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Abstract

A singing voice can be manipulated artificially by means of a digital computer for the

purposes of creating new melodies or to correct existing ones. When the fundamental fre-

quency of an audio signal that represents a human voice is changed by simple algorithms,

the formants of the voice tend to move to new frequency locations, making it sound un-

natural. The main purpose is to design a technique by which the pitch and formants of a

singing voice can be controlled independently.
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Opsomming

Onafhanklike formant- en toonhoogte beheer toegepas op ’n sangstem: ’n Sangstem kan

deur ’n digitale rekenaar gemanipuleer word om nuwe melodieë te skep, of om bestaandes

te verbeter. Wanneer die fundamentele frekwensie van ’n klanksein (wat ’n menslike stem

voorstel) deur ’n eenvoudige algoritme verander word, skuif die oorspronklike formante

na nuwe frekwensie gebiede. Dit veroorsaak dat die resultaat onnatuurlik klink. Die hoof

oogmerk is om ’n tegniek te ontwerp wat die toonhoogte en die formante van ’n sangstem

apart kan beheer.
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Prologue

I, the author of this thesis, went on a very stimulating journey while writing this text.

With strong coffee as a companion, a general background in speech processing and an

interest in music, I started pursuing information on the less documented topic of singing

processing - all in the hope of finding information to solve the problem as stated in the

topic of this thesis. After some reading and discussion with colleagues I started getting a

faint idea of the scope of the problem.

I turned to the biggest information source I know: the Internet. It offered vast amounts

of information on different types of phase vocoders and their applications, as well as

many papers on pitch-trackers. Many of my early ideas were formed by websites providing

such information and one after the other I discovered undocumented papers of individuals

claiming their phase vocoder or pitch-tracker to be better than the next.

Numerous code examples and papers are available on the time-scaling application of

the phase vocoder but very little on its application for pitch-shifting, which was a problem

that kept me busy for some time. Some papers that claim to cover this topic do not go

into the detail of the implementation, therefore I hope that this thesis could be of use to

someone who wishes to implement a phase vocoder-based pitch-shifting algorithm.

After spending some time on reading and studying code examples, I started implement-

ing my own code and evaluating it by comparing the results to the commercial standards

of a number of companies devoted to processing of the singing voice. They do not make

their algorithms public, but their results are available on websites where sound-files can be

downloaded. Listening to their results and comparing it to my own made me ecstatic at

times and miserable at others. As one would guess, their algorithms are very well guarded

secrets and I spent my time emulating what they had achieved without having an idea

how they did it. It offered me an excellent opportunity to experiment with my theoretical

knowledge of speech, music and electronic engineering.

The contents of this thesis reflect some of the things I learned from other persons and

publications and some of my own ideas. Although not listed in my Bibliography, I give

credit to the hobbyists and scientists who took the trouble to put their ideas on a website

- for me to learn from.
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X(ta(u),Ωk) Short-time Fourier transform of x(n) at time ta(u)

φ(ta(u),Ωk) Phase of X(ta(u),Ωk)

ω(ta(u),Ωk) Instantaneous frequencies of X(ta(u),Ωk)

X(Ωk) Short-time Fourier transform of x(n) at no specific time

Y (ts(u),Ωk) Short-time Fourier transform of y(n) at time ts(u)

φ(ts(u),Ωk) Phase of Y (ts(u),Ωk)

Y (Ωk) Short-time Fourier transform of y(n) at no specific time

E(Ωk) Excitation spectrum

E ′(Ωk) Artificial excitation spectrum

M̂(Ωk) Direct-model of X(Ωk)

S Generic scale associated with x(n)

Sj Element number j in scale S

Px(tp(u)) Pitch of x(n) at time tp(u)

P Sx (tp(u)) Px(tp(u)) corrected to the closest values in S



NOMENCLATURE xv

H′
n Spectral peaks extracted from X(ta(u),Ωk). Each element in [rad/sample]

Hn Refinement of H′
n. Each element in [rad/sample]

Jq “LULU”-smoother of order q + 1

F0 Fundamental frequency

F1 First harmonic

α Scaling factor

β Spectral resampling factor



Chapter 1

Introduction

1.1 Motivation

The beauty of a singing voice is due to its richness and complexity: a raw sound with

many subtle nuances that can differ vastly from one individual to the next, making it a

very unique instrument. In this thesis we investigate some of the engineering properties

behind this mystique art.

Two very important properties of a singing voice are the pitch and the formant struc-

ture. They give a voice character and are the reason why individual voices sound different.

Common agreement exists in the speech processing literature that these two properties

are physiologically (nearly) independent and that the individual can change one without

affecting the other [3]. A series of interesting problems arise when we change any of these

properties artificially i.e. after the sound leaves the singer’s mouth. The human voice is

a very fragile sound and the slightest uncalculated manipulation by means of a digital

computer can make it sound highly unnatural. The main topic of this thesis is to develop

a method to manipulate the pitch of a singing voice in such a way that the subtleties of

the voice do not get lost in the transformation process.

Singing voice - instead of speech - is used as a vehicle for the ideas developed, since the

results are more interesting: By changing the pitch of a singing voice we can create new

melodies from existing ones which can be used to harmonise with the original. The pitch

can also be manipulated to be clamped to certain allowable frequencies, forcing the singer’s

voice to stay within a prescribed musical scale, thus giving a singer better intonation. If

we change the pitch and the formant structure simultaneously - one independent of the

other - it may be possible to transform a male voice to a female voice, and vice versa.

These transforms, or effects, find application in the world of music technology. Instead

of spending hours to train two or more singers to sing in harmony, a music producer can

now use software or hardware to produce backing vocals for a lead voice. Today, many

singers of popular music use intelligent machines to assist them in keeping the correct

1
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pitch throughout live shows and in the studio.

Whether these techniques are ethical or not may be debated by musicians and music

producers, but from an engineering point of view it is a remarkable achievement. We

proceed in the following chapters to investigate in detail how this can be done.

1.2 Key concepts

Certain terminology and concepts from the literature are used in this chapter. This section

explains their meaning and functioning.

1.2.1 Formants

While singing, the throat, oral and nasal cavities of a singer are excited by an acoustic

wave generated by the diaphragm and modulated by the larynx. The excited cavities have

certain natural resonances that can be controlled by the individual. These resonances are

called formants and are necessary for vowel intelligibility, uniqueness of different singers

and voice projection. Their locations in the frequency domain are very important and

should be well controlled during voice manipulation. Table 2.2 (p14) gives the approxi-

mate frequencies where the first three formants occur for different sung vowels.

1.2.2 Pitch

Pitch is the human ear’s measure of the frequency of a sound and in most cases is the

fundamental frequency. A few exceptions distinguish pitch from the fundamental fre-

quency. Certain “psychoacoustic” effects can cause a perceived pitch to be different from

the actual content of the sound. For example, when the fundamental frequency is missing

from the sound, a listener would still perceive it as if it exists. The ear also perceives very

high or low frequencies differently at different volume levels.

1.2.3 The phase vocoder

The phase vocoder is a way of representing a time signal. A series of overlapping frames are

taken from the signal, windowed and represented in the frequency domain by a magnitude

and a phase quantity associated with each frequency bin. The name “phase vocoder”

comes from its use for vocal coding. A signal represented by a phase vocoder can be

perfectly reconstructed under the condition that successive frames overlap. Each frame

is transformed back to the time domain by an inverse Fourier transform after which the

original signal can be synthesised through a overlap-and-add procedure [12]. The phase

vocoder is best known for its application in the electronic transmission of speech and for
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its ability to perform high quality time-scaling on signals. If a different overlap value

is used during the overlap-and-add process (synthesis), the signal can be stretched or

compressed in time, leaving the frequency content unmodified. It is also a very useful tool

for pitch modification techniques that leave the time duration unaltered. We describe the

finer workings of the phase vocoder in detail in Chapters 4 and 6.

1.2.4 Non-linear smoothers

A non-linear smoother is an algorithm applied to a signal to filter out all ill-behaved values.

Theses data points are usually replaced by better behaved neighbours, or a weighted

combination of them. Non-linear smoothers work very well for impulsive noise, in which

case linear filters usually fail. Because of the non-linearity of the smoothers, the result

cannot be written in closed form and is mathematically complicated. This forces us to

deal with the smoothers heuristically.

We make use of a combination of two unsymmetric smoothers to devise a powerful

smoothing algorithm. The algorithm, introduced by Rohwer[16], is nicknamed “LULU”.

(For more details see Chapter 3.)

1.3 Objectives

The objectives of this study are:

• To investigate the properties of singing from an engineering perspective.

• To design and implement a robust pitch-tracking algorithm that specialises in singing

voice.

• To design and implement an algorithm for manipulating the pitch of a singing voice

while leaving the formants in tact.

• To design design and implement a technique for artificial formant manipulation.

• To describe in detail the solutions to the problems we encounter while aiming for

these objectives.

1.4 Contributions

The following are the contributions made by this study:

• The application of a “LULU ” non-linear filter and some basic signal processing on

a spectrum made a powerful spectral peak extractor. See Chapter 3 and section 5.2

of Chapter 5.
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• The reliable knowledge of the peak locations in a spectrum made it possible to devise

a robust pitch-tracking algorithm specialising in singing voice. See Chapter 5.

• We designed a method for modelling the magnitude of a spectrum. See Chapter 6,

specifically section 6.2.3.

• A detailed description on modifying an excitation signal, a topic we identified as

a shortcoming in most papers on phase vocoders. Here we present experimental

details based on our own experience.

• We designed a system that creates harmonies from an existing recording which may

be used to harmonise with the original. The same system can be utilised to do pitch

correction on a recording. See Chapter 7.

• A synthesis system that uses a short vowel to create long notes of which the fre-

quencies are controlled by a MIDI-keyboard. The result is a sound reminiscent of

the singing technique of a choir member. See Chapter 8, section 8.2.

• A voice gender transform algorithm. We attempt to devise an algorithm that

changes a recorded vocal performance into performance by the opposite sex. See

Chapter 8 section 8.3.

1.5 High level overview

1.5.1 Background

Chapters 2 to 4 serve as a background for the subsequent chapters that follow them, and

present a detailed discussion of the concepts introduced in 1.2.

1.5.2 Main algorithms

Bearing in mind the key concepts introduced in section 1.2, we designed two main algo-

rithms detailed in Chapters 5 and 6.

1. Pitch detection algorithm

2. Pitch-shifting algorithm

Pitch detection algorithm

To estimate the fundamental frequency of a signal, we divide it into overlapping frames

and transform them by means of an FFT. A non-linear smoother is used to filter out

unwanted noise, leaving (ideally) only peaks caused by the excitation. For a single frame,
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the exact frequencies of the most prominent of these peaks are determined by calculating a

frequency offset from the centre of the bin where the peaks occur. The offset is determined

by calculating the deviation from the expected phase advance between frames for a certain

peak. The expected phase advance is the phase advance between two frames for a sinusoid

having the same frequency as the centre of the bin it falls into. The phase deviation from

the expected phase advance is used to calculate the frequency deviation from the bin

centre. This exact frequency is called the instantaneous frequency, of which the detail can

be found in Chapter 4, section 4.3.2.

Once the refined frequencies of the peaks are known, we do a power calculation. We

sum the power of each peak and its harmonics (or rather locations where harmonics are

expected). This process is known as harmonic summing. The peak and its harmonics

that give the highest power sum is regarded as the pitch of the frame. This technique

is robust and will discard any spurious peaks that survived the smoothing process that

are likely to be mistaken for the pitch.(At a later stage, we will address the case were

the frequency estimate is lower than the true pitch. In such cases the power sum will be

higher than the true power sum. We introduce simple check in Chapter 5 to avoid such

confusions.)

A pitch value for each frame makes up an array of frequency values called a pitch-track.

Figure 5.3 (p43) shows such a pitch-track of a scale sung by a male vocalist. Chapter 5

provides detail on this pitch detection algorithm.

Pitch-shifting algorithm

Pitch-shifting refers to a process that changes the fundamental frequency of a signal,

leaving the spectral shape unaltered. In terms of a human voice, it means changing

the pitch without moving the formants. See Figure 6.18 (p65) for spectra of an example

where changing the fundamental frequency of a short signal has little effect on the formant

locations.

Say we have a windowed frame of voiced singing that is in steady state. The pitch of

the frame is called the source pitch and the target pitch is the pitch that the frame should

have after pitch-shifting. Once these two values are known, we can calculate a measure

of pitch shift called β, where:

β =
source pitch

target pitch
. (1.1)

A unity value should leave the pitch unmodified, while a value of 0.5 doubles the pitch

and a value of 2 halves the pitch. Before shifting the pitch of a frame, the excitation

and the spectral envelope should be separated. The excitation may then be pitch-shifted

by means of a spectral resampling process. Once this is done the spectral envelope is

restored. This process changes the pitch of a frame in a very natural way.
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1.5.3 Applications of main algorithms

A detailed discussion of the applications of these algorithms can be found in Chap-

ters 7 and 8. The applications are summarised below.

Synthetic harmony vocals for an original voice

We have a signal x(n), a recording of a vocal performance, and would like to create a

synthetic signal y(n) having a different pitch-track. After a pitch-track has been calculated

for the signal x(n), we divide x(n) into overlapping frames and form a phase vocoder.

The pitch curve is then interpolated so that each frame (or analysis instant) of the phase

vocoder can be associated with a certain frequency value. These values are the source

pitches of the frames. Next we need to calculate target pitches for the frames, which are

the pitch values the frames should have in order to synthesise y(n) through overlap-and-

add.

The values of the target pitches are governed by a rule, specified by a user. The

rule acts as a mapping function for the source pitch: For each source pitch value, there

exists one target pitch value. Chapter 7 provides more detail about the target pitch

calculation. Once each frame has a source- and target pitch, a measure of pitch shift β

can be calculated for each frame, as in equation 1.1.

By pitch shifting each frame taken from x(n), we get a series of new frames, which

can be overlapped and added to form y(n). (It is very important to restore the original

phase to avoid phase distortion.) If the rule is governed by music theory, y(n) may be a

complementing harmony to x(n).

Pitch correction on an original voice

If we apply the above method and calculate the target pitches so that they are frequency

values from a musical scale closest to the source pitch values, we can improve x(n). The

result should be a version of x(n) with much less deviations from the scale in which it

was performed.

Vocal wave synthesis

Based on a few stationary frames of a sung vowel, we can create a signal y(n) that has

arbitrary length and pitch (within bounds), but has the same spectral envelope as the

original vowel. Before synthesis, we calculate the pitch of the frame and use it as the

source pitch. The target pitch comes from a MIDI-keyboard played by a musician. The

keyboard streams information, indicating the key that is pressed and the duration of the

note.
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The original frames are copied and pitch-shifted to the desired frequencies to form

synthesis instants after which the instants are overlap-and-added to from y(n).

Gender transformation

We investigate gender transformation by pitch-shifting a voice by a constant factor and

by shifting the formants to new frequency locations. We describe the formant shifting

process in section 6.2.3.

1.6 Implementation and audio results

The systems we described in section 1.5 are from our own design and we implemented the

theory in a number of computer programs. We used MATLAB as a design tool and did

the final implementation using GNU C++. Apart from our own designs, we also wrote a

phase vocoder program to demonstrate its working.

The programs deliver audio results which serves as proof that this research is not

only academic of nature, but can also be implemented to provide pleasing sound samples.

The samples may be found on a CD-ROM, containing an HTML presentation which is

included with this document.

In the chapters that follow we provide detail about the concepts and designs mentioned

in this chapter. We encourage the reader to listen to the sound samples as they will provide

some extra insight.



Chapter 2

The Singing Voice

“Music expresses that which cannot be said and on which it is impossible to be

silent.”

- Victor Hugo

2.1 Introduction

We give a broad introduction to singing, covering the history, the physiological processes

and mathematical properties.

2.2 Brief notes on the history of singing

Singing, the vocal production of musical tones, is the oldest known musical instrument and

predates the development of spoken language. This ancient art fulfilled many important

functions to the individual and the social group in the areas of entertainment, communi-

cation and religion. We surmise that early singing was individualistic and random and a

simple imitation of the sounds heard in nature. It is not clear at what point it became

meaningful and communicative. Reconstructing history on the basis of cross-sectional

observations, thus comparing primitive singing with more advanced musical structures,

suggests a possible scenario of musical development which started with simple melodic

patterns based on several tones. A logical phase to follow would be several persons singing

in unison with matching pitch movement, which gave rise to the melodic and harmonious

patterns governed by the scales we know today.

The cradle of modern-day singing is undoubtly the opera. For a long time, the opera

was very experimental and the idea of singing in a key took some time to be established.

