The simple LC filter shown in Figure 4-74, was designed next.  

 

 
 
 
 
 

Figure 4-74 Simple LC filter. 
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According to simulated results of the filter, shown in Figure 4-75, the pass band of the filter is 

expected to be smaller than the previous two filters. The measured results, shown in Figure 4-76, 

illustrate a small loss in the 3dB pass band between 40MHz and 54MHz.  
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Figure 4-75 Simulated s-parameters of the  simple 
bandpass filter. 

 

Figure 4-76 Measured s-parameters of the simple 
bandpass filter. 

 

4.4.1. b Conclusion 

 
The three filters that were designed will be used as image and pre-select filters in the receiver 

system and the effect of their characteristics on the system’s performance will be compared. 

Their attenuation at the image frequency is compared in Figure 4-77. 
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Figure 4-77 Amplitude response comparison between the different 
designed front-end filters. 
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4.4.2. The IF filter 
 
The IF filter provides the adjacent channel rejection, sets overall noise bandwidth of the receiver 

system and removes unwanted mixer products from the spectrum. The bandwidth of this filter 

also determines the modulation bandwidth of the signal. Therefore, the bandwidth and selectivity 

of this filter are of critical importance and will directly influence the system’s selectivity and 

sensitivity [8] [1] [9]. 

 
This application requires a channel spacing of 12.5kHz  and therefore the maximum permissible 

frequency deviation is 2.5kHz± (discussed in chapter 5). The adjacent channel rejection 

requirement is 70dB>  as shown in Table 1-1. Thus, a filter with a very high selectivity and a small 

bandwidth (high Q value) is required. A ceramic filter and crystal filter with center frequencies of 

10.7MHz  are characterized in this section.  

4.4.2. a Crystal filter 

 
The realizable Q values for inductors set a limit on the bandwidth of band pass LC filters. Thus, 

higher Q elements need to be employed e.g. surface acoustic wave resonators, coaxial 

transmission line resonators, dielectric resonators, strip line resonators, metal cavities or crystal 

resonators. Of these, the Q of the quartz crystal resonators is the highest. Thus, crystal filters with 

a high selectivity and a small bandwidth are realizable but only for frequencies up to 

approximately 200MHz [1] [8] [9] [26] [37]. 

 

 
Figure 4-78 Photo of the crystal filter, 50O matched component. 

The 10M7D-crystal filter from STC frequency technology was chosen. According to the 

datasheets, this filter has a center frequency of 10.7MHz , a small 3dB  pass band of 3.75kHz± , an 

excellent selectivity at the adjacent channel ( 12.5kHz± ) of 90dB , a ripple of 2dB  and a loss of 

4dB . The filter was matched to 50Ω  to complete the component and measured on the network 
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analyzer. The final crystal IF filter component was measured on the HP8562A spectrum analyzer 

and on the network analyzer. The results are shown below.  
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Figure 4-79 Measured amplitude response of the 
crystal IF filter (spectrum analyzer). 

Figure 4-80 Measured s-parameters of the crystal 
IF filter (network analyzer). 

The selectivity was not as good as expected. This will influence the adjacent channel rejection 

requirement directly. It is probably caused by the coupling between the input and output 

connector on the IF filter component and does not mean that the filter itself does not meet the 

specifications on the datasheets. The coupling problem will most probably be solved if strip line is 

used.  

 

4.4.2. b Ceramic filter 

 
Ceramic filters are made of high stability piezoelectric ceramics that function as resonators. The 

frequency is primarily adjusted by the size and thickness of the ceramic element. These filters 

typically have a lower Q than a crystal filter.  

 

Figure 4-81 Photo of the ceramic filter, 50Ω  
matched component. 

 
The SFELA10M7FALL-B0 from the Cerafil range for FM receivers from Murata Manufacturing 

Co., Ltd. was chosen. According to the datasheets the expected center frequency of this filter is 

10.7 30MHz kHz± , it has a 3dB  pass band of 280 50kHz kHz± , and a minimum attenuation of 25dB  
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can be expected as well as a loss of 7 2dB dB±  in the pass band. The measured results are given 

in Figure 4-82. 

 

 
Figure 4-82 Measured s-parameters of the ceramic IF filter. 

 

The filter performed very close to what was predicted by the datasheets, with a pass band of 

300kHz , a loss in the pass band of 7.7dB  and with a filter attenuation bigger as the expected 

25dB . The pass band of this filter is much wider than that of the crystal filter. The selectivity will 

probably not be good enough to satisfy the requirement for the adjacent channel rejection. 

4.4.2. c Conclusion 

 
From the measured results the IF filter components built, proved to work reasonably well although 

they might not meet the specification for the adjacent channel rejection. Fortunately, the adjacent 

channel rejection depends on other parameters as was discussed in 2.1.1. bi. The influence of 

these two filters and their performance on the receiver system’s characteristics will be evaluated 

in the next section. 

4.4.3. Injection filter 
 

The injection filter attenuates wideband AM noise around the LO frequency and its harmonics. 

This filter may improve the sensitivity of the system depending on the LO output power and 

spurious responses, as well as on the input power needed for the LO mixer port. Two injection 

filters were designed and the influence of their presence and their characteristics on the system’s 

performance are tested in chapter 5 [1]. 
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4.4.3. a Filter design and measurements 

 
A third order Butterworth and a third order Chebyshev filter with maximum 0.5dB ripple in the 

pass band, both with a center frequency of 39.3MHz  were designed. 

 

 
 
 
 
 
 
 
 
 
 

Figure 4-83 The third order Butterworth band pass filter. 
Center frequency of 0 39.3f MHz=  . 
 

 
Figure 4-84 Photo of the third order Butterworth band pass 
filter component with a center frequency of 0 39.3f MHz= . 

 

The Butterworth filter was designed to be a third order filter with a 3dB pass band of 

approximately 20MHz. The loss in the pass band is expected to be practically zero as can be 

seen in the simulated results in Figure 4-85, while the filter is matched well between 33MHz and 

47MHz with 11 22& 10s s dB< − . The measured filter results, shown in Figure 4-86, reveal that the 

filter in reality has practically no loss in the pass band and a good impedance match. 
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Figure 4-85 Simulated s-parameters of the third 
order Butterworth band pass filter component 
with a center frequency of 0 39.3f MHz= . 

 

Figure 4-86 Measured s-parameters of the third 
order Butterworth band pass filter component 
with a center frequency of 0 39.3f MHz= . 

 

The fifth order Chebyshev filter was designed to have a maximum of 0.5dB ripple in the 3dB pass 

band (approximately 20MHz). The circuit diagram of the designed filter and the photo of the filter 

component are shown in Figure 4-87 and Figure 4-88 respectively. 
 

 
 
 
 
 
 
 
 

Figure 4-87 Circuit diagram of the third order Chebyshev band 
pass filter component with a center frequency of 0 39.3f MHz= . 

 
Figure 4-88 Photo of the third order Chebyshev band 
pass filter component with a center frequency of 

0 39.3f MHz= . 

 
The simulated and measured results are shown in Figure 4-89 and Figure 4-90. There is practically 

no loss in the pass band, the component is well matched and has a broad pass band.  

 



Chapter 4- Development of receiver components 

Valpré Kellerman                       98    
 

15 35 55 70
Frequency (MHz)

3rd order Chebyshev bandpass filter

-50

-30

-10

10

53 MHz
 -3 dB

29.6 MHz
 -3 dB 39.3 MHz

 -19.8 dB

39.3 MHz
 -0.0472 dB

Simulated S11 and S22

Simulated S12 and S21

 

15 35 55 70
Frequency (MHz)

3rd order Chebyshev filter

-50

-30

-10

10

53 MHz
 -3 dB

29.5 MHz
 -3 dB

39.3 MHz
 -14.8 dB

39.3 MHz
 -0.473 dB

Measured S11 [dB]

Measured S21 [dB]

Measured S22 [dB]

Measured S12 [dB]

 
Figure 4-89 Simulated s-parameters of the third 
order Chebyshev band pass filter component with 
a center frequency of 0 39.3f MHz= . 

Figure 4-90 Measured s-parameters of the third 
order Chebyshev band pass filter component with 
a center frequency of 0 39.3f MHz= . 

4.4.3. b Conclusion 

 
The two injection filters that were designed, meet the design specifications and are expected to 

improve the receiver system’s performance. 

4.4.4. Conclusion 
 
The most important receiver filters were designed and characterized in this section. Their most 

important characteristics are summarized in the tables below. 

 

  

Front-end filter Gain [dB] 
Noise 
figure 
[dB] 

Bandwidth 
[MHz] 

Gain at 
image 
[dB] 

Noise 
figure at 
image 
[dB] 

3rd order Butterworth filter -0.5 0.5 13 -33 33 

5th order Chebyshev filter -1.5 1.5 18 -65 65 

Simple LC filter -1.22 1.2 6 -10 10 

Table 4-16 Summary of the measured parameters of the designed front-end filters. 

 

IF filter Gain [dB] Noise figure 
[dB] 

Selectivity at 
adjacent 

channel [dB] 

Bandwidth 
[kHz] 

Crystal filter -2 2 65 7.5 

Ceramic filter -7.7 7.7 0.1 300 

Table 4-17 Summary of the measured parameters of the IF filters. 
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Injection filter Gain 
[dB] 

Noise 
figure 
[dB] 

Attenuation 
at 

LO IFf f±  
[dB] 

Attenuation 
at 

2 LO IFf f±  
[dB] 

Attenuation 
at 

3 LO IFf f±  
[dB] 

3rd order Butterworth 

filter 
-0.4 0.4 

0.8  (+)    

5.65 (-) 

36   (+)       

23 (-) 
50  

3rd order Chebyshev 

filter 
-0.5 0.5 

3.4   (+)     

9.9 (-) 

23  (+)        

37 (-) 
45 

Table 4-18 Summary of the measured characteristics of the two injection filters. 

 
The audio modules will be discussed in the next section as shown in Figure 4-91.  
 

 
Figure 4-91 Structure of chapter 4: 4.5 The audio components. 

 
4.5    The audio components 

4.5.1. The audio filter 

 
The audio filter is usually a 300Hz-3kHz band pass filter, implemented with active filter 

technology. The advantage of using active filters at low frequencies is that inductors are not 

required, which can be rather bulky and difficult to attain. Another advantage is that they can have 

a gain instead of a loss. The function of this filter is to limit the frequency band, to reject out of 

band audio signals e.g. power supply hum, interference and the IF noise that originates in the 

receiver after the first IF filter. It is expected that this filter will improve the sensitivity of the 

receiver [1] [8] [48]. 

4.5.1. a Design and measurements 

A two-pole low pass Butterworth active filter as well as a two-pole high pass Butterworth active 

filter were designed and connected in series to form an audio filter as shown in Figure 4-92 [48 

p856-858] [66]. The simulated and measured response of this filter is compared in  Figure 4-93. 
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The AF response specification is a 6dB bandwidth of 300Hz to 2.7kHz. This specification is 

clearly met by the designed filter.  

 

 
Figure 4-92 Circuit diagram: active audio filter circuit component. 

 

 
Figure 4-93 Comparison between the simulated and measured power ratio of the 
active audio amplifier. 

 
If this filter is used at the output of the IF receiver, the sensitivity would be much improved. The 

filter draws little current and performs well. 
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Figure 4-94 The designed audio filter component. 

4.5.1. b Conclusion 

The audio filter that was designed ought to improve the system’s performance and meets the 

original design specifications given in Table 1-1. 

4.5.2. Audio amplifier 

Audio amplifiers are the building blocks that will amplify the small-demodulated received signal to 

a signal with practical amplitude. These building blocks should be able to deliver audio power into 

a load without generating significant distortion, overheating or using a lot of current. This section 

will focus on the designed audio amplifier that was built [66].  

4.5.2. a Building and measuring the audio amplifier IC 

A vast number of audio amplifier IC’s are available on the market. Some of the IC’s that were 

considered are summarized in Table 4-19.  

