
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 63-82

Compactly Generating All Satisfying
Truth Assignments of a Horn Formula

Marcel Wild mwild@sun.ac.za

Department of Mathematics

Stellenbosch University

South Africa

Abstract

While it was known that all models of a Horn formula can be generated in output-
polynomial time, here we present an explicit algorithm as opposed to the rather vague
oracle-scheme suggested in the proof of [6, Thm.4]. It is an instance of some principle of
exclusion that compactly (thus not one by one) generates all models of certain Boolean
formulae given in CNF. The principle of exclusion can be adapted to generate only the
models of weight k. We compare and contrast it with constraint programming, 0, 1 integer
programming, and binary decision diagrams.

Keywords: Horn-models, output-polynomial algorithm, fixed-cardinality models

Submitted December 2010; revised June 2011; published January 2012

1. Introduction

This introduction soon jumps into medias res with a concrete example of a Horn formula
on six variables, and a (4× 6)-table that compactly represents all its models (= satisfying
truth value assignments). We then indicate applications that benefit from the possibility to
efficiently produce or count all models X of a Horn-formula; or alternatively only the X’s
with |X| = k for some prescribed integer k. Afterwards the section break-up displays the
article’s fine structure. Concepts only sloppily defined in the introduction will be formally
defined in Section 2.

So consider this Horn formula ϕ = ϕ(a1, · · · , a6):

ϕ := (a1 ∨ a2 ∨ a3 ∨ a5) ∧ (a1 ∨ a2 ∨ a3 ∨ a6) ∧ (a3 ∨ a4 ∨ a5 ∨ a6) ∧ (a1 ∨ a3 ∨ a6)

Setting 0 := False and 1 := True one verifies that say t := (a1, a2, a3, a4, a5, a6) =
(1, 0, 1, 1, 0, 0) is a model of ϕ, that is, ϕ(t) = 1. The following table compactly repre-
sents all models of ϕ:

Table 1.

ρ1 = 2 2 0 2 2 2

ρ2 = 0 2 1 n n 2

ρ3 = 1 0 1 n n 0

ρ4 = 0 2 1 1 1 1

c©2012 Delft University of Technology and the authors.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Stellenbosch University SUNScholar Repository

https://core.ac.uk/display/37342362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. Wild

Each of the rows ρi represents several models of ϕ. Namely, a label 2 indicates that
the corresponding entry is free to be 0 or 1, and the wildcard nn means that at least one 0
must be present there (thus nn = 11 is forbidden). For instance, the model (1, 0, 1, 1, 0, 0)
from before belongs to ρ3 (here nn = 10). Viewed as set systems the rows ρi happen to be
mutually disjoint, and so the number N of models evaluates to

N = |ρ1|+ |ρ2|+ |ρ3|+ |ρ4| = 32 + 4 · 3 + 3 + 2 = 49.

Also the number N ′ of 4-element models (say) is conveniently calculated as

N ′ = 10 + 5 + 2 + 0 = 17.

Generating all models from Table 1 is just as easy but necessarily more time and space
consuming.

As to applications, getting all models of a Horn formula comprises the following special
cases:

(i) Get all sets of a closure system C from an implicational base Σ of C.

(ii) Get all sets of a simplicial complex J from a negative-clause base Θ of J .

Concerning (i), consider the closure system C of all subsemigroups of a semigroup (W, ◦).
Here an implicational base of C is obtained as the family Σ of all “implications” {a, b} →
{a ◦ b, b ◦ a} where a, b range over W . Akin to general implicational bases that means that
a subset X ⊆ W is closed (i.e. a member of C) if and only if it is Σ-closed in the sense
that whenever a “premise” {a, b} happens to be contained in X, then also the “conclusion”
{a ◦ b, b ◦ a} must lie in X. Using the algorithm of Section 5, our closure system C can
be compactly generated “chunk-wise” as in Table 1, rather than one-by-one. Not just
semigroups, all finite universal algebras can be dealt with this way.

Concerning (ii), a set Θ of sets A∗ ⊆W is a negative-clause base of a simplicial complex
J on W , if for all X ⊆ W it holds that : X belongs to J if and only if X 6⊇ A∗ for all
A∗ ∈ Θ. An efficient way for calculating |J | from Θ, or more specifically the face numbers
fk := |{X ∈ J : |X| = k}|, is useful in many situations, e.g. for getting the rank selection
probabilities of a stack filter [11] or for frequent set mining (work in progress).

Here comes the section break-up. Section 2 reviews basic material about Horn for-
mulae and introduces some convenient set theoretic notation. In particular the ϕ from
before will be written as Σ ∪Θ, where Σ consists of the implications {1, 2, 3} → {5, 6} and
{3, 4, 5} → {6}, and Θ consists of the set {1, 3, 6}∗. Section 3 explains in an informal way
how Table 1 was derived from Σ ∪ Θ. The remaining sections more carefully distinguish
between generating respectively counting models. Section 4 introduces the principle of ex-
clusion (POE) which is a novel method for generating all models of a Boolean formula ψ
that comes as a conjunction of subformulas of suitable shape. It was already employed in [9]
but will be discussed in more coherent form here. In Section 5 the POE gets refined to the
Horn n-algorithm which handles Horn formulae ψ. Section 6 aims at generating merely the
k-element models of a Horn formula. Section 7 resumes the discussion of the POE but now
from the counting point of view. Akin to before this gets refined in Section 8 to counting
all k-element models of a Horn formula. The final (more informal) Section 9 takes up [6]
and positions the POE among other frameworks such as binary decision diagrams, branch
and bound, constraint programming.

64

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

2. On Horn formulae and closure systems

A clause in propositional logic is called Horn if it contains at most one positive literal. We
shall carefully distinguish the two ensuing subcases. Thus, a formula of type

(NC) a1 ∨ a2 ∨ · · · ∨ an (n ≥ 1)

respectively

(UI) a1 ∨ a2 ∨ · · · ∨ an ∨ b (equivalently : (a1 ∧ a2 ∧ · · · ∧ an)→ b) (n ≥ 0)

will be called a negative clause, respectively unit implication. A Horn formula is any propo-
sitional formula that is equivalent to a conjunction of negative clauses and unit implications.
For the time being we concentrate on (UI) and return to (NC) in a moment.

It is often convenient to combine unit implications with the same left hand side, for
instance

((a ∧ c)→ b) ∧ ((a ∧ c)→ d) ∧ ((a ∧ c)→ e)

is equivalent to (a ∧ c) → (b ∧ d ∧ e). If t : {a, b, c, d, e} → {0, 1} is any function, viewed
as truth value assignment with 0 = False and 1 = True, then t satisfies (or is a model of)
a ∧ c→ b ∧ d ∧ e if and only if

t(a) = 0 or t(c) = 0 or t(a) = t(b) = t(c) = t(d) = t(e) = 1.

We shall mostly identify a truth value assignment t with the subset X of variables that
have t-value 1. For instance, if W is our universe of variables, and {a, b, c, d, e} ⊆ W ,
then X ⊆ W satisfies {a, c} → {b, d, e} if and only if {a, c} 6⊆ X or {a, b, c, d, e} ⊆ X.
Generally, let A = {a1, · · · , an} and B = {b1, · · · , bm} be subsets of W . We speak of

(Im) A→ B (as formula : (a1 ∧ · · · ∧ an)→ (b1 ∧ · · · ∧ bm))

as an implication with premise A and conclusion B. Combining m unit implications of type
n = 0 in (UI) yields b1 ∧ b2 ∧ · · · ∧ bm. This amounts to an implication with empty premise:

(Im0) φ→ {b1, b2, · · · , bm}.