The opera made people aware of the beauty and the complexity of the human voice, after

which more composers wrote music for the voice in the standardised notation that was

then developed in other areas of music.

8
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One of the historical benchmarks for singing was Beethoven’s famous ninth symphony

performed in 1824 for the first time. It was the first time that singing was included

in a symphony - something unheard of at that time. The last movement of the sym-

phony is a powerful combination of orchestral music joined by a big choir and solo vocal

performances.

So-called classical singing was very popular for centuries but phonograph recordings

and radio broadcasting brought new styles of music into people’s houses. Blues, jazz and

swing became very popular and finally mankind saw the dawn of popular music, which is

the backbone of the modern-day industry. Most modern day music styles rely heavily on

singing and without the human voice it would be dull, empty and without emotion [6].

It may seem ironic that the human voice, the oldest known instrument, is less well

understood than most other present-day instruments. This is due to the unaccessibility

of the various physiological components used by the singer. Rossing [18] compares the

study of the physics of singing to studying a violin which is played from behind an opaque

screen with only a small hole to peek through!

The mysterious and interesting art of singing is an important part of the world we

live in. It is worth studying not only its history, but also its physical and mathematical

properties. This is the purpose of the rest of the chapter.

2.3 Speech production

Since singing is a well-controlled form of speech, we will first consider the generally ac-

cepted speech production model after which we will discuss the differences between speech

and singing. It is useful to consider singing as a special form of speech because speech

processing is a well developed science on which many publications are available.

The speech waveform is an acoustic pressure wave, originating from voluntary move-

ments of anatomical structures which make up the human speech production system. The

most important parts of the system are the lungs, trachea (windpipe), larynx (organ of

voice production), pharyngeal cavity (throat), oral cavity (mouth) and nasal cavity (nose).

The pharyngeal cavity and the oral cavity are grouped together to form the vocal tract,

and the nasal cavity is also called the nasal track. Finer anatomical features that are

critical to speech production include the vocal folds, velum or soft palate, tongue, teeth

and lips.

The three main cavities of the speech production system are exited by the lungs and

diaphragm. The produced acoustic wave, also called the excitation waveform, is filtered

by these cavities before leaving through the mouth and nose. The vocal cords, found

inside the larynx vibrate because of a stream of air from the lungs, pressed upwards by

the diaphragm. The rate of the vibration is determined primarily by the mass and tension
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Figure 2.1: Diagram of the vocal tract [3]

of the vocal cords. In the case of adult males, these cords are typically longer and heavier

than in the case of females and therefore vibrate at lower frequencies. A simplified model

of the vocal tract is shown in Figure 2.1.

The vocal track introduces resonating frequencies that humans control to pronounce

different vowels and voiced consonants. These resonances - theoretically independent of

the excitation - cause local maxima in the spectral envelope and are called formants. A

spectrogram is a convenient way to view formants. It is a plot of time versus frequency

of a time signal where dark areas indicate the power. Figure 6.1 (p47) is a good example

of a spectrogram of a male voice. The thick dark lines indicate the formants. Another

way to see the formants is to use linear prediction. If we can isolate a stationary part

of a signal, we can calculate the linear prediction coefficients (LPC ) of the section. The

LPC -coefficients form an all-pole filter that approximates the behaviour of the signal

it was derived from. A frequency sweep of the filter produces an approximation of the

spectral envelope. We will return to LPC -analysis in Chapter 6 and the detail about

the calculation of the coefficients may be viewed in Appendix A. Figure 2.2 shows the

response of an LPC filter derived from a stationary section of the voiced part of “us” and

the formants are clearly visible.

The positions of the formants are important for the listener to recognise different

speakers as well as different vowels, voiced consonants and diphthongs. The first three

formants are crucial for vowel recognition while the higher formants, among other prop-

erties, enable a listener to distinguish one speaker from another [18].
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Figure 2.2: LPC spectrum of a vowel (/2/)

2.4 Singing: a special form of speech

In both speech and singing, there is a division of labour between the vocal cords and

the vocal tract. The vocal cords control the pitch of the sound, whereas the vocal tract

determines the vowel sounds through its formants. The pitch and the formant frequencies

are nearly independent but trained singers, especially sopranos, may tune their formant

frequencies so that they match one or more of the harmonics of the sung pitch.

Sung vowels are fundamentally the same as spoken vowels, although singers do change

a few vowel sounds in order to improve the musical tone. An analysis of individual vowel

formants reveals some substantial spectral changes. Figure 2.3 shows spectra of the same

vowel /æ/, sung and spoken. Note that the first formant hardly moves but the second

formant is significantly lower in frequency. The third and fourth formants are unchanged

in frequency, but are significantly stronger when the vowel is sung.

Four significant articulary differences between speech and singing are [18]:

• the larynx is lowered,

• the jaw is opened larger,

• the tongue tip is advanced in the back vowels /u/, /o/ and /a/; and

• the lips are protruded in the front vowels.
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Figure 2.3: Sung and spoken vowel (/æ/) [18]

Figure 2.4: Trained and untrained singing of a vowel (/a/) [18]

Trained singers, especially male opera singers, show a strong extra formant somewhere

around 2500-3000Hz [18]. This is called the “singer’s formant” and is more or less inde-

pendent of the vowel being sung. This formant gives carrying power and brilliance to the

male voice. An interesting act of nature is that the singer’s formant is near one of the

resonant frequencies of the human ear canal, which gives an additional auditory boost.

The reason for the extra formant is attributed to a lowered larynx, which along with a

widened pharynx, forms an additional resonating cavity. Untrained singers tend to raise

their larynxes as they raise their pitch and this is why popular singing sounds different

from operatic singing. (It is interesting that so-called untrained singing has become a

standard in its own right in the genres of rock and popular music.)

Figure 2.4 shows the spectrum of a trained and an untrained voice singing the same

vowel and it is evident that the formants are significantly higher when the larynx is

raised. The result is a high frequency boost, which is why popular singing sometimes

sound hoarse and “whispery”. The formant frequencies of long Swedish vowels were
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Figure 2.5: Formant frequencies of long Swedish vowels in normal male speech and in

professional male singing [18].

calculated for normal male speech and singing and are displayed in Figure 2.5. Note that

the first formant hardly differs from speech to singing and that the fourth singing formant

(the singer’s formant) is rather constant compared to the other singing formants.

For a further comparison between between sung and spoken vowels, Rossing [18] pro-

vides two tables, one for speech and one for singing, indicating the average frequencies of

the first three formants of the basic vowels. See Tables 2.1 and 2.2.

As might be noted, a few substitutions were made in the two tables, the reason being

that some vowels are pronounced differently when sung so that the formants may support

the pitch and are therefore denoted by different IPA symbols. These substitutions are

listed in Table 2.3. Singers also find it convenient to substitute certain vowels when the

sung pitch rises. The new vowels are chosen so that that the formants support a higher

pitch. This technique is a trade-off between intelligibility and sound projection and helps

opera singers to rise above the orchestra. The substitutions are listed in Table 2.4. A

further point to note is that the average female pitch is more or less twice the average

male pitch, corresponding to an octave difference in musical terms, but the formants are

on average only 25% higher [18]. This is important when designing software to change
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Table 2.1: Formant frequencies and amplitudes for spoken vowels

Formant /i/ /I/ /ε/ /æ/ /a/ /o/ /U/ /u/ /2/ /3/

F1 ♂ 270 390 530 660 730 570 440 300 640 490

♀ 310 430 610 860 850 590 470 370 760 500

F2 ♂ 2290 1990 1840 1720 1090 840 1020 870 1190 1350

♀ 2790 2480 2330 2050 1220 920 1160 950 1400 1640

F3 ♂ 3010 2550 2840 2410 2440 2410 2240 2240 2390 1690

♀ 3310 3070 2990 2850 2810 2710 2680 2670 2780 1960

Table 2.2: Formant frequencies and amplitudes for sung vowels

Formant /i/ /I/ /ε/ /æ/ /a/ /O/ /Ú/ /u/ /2/ /3/

F1 ♂ 300 375 530 620 700 610 400 350 500 400

♀ 400 475 550 600 700 625 425 400 550 450

F2 ♂ 1950 1810 1500 1490 1200 1000 720 640 1200 1150

♀ 2250 2100 1750 1650 1300 1240 900 800 1300 1350

F3 ♂ 2750 2500 2500 2250 2600 2600 2500 2550 2675 2500

♀ 3300 3450 3250 3000 3250 3250 3375 3250 3250 3050

Table 2.3: Vowel substitutions when singing

spoken /o/ /U/

sung /O/ /Ú/

Table 2.4: High-pitch vowel substitutions

Normal range /i/ /ε/ /æ/ /a/ /O/ /u/

High range /I/ /a/ /a/ /2/ /2/ /U/
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Figure 2.6: Ranges of voice types

the gender of a voice.

The possible ranges of different voice types are given in Figure 2.6 along with a com-

parison of the range of a piano. The frequency values are indicated above the piano keys.

The figure further provides a standard music notation expression for the voice and piano

ranges.

2.5 Mathematical model

The generally accepted speech production model is modelled as the output of a time-

varying linear filter driven by an excitation signal e(n). The excitation could be a sum

of harmonic related narrow-band signals, which is useful for modelling voiced speech

segments. The harmonic relation between the narrow-band signals is clear from Figure 2.7.

It could also be a stationary random sequence with a flat power spectrum, which is used

for unvoiced modelling.

The filter parameters accounts for the identity (spectral characteristics) of the sound

for the two different types of excitation [10]. The time varying filter approximates the

effect of the transmission characteristics of the vocal tract and nasal cavity combined with

the shape of the glottal pulse. The input-output behaviour of the system is characterised

by its impulse response sn(m), defined as the response of the system at time n. We can

view sn(m) as a snapshot of the vocal tract at time n, where m is the time index of the

impulse response. An equivalent description is given by the Fourier transform of sn(m)
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Figure 2.7: Excitation spectrum of a vowel

with respect to m:

∞∑
m=−∞

sn(m)e−jωm = S(n, ω)ejψ(n,ω). (2.1)

S(n, ω) and ψ(n, ω) are referred to as the time varying amplitude and phase of the system.

The non-stationarity of sn(m) depends on the movements of the physical articulators and

is slow compared to the time variation of the speech waveform. Therefore we may say that

sn(m) is a quasi-stationary system. For voiced speech or singing, the excitation signal

e(n) may be represented by a sum of harmonic related complex exponentials with unit

amplitude and zero initial phase, since the impulse response of the vocal tract accounts

for the phase and amplitude. For the sake of simplicity, we assume that the excitation

always has P harmonics, including the fundamental frequency. We write:

e(n) =
P−1∑

h=0

ejθh(n), (2.2)

where θh(n) is the excitation phase of the h-th harmonic. Each harmonic has a frequency

and we denote the frequency of the h-th harmonic by wh - a constant under stationary

assumptions. If we assume quasi-stationarity, we can state that

θh(m) = θh(n) + (m− n)wh (2.3)

for small |m−n|, since phase advance is the product of frequency (wh) and time duration

(m− n).

The amplitudes of all the pitch harmonics are equal and S(n, ω) accounts for the

magnitude of the spectrum. The pitch harmonics have zero initial phase because ψ(n, ω)

alone is responsible for the phase of the pitch harmonics.
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According to filter theory [14], we can now write a standard speech waveform as:

x(n) =
∞∑

m=−∞
sn(m)e(n−m), (2.4)

Equation 2.4 is a convolution of the excitation signal with the vocal tract filter. If we

assume stationarity for the duration of sn(m), we can replace the excitation with its local

sinusoidal representation. Thus we substitute equation 2.2 into equation 2.4:

x(n) =
∞∑

m=−∞
sn(m)

[P−1∑

h=0

ejθh(n−m)
]

=
∞∑

m=−∞

P−1∑

h=0

sn(m)ejθh(n−m) (2.5)

Using equation 2.3 we can rewrite θh(n−m) as θh(n)+(−m)ωh and substitute the result.

With the above in mind we change the order of the summations:

x(n) =
P−1∑

h=0

∞∑
m=−∞

sn(m)ejθh(n)e(−m)jωh

=
P−1∑

h=0

[ ∞∑
m=−∞

sn(m)e−jmωh

]
ejθh(n) (2.6)

We note that the expression inside the brackets is the Fourier transform of the impulse

response of the vocal tract. Substituting equation 2.1 into equation 2.6 yields:

x(n) =
P−1∑

h=0

S(n,wh)e
j(θh(n)+ψ(n,wh)

=
P−1∑

h=0

Ah(n)ejφh(n) (2.7)

where Ah(n) = S(n,wh) and φh(n) is the sum of the excitation phase and the system

phase:

φh(n) = θh(n) + ψ(n,wh) (2.8)

φh(n) is often referred to as the instantaneous phase of the h-th harmonic. Because the

system phase ψ(n,wh) is slow varying with respect to n we may develop φh(n) in the

neighbourhood of n according to equation 2.3:

φh(m) = φh(n) + (m− n)ωh (2.9)

for small |m− n|.
We showed that, according to equation 2.7, a vocal sound’s harmonics amplitudes are

controlled by the vocal tract alone and that the phase of the harmonics is a result of both
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the excitation phase and the phase of the vocal tract’s filter. This model only applies for

voiced speech, but since singing relies almost completely on its voiced sections, we will

use this model throughout this thesis. The above explanation is based on a proof found

in [12].

The importance of instantaneous phases will become clear in Chapter 5 where we will

use them to determine fundamental frequencies of signals.

2.6 Summary

We described how singing developed from a pre-speech time to the highly acclaimed form

of art we know today. The production of singing can be compared to that of speech since

the same anatomical elements are used by the individual, but controlled differently. On an

auditory level, the main difference is that the pitch and projection are the most important

properties of singing while intelligibility is the most important property of speech.

The pitch is an exponent of the modulation of the air flow from the diaphragm by

the vocal folds. A constant modulation at the correct frequency is called a note. The

individual controls the projection and intelligibility by changing the frequency behaviour

of the vocal tract, causing certain frequencies to resonate. The airflow from the diaphragm

can be expressed as a sum of complex exponentials at frequencies of the pitch or its

harmonics. This signal, called the excitation, is filtered by the vocal track which can be

expressed as a time-varying filter. The sound leaving through the nose and mouth can be

expressed as a convolution between the excitation and the time varying vocal tract filter.

We have shown that the resulting sound’s harmonic amplitudes are controlled by the

vocal tract alone and that the phase of the harmonics is a result of both the excita-

tion phase and the phase of the vocal tract’s filter. This combined phase is called the

instantaneous phase.



Chapter 3

“LULU”: a Non-Linear Smoother

3.1 Introduction

This thesis relies heavily on the output of a Fast-Fourier-Transform (FFT). Because of

short-term analysis we are forced to window a signal into time frames. The spectral

characteristics of the windowing function manifests as artifacts in the spectral domain

that can be viewed as noise, corrupting the true spectrum. These artifacts and other

non-harmonic content in the spectrum make it difficult to extract useful information from

the FFT. Aiming to solve these problems, we investigate non-linear smoothers.

The theory of linear smoothers is well developed. A linear smoother (also referred

to as a linear filter1) relies on the principle of replacing a certain data point with a

weighted average of its closest neighbours. The order of the smoother specifies how many

neighbours are taken into account. Linear smoothers are good for smoothing data that is

well behaved, e.g. data corrupted by Gaussian noise. In the case of impulsive noise with

unreasonable amplitude, a linear smoother will not succeed. It will merely spread the

impulsive noise over the time domain. In cases like these we have to turn to the family

of non-linear smoothers.

The theory behind non-linear smoothers are mathematically complicated and incom-

plete but we can understand and implement them heuristically [17]. Non-linear smoothing

means we replace unacceptable outliers with better behaved neighbouring points.

Rohwer [16] applied a pair of unsymmetric2 smoothers (L and U) for the purpose of

filtering data corrupted by impulsive noise. In the sections that follow, we will describe

how to combine these smoothers to form a “LULU” smoother, as it is nicknamed, and

1The technical difference between a smoother and a filter is that a smoother uses past, present and
future values relative to the point being calculated as opposed to filter using only past and present values.
In this chapter we use the two terms interchangeably.

2Smoothing either upward or downward outliers

19
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compare it to a median filter.

Strong relationships exists between the components of “LULU” and the morphological

filters used in image processing, such as found in [5] and [20]. To maintain clarity, these

relationships will be pointed out.