 

Model Manufacturer 
Pout 
Max 
[W] 

DC 
voltage 

[V] 

Distortion 
8O load BW 

DC 
current 
[mA] 

Comments  

NJM386 JRC 0.325 4-12 
0.2% 

Po=125mW 
V=6V 

300kHz 3 
• Ideal for 
battery 

operation 

TDA7052 Philips 1.2 3-18 
0.2% 

Po=100mW 
V=6V 

20Hz-
20kHz 4 

• No external 
components 

LM388 
National 

Semiconductor 1.5 4-12 
0.1% 

Po=0.5W 
V=12V  

300kHz 16  

TBA820M 
Unison 

Technologies 1.2 3-14 
0.3% 

Po=0.5W 
9V 

20Hz-
20kHz 4 

• Class B 
amplifier 

LM380 National 
Semiconductor 2.5 8-22 0.2% Po=2W 100kHz 7 

• Output 
protected 

against short 
circuits  

NJM2073 JRC 1.2 1.8-15 0.2% 130kHz 6  
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Po=0.5W 

TDA8552 Philips 1.4 5 0.1% 
Po=0.5W  14 • Digital 

volume control 

MC34119 Motorola 0.150 2-16 0.5% 1.5MHz 2.7 • Chip disable 
input 

SM2211 Analog Devices  1 2.7-5.5 0.2% TDH @ 
1W 

4MHz 9.5 • Shutdown 
mode 

MAX4295 MAXIM 1.2 2.7-5.5  1.25MHz 2.8 
• Class D 
amplifier 

• 87% efficient 

MAX4297 MAXIM 1.2 2.7-5.5  1.25MHz 4.6 
• Class D 
amplifier 

• 87% efficient 

NCP2890 ON 
Semiconductor 

1 2.2-5.5 0.02% TDH @ 
1W 

10Hz-
20kHz 

1.90 

• Small DC 
current 

• Few external 
components 
• Shutdown 

mode 

Table 4-19 Summary of some of the available audio amplifiers that was investigated. 

 

The NCP2890 audio amplifier IC from ON Semiconductor was chosen, because of its low DC 

current, low distortion and shutdown mode. This audio amplifier is specifically designed for 

portable applications and can deliver 1W of continuous average power into an 8Ω  load. The gain 

of this amplifier can be controlled externally with resistors. The circuit diagram is shown in Figure 

4-95. 

 

 

Figure 4-95Circuit diagram of the NCP2890 audio amplifier component. 

 

The differential gain of this amplifier circuit is given by  

 2 f

in

R
G

R
=  (4.14) 

Thus the maximum gain of this circuit, when the potentiometer is at its maximum, is 47. This is 

enough to amplify the 180mVpp output of the SA605 IF receiver to 8Vpp over an 8Ω speaker load, 

which is 1W of average, output power. The gain of the amplifier was measured and delivered a 
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maximum of 1W of continuous output power to the speaker with ease. The volume can be 

controlled by varying the potentiometer. A photo of the audio amplifier component is shown in 

Figure 4-96. 

 
Figure 4-96 Photo of the NCP2890 audio amplifier 
component that was designed. 

4.5.2. b Conclusion 

The specifications given in Table 1-1, state that the receiver should be able to deliver an output 

power greater than 200mW into an 8Ω  load. This specification is met by this audio amplifier, 

which can deliver up to 1W into an 8Ω  load. The volume control is specified to be at least 6 

stepped volumes. This specification is also met, because the audio amplifier’s volume can be 

varied continuously.  The audio amplifier component that was built performed well. 

 

The IF receiver system will be discussed in the next section as shown in Figure 4-97. 

 

 

Figure 4-97 Structure of chapter 4: 4.6 IF receiver system design. 
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4.6    IF receiver system design 
 
The IF receiver system, which consists of all the second IF circuitry and the demodulator is very 

likely to be contained in an integrated circuit (IC). Important characteristics of this IF receiver 

system IC includes: [1] 

§ Noise figure 

§ Intercept point 

§ Amplitude limiting properties 

§ Signal-to-noise ratio at the input required for a specific base band performance e.g. 20dB 

SINAD 

This section discusses the design and measurements of this very important component in the 

receiver chain.  

4.6.1. Design considerations 

 
The SA605 from Philips semiconductors is a FM receiver system IC that combines the SA602 

mixer and onboard oscillator and the IF amplifiers and quadrature detector of the SA604 into one 

chip. This FM receiver system can be used to receive and demodulate the second IF in a super 

heterodyne receiver, or it can be used as  a single conversion receiver. It also has low current 

consumption, which makes it attractive for portable receiver systems. The system can handle 

input signals up to 500MHz, has ± 102dB IF limiter and amplifier gain and has a low mixer noise 

figure of 5dB. According to the datasheets, an excellent sensitivity of 0.22 Vµ  into a 50Ω  matching 

network can be achieved ( 120dBm− ) for a output signal with a SINAD of 12dB . Thus, it is 

estimated that this IF receiver system should be able to meet the overall receiver system’s 

sensitivity specification, given in Table 1-1 as 113dBm−  for an output signal with a SINAD of 20dB . 

 
This IF receiver circuit receives the filtered down-converted 10.7MHz signal. It then mixes this 

signal down to the second IF frequency, which is 455kHz, and then filters, amplifies and 

demodulates the signal. The circuit diagram of the SA605 circuit is shown in Figure 4-99. 

 

This filtering is done by the CFULA455KF4A-B0 ceramic filter, from the Murata’s Cerafil range for 

communications equipment. According to the datasheets, this filter has a center frequency of 

455 1.5kHz kHz± , a 6dB  pass band of 7.5kHz± , a minimum stop band attenuation of 27dB , ,a 

maximum loss of 6dB  and a input and output impedance of 1.5kΩ . The output of the mixer is 

internally loaded with a 1.5kΩ  resistor, and the input resistance of the IF amplifier and limiter is 

1.5kΩ . Thus matching to these filters is not necessary [63] [64].    

 

The detailed design description of the SA605 is discussed in Appendix C. 
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The SA605 includes a received signal strength indicator (RSSI) pin, which will reveal if any 

instability is present. This reading should be less than 250mV  if the device is biased and no signal 

is fed into it. A reading higher than 250mV  on the RSSI output pin indicates a regeneration 

problem, due to poor lay out or too much gain in the IF component. Too much IF gain may cause 

instability. 

 

 
Figure 4-98Circuit diagram of the SA605 IF receiver system that was designed. 

A photo of the designed IF receiver component is shown in Figure 4-99. The measurements done 

on this designed IF receiver component are discussed next. 

 
Figure 4-99 SA605 IF receiver circuit that was 
designed and built. 
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4.6.2. Measurements 

♦ Capture ratio 

 
The capture ratio is the IF signal-to-noise ratio at the detector input required to 

meet a certain base band specification. In this instance, the specification is a 

SINAD of 20dB . The measurement set-up to measure the minimum signal-to-

noise ratio at the IF receiver input is shown in Figure 4-100.  

 

Figure 4-100 The two measurement set-ups necessary to measure the capture ratio. 

 
To measure the minimum IF signal-to-noise ratio, a noise source was used to 

generate noise. The measured noise floor of the coming out of the combiner is 

102dBm± − . The noise source increased the noise floor to 82dBm− . This is shown 

in Figure 4-101. 

 

Figure 4-101 The noise floor at the output of the 
combiner with the noise source switched on and off 
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The noise signal together with the desired signal was inserted into a combiner 

and fed into the IF receiver. The SINAD of the receiver output signal was 

measured with the HP8920A RF communication test set from Hewlett Packard. 

The 10.7MHz  input signal’s power was decreased to the minimum point that could 

receive a 20dB  SINAD signal.  

 

Next the IF receiver was disconnected and the modulation on the IF signal was 

switched off. The output of the combiner was fed into the spectrum analyzer to 

determine the smallest signal-to-noise ratio that would still meet the 20dB SINAD 

specification. This is shown in Figure 4-102 and Figure 4-103.  
 

  

Figure 4-102 The minimum signal-to-noise 
ratio at the IF receiver input for a deviation 
of 1.5kHz±  and with 10kHz  resolution 
bandwidth. 

Figure 4-103 The minimum signal-to-noise 
ratio at the IF receiver input for a deviation 
of 2.5kHz±  and with 10kHz  resolution 
bandwidth. 

 

It is important to note that the resolution bandwidth of the spectrum analyzer 

must be set to 7.5kHz , which is the noise bandwidth of the system, to achieve 

correct results. The resolution bandwidth of the HP8562A spectrum analyzer can 

however only be set on 3kHz  or 10kHz . Therefore, the signal-to-noise ratio was 

measured per 10kHz  and then the signal-to-noise ratio per 7.5kHz  was estimated 

by adding 1.25dB  (multiplying with 1.33  because 7.5 1.33 10kHz kHz× = ) 

 

If the IF signal has a deviation of 60% of the maximum permissible frequency 

deviation ( 1.5kHz± ), the minimum signal-to-noise ratio is 17 1.25 18.25dB dB dB+ =  for 

a noise bandwidth of 7.5kHz . For an IF signal with 100%  frequency deviation 

( 2.5kHz± ) the minimum signal-to-noise ratio is 14 1.25 15.25dB dB dB+ =  for a noise 

bandwidth of 7.5kHz .  
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♦ S-Curve 
 
If the Q of the quad tank is too high for the deviation, distortion will be caused. A 

to low Q will cause low audio levels.  

 

 

Figure 4-104 Quadrature tank measurement set-up. 
 

The set-up to measure the quad tank of the IF receiver system is shown in Figure 

4-104. A signal generator is connected to the input of the limiter through a DC 

blocking capacitor. While the modulation is turned off, the output DC voltage at 

the audio pin is measured, for increasing frequency. The s-curve is plotted and 

shown in Figure 4-105. The s-curve is centered around 455kHz  and has a linear 

range of 15kHz± . The overall linearity determines how much deviation is possible 

before distortion will occur. Thus, the demodulator will be able to demodulate a 

signal with a deviation of 15kHz±  before distortion will occur.  

 

The application requires a deviation of 3kHz± , therefore, the s-curve is 

satisfactory, because its linearity exceeds 452 458kHz− .  
 



Chapter 4- Development of receiver components 

Valpré Kellerman                       109    
 

 

Figure 4-105 Measured quad tank s-curve of the IF receiver. 

♦ RSSI indicator 
 
The reading on the RSSI pin was 95mV if the device is biased and no signal is 

fed into the device. This reading should be less than 250mV . Thus, no instability 

is present. 

 

A  180mVpp output signal was measured at the output of the SA605, until the RF input 

power, drops below the maximum sensitivity level.    

4.6.3. Conclusion 

This IF receiver system works performed well and will be used in the receiver system to receive 

the first IF, mix it down to the second IF, amplify and demodulate the signal.  

 
4.7    Conclusion 
 
The individual components were investigated, chosen, designed and built. Theory was used to 

select appropriate measurement methods, and each separate component was measured, 

characterized and compared to others. These developed components will be used in receiver 

measurements in the next chapter. They will be substituted with each other to enable system 

performance comparison.  
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5 Measurements of receiver systems 

 

5.1    Introduction 
 
In this chapter, the correct methods to measure the receiver characteristics as described in 

chapter 2 are discussed. The receiver performance was measured while interchanging the 

different well-defined receiver components that were discussed in the chapter 4. The influence of 

every component on the receiver characteristics is confirmed in section 5.3 and is similar to the 

theory summarized in Table 2-1 and Table 2-2. These proposed measurements and comparisons 

are summarized in Figure 5-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1 Summary of the proposed receiver measurements and comparisons. 

 
A summary of the different receiver component options, which will be interchanged, is given in 

Table 5-1. These well-defined components, that were designed, enable comparison between the 

different receiver characteristics and the characteristics of these components. These results will 

be used in section 5.4 to verify the results attained using .  

IF filter

1st Mixer

Local Oscillator

Preselect filter
RF amplifier

IF subsystem

Image filter

Injection filter

Compare receiver
distortion, image

rejection, IF rejection,
sensitivity, noise

figure and
suppression of the LO
energy at the RF port
with and without the

preselect filter Compare receiver
sensitivity, distortion,

selectivity, IF and
image rejection and

DC operating current
if the Gali-S66 and the

low noise amplifier
that was designed  is

exchanged

Compare receiver
image rejection,
sensitivity, and

performance if this
filter is implemented

or absent

Compare receiver
performance if the
different designed

single device, singly
balanced or double
balanced mixers are

implemented

Compare
receiver

sensitivity if this
filter is

implemented to
when it is

absent

Compare receiver
sensitivity, selectivity

and performance
when the designed

DDS, PLL and crystal
oscilltor is

implemented

Compare receiver
selectivity and

performance if a
ceramic filter is

implemented to when
a crystal filter is

implemented
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IF filter
Image filter

Oscillator

Preselect filter

RF amplifier/LNA
IF receiver

A B C
D

E

G

F

H

Audio filter

Mixer

Injection filter

RF input signal

Audio output signal

 

 
 
 
 
 
 
 
 
 
 
 

 
A 

Pre-select 
filter 

 
B 
RF 

Amplifier 

 
C 

Image filter 

 
D 

Mixer 

 
E 

Injection 
filter 

 
F 

Oscillator 

 
G 

IF filter 

 
H 

Audio 
filter 

 
5th order 

Chebyshev 
filter 

Gali-S66 
5th order 

Chebyshev 
filter 

AD831 
3rd order 

Butterworth 
filter 

DDS 
Crystal IF 

filter 

Active 
audio 
filter 

3rd order 
Butterworth 

filter 

Transistor 
amplifier 

3rd order 
Butterworth 

filter 
SBL-1 

3rd order 
Chebyshev 

filter 

Crystal 
oscillator 

Ceramic 
IF filter 

No audio 
filter 

Simple LC 
filter 

No RF 
amplifier 

Simple LC 
filter SA602 No injection 

filter 
PLL –signal 
generator No IF filter  

No pre-select 
filter  No image 

filter U2796B     

   
Dual-gate 
MOSFET 

mixer 
    

Table 5-1Summary of the different receiver component options. 

