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Abstract

Moving a robot between two configurations without making a collision is of high importance
in planning problems. Sampling-based planners have gained popularity due to their acceptable
performance in practical situations. This body of work introduces the notion of a risk function
that is provided using the Support Vector Machine (SVM) algorithm to find safe configurations
in a sampled configuration space. A configuration is called safe if it is placed at maximum dis-
tance from surrounding obstacle samples. Compared to previous solutions, this function is less
sensitive to a selected sampling method and resolution. The proposed function is first used as a
repulsive potential field in a local SVM-based planner. Afterwards, a global planner using the
notion of the risk function is suggested to address some of the shortcomings of the suggested
local planner. The proposed global planner is able to solve a problem with fewer number of
milestones and less number of referrals to the collision detection module in comparison to the
classical Probabilistic Roadmap Planner (PRM). The two proposed methods are evaluated in
both simulated and experimental environments and the results are reported.

Keywords: Motion Planning. Artificial Potential Field, Narrow Passages, Probabilistic Roadmap
Planner, Support Vector Machine, Sampling-based Motion Planning, Obstacle-based Motion
Planning
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The increasing application of robotic systems, has raised new challenges and introduced new
fields of study. Mechanical design, control, sensors, interface, and planning are some of the is-
sues in designing a robotic system. Planning is a process that “convert high-level specifications
of tasks from humans into low-level description of how to move” |211. The very first task in
this conversion is composing robot movements as a number of configurations. Assuming two
initial and goal configurations are specified, the robot must be able to start from the initial and
reach the goal configuration in an environment safely. Path planning algorithms are intended
to solve this kind of problem in different circumstances.

Path planning is the task of finding a collision-free path, given geometry of a robot and envi-
ronment’s obstacles. The Piano mover's problem is the classic example of path planning. The
problem is defined as determining a way to carry a piano between two rooms without hitting
any articles. Even though this seems easy, solving this problem is computationally difficult
[34). Complex robot structures such as those of high degree of freedom manipulators, com-
plex obstacles in the environment, capability of working in real-time in dynamic environments,
etc., make the problem even more difficult. “Maintenance of cooling pipes in a nuclear plant,
point-to-point welding in car assembly, and cleaning of airplane fuselages” are some of the
applications in which a reliable planner is able to facilitate robot programming task 114.

This work investigates the problem of finding a path and suggests a solution for high degrees
freedom robots in complex static environments. The notion of static environment means that
the shape and position of obstacles are known. This chapter starts with defining the problem
(Section 1.2) followed by reviewing previous works (Section 1.3). Section 1.4 lays down the
objectives of this body of work. Section 1.5 summarizes the main contributions of this work.
Finally Section 1.6 plots the thesis outline.
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1.2 Problem Definition

Let "W describe the workspace which is a subset of R} or 723. The set O refers to a subset of fW
occupied by obstacles and Q composes the robot’s configuration space with dimensions equal
to the number of controllable degrees of freedom. In the configuration space, a robot separated
from its complex structure is represented by a point. 1fJI(go) ¢ "W represents the robot at the
configuration g0 e Q in the workspace then Qdd = {gq\J/I(q) DO (0} describes the obstacles
in the configuration space. The complement of the set Is Qtne = Q - Q,hu which contains
all collision-free configurations that can be used for generating a valid path.

Now, given O, initial (<,,,) and goal (gKHi) configurations, the solution is defined as follows,

—\Gpui ===mgp A (i-1)

in which gr) = qint and gHl = gKa. This set is a feasible solution if all configurations in
V are collision-free and moving between two subsequent configurations without making any
collision is a trivial task.

The objective of this body of work is to develop a planner for high degree of freedom robotic
manipulators. This planner is intended to find a path in the configuration space so as a manip-
ulator can move between two given configurations safely. Speed and generality are two of the
features that this planner is expected to achieve. Although the planner is intended to be fast,
working in real-time is not required.

1.3 Literature Review

There are many algorithms that tackle this problem from different perspectives. These algo-
rithms can be broadly categorized into three classes based on their completeness. The three
class of planners are Exact, Sampling-Based, and Local planners. This section discusses the
major contributions in each category and talks about their advantages and shortcomings.