3.2 Basic non-linear smoother concepts, notation and

terminology

3.2.1 Notation and terminology

We adopt the notation and terminology used by Rohwer [16] and Marquardt [11]:

• A series of data points is denoted by a lower case letter, e.g. x. Individual elements

are denoted by ...x(i− 1), x(i), x(i+ 1)...

• A set of points obtained by selecting a subinterval of a series is denoted by x(s, t),

where x(s, t) = x(s), x(s+ 1), ...x(t− 1), x(t), given that t ≥ s. This subinterval

notation applies to this chapter only.

• A smoother, represented by an uppercase letter, e.g. R, is defined as an operator

or transform, that maps each point in the input sequence to a point in the output

sequence. Therefore, the statement y = Rx represents the operation of smoother R

on sequence x, giving sequence y. Individual elements can be addressed by indexing:

y(i) = Rx(i).3

• y = Rmx signifies a smoother R with window size m + 1 operating on x to give y.

If m is omitted, the window size is arbitrary.

• Certain non-linear smoothers are called rank-based selectors since data is smoothed

by replacing a point with a better natured one inside a given window (including the

particular point). The point is chosen on its relative rank amongst the other points

inside the window. For example, a median filter selects the centre point in a sorted

list.

• The concatenation, or combination, of two smoothers refers to a smoother operating

on the output of another smoother. If S and R are two smoothers operating on x

(in the given order) to give y, we can state y = RSx. If both R and S use windows

3Expressing individual elements in this manner may be confusing. We must point out that y(i) cannot
be calculated from x(i) alone, but needs a window of points around x(i). Whenever we use an expression
like y(i) = Rx(i), and R is a smoother, we imply that points around x(i) are also considered.
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of size m + 1, it is clear that an element of the resulting output is a point selected

from 2m+ 1 points. This total is termed the support of the resulting smoother.

• Smoothers can be ordered by a comparison of their output and input. For example,

consider the two smoothers, R and S. If Rx(i) ≥ Sx(i) for all valid values of i, we

can state that R ≥ S.

• A smoother is idempotent if it does not change its own output, i.e. RRx(i) = Rx(i)

or RR = R.

3.2.2 The median filter

A median filter, say M , is a well known non-linear smoother. Mx selects the median4

from the current window, and replaces the point around which the window is centred. If

y = Mx and the window size is 2m+ 1, then y(i) is the median of x(i−m, i+m).

Let us consider an example where the median filter would prove useful. As mentioned

in 3.1, non-linear smoothers are good for filtering impulsive noise. Figure 3.1 shows a

steady sloping curve corrupted by impulses, and the results after being filtered by a linear

smoother as well as a median filter. The two smoothers have the same window size.

x(n)
x(n) linear
x(n) median

Figure 3.1: Median filter versus linear smoother

It is clear that the linear smoother only spreads the impulse, while the median filter

suppresses it very successfully. Median filters are very useful, but they have significant

drawbacks:

4Sorts the elements and selects the centre one.
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• The rank selection can only be performed once the elements in the window are

sorted. Sorting is computationally expensive since sorting algorithms can have N 2-

complexity in the worst case.

• Median filters are not idempotent, which is a very desirable property for a smoother.

This means that different resulting signals can be obtained from the same smoother

and input signal, by applying the smoother repeatedly.

• It can be very hard to predict the result of median smoother, and after smoothing,

we have no idea how the smoother achieved the result. Rohwer describes a median

filter as having “enigmatic” behaviour.

3.3 Smoothers: L and U
Let us consider a well behaved sequence with an occasional outlier in the upward direction.

We can remove the upward pulses from the sequence by applying a running minimum.

In morphology, this process is referred to as erosion. Erosion will succeed as long as the

widths of the impulses are less than the window length. If the sequence also contains

downward pulses, they will be widened. This is a shortcoming that can be overcome

by applying a running maximum (called dilation in morphology) after the running mini-

mum. This will restore the downward pulses to their original width and will also preserve

downward trends. To summarise, a running minimum, followed by a running maximum,

will:

• remove upward impulses

• retard upward trends

• advance downward trends.

Rohwer calls this an L-smoother, where L denotes the above described operation on a

given sequence. In morphology, this corresponds to a process called opening. Figure 3.2

illustrates the steps of such smoother.

original after erosion after erosion and dilation

Figure 3.2: Steps of an L-smoother
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Following the same line of thought, we can state that a running maximum, followed

by a running minimum, will:

• remove downward impulses

• retard downward trends

• advance upward trends.

The above process is called a U -smoother by Rhower and called closing in morphology.

The working of a U -smoother is illustrated in Figure 3.3.

original after dilation after dilation and erosion

Figure 3.3: Steps of a U -smoother

Given the notation in section 3.2, we can write the equations for L- and U -smoothers

with window size n:

Lx(i) = Lmx(i)
= max{min{x(i−m, i)},

min{x(i−m+ 1, i+ 1)},
. . .

min{x(i, i+m)}} (3.1)

Ux(i) = Umx(i)
= min{max{x(i−m, i)},

max{x(i−m+ 1, i+ 1)},
. . .

max{x(i, i+m)}} (3.2)

Note that the support for both L and U is 2m+ 1.

L and U can be shown to be idempotent, i.e. L = LL and U = UU , which is an

improvement on a median filter. If L, U and M (a median filter) are of the same support,

we can say that L ≤M ≤ U , because of the different nature of the rank selection in each

smoother.
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3.4 Smoothers: UL and LU
Concatenations of L and U give LU and UL and can be proved to be idempotent, as done

by Rhower. From Lx ≤ x ≤ Ux, it follows that LU ≤ U and UL ≤ L and therefore:

U > LU ≥M ≥ UL ≥ L,

i.e. LU and UL are narrower bounds on M than U and L. In practice, either LU or UL
is used as a smoother or the average of the result of both smoothers is used.

Rhower suggests that the smoothers should be implemented successively with increas-

ing order, stopping at the required order. Suppose we have a discrete-time signal x(n) that

we would like to filter by a LU - or UL-smoother of order m. If we denote the smoother

by J ′
m, the successive filtering can be expressed as:

y(n) = J ′
mJ ′

2 . . .J ′
1x(n), (3.3)

and to simplify the notation we define:

Jm , J ′
mJ ′

2 . . .J ′
1. (3.4)

Throughout the rest of the thesis we will refer to the successive process in equation 3.3

as a “LULU”-smoother of order m and denote it by Jm. The actual smoother J ′ can be

LU , UL or a combination of them.

Consider Figure 3.4, part of the spectrum of a voiced segment taken from a singing

voice recording. Because of the windowing, side-lobes appear on either sides of the main

lobe, thus cluttering the spectrum. A “LULU”-smoother is applied to the spectrum in

the hope of clearing it up from the windowing side-lobes.

Note the successful attenuation of the side-lobes and the trend preserving property of

the “LULU”-smoother. The smooth spectrum’s local maxima form plateaus that, with

very few exceptions, span the excitation peaks in the real spectrum. This immensely

simplifies the task of extracting spectral information.

3.5 Summary

We described techniques for smoothing data that is corrupted by impulsive noise. These

techniques are referred to as non-linear smoothers. The techniques are also used in digital

image processing and are referred to as mathematical morphology.

We discussed the median filter as well as a nonlinear smoother called “LULU”, the

latter of which is more computationally efficient and a bound on the median filter. We

illustrated its application to a spectrum corrupted by the side-lobes of the windowing

function.
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Figure 3.4: A zero padded spectrum, before and after smoothing



Chapter 4

The Phase Vocoder

4.1 Introduction

The representation of a signal in terms of its short-time Fourier transform can serve

as a means of manipulating basic speech parameters. These parameters may include

pitch, formant structure and speed of articulation. Systems that are based on such a

representation are often referred to as phase vocoders, since magnitude and phase are the

defining parameters. The “phase vocoder” was first introduced by Flanagan and Golden

[4] in 1965. Their aim was to devise a way to encode speech so that communication

bandwidth could be utilised more economically. As a side topic, they investigated the

phase vocoder’s ability to stretch and compress the time duration of speech signals. In

the words of the abstract paragraph of their original paper:

“A vocoder technique is described in which speech signals are presented by

their short-time amplitude and phase spectra. A complete transmission sys-

tem utilising this approach is simulated on a digital computer. The encoding

method leads to an economy in transmission bandwidth and a means for time

compression and expansion of speech signals.”

Schafer and Rabiner [19] took the phase vocoder to a next level by introducing a method

based on the fast Fourier transform (FFT), greatly reducing the amount of computation

needed. The first direct implementation of a digital phase vocoder was introduced by

Portnoff [13] in 1976 and became a classic reference for future research.

Apart from its role in speech coding and transmission economics, the phase vocoder

has found plenty of applications in music. The two best known applications are pitch-

shifting and time-scaling. In this chapter we will discuss the latter of these methods,

preceded by a detailed description of a unity system. By a unity system we mean that the

input and output are theoretically identical and is equivalent to the system introduced

by Portnoff [13]. We describe pitch-shifting in detail in Chapter 6.

26
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4.2 A unity phase vocoder

Portnoff introduced a unity phase vocoder that represents a signal x(n) in terms of its

short-time phase and magnitude by means of short-time Fourier transforms, after which

the short-time spectra are used to resynthesise the original signal. Here we develop a

unity system that is, at a higher level, identical to that of Portnoff.

4.2.1 Analysis

We denote the successive analysis time-instants (where analysis windows start) by

ta(u) , uRa (4.1)

where Ra is a fixed integer increment that controls the analysis rate. Ra is also referred

to as the analysis hop-size and u is called the frame index. We can write the short-time

Fourier transform, evaluated at discrete frequencies, as:

X(ta(u),Ωk) =
N−1∑
n=0

h(n)xw(ta(u), n)e−jΩkn k ∈ [0, N − 1], (4.2)

where

xw(ta(u), n) , x(ta(u) + n) n ∈ [0, L− 1]. (4.3)

X(ta(u),Ωk) is the short-time analysis spectrum of the signal at time ta(u), where h(n)

is a windowing function and where

Ωk , 2πk

N
n ∈ [0, L− 1]. (4.4)

If we consider the discrete Fourier transform as a series of bandpass filters, then the values

Ωk are the centre frequencies of each band or “bin”. In practice, the STFT is calculated

by means of a FFT of length N . The time domain window has a length of L where L ≤ N .

If L < N , the time domain windows must be “zero-padded” by adding a tail of zeros so

that it has a length of N .

We can express X(ta(u),Ωk) in polar coordinates with magnitude M and phase φ:

X(ta(u),Ωk) = M(ta(u),Ωk)e
jφ(ta(u),Ωk) (4.5)

Figure 4.1 illustrates the STFT principle. We refer to such short-time spectra as analy-

sis instants.

This STFT procedure, concerning a phase vocoder, is generally known as analysis and

gives us perspective on the signal in both time and frequency and is therefore an ideal

tool to change frequency or time parameters. Since we are discussing an unity system,

no modifications are performed. This may seem like a redundant exercise, but once we

can move from the time domain to short-time spectra and back again, we could introduce

frequency domain modifications before synthesis. Therefore the unity phase vocoder serves

as a foundation for all our singing-parameter modifications.
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Figure 4.1: Short-time Fourier transform illustration

4.2.2 Synthesis

Synthesis is the process of combining the short-time spectra in order to return to the

time domain. Figure 4.2 illustrates the process. Each short-time spectrum goes through

a synthesis process in order to construct the desired signal y(n). Short-time spectra used

for synthesis are called synthesis instants and are denoted by Y (ts(u),Ωk) and may be

expressed as:

Y (ts(u),Ωk) = M(ts(u),Ωk)e
jφ(ts(u),Ωk) (4.6)

where ts(u) is called the synthesis time-instants and is defined as

ts(u) , uRs (4.7)

where Rs is an integer called the synthesis hop-size. Moulines and LaRoche [12] prove

that these synthesis instants can be combined by means of a weighted overlap-and-add

procedure, giving a minimised square-error result implying ideal reconstruction. The

overlap-and-add formula - or the synthesis formula - is:

y(n) =

∑
u

yw(ts(u), n− ts(u))

∑
u

h(n− ts(u))
(4.8)

where

yw(ts(u), n) =
1

N

N=1∑

k=0

Y (ts(u),Ωk)e
jΩkn n ∈ [0, L− 1], (4.9)
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Figure 4.2: A unity phase vocoder

which is the inverse Fourier transform of the synthesis instants.

In the case of a unity system, where we do not induce modifications, perfect recon-

struction of the original signal is possible, as long as overlapping time-domain windows

are used. This concludes the mathematical derivation of a unity phase vocoder. Now we

turn the attention to the window type.

4.2.3 Window choice

Typical weighting or windowing functions are the well known windows Hamming, Han-

ning, Blackman etc. Each of these have different spectral characteristics and must be

selected carefully. We know that framing a signal with a rectangular window introduces

unwanted noise in the spectrum, therefore windowing schemes with better signal-to-noise

(S/N) ratios have been developed. Frequency resolution and S/N ratio are inversely pro-

portional and most windows are the result of a playoff between these two extremes.

Windowing in the frequency domain is a convolution of the window’s spectrum with

the spectrum of the signal. Therefor, the spectrum of the ideal window is an impulse, i.e.

a main lobe having zero width and side-lobes with zero amplitude. Table 4.1 provides

these properties of popular windowing functions.

Table 4.1: Information on different window types

Type of window Approximate main-lobe width Relative peak side-lobe (dB)

Rectangular 4π/N -13

Hanning 8π/N -32

Hamming 8π/N -43

Blackman 12π/N -58
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From the above table we conclude that Hamming and Hanning windows are best

suited since they have narrow lobes compared to Blackman and have low side-lobes with

low amplitudes compared to Rectangular windows.

4.3 Time-scaling

4.3.1 A simple approach

The simplest method of time-scaling is to evaluate a signal, say x(n) sampled at Fs, at

a different sample rate, say 1
α
Fs, to get y(n). α is a scaling factor by which the time

duration of a signal will be scaled. The simplicity is attractive, but the artifacts of such

a stretching/compression scheme are very significant.

Performing such an operation will cause the whole spectrum to stretch or compress

by a factor of α. This is very undesirable, since a formant at ωf would move to αωf after

the time-scaling. Formant drifting is a serious artifact that we can circumvent by taking

a more involved approach towards time-scaling by employing the phase vocoder.

4.3.2 Using the phase vocoder for time-scaling

Background

The need very often arises to slow signals down (or speed them up) while leaving the

harmonic content unchanged. As explained in section 4.3.1, time and frequency behaviour

cannot easily be controlled independently.

If we have the signal presented by a phase vocoder, the tempo of the time domain

behaviour can be changed by using a different hop-size for synthesis than used for analysis.

If we want to scale the signal by a factor α, we calculate Rs as

Rs =
1

α
Ra. (4.10)

Each event taking place in x(n) maps to a different time in y(n), as in Figure 4.3. Applying

the scaling factor α this way will reduce artifacts dramatically.

We perform no other modification to the signal and therefore the magnitudes of the

synthesis instants are equal to that of the analysis instants:

|Y (ts(u),Ωk)| = |X(ta(u),Ωk)| for all values of u. (4.11)

The phases of the synthesis instants need attention. Since Ra 6= Rs, the phase between

frames are no longer continuous because they no longer stand in a natural time relationship

to each other. We need to force the phase of the original signal onto the synthesised one. A

popular way to do this is to adjust the sinusoidal components of the first synthesis instant

to take on the phases of the components in the first analysis instant. Now x(n) and y(n)
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Figure 4.3: Mapping during time-stretching

Σ

(a) Good phase relation

Σ

(b) Bad phase relation

Figure 4.4: The importance of phase continuity

will start off with the same phase values for their sinusoidal components, as indicated by

the rectangle in Figure 4.3.

Once the phases for the first synthesis instant is known, we can calculate the phases

for the next instant by calculating phase advances. It is very important to have phase

continuity between successive frames. The serious effect of bad phase relations when

adding frames, is illustrated in Figure 4.4. Phase distortion, as it is labelled, is a very

audible and disturbing artifact, especially in harmonically rich signals such as speech and

singing.

To calculate the exact phase advances between the synthesis instants, we need to know

the synthesis hop-size value Rs and the exact frequencies of all components present in the

signal. (We assume that a single sinusoid is present for each value of Ωk.) This exact

frequency of a single component is called its instantaneous frequency. We will first show

how to calculate the instantaneous frequency and then return to the phase problem.
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Instantaneous frequency calculation

The FFT has a resolution of 1/Fs, which can be increased by zero-padding, but still

gives only average resolution which is not good enough to use for the calculation of the

phase advance of a sinusoid over a time fraction. We can achieve very high resolution by

calculating the instantaneous frequency of a sinusoid.