 
 
5.2    Measurement of radio specifications 
 
The various measurement methods of the receiver characteristics that were discussed and 

defined in section 2.1.1 are described in this section. Measurement results are also given. 

Documents describing the technical characteristics and measurement methods of receivers from 

the European Telecommunications Standards Institute (ETSI) [ETSI EN 300 086-1 V1.2.1, March 

2001], the Communications Division of the Ministry of Commerce, New Zealand [RFS26, Issue 2, 

ISBN:0-478-00470-0, October 1993], the Telecommunications Authority Hong Kong (HTKA) 

[HKTA1002 Issue 04, September 2002], as well as the Info-Communications Development 

Authority of Singapore (IDA) [IDA TS101, Issue 1 Rev 4, December 1999] were used. Their 

specification limitations on receiver characteristics are summarized and compared to the receiver 

specifications given in Table 5-2 [5-7] [59]. 
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Radio characteristics ETSI [6] 
New Zealand 

[7] 
HTKA [5] IDA [59] 

Specifications 

[Table 1-1] 

Sensitivity 

6dB Vµ<  for  

20dB  SINAD 

( 100dBm< −  

for 50Ω  load) 

107dBm< −  for 

20dB  SINAD 

6dB Vµ<  for a 

20dB SINAD 

( 100dBm< −  

for 50Ω  load) 

0.5 Vµ<  for a 

12dB  SINAD 

( 113dBm< −  

for 50Ω  load) 

0.5 Vµ<  for a 

20dB  SINAD 

( 113dBm< −  for 

50Ω  load) 

Co-channel rejection 

ratio 
0 12dB−  12dB<  *NS *NS *NS 

Adjacent channel 

rejection ratio 
60dB>  70dB>  60dB>  60dB>  70dB>  

Spurious response 

rejection ratio 
70dB>  70dB>  70dB>  70dB>  70dB>  

Desensitization 84dB>  84dB>  78dB>  *NS *NS 

Spurious radiations 
57dBm< −  47dBm< −  

20nW<  

( 47dBm< − ) 

20nW<  

( 47dBm< − ) 
*NS 

*NS - Not specified 

Table 5-2 Receiver characteristics specifications limits. 

 

5.2.1. Sensitivity 

5.2.1. a Measurement procedure 

 
To measure the sensitivity of a receiver, a test signal at the receiver frequency with a known test 

modulation is applied to the input of the receiver. The European Telecommunications Standards 

Institute [ETSI EN 300 086-1 V1.2.1, March 2001], the Communications Division of the Ministry of 

Commerce, New Zealand [RFS26, Issue 2, ISBN:0-478-00470-0, October 1993], and the 

Telecommunications Authority Hong Kong [HKTA1002 Issue 04, September 2002] all agree that 

a normal test modulation frequency is 1kHz  and the frequency deviation is 60%  of the maximum 

permissible deviation [6] [7] [5]. 

 

This application requires a channel spacing of 12.5kHz  and therefore the maximum permissible 

frequency deviation according to the above stated documents is 2.5kHz± . Thus, a signal with a 

modulation of 1kHz  and a frequency deviation of 1.5kHz± , which is 60%  of 2.5kHz±  is applied to 

the input of the receiver. The test signal input power is reduced until a SINAD ratio of 20dB  is 

reached. The input power level at this point is the value of the maximum sensitivity. The 

measurements were only done under normal circumstances for the purposes of this project [6] [7] 

[5]. 
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The HP8920A RF communication test set from Hewlett Packard, shown in Figure 5-2, was used to 

do this measurement.  This test set includes a frequency generator that will generate the signal at 

the nominal test frequency and an audio analyzer that can measure the SINAD of the audio 

output of the receiver. This set-up is shown below in Figure 5-3. The audio filters of the HP8920A 

RF communication test set was set as wide as possible during measurements. 

 

 

Figure 5-2 The HP8920A RF communication test set of Hewlett Packard. 

 

HP8920A RF communication
test set

Receiver under test

R
F 

in
pu

t

RF output Audio input

A
ud

io
 o

ut
pu

t

SINAD meter
RF generator

 

Figure 5-3 Set-up for measuring the receiver sensitivity. 

5.2.1. b Measurements 

 
Receiver systems were assembled, by combining the different well-defined components, 

summarized and shown in Table 5-1. The importance and function of every component and the 

restriction that it places on the receiver system’s sensitivity performance were now measured. 

This was done by assembling various combinations of the components and measuring the 

sensitivity as defined in 5.2.1. a. The results of these measurements follow in Table 5-3. 



Chapter 5- Measurements of receiver systems  

Valpré Kellerman                       114    
 

 
Measured 
Sensitivity 

No 

 
A 

Pre-select 
filter 

 

 
B 
RF 

amplifier 

 
C 

Image filter 

 
D 

Mixer 

 
E 

Injection 
filter 

 
F 

Local 
oscillator 

 
G 

IF filter 

 
H 

Audio 
filter 1.5kHz±  2.5kHz±  

1 5th order 
chebyshev 

Transistor 
amplifier 

No filter U2796B No filter PLL Crystal 
filter 

Active 
filter 

-108 -114 

2 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth 

U2796B No filter PLL Crystal 
filter 

Active 
filter 

-107 -113 

3 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-107 -113 

4 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

No 
filter 

-28 -39 

5 No filter Transistor 
amplifier 

3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-110 -116 

6 No filter Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-111 -117 

7 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-107 -113 

8 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-102 -115 

9 No filter Transistor 
amplifier 

5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-108 -120 

10 No filter Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-109 -120 

11 5th order 
chebyshev 

Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-102 -114 

12 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-114 -121 

13 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-107 -115 

14 Simple LC 
filter 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-105 -113 

15 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-114 -119 

16 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-116 -120 

17 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
Mosfet 
mixer 

3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

-108 -103 

18 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 

-100 -101 

19  No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 

-113 -117 

20 No filter Gali-S66 No filter SA602 No filter PLL Crystal 
filter 

Active 
filter 

-116 -120 

21 No filter Gali-S66 3rd order 
butterworth 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

-117 -122 

22 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

-116 -120 

23 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No filter PLL Crystal 
filter 

No 
filter 

-20 -21 
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24 3rd order 

butterworth 
Gali-S66 5th order 

chebyshev 
SA602 No filter PLL No filter Active 

filter 
-116 -119 

25 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

-112 -116 

26 No filter Gali-S66 3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

-114 -119 

27 No filter Gali-S66 No filter SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

-113 -118 

28 3rd order 
butterworth 

Gali-S66 No filter SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

-107 -103 

29 No filter  Transistor 
amplifier  

3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

-109 -112 

30 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

PLL Crystal 
filter 

Active 
filter 

-116 -121 

31 No filter Gali-S66 5th order 
chebys hev 

U2796B 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

-105 -110 

32 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

-102 -107 

33 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

-107 -113 

34 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

-117 -121 

35 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

-118 -122 

36 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Ceramic
filter 

Active 
filter 

-117 -121 

38 No filter Gali-S66 5th order 
chebyshev 

SA602 No filter Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

-116 -121 

39 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

-117 -118 

40 No filter Gali-S66 5th order 
chebyshev 

U2796B No filter Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

-118 -119 

41 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
MOSFE
T  

3rd order 
Chebyshev 
and 6dB  
attenuator  

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

-89 -100 

42 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
MOSFE
T 

3rd order 
Chebyshev  

Crystal 
oscillator 

Crys tal 
filter 

Active 
filter 

-96 -100 

43 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
Chebyshev 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

-114 -122 

44 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

-116 -121 

45 No filter Gali-S66 5th order 
chebyshev 

AD831 No filter DDS Crystal 
filter 

Active 
filter 

-100 -110 

46 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

DDS Crystal 
filter 

Active 
filter 

-115 -121 

Table 5-3 Sensitivity measurement results for different receiver component combinations. 
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5.2.1. c Conclusion 

  
The original sensitivity specification of 113dBm−  was met by a number of the combinations and 

was even exceeded by some. The influence of the different components on receiver sensitivity 

can clearly be seen. Of particular interest is the degrading influence of an attenuator before the 

first RF amplifier. It is interesting to note that none of the combinations in which the transistor 

amplifier is implemented meet the 113dBm−  sensitivity specification. The influence of every 

component on receiver sensitivity is discussed in 5.3. The different combinations and their 

sensitivity, measured with a deviation of 1.5kHz± , are compared in Figure 5-4. (See Table 5-3) 

 

 

Figure 5-4 Sensitivity measurements summarized for every measured combination. 

 

The sensitivity of the measurements with a deviation of 1.5kHz±  ( 60% of the maximum permissible 

frequency deviation) is less than the sensitivity of the measurements with the maximum 

permissible frequency deviation ( 2.5kHz± ). This is expected because more power is applied to the 

input of the receiver if a signal with a greater frequency deviation is used.  
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5.2.2. Adjacent channel rejection / Selectivity 

5.2.2. a Measurement procedure 

 
To measure the adjacent channel rejection of a receiver, two signal generators are used, as well 

as a SINAD meter at the receiver output. These signals, one at the adjacent channel above the 

desired frequency and one at the desired frequency, are connected to the receiver input through 

a combiner. The desired signal is modulated with a frequency of 1kHz  and 60%  of the maximum 

permissible frequency deviation. With the unwanted signal generator switched off, the amplitude 

of the desired signal generator is adjusted until a 20dB  SINAD is achieved. The unwanted signal 

generator is switched on and modulated with 60%  of the maximum permissible frequency 

deviation at 400Hz . The amplitude level of this unwanted signal generator is increased until the 

SINAD reading at the output of the receiver is reduced to 14dB. This 6dB reduction in the SINAD 

ratio of the output sinusoidal signal indicates that the signal quality has been halved [33] [5-7] 

[59]. 

 

The adjacent channel selectivity is the ratio in dB of the level of the unwanted test signal, to the 

level of the wanted test signal at the receiver input [5-7] [59]. 

 

 

 

 

 

 

 

 

 

Figure 5-5 Measurement set-up for measuring the desensitization, adjacent channel, co-channel and 
spurious response - rejection ratio of the receiver.  

 
This measurement should be repeated with the unwanted test signal frequency at the adjacent 

channel below the desired frequency. The two ratios can be documented as the upper and lower 

adjacent channel rejection or the smallest of the two measured ratios can be documented as the 

adjacent channel rejection [5-7] [59]. 

 

As previously stated, this application requires a channel spacing of 12.5kHz  and therefore has a 

maximum permissible frequency deviation of 2.5kHz± . This was tested under normal 

circumstances only. 

Combiner

Unwanted RF
signal generator

SINAD
meter

Wanted RF
signal generator

Receiver
under test

RF input Audio output

Frequency deviation f∆=

1Frequency deviation f∆=
1mod mFrequency ulation f=

mod mFrequency ulation f=

0Center frequency f=

01Center frequency f=
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5.2.2. b Measurements 

 
The role that every component plays in the receiver system’s adjacent channel selectivity 

performance was now measured. This was done by assembling various combinations of the 

components and measuring the adjacent channel selectivity as defined in the 5.2.2. a. A receiver 

system was formed, by combining the different well-defined components already built, as 

summarized and shown in Table 5-1. The measured adjacent channel selectivity for every receiver 

combination is given in Table 5-4. The lowest value of the upper and lower adjacent channel 

selectivity ratio that was measured was taken as the adjacent channel selectivity of the specific 

receiver system. This is specified in Table 1-1 and Table 5-2 and should be greater than 70dB . The 

results that meet the specifications are accentuated.  