Be aware that the negative clauses a1 ∨ · · · ∨ an in (NC) are not dual in any sense to the
(unique if occurring) positive conjunction b1 ∧ b2 ∧ · · · ∧ bm in (Im0). Let Σ be any1. family
of implications Ai → Bi. One verifies at once that

Mod(Σ) := {X ⊆W | X is a model of all members of Σ}

is closed under intersections, i.e.

(1) X ∩ Y ∈ Mod(Σ) for all X,Y ∈ Mod(Σ).

1. Whereas there is information in φ → Bi, there is none in Ai → φ, and so these can be dropped.
Furthermore, we henceforth silently assume that premise and conclusion are disjoint since A → B is
equivalent to A→ (B \A).

65

M. Wild

Moreover, W satisfies all Ai → Bi (since Bi ⊆W), and so

(2) W ∈ Mod(Σ), in particular Σ is always satisfiable.

By (1) and (2), Mod(Σ) is a closure system and

cl(U) :=
⋂
{X ∈ Mod(Σ) : U ⊆ X}

is a closure operator on 2W . The Σ-closure cl(U) can be computed [7, Thm.10.3] in time
O(||Σ|| + w) where w := |W | and ||Σ|| is defined as the sum of the cardinalities of all
premises and conclusions of implications in Σ. Let C be any closure system on a set W .
Then a set Σ of implications such that C = Mod(Σ) is called an implicational base of C. We
recommend [4] as a survey which also offers a historical perspective including the frequent
rediscovery of concepts.

As to negative clauses a1∨a2∨· · ·∨an, in (NC) we choose the set notation {a1, · · · , an}∗.
Thus, a truth assignment t satisfies A∗ := {a1, · · · , an}∗ if and only if X := t−1(1) ⊆ W is
a noncover for A∗ in the sense that A∗ 6⊆ X. For any set Θ of negative clauses A∗ it is clear
that

Mod(Θ) := {X ⊆W | X is a noncover for all A∗ ∈ Θ}

is a simplicial complex, i.e. closed under subsets:

(3) X ∈ Mod(Θ) and Y ⊆ X, implies Y ∈ Mod(Θ).

Note that

(4) ∅ ∈ Mod(Θ), in particular Θ is always satisfiable.

Let J be any simplicial complex on W . Then a set Θ of negative clauses A∗ will be called
a negative-clause base of J if Mod(Θ) = J .

We define a Horn h-formula as a h-element set Σ ∪Θ where Σ consists of implications
and Θ consists of negative clauses. As opposed to (2) and (4), Σ∪Θ need not be satisfiable.
Whether or not it is, can be settled with unit resolution; see [8] for a concise account. An
alternative method using cl from above is mentioned after the proof of Theorem 2.

3. The Horn n-algorithm - first serving

Here we get a first impression of the Horn n-algorithm by working through an ad hoc
example. That lays the foundation for its detailed description and theoretic evaluation in
Section 5. Consider e.g. this Horn 3-formula:

Σ = { {1, 2, 3} → {5, 6}, {3, 4, 5} → {6} }

Θ = { {1, 3, 6}∗ }

Generally let W = {1, 2, · · · , w} (here w = 6) and Mod0 := 2W . For 1 ≤ i ≤ h let Modi
be the family of all subsets X ⊆W that satisfy the first i members of Σ ∪Θ. In particular
Mod(Σ ∪ Θ) = Modh. The main idea (to be elaborated in Section 4) is to calculate the

66

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

subcollection Modi+1 from Modi by discarding all X ∈ Modi that falsify the (i + 1)-th
component. Any set X ∈ Modi will be represented by its characteristic 0, 1-vector of length
w, but whenever possible we use the label 2 to indicate that an entry is free to be 0 or 1.
That is easy for Mod0 which here is r = (2, 2, 2, 2, 2, 2). In order to represent Mod1, let us
split r into the disjoint union of

r[n] = {X ∈ r : {1, 2, 3} 6⊆ X} and r[1] = {X ∈ r : {1, 2, 3} ⊆ X}.

We can compactly write these as

r[n] = (n, n, n, 2, 2, 2)
r[1] = (1, 1, 1, 2, 2, 2)

with the understanding that the wildcard nnn means “at least one 0”. Hence the letter n
which stands for nul. All X ∈ r[n] trivially satisfy the implication {1, 2, 3} → {5, 6}, but
not all X ∈ r[1] do. However, the good X ∈ r[1] are easily pinned down and we get Mod1

as the disjoint union of these {0, 1, 2, n}-valued rows:

n n n 2 2 2

1 1 1 2 1 1

Notice that all X ∈ (1, 1, 1, 2, 1, 1) satisfy the second implication {3, 4, 5} → {6}, but
not all X ∈ (n, n, n, 2, 2, 2) do so. In order to pin down the good X’s we split the row
according to the third entry:

(n, n, n, 2, 2, 2) = (2, 2,0, 2, 2, 2) ∪ (n, n,1, 2, 2, 2).

All X ∈ (2, 2, 0, 2, 2, 2) satisfy {3, 4, 5} → {6}, and those X ∈ (n, n, 1, 2, 2, 2) that satisfy it
are exactly the ones in r2 ∪ r3:

r1 = 2 2 0 2 2 2

r2 = n1 n1 1 n2 n2 2

r3 = n1 n1 1 1 1 1

r4 = 1 1 1 2 1 1

From the above it is clear that Mod2 = r1 ∪ r2 ∪ r3 ∪ r4. All members of r1 satisfy the
negative clause {1, 3, 6}∗, but no members of r4 satisfy it. Hence r4 needs to be cancelled.
It is immediate that ρ4 below comprises exactly the good X ∈ r3, and not much harder to
see that ρ2 ∪ ρ3 comprises the good X ∈ r2 (Table 1):

ρ1 = 2 2 0 2 2 2

ρ2 = 0 2 1 n n 2

ρ3 = 1 0 1 n n 0

ρ4 = 0 2 1 1 1 1

In summary,
Mod(Σ ∪Θ) = Mod3 = ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4.

67

M. Wild

As seen in Section 1, all X ∈ Mod(Σ ∪ Θ) can be counted or generated from Table 1 in
obvious ways. We close this section by giving the formal definition of a {0, 1, 2, n}-valued
row on a finite set W . It is a quadruplet

r := (zeros(r), ones(r), twos(r), nbubbles(r))

such that

(5) W is the disjoint union of the sets zeros(r), ones(r), twos(r), nbubbles(r), where any
one of these may be empty.

(6) If nbubbles(r) is nonemtpy, then it is a disjoint union of t ≥ 1 many sets nb1, · · ·nbt
(called n-bubbles) such that νi := |nbi| ≥ 2 for all 1 ≤ i ≤ t.

Thus r can be visualized (up to permutation of the entries) as

(7) r = (0, · · · , 0︸ ︷︷ ︸
α

, 1, · · · , 1︸ ︷︷ ︸
β

, 2, · · · , 2︸ ︷︷ ︸
γ

, n1, · · · , n1︸ ︷︷ ︸
ν1

, · · · , nt, · · · , nt)︸ ︷︷ ︸
νt

By definition, r represents the family of all sets X ⊆W satisfying

(8) X ∩ zeros(r) = φ and ones(r) ⊆ X and (∀1 ≤ i ≤ t) nbi 6⊆ X.