The phase φ(ta(u),Ωk), carries information on the instantaneous frequency ω(ta(u),Ωk),

the exact frequency of a sinusoid in frequency-bin k in the analysis instant X(ta(u),Ωk).

If the successive analysis time instants, ta(u) and ta(u − 1) are close enough so that

equation 2.3 applies, we can determine ω(ta(u),Ωk).

∆φ(ta(u),Ωk) is defined as the phase increment of a sinusoid, falling in frequency bin

k, between times ta(u) and ta(u− 1):

∆φ(ta(u),Ωk) , φ(ta(u),Ωk)− φ(ta(u− 1),Ωk). (4.12)

We also define an expected phase advance, which is the phase advance a sinusoid would

have if it had the exact frequency of the bin centre, Ωk:

∆φe , RaΩk. (4.13)

Now, the difference between the actual phase advance and the expected phase advance

gives an indication of how far the sinusoid is situated from the bin centre, Ωk.

We can summarise the calculation of the instantaneous frequency as follows: (see [12]

for a detailed proof)

1. Calculate the phase increment Z(ta(u),Ωk), the difference between the expected

phase advance and the actual phase advance:

Z(ta(u),Ωk) = ∆φ(ta(u),Ωk)−∆φe. (4.14)

2. Modify the phase increment so that the result, Z, lies between −π and π, by

adding and subtracting multiples of 2π.

3. Calculate the instantaneous frequency at time ta(u) in bin k, ω(ta(u),Ωk),

ω(ta(u),Ωk) = Ωk +
Z(ta(u),Ωk)

Ra

. (4.15)

The calculation of instantaneous frequencies is based on certain implicit assumptions

[12]:
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• For the STFT-analysis to be able to resolve individual pitch harmonics, the analy-

sis window’s bandwidth, ωb, must be less than half the spacing between successive

harmonics.

• The length of the analysis window, L, must be small enough so that the amplitudes

of the instantaneous frequency of each harmonic can be considered constant for the

duration of the window.

Phase Adjustment

Figure 4.4(b) shows the result of an overlap-and-add procedure for a single sinusoid where

the three synthesis instants have bad phase relations among them. These phase relations

are corrected in Figure 4.4(a), giving an undistorted result. We need to apply the same

principle for signals containing many sinusoids.

Now that we know how to calculate the instantaneous frequency of any sinusoidal com-

ponent, we can calculate the phase advance the component undergoes from the current

instant to the next one. Knowing the values of the phases in the first synthesis in-

stant and by calculating the phase advances, we can create a series of synthesis instants,

Y (ts(u),Ωk), through a recursive process. These instants are identical to X(ta(u),Ωk) in

magnitude but with phase values that make the synthesis of y(n) possible. We initialise

this recursive process by giving the first synthesis instant the same phase values as that

of the first analysis instant. We provide a summary of the process in the next section.

Time-scaling algorithm

We summarise the steps of calculating Y (ts(u),Ωk), the synthesis instants needed to

create y(n) in Figure 4.5. The procedure is recursive, since the phase in the previous

synthesis instant must be known to calculate that of the next.

Testing the algorithm

The inverse Fourier transform of the synthesis instants gives short-term time signals

yw(ts(u), n). We apply an overlap-and-add-procedure (equation 4.8) and calculate y(n).

We put the algorithm to the test by stretching an audio signal and by inspecting the

spectrograms before and after stretching. The result should be two identical spectrograms,

over different time durations. An inspection of the spectrograms in Figures 4.6 and 4.7

proves that the frequency content does not change, while stretching the signal. In other

words, the pitch and the formant locations are constant. These results are similar to those

obtained by Flanagan and Golden [4].

Not only is the algorithm theoretically successful, it is also very pleasing on an auditory

level. The time-scaled results sound surprisingly natural. A signal can easily be scaled to
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1. Transform x(n) into a series of analysis instants, X(ta(u),Ωk)

2. u = 0:

Initialisation: φ(ts(u),Ωk) = φ(ta(u),Ωk)

3. Increment u:

Compute the instantaneous frequency, ω(ta(u),Ωk) for each bin, using equa-

tions 4.12 to 4.15. (Step through k)

4. Compute φ(ts(u),Ωk) for each bin (step through k):

φ(ts(u),Ωk) = φ(ts(u− 1),Ωk) +Rsω(ta(u),Ωk)

5. Compute Y (ts(u),Ωk), the synthesis instant (step through k):

Y (ts(u),Ωk) = |X(ta(u),Ωk)|ejφ(ts(u),Ωk)

6. Return to step 3 until the maximum value for u is reached

7. Calculate a series of short time signals yw(ts(u), n) through equation 4.9

8. Synthesise y(n) through equation 4.8

Figure 4.5: Time-scaling algorithm
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Figure 4.6: Spectrogram of an original audio signal

150% its original length and will fool any unsuspecting listener.

(The reader may refer to the included HTML document. The link to Chapter 4

examples provides audio examples of the phase vocoder’s time-scaling abilities.)

4.3.3 Applications of time-scaling

The time-scaling method we described is used widely in the music industry because of

its remarkable ability to retain spectral behaviour while compressing or expanding the

time duration. A further property is that part of the original signal can be modified in

duration and the result can be seamlessly integrated with the rest of the original signal.

Typical applications are rhythm matching and phrase training.

Rhythm matching is a handy tool when a music producer has two audio tracks that

are out of synchronisation because of bad timing in the one track. Bad timing is the cause

of incorrect rhythm for parts of the audio signal resulting in events taking place before

or after they should. The phase vocoder can be used to delay or accelerate a given event

to match that of the correct signal. The correct signal can be a MIDI track, which is

machine generated and therefore has perfect rhythm. A human generated track does not

have perfect rhythm, but the parts that are audibly out of synchronisation with the MIDI

track can be fixed with a phase vocoder based program.

Phrase training is a musical exercise by which musicians master a specific note pro-
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Figure 4.7: Spectrogram of a time-scaled audio signal

gression. The progression, or phrase, is repeated until the musician is satisfied. This can

be a daunting task when he or she has no sheet music and has to learn the progression

by listening to an audio track. Furthermore, if the progression is very fast it becomes a

cumbersome routine of listening again and again. A phase vocoder based program can

record the phrase and repeat it at a speed the musician finds comfortable.

4.4 Summary

We discussed the working of a phase vocoder, which transforms an audio signal into

a representation giving both time and frequency information. If no modifications are

performed on the signal, it may be synthesised to give a result that is identical to the input.

This type of representation makes it possible to perform frequency or time modifications

(or both) to the original signal. In this chapter, we described how to scale the time

duration of an audio signal. The result is a high quality signal, identical to the input in

frequency behaviour, but of a different time duration. We concluded with examples of

typical uses for time-scaling.



Chapter 5

Pitch Detection

5.1 Introduction

Pitch is the perceptive fundamental frequency. The human ear perceives frequency as

the spacing between the harmonics in a signal, rather than the lowest harmonic related

sinusoid denoted by F0. F0 and the pitch will have the same value in most cases, but there

are times when F0 is missing or very weak. In such circumstances F1 is often mistaken

for the pitch, while the true pitch might be F1
2

.

The aim of this chapter is to design an efficient frequency domain pitch-tracking algo-

rithm, using a discrete signal x(n) representing a singing voice. The result is a sequence

of frequency values - or a pitch-track - denoted by Px(tp(u)). The subscript x indicates

the signal from which the pitch-track is derived and tp(u) are the time instants where the

pitch of x(n) is calculated.

This is a short-term analysis problem and we are forced to make quasi-stationary

assumptions about x(n). We know that speech and singing are mixtures of periodic,

aperiodic and stochastic signals but we assume that they are stationary over a short time

interval. This interval is typically 10− 30 milliseconds for speech but can be extended for

singing since a vocalist keeps his or her pitch constant to achieve musical notes.

For pitch detection, we rely on the sliding window principle: x(n) is windowed into

a series of frames that overlap and that have constant lengths of value L. L should be

chosen so that the frame is short enough for the signal to be stationary across its length,

but long enough so that the signal properties can be measured, i.e several pitch periods

long. The start of the overlapping regions are determined by the pitch hop-size, Rp, so

that

tp(u) = uRp. (5.1)

We found it convenient to express the time signal as short-time spectra, like in the

analysis stage of a phase vocoder. Each analysis instant is the Fourier transform of a

sliding window xw(tp(u), n) with a spectrum X(tp(u),Ωk). The pitch we calculate from a

37
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short-time spectrum X(tp(u),Ωk), represents the pitch for the duration of the window. In

the next two sections we will show how to calculate the pitch for a single frame. Forgetting

time for a moment, we consider a spectrum X(Ωk).

(Although not discussed in this chapter, autocorrelation based pitch detection tech-

niques are quite popular for the simplicity and robustness. Appendix D gives a high level

overview of such techniques. For more detail on ACF the reader may consult [3].)

5.2 Harmonic extraction

The excitation manifests as a set of harmonic related impulses in the spectrum, spaced

F0 apart. See Figure 2.7 (p16) for an example. Pitch detection in the frequency domain

consists of determining the frequency spacing between harmonics. The first task is to

extract harmonics from the magnitude spectrum |X(Ωk)|.
There exists well documented techniques on peak extraction as described in papers

on phase vocoders such as [8] and [7], where a peak is defined for a discrete magnitude

spectrum as any value for |X(Ωk)| that is larger than any of its two neighbours on both

sides. This criterion does not eliminate peaks caused by an underlying sinusoid caused

by the analysis window’s side-lobes [9]. We introduce a peak extraction technique aiming

to eliminate these “possible confusions” as they are labelled in [9].

In order to extract harmonics reliably, we need to filter the spectrum so that the only

remaining local maxima are plateaus spanning the fundamental or any of its harmonics.

Once we have the locations of these plateaus, we can simply find the local maximum that

is spanned by the plateau. With a high degree of certainty, it can be said that these peaks

are the excitation harmonics. Figure 5.1 shows a harmonic peak in a spectrum overlaid

by an ideal filtered version.

Plateau

Figure 5.1: Harmonic peak in a spectrum, overlaid by an ideal filtered version

Suppose we have a square windowed frame of singing or speech of length L and zero-

pad it to length N , with r = N
L

any sensible integer, i.e not bigger than e.g. 10. The
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FFT of this frame produces a spectrum of length N . We know that a square window has

very noisy side-lobes in the frequency domain (the peak side-lobe is only 13dB down),

but they are also narrower than the main lobe and can therefore be filtered out. The

side-lobe width1 is r, and therefore we employ a LULU -filter of order r, Jr. This filter

will suppress any peak with a width of r or narrower and should remove the side-lobes

from the spectrum as illustrated in Figure 3.4 (p25).

Figure 5.2 demonstrates a successful smoother; however, this is not necessarily the case

since there may be spurious peaks that have widths wider than that of the standard side-

lobes. We could provide for this possibility by raising the filter order, but it is important

to note that the width of the plateau is proportional to the order of J . If the plateau

becomes larger, the area in which the peak should be found also increases.

This is a situation that asks for a play-off between two extremes:

• a low filter order for J , meaning a narrow bound on peaks with the possibility of

spurious peaks, being spanned by a “false” plateau.

• a higher filter order, meaning a wide bound on peaks with very low possibility of

spurious peaks being spanned by a plateau.

Another parameter to consider is computational cost, since it becomes very high for large

filter orders because of the concatenation in equation 3.3 (p24). Even though a second

order filter succeeds for N
L

= 2, we will typically raise the order to provide a safety margin.

We express the filtering process as:

Jq|X(Ωk)| (5.2)

where q is the filter order.

We introduce a symbolic operator P , a peak extractor. P · Jq|X(Ωk)| signifies the

extraction of peaks in X(Ωk) that are spanned by the plateaus in Jq|X(Ωk)|.

5.3 Pitch calculation

Once we have the extracted harmonics we calculate the spacing between them, thus

calculating the pitch. We define the sequence of extracted harmonics as:

H′
n , P · Jq|X(Ωk)|, (5.3)

where H′
n is the frequency location of the n-th extracted peak.

The FFT can be viewed as a series of bandpass filters with bandwidth

ωb =
2π

N
, (5.4)

1The width is given in samples.



Chapter 5 — Pitch Detection 40

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
−10

0

10

20

30

40

50

ω (rad/sample)

dB

true spectrum          
filt. spec. order = 15 
filt. spec. order = 2  

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
−10

0

10

20

30

40

50

ω (rad/s)

dB

True spectrum

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
−5

0

5

10

15

20

25

30

ω (rad/s)

dB

Filtered spectrum:

order = 15

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
−5

0

5

10

15

20

25

30

35

40

45

ω (rad/s)

dB

Filtered spectrum:

order = 2

Figure 5.2: Filtering at two different orders



Chapter 5 — Pitch Detection 41

meaning that a peak contained in H′
n can be the result of a sinusoid with a frequency

that can deviate from the peak location up to half the bandwidth ωb. To calculate the

pitch accurately, we need to know the exact frequencies of the sinusoid responsible for the

peaks in |X(Ωk)|. There are two possible ways to solve the problem:

• We can zero-pad the short-time signals before Fourier transforming them. This

will increase the frequency resolution by the same integer factor that the short-

time signal is elongated. We can get significant frequency resolution increase, but

computational cost becomes very high for large values of N .

• We can calculate the instantaneous frequency as described in Chapter 4, giving

extremely high frequency resolution.

The latter of these solutions are preferable since it outperforms zero-padding in terms of

resolution and computational cost. We found that a combination of the two methods is

also a good choice. First the resolution is increased by a small integer factor N
L

after which

the instantaneous frequencies of the peaks are calculated. The series of instantaneous

frequencies are denoted by Hn and is a correction of H′
n. Since this method of pitch

detection is dependent on the phase advance between two successive frames, it is based

on the implicit assumption that a sinusoid producing a peak in one frame, produces a

peak in the same bin in the next frame. This is a strict quasi-stationary assumption,

since we expect two successive frames to be identical in terms of harmonic peaks. When

transients occur between frames, the instantaneous frequency cannot be calculated. It is

useful to check for transient errors in a post-processing stage.

If the peak picking stage was perfect, we could calculate the pitch by simply subtracting

successive harmonics:

Hn+1 −Hn. (5.5)

Although we have confidence that most harmonics will be extracted, we cannot be certain

that:

• F0 is included in Hn;

• all the harmonics are extracted; and

• every value in Hn is a harmonic, since it may include spurious peaks.

For these reasons we have to use a more robust approach than equation 5.5 to calculate

the harmonic spacing. We base the approach on a method called harmonic summing.
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To start off, let us assume F0 is included in the sequence Hn. We seek the value for n

that maximises the equation2

∑
q=1

∣∣∣X
(
Hn × q

)∣∣∣. (5.6)

This means we treat every element in Hn as F0 and sum the magnitudes of the spectrum

where its harmonics should occur. If a specific element is the fundamental frequency,

equation 5.6 should be maximised. We can state that F0 = Hk0 if

k0 = argmax
n

∑
q=1

∣∣∣X
(
Hn × q

)∣∣∣, (5.7)

where q runs from 1 up to the maximum number of harmonic locations allowed by the

sampling rate. However, this is true only if F0 is extracted and included in Hn. In

some cases, especially when the recording bandwidth is limited, Hn may not include the

fundamental. If we assume that the first harmonic, F1, is included in the list of peaks, we

can repeat equation 5.7 with each value in Hn assumed to be F1, and therefore divided

by two to get the fundamental:

k1 = argmax
n

∑
q=1

∣∣∣X
(
Hn × q

2

)∣∣∣. (5.8)

The evaluation of equation 5.8 serves as a safety net for equation 5.7. We can say that

F0 = 1
2
×Hk1 under two conditions:

1. k0 = k1; a check to make sure that the only other possible option for the fundamental

is one half of the first estimate. In other words the first estimate mistook F1 for the

pitch.

2. The total sum of the harmonics that maximises equation 5.8 should be more or

less twice as high as that in equation 5.7, since we would expect twice as many

harmonics:

∑
q=1

∣∣∣X
(
Hk0 × q

)∣∣∣ ≈ 2
∑
q=1

∣∣∣X
(
Hk1 ×

q

2

)∣∣∣. (5.9)

This idea can be extended to a case with any number of lower harmonics missing,

however it is in the first place unlikely for F0 to be missing in high quality recordings and

most unlikely for F1 to be missing.