 

No 

 
A 

Pre-select 
filter 

 

 
B 
RF 

amplifier 

 
C 

Image filter 

 
D 

Mixer 

 
E 

Injection 
filter 

 
F 

Local 
oscillator 

 
G 

IF filter 

 
H 

Audio 
filter  

S
electivity 

1 5th order 
chebyshev 

Transistor 
amplifier 

No filter U2796B No filter PLL Crystal 
filter 

Active 
filter 

66 

2 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth 

U2796B No filter PLL Crystal 
filter 

Active 
filter 

66 

3 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth U2796B 3rd order 

butterworth PLL Crystal 
filter 

Active 
filter 61 

5 No filter Transistor 
amplifier 

3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

60 

6 No filter Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

64 

7 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

62 

8 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev AD831 3rd order 

butterworth PLL Crystal 
filter 

Active 
filter 57 

9 No filter Transistor 
amplifier 

5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

57 

10 No filter Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

57 

11 5th order 
chebyshev 

Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

57 

12 No filter Gali-S66 5th order 
chebyshev AD831 3rd order 

butterworth PLL Crystal 
filter 

Active 
filter 60 

13 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

57 

14 Simple LC 
filter 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

56 

15 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

58 

16 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

53 
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17 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
Mosfet 
mixer 

3rd order 
butterworth PLL Crystal 

filter 
Active 
filter 41 

18 No filter Gali-S66 5th order 
chebyshev SA602 

3rd order 
Chebyshev 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 59 

19 No filter Gali-S66 5th order 
chebyshev SA602 

3rd order 
butterworth 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 56 

20 No filter Gali-S66 No filter SA602 No filter PLL Crystal 
filter 

Active 
filter 

61 

21 No filter Gali-S66 3rd order 
butterworth 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

60 

22 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

61 

24 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No filter PLL No filter Active 
filter 

5 

25 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

70 

26 No filter Gali-S66 3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

70 

27 No filter Gali-S66 No filter SBL-1 No filter PLL Crystal 
filter 

Active 
filter 67 

28 3rd order 
butterworth 

Gali-S66 No filter SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

70 

29 No filter  Transistor 
amplifier  

3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

67 

30 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

PLL Crystal 
filter 

Active 
filter 

64 

31 No filter Gali-S66 5th order 
chebyshev U2796B 3rd order 

Chebyshev DDS Crystal 
filter 

Active 
filter 59 

32 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

59 

33 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

73 

34 3rd order 
butterworth Gali-S66 5th order 

chebyshev SA602 

3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 65 

35 No filter Gali-S66 5th order 
chebyshev SA602 

3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 65 

36 No filter Gali-S66 5th order 
chebyshev SA602 

3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Ceramic
filter 

Active 
filter 4 

37 No filter Gali-S66 5th order 
chebyshev SA602 

3rd order 
butterworth 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 61 

38 No filter Gali-S66 5th order 
chebyshev SA602 No filter Crystal 

oscillator 
Crystal 
filter 

Active 
filter 65 
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39 No filter Gali-S66 5th order 
chebyshev U2796B 

3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 67 

40 No filter Gali-S66 5th order 
chebyshev 

U2796B No filter Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

53 

42 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
MOSFE
T 

3rd order 
Chebyshev  

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 73 

43 No filter Gali-S66 5th order 
chebyshev AD831 3rd order 

Chebyshev 
Crystal 
oscillator 

Crystal 
filter 

Active 
filter 70 

44 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

58 

45 No filter Gali-S66 5th order 
chebyshev 

AD831 No filter DDS Crystal 
filter 

Active 
filter 

70 

46 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

DDS Crystal 
filter 

Active 
filter 

63 

Table 5-4 Adjacent channel rejection for different receiver component combinations. 

5.2.2. c Conclusion 

The selectivity results of the different combinations are clearly influenced the most by the 

specifications of the IF filter. The influence of every receiver component on the selectivity is 

discussed in the section 5.3.  

 

 

Figure 5-6 Selectivity results summarized for the different combinations. 
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5.2.3. Spurious response rejection 

5.2.3. a Measurement procedure 

 
The measurement set-up to measure the spurious response rejection ratio of the receiver is 

shown in Figure 5-5. A wanted signal modulated with 1kHz  ( 1.5f kHz∆ = ± ) and an unwanted test 

signal modulated with 400Hz  are inserted into the receiver.   

 

With the unwanted signal generator first switched off, the amplitude of the desired test signal at 

the receiver frequency, 0f , is set on the level which will give a 20dB  SINAD reading at the output 

of the receiver.  

 

Next, the frequency of all the spurious responses is recorded by varying the frequency of the 

unwanted test signal over the frequency range from 100kHz  to 2GHz , with incremental steps of 

5kHz ,as specified by the European Telecommunications Standards Institute [ETSI EN 300 086-1 

V1.2.1, March 2001]. The unwanted test signal has a deviation of 5kHz±  and a signal level of 

86dB Vµ  ( 21dBm−  into a 50Ω  load) [5-7]. 

 

After all the spurious response frequencies are recorded, the unwanted test signal deviation 

should be changed to 60%  of the maximum permissible frequency deviation ( 1 1.5f kHz∆ = ± ). The 

center frequency of the unwanted RF signal generator is set at each frequency where a spurious 

response occurred. For every frequency, the input level of the unwanted signal will be increased 

until a 6dB reduction in SINAD level of the output signal occurs [5-7]. 

 

The specific spurious response rejection ratio is expressed as the ratio in dB  between the level of 

the unwanted and wanted test signal at the input of the receiver. This is specified in Table 1-1 and 

Table 5-2 and should be greater than 70dB  [7] [59]. 
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Figure 5-7 Image rejection ratio measurements in progress. 

5.2.3. b Measurements 

 
The image rejection ratio and the IF rejection ratio are specifically specified in Table 1-1. 

Therefore, these spurious responses are measured for every combination in this section. A 

general spurious response measurement was not done. Because of its length and complexity, it 

would have been difficult to do this measurement for all the combinations. 

i. Image rejection 
 

As summarized and shown in Table 5-1, a receiver system was formed, by combining 

the different well-defined components already built and measured in the previous 

chapter. The measured image for every receiver combination is given in Table 5-5 

beneath. The image rejection should be greater than 70dB  and the results that meet 

this specification are accentuated.  

 

Several of the measured receiver combinations meet the image rejection ratio 

specification. This rejection ratio is dependent mostly on the front-end and its filters. 

The effect of every component on this ratio will be discussed in detail in section 5.3. 
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No 

 
A 

Pre-select 
filter 

 

 
B 
RF 

amplifier 

 
C 

Image filter 

 
D 

Mixer 

 
E 

Injection 
filter 

 
F 

Local 
oscillator 

 
G 

IF filter 

 
H 

Audio 
filter 

Image 
rejection 

[ ]dB  

1 5th order 
chebyshev 

Transistor 
amplifier 

No filter U2796B No filter PLL Crystal 
filter 

Active 
filter 

75 

2 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth 

U2796B No fi lter PLL Crystal 
filter 

Active 
filter 

97 

3 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

89 

5 No filter Transistor 
amplifier 

3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

32 

6 No filter Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

72 

7 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

98 

8 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

>92 

9 No filter Transistor 
amplifier 

5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

63 

10 No filter Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

2 

11 5th order 
chebyshev 

Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

71 

12 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

50 

13 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

82 

14 Simple LC 
filter 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

64 

15 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

57 

16 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

82 

17 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
Mosfet 
mixer 

3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

38 

18 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 

83 

19  No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 

84 

20 No filter Gali-S66 No filter SA602 No filter PLL Crystal 
filter 

Active 
filter 

20 

21 No filter Gali-S66 3rd order 
butterworth 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

28 

22 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

94 

24 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No fi lter PLL No filter Active 
filter 

94 

25 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

85 

26 No filter Gali-S66 3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

26 
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27 No filter Gali-S66 No filter SBL-1 No filter PLL Crystal 

filter 
Active 
filter 

No 

28 3rd order 
butterworth 

Gali-S66 No filter SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

22 

29 No filter  Transistor 
amplifier  

3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

36 

30 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

PLL Crystal 
filter 

Active 
filter 

58 

31 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

62 

32 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

84 

33 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

92 

34 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

104 

35 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

84 

36 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Ceramic
filter 

Active 
filter 

86 

37 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

84 

38 No filter Gali-S66 5th order 
chebyshev 

SA602 No filter Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

83 

39 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

64 

40 No filter Gali-S66 5th order 
chebyshev 

U2796B No filter Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

60 

42 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
MOSFE
T 

3rd order 
Chebyshev  

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

54 

43 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
Chebyshev 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

55 

44 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

52 

45 No filter Gali-S66 5th order 
chebyshev 

AD831 No filter DDS Crystal 
filter 

Active 
filter 

54 

46 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

DDS Crystal 
filter 

Active 
filter 

51 

Table 5-5 The image rejection of the receiver for different receiver component combinations. 
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Figure 5-8 Image rejection ratio results summarized for the different combinations 

 

ii. IF rejection 
 

The measured IF rejection ratio for every receiver combination is given in Table 5-6. 

This is specified to be greater than 70dB  and the results that meet this specification are 

accentuated.  

 

Most of the measured receiver combinations have a very good IF rejection ratio that 

meets the specifications. This rejection ratio is the most sensitive to the front-end filters. 

The effect of every component on this ratio will be discussed in detail in section 5.3. 

 

No 
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Pre-select 
filter 

 

 
B 
RF 

amplifier 

 
C 

Image filter 

 
D 

Mixer 

 
E 

Injection 
filter 

 
F 

Local 
oscillator 

 
G 

IF filter 

 
H 

Audio 
filter 

IF 
rejection 

[ ]dB  

1 5th order 
chebyshev 

Transistor 
amplifier 

No filter U2796B No filter PLL Crystal 
filter 

Active 
filter 

98 

2 5th order 
chebyshev 

Transistor 
amplifier 

3rd order 
butterworth 

U2796B No filter PLL Crystal 
filter 

Active 
filter 

97 

3 5th order 
chebyshev 

Transis tor 
amplifier 

3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

90 
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5 No filter Transistor 

amplifier 
3rd order 
butterworth 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

89 

6 No filter Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

94 

7 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

98 

8 3rd order 
butterworth 

Transistor 
amplifier 

5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

>92 

9 No filter Transistor 
amplifier 

5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

>93 

10 No filter Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

37 

11 5th order 
chebyshev 

Transistor 
amplifier 

No filter AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

94 

12 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

89 

13 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

98 

14 Simple LC 
filter 

Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

77 

15 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

77 

16 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

63 

17 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
Mosfet 
mixer 

3rd order 
butterworth 

PLL Crystal 
filter 

Active 
filter 

19 

18 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 

88 

19  No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 
and 9dB 
attenuator 

DDS Crystal 
filter 

Active 
filter 

66 

20 No filter Gali-S66 No filter SA602 No filter PLL Crystal 
filter 

Active 
filter 

21 

21 No filter Gali-S66 3rd order 
butterworth 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

73 

22 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

95 

24 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 No filter PLL No filter Active 
filter 

94 

25 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

96 

26 No filter Gali-S66 3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

63 

27 No filter Gali-S66 No filter SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

28 

28 3rd order 
butterworth 

Gali-S66 No filter SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

98 

29 No filter  Transistor 
amplifier  

3rd order 
butterworth 

SBL-1 No filter PLL Crystal 
filter 

Active 
filter 

81 

30 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

PLL Crystal 
filter 

Active 
filter 

80 

31 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

82 
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32 3rd order 

butterworth 
Gali-S66 5th order 

chebyshev 
U2796B 3rd order 

Chebyshev 
DDS Crystal 

filter 
Active 
filter 

90 

33 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

93 

34 3rd order 
butterworth 

Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

104 

35 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

82 

36 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Ceramic
filter 

Active 
filter 

86 

37 No filter Gali-S66 5th order 
chebyshev 

SA602 3rd order 
butterworth 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

63 

38 No filter Gali-S66 5th order 
chebyshev 

SA602 No filter Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

84 

39 No filter Gali-S66 5th order 
chebyshev 

U2796B 3rd order 
Chebyshev 
and 6dB  
attenuator 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

84 

40 No filter Gali-S66 5th order 
chebyshev 

U2796B No filter Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

81 

42 No filter Gali-S66 5th order 
chebyshev 

Dual 
gate 
MOSFE
T 

3rd order 
Chebyshev  

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

67 

43 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
Chebyshev 

Crystal 
oscillator 

Crystal 
filter 

Active 
filter 

83 

44 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
Chebyshev 

DDS Crystal 
filter 

Active 
filter 

86 

45 No filter Gali-S66 5th order 
chebyshev 

AD831 No filter DDS Crystal 
filter 

Active 
filter 

90 

46 No filter Gali-S66 5th order 
chebyshev 

AD831 3rd order 
butterworth 

DDS Crystal 
filter 

Active 
filter 

89 

Table 5-6 The IF rejection of the receiver for different receiver component combinations 
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Figure 5-9 IF rejection results summarized for the different combinations 

5.2.3. c Conclusion 

 
The measured spurious response rejection ratios of the receiver depends mostly on the front-end 

section. The matching and the filters in this section as well as the isolation of the mixer influence 

the measured spurious response rejection ratios of the receiver. The rejection ratios that were 

measured,  were all greater than the desired 70dB . The detailed explanation of the influence of 

different components in the receiver system on the receiver characteristics can be found in 5.3.  

5.2.4. Desensitization 

5.2.4. a Measurement procedure  

 
Blocking or desensitization is a reduction in the output power or SINAD ratio at the output of the 

receiver due to an unwanted signal at another frequency. Th e measurement of this characteristic 

is done using two signal generators as shown in Figure 5-5. The desired frequency generator has 

a modulation frequency of 1mf kHz=  and a deviation of 1.5f kHz∆ = ± , while the unwanted signal in 

this measurement has no modulation [6-7]. 