13.1 Exact Planners

Most of the planners in this category are of theoretical interest |[34| and not applicable to real
situations. A common characteristic of these planners is their need for an exact and explicit rep-
resentation of obstacles in the robot’s configuration space. Solving problem in the configuration
space is attractive since any complex robot would be described by a point in its configuration
space. In order to find an explicit knowledge about the configuration space, some researchers
looked at the problem geometrically and analytically. They have proposed descriptive con-
straints to determine free configuration regions in the configuration space [24, 271 Assuming
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Figure 1.2: Shortest Path Roadmap 12 11

complete knowledge of the obstacles is provided in the configuration space, different solutions
have been suggested.

The first technique in this category is Cell Decomposition. The main idea behind the cell
decomposition-based techniques is to divide the robot’s configuration space into a number
of cells in a way that planning in each cell is trivial [211 These cells and their boundaries
are stored as nodes of a graph. Each boundary node is connected to all adjacent cell nodes.
Therefore, the path planning problem turns into a problem of searching for a path in a graph.
Vertical Cell Decomposition method constructs a number of cells by sweeping the space and
determining a boundary at each obstacle vertex. In this method, the graph nodes are placed at
the center of each cell and on each boundary |8| (Fig. 1.1).

Shortest Path Roadmap (also called Reduced Visibility Graph) puts nodes on each obstacle
vertex with the interior angle less than n. Next, each pair of the nodes that are mutually visible
to each other will be connected together. To answer a query, the initial and goal configuration
points find their way to their nearest nodes and the rest of the path is found by searching the
graph 1341(Fig. 1.2).
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Figure 1.3: Three possible situations to generate pieces with maximum distance |21 |.

Another idea known as Maximum-clearance Roadmap or Generalized Voronoi Diagram tries
to keep the robot in maximum distance from the obstacles. In this method a roadmap is created
based on three types of paths which are shown in Fig. 1.3 |28|.

All these methods are complete which means that they are able to report failure or success.
Reporting failure is the ability of a planner to find out there is no solution for the problem in
finite time. However, exact mapping of the workspace obstacles into the configuration space
requires expensive computations and is memory consuming |9|. All complete planners have
exponential time complexity in the number of degrees of freedom of the robot |4, 12,29|. This
complexity restricts the application of exact planners and limit their use to robots with lower
degrees of freedom.

13.2 Sampling-based Planners

The inevitable complexity of exact planners turned the researcher's attention towards methods
that embed weaker notions of completeness 114). Unlike exact planners, these algorithms were
mostly designed on practical interests rather than theoretical ones. Avoiding a continuous con-
figuration space, a path planning problem is solvable in a discrete configuration space (sampled
configuration space). This approach results in a weaker completeness known as probabilistic
completeness. A method is probabilistically complete if approaching the number of samples
to infinity, eventually, leads to finding the answer in a finite time, if any exists. Due to this fact,
these planners, unlike exact planners, are not able to report failure.

All methods in this category have two fundamental components in common, namely collision
detection and local planner. The efficiency of these components directly affect the efficiency of
a method. The collision detection module is the bridge between the workspace and the robot’s
configuration space. More precisely, this module tests a given configuration against collision
(refer to [211to find out about different collision detection techniques). Using this module, an
algorithm is able to determine whether a configuration sample point is in the free space or an
obstacle region.

The second component, local planner, is responsible for finding a local collision-free path
between two configurations typically close together. As it will be explained later, methods in
this category build a graph composed of sampled configuration points, as graph nodes, and
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a number of connecting edges. A query can be answered if a path between the requested
configurations can be found in the graph. In this graph, there is an edge between two nodes
if the local planner is able to connect them without making a collision. The problem is that
storing this local path information for each edge is memory consuming. The better approach
is to use local planners that are able to reproduce their outcome. Thus, no path is needed to be
stored. Due to this fact, local planners are typically as simple as a straight line planner. Even
though more complicated planners can be used to solve more challenging situations, increasing
the time complexity of the local planner module increases the method’s time complexity.