2Because Hn are instantaneous frequency values, they do not necessarily correspond to the discrete
frequency values, Ωk. Therefore the value of Ωk that is closest to Hn× q is used in equations in the likes
of 5.6 and 5.7.
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Figure 5.3: Pitch-track of a scale by a male vocalist

5.4 Constructing the pitch-track

By calculating F0 of each instant X(tp(u),Ωk), we can construct a pitch-track Px(tp(u)),

containing the fundamental frequencies of x(n). The method explained above gives the

pitch in units of radians/sample, and we convert it to Hertz by dividing by 2π and then

multiply by the sampling rate.

5.5 Post-processing

Because of unpredictable transients between frames, we have to post-process the pitch-

track to have a smooth contour representing the pitch movement of x(n).

The pitch-track in Figure 5.3 is the result of a raw pitch-track filtered by a median

filter of order 5. The “LULU”-smoother introduced in Chapter 3 is also very useful to

produce a smooth pitch-track.

For certain applications it might be useful not to do post-processing, since abnormal

high pitch values are good indicators of unvoiced areas or silence. (The vocalist that sung

the scale in Figure 5.3 used vowels only.)

5.6 On silence

Sometimes the need rises to know when the signal we study is in the state of silence. If

such a state occurs it is redundant to process that part of the signal. We devise a simple

but effective way to label such regions and include the result into the pitch-track by giving

Px(tp(u)) a value of zero if x(n) is in a silence state at time tp(u).
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The same frames used to calculate the short-time spectra in section 5.1 can be used

to label regions as silent. For each frame we calculate the RMS power:

r(tp(u)) =

√√√√
L−1∑
n=0

x2
w(tp(u), n). (5.10)

If K is the number of frames we average the RMS values to get m:

m =
1

K

M−1∑
u=0

r(tp(u)). (5.11)

Empirically, we found that a hysteresis approach with two thresholds based on m gives

satisfactory results. We devise a state machine that can be either in non-silence state or

silence state:

• Moves from non-silence state to silence state when r(tp(u)) < 0.15m. As long as

this state occurs, Px(tp(u)) becomes zero.

• Moves from silence state to non-silence state when r(tp(u)) > 0.3m. Px(tp(u)) keeps

its original value for the duration of this state.

We do not introduce a new notation for pitch-tracks that were processed to “zero” the

silences. We will mention it explicitly when this process is applied to a pitch-track.

Figure 5.4 shows how the RMS values of frames of x(n) can be used to “zero” the

pitch in areas of silence. To better indicate the entrance and exit of a silent state, we

display an enlarged region of Figure 5.4(b) in Figure 5.5.

5.7 Summary

This chapter described the design of a robust pitch-tracking algorithm. The algorithm

employs the “LULU”-smoother described in Chapter 3 and relies on the principle of

harmonic summing. We can adapt the algorithm for band limited signals where the

possibility exists that F0 is missing, in which case the algorithm should still detect the

correct pitch. It is further robust since it discards spurious spectral peaks such as those

induced by windowing side-lobes or other unwanted noise.

We also gave a suggestion on how to detect silence in a signal. The silence detection

relies on a hysteresis principle using RMS power calculations. It may be useful to know

where silences occur, since it is redundant to process such parts of a signal.
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Figure 5.4: Silence detection and integration into a pitch-track
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Chapter 6

Pitch-shifting

NOTATION:

For this chapter only, we make a few slight notational changes.

In this chapter we will be considering a single short-time signal xw(ta(u), n)

and how to change its pitch. To simplify notation we will simply refer to it

as x(n) and its discrete spectrum X(Ωk). The short-time pitch-shifted signal

yw(ta(u), n) is referred to simply as y(n) with spectrum Y (Ωk).

The excitation signal of x(n) is denoted by e(n) and has a spectrum E(Ωk).

The excitation signal of y(n) is denoted by e′(n) and has a spectrum E ′(Ωk).

6.1 Introduction: failure of an obvious approach

Pitch-shifting refers to a process that changes the fundamental frequency of a signal

while leaving the spectral shape unaltered. In terms of a human voice, it means changing

the pitch without moving the formants. The obvious way of changing pitch is to use

the artifact of evaluating an audio signal at an incorrect sampling rate 1
α
Fs, as done in

section 4.3.1 (p30 ), where α is a constant. The fundamental frequency will change by a

factor 1
α
, but the formants will move. A formant that was centred around ωf will now

be centred around 1
α
ωf . The formant drifting has been described as the “singing rodent”

effect, which gives an indication of the seriousness of the artifact.

Figure 6.1 is the spectrogram of a voiced signal (a vocalist singing do re me fa ...).

If we evaluate the same signal at 4
3
Fs, we can clearly see in Figure 6.2 that the formants

moved higher with a factor of 4
3
and the total signal is compressed in time with a factor of

3
4
. The fundamental frequency is at the desired frequency, but the artifacts are too serious

to ignore. Therefore, this approach cannot be regarded a true pitch-shifting algorithm.

We conclude that a simple sampling rate change scheme is not sufficient. The rest

of the chapter explains in detail how we can change the pitch of a single frame that will

46
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Figure 6.1: Spectrogram of a male singing voice
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- theoretically - not introduce artifacts. In Chapter 7 we will combine the techniques

described here with a phase vocoder to introduce a complete, frame-based, pitch-shifter.

6.2 Source-filter decomposition

6.2.1 Splitting the signal

In Chapter 2 we described the generally accepted model for speech production. Singing,

from a signal processing point of view, can be seen as a time dependent filter driven by

an excitation signal. If we can split the filter and the excitation for a single frame, we

can manipulate the excitation signal e(n) and apply the filter afterwards to restore the

original resonances. We need not think of a filter in the linear time invariant sense, as we

will shortly prove. To make the concept more generic, we use the term model to denote

any set of parameters that describe the signal’s behaviour in time or frequency.

An inverse filter can be derived from the model and be applied to the signal, thus

removing the resonances, or formants, to produce the excitation. After the excitation

has been modified, the same or a different type of model can be applied to restore the

resonances of the original signal. By changing the pitch in this manner, we will end

up with the formants in their original position, but excited by a different fundamental

frequency. This technique theoretically delivers a true pitch-shifting algorithm. Figure 6.3

summarises the above. Note that modelling technique A and modelling technique B may

be identical.

Modelling
Technique A

Modifications

Parameter Passing

Signal Passing

Inverse Filter

Modelling
Technique B

Model B
Apply

Figure 6.3: Diagram of the working of a pitch-shifter

We will discuss two modelling techniques, namely linear prediction and direct-modelling.
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6.2.2 Linear Prediction-model

Through linear prediction analysis, we can estimate an all-pole filter from a frame, under

stationary assumptions for the duration of the frame. The filter H(z) will approximate

the behaviour of the time signal, where

H(z) =
G

1−
p∑
i=1

aiz
−i

(6.1)

where G is a constant gain term.

H(z) can be viewed as the z-transform of the impulse response of the vocal tract sn(m)

as described in section 2.5 (p2.5).

There exist several well documented techniques for the calculation of ai, the filter

parameters. The best known and a well used one is the autocorrelation method, of which

the derivation is given in detail in Appendix A. This method is very attractive because

the produced filter is always stable and requires no checking, as opposed to the covariance

estimation procedure [3]. (See [10] and [3] for detailed discussions on linear prediction.)

We can determine the excitation signal by filtering the frame with its inverse filter,

H(z)−1, thus removing the formants, after which we normalise the spectrum. Figure 6.4

shows the lower part of the spectrum of a sung vowel (top figure), and the spectrum after

inverse filtering, i.e. the excitation spectrum (lower figure). The formants were removed

successfully, giving a spectrum with harmonic related peaks of near equal amplitude. The

process of removing resonances from a signal is referred to as whitening, since it transforms

the spectrum’s envelope to a line, reminiscent of white noise spectra.

The advantage of isolating the excitation lies in the fact that there are no natural

resonances in the spectrum, therefore it can be modified without the danger of formants

that move. After the modifications are applied, the original envelope can be restored by

re-applying the model H(z). If the excitation spectrum is not altered, the original signal

will be produced, since H(z)−1 ×H(z) = 1.

The quest for the optimum LPC order is somewhat intuitive in the literature. Moulines

and Laroche[12] gives a crude figure and states that either 10 or 20 poles should be used,

according to the sampling rate. Makhoul [10] gives more thought to the subject: the

higher the number of poles, the better the signal fits the model. The question is where

to stop. A normalisation error Vp, is introduced and proves useful for estimating the

optimum filter order. (The subscript p indicates the amount of poles.) The normalisation

error is defined as “the ratio of the minimum modelling error to the energy in the signal”.

Makhoul proves that:

Vp =
e

(
1
2π

R π
−π log10

bP (ω)dω

)

1

2π

∫ π

−π
log10 P̂ (ω)dω

, (6.2)
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Figure 6.4: A spectrum before (top) and after (bottom) whitening

where P̂ (ω) is the estimated, or modelled, power spectrum. We can calculate this power

spectrum by evaluating the square of equation 6.1 on the unit circle between −π and π

and substitute z for ejω:

P̂ (ω) =
G2

∣∣∣1−
p∑
i=1

aiz
−i

∣∣∣
2

∣∣∣∣
z = ejω

(6.3)

If the spectrum that we try to estimate is that of an all-pole AR-process with p0 poles,

then Vp will become flat as p → po. In the real world, we are seldom confronted by true

AR-processes but a well controlled assumption that they are, can help us estimate the

optimum number of poles. This number p can be calculated from the inequity

1− Vp+1

Vp
< δ, (6.4)

with δ a small number. If equation 6.4 holds true for several consecutive values of p, we

can state that the curve has flattened out - indicating an optimal value for p.

Figure 6.5 shows Vp for several values of p, using the same time-domain signal used for

Figure 6.4. The curve has flattened out after p = 60, and gives hardly any improvement

after p = 80. We used an 80th order filter to produce the lower spectrum in Figure 6.4.1

1The sampling rate of the time signal was 44.1kHz.
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Figure 6.5: Normalised error Vp, vs number of poles

In practical applications an order of around 30 would be sufficient.

A new problem features when the order, p, becomes very high. The individual pitch

harmonics are being modelled instead of the spectral envelope. It also features when a

female sings very high, because the harmonic spacing becomes of the same order as the

spacing between formants. This is called over-modelling. Therefore we should be careful

when raising the order.

Figure 6.6 shows an LPC approximation at an optimal order, while Figure 6.7 shows

a model of an order that is too high. Of course, in the second case Vp would also be flat

but the modelling properties at high orders become less useful for formant analysis.

To summarise the answer to the question on how to determine the optimal number of

poles:

1. Calculate the normalised error curve with equation 6.2.

2. See that equation 6.4 holds true for a number of consecutive values of p.

3. Make sure that the spectrum is not over modelled as in Figure 6.7. In general,

Vp should be flat long before over-modelling becomes an issue.

We finish the discussion on Linear Prediction with a few notes on the gain term G in

equation 6.1. G may be calculated so that the filter approximation includes the volume

of the signal it was derived from. Along with the derivation of the linear prediction
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Figure 6.6: LPC spectral approximation at

an optimal order: p = 30
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Figure 6.7: LPC over modelling: p = 150

coefficients ai, found in equation 6.1 through the autocorrelation method, we can calculate

the power of the prediction error - of which the square root is used for G. (See Appendix A

for details.)

When we inverse filter a series of short-time signals (to get excitation signals) using

equation 6.1 with G calculated as above, all the excitation signals will have identical

power. If a different model is used to restore the formant locations, that model must not

only provide the formant locations but also the correct gain.

If we wish to to keep the volume of a short-time signal in its excitation signal, G

must simply have a unity value during inverse filtering and the model used to restore the

formants should therefore also have unity gain.

6.2.3 Direct-model

Introduction

In section 6.2.2 we discussed a time domain method to model the behaviour of a frame of

speech or singing. We now introduce a method to model the frequency behaviour directly

from the spectrum, hence the term direct-model. The idea is to estimate the magnitude

spectrum’s envelope by interpolating the peaks formed by the excitation harmonics. We

divide this modelling technique into three schemes: filtering, peak extraction and interpo-

lation. The result is a smooth curve that approximates the spectral magnitude envelope.

Filtering and Peak Extraction

In Chapter 5 we described in detail how to extract peaks from a magnitude spectrum after

being smoothed by a “LULU”-filter. We repeat the symbolic equation used to extract
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the peaks:

H′
n = P · Jq|X(Ωk)|. (6.5)

H′
n is a series of the locations of prominent peaks in the magnitude spectrum.

Interpolation

Once we know the amplitudes and locations of the spectral maxima, we can interpolate

them to give a smooth continuous approximation of the magnitude spectrum. We denote

this magnitude approximation by M̂(ω).

We take a quick detour to explain the interpolation process. A well documented form of

interpolation is the so-called cubic B-spline, which finds application in computer graphics.

It is used to give animated characters a smooth human appearance and to create smooth

landscapes like the ones found in computer games. Four control points, called the knot

sequence, are needed to draw a smooth curve near the middle two points. This curve will

not pass through any points in the knot sequence and is a third order polynomial that

can be expressed as a matrix equation:

P (t) = [1 t t2 t3] M




Pk

Pk+1

Pk+2

Pk+3




(6.6)

where t can be sweeped between 0 and 1, inclusive, at any resolution and where

M =




1 4 1 0

−3 0 3 0

3 −6 3 0

1 3 −3 1




(6.7)

and Pk . . . Pk+3 is the knot sequence. Figure 6.8 shows a knot sequence with its associated

B-spline curve. In this case Pk,...Pk+3 are vectors of order 2, in order to denote Carte-

sian co-ordinates. But they can be of any order since each dimension gets interpolated

independently.

In practice, a complex interpolation with a long knot sequence is done piecewise,

selecting four points at a time and calculating the B-spline curve. The index, k, is then

increased by one to calculate the next piecewise curve. A simple but elegant way to

force the smooth curve to finish and start at the same points as the knot sequence, is to

simply repeat the first and last entries in the sequence. (If the smooth curve must pass

through any point in the knot sequence that is not the first or last one, that point must

be repeated three times.) Figure 6.9 shows the piecewise interpolation of a complicated

knot sequence.
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Figure 6.8: A single B-spline segment

Figure 6.9: Cubic spline demonstration
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Figure 6.10: Steps of direct-modelling

We proceed to apply the piecewise cubic B-spline for direct-modelling. The interpo-

lation of the spectral peaks caused by the excitation harmonics gives a smooth spectral

magnitude estimate that can be compared to a magnitude spectrum obtained through

LPC -analysis. We introduce a new symbolic operator I, signifying the interpolation

stage. We can express magnitude approximation M̂(ω) as:

M̂(ω) = I · P · Jq|X(Ωk)|. (6.8)

Note that the interpolation gives a continuous spectrum. In practice, M̂(ω) has to be

sampled again to be used as a discrete spectrum: M̂(Ωk).

Figure 6.10 illustrates the steps towards a direct-model. The interpolation stage follows

the peak extraction stage and draws a smooth curve with the peaks as “guidelines”, to

approximate the spectral envelope.

Once we have a direct-model of a spectrum |X(Ωk)| we can use it to whiten the

spectrum to get the excitation magnitude spectrum |E(Ωk)|, where

|E(Ωk)| = |X(Ωk)|
M̂(Ωk)

. (6.9)
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Figure 6.11: Spectral whitening through direct-modelling

Figure 6.11 shows how this formula can whiten a spectrum, giving us the normalised ex-

citation spectrum. Since it is normalised, the model being applied to restore the formants

must account for the volume (or power).

Formant shifting

By using direct-modelling, we have a numeric representation of the spectral envelope of

a certain frame and therefore it is trivial to change the shape of the envelope. This gives

us total control on how we want to modify the spectrum, which makes it a handy tool

for formant shifting. Suppose we have a spectral envelope M̂(Ωk) of magnitude spectrum

|X(Ωk)|. Shifting the formants means moving the spectral envelope which presents two

problems: shifting the formants higher or lower in frequency. When moving the formants

artificially, we encounter missing bands in the spectrum. In section 6.3 we will discuss the

process of filling empty frequency bands but for the moment we give a short summary of

how to solve the problem:

• When the formants are moved lower, a gap appears in the high frequency areas.

In order to utilise the maximum bandwidth supported by the sampling rate, we
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repeat the high frequency values in the envelope to regenerate the missing ones.

At high sampling rates the higher parts of the spectrum has noise characteristics

and therefor the envelope as well and we can copy parts from the high end of the

envelope to fill the missing band.

• When the formants are moved higher, we insert low level noise between 0Hz and

the start of the original envelope to fill up the new envelope.

In both cases above, values are added to the discrete envelope M̂(Ωk), thereby increasing

its length. Since the sampling rate only supports a specific number of values in the discrete

spectrum2, we need to discard the same number of values that were added. In both cases,

we discard values on the opposite side from where the new values were added. Figure 6.12

illustrates this principle.