It will however be convenient to identify r with the family of X’s satisfying (8). Then,
clearly,

(9) |r| = 2γ · (2ν1 − 1) · · · (2νt − 1).

4. The principle of exclusion aimed at generating

A set W with |W | = w will be called a w-set. Formally, a constraint on a fixed w-set
W is a family P ⊆ 2W . We say that X ⊆ W satisfies the constraint P iff X ∈ P.
Equivalently a constraint can be defined as a Boolean function b : {0, 1}W → {0, 1} in that
X ⊆ W satisfies P if and only if its characteristic vector x satisfies b(x) = 1. Proceeding
with Boolean function terminology our task below could be defined as a specific constraint
satisfaction problem (CSP). We touch upon the standard CSP line of attack in Section 9
but here we try another approach for which the set theoretic framework is more convenient.

The task to find all N models X satisfying h given constraints Pi amounts to determine
P1 ∩ P2 ∩ · · · ∩ Ph. For instance, Pi may be the constraint of being closed with respect
to some implication Ai → Bi. Starting with the powerset Mod0 := 2W the principle of
exclusion2. (POE) generates

Modi+1 := {X ∈ Modi| Xsatisfies Pi+1}

by excluding all duds X (i.e. violating Pi+1) from the family Modi of “partial models” (i.e.
satisfying the first i constraints). At the end Modh equals P1 ∩ · · · ∩ Ph. All of that is only
efficient when Modi can be compactly represented as union of disjoint (multivalued) rows r.

2. Of course this has got nothing to do with Pauli’s famous “principle of exclusion” known from physics.
The name arose as a contrast to the well known principle of inclusion-exclusion.

68

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

In the worst case r is just a 0, 1-vector but usually r comprises other symbols as well. For
instance, in Section 3 multivalued meant {0, 1, 2, n}-valued. A row of Modh is called a final
row.

The row collection Modi+1 arises from Modi by imposing constraint Pi+1 on each row
r ∈ Modi. Imposing Pi+1 on r happens in exactly one of three ways:

(10) If no X ∈ r satisfies Pi+1, then r is deleted.

(11) Otherwise r can sometimes be promoted to another row r′ which comprises exactly
those X ∈ r that satisfy Pi+1. We call r′ a trivial son of r. In particular, if all X ∈ r
happen to satisfy Pi+1 already, then r′ = r.

(12) If {X ∈ r| X satisfies Pi+1} ⊆ r cannot be modeled by a trivial son r′, one proceeds
as follows:

(12.1) Row r is split into disjoint candidate sons rj (1 ≤ j ≤ s), i.e. each X ∈ r is
contained in exactly one rj . Here 2 ≤ s ≤ cw.

(12.2) If rj contains no member satisfying Pi+1, then rj is deleted. Otherwise rj is
altered (shrunk) and promoted to a proper son r′j that contains exactly those
X ∈ rj that satisfy Pi+1.

The c in (12.1) is a global constant, i.e. depends only on the type of POE-application.
For later purpose we define smax as the maximum s occurring in any fixed concrete run
of POE. Often cw an be substituted by c, for instance c = 3 in the semigroup application
of Section 1. If in (12.2) all candidate sons get killed, that amounts to (10). In a good
use of the principle of exclusion the deletable rows, if any, should be recognized as soon as
possible in order not to waste time on doomed successor rows. To simplify later proofs it is
convenient to postulate the following condition which so far always held anyway:

(13) The imposition of any constraint Pi upon any multivalued row r of length w costs
O(w2).

4.1 Time assessment

A multivalued row r is called feasible if it contains at least one model. In other words,
r ∩ P1 ∩ · · · ∩ Ph 6= ∅. The fact that a feasible row never gets killed will be referred to as
the consistency of the principle of exclusion. We say that a particular installment of the
principle of exclusion avoids the deletion of rows if (10) above never occurs.

One of the benefits of the principle of exclusion is that for any integer k ≤ w and any
row r the number

Card(r, k) := |{X ∈ r : |X| = k}|

of k-element members of r is often easier to calculate than in other computing frameworks
(Section 9). By focusing on |X| ≤ k respectively |X| ≥ k we similarly define Card(r,≤ k)
and Card(r,≥ k). Thus Card(r,≤ w) is just |r| which, as in (9), was particularly easy to
compute in all instances of POE so far.

We say that a function f(h,w) is at least linear in w if for some constant c > 0 it holds
that f(h,w) ≥ cw for all positive reals h and w.

69

M. Wild

Theorem 1. Let W be a w-set and let Pi ⊆ 2W be constraints (1 ≤ i ≤ h). Fix k ∈
{1, 2, · · · , w}. Suppose some “old” version of the principle of exclusion can be employed to
produce disjoint multivalued rows whose union is the set of all models. Further assume that
for some function f(h,w) which is at least linear in w, it holds that:

(a) For each row r it costs time O(f(h,w)) to decide whether there is a model X ∈ r with
|X| ≤ k.

(b) If r is a final row, then it costs O(Card(r,≤ k)wf(h,w)) to write down (in ordinary
set notation) the sets X ∈ r with |X| ≤ k.

Then the old version can be adjusted to a new one that avoids deleting rows and generates
the N models X ⊆W with |X| ≤ k in time O(f(h,w) +Nhwf(h,w)).

The requirement that all sets must have cardinality ≤ k cannot be treated as some extra
constraint Ph+1, because it will not be imposed the same way as the others. However, it is
convenient to call r extra feasible if there is a model X ∈ r with |X| ≤ k. For the special
case k = w in Theorem 1 “extra feasible” amounts to “feasible”.

Proof of Theorem 1. The first row always is (2, 2, · · · , 2), i.e. the powerset of W . If
it is not extra feasible, this can by (a) be detected in time O(f(h,w)) and then there are
N = 0 models. That’s the only reason why O(f(h,w) +Nhwf(h,w)) in Theorem 1 cannot
be replaced by O(Nhwf(h,w)). An analogous argument in forthcoming theorems will not
be repeated.

So assume that (2, 2, · · · , 2) is extra feasible. We shall argue by induction that the old
algorithm can be renewed to make all promoted rows extra feasible, and so by consistency
no promoted row can ever be deleted (having caused, together with its forfathers, much
useless work). Hence, if R is the number of final rows produced by the new algorithm, then
the number of occurred impositions is at most Rh (distinct finalized rows possibly having
some of their h forfathers coinciding). Below we shall show the “core claim” namely that
the imposition of a constraint Pi upon a row still costs O(wf(h,w)) with the new algorithm.

The cost of all impositions is thus O(Rhwf(h,w)). Because the sum of all R numbers
Card(r,≤ k) when r ranges over the (disjoint!) final rows is N , it follows from (b) that the
cost of generating all (≤ k)-element models from the final rows is O(Nwf(h,w)). In view of
R ≤ N adding up the two costs yields O(Rhwf(h,w)) +O(Nwf(h,w)) = O(Nhwf(h,w))
as claimed.