Depending on the approach taken toward capturing configuration space connectivity, sampling-
based methods are divided into two classes; multi-query and single-query. These two classes
are explained in the following.

Multi-Query Planners

A class of sampling-based planners known as multi-query planners, try to capture the con-
nectivity of the entire configuration space at once. As the name suggests, these methods are
suitable for answering multiple queries over one environment. They spend a great portion of
their execution time on exploring the configuration space and capturing its connectivity. Once
this phase is finished, any query can be answered quickly in hundredths of a second using a
graph search algorithm.

Probabilistic Roadmap Planner (PRM) is a well-known multi-query planner that is able to
solve challenging problems even for a high degree of freedom robot 114|. The planner starts
with an empty graph Q - {'V,£}, known as roadmap. Set fV is composed of the graph nodes,
called milestones, and £ stores edge information. This graph is expanded at each iteration by
adding a randomly picked sample from the free configuration space to *V. Here, the collision
detection module is called to assess whether a sampled configuration point is collision-free.
Next, a local planner tests all possible connections between the newly added node and any
neighboring milestones in *V. The neighboring distance is an adjustable parameter set by the
operator. Any successful connection is represented by an edge in £. The roadmap expansion
procedure continues until a predetermined number of nodes is reached. This is the first phase
of the method, called the learning phase. In the next phase which is called the query phase, the
method searches for an answer to a requested query. At the beginning, the local planner tries to
connect the initial and the goal configurations to the roadmap. Then, a graph search algorithm
is employed to find a path based on the verified connections stored in £. The configuration
points involved in the resulting path along two subsequent milestones are reproduced using the
local planner to compose the set V as a final answer.

Even though the PRM is a powerful method, there are many situations in which the PRM is
not able to find an answer. These situations mostly contain regions with a small volume of
free space, known as narrow passages. Since the PRM method selects samples randomly, the
probability of picking a sample from a small volume of a narrow passage is low. As a result,
simple local planners cannot preserve roadmap connectivity via the few number of milestones
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Figure 1.4: Random reflection at configuration space obstacles to connect roadmap compo-
nents [9.

in a narrow passage. Therefore, instead of having one connected component, the roadmap will
be composed of separate connected components, each isolated in one part of the configuration
space. The method suggested in |9] is intended to improve the roadmap connectivity by taking
random walks in the configuration space. This method starts exploring from one connected
component in a random direction and looks for any milestone from the other components. If
an obstacle is met, a new node is generated and walking continues towards another random
direction (Fig. 1.4). This process continues until two components are unified.

There are other methods intended to improve the PRM by improving the set of milestones.
One of the suggested ideas is to oversample some specific regions in order to increase the
number of milestones in those regions. The fewer number of milestones in a region is the
main characteristic of that region which should be oversampled. This characteristic can be
determined in a roadmap in many ways; these include a milestone with a few number of edges
and a milestone with a large Voronoi region. A Voronoi region of a milestone is the set of
all points closer to that milestone than any other milestones. The objection over this method
is the considerable number of referrals to the collision detection module. Moreover, a greater
number of milestones requires a greater number of connections. As reported in 1321 a large
portion of the time of the PRM algorithm is spent on making connections. Therefore, a large
number of milestones is a threat to the method's efficiency. Considering this reason several
methods were proposed which only retained well-placed milestones. Artificial Potential Biased
PRM (ABPRM) employs the artificial potential fields idea, explained in Section 1.3.3, to bias
the distribution of the nodes in narrow passages 111. In this method, the workspace potential
values calculated for each point of the robot in a specific configuration are combined to define
a potential field over the configuration space.

The configuration space obstacles can help in obtaining appropriate milestone to improve a
roadmap connectivity. Picking samples close to the obstacles, increases the number of mile-
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Figure 1.5 Milestones generated using Gaussian (left) and Bridge-test (right) samplers 110].