Moving formants lower

Moving formants higher

frequency

Original envelope

AddDiscard

Add Discard

am
pl

itu
de

Figure 6.12: Formant shifting

2Dependent on the window size and the sampling rate.
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We will put this technique to use in Chapter 8 where we will attempt to change the

gender of a singing voice.

6.2.4 Comparing LPC to direct-modelling

In sections 6.2.2 and 6.2.3 we described two methods to estimate spectral magnitude

estimate. Both methods model the envelope of the spectrum and not the excitation and

its harmonics. This is a valuable property since we are only interested in the location

of the formants and not the waveform that excites them. In the definition of the LPC

spectrum, we know that it is a minimal MSE-fit on the true signal (see Appendix A). As

for the direct-model, we cannot make any statements on how well it fits onto the spectrum

before it is calculated. One solution to optimise the fit of a direct model is to calculate a

constant, C2, so that 1
C
M̂(Ωk) has the same energy as X(Ωk). This should enable us to

compare the spectral modelling of the LPC with that of direct-modelling. We calculate

C2 as follows:

If E is the energy in X(Ωk),

E =
1

N

N−1∑

k=0

|X(Ωk)|2 (6.10)

and the energy contained in the direct-model is

EDM , 1

N

N−1∑

k=0

M̂(Ωk)
2. (6.11)

Then

C2 =
EDM
E

. (6.12)

Now we can state that the energy in 1
C
M̂(Ωk) is equal to the energy in the true spectrum

and we can compare a direct-model to a LPC -model as in Figure 6.13. As expected, the

models form a similar spectral estimation.

In the scope of this thesis, the direct-model has three prominent advantages over the

LPC -method:

• Individual pitch harmonics will not be modelled as opposed to the LPC -model in the

case of a high pitched female voice and a rather large filter order. This property can

make the LPC -model dangerous to use since it may prove adequate when modelling

male and alto female voices, but can fail when the pitch becomes very high. Since

the direct-model interpolates the prominent peaks, the valleys between harmonics

will not be modelled as long there are no spurious peaks in those regions.

• The valleys between formants are modelled exceptionally well. A model obtained

through LPC -analysis does not go down as “deep” as a direct-model. See figure 6.13.
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Figure 6.13: LPC -modelling and direct-modelling

• The direct-model can be estimated directly in the frequency domain, which is an at-

tractive property when working with phase vocoders because the signal is presented

by short-time spectra. The LPC -method requires a time domain representation of

a signal in order to model it.

The direct-model has two significant disadvantages:

• It is computationally expensive to calculate the splining curves because of the poly-

nomial calculations. We express it as a continuous spectrum M̂(ω) that has to

be resampled again to give M̂(Ωk), making this type of modelling unsuitable for

real-time applications.

• The direct-model does not provide phase information about the signal it models,

only magnitude information.

6.3 Modifying the excitation

As described above, we can decompose a single frame under quasi-stationary assumptions

into its excitation signal and the corresponding spectral model. Now we turn the attention

to the excitation signal and how to modify its fundamental frequency. There are two ways

to achieve this:

• Time domain: Resample the excitation signal e(n) in the time-domain at intervals 1
β
.

Doing this will change the spacing between the time domain pitch pulses by a factor
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β. The signal’s fundamental frequency will change by a factor 1
β

(the spectrum will

expand or compress at the same factor and the time duration will change by a factor

of β). This should deliver satisfactory results, but if the long-term signal of interest

is presented by a phase vocoder, it would prove useful to have a method operating

in the frequency domain.

• Frequency domain: Expand or compress the excitation spectrum E(Ωk) by a factor

β. If we resample the spectrum at intervals β, the result will be equivalent to that

of the above time domain method. It is important to note that the time domain

signal will expand/compress with the inverse factor of the frequency domain’s com-

pression/expansion. This method is more useful than the previous because of its

frequency domain application and therefore the rest of this section will be devoted

to its details.

Suppose we have a complex spectrum E(Ωk) and we want to expand or compress it in the

frequency domain. This means we need to evaluate the spectrum at frequencies that lie

between the samples we can reach through the index k. One solution is a simple linear

interpolation between the closest two values of the original spectrum. Let E ′(Ωk) denote

the new spectrum, then:

E ′(Ωk) = (1− ρ(k))E(Ωk) + ρ(k)E(Ωk+1), (6.13)

where

k = bkβc

and

ρ(k) = kβ − k,

where bkβc indicates the largest integer smaller than kβ. Note that the interpolation

is complex, meaning we resample the magnitude and the phase. The same results can

be achieved by resampling the magnitude and the unwrapped phase independently. The

above expressions cause the fundamental frequency to change with a factor 1
β

and the

time duration with a factor β. We expand on this technique as described in [12].

Two important observations regarding spectral manipulation can be made on the basis

of Figure 6.14:

• If the spectrum expands (β < 1), the spectral content spreads beyond 1
βπ

, meaning

some frequencies are moving into a range that are above the Nyquist frequency3 and

3Half the sampling rate
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Figure 6.14: Spectral manipulation

cannot be supported by the sampling rate. We deal with this by simply discarding

the spectral information in these areas. The dashed lines in Figure 6.14 indicate

this cutoff. The motivation behind this is simple. If we assume that the modified

spectrum can be obtained by sampling an original source, these are the frequencies

that are too high to be sampled and would not appear in the spectrum.

• If the spectrum is compressed (β > 1), a dead band occurs between the highest

frequency in the new spectrum and the Nyquist frequency. This is a quite significant

artifact at low sampling rates, e.g. 8 kHz. Suppose we have a voiced spectrum with

F0 = 400Hz, and we want to modify F0 so that F0 = 200Hz. This calls for β = 2.

If the described techniques are applied to modify the pitch, we will end up with

a signal that occupies a bandwidth of only 2kHz, which is extremely low. The

result is less audible when for example Fs = 44.1kHz, but is still significant. This

problem can be solved by a method called high frequency regeneration. A certain

form of high frequency regeneration is called spectral copying. Values from lower

parts of the spectrum are used to fill the missing band. This method works well

for higher sampling rates since the higher parts of the spectrum has complex noise4

characteristics and can be copied to other high parts without introducing audible

artifacts.

4Modelling magnitude and phase scattering.
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Figure 6.15: White spectrum, before (top) and after (bottom) pitch modifications

As an example of pitch-shifting we choose β = 1.25 and r = 8, a zero-padding factor,

and apply it to the same frame used for Figure 6.11. The frame is windowed by a

Hamming window. The top spectrum in Figure 6.15 is the original excitation magnitude

spectrum and the bottom one is a resampled version. A closer look should make it

clear that the top spectrum is compressed into the lower three quarters of the bottom

spectrum. The missing band is filled in by spectral copying, therefore the last part of the

artificial spectrum repeats itself. We take a section from the lower part of both spectra

to investigate the excitation harmonics. It is clear from Figure 6.16 that the harmonic

spacing changed, meaning the fundamental frequency changed (by a factor 1
β
).

6.4 Breathing life into the excitation

6.4.1 More than pitch matters

We discussed a technique to change the fundamental frequency of the excitation of a

voiced frame of singing. This new signal would sound terrible, to say the least, since

we’ve flattened its spectrum. To restore the human character of the sound, we need to

re-apply any of the the models described in section 6.2. This will force the formants of

the original singer onto an artificial excitation, e′(n), resulting in a signal that should
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Figure 6.16: Enlarged extractions from Figure 6.15

sound like the same vocalist, singing the same vowel but at a fundamental frequency of

our choice (within bounds).

6.4.2 Re-applying a LPC -model

Equation 6.1 (p49) is an expression for a LPC -model derived from a short-time signal

x(n). Once the coefficients are calculated through the autocorrelation method, we can

implement the filter in the discrete-time domain. Let y(n) be the desired signal, that is

a pitch-shifted version of x(n), and e′(n) the artificial excitation. Using equation 6.1 and

the Z-transform we can state:

Y (Z) = E ′(Z)H(Z). (6.14)

Taking the inverse z-transform and rearranging terms we get a time domain expression

for y(n):5

y(n) = G[e′(n) + a1e
′(n− 1) + a2e

′(n− 2) . . .

+ap−1e
′(n− p+ 1) + ape

′(n− p)]. (6.15)

5When we use equation 6.15 with the gain term G included, e′(n) must have unity power so that x(n)
and y(n) have equal power. If equation 6.15 is used with G = 1, e′(n) alone accounts for the power in
y(n).
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Figure 6.17: Pitch-shifting: LPC model used to restore formants

original spectrum (top) and artificial spectrum (bottom)

To demonstrate, we take the artificial excitation spectrum in Figure 6.15, transform

it to the time domain to get e′(n), filter e′(n) as in equation 6.15, transform back to the

frequency domain and compare it to that of the original in Figure 6.17. It is evident from

Figure 6.17 that the formants are restored.

The path we followed up to here can be said to be a true pitch-shifting technique since

we changed the fundamental frequency without moving the formants.

6.4.3 Re-applying a direct-model

The restoration of the formants by means of a direct model is simply a multiplication of

two spectra. Let E ′(Ωk) be the spectrum of the pitch-shifted excitation, i.e. the Fourier

transform of e′(n), and let M̂(Ωk) be the direct-model. The artificial magnitude spectrum

|Y (Ωk)| can be calculated as:

|Y (Ωk)| = |E ′(Ωk)|M̂(Ωk). (6.16)

Figure 6.18 shows the same excitation used in Figure 6.17 to calculate |Y (Ωk)|, only this

time we employed the direct-model. Note how the formants are restored, very much like
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Figure 6.18: Pitch-shifting: direct-model used to restore formants

original spectrum (top) and the artificial spectrum (bottom)
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in the LPC case.

6.5 A note on phase

Throughout the chapter we mentioned nothing about the phase of individual components

of the frame. This becomes an important issue when a signal is studied as a series of

frames, and each frame needs to be pitch-shifted. The phase needs to run free from

one artificial frame to the next to avoid phase distortion. In Chapter 7 we will use the

properties of the phase vocoder to ensure continuous phase as described in Chapter 4.

6.6 Summary

We started this chapter with an example of the serious artifacts caused by an elementary

algorithm that tries to change the pitch of a signal. The problem we face when changing

the playback sampling rate is the formants that move to unwanted locations. We described

an algorithm, operating on a single frame, that aims to change the pitch while introducing

as little as possible other modifications to the signal - which is the definition of a true

pitch-shifter.

The design led us through source-filter decomposition where we discussed two different

methods: LPC -modelling and direct-modelling. After the separation we described how

to change the pitch of the excitation signal, and then how to restore the original spectral

envelope.

The design is able to shift the pitch of a steady state vowel in a very natural way,

however there are limitations on how far we can shift the pitch before it sounds unnatural.

The amount of pitch shift that can be applied is rather dependent on the vowel and the

singer, but in most cases a shift of up to 4 semitones succeeds.

In the next chapter we will use this design to design a bigger system that can shift the

pitch of a long-term signal. By dividing the long-term signal into overlapping frames and

by applying the pitch-shifting algorithm to each frame, we have control over the pitch of

a long-term signal.



Chapter 7

Artificial singing voices

Heard melodies are sweet, but those unheard are sweeter.

- John Keats

7.1 Introduction

In this chapter we combine techniques described in earlier chapters to create synthetic

vocals in the hope of doing justice to their human counterparts. We will consider a sampled

audio signal x(n), the source vocal, and create a target vocal signal y(n), standing in

some music-theoretical relationship to x(n). The relationship could be one of three main

options:

1. y(n) could be a vocal signal with a harmonious melody, governed by music theory,

that complements x(n).

2. y(n) could be an improved version of x(n), meaning that y(n) contains less unpleas-

ant deviations from the applicable musical scale than x(n). This process is also

referred to as pitch correction.

3. y(n) could be a constant pitch-shifted version of x(n).

The purpose of this chapter is to describe a non-causal technique through which these

ideals could be achieved. This method assumes we have complete information on the

signal before the processing starts, i.e. past, present and future values are known. This

calls for a pre-recorded audio track. Figure 7.1 shows a diagram of the system we are

about to discuss. Each functional block will be dealt with individually and the reader

may want to refer back to the diagram as we advance through the chapter.
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Figure 7.1: High level diagram of the non-causal pitch-shifting system
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7.2 Analysis

The signal x(n) is transformed into a series of STFT instances, X(Ωk, ta(u)), as in the

analysis stage of the phase vocoder (as explained in Chapter 4).

7.3 Pitch-tracking

For the sake of clarity we repeat some of the notation introduced in Chapter 5. Px(tp(u))

is a pitch-track of x(n), calculated from windows starting at time instants tp(u) = uRp,

where u is an integer called the pitch frame index and Rp is the pitch hop-size. We

calculate the pitch-track through the method described in Chapter 5.

Since the pitch-track Px(tp(u)) does not necessarily have the same time resolution

as X(ta(u),Ωk), i.e. tp(u) 6= ta(u), a simple linear interpolation must be performed on

the pitch-track so that a pitch value is associated with each analysis instant. After

interpolation we have Px(ta(u)).

7.4 Pitch-shifting

Pitch-shifting can be performed by employing any of the modelling methods described

in Chapter 6. It is convenient to whiten the frames through inverse LPC -filters before

Fourier transforming it, and to use direct-modelling to restore the formants after spectral

resampling.

Each analysis instant, X(Ωk, ta(u)), may be pitch-shifted individually in order to

create the synthesis instants Y (Ωk, ts(u)), which can be recombined by an overlap-and-

add procedure to form y(n). This is a phase vocoder process and allows for dynamic pitch

modifications, since each frame can be pitch-shifted by an independent factor β. If β is

constant, y(n) will be the same melody as x(n), only in a different musical key, i.e. higher

or lower. If β is variable, then y(n) can be a different melody, depending on the control

of β. The dynamic behaviour of β is governed by two parameters: a scale and a rule -

the topic of the next section. Since β is not a constant anymore we may express it as a

function of the frame index u, thus we have β(u).

To summarise: We shift X(Ωk, ta(u)) by a factor β(u) to get Y (Ωk, ts(u)).



Chapter 7 — Artificial singing voices 70

7.5 β calculation

7.5.1 Scale notation

Before we show how to the calculate β for each frame, we need to introduce our notation

of scales and a new type of pitch-track.

A scale is a series of musical frequencies and each element denotes a certain note. We

denote a scale, associated with x(n), that spans the range of a piano, by S. Each element

in S can be addressed by using an integer subscript. S is defined so that Sj < Sj+1. The

scale specifies the allowable frequencies for a melody played in that scale. All fundamental

frequencies that occur in x(n) should be contained in a scale, or should approximate a

value in the scale. If this condition is not met, x(n) will be “off-key” and unpleasant when

listened to.

Since Px(ta(u)) is a pitch-track derived from human created audio signals, the frequen-

cies will seldom be exact as prescribed by the scale, therefore we introduce a new type

of pitch-track: P Sx (ta(u)), which contains frequencies from the scale S that are closest to

the values in Px(ta(u)). We can summarise its calculation in two equations:

P Sx (ta(u)) = Sm(u), (7.1)

where

m(u) , argmin
j

∣∣∣Sj − Px(ta(u))
∣∣∣ (7.2)

and where S is the scale in which x(n) is performed. Figure 7.2 illustrates the above

discussion. More information on scales and music theory appear in Appendix B.

7.5.2 Harmony

The rule specifies what β should be for any given pitch value of x(n). One class of rules

is what we call constant step rules1: β is calculated so that if

P Sx (ta(u)) = Sm(u) (7.3)

and a rule of ζ (an integer) is applied, then

Py(ts(u)) = Sm(u)+ζ . (7.4)

In general, if the scale and rule are known, we can express β as a function of the frame

index u:

β(u) =
Sm(u)+ζ

P Sx (ta(u))
. (7.5)

1We call it constant step because the harmony y(n) will contain notes from the scale that are a constant
number of notes higher or lower than the notes in x(n).
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Figure 7.2: Example of Px(ta(u)), an original pitch-track, and P Sx (ta(u)), a scale cor-

rected pitch-track

Equation 7.5 is just a specialised form of equation 1.1 (p5), which we repeat below:

β =
source pitch

target pitch
. (7.6)

It is important to note that although the rule ζ stays constant, β can be a varying

quantity, and is dependent on the nature of the scale. Table 7.1 includes some of the

possible constant step rules.

By using the formulae in the likes of those in Table 7.1, we assume that the vocalist

sings true to the scale, and subtle pitch deviations like vibrato and “scoops” will be passed

on to the artificial signal y(n). If we do not want these subtleties we can correct the pitch

of the signal in another stage.