As to the core claim, let r be extra feasible with say X0 ∈ r satisfying all constraints
Pi (1 ≤ i ≤ h) and having |X0| ≤ k. By (13) it costs O(w2) to impose a constraint Pi upon
r. If r gives rise to a trivial son r′, then by consistency still X0 ∈ r′, and so r′ remains extra
feasible. Suppose r gives rise to the candidate sons r1, · · · , rs (s ≥ 2). One of them, say
r1, must contain X0. Say r1, · · · , rt are exactly the extra feasible candidate sons. Even the
old version of the principle of exclusion by consistency would promote r1, · · · , rt to proper
sons r′1, · · · , r′t. The new version additionally ensures, by testing all rj (1 ≤ j ≤ s) for extra
feasibility, that none of rt+1, · · · , rs gets promoted. By (a) and since s ≤ cw by (12.1), all of
that costs O(w2) + sO(f(h,w)) = O(w2) +O(wf(h,w)). Because f(h,w) is at least linear
in w that reduces to O(wf(h,w)). �

As to how the intermediate or final rows can be stored economically, see Section 7.1.
An analogous argument shows that Theorem 1 also holds when ≤ k is switched to ≥ k,

respectively = k, throughout. Of course “old = new” is possible in Theorem 1; then simply
one algorithm that avoids deletion of rows is assessed.

70

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

Call a multivalued row r weakly feasible if for all 1 ≤ i ≤ h there is some Xi ∈ r that
satisfies Pi. Thus “feasible” amounts to say that all Xi (1 ≤ i ≤ h) can be chosen identical.
Because not all variants of the principle of exclusion allow a fast feasibility check, weak
feasibility serves as a substitute: discarding rows which are not weakly feasible puts a lid
on the number of deletions. All the theorems to come concern only the feasibility of rows,
but weak feasibility will feature in our informal Section 9.

5. The Horn n-algorithm - second serving

Let us continue on a more technical level the discussion of the Horn n-algorithm begun in
Section 3, making use of the POE framework displayed in Section 4. We first discuss the
various cases that arise when an implication or negative clause is to be imposed on a row
r. Afterwards Theorems 1 will be applied to the Horn n-algorithm.

So let A → B be an implication, where A (the premise) and B (the conclusion) are
w.l.o.g. nonvoid disjoint subsets of W = {1, 2, · · · , w}. It is to be imposed on a {0, 1, 2, n}-
valued row r indexed by W , as visualized in (7).

Case 1: A ∩ zeros(r) 6= ∅, or A wholly contains a n-bubble, or B ⊆ ones(r). In this
case either all X ∈ r have A 6⊆ X, or all X ∈ r have B ⊆ X. Whatever takes place, all
X ∈ r satisfy A→ B, and so row r carries over unaltered. Here are three instances of rows
r that all satisfy {1, 2, 3} → {5, 7}. They correspond to the three mentioned subcases:

1 2 3 4 5 6 7

1 2 0 2 2 n n

n1 n1 n2 n2 n2 1 0

n n 1 n 1 n 1

Case 2: A ⊆ ones(r) and (B ∩ zeros(r) 6= ∅ or B wholly contains a n-bubble). Then
clearly r needs to be cancelled.

Case 3: A ⊆ ones(r) and B ∩ zeros(r) = ∅ and B contains no n-bubble. Then we can
switch all entries contained in B to 1 (while adjusting some others). Using the terminology
of Section 4 we thus obtain a trivial son r′ ⊆ r that satisfies A → B. For instance, for
{1, 9} → {3, 4, 5, 6} we get:

1 2 3 4 5 6 7 8 9

r = 1 n1 n1 1 2 n2 n2 n2 1
⇒ 1 2 3 4 5 6 7 8 9

r′ = 1 0 1 1 1 1 n n 1

Given that A ⊆ ones(r), either Case 2 or Case 3 takes place. Hence in view of Case 1
this is the only remaining possibility:

Case 4: A 6⊆ ones(r), and A∩ zeros(r) = ∅, and A does not wholly contain a n-bubble,
and B 6⊆ ones(r). Therefore, putting

Aones = A ∩ ones(r), Atwos = A ∩ twos(r), Anbubbles = A ∩ nbubbles(r),

one has the disjoint union

A = Aones ∪Atwos ∪Anbubbles (Aones 6= A)

71

M. Wild

In order to impose A→ B we split r(A→ B) := {X ∈ r : X satisfies A→ B} as follows:

r(A→ B) = {X ∈ r : A 6⊆ X}︸ ︷︷ ︸
r(diff)

∪ {X ∈ r : A ∪B ⊆ X}︸ ︷︷ ︸
r(easy)

From Aones 6= A follows r(diff) 6= ∅, but r(easy) = ∅ is possible. The “difficult” task will
be to represent r(diff) as a suitable disjoint union of {0, 1, 2, n}-valued rows.

To fix ideas, take W = {1, 2, · · · , 14} and let A→ B be {1, 2, 3, 4, 5, 6, 7, 8} → {12, 13}.
If r is the top row in Table 2 below, then the parameter t in (6) is t = 4. Furthermore

Aones = ∅, Atwos = {1, 2}, Anbubbles = {3, 4, 5, 6, 7, 8}.

If we write supp(n1) = {3, 4, 9} for our first n-bubble, then supp(n1) ∩ Anbubbles = {3, 4}.
Splitting accordingly yields

r(diff) = {X ∈ r(diff) : {3, 4} 6⊆ X}︸ ︷︷ ︸
r[n]

∪ {X ∈ r(diff) : {3, 4} ⊆ X}︸ ︷︷ ︸
r[1]

In Table 2, notice that n1n1n1 in r becomes nn2 in r[n], and 110 in r[1] (not shown).
Proceeding likewise with respect to r[1] and supp(n2) = {5, 10} we get r[1] = r[1, n]∪r[1, 1],
and so on. Finally r[1, 1, 1] = r[1, 1, 1, n] ∪ r[1, 1, 1, 1] where

r[1, 1, 1, n] := {X ∈ r[1, 1, 1] : 8 6∈ X}

r[1, 1, 1, 1] := {X ∈ r[1, 1, 1] : 8 ∈ X}

It is clear that r(diff) is the disjoint union

r(diff) = r[n] ∪ r[1, n] ∪ r[1, 1, n] ∪ r[1, 1, 1, n] ∪ r[1, 1, 1, 1]

As to r(easy), if it is nonempty like here, it can be represented as a single {0, 1, 2, n}-valued
row.

Table 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 2 n1 n1 n2 n3 n3 n4 n1 n2 n3 n3 n4 n4 r

2 2 n n n2 n3 n3 n4 2 n2 n3 n3 n4 n4 r[n]

2 2 1 1 0 n3 n3 n4 0 2 n3 n3 n4 n4 r[1, n]

2 2 1 1 1 n n n4 0 0 2 2 n4 n4 r[1, 1, n]

2 2 1 1 1 1 1 0 0 0 n3 n3 2 2 r[1, 1, 1, n]

n n 1 1 1 1 1 1 0 0 n3 n3 n4 n4 r[1, 1, 1, 1]

1 1 1 1 1 1 1 1 0 0 0 1 1 0 r(easy)

Our chosen example for Case 4 was “almost typical.” Let us indicate the possible slight
deviations:

72

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

(i) If the conclusion of A → B was B = {13, 14}, nothing would have changed in the
decomposition of r(diff), but then r(easy) = ∅ because n4n4n4 cannot be 111.

(ii) We had Aones = ∅, but Aones 6= ∅ would merely have resulted in additionally copying
a bunch of 1’s in all rows r[n], r[1, n] up to r(easy).