Figure 1.6: Finding obstacle boundary samples in OBPRM [3|.

stones in a narrow passage. A Gaussian Sampler samples the configuration space in pairs. In
order to have a pair, for any picked-up sample, a second sample distanced according to a nor-
mal (Gaussian) distribution is selected. The collision-free sample will be stored as a milestone
if and only if the other sample in the pair is in collision |5] (Fig. 1.5). Similar to the Gaussian
sampler, a Bridge-Test sampler obtains paired samples distanced based on a Gaussian distribu-
tion 110). The mid-sample of a pair is considered a milestone, if both samples in a pair are in
collision and their mid sample is collision-free (Fig. 15). The outcomes of these two methods
are strongly dependent on the selected value for the standard deviation of the Gaussian distri-
bution 1131 The proper value for this parameter depends on the configuration space properties
which cannot be easily calculated. Unlike previous methods, Obstacle-Based PRM (OBPRM)
13,21tries to distribute the milestones over the obstacle boundaries. This method begins with a
sample selected from an obstacle region and emits multiple rays with determined angles (Fig.
1.6). Next, a binary search is employed to find an obstacle boundary along each ray. These
samples, picked up from the obstacle boundaries, compose the set of milestones. As explained
earlier, milestones close to the obstacle boundaries enhances the connectivity of the roadmap
in narrow passages. However, putting nodes close to obstacles or in touching positions is
not suitable for all applications. The reason is that getting closer to an obstacle increases the
probability of the collision and consequently reduces the safety. None of the aforementioned
methods are able to set a minimum distance for milestones from the obstacles.
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To improve the PRM idea, dilating and retraction based methods are used to modify the config-
uration space 111,23, 311 They shrink the obstacles and the robot in the workspace to widen
narrow passages in the configuration space. This modification lessens the difficulty caused
by the small volume of a narrow passage. Thus a uniform sampler can be used to generate
milestones in the widened configuration space. In order to use the same set of milestones
in the original configuration space, these methods require a post-processing phase to fix the
milestones positioned on the actual obstacles. One idea is to correct all misplaced milestones.
However, those milestones deeply buried into obstacles are a bottleneck for the performance
of the algorithm. An alternative idea is to compute a penetration depth for each milestone but
at the expense of complex geometry operations. Implementing these operations is difficult in
higher dimensions.

Single-Query Planners

In contrast to multi-query planners, single-query planners only discover part of the configura-
tion space related to the requested query. They are popular due to their ability to find a solution
quickly |35|. This feature makes these methods suitable for dynamic environments. Unlike
the multi-query planner’s roadmap, these methods grow one or two tree graphs to explore the
configuration space. These trees are expanded at each iteration until a path between the initial
and the goal configurations is found. The expansion procedure can be as simple as choosing a
random node and performing expansion towards a random direction (12|. However, in order to
bias the expansion towards unexplored regions different heuristics are suggested; these include
expanding the node with fewest number of edges, largest Voronoi region, or the node that is
the closet node to the goal configuration.

Rapidly-exploring Random Trees (RRT) is one of the successful proposed methods |20]|. This
method starts the expansion by generating a random configuration point and finding the closest
node of the tree to that configuration. Next, the algorithm searches for an input from the input
space that minimizes the distance between the selected node and the random configuration.
Finally using this input, the tree will be expanded for one step from the selected node. Since
nodes with larger Voronoi regions have higher probability to be selected for expansion, this
expansion is biased towards unexplored regions 118 1(Fig. 1.7). The RRT-Connect method only
differs from this method in the expansion step size 1181 It expands the tree from a selected
node until it reaches an obstacle.

Besides different heuristics, some methods tried to reduce the total execution time. The Lazy
Collision-Checking is a technique that delays the process of checking an edge for collisions un-
til that edge is selected as part of the final path |32|. According to the observations reported in
|32], a short connection between two collision-free configurations is collision-free with a high
probability. There are two other reasons that support this idea. First, most of the connections
involved in making a tree do not contribute in the final path. Second, testing collision-free
connections are more expensive than the others. Therefore, this intentional delay is able to
improve the execution time in some scenarios.
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Figure 1.7: Rapidly exploring tree is biased toward exploring large Voronio Regions 1181

133 Other Planners

There are many other methods that are neither complete nor probabilistically complete. These
methods are mostly local, i.e. they decide about the next step based on the current state of a
robot. Even though they are able to work in real-time, they suffer from the problem known
as local minima. The Local minima are situations that lead to a stable positioning of a robot
before reaching to the desired goal position.