7.5.3 Pitch correction

β(u) =
Px(ta(u))

P Sx (ta(u))
(7.7)

The effect we get from applying equation 7.7, is a frequency clamping of the source vocal

and all off-key frequencies are changed into their closest counterpart in the specified scale.

This is pitch correction.

7.5.4 Constant pitch-shift

The preceding discussion was on cases where the value β was a dynamic quantity. A very

simple case of pitch-shifting is where β is a constant value. The results of such a process,
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Table 7.1: β calculation rules

Rule(ζ) β(u) Effect

2
Sm(u)+2

P Sx (ta(u))
Third harmony above source vocal

-2
Sm(u)−2

P Sx (ta(u))
Third harmony below source vocal

3
Sm(u)+3

P Sx (ta(u))
Fourth harmony above source vocal

-3
Sm(u)−3

P Sx (ta(u))
Fourth harmony below source vocal

7
Sm(u)+7

P Sx (ta(u))
Octave harmony above source vocal

-7
Sm(u)−7

P Sx (ta(u))
Octave harmony below source vocal

y(n), is an audio signal with a pitch-track that can be expressed as:

Py(tp(u)) = βPx(tp(u)). (7.8)

7.6 Unvoiced and silence detection

We implement a very simple but effective way of detecting unvoiced parts. Singing has

very little unvoiced sounds and if they appear, it is for a short duration only. Therefore

this part of the system is not absolutely necessary, and is a safety feature.

Since unvoiced sounds do not have significant fundamental frequencies, we would like

them to be copied unchanged from x(n) into the synthetic signal y(n), instead of being
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pitch shifted.2 Because of their noise characteristics, the pitch detection stage will be

very unreliable and typically gives pitch values many times higher than the surrounding

voiced areas. We use this typical mistake to label a region as unvoiced: if β is calculated

from equations in the likes of those in Table 7.1, it will seldom be much larger than 2 or

smaller than 0.5, such as in the octave harmony cases. Thresholds of 3 and 0.3 proved

to be adequate. In other words, if β is found to be outside the area bound by these

thresholds, the unvoiced detection stage changes β to a value of 1; thus the frame passes

unaltered to the synthesis stage.

Silence does not really need detection because a frame that lacks audible volume

cannot introduce audible artifacts. However, to save computation time we determine the

areas were silence occurs through the method explained in section 5.6 (p43).

7.7 Synthesis

After each analysis instant is pitch shifted by a factor β, we have the synthesis instants

Y (Ωk, ts(u)). Each instant must be phase corrected as explained in Section 4.3.2 in order

to avoid phase distortion. After the adjustments have been made, Y (Ωk, ts(u)) may be

inverse Fourier transformed, to get the short-time signals yw(n), used for synthesis . We

use equation 4.8 (p28) to calculate y(n). (Of course y(n) must have the same length as

x(n) after synthesis.)

7.8 Windowing issues

The different window types used on the frames in the different algorithms are important

for the success of the total system. Here we give a short summary of which type of window

is used where:

• For the pitch detection stage we need to use a square window because of its narrow

main-lobe. The narrow lobe width gives good frequency resolution which is desirable

during pitch detection. Although the side-lobes are noisy, they will be suppressed

successfully by a “LULU”-smoother of minimum order r, the zero-padding factor.

• For spectral whitening we use an LPC -filter that is calculated from a Hamming-

windowed frame, since we want to smooth the edges of the frame.

• We restore the formants using a direct-model which is determined from a square-

2“S” sounds are produced the same, no matter how high or low the singer goes and it is good singing
practice to reduce the use of it.
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windowed frame of speech, since the peak extraction stage prefers a narrow main-

lobe. Again, the relative high side-lobes will be suppressed by a “LULU”-smoother.

7.9 Summary

We used the techniques discussed in Chapters 3-6 to design a system that can create vocal

signals from an original recording. The new, or synthetic, voices can be one of three types:

1. Harmonies for the original can be created by using constant step rules. These types

of pitch-shifts create a note in the synthetic signal that is a constant number of scale

steps away from the original note.

2. The synthetic signal can be an improved version of the original by changing off-key

notes into ones allowed by the scale.

3. A constant pitch-shift, in other words the new signal’s pitch is higher or lower by a

constant factor.

(The reader may refer to the included HTML document. The link to Chapter 7 examples

provides audio examples of synthetic harmonies and pitch correction.)



Chapter 8

Further Applications

8.1 Introduction

This chapter is a case study of two rather esoteric but interesting applications of the

theory discussed in the previous chapters and we go beyond the normal effects of pure

pitch-shifting and time-stretching. The two applications are:

1. Based on a few stationary frames of a sung vowel, we design a wave synthesis

technique in section 8.2. The frequency of the excitation to a vowel of choice can

be controlled from a MIDI-keyboard, creating a continuous sung vowel, reminiscent

of the vocal techniques used by members of a choir.

2. Transforming a voice from an original vocalist to a voice of the opposite sex.

8.2 Wave synthesis

We transform a high quality recording of a sung vowel x(n), with arbitrary but constant

pitch, into a series of short-term Fourier transforms as described in Chapter 4. This gives

us a series of analysis instants, X(ta(u),Ωk). The frames in the centre region are isolated

and the rest discarded in order to reject the transients expected at the beginning and end

of the vowel. The remaining frames are then used in the synthesis process.1

We use the pitch-shifting algorithm developed in Chapter 6 to create a variety of

synthesis instants of the vowel at different pitches. Since the technique relies on prior

knowledge of the vowel’s original pitch, we need a short pitch-track of the vowel. We use

the pitch-tracking algorithm in Chapter 5 to get the pitch-track2 Px(tp(u)). We found

1For the rest of the chapter, X(ta(u), Ωk) will denote the instants from the centre region.

2Calculated from the centre region.
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that the average of the pitch-track is a good measure of pitch for the time span of the

vowel, and we simply denote it by Px, where

Px , 1

K

K∑
u=1

P (tp(u)) (8.1)

and K denotes the number of frames.

A MIDI-stream from a keyboard gives information on how long a note was held and

what the frequency of the note was. For the sake of simplicity we only investigate the

monophonic case, meaning the next note cannot start before the previous one ends. Sup-

pose a note of frequency Py was held for t seconds. This means a pitch-shifted version of

x(n) should be synthesised for a duration of t seconds. We achieve this in three steps:

1. Copies of X(ta(u),Ωk) are appended in series, giving more short-term Fourier

transforms so that a signal with a duration of t may be synthesised.

2. After X(ta(u),Ωk) is “stretched”, each instant is pitch-shifted by a factor β to

form the synthesis instants, Y (ts(u),Ωk). We calculate β as:

β =
Px
Py
. (8.2)

3. The resulting signal is synthesised by combining the synthesis instants

Y (ts(u),Ωk) through the overlap-and-add procedure.

Return to step 1 for the next note. The next note will join the previous one seamlessly

because of the phase vocoder’s ability allows us to do phase adjustments.

Figure 8.1 shows a diagram of the above process. The result is long sustained vowels

with a pitch that is up to the choice of a keyboard player. Since the pitch-shifting algo-

rithm has limitations on how far β may deviate from unity, we found that simple tunes

such as nursery rhymes with notes having frequencies in the same octave as the vowel’s

original pitch, are best suited for demonstration. If a larger number of notes needs to be

covered, we would have to store the same vowel recorded at a few different pitches.

8.3 Gender transformer

In Chapter 2 we noted with reference to Rossing [18], the difference between a female and

a male voice is that the formants of a female voice are about 25% higher and the pitch

about twice as high. This translates into a pitch-shifting factor of β u 0.5 accompanied
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Figure 8.1: High level diagram of vowel wave synthesis

by a formant shift to transform the pitch of a male voice to a female voice. See Table 2.2

(p14) for the formant frequencies of male and female singers.

We combine pitch-shifting with formant shifting, both described in Chapter 6, to

achieve the formant and pitch changes needed to change the gender of a voice. As before,

we express the original signal as a phase vocoder, presenting us with short-time spectra,

X(ta(u),Ωk). Each of the short-time spectra, or analysis instant, is pitch shifted by 100%

and its direct-model M̂(ta(u),Ωk) is formant shifted by 25%. By formant- and pitch-

shifting each short-time spectrum we have a series of synthesis instants Y (ta(u),Ωk) which

is recombined through the overlap-and-add procedure after we made the necessary phase

adjustments.

The technique is not perfect and its success is dependent on “tweaking” the algorithm

for a specific voice. The naturalness of the result is hard to measure and is subjective, but

is nonetheless an indication of how a recording would have sounded if done by someone

of the opposite sex.

This application is particularly useful for creating a duet. Usually a duet is formed

by a male and a female vocalist, and if we have one of the voices, the other one can be

synthesised.
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8.4 Summary

We designed and implemented two techniques:

1. A technique through which we can create a continuously sung vowel, of which the

pitch is controlled by a MIDI-keyboard.

2. A technique for changing the gender of a pre-recorded singing voice.

These techniques employ the pitch-shifting, time-stretching and synthesis algorithms dis-

cussed in the previous chapters. (The reader may refer to the included HTML document.

The link to Chapter 8 examples provides audio examples of wave synthesis and gender

transformation.)



Chapter 9

Results

The thermometer of success is merely the jealousy of the malcontents.

-Salvador Dali

9.1 What to measure

Measuring results of the developed and implemented techniques in this thesis must be

preceded by the question: What do we measure? Since the results are musical by nature,

the only true judge of their success is the ears of people not bothered with the mathematics

behind the results - and ultimately the ear of a musician. However, the “pleasantness” of

the results is very hard to measure, not forgetting that non-scientific measurements, such

as pleasantness, are intrinsically subjective.

For these reasons we turn to parameters that are absolutely measurable. These pa-

rameters occur in the functional building blocks of the described systems and are also

measurements of success. Although not the ultimate measurements, they are at least

deterministic:

1. Accuracy and resolution of the pitch-tracking algorithm.

2. Accuracy of the pitch-shifting algorithm and the extent by which it complies with

the characteristics of a true pitch-shifter. After this discussion we show some results

of applications of the pitch-shifting algorithm.

3. Seamlessness of the synthesis process.

We end the chapter by giving a high level evaluation of our designs.
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Figure 9.1: Spectrogram of a synthetic signal

9.2 Accuracy and resolution of the pitch-tracking al-

gorithm

Throughout the thesis we used the same pitch-tracking algorithm as described in Chap-

ter 5. To test the algorithm, we create a synthetic signal with known fundamental fre-

quencies and compare this known pitch-track to the one determined by the algorithm.

We create a sinusoidal FM-signal, modulated so that it is a C-major scale; discrete

frequency steps that lead from note C3 to note C4 on the piano (see Figure 2.6 p15). See

Appendix B for more information on scales. To create higher harmonics, such as found

in a singing voice, the FM-signal is put through a hard limiter1, which turns the input

into a square wave. To give the signal a human quality we correct the amplitudes of the

harmonics by filtering it through an LPC -filter derived from a vowel. We denote this

signal, as before, by x(n). Figure 9.1 is a spectrogram of this synthetic signal. Note the

harmonics and the formants.

Figure 9.2 shows the true pitch-track overlaid by the one determined by our algorithm.

From a distance it appears to be nearly perfect, but a closer look shows a certain noise

around the true pitch value. Figure 9.3 shows the noise around the true notes in x(n).

We list the following parameters for each note in Table 9.1:

• The mean of the pitch-track for the duration of the note [Hz].

• The true note [Hz]. We list this quantity to be sure that the mean is a very close

1A transfer function that gives 1 as output for positive input and -1 for negative input.
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Table 9.1: Pitch-tracking parameters

mean true note σ

130.8142 C 130.8150 0.1217

146.8276 D 146.8349 0.2608

164.8173 E 164.8166 0.1269

174.6145 F 174.6171 0.2083

195.9992 G 196.0010 0.1304

220.0054 A 220.0037 0.0141

246.9468 B 246.9458 0.0346

261.6295 C 261.6300 0.1338

approximation of the true note.

• The standard deviation σ of the pitch-track for the duration of the note. [Hz]

The maximum standard deviation is σmax = 0.2608 Hz. This means that we can expect

the pitch-track to deviate a typical value of σmax up or down from the true pitch. To

answer the question on the accuracy of the pitch detection algorithm, we can state that

the algorithm has an expected tolerance of σmax. Since the tolerance can cause the pitch-

track to be σmax higher or lower than the true pitch, we can expect the pitch detection

algorithm to detect deviations of 2σmax (and higher) in the true pitch. Although the tests

were performed on a synthesised signal, it still gives a good indication of its reliability

when using real data.

9.3 Accuracy of the pitch-shifting algorithm

9.3.1 Evaluation of the algorithm

We use a recording of a two-tone vowel x(n) sung by a male vocalist to test the pitch-

shifting algorithm. We apply the algorithm for different values of β, where β is constant

for the duration of x(n). As before, the pitch-shifted signal is denoted by y(n). After

pitch-shifting we calculate pitch-tracks for x(n) and y(n) and denote them by Px(tp(u))

and Py(tp(u)) respectively. If the pitch-shifting algorithm is successful, the following

equation should be true for all values of u:

Py(tp(u)) = βPx(tp(u)). (9.1)

Since the pitch-shifting algorithm is not perfect, equation 9.1 is only an approximation of

the real-life situation. We present an example to explain the test that follows it.
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Table 9.2: Pitch-shifting parameters

β β′ average accuracy

0.6250 0.6255 99.2014 %

0.7700 0.7727 99.1830 %

1.3000 1.3076 98.7839 %

1.6000 1.6032 99.2348 %

1.9000 1.8929 99.5791 %

If, for example, we applied a pitch-shift of β = 0.5, we expect that

Py(tp(u)) = 0.5Px(tp(u)). (9.2)

Say the pitch-shifting technique did not quite achieve this, but came close, so that the

following equation is true for certain u:

Py(tp(u)) = 0.493Px(tp(u)). (9.3)

We denote this approximation of β by β′, and use it as an accuracy measure of the pitch-

shifting algorithm. For the above example β′ has a value of 0.493. In general we calculate

β′ as:

β′ =
Py(tp(u))

Px(tp(u))
. (9.4)

A measure of accuracy of the pitch-shifting algorithm is the measure by which β′ approx-

imates β. We express it as a percentage:

accuracy =

{
1− |β − β′|

β

}
× 100. (9.5)

We continue and perform several pitch-shifts on the test signal. Figure 9.4 shows the

pitch-track of the original two-tone signal (dotted line), with pitch-tracks of five pitch-

shifted copies. We chose β so that the pitch is shifted by a third at a time: three shifts

up and two shifts down, thus β ∈ [0.0526; 0.6250; 0.7700; 1.3000; 1.6000].

Using these pitch-tracks we calculate a series of β′s for the duration of each pitch-track.

We plot β′ versus u in Figure 9.5, overlaid by the theoretical value β. (Note the transient

regions where the pitch jumps a semitone. Remember that the pitch-tracking algorithm

does not work well during non-steady state times and that pitch-shifting depends on it.)

Omitting the transient areas, we average the values of β′ to get β′. Now, using β and

β′ in equation 9.5, we can calculate an average accuracy for each pitch-shift and list the

results in Table 9.2.

As we mentioned before, the actual pitch-shifting is not the only matter concerning a

pitch-shifting algorithm. The formants need to stay in their original locations to retain
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Figure 9.6: Spectrograms of pitch-shifted signals

the naturalness of the sound. We performed a series of pitch-shifts on a vocal recording of

four notes sung by a male vocalist, using a constant vowel. Figure 9.6 shows spectrograms

of the results, with β = 1; the original signal. These spectrograms are presented so that

the pitch and the formant locations could be observed. From the figures we see that

although the shape of the formants change a bit, they stay in the correct locations despite

the change in pitch, which is a necessity for a true pitch-shifting algorithm.

9.3.2 Results from pitch-shifting applications

In Chapter 7 we introduced several classes of pitch-shifting. Some formulae for β, the

shifting factor, are given in Table 7.1 (p72). These types of rules specify that β need

not remain constant for the duration of the signal. We show the results from two such

examples:

1. For the first example we perform pitch correction as described in section 7.5. Fig-

ure 9.7 shows pitch-tracks of x(n), the original signal, and y(n), the pitch-shifted
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Figure 9.7: Pitch correction

version. They are overlaid by the target pitch frequencies, which are the values the

original pitch-tracks are “drawn” to. The result is a frequency quantisation, or in

music technological terms: pitch correction. A closer look at Figure 9.7 will inform

the reader that the result is a C-major scale, created from a random vocal “scoop”.