(iii) Suppose A→ B was {3, 4, 5, 6, 7, 8} → {12, 13} instead. Then we have A = Anbubbles

which entails

r(diff) = r[n] ∪ r[1, n] ∪ r[1, 1, n] ∪ r[1, 1, 1, n] (without r[1, 1, 1, 1]!)

r(easy) = (2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0)

(iv) Suppose A→ B was {1, 2} → {12, 13} instead. Then we have A = Atwos which entails

r(diff) = (n,n, n1, n1, n2, n3, n3, n4, n1, n2, n3, n3, n4, n4)

r(easy) = (1,1, n1, n1, n2, n3, n3, n4, n1, n2, n3, 1, 1, n4)

It remains to show how negative clauses A∗ are imposed upon {0, 1, 2, n}-valued rows r.
Matters being similar to the above we can be brief.

Case 5: A∗ ∩ zeros(r) 6= ∅ or A∗ wholly contains a n-bubble. Then r carries over
unaltered.

Case 6: A∗ ⊆ ones(r). Then r needs to be cancelled.

Case 7: A∗∩ zeros(r) = ∅ and A∗ does not wholly contain a n-bubble and A∗ 6⊆ ones(r).
Then with definitions analogue to case 4 one has

A∗ = A∗ones ∪A∗twos ∪A∗nbubbles (A∗ones 6= A∗)

and one treats r(diff) exactly as in Case 4. Note that r(easy) is absent in Case 7. �
The encountered row splitting process is quite visual and invites hand calculations for

smaller size problems. From case 4 it is clear that for the present application of the principle
of exclusion the parameter smax from Section 4 is at most the smaller of w

2 (since t ≤ w
2 in

(7)) and max{|A| : A→ B in Σ}. Thus it costs O(w2) to impose an implication of Σ on r.
Ditto by cases 5 to 7 it costs O(w2) to impose a negative clause of Θ upon r. Hence (13)
is satisfied. Without further mention, it will be satisfied in all upcoming theorems as well.
Recall the definition of a Horn h-formula from Section 2.

Theorem 2. Given is a Horn h-formula Σ ∪ Θ on w variables. Then the presented Horn
n-algorithm can be adapted to generate the N models in time O(hw +Nh2w2).

Proof: The presented Horn n-algorithm needs to be upped from old to new according
to Theorem 1 with k = w (so extra feasible = feasible). If we manage to satisfy (a), (b) in
Theorem 1 for f(h,w) := hw (which is at least linear in w) then our O(hw + Nh2w2) =
O(f(h,w) +Nhwf(h,w)) claim will follow.

Concerning (a), we need to show that the feasibility of a row r can be tested in time
O(f(h,w)). For each Y ⊆ W let Y be the Σ-closure of Y , i.e. the smallest superset of Y
that satisfies all implications of Σ. As seen in Section 2, it costs O(||Σ||+w) = O(hw+w) =

73

M. Wild

O(f(h,w)) to compute Y . To check the feasibility of r, put Y := ones(r). If Y is a noncover
for all A∗j in Θ (testable in time O(hw) = O(f(h,w)), then Y is a (Σ∪Θ)-model, i.e. feasible.

But is Y ∈ r? This amounts to check, again in time O(hw), whether Y ∩ zeros(r) = ∅ and
whether Y doesn’t contain any n-bubble of r. It remains to show that when X ∈ r is any
(Σ ∪Θ)-model, then so will be Y . Indeed, since X = X (being a Σ-model), it follows from
Y = ones(r) ⊆ X that Y ⊆ X. Therefore, with X also Y is a noncover for all A∗j in Θ. To
summarize, we have shown:

(14) r is feasible if and only if first Y is a noncover for all A∗j in Θ, second Y ∩ zeros(r) = φ,

third Y doesn’t contain an n-bubble of r. This feasibility test costs O(f(h,w)).

As to (b), it is straightforward to write down all |r| sets of a {0, 1, 2, n}-valued row r
in some systematic way; for instance r = (0, 1, 0, n2, n1, n1, 1, n2) can be handled “lexico-
graphically”:

{2, 7} ∪ { } ∪ { }, {2, 7} ∪ { } ∪ {4}, {2, 7} ∪ { } ∪ {8}

{2, 7} ∪ {5} ∪ { }, {2, 7} ∪ {5} ∪ {4}, {2, 7} ∪ {5} ∪ {8}

{2, 7} ∪ {6} ∪ { }, {2, 7} ∪ {6} ∪ {4}, {2, 7} ∪ {6} ∪ {8}
Hence generating all members of a row r costs O(|r|w) = O(Card(r,≤ w)wf(h,w)) as

required. �
As to the proof of (a), if r = (2, 2, · · · , 2), then Y is the closure of the empty set, and

the feasbilitiy of r amounts to the satisfiability of Σ ∪Θ.

In practice most problems are “homogeneous” in that either Σ or Θ is empty. If Θ = ∅,
then only cases 1 to 4 apply and we speak of the implication n-algorithm. If Σ = ∅ then
only cases 5 to 7 apply and we speak of the noncover n-algorithm. Its dual3. version is
called transversal e-algorithm [10]. Applications, refinements and numerical evaluations of
the implication n-algorithm are work in progress.

6. Generating all Horn-models of fixed cardinality

The naive approach to k-element models is to retrieve (i.e. generate or count) from each
final row r all X ∈ r with |X| = k. Trouble is r may contain no such X and should have
been deleted long ago. Whether avoiding deletions in practice is worth the effort, depends
on the situation, but in order to get theoretic results the deletion of rows must be ruled
out. As seen, this is the task of Theorem 1. We additionally need the following fact:

(15) [10] Let r be a {0, 1, 2, n}-valued row. It costs time O(w2Card(r, k)) to generate, i.e.
write down in set notation, the sets X ∈ r with |X| = k.

Theorem 3. Let Σ ∪ Θ be a Horn h-formula on w variables, and k ≤ w a fixed integer.
Then the N many models with |X| ≤ k can be generated in time O(hw +Nh2w2).

3. Notice that X is a noncover of A∗
1, · · · , A∗

h if and only if its complementXc =W \X is a transversal in the
sense that Xc∩A∗

i 6= ∅ for all 1 ≤ i ≤ h. Albeit the noncover n-algorithm can thus generate transversals,
it pays to introduce the symbolism ee · · · e := “at least one 1” and a corresponding transversal e-algorithm
which produces the transversals “directly”, not as Xc. See also the last paragraph in Section 9.4.

74

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

Proof. Again we verify (a), (b) in Theorem 1 for f(h,w) := hw.

As to (a), one checks that r is extra feasible if and only if Y = ones(r) satisfies the
conditions stated in (14) and additionally |Y | ≤ k. (Notice that from |X| ≤ k and Y ⊆ X
follows |Y | ≤ k). The cost stays O(hw).

As to (b), by (15) it costs

O(w2Card(r, 1)) +O(w2Card(r, 2)) + · · ·+O(w2Card(r, k))

= O(w2Card(r,≤ k)) = O(Card(r,≤ k)wf(h,w))

to generate all (≤ k)-element members of r. �

Recall that Theorem 1 still holds when ≤ k is replaced by = k throughout. Trouble is
that in our “Horn situation” checking extra feasibility in condition (a) of Theorem 1 then
gets more expensive. Putting it bluntly, as opposed to the proof of Theorem 3 the existence
of a (Σ ∪Θ)-model X ∈ r with |X| = k does not imply that |Y | = k.

In the present Section 6 we only tackle a special case (Theorem 4) and postpone the
naked |X| = k to Section 8 which is dedicated to counting, not generating. The special
case is such that h ≤ w and k ≤ w − h. Furthermore we focus on noncovers rather than
arbitrary Horn fomulae.