Artificial Potential Field (APF) method creates two attractive and repulsive potential fields 1151
The former is sourced from the goal configuration and the latter from the obstacles. Superim-
posing these potentials leads into a potential field that has its minimum at the goal configuration
and high potentials on the obstacle regions. Therefore, seeking the negated gradient of this po-
tential field at each configuration leads the robot towards the goal configuration and keeps it
away from the obstacles.

As mentioned before, the main drawback of these methods is related to situations in which the
robot is trapped into a local minimum. Since there is no systematic way to escape from these
situations |4|, some methods attempted to create local-minimum free potential fields. These
methods are based on harmonic potential fields and theories discussed in fluid mechanics [6,
16,17,3()|. However, these methods require complex calculations and have not been applied to
higher degrees of freedom 114|. Introducing randomness is an alternative solution for escaping
local minima. Randomized Path Planner (RPP) and Virtual Spring Method tackled the problem
from this perspective |4,251

Support Vector Machine-Based Methods

The Support Vector Machines (SVM) method, which is used as a foundation in this body of
work, was originally proposed by Vapnik to solve classification and regression analysis prob-
lems 1371 This technique has been widely used in a variety of applications such as image
recognition and bioinformatics |7|. SVM has been used previously for mobile robot path plan-
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ning in cluttered environments |26, 331 These methods divide obstacles into two classes and
utilize classification to find a separation boundary between the two classes of data. Since the
SVM method aims to maximizes the margin between the two classes, this boundary is a suit-
able nominee as a path for the mobile robot. To the best of our knowledge, the only proposed
methods based on the SVM in the field of path planning are those listed above. There are other
methods in the field of robotics and mobile robots that utilized the SVM for data fusion and
coping with the environment uncertainties [19,22,36|. However, these methods are not related
to the context of this body of work and so are not explained here.

1.4 Objectives

Path planning is one of the basic components in robotic systems and to this date many different
methods have been proposed to solve this problem. Each method is intended to solve a certain
problem and as such performs poorly in more general problems. This work considers planners
that work in the configuration space. Due to the high number of dimensions in the configuration
space and the lack of exact knowledge about its topology, practical planners work on discrete
(sampled) configuration space.

The objective of this work is to develop a planner for robotic manipulators with high degrees
of freedom. The planner is expected to have the advantage of both sample-based and local
planners in term of completeness and speed. The planner is intended for the environments in
which the safety of operation is of high priority. While the planner is expected to be fast, it is
not required to operate in real-time nor in a dynamic environment.

To achieve these objectives, one plausible idea is to estimate obstacle regions based on obstacle
samples in the configuration space. This estimation can be the outcome of the SVM method
and is used towards defining a function over the configuration space. This function can then
be employed to obtain safe configurations. Using the maximal margin concept in the SVM
algorithm, the proposed function, called a Risk Function, can be defined such that it obtains
safe configurations with maximum distance from surrounding obstacles. This feature becomes
especially important when dealing with narrow passages. It is envisioned that the proposed
idea can be embedded in different planners to improve their performance.

1.5 Contributions

The contributions of this body of work are summarized as follows,

» To propose a function in the configuration space called a risk function using configu-
ration space obstacle samples. The value of a risk function for each configuration can
be interpreted as the risk of collision corresponding to that configuration. The proposed



Chapter 1. Introduction and Literature Review 11

function is expected to have its local minimum at maximum distance from surrounding
obstacle samples.

» To propose a local planner based on a risk function that finds a solution in a sampled
configuration space for high degree of freedom manipulator.

» To propose a multi-query sampling based planner that employs a risk function to find
a set of well-placed milestones. This planner is able to capture the connectivity of the
configuration space even in an environment with narrow passages with fewer number of
referral to the collision detection module.