 

Firstly, the desired frequency generator’s amplitude is adjusted for a 20dB  SINAD at the receiver 

output, while the unwanted signal generator is switched off. Next, with the unwanted signal 
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generator switched on, the amplitude of the unwanted signal generator is adjusted until a 

reduction of 6dB  in the SINAD ratio of the output signal takes place ( 6dB  reduction in the SINAD 

level occurs at output power reduction of 3dB ). The frequency of the unwanted signal should be 

between a 1MHz  and 10MHz  offset from the desired signal frequency. Practical offsets is chosen 

as 1MHz± , 2MHz± , 5MHz±  and 10MHz± . The ratio in dB  between the amplitude of the unwanted 

signal and the desired signal at the input of the receiver, when the SINAD falls to 14dB  is the 

desensitization. The desensitization for every offset level is documented [5] [6]. 

5.2.4. b Measurements 

 
The desensitization was measured of four receiver component combinations. According to Table 

5-2 the desensitization ratio should be more than 78 84dB− . This specification was met by some of 

the combinations. 

i.  Combination 1 
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filter 
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amplifier 
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Mixer 
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Injection 
filter 

 
F 

Local 
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Audio 
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Table 5-7 Receiver combination 1 for measuring the receiver desensitization. 

 
Offset from 0f  1MHz+  1MHz−  2MHz+  2MHz−  5MHz+  5MHz−  10MHz+  10MHz−  
Desensitization 

[ ]dB  
83  79  86  86  92  91  92  93  

Table 5-8 Receiver desensitization ratios for combination 1. 

 

ii. Combination 2 
 

 
A 

Pre-select 
filter 

 

 
B 
RF 

amplifier 

 
C 

Image filter 

 
D 

Mixer 

 
E 

Injection 
filter 

 
F 

Local 
oscillator 

 
G 
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H 

Audio 
filter 

No filter Gali-S66 5th order 
chebyshev 

SA602 No filter PLL Crystal 
filter 

Active 
filter 

Table 5-9 Receiver combination 2 for measuring the receiver desensitization. 
 

Offset from 0f  1MHz+  1MHz−  2MHz+  2MHz−  5MHz+  5MHz−  10MHz+  10MHz−  
Desensitization 

[ ]dB  83  78  86  86  92  91  91  92  

Table 5-10 Receiver desensitization for combination 2 
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iii. Combination 3  
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No filter Gali-S66 No filter SA602 No filter PLL Crystal 
filter 

Active 
filter 

Table 5-11 Receiver combination 3 for measuring the receiver desensitization 

 
Offset from 0f  1MHz+  1MHz−  2MHz+  2MHz−  5MHz+  5MHz−  10MHz+  10MHz−  
Desensitization 

[ ]dB  83  77  86  85  91  91  91  91  

Table 5-12 Receiver desensitization ratios for combination 3 

iv. Combination 4 
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Table 5-13 Receiver combination 4 for measuring the receiver desensitization 

 
Offset from 0f  1MHz+  1MHz−  2MHz+  2MHz−  5MHz+  5MHz−  10MHz+  10MHz−  
Desensitization 

[ ]dB  
71  72  75  75  85  84  93  89  

Table 5-14 Receiver desensitization ratios for combination 4 

 

5.2.5. Spurious radiation 
 

5.2.5. a Measurement procedure 

 
The spurious signal coupled to the antenna connector of the receiver will be radiated from the 

receiver by the antenna. These spurious signals at any frequency should be measured. This is 

done by connecting the receiver to a spectrum analyzer or a receiver via an 50Ω  attenuator as 

shown below in Figure 5-10. The measuring receiver or spectrum analyzer is swept over a 

frequency range of 9kHz  to 4GHz , and the level at each frequency where a spurious component 

is detected, is documented as the spurious power level delivered into the 50Ω  load [5-7] [59]. 
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Figure 5-10 Measurement set-up for measuring the spurious 
radiations of the receiver 

5.2.5. b Measurements 

i. Combination 1 
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Table 5-15 Receiver combination 1 for measuring the spurious radiations 

 

  
Figure 5-11 Spurious radiations detected over 
the frequency span from 1kHz  to 300MHz  

 

Figure 5-12 Spurious radiations detected over 
the frequency span from 500kHz  to 25MHz  

 
All the spurious signals on the antenna connector are smaller than 70dBm− , which exceed the 

specifications in Table 5-2 (the specified average is less than 47dBm− ). 

 

The 6MHz  signal that is radiated as illustrated in Figure 5-12 is the clock of the ATmega8L that 

leaks through as well as the 12MHz  signal that is probably the harmonic of this clock. The  20MHz   

signal that leaks through from the crystal oscillator on the DDS board can also be seen clearly. 

Both of these signals are square waves, which explain the harmonics in the lower frequency 

spectrum.  

Spectrum
analyser

Receiver
under test

RF input
3dB
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The harmonics of the 39.3MHz  DDS signal at 157.2MHz , 196.5MHz  and 235.8MHz  can be seen in 

Figure 5-11.  

ii. Combination 2 
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Table 5-16 Receiver combination 2 for measuring the spurious radiations 

 

  
Figure 5-13 Spurious radiations detected over 
the frequency span from 1kHz  to 300MHz  

 

Figure 5-14 Spurious radiations detected over 
the frequency span from 500kHz  to 25MHz  

 
As with combination 1, the spurious responses on the antenna connector are all smaller than 

70dBm− .  

 

Figure 5-14 shows the radiated 6MHz  clock of the ATmega8L that leaks through, the 20MHz  signal 

that leaks through from the crystal oscillator on the DDS board and the square wave harmonics of 

both. Figure 5-13 shows that the harmonics of the 39.3MHz  DDS signal does not leak, as it did for 

combination 1. 

 

The only difference between combination 1 and 2 is the mixer. In combination 1 the singly 

balanced U2796B is used, while the SA602 balanced mixer is used in combination 2. The LO-to-

RF isolation of the SA602 was measured in section 4.1.2. b as 103dB> , while the LO-to-RF 

isolation of the U2796B singly balanced mixer, described in 4.1.2. a, was 41dB> . This explains 

the difference in the radiated spectrum. However, it  is unimportant  because both combinations 

will couple almost no spurious signals to the antenna connector.  
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iii. Combination 3 
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Table 5-17 Receiver combination 3 for measuring the spurious radiations 

 
The isolation of the SA602 is excellent and no spurious radiations larger than -96dBm are 

detected over the whole frequency range between 1kHz  and 2GHz . 

iv. Combination 4 
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Table 5-18 Receiver combination 4 for measuring the spurious radiations 

 
Only the LO signal at 39.3MHz  leaks through 

and is coupled to the antenna connector from 

combination 4 as can be seen in Figure 5-15. 

This radiated response is very small and 

exceeds the specifications given in Table 5-2. 

No other spurious radiations were detected 

over the frequency range between 1kHz  and 

2GHz .  

 
 Figure 5-15 Spurious radiations detected over 

the frequency span from 1kHz  to 300MHz  

 

5.2.5. c Conclusion 

The spurious response radiation of the receiver measures the effectivity of the receiver system in 

isolating the signals that are generated in the system from the antenna connector. The spurious 

radiations from all the combinations measured were very small and well within the specifications.  
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5.2.6. Co-channel rejection 

5.2.6. a Measurement procedure 

 
The measurement of the co-channel rejection of a receiver is similar to the measurement of the 

adjacent channel selectivity. Signals at the operating frequency are input into the receiver through 

a combining network. The amplitude of the desired signal is set to the required sensitivity level 

and the signal power of the unwanted signal generator is increased until the SINAD reading at the 

output of the receiver is reduced from 20dB to 14dB. The measurement set-up can be seen in 

Figure 5-5. The co-channel rejection is the difference in dB between the level of the unwanted test 

signal at this point and the level of the wanted test signal at the receiver input [6]. 

 

The modulation of the wanted and unwanted signals is 1kHz  and 400Hz  respectively, and the 

deviation is 60%  of the maximum permissible frequency deviation [6]. 

 

This is repeated with the unwanted test signal at frequency offsets of 1.5kHz±  and 3kHz± . The 

lowest value of these five ratios is then recorded as the co-channel rejection ratio [6]. 

 

Thus, two signals at the receiver frequency, the desired one with a modulation frequency of  1kHz  

and the unwanted one with a modulation frequency of 400Hz , and both with a frequency deviation 

of 1.5kHz±  are applied to the input of the receiver, through the combiner. The unwanted signal 

generator is switched off at first, while the input level of the wanted signal generator is adjusted to 

achieve an output signal with a 20dB  SINAD. After this level is reached, the unwanted signal 

generator is switched on, and the signal level is increased until the SINAD ratio drops to 14dB .  

5.2.6. b Measurements 

i. Combination 1 
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Table 5-19 Receiver combination 1 for measuring the co-channel rejection 

 
Frequency 

[ ]MHz  of  1.5of kHz+  1.5of kHz−  3of kHz+  3of kHz−  

Co channel 
rejection [ ]dB  5  7  7  3  3  

Table 5-20 The co-channel rejection ratios of receiver combination 1 
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ii. Combination 2 
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Table 5-21 Receiver combination 2 for measuring the co-channel rejection 

 
Frequency 

[ ]MHz  of  1.5of kHz+  1.5of kHz−  3of kHz+  3of kHz−  

Co channel 
rejection [ ]dB  

7  7  7  4  4  

Table 5-22 The co-channel rejection ratios of receiver combination 2 

 

iii. Combination 3 
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Table 5-23 Receiver combination 3 for measuring the co-channel rejection 

 
Frequency 

[ ]MHz  of  1.5of kHz+  1.5of kHz−  3of kHz+  3of kHz−  

Co channel 
rejection [ ]dB  6  9  8  6  5  

Table 5-24 The co-channel rejection ratios of receiver combination 3 

 

5.2.7. Conclusion 
 
The various measurement methods of the receiver characteristics were described in this section. 

Measurement results indicated that specifications were met by some of the measured 

combinations. These results will be interpreted in the next section.  
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5.3    Influence of the receiver components on receiver characteristics 
 
The influence of the receiver components designed in chapter 4, on receiver performance as 

measured in 5.2, is discussed in this section. 

5.3.1. Influence of the front-end amplifier on receiver performance 
 
A comparison between the designed transistor amplifier and the Gali-S66 amplifier indicates that 

the Gali-S66 amplifier generally improves system performance. This is seen when comparing 

combinations 8 & 13, 9 & 12 and 26 & 29 in Table 5-3, Table 5-4, Table 5-5 and Table 5-6. The 

sensitivity improves with  4 6dB−  and because the selectivity is dependent on the sensitivity, the 

selectivity is consequently improved. The sensitivity gets better when the Gali-S66 amplifier is 

used, even though its noise figure is slightly higher than the noise figure of the designed transistor 

amplifier, because of its higher gain. The IF and image rejection is marginally better if the 

transistor amplifier is used, because of the matching networks on the transistor amplifier that act 

as filters and reject signals that are not at 50MHz .  

5.3.2. Influence of the front-end filters on receiver performance  
 
One of the main reasons for employing a pre-select filter is the prevention of the saturation of the 

RF amplifier by strong interfering signals. This desensitization of the receiver is measured in 

section 5.2.4. b. However, for the measured combinations there are no differences in the 

desensitization ratio whether the pre-select and image filters are employed or not. This is caused 

by the high intercept points of the amplifiers and mixers involved.  

 

The main function of the image reject filter is the rejection of the spurious response at the image 

signal. The pre-select filter also influences the spurious reponse rejection, but at the cost of a 

drop in sensitivity. The influence of the front-end filters on the receiver spurious response, 

selectivity and sensitivity performance is evaluated next by comparing combinations in Table 5-3, 

Table 5-4, Table 5-5 and Table 5-6.  

 

Firstly, the receiver performance is evaluated with and without the 3rd order Butterworth filter used 

as pre-select filter. The 5th order Chebyshev filter is employed as image reject filter. The 

introduction of the pre-select filter worsens the receiver sensitivity by 1 7dB− . This can be seen 

when comparing combinations 8 & 9, 12 & 13, 31 & 32 and 34 & 35. The deteriorated sensitivity 

is caused by the increase in the receiver noise figure when an attenuator is placed before the RF 

amplifier. Better spurious response rejection is however, expected and an improved image and IF 

rejection of 12 30dB−  is seen. The IF and image rejection improvement differ, because the 

matching networks and rejection of the other components also play a part in the spurious 
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response rejection of the system. The selectivity remains unchanged as was expected, because it 

is dependent mostly on the IF filter.  