Theorem 4. Given are h subsets A∗j of a w-set W . Assume that h ≤ w and fix a non-
negative integer k ≤ w − h. Then the N many k-element noncovers X of the set system
{A∗1, · · · , A∗h} can be generated in time O(hw +Nh2w2).

Observe that naively testing all k-element subsets of W costs O(
(
w
k

)
hw) = O(wk+2)

which other than O(Nh2w2) does not involve the possibly small number N .

Proof of Theorem 4. We shall verify (a),(b) for f(h,w) = hw in the (= k)-version of
Theorem 1. Again (b) holds as in the proof of Theorem 3.

It remains to show (a) i.e. that for any {0, 1, 2, n}-valued row r its extra feasibility can
be tested in time O(f(h,w)). Say the impositions of A∗j+1, A

∗
j+2, · · · , A∗h upon r are still

pending. If one of these sets is contained in ones(r), or if |ones(r)| > k, then r is not extra
feasible. Testing this costs O(hw) = O(f(h,w)). Conversely, suppose that |ones(r)| ≤ k
and that Si := A∗i \ ones(r) is nonempty for all j + 1 ≤ i ≤ h. Looking at cases 1 to 7 in
Section 5 one sees that with each imposition of a constraint the number of n-bubbles in a
son increases by at most one (in case 4 this number even decreases in many sons). It follows
that our row r contains at most j n-bubbles. Say w.l.o.g. there are exactly j of them. To
match previous notation, call them S1, · · · , Sj . Take any transversal T of {S1, · · · , Sh} with
|T | ≤ h. A minute’s reflection shows that X := W − T is a noncover of {A∗1, · · · , A∗h} and
that X ∈ r. In view of ones(r) ⊆ X and

|ones(r)| ≤ k ≤ w − h ≤ |X|

we can extend ones(r) to any k-element subset X0 of X. Then still X0 ∈ r, and X0 a fortiori
is a noncover of {A∗1, · · ·A∗h}. Hence r is extra feasible. �

75

M. Wild

7. The principle of exclusion when aimed at counting

Often one only needs to count rather than generate all models. Below Theorem 1 is accord-
ingly adapted. As in the proof of Theorem 1, we let R be the number of final rows produced
by the POE. Admittedly the only apparent theoretic upper bound of R is N but we stick to
R to emphasize that in practice R often is much smaller than N (see [10] for experiments
on random problems). Like Theorem 1, also Theorem 5 holds when ≤ k is replaced by ≥ k
or = k throughout.

Theorem 5. Let W be a w-set and let Pi ⊆ 2W be constraints. Fix k ∈ {1, 2, · · · , w}.
Suppose some “old” version of the principle of exclusion can be employed to produce disjoint
multivalued rows whose union is the set of all models. Further assume that for some function
f(h,w) which is at least linear in w, it holds that:

(a) For each row r it costs time O(f(h,w)) to decide whether r is extra feasible in the
sense of containing models X with |X| ≤ k.

(b) If r is a finalized row, then it costs O(wf(h,w)) to calculate Card(r,≤ k).

Then the old version can be adjusted to a new one that avoids deleting rows and calculates
the number N of models X ⊆ W with |X| ≤ k in time O(f(h,w) + Rhwf(h,w)). Here
R ≤ N is the number of final rows produced by the new algorithm.

Proof. The conditions in Theorem 5 are the same as in Theorem 1, except in (b) we
have O(1 · wf(h,w)) instead of O(Card(r,≤ k) · wf(h,w)). Since only (a) was used in
Theorem 1 to establish the cost of all impositions as O(Rhwf(h,w)), that’s also the correct
corresponding cost in Theorem 5. As to the cost of counting all (≤ k)-element models
from the final rows, by (b) in Theorem 5 it costs O(Rwf(h,w)) to compute the R numbers
Card(r,≤ k). Adding up these numbers (which in base 2 have length ≤ w) yields N and
costs O(Rw). Hence the total cost is

O(Rhwf(h,w)) +O(Rwf(h,w)) +O(Rw) = O(Rhwf(h,w)).

�

7.1 Space assessment

Concerning time assessment, Theorem 5 is the twin of Theorem 1. Here we show that for
the counting POE the required space can be reduced, in fact it doesn’t even depend on the
number N of models.

Rather than calculating the often large row collections Modi stepwise for i = 1 up to
i = h (as we did in Section 3 for ease of visualization), it is better to employ a well known
last in first out (LIFO) stack management. That is, each row rj carries a pointer PC(rj) (=
pending constraint), and throughout only the top row rj of the working stack is updated.
Specifically, if PC(rj) = k then constraint Pk is imposed upon rj . This triggers the (trivial
or proper) sons rj+1, rj+2, · · · . They are put on the working stack in place of rj , with
corresponding pointers PC set on k + 1. Whenever a row is finalized, i.e. Ph has been
imposed on it, it is moved from the working stack to the final stack. For instance, using
LIFO the imposition of h = 4 constraints Pi upon r1 = (2, 2, · · · , 2) may begin as follows:

76

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

PC(r1) = 1 → PC(r3) = 2

PC(r2) = 2
→

PC(r6) = 3

PC(r5) = 3

PC(r4) = 3

PC(r2) = 2

→

PC(r7) = 4

PC(r5) = 3

PC(r4) = 3

PC(r2) = 2

Figure 1.

If imposing P4 = Ph upon r7 results in (say) the proper sons ρ1, ρ2, ρ3, the latter are
the first members of the final stack, and one proceeds by imposing P3 upon r5.

The last working stack in Fig. 1 matches the rooted tree in Fig. 2 in that its four rows
bijectively correspond to the leaves. It is clear that a rooted tree with maximum down-
degree smax and h levels has at most (h− 1)(smax − 1) + h ≤ hsmax leaves.

Theorem 6. Suppose the principle of exclusion uses LIFO to count (as opposed to generate)
all subsets of a w-set that satisfy h properties Pi. Let smax be as in Section 4. Then the
whole algorithm requires space O(smaxhw).

Proof: As seen, using LIFO the working stack can increase to size at most hsmax. Since
each multivalued row in the working stack requires space O(w), and since the final stack
remains empty (final rows r are thrown away after recording |r|), the claim follows. �

The actual row manipulations performed by the principle of exclusion (e.g. the number
of deletions) are the same whether or not LIFO is used; what differs merely is the space
required. Of course the LIFO-stack management is also practical for generating models but
Theorem 6 has no twin in that context.

row 1

row 2 row 3

row 4 row 5 row 6

row 7

Figure 2.

77

M. Wild

8. Counting all Horn-models of fixed cardinality

We shall transfer Theorem 3 and Theorem 4 to the counting-framework as Theorem 7 and 8.
Additionally two more theorems are stated. As to the repeatedly used expression “provided
N > 0”, see the beginning of the proof of Theorem 1. Among the four counting-theorems
in this section the first is about (≤ k)-element models, and the other three about k-element
models. Besides Theorem 5 we shall need this twin of (15):

(16) [10] Let r be a {0, 1, 2, n}-valued row. It costs time O(kw3) to compute the k numbers
Card(r, 1), · · · , Card(r, k).

In Theorem 7, 8, 10 we let again R ≤ N be the number of final rows produced by the Horn
n-algorithm.

Theorem 7. Given is a Horn h-formula Σ ∪Θ on w variables, and a fixed integer k ≤ w.
Then the N many models X with |X| ≤ k can be counted (provided N > 0) in time
O(Rkh2w3) = O(Nkh2w3).