1.6 Thesis Outline

The rest of this thesis is organized in four chapters. Chapter 2 presents a local planner that
finds a solution in the configuration space using a risk function. The obstacle sampling method,
risk function formulation, and robot guidance using the proposed local planner are discussed.
Chapter 3 presents another planner based on PRM. The proposed planner takes advantage of a
risk function defined using the SVM algorithm. In this chapter, a different obstacle sampling
approach is discussed. Also, a procedure for finding milestones and making a roadmap is ex-
plained. Chapter 4 discusses different case studies and contains implementation notes. Finally,
Chapter 5 concludes the thesis and suggests future directions.
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Chapter 2

Local Support Vector Machine-based
Planner

Path planning using local planners has gained popularity due to the ability of these methods to
find solutions quickly and effectively. Because of this capability, local planners are widely used
in mobile robots’ real-time planning. Potential field-based methods are a group of successful
local planners for mobile robots |7, 8, 15, 21,24]. In the field of manipulators, this approach
was first exercised by Khatib 1111 In this approach a potential field composed of attractive
and repulsive potentials is defined over the work or configuration free-space. Generally, a goal
region is the source of an attractive field and obstacles create repulsive potentials. Seeking
minimum of the potential field at each point, attracts a robot towards the goal position and
keeps it away from obstacles.

The main drawback of potential field-based methods is the problem known as local minimum.
Local minimum is a situation in which manipulator becomes stable before reaching the goal
configuration. In this situation there is an equilibrium between influential forces. Thus having
no net force to move the manipulator, it becomes trapped in that situation (Fig. 2.1). To solve
this problem, some local minimum-free potential fields have been suggested |5, 13, 14, 181
However, their application is limited due to the complexity of the required calculations 110] or
restrictions over the shape of obstacles 111

A potential field can be defined over either the workspace or configuration space. Within the
workspace, a potential field can affect the end-effector and some control points selected on the
manipulator links |3, 11, 12, 16|. These control points either have fixed positions or are se-
lected dynamically as the closest point of each link to the obstacles. The manipulator’s forward
dynamics are used to simulate the manipulator’s reaction to the influence of the artificial po-
tential field. Therefore, the combination of the forces exerted on the manipulator, determines
the manipulator’s next configuration. In robot manipulator, the problem of local minimum may
appear as structural local minimum. This situation happens when the net forces on different
joints become zero before reaching the goal position.

15
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Figure 2.1: Two examples of local minimum situation |2()|.

A potential field can be defined over the configuration space as well. To achieve this, two
possible solutions exist. The first solution needs complete knowledge of the configuration
space obstacles which is not always a feasible assumption 111 If this information is provided,
the potential field is defined similar to the workspace for mobile robots. The second approach
IS to assign a potential value to each configuration based on a potential field defined over the
workspace |2|. This is achievable by combining the potential fields influencing the control
points on the manipulator links.

This chapter proposes an innovative solution for defining a potential field over the configura-
tion space. The proposed method uses configuration obstacle samples to calculate a repulsive
potential field. It implies that no exact information about the configuration space is required.
In this space, a manipulator is represented by a point. Since configuration obstacle samples do
not provide any reliable information about the obstacle boundaries, approaches merely based
on distance are likely to fail. Also, if each sample point acts as a source of repulsive force,
they have to have different repulsive force gains, because different obstacles are captured by
different number of samples. In this situation, exerting the same amount of repulsive force
from each sample point may put the manipulator too close to the obstacles with fewer number
of samples. Moreover, attuned repulsive gains may prevent the manipulator from passing in
between two obstacles.

The solution suggested in this chapter uses an optimization technique to automatically adjust
the obstacle samples’ repulsive gain. The resulting repulsive potential field has its local mini-
mum at maximum distance from surrounding obstacle samples in most cases. This is especially
important while encountering situation such as Fig. 21 in which the manipulator must pass
through a narrow passage. We call the repulsive potential field defined in this chapter, a risk
function. The risk function is calculated with the help of Support Vector Machine (SVM) al-
gorithm. The combination of a risk function and a simple attractive potential field defines the
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Figure 2.2: (A) Two possible classification with linear (dashed line) and non-linear (solid line)
models. Overfitting occurred in the case of non-linear classifier which resulted in less general-
ity. Gray symbols in (B) are the misclassified data based on the non-linear classifier. Squares
and circles represent data from different classes |23].

final potential function over the configuration space. This final potential field has its global
minimum at the goal configuration.