2. For the second example we choose ζ = 2 in Table 7.1, delivering a third harmony

above the source vocal. Observe the pitch-tracks in Figure 9.8. The harmonies run

parallel for most of the signal except for the note occurring after about nine seconds

from the start, where it is obvious that β has a different value. The artificial signal

is a complementing melody to the original that cannot be obtained by a constant

value for β.

9.4 Synthesis

The success of the synthesis procedure lies in the continuity of the result. The time domain

waveform may not have discontinuities since it will manifest as clicking sounds. The phase

correction and the windowed overlap-and-adding process, described in Chapters 4 and 7,

give us a smooth result with very little notion of frames being added together. The

seamlessness of the synthesis is hard to perceive without listening to the results, but in

Figure 9.9 we show an excerpt from a synthetic waveform, overlaid by lines indicating the

locations of ts(u), the synthesis time instants. These markings are the locations where
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a new window starts. If the synthesis process had discontinuities, these would be the

locations where they occur. Figure 9.9 proves that the result is a continuous waveform.

9.5 High level evaluation

We said in section 9.1 that the ultimate measurement is the pleasantness and the natural

character of the synthetic signal. We found that these are achieved to a certain extent.

The results are not good enough for solo performances, but work very well for backing

vocals, as long as they are not competing in volume with the main voice.

The wave synthesis procedure in section 8.2 works quite well and one gets the impres-

sion that the result is human-like. One flaw however, is that the transients between notes

do not sound human-like. When a human voice advances from one note to the next, it

entails a complex transient process, beyond our scope of modelling.

Generally, the gender transformation does not sound very natural. We found that it

does succeed when a person sings in the range of the opposite sex. Among other trials,

we tested the algorithm on a recording done by a female vocalist singing in the range of

a tenor. When gender transformed, we achieved a nearly natural sound, reminiscent of a

bass vocalist.

(The reader may refer to the included HTML document which provides a variety of

audio examples)
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Chapter 10

Final comments

10.1 Conclusions

In the foregoing chapters we set out to design an algorithm that controls the pitch of

a singing voice while introducing as little as possible artifacts. This problem not only

concerns the fundamental frequency control, but also control of the formants. This led

to an investigation of spectral modelling. We implemented algorithms that aim to solve

these problems and evaluated them with a measure of success.

Throughout the development it became apparent that the scope of the problem is

immense and that the solution is not a trivial one. The techniques we suggested give

satisfactory results although the artifacts are audible in some cases. The fragility of the

voice becomes apparent as soon as we make rather large changes, like:

• Shifting the pitch too far from the original. Pitch-shifts of more than ±4 semitones

begin to sound unnatural.

• Shifting the formants too far. In the section on gender transformations we imple-

mented a 25% shift in the formants as suggested in [18]. Our algorithm is not quite

up to a shift of that calibre and the results sound a bit “tampered with”.

As side topics to the main problem, we solved another problem successfully: we designed

a robust pitch detection technique of high accuracy that specialises in singing voice. A

powerful smoother, usually found in graphical applications, was used to gain insight in

the spectral behaviour of the singing voice.

Employing the above techniques, we designed a successful system that creates wave-

forms that imitate a person singing a constant vowel at different pitches. The pitch can

be controlled from a MIDI-keyboard while the actual vowel is based on a short recording.

Another application was a suggestion on how to transform a voice to that of the opposite

sex.
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10.2 Future work

By no means have we designed a complete pitch and formant control system. There are

many shortcomings that could be investigated by subsequent research efforts:

• Currently the system needs a scale as input when we want to synthesise a harmonious

signal. It would be very useful if the system could detect the scale from the input

signal.

• The pitch-tracking algorithm is specialised for singing voices and does not work well

for normal speech. An investigation on how to modify the algorithm for speech

would prove useful in the field of speech processing.

• The pitch-shifting technique “locks” the formants in their original locations and they

do not move, no matter how much the pitch is shifted. This is correct in theory, but

in practice certain vowel substitutions occur (as mentioned in Chapter 2). A pitch-

shifting algorithm that includes these considerations may generate a more natural

sounding effect.

• The system currently works off-line. A real-time implementation would be very

useful. If such a system could be devised, a performer could have backup vocals on

stage - done by a computer.

• For a pitch-shifted version of an original signal, the system uses a numerical rep-

resentation of the excitation. This representation contains errors caused by the

resampling process we introduced in Chapter 6. An investigation of a parametric

excitation signal (used in conjunction with the formant modelling techniques we

described) may lead to more natural sounding results.

• During the current gender transformation process the formants are moved by a

constant shift. From Table 2.2 (p14) it is evident that the formants locations of a

female singing voice do not merely constitute a constant shift of the male locations.

We approximated these differences by a constant shift of 25%. An algorithm that

shifts formants independently may give the resulting voice a more natural feel.

• A representative corpus of singing voices should make the results more meaningful.

As it is, the system may specialise on the few voices it was tested on. A research

effort may be launched to gather samples of:

– Different vowels

– Different sexes

– Different voice types like bass, tenor, soprano, etc.
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10.3 Last thoughts

The digital manipulation of a singing voice is a process that needs careful thought. The

human voice is a beautiful instrument and any uncalculated digital alterations to its

sound can do a lot of harm. When an unsuspecting listener cannot hear that the voice

was altered we believe that the algorithm is successful. The reader may reference to

included HTML document with the audio examples and challenge each example with the

question: “Does this sound truly natural?”. We feel that the harmony examples passes

the test as well as the phase vocoder examples. The fact that some complex algorithms

which received a lot of thought and input fail this test, made us aware of how complex the

waveform of the human voice is and we learned that the voice, especially singing, should

not be taken for granted. Finally, we conclude that the digital manipulation of a singing

voice is like adding another story to a card house: Improvement is possible, but digital

gravity is strong!
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Appendix A

Linear Prediction Analysis

Linear prediction is a technique for modelling discrete time signals. We assume that

each sample can be predicted from a weighted sum of p preceding samples.

Let ŝ[k] bet an estimate of s[k], the actual sample. Now linear prediction can be

expressed as:

ŝ[k] =

p∑
i=1

ais[k − i] (A.1)

. The error between the actual signal and the predicted signal is :

e[k] = s[k]− ŝ[k]

⇒ s[k] =

p∑
i=1

ais[k − i] + e[k]. (A.2)

Now we take the Z-transform to calculate the transfer function:

Z(s[k]) =

p∑
i=1

aiz
−1S[z] + E[z]

⇒ H(z) =
S(z)

E(z)

=
1

1−
p∑
i=1

aiz
−i
. (A.3)

The transfer function, H(z), may be viewed as an all-pole LTI system, with the

prediction error, E(z), as input.

Suppose we have the coefficients a1 · · · ap, we may measure how well the model describes

the actual signal by calculating the mean-square-error between the two signals.

e[k] = s[k]− ŝ[k] (A.4)
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The total mean-square-error over the segment s[0] · · · s[N − 1] is:

E =
N−1∑
n=0

e2[n] =
N−1∑
n=0

(s[n]−
p∑
i=1

ais[n− i])2. (A.5)

This a quadratic equation in terms of a1 · · · ap. By minimising this function, we can

calculate a formula that will give the optimal values of a1 · · · ap. To get this, we take the

partial derivative of E with respect to aj, set it equal to zero and solve.

∂E

∂aj
= 0

=
N=1∑
n=0

[
2
(
s[n]−

p∑
i=1

ais[n− i]
)(
−s[n− j]

)]

= 2
N−1∑
N=0

s[n]s[n− j] + 2
N−1∑
n=0

∑
ais[n− i]s[n− j] (A.6)

⇒
N−1∑
N=0

s[n]s[n− j] =
N−1∑
n=0

∑
ais[n− i]s[n− j]. (A.7)

Now we have p simultaneous equations, called the normal equations.

Let:

φi,j =
N−1∑
n

s[n− i]s[n− j]. (A.8)

Now we can write the normal equations as:

φi,j =

p∑
j=1

φi,jaj i = 1, 2, · · · p. (A.9)

In matrix form:



φ1,0

φ2,0

...

φp,0




=




φ1,1 φ1,2 . . . φ1,p

φ2,1 φ2,2 . . . φ2,p

...
...

. . .
...

φp,1 φp,2 . . . φp,p




︸ ︷︷ ︸
Φ

Φ is symmetric since φi,j = φj, i.

We may now solve the equations by means of the Autocorrelation Method. This method

assumes that the signal is zero outside the bounds of the analysis frame:

φi,j =

N−1−(i−j)∑
n=0

s[n]s[n+ (i− j)] i ≥ j. (A.10)
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The unbiased autocorrelation estimate for a finite data window is:

rk =
N−1−k∑
n=0

s[n]s[n+ k] k ≥ 0 (A.11)

⇒ φi,j = ri−j. (A.12)

The normal equations may now be written as:




r1

r2
...

rp




=




r0 r1 . . . rp−1

r1 r0 . . . rp−1

...
...

. . .
...

rp−1 rp−2 . . . r0




︸ ︷︷ ︸
R




a1

a2

...

ap




R is a highly symmetrical form known as Toeplitz.

The above set of linear equations can be solved recursively by a method called Levinson

Durbin recursion. It is referred to as a recursive-in-model-order solution for the

autocorrelation equations. This means the solution for the desired order, say M, is

successively build up from lower order models, beginning with an order 0 predictor. We

can express the Levinson Durbin recursion as follows:

Initialisation: E0 = r0

Recursion for i = 1, 2, 3...p:

• ki =

ri −
i−1∑
j=1

ai−1(j)r(i− j)

Ei−1

• Ei = (1− k2
i )Ei−1

• ai(i) = ki

• Cycle through j = 1, 2, 3...i− 1:

ai(j) = ai−1(j)− kiai−1(i− j)

End of current recursion.

The linear prediction coefficients are: ap(1), ap(2), ..., ap(p), and may be used in

equation A.3. This filter will approximate the behaviour of s[k], the signal portion it

was derived from.



Appendix B

Basic Perspective on Musical Scales

The most basic concept behind music theory is a note. A note is a frequency kept

constant for a certain duration. The notes on a piano is a geometric series, starting at

27.5Hz and increasing with a factor 2
1
12 ending at 4186Hz. We denote the lowest note

on the piano A0. Equation B.1 is the sequence of frequencies of the piano notes.

A0, A0(2
1
12 ), A0(2

1
12 )2, . . . , A0(2

1
12 )85, A0(2

1
12 )86, A0(2

1
12 )87 (B.1)

This type of tuning, which nowadays is standardised, is called equal tempered tuning.

The frequency will double every 12 notes, irrespective of what note is started on. We

refer to A0(2
1
12 )12 as A1, indicating the same note, but one octave higher, i.e. double the

frequency. We use the letters A to G to reference notes and they can be followed by an

integer to indicate the octave, e.g. A0, A4, etc. The symbols ] and [ are used in

combination with a letter to make up the eleven symbols needed to denote an octave.

They indicate one note higher or lower respectively and are pronounced sharp and flat.

We expressed an octave as:

A, B[, B, C], C, D, E[, E, F, F ], G, G]

On its own, a note doesn’t do much - we need a sequence of notes to form a melody

which is a sequence of notes, usually from the same scale. A scale is a certain path

through the notes on a piano, increasing in frequency from any given note to its octave.

These notes are defined as the “valid” notes for a certain melody. We usually define

them for one octave, but it applies to any other octave used in the melody.

A scale is referenced by its root note and by the type of scale. The most important scale

types are major - and minor -scales but there exists a vast variety of other scales not

mentioned here.

Another important point is that melodies do not necessary belong to single scale and

can be theoretically complex. See [1] for more information on scales.
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The scale type is a certain path through an octave. The major -scale uses the following

note jumps on a piano:

root 2 2 1 2 2 2 1,

where 1 denotes the next note and 2 a skipped note. A minor -scale’s sequence is:

root 2 1 2 2 1 2 2.

Figure B.1 illustrates the notes of a C major scale. It is convenient to work with this

scale since it has no sharps or flats, which are the black notes on the piano.

D F G A B CEC

Figure B.1: A piano octave

To play a tune in a certain key, means to play it in a scale with a specified root. We can

therefore play the same tune in different keys. The tune determines the scale type while

the musician may choose the key.

If two melodies are played simultaneously, they have to be at least in the same key to

sound correct to a trained ear. There exists endless types of harmonies to a single tune,

but there are a few well known and well used ones. The most basic harmony is called a

third -harmony and is a parallel harmony running two steps higher or lower than the

original melody, in the a major scale. The term third refers to the fact that the third

note in the scale is used to harmonise with the root note. It is important to note that a

single step leads to the next note in the scale and not necessary the next note on the

piano. The third -harmony is used very often in rock, pop and other modern day music

styles and gives a “warm” feeling to either major or minor based melodies. Other

harmonies are fifths and octaves, where the name also indicates which note in the scale

is used together with the root.



Appendix C

Pitch Cents

Cents is a logarithmic representation of musical pitch and is used to present absolute

pitch in terms of a hundred cents per semitone with respect to middle C. Middle C is

designated zero cents. Hence, A4 is 900 cents and A3 -300 cents. Since notes increase

exponentially on the piano, a logarithmic representation enables us to view any note as

a linear increase from the previous one. The formula for calculating cents from Hertz is:

c = 1200 log2

f

fC
, (C.1)

where f is the frequency we want to convert to cents, and fC is the frequency of middle

C on the piano.
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Appendix D

Autocorrelation function pitch

detection methods

D.1 Autocorrelation Basics

In the literature there are many well documented techniques for pitch detection. Many

of these are based on a mathematical operation known as autocorrelation.

The autocorrelation function is defined by

rxx(l) =
∞∑

n=−∞
x(n)x(n− l),

where x(n) is a discrete time signal of length N and l is a discrete time lag. This

operation corresponds to “sliding” one copy of the signal over another, multiplying

matching elements and adding results to previous ones for each lag instant. The result is

a signal of length 2N + 1. In the case where x(n) has strong periodicity, rxx(n) contains

impulses with a spacing equal to 1
F0

, where F0 is the fundamental frequency of x(n) -

illustrated by Figures D.1 and D.2.
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Figure D.1: Periodic time signal
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Figure D.2: Autocorrelation of time signal
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The simplest pitch detection AC-method works as follows:

Speech

(1 kHz) Autocorrelation Peak Picking
F0LPF

(100 ms)

Hamming Window

Figure D.3: Autocorrelation-based pitch detecting system

The idea would work well for the signal in Figure D.1 but would fail in cases where F0

is weak, where the first formant has a peak close to F0 or where the periodicity is not

strongly maintained throughout the segment. The latter makes it very hard to find the

peaks.

D.2 Improving on Basic Autocorrelation Method

There are several remedies that can be applied the enhance pitch detection with the

autocorrelation function:

• By raising the signal to a higher power, while preserving the sign, the high

amplitude portions of the signal will be stronger emphasised. This is useful since

these regions occur at the start of a pitch period. See Figure D.4 below.
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Figure D.4: A signal and its power-raised version

• The high amplitude portions of the signal x(n) can also be emphasised by centre

clipping the signal, i.e. the portions of x(n) below a certain threshold becomes

zero.

x′(n) =





x(n)− T if x(n) > T

0 if −T < x(n) < T

x(n) + T if x(n) < −T



Appendix D — Autocorrelation function pitch detection methods 102

20 40 60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

n
am

pl
itu

de

x(n)
x(n) clipped

Figure D.5: A signal and its centre-clipped version

• Another useful clipping scheme is called “Tertiary Clipping”. This reduces the

signal to three levels: −1, 0 and 1. This greatly reduces the autocorrelation

complexity, since floating point multiplication is not needed.

x′(n) =





1 if x(n) > T

0 if −T < x(n) < T

−1 if x(n) < −T
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Figure D.6: A signal and its tertiary-clipped version

D.3 Average magnitude difference function

(AMDF)

This is a modified autocorrelation function and has no multiplications, making it

computationally very efficient. The AMDF is defined by:

d[k] =
N−1∑
n=0

|xw[n]− xw[n+ k]|
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where xw[k] is a windowed speech frame. It is clear that when k → 1/F0, d[k] will

exhibit a minimum. Pitch detection will consist of finding the valley in the AMDF.

Figure D.7 illustrates the AMDF of the signal in Figure D.1. One can clearly see the

minimums are spaced equally at the pitch period, delivering results that at similar to

the autocorrelation function in Figure D.2.

100 200 300 400 500 600

30

40

50

60

70

80

90

100

110

120

130

k

A
M

D
F

 d
[k

]

Figure D.7: AMDF
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