Proof. It suffices to verify (a), (b) in Theorem 5 for f(h,w) := khw2, because then N
can be calculated in time

O(Rhwf(h,w)) = O(Rk3h2w2).

In the proof of Theorem 3 we saw that the extra feasibility of a row r can be checked in
time O(hw) = O(f(h,w)), and so condition (a) holds. As to (b), by (16) the calculation of
Card(r,≤ k) = Card(r, 1) + · · ·+ Card(r, k) costs O(kw3) = O(wf(h,w)). �

Theorem 8. Given are h subsets A∗j of a w-set W such that h ≤ w. Fix a non-negative in-
teger k ≤ w−h. Then the number N of k-element noncovers of the set system {A∗1, · · · , A∗h}
can (provided N > 0) be calculated in time O(Rkh2w3) = O(Nw6).

Proof. If we manage to verify (a), (b) for f(h,w) := khw2, in the (= k)-version of The-
orem 5, the O(Rhwf(h,w)) = O(Rkh2w3) claim will again follow. We have (a) because of
O(hw) = O(f(h,w)). As to (b), by (16) calcualting Card(r, k) costs O(kw3) = O(wf(h,w));
unfortunately Card(r, k) isn’t cheaper than Card(r,≤ k) before. �

A natural idea is to calculate the number N of models X with |X| = k as N = N ′−N ′′,
where N ′ and N ′′ are the easier numbers of models of cardinality ≤ k and ≤ (k − 1)
respectively. Unfortunately, albeit unlikely in practice, N ′ and N ′′ may grow exponentially
with respect to N . Nevertheless, the idea can be saved in this form:

Theorem 9. Given is a Horn h-formula on w variables and an integer k ≤ w. Suppose it
is known that the number of k∗-element models increases as k∗ increases from 1 to k. Then
the N models X with |X| = k can (provided N > 0) be counted in time O(Nk2h2w3) =
O(Nh2w5).

Proof. Let N ′ and N ′′ be as above. Because of our assumption about increasing k∗-
levels, we have N ′ ≤ Nk and N ′′ ≤ N(k − 1). From N = N ′ − N ′′ and Theorem 7 hence
follows that calculating N costs O(N ′kh2w3) +O(N ′′kh2w3) = O((Nk)kh2w3). �

78

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

1 2 3 4 5 6 7 8 9 10 11 12 13

r = 0 n1 n1 n1 n2 n2 1 2 n3 n3 n3 n3 1

r0 = 0 n n 1 1 0 1 1 0 2 2 1 1

Our last theorem confronts the naked |X| = k condition. To prepare for it, consider
this {0, 1, 2, n}-valued row r of length thirteen:

Let’s calculate the number N0 of X ∈ r that satisfy neither of the implications {4, 5} →
{9} and {5, 7, 8} → {1}, nor the negative clause {4, 8, 12}∗, and that have cardinality
|X| 6= 8. The failure of the three formulae forces the boldface entries in row r0; they in
turn trigger all the further differences between r0 and r. Since |ones(r0)| = 6 the number
of X ∈ r0 with |X| = 8 is the number of ways to place exactly two 1’s upon nn22. Ad
hoc this number evaluates to 5, and so N0 = |r0| − 5 = 7. Notice that the argument above
necessitates unit implications, i.e. having singleton conclusions.

Theorem 10. Given is a Horn h-formula Σ ∪ Θ on w variables such that Σ consists of
unit implications. For any integer k ≤ w the N many models X with |X| = k can (provided
N > 0) be counted in time O(R2hhw4k) = O(N2hhw5).

Since each implication A→ B can be split into |B| unit implications, Theorem 10 really
handles arbitrary sets of Horn formulae. The factor 2h doesn’t look so ugly if one recalls
that naively checking all k-element sets costs O(wk+2). For instance, letting h = αw (α ≥ 0
fixed) and k = w

β (β ≥ 1 fixed) one has 2h/wk+2 → 0 as w →∞.

Proof of Theorem 10. We put f(h,w) = k2hw3 and verify (a), (b) in the (= k)-version
of Theorem 5. The claim then follows from O(Rhwf(h,w)) = O(R2hhw4k). As to (b), it
is satisfied since by (16) calculating Card(r, k) costs O(kw3) = O(wf(h,w)).

As to (a), let aj be the property of any Y ∈ r that it satisfies the j-th component formula
in Σ ∪ Θ (1 ≤ j ≤ h). Further let ah+1 be the property that |Y | = k. If N(a1, · · · , ah+1)
is the number of Y ∈ r satisfying all properties, then r is extra feasible if and only if
N(a1, · · · , ah+1) > 0. The latter number by inclusion-exclusion is

N(a1, · · · , ah+1) = |r| −N(a1)− · · · −N(ah+1) +N(a1, a2) + · · ·+N(ah, ah+1)

−N(a1, a2, a3)− · · · ±N(a1, a2, · · · , ah+1)

where e.g. N(a3, ah+1) denotes the number of Y ∈ r that violate properties a3 and ah+1.
As seen in the example, each summand N0 involving ah+1 can be calculated as N0 = |r0| −
Card(r0, k) for some immediately derived row r0. If ah+1 is not occuring, the calculation
boils down to N0 = |r0|. By (16) computing Card(r0, k) costs O(kw3), and so calculating
N(a1, · · · , ah+1) costs O(2hkw3) = O(f(h,w)). �

Using again f(h,w) = k2hw3 but Theorem 1 instead of Theorem 5 one immediately
derives that O(Nhwf(h,w)) = O(N2hhw5) is the cost when “counting” is substituted by
“generating” in Theorem 10.

9. Positioning the principle of exclusion

It is shown in [6] that the problem of generating all models of a given Boolean CNF ex-
pression is output-polynomial in the case of Horn, anti-Horn, exclusive-or, and 2-SAT,

79

M. Wild

and cannot be generated in output-polynomial time in all other cases (unless, of course,
P = NP). This is all good and well, but in the remainder we focus on how one can cope
“in practice”, be it one of the four good cases or not, be it POE or other options.

As seen, the POE is concerned with the models of Boolean functions b : {0, 1}w → {0, 1}
when b is given as a conjunction of h suitable subformulae. Usually we employ set theoretic
terminology and thus speak of h constraints Pi ⊆ 2W . More about “suitable” in Section 9.4.
The forthcoming comparison of POE with other methods is preliminary and is cut along
these basic tasks concerning NP-hard problems:

• Count all models or all k-element models

• Generate all models

• Find one best (or all best) models with respect to a target function f(x)

9.1 Counting all models or all k-element models

The POE struggles to compete with binary decision diagrams (BDD), now incorporated
in Mathematica 8.0, when it comes to counting all models of the Boolean function b :
{0, 1}w → {0, 1}. In brief, the BDD associated to b(x) is a certain directed graph with
among other nodes a root of indegree zero and two endnodes True and False of outdegree
zero. Except for the endnodes all nodes have exactly two outgoing arcs labelled 0 and 1.
Any bitstring x ∈ {0, 1}w triggers an obvious directed path that starts at the root and ends
at either True or False, depending on whether b(x) = 1 or b(x) = 0. Starting at the bottom
of the BDD, it is well known and easy to recursively compute the exact probability p that
a random bitstring x ∈ {0, 1}w triggers a path that ends at True. It follows that |Modh|
can be calculated with lightning speed as p2w. Faster still is it to decide whether or not
some Boolean function is merely satisfiable. (Something good comes out of that for POE.
Namely, a multivalued row r often readily spawns a Boolean function br(x) such that the
feasibility of r amounts to the satisfiability of br(x). This needs further exploration.)