 

Next, the 3rd order Butterworth filter is used as image reject filter instead of the 5th order 

Chebyshev filter.  The performance is compared with and without the 5th Chebyshev filter as pre-

select filter by comparing combination 3 & 5. The sensitivity again decreases when using the pre-

select filter, as expected. The selectivity and IF rejection stays constant, while the combination 

without the 5th order Chebyshev filter as pre-select filter has a much lower image rejection ratio of 

only 32dB  compared to the 89dB  of the combination that includes the pre-select filter. This can be 

explained by considering Figure 4-77. The image rejection of the 5th order Chebyshev filter is 65dB  

while the image rejection of the 3rd order Butterworth filter is a mere 33dB .  The IF rejection is 

acceptable, because both filters attenuate 10.7MHz  by around 60dB . 

 

In combination 5 & 6, no pre-select filter is used, and the image reject filter is changed from the 

3rd order Butterworth filter to 5th order Chebyshev filter. All the performance characteristics 

remains unchanged, except for the image rejection ratio, which is very low for the 3rd order 

Butterworth filter as described in the previous paragraph. Thus, the 5th order Chebyshev filter is a 

much more effective image reject filter.  

 

In combination 3 and 7, the 3rd order Butterworth and 5th order Chebyshev filter are interchanged. 

The sensitivity remains unchanged, because the insertion loss of the filters is similar. The 

selectivity is not influenced, but the IF and image rejection are both better if the 5th order 

Chebyshev filter is used as the image reject filter.  

 

The simple LC filter is compared to the 3rd order Butterworth filter as pre-select filter by comparing 

combination 13 & 14. The measured insertion loss of the 3rd order Butterworth filter is 0.5dB , while 

the insertion loss of the simple LC filter is 1.2dB . This small insertion loss difference causes the 

sensitivity to drop with 2dB , which demonstrates the effect of attenuators inserted before the RF 

amplifier. The IF and image rejection are less when using the simple LC filter, because the 

selectivity of this filter is not as good as the selectivity of the 3rd order Butterworth filter (as can be 

seen in Figure 4-77). 

 

The receiver has almost no spurious response rejection when no pre-select or image reject filter 

is used. This can be seen by comparing combination 9 & 10, 20 & 21, 10 & 11, 26 & 27 and 

27&28. In all this cases the image and IF rejection is very poor when no front-end filters are used 

and gets better when a front-end filter is employed. The selectivity stays the same for each case 
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while the sensitivity worsens when a filter is introduced. This is because of the degradation of the 

noise figure.  

 

When only one front-end filter is used, as in combination 9 & 11 and 26 & 28, it seems as if better 

results are attained if it is employed after the RF amplifier, instead of introducing the attenuator 

before the amplifier. The receiver selectivity remains unchanged in both instances while the 

sensitivity is 6 7dB−  better with the filter after the front-end amplifier. The spurious response 

rejection tends to be marginally better with the filter employed before the RF amplifier.  

 

The measured results can be summarized as follows: 

§ The selectivity of the system is seldom affected by the front-end filters, because system 

selectivity depends mostly on the selectivity of the IF filter. 

§ The front-end filter has the greatest influence on the spurious response rejection. 

§ The introduction of  a front-end filter increases the IF and image rejection, while 

decreasing the sensitivity. 

§ The 5th order Chebyshev filter is a better image reject filter than the 3rd order Butterworth 

filter, because of its higher selecitivity. 

§ The 3rd order Butterworth filter is the best pre-select filter, because it has the lowest 

insertion loss. 

§ The receiver has almost no spurious response rejection when no pre-select or image 

reject filters are used. 

5.3.3. Influence of the mixer on receiver performance 
 
The main function of the mixer in the system is to translate the frequency. Even though all the 

mixers that were designed do this, their other characteristics have an influence on receiver 

performance. For example, the receiver sensitivity will be affected by the noise figure and 

conversion gain or loss of the mixer. The sensitivity will furthermore be influenced by the rejection 

of AM noise from the LO. The isolation of the mixer will also play a significant role in the reduction 

of spurious radiation as well as spurious response rejection. The influence of the different mixers 

on receiver performance that were measured in 5.2 are compared in this section.  

 

Firstly, the influence of different types of mixers on the receiver’s spurious response rejection, 

sensitivity and selectivity are compared. This is done by comparing the active mixers: U2796B, 

SA602, Dual-gate MOSFET and AD831 mixers. Thus, combination 12, 15, 16 and 17 in Table 5-3, 

Table 5-4, Table 5-5 and Table 5-6 respectively, are compared.  
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The sensitivity of the combination with the single device dual-gate MOSFET mixer is 108dBm−  

which is the lowest of these four combinations. This can be expected, because it has a very high 

conversion loss, the highest noise figure and the lowest average AM noise rejection.  

 

The sensitivity of both the singly balanced U2796B mixer and the doubly balanced AD831 is 

114dBm− . This is an interesting result, because, even though the noise figures of these two 

mixers are similar the AD831 has 9dB more gain, which should decrease the noise figure and 

improve sensitivity. This mixer is also doubly balanced, which should result in better LO AM noise 

rejection than when the singly balanced mixer is used. The similar sensitivity can be explained by 

looking at the measured results in Table 4-10. 

 

 Here it can be seen that the LO AM noise rejection of the U2796B is marginally better than that 

of the AD831 which will improve the sensitivity. The effect of the difference in the gain is also less 

significant here than earlier in the receiver chain.  

 

The best sensitivity of 116dBm−  is achieved by the combination that uses the SA602 mixer. This 

mixer has the highest average LO AM noise rejection ( 44dB  more than that of the AD831), which 

explains the better sensitivity result of this mixer even though it has a 1dB  higher noise figure and 

7dB  lower gain than that of the AD831.  

 

Similar results are obtained when a comparison is made amongst combinations 35, 39, 42 and 

43, with the SA602 again performing the best. The U2796B performs better in this instance than 

the AD831, which can again only be contributed to the fact that it has a better LO AM noise 

rejection, which plays a more significant role when using the crystal oscillator. A comparison 

between combination 7 & 8 shows that the receiver sensitivity improves when the U2796B is 

used rather than the AD831. Here the influence of the higher gain on the receiver noise figure 

and consequently the sensitivity is reduced even more by the introduced pre-select filter.  Thus, it 

can be derived that the better LO AM noise rejection of the U2796B plays a very significant role.  

 

The image rejection of combinations with the SA602 is the highest, which could be expected, 

because the gain at the image frequency of this mixer is low, due to the matching networks. On 

the other hand, the selectivity of the combinations that use the SA602 is usually poorer. This is 

because the input 1dB compression point of this mixer is the lowest of all the mixers, and thus, 

distortion will set in at lower input power levels. The selectivity of the combinations that use this 

mixer is still acceptable.  
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The active mixer which supports the best overall receiver performance is the SA602, with the 

AD831 and U2796B also performing well. The SA602 draws a mere 1.2mA, while the AD831 

uses 96mA and the U2796B uses 2.3mA. Thus, the SA602 and U2796B are the best choices for 

portable applications.  

 

Next, the receiver performance with the SA602 active doubly balanced mixer is compared to the 

receiver performance with the SBL-1 passive doubly balanced mixer. The noise figure of the SBL-

1 is better than that of the SA602, while the SBL-1 has a 5dB−  conversion loss compared to the 

9dB  conversion gain of the SA602. The sensitivity of the combination that uses the SA602 is 4dB  

better, while the selectivity of this combination is less, because of the lower 1 dB compression 

point of the SA602. The selectivity of the combination, using the SA602 is still acceptable and will 

be further improved when the IF filter is used on a board with a better isolation as previously 

discussed. The spurious response rejection of these combinations is similar due to their 

comparable RF-IF isolation.   

 

The SA602 and U2796B mixers are now compared by comparing combination 32 & 33, where 

the DDS is used as the local oscillator. Here the SA602 performs at least 3dB  better for every 

characteristic measured. When comparing the spurious radiations of these combinations in 

section 5.2.5, the SA602 has the best spurious radiation performance, which can be contributed 

to its high LO-RF isolation.  

 

Thus, the best overall receiver characteristics were measured when using the SA602 mixer.  

5.3.4. Influence of the injection filter on receiver performance 
 
The injection filter attenuates the LO harmonics and wideband noise, and thus, improves the 

receiver sensitivity. This is deducted by comparing the receiver sensitivity for combinations 44 & 

45 & 46 that all use the DDS as local oscillator. The best sensitivity is achieved by using the 3rd 

order Chebyshev filter and is worsened by 1dB   when using the 3rd order Butterworth filter. The 

sensitivity is 6dB  poorer when no injection filter is used, which indicates this filter’s importance 

when the DDS is used as local oscillator.  

 

The importance of this filter is decreased when the crystal oscillator is used, which has less 

harmonic content than the DDS. By comparing combination 35 & 38, it can be seen that for this 

instance the sensitivity is only decreased by 2dB , when not using the injection filter.  

 

When comparing the receiver sensitivity when the 3rd order Butterworth or Chebyshev filter is 

used as injection filter, the Chebyshev filter improves the sensitivity with 2 3dB− , irrespective of 
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whether the DDS or PLL is used as local oscillator. This can be seen by evaluating combinations 

18 & 19 and 15 & 30.  

 

This shows that the use of an injection filter improves receiver sensitivity and that the best 

injection filter to use is the 3rd order Chebyshev filter. 

5.3.5. Influence of the local oscillator on receiver performance 
 
The phase noise of the local oscillator will influence the adjacent channel selectivity performance 

of the receiver, while the wideband noise of the local oscillator will influence the receiver’s 

sensitivity. 

 

The higher wideband noise of the DDS worsens the selectivity as was expected. This can be 

seen by comparing combinations 16 & 19, 30 & 31 & 39 and 33 & 34. On the contrary, less phase 

noise of the DDS improves the selectivity (see combinations 16 & 19).  

 

When comparing the selectivity of combinations 30 & 39, it can be seen that the crystal oscillator 

improves the selectivity as expected, because it has less phase noise.  

 

By comparing combinations 43 & 44 it can be seen that the DDS, which has a poorer phase 

noise, worsens the selectivity. In combinations 46 & 12, the DDS has the best phase noise and 

consequently improves the selectivity of combination 46. 

5.3.6. Influence of the IF filter on receiver performance 
 
The IF filter with the narrowest bandwidth sets the overall system noise bandwidth and provides 

the adjacent channel rejection. This can be seen by comparing receiver selectivity with and 

without the IF filter, by evaluating combination 22 & 24. When the IF filter is absent, there is 

almost no adjacent channel selectivity. The sensitivity, on the other hand, remains unchanged 

regardless of the IF filter’s presence. This is because the filter is almost last in the receiver chain 

and consequently its influence on the noise figure will be minimal. When the filter is absent, the 

Murata Cerafil filters that are used in the IF receiver will set the noise bandwidth. The consequent 

noise bandwidth remains relatively narrow, which explains the unaffected sensitivity. The 

spurious response rejection is not at all influenced by this filter, as was expected.  

 

When comparing the influence of the ceramic IF filter to the influence of the crystal IF filter on the 

system performance, much better selectivity is found when using the crystal filter compared to 

almost no improvement when using the ceramic filter, because of the lower selectivity of this filter. 

This can be seen by evaluating combination 35 & 36. The sensitivity in this instance is slightly 
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poorer, when the ceramic filter instead of the crystal filter is used, even though it is almost at the 

end of the receiver chain. This is caused by the 6dB  conversion loss of the ceramic filter 

compared to the 2dB  conversion loss of the crystal filter.   

 

The crystal filter should be employed for best receiver selectivity and sensitivity results.  

5.3.7. Influence of the audio filter on receiver performance 
 

The audio bandwidth should be limited by an audio filter to attenuate interference and IF noise 

that originates after the first IF filter and thus, to enhance the signal-to-noise ratio.  

 

The very important effect of the audio filter on the receiver system performance can be seen by 

comparing combinations 3 & 4 and 22 & 23. The receiver sensitivity increases by 79 96dB−  

without the audio filter. Thus, it can be concluded that the use of an audio filter is essential.  
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5.4    Discussion and comparison of results  
 
 
In this section, the receiver’s performance values for some of the combinations were predicted 

with  and compared to the receiver performance measured in section 5.2. This 

was done by entering the measured characteristics of every receiver component (as discussed in 

chapter 4) into . All the different combinations were saved on the Appendix CD, 

and can be opened with .  

 

A summary of the expected and measured performances is given in Table 5-25. All the values that 

meet the specifications are accentuated, while the anticipated values that compare 

 well with the measured values, are marked with blue. Two expected sensitivity values are given. 

The first prediction takes the contribution of the image and the wideband LO noise to the noise 

figure into account. The second value uses only the cascaded noise figure to predict the 

sensitivity.  