The BDD approach nevertheless looses out on POE regarding counting models of fixed
cardinality k (concerning the relevance of this task, see [3]). The reason is that e.g. setting
up a Boolean function β : {0, 1}25 → {0, 1} which is True exactly on the bitstrings of weight
k = 12 already causes a memory complaint in Mathematica 8.0. Let alone building a BDD
for the desired compound Boolean function b(x) ∧ β(x); more details in [10].

9.2 Generating all models

Like POE both the BDD and the 0, 1 integer programming (01IP) framework are fit to yield
Modh in LIFO fashion (thus no space problem) and as a disjoint union of {0, 1, 2}-valued
rows. But the POE, due to its use of additional symbols (say n in the present article),
is more flexible and tends to produce much fewer multivalued rows. Interestingly, in the
case of a BDD the (albeit many) {0, 1, 2}-valued rows can be obtained without deletions [1,
p.22]. Different from Theorem 1 and 5 this doesn’t yield theoretic results since the cost of
constructing the BDD itself is usually impossible to assess; a notable exception is [2].

Returning to the search trees of 01IP and POE, their main difference is the cause of
branching in the first place. While 01IP-branching is due to setting variables xi to 0 or

80

Compactly Generating All Satisfying Truth Assignments of a Horn Formula

1, the POE-branching is triggered by imposing new constraints upon multivalued rows. In
this regard the POE bonds more with constraint programming (CP) than with BDD or
01IP. While the POE used so far had all variables xi in {0, 1}, in constraint satisfaction
problems [5, ch.12] the xi’s can assume values from larger but finite domains Di (1 ≤ i ≤ w).
However, there is no reason to stick with {0, 1} in future application of POE. A more telling
difference between CP and POE is this: Upon applying so called constraint propagation the
domains shrink to D′i ⊆ Di (if some Di = ∅, the problem is infeasible). Different from
“POE constraint propagation” which concisely yields Modh, CP constraint propagation
only delivers Modh as an (using universal algebra talk) unknown subdirect product of
D′1 × · · · ×D′w.

9.3 Finding one best or all best models

If only one best model (w.r. to f(x)) needs to be found, then all of Modh needs to be filtered
anyway, and so the subdirect product complaint evaporates. Besides explicit enumeration
and checking of models, the only known techniques to solve a NP-hard optimization problem
exactly are branch and bound (=implicite enumeration) or dynamic programming. The
POE in optimization mode falls under the branch and bound hat, along with 01IP and CP.
What we called (weakly) feasible is an essential notion in any branch and bound algorithm.
It is illustrative to contrast our weak feasibility (Section 4) with the CP concept of arc
consistency [5]. Both concepts refer to an individual constraint, but CP is about existence
of variables in D′i while POE is about a whole multivalued row.

When it comes to the approximate solution of NP-hard optimization problems, other
techniques enter the stage: Simulated annealing, tabu search, genetic algorithms. Genetic
algorithms bear a vague resemblance to POE in that a whole “population” of models is kept
alive, but otherwise they differ a lot from POE. Of course also branch and bound can be
switched to approximation mode: If f(x) needs to be maximized, choose t ∈ R and apply
branch and bound to either find some x0 with f(x0) ≥ t, or to conclude that there are
no such x0. It has been pointed out that POE branch and bound easily yields all x0 with
f(x0) ≥ t, whereas 01IP-branch and bound is hard pressed to do the same.

9.4 Two final remarks

First, the POE can also be applied to disjunctions as opposed to conjunctions of properties.
Specifically, in order to find the cardinality N (not the members themselves) of the set
P1 ∪ · · · ∪ Ph, apply the standard POE to the negated constraints Pci and get N = 2w −
|Pc1 ∩ · · ·∩Pch|. For instance, the cardinality of a simplicial complex can thus be determined
from its facets.

Second, what “suitable subformulae” meant at the beginning of Section 9, is merely
that they allow a POE implementation that is efficient in practice, whether or not that
can be backed theoretically. For instance in [9] the suitable subformulae nicely match the
stars of a graph (all edges incident with a vertex form a star) but a theoretic assessment of
the resulting algorithm eluded the author. If the suitable subformulae are negative clauses
or implications, then theory (present article) and good performance in practice (see [10]
and some forthcoming work comparing POE with Ganter’s NEXTCLOSURE algorithm)
go hand in hand.

81

M. Wild

Recall that every Boolean function is equivalent to a conjunction of clauses, but different
from Section 2 such a clause can have more than one positive literal; say a1 ∨ a2 ∨ a3 ∨
a4 ∨ a5. Nevertheless, being equivalent to (a1 ∧ a2) → (a3 ∨ a4 ∨ a5), we may view it as
an (∧,∨)-implication, and observe that its models are contained in the disjoint multivalued
rows (n, n, 2, 2, 2) and (1, 1, e, e, e). (The dual e-symbolism was explained in Section 6.)
Simultaneous occurrence of n, e complicates a theoretic treatment, yet the resulting POE
implementation performs well in practice (work in progress).

Acknowledgement

I am grateful to Egon Balas for insightful comments, and to an anonymous referee for a
quality of constructive criticism that I haven’t experienced in a long time.

References

[1] H.R. Andersen. An introduction to Binary Decision Diagrams. Lecture Notes IT Uni-
versity Copenhagen 1999. Remark: We also recommend Donald Knuth’s account of
BDD’s in his forthcoming Vol.4 of The Art of computer programming.

[2] M. Behle. On threshold BDD’s and the optimal variable ordering. J. Comb. Optim.
16:107–118, 2008.

[3] M. Bruglieri, M. Ehrgott, H.W. Hamacher, and F. Maffioli. An annotated bibliography
of combinatorial optimization problems with fixed cardinality constraints. Disc. Appl.
Math. 154:1344–1357, 2006.

[4] K. Bertet and B. Monjardet. The multiple facets of the canoncial direct unit implica-
tional base. Theoretical Computer Science 411:2155–2166, 2010.

[5] T. Frühwirth and S. Abdennadher. Essentials of constraint programming. Springer
Verlag, 2003.

[6] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM J. Comput.
28:152–163, 1998.

[7] H. Mannila and K.J. Räihä. The design of relational databases. Addison-Wesley, 1992.

[8] U. Schöning and R. Schuler. Renamable Horn-clauses and unit resolution, Tech. Report,
University Koblenz, 1989.

[9] M. Wild. Generating all cycles, chordless cycles, and Hamiltonian cycles with the
principle of exclusion. Journal of Discrete Algorithms 6:93–102, 2008.

[10] M. Wild. Counting or producing all fixed cardinality transversals: A case study of BDD
versus POE. Submitted. A preliminary version with slightly different title is available
in the arxiv.

[11] M. Wild. Computing the output distribution and selection probabilities of a stack filter
from the DNF of its positive Boolean function. Submitted, available in the arxiv.

82

	Introduction
	On Horn formulae and closure systems
	The Horn n-algorithm - first serving
	The principle of exclusion aimed at generating
	Time assessment

	The Horn n-algorithm - second serving
	Generating all Horn-models of fixed cardinality
	The principle of exclusion when aimed at counting
	Space assessment

	Counting all Horn-models of fixed cardinality
	Positioning the principle of exclusion
	Counting all models or all k-element models
	Generating all models
	Finding one best or all best models
	Two final remarks