 

Thus, the approximation that is made when the image and LO wideband noise is not taken into 

account, can clearly be seen. For example the values in combinations 1-3, 6 & 7, predicted with 

 when the image and LO wideband noise is taken into account, compares well 

to the measured values. In contrast, the predicted values that are attained with  

when using only the cascaded noise figure, give the false impression that the specifications will 

be met, which is not the case for these combinations. The inclusion of the image and LO 

wideband noise contribution to the noise figure, does not make a notable difference in all the 

instances, but is very important for some.  

 

Most of the sensitivity predictions in Table 5-25 compared well to the measured values. It can 

therefore be concluded that  is a useful radio receiver design tool.  
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Sensitivity for a deviation of 1.5kHz±  
[dBm] 

Selectivity [dB] 

Expected 
Combination 

[1]* [2]* 
Measured Expected Measured 

1 -107.6 -113.4 -108 46.7 66

2 -108.1 -113.2 -107 46.7 66

3 -110.2 -113.2 -107 46.7 61

6 -111.1 -114.5 -111 46.7 64

7 -110.6 -114 -107 46.7 62

8 -114 -114.2 -102 46.7 57

9 -114.5 -114.7 -108 46.7 57

10 -110 -114.9 -109 46.7 57

11 -111.2 -113.4 -102 46.7 57

12 -114.5 -114.6 -114 46.7 60

13 -114 -114.1 -107 46.7 57

14 -113 -113.3 -105 46.7 56

15 -113.2 -114.5 -114 46.7 58

16 -114.5 -114.5 -116 46.7 53

17 -81.04 -107.6 -108 46.7 41

18 -114.5 -114.5 -100 46.7 59

19 -114.5 -114.5 -113 46.7 56

20 -112.6 -114.5 -116 46.7 61

21 -114.5 -114.6 -117 46.7 60

22 -114 -114 -116 46.7 61

24 -114 -114 -116 Poor 5

25 -85.79 -113.8 -112 46.7 70

26 -87.28 -114.4 -114 46.7 70

28 -87 -114 -107 46.7 70

29 -81.99 -114.2 -109 46.7 67

30 -113.8 -114.5 -116 46.7 64

31 -114.1 -114.5 -105 46.7 59

32 -113.6 -114 -102 46.7 59

34 -114.1 -114 -117 46.7 65

35 -114.5 -114.5 -118 46.7 65

36 -114.4 -114.4 -117 Poor 4

38 -114.5 -114.5 -116 46.7 65

39 -114.2 -114.5 -117 46.7 67

40 -113.3 -114.5 -118 46.7 53

43 -114.5 -114.6 -114 46.7 70

44 -114.5 -114.6 -116 46.7 58

46 -114.5 -114.6 -115 46.7 63

Table 5-25 Comparison between expected and measured receiver performance  

[1]* Take image as well as wideband LO noise contribution to the noise figure into account  
[2]* Only cascaded noise figure is used to predict sensitivity 

 



Chapter 5- Measurements of receiver systems  

Valpré Kellerman                       145    
 

5.5    Conclusion 
 

In this chapter, the correct measurement methods to measure receiver characteristics were 

discussed. The performance of the receiver was measured while interchanging the different well-

defined receiver components discussed in the chapter 4. The measurement results confirmed the 

predicted influence of every component on the receiver characteristics.  

 

The selectivity results of the different combinations were mostly influenced by the specifications 

of the IF filter, while the spurious response rejection ratio of the receiver was mostly dependent 

on the front-end section. The measured rejection ratios were all greater than the desired 70dB .  

 

The spurious radiations from all the combinations measured were very small and well within the 

specifications. 

 

A comparison between the designed transistor amplifier and the Gali-S66 amplifier indicated that 

the Gali-S66 amplifier generally improves system performance. The introduction of a front-end 

filter increased the IF and image rejection, while decreasing the sensitivity. The front-end filters 

had the greatest influence on the spurious response rejection. The receiver had almost no 

spurious response rejection when no pre-select or image reject filter was used. 

 

The injection filter attenuated LO harmonics and wideband noise, and thus improved the receiver 

sensitivity. The local oscillator phase noise influenced the adjacent channel selectivity 

performance of the receiver, while the wideband noise of the local oscillator influenced the 

receiver’s sensitivity. 

 

The IF filter with the narrowest bandwidth provided the adjacent channel rejection. The receiver 

sensitivity dropped between 79 96dB−  without the audio filter. Thus, the use of an audio filter is 

essential.  

 

A summary of the measured characteristics is given in Table 5-26. These characteristics compare 

well to those predicted with . 
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Combination 

Sensitivity 
for a 

deviation of 
1.5kHz±  

Selectivity Image 
rejection IF rejection 

1 -108 66 75 98

2 -107 66 97 97

3 -107 61 89 90

6 -111 64 72 94

7 -107 62 98 98

8 -102 57 92 92

9 -108 57 63 93

10 -109 57 2 37

11 -102 57 71 94

12 -114 60 50 89

13 -107 57 82 98

14 -105 56 64 77

15 -114 58 57 77

16 -116 53 82 63

17 -108 41 38 19

18 -100 59 83 88

19 -113 56 84 66

20 -116 61 20 21

21 -117 60 28 73

22 -116 61 94 95

24 -116 5 94 94

25 -112 70 85 96

26 -114 70 26 63

28 -107 70 22 98

29 -109 67 36 81

30 -116 64 58 80

31 -105 59 62 82

32 -102 59 84 90

34 -117 65 104 104

35 -118 65 84 82

36 -117 4 86 86

38 -116 65 83 84

39 -117 67 64 84

40 -118 53 60 81

43 -114 70 55 83

44 -116 58 52 86

46 -115 63 51 89

Table 5-26 Summary of the sensitivity, selectivity and spurious 
response rejection ratios of the measured combinations 
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6 Conclusion and recommendations 

 

6.1    Conclusion 
 
Basic receiver topologies and theory were discussed. The receiver characteristics, namely 

sensitivity, selectivity, audio frequency response, image rejection, IF rejection, dynamic range, 

audio frequency output power, distortion and spurious responses were defined and receiver 

measurement procedures were discussed and completed. The characteristics of the different 

receiver components that influence receiver system characteristics were described and 

summarized. Important functions and design restrictions of the different receiver components 

were compared.  

 

A study of the noise theory was done to help predict the noise figure of a system more accurately. 

This is extremely important to avoid the re-design of the system to improve sensitivity, especially 

for high performance receivers. The noise figure of a system is sometimes predicted by using 

only the cascaded noise figure, which can imply that sensitivity specifications are not met. The 

real noise figure of a system is dependent on the different component gains and noise figures, the 

image noise and the local oscillator wideband noise. The calculation of this real noise figure is 

explained thoroughly.  

 

A software analysis tool called  was developed to calculate the signal-to-noise 

ratio and characteristics of the receiver prior to the design process. This will enable designers to 

determine if specifications are met, and to use different components to improve performance 

before the design process commences. This program predicts the sensitivity, selectivity and 

dynamic range of receivers with defined component properties and can plot power diagrams and 

spurious response charts.  is also a very helpful tool, when components 

become obsolete and need to be replaced. The receiver’s system performance can be predicted 

accurately with this program.  

 

A modular design approach was used to design the receiver. The receiver has been divided into 

components that were each designed, built and matched to 50O, and then measured and 

characterized separately. This modular design approach enables future designers to easily 

upgrade, increase bandwidth or replace components when components become obsolete. 
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Mixer theory was discussed and mixer terminology and measurement methods were defined. A 

few different mixers were designed, measured and characterized in detail. Different local 

oscillators were developed. A DDS was considered as a replacement for the existing radio’s 

synthesized PLL local oscillator. A crystal oscillator was built, characterized and its performance 

was compared to that of the DDS and PLL. Phase noise theory was considered in detail, as well 

as its effect on the receiver system. Two front-end amplifiers were designed. The noise factor is 

dominated by the first component in the receiver. The effect on the system sensitivity using a low 

noise amplifier with a poor input impedance match was compared to the effect of an amplifier with 

a higher noise figure and an improved input impedance match. A ceramic and crystal IF filter was 

designed, built, characterized and compared. The selectivity of this filter’s influence on the 

system’s selectivity and performance was considered. An IF receiver system was developed and 

the necessary system input level to achieve a certain 20dB SINAD output, was defined. The 

distortion and characteristics of this system were evaluated. An audio filter and amplifier were 

designed and tested and various receiver filters were developed. Digital components were 

investigated, compared and used with analogue techniques. The energy consumption of the 

components was considered throughout the design process.  

 

The receiver system was measured and the performance was evaluated when interchanging the 

different developed receiver components. The influence of every component on the receiver 

characteristics was confirmed with theory.  

 

The measured receiver characteristics were compared to the predictions of . 

Conclusions were made concerning the usability of this software product. 

 

6.2     Recommendations for future research  
 
The preliminary development was done for a radio transceiver that will improve an existing 

narrowband system. This existing narrowband system operates between 48MHz and 50MHz and 

has certain limitations.  

 

The foundation was laid for future research possibilities. This may include the following: 

• Emphasis was placed on the receiver section and its mixer and local oscillator 

components. Consequently the transmitter section still needs to be designed to complete 

the transceiver system.   

• Components can be replaced in the existing system, to achieve a broadband receiver 

system. Special development work can be done on the design of a broadband or 

tuneable front-end filter to improve the bandwidth of the system.  



Chapter 6 – Conclusion and recommendations 

Valpré Kellerman                       149    
 

• The DDS can be implemented in the receiver as well as in the transmitter section of the 

transceiver. Thus, the modulation techniques of the DDS signal should be investigated.  

• Research can also be done on the effect of the low power consumption constraint on 

receiver and transmitter performances and on the performance of separate components.  

•  can be improved, by adding a function to calculate the transducer gain 

that is used in the calculations, from the measured s-parameters.  

• The foundation of the receiver system was  laid, but improvements to any components in 

the system can easily be done due to the flexibility of the modular design approach. 

Thus, any component can be researched and improved if desired for example the crystal 

IF filter may be improved by laying it out on a strip line PCB.  

• More digital components can be investigated and the effect of their characteristics on the 

system’s performance be evaluated.   

 

The measurement procedures and receiver characteristic predictions were researched and 

documented in detail for future development. Improvements to the existing system can be 

done with ease, due to the modular design approach used and with the help of the developed 

software tool, .  
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Appendix A – LNA amplifier design 
 

The detailed design of the LNA, which is discussed in section 4.2.2. a, follows. This design 

consist three parts namely 

• Designing the biasing network 

• Determine the stability 

• Design matching networks 

1. Design of the biasing network 
 
A common emitter circuit with a voltage divider biasing circuit, two coupling capacitors and two 

RF chokes is chosen to switch the transistor on. This circuit can be seen in Figure A.1 (a) beneath. 

The function of the coupling capacitors is to provide DC isolation between the amplifier and the 

high frequency network. The RF chokes is inductors with a large value that will have high 

impedance at high frequencies. This will provide isolation between the biasing network and small 

high frequency signal, to ensure that this energy is not wasted in the biasing network.   
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Figure A.1 (a) The biasing circuit (b) The equivalent biasing circuit at DC  (c) The Thevenin equivalent 
circuit 

 

The equivalent biasing network at DC is shown in Figure A.1 (b). It is assumed that the coupling 

capacitors will act as open circuits and the inductors as short circuits at DC. The Thevenin 

equivalent of this DC equivalent circuit can be seen in Figure A.1 (c). The Thevenin equivalent 

voltage and resistance can be calculated by using the following formulas: 
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V V
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 (A.2) 

 
Firstly, it was decided to choose 5ccV V=  and 5cI mA= . At low frequencies, the small signal 

current gain feh  is essentially equal to β  [48]. Thus 150fehβ ≈ =  is found on the datasheets of the 

AT-41533 transistor.  

 

BI  can now be calculated by using cI  and β  as follows [48] 
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c B B
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I I I Aβ µ

β
= ⇒ = = =  (A.3) 

 
The following formula can be derived from Figuur A.1 (c) 
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R
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=  (A.4) 

BEV  is chosen as 0.7V . By substituting 5ccV V= ; 33.3BI Aµ=  and 0.7BEV V=  into equation (A.1), 

(A.2) and (A.4), the following three formulas can be found: 
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By substituting these three formulas into each other and choosing 1 10R k= Ω ; 2R  is calculated as 

1.765kΩ . 

 
This resistor values was now used to determine if any of the absolute maximum ratings of the 

transistor would be exceeded. All the voltages and currents were determined to be well within the 

specified maximum ratings.  

 

Next, the values of the RF chokes and coupling capacitors are determined. The value of 11s  is 

estimated from the datasheets as 11 0.84 20 0.789 0.287s i= − = − . The input impedance can be 

calculated from 11s  by substituting it into 
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 11
11

11

50(1 )
116.28 226.24

1
s

z i
s

+
= = −

−
 (A.8) 

The imaginary part of the input impedance is negative and thus capacitive. Thus, if large resistors 

are used that functions correctly at 50MHz, the inductors are almost unnecessary. Just to be 

certain, the reactance of the RF choke is chosen to be much greater than the reactance of the 

transistor’s input impedance. Thus  

 1 226.24Lω = − Ω  (A.9) 

It was decided to choose 1 2 200 62.83 226.24LL L nH X Lω= = ⇒ = = Ω − Ω?  

 
The values of the coupling capacitors are determined next. These capacitors should be similar to 

a short circuit at 50MHz. Thus to ensure a resistance as smaller than 5Ω  at 50MHz the capacitor 

should be chosen to be 

 

1 5

1
636

2 .50 6.5

C

C pF
e

ω

π

< Ω

⇒ > =
 (A.10) 

 
Thus, if the value of the capacitor is greater than 636pF the capacitor should function similar to a 

short circuit at 50MHz, if it functions correctly. The capacitor values is chosen as 

1 2
1

820 3.8cC C pF X
Cω

= = ⇒ = = Ω . The calculated bias circuit is shown below in Figure A.2.  
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Figure A.2 The bias circuit 

 

This circuit was build and measured. The transistor switches on and draws current. The bias 

circuit was determined to be successful.  
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2. Determine stability 
 
To determine if the amplifier is unconditionally stable for all frequencies, the scattering 

parameters of the preliminary amplifier were measured on the network analyzer. This was done 

for 300 1kHz f GHz< <  and with an input signal of 30dBm− . The measured s-parameters were 

drawn into Microwave office [50] and stability circles were plotted to determine if the circuit is 

unconditionally stable over all frequencies.  

 

If the circuit is unconditionally stable, all the stability circles should lie outside the Smith chart. 

Stability circles that lies inside the Smith chart implies an unstable amplifier that will oscillate. This 

is a result of positive feedback or too much gain. A resistor was added over the output of the 

amplifier to dissipate energy and as a result lower the gain. This was simulated, in Microwave 

office [50] and appeared to stabilize the amplifier.  

 
The new s-parameters of the amplifier were measured on the network analyzer, with the resistor 

added over the output of the amplifier, to determine if this stabilized the amplifier as simulated. 

The measured values were drawn into Microwave office [50] and stability circles were plotted as 

shown in Figure A.3. 
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Figure A.3 The stability circles calculated from 
the s-parameters that was measured after a 
120O resistor was added over the output of the 
amplifier. 

All the stability circles lie outside the Smith chart, which implies that the amplifier is 

unconditionally stable over the entire measured frequency band (300kHz-1GHz). 
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a. Design matching networks 
 
The input should be matched to the optimum source admittance, optΓ , to achieve minimum 

amplifier noise figure. This figure was estimated at 50MHz  for 5CEV V=  and 5cI mA=  with the help 

of the AT-41533 transistor datasheets as 0.472optΓ = o . An impedance matching network was 

designed to match this optimum source impedance to 50Ω  with the help of Smith 184 [49]. The 

result is shown below in Figure A.4.  

 

 

Figure A.4  Input impedance match to optΓ  

 

The input matching network was build and measured on the network analyzer. The measurement 

is shown in Figure A.5. The impedance is not perfectly matched to 50Ω , but is the price that has to 

be paid for an optimum noise figure. The stability circles was also plotted to determine if the 

amplifier was still stable over the whole frequency region. The amplifier was determined to be 

stable. 
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Figure A.5  Measurement of s11 on the network analyzer 

 
An output-matching network can now be designed by utilizing the measured s-parameters. This 

network was designed for maximum gain, by matching the output section to *
LΓ  where LΓ  is 

calculated using equations  

 
2 22 2

1 1 1 2 2 2

1 2

4 4

2 2s L
B B C B B C

and
C C

± − ± −
Γ = Γ =  (A.10) 

where  
 2 2 2 22 2

1 11 22 2 22 111 1B s s and B s s= + − − ∆ = + − − ∆  

 * *
1 11 22 2 22 11C s s and C s s= − ∆ = − ∆  

For maximum power transfer, from and to the transistor, the input and output impedance 

matching networks should be designed to match  *
in sΓ = Γ  and *

out LΓ = Γ .∆  is defined as the 

determinant of the scattering matrix, 1 1 2 2 12 21s s s s∆ = − . 

 

With the help of Matlab [54], LΓ  was determined as =1.8943 - 1.3225i or 0.3549 - 0.2478iLΓ . 

=0.3549 - 0.2478iLΓ  lies inside the Smith chart, and an output-matching network was now designed 

for *=0.3549 + 0.2478iLΓ  with the help of Smith 184[49] and is shown in Figure A.6. 
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Figure A.6 Output impedance match design with the 
help of Smith 184[49] 

 
This output matching section was added to the amplifier and this was measured on the network 

analyzer and plotted in Microwave office [50]. The measured 22s  is shown in below in Figure A.4.  
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Figure A.7 22s  as measured on the network analyzer 
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Two back-to-back diodes at the transistor input pin is sometimes added as a safety measure. The 

disadvantage of these diodes is that they will generate IM distortion when high input levels are 

present, even if the RF amp is powered down. They were not included in this design [6 p55]. 

 
The final measured s-parameters were used to draw the stability circles in Microwave office [50]. 

This stability circles is shown in Figure A.8 and implies that the amplifier is unconditionally stable 

over the measured frequency band. 
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Figure A.8 Stability circles drawn from final measured s-
parameters 
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Appendix B – DDS design 
 

The design of the DDS that is discussed in section 4.3.2. a, follows.  

1. Hardware design 

The AD9851 is a DDS IC with a six-time reference clock enable function, a built in 10 bit analog 

to digital converter and a tuning resolution of approximately 0.04Hz. Reference clock rates of up 

to 180MHz can be accommodated. It produces a sine wave that can be used directly as a 

frequency source.  

 

The circuit diagram of this frequency source component is shown in Figure B.1 In this diagram C1-

C5 are all supply bypassing capacitors. JP3 is a screw mount terminal, where the power supply is 

connected to the component, while JP1 is the header that connects the AD9851 to the 

microcontroller, which will control the output frequency.  

 

U3 is the reference clock oscillator. For the purposes of this design, a reference clock oscillator 

from STC frequency technology, the STCO31-SMD7X5 metal lid surface mount crystal clock 

oscillator at 20MHz was chosen. Thus, with the 6X reference clock enabled a system reference 

clock of 120MHz was used.  

 

 

Figure B.1 Circuit diagram of the AD9851 direct digital synthesizer component 
that was designed 
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The output pins of the digital to analog converter, requires a current to voltage transformation. 

The T1-6T transformer from Mini-circuits was used to do this current to voltage transformation. 

 

The value of outI  can be set with 1RES  and the relationship given in the datasheets as 

 39.93/ 1outI RES=  (B.1) 

 
1RES  was chosen as 2.2kΩ , therefore outI  can be expected to be 18mA . 30outMAXI mA=  should 

not be exceeded.  

 

2. Programming the DDS 
 
The AD9851 is essentially a digitally controlled oscillator, which will generate an output frequency 

dependent on the contents of its 40-bit register. The contents of this 40-bit register and thus the 

output frequency of the AD9851 were chosen in this application to be controlled by the low-power 

ATmega8L microcontroller from the ATMEL AVR family of microcontrollers.  

 

The ATmega8L was chosen for its low power consumption, which is a major consideration in 

portable devices. An active supply current of 9mA±  is predicted by the datasheets, when 

operating at a frequency of 6MHz  and with a supply voltage of 5V . The active supply current 

during operation was measured to be 7.7mA . 

 

The 40-bit register on the AD9851 can be loaded by the ATmega8L microcontroller in serial or 

parallel mode. This is done by loading a 40-bit control word that contains 5-bit phase modulation 

information, an enable bit that will enable the 6 ×  reference clock multiplier as well as a serial 

mode enable bit and a power down bit. After this, the 32-bit frequency control word is loaded from 

the least to the most significant bit. The relationship between the frequency control word and the 

frequency of the output signal is   

 
32

( )

2
out

CW SysCLK
f

×
=  (B.2) 

Where outf  is the frequency of the output signal in [ ]MHz , CW  is the decimal value of the 

frequency control word and SysCLK  is the reference clock or 6 ×  the reference clock if the 6 ×  

reference clock multiplier is enabled.  

 

It was decided to program the microcontroller to tune the direct digital synthesizer, and thus the 

local oscillator frequency, to vary from 39.25MHz  to 39.35MHz , in steps of 12.5kHz . Thus the 
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receiver will be able to receive 9 channels, separated by 12.5kHz , between the receive 

frequencies 49.95MHz  and 50.05MHz .  

 

The user is able to tune the radio from one channel to the next one or previous one, by pushing 

one of two buttons. This generates external interrupt on the microcontroller and causes it to write 

a new 40-bit register on the AD9851.  

 

The ATmega8L was programmed using CodeVisionAVR. CodeVisionAVR is a development 

envi ronment, C compiler and an in system programmer for the ATMEL AVR family of 

microcontrollers. The C program that was programmed unto the microcontroller can be found on 

the appendix CD.  
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Appendix C – IF receiver design  
 
The IF receiver design, that is discussed in section 4.6.1, follows. The cicuit diagram of this 

component is shown in Figure C.1. 

 

 
Figure C.1 Circuit diagram of the SA605 IF receiver system that was designed 

 

L1, C1, C2, C3 and C4 are part of a tapped capacitor impedance matched output network that was 

designed, for an input frequency of 10.7MHz. The calculated values are given in the circuit 

diagram. C5 is an AC short for pin 2. 

 

The first IF frequency of the super heterodyne receiver is 10.7MHz, while the second IF 

frequency is 455kHz. Thus a LO signal of 10.245MHz is needed. The SA605 has an on board 

transistor for the local oscillator, but external components need to be added to enable oscillation 

at the LO frequency. Different oscillators can be realized of which the Colpitts oscillator 

configuration was chosen. A 10.245MHz crystal resonator was used namely Y1 as well as two 

variable capacitors, C6 and C7 [63].   

 

The 455kHz output of the mixer is filtered, with U4, loaded into the IF amplifier and filtered again 

using U3 before it is loaded into the IF limiting amplifiers. This filtering is done by the 

CFULA455KF4A -B0 ceramic filter, from the Murata’s Cerafil range for communications 
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equipment. According to the datasheets, this filter has a center frequency of 455 1.5kHz kHz± , a 

6dB  pass band of 7.5kHz± , a minimum stop band attenuation of 27dB , ,a maximum loss of 6dB  

and a input and output impedance of 1.5kΩ . The output of the mixer is internally loaded with a 

1.5kΩ  resistor, and the input resistance of the IF amplifier and limiter is 1.5kΩ . Thus matching to 

these filters is not necessary [63] [64].  

 

The SA605 includes a received signal strength indicator (RSSI) pin, which will reveal if any 

instability is present (pin 7). This reading should be less than 250mV  if the device is biased and 

no signal is fed into the device. This RSSI output is a current to voltage converter and an 91kΩ  

external resistor is needed to get the desired response. Therefore, R1 is chosen as 100kΩ  which 

is close to this value [63] [64].  

 

A reading higher than 250mV  on the RSSI output pin indicates a regeneration problem, due to 

poor lay out or too much gain in the IF component. To much IF gain may cause instability. Thus, it 

is usually necessary to introduce external loss by using a resistor as shown with R4. To achieve a 

certain insertion loss, the value of the resistor necessary can be calculated with the following 

formula [63] 

 
( )960

20log [ ]
960

ext flt
dB

ext flt

R R
X Filterloss dB

R R

+
= −

+ +
 (C.1) 

where dBX  is the intercomponent loss wanted, 4extR R=  is the external added resistor, 1.5fltR k= Ω  

is the filter’s input impedance and the filter loss is given as 6dB . A RSSI output below 250mV was 

achieved by introducing a 18dB  loss between the components, which corresponds to an external 

resistor value of 20kΩ  [63]. 

 

C21 and C20 is the decoupling capacitors for the IF amplifier, while C18 and C19 is the decoupling 

capacitors for the IF limiter amplifier [64]. 

 

Pin 9 is the audio output pin, while the muted audio output on pin 8 is the same as the audio 

output pin, except for the fact that the audio output on this pin can be turned off by grounding pin 

5. This pin was used for the output, thus pin 5 needs to be connected to 5V externally. R2 and R3 

convert the audio output current to a voltage [63] [64]. 

 

The quad tank components, L2, C14 and C15, are calculated with the equation [64]  

 
1

2
f

LCπ
=  (C.2) 
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where 455f kHz= , L is chosen as 178 Hµ  and then the total capacitance C, is calculated to be 

700 pF . To make this tunable, a 680 pF  capacitor is used in parallel with a 0 120 pF−  variable 

capacitor [64]. 

 
C16 is used to AC ground the quad tank and C17 provides a 90º phase shift for the quadradure 

detector [63].  

 

C8, C9 and C10 are all supply bypassing capacitors 
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