The rest of the chapter is organized as follows; Section 2.1 explains the support vector ma-
chine theoretical foundations. Section 2.2 presents the proposed method and simple simulation
results in order to provide a better understanding of the method. Section 2.3 illustrates more
simulation results and analyzes the method's parameters. Finally, Section 2.4 concludes the
chapter and lists its shortcomings and future directions.

2.1 Support Vector Machine

Support Vector Machine (SVM) is a machine learning method originally proposed for regres-
sion analysis and classification purposes |6,22|. In classification context, the method’s input is
in the form of n-dimensional data points. Each data belongs to one of two classes. SVM finds
a decision function (classification model) to minimize the estimation error while maintaining a
constant training error. The training error is the error of classification model on input data and
the estimation error is related to the model’s estimation reliability. Although a model can be
built to have zero training error (overfitting), minimizing estimation error increases the gener-
ality of a model (Fig. 2.2). An overfitted model is closely fitted around obstacle samples and
is not a proper estimation of obstacle boundaries. In contrast, a model with higher generaliza-
tion capability results in an estimation larger than the real obstacle region while it does not let
different obstacles interfere with each other.
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In this section, the theoretical foundations of SVM are discussed. First, the basic idea is ex-
plained using a simple example of linearly separable data. Then, the same concept is further
extended to overlapped data and non-linear classifications.

2.1.1 Linearly Separable Data

Consider the problem of separating a set of data (X) belonging to two different classes (y),
£5 = {(Xi,y),(x2,y2),...,(X/,y,)},xe7?", ye+1,-1 (2.1)
using a hyperplane defined as,
F(x,w,b) = (w,x) +b=0. (2.2)

The SVM s used to calculate the parameters of this hyperplane, i.e. w e R" and the scalar
b known as weights and bias parameters, respectively. The function F(x,w,b) is called a
decision function and will be used to classify any new data point xnew. The classification result
is obtained based on the sign of F(xnew, w, b). In other words,

* if F(xrew, w, b) >0, xrewbelongs to Class 1

o if F(xrew,w, b) <0, xrewbelongs to Class - 1.

Data points for which F(x,w/,b) =0, form a decision (separation) boundary between the two
classes.

Note that if F(X, w, b) is a valid solution, all F(x, lew, kb) functions, where k is a positive scalar,
are also valid and can be used instead. Therefore, without losing generality one of these hyper-
planes, named canonical hyperplane, is selected which fulfills the following condition,

mm|(w,x/) +b\ =1 /=1.../ (2.3)

Separating by a hyperplane, the input set is “optimally separated if it is separated without
error and the distance between the closest data to the hyperplane is maximal” (maximal margin
concept) |9]. The margin between the two classes can be derived algebraically or geometrically

|9] as, (Fig. 2.3),

M= 2 2.4)
1HTWITr

Therefore based on the definition of a canonical hyperplane, | w || or equivalently |w 7w must
be minimized while.
Yil<w,x>+ /7 > 1, (2.5)
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Figure 2.3: Canonical hyperplane (solid line) and the margin width. Circle and square symbols
represent data from different classes.

Introducing Lagrangian multipliers, the optimization problem can be solved by finding the
saddle point of the following equation,

/
1r
mit? max /,(w, b, a, A) = -2W W- £or/W<w x/>+*|-i} (2.6)
v i=

where > 0 are Lagrangian multipliers. Since the objective function and the constraints are
convex, the following conditions are satisfied at the optimal point (w0, bo, (To),

3L

0->wo=  QiViX, @2.7)
i wo &
i
dL )
- = - = 28
dbo 0-» _ aiyt = 0, (2.8)
a@(w7X +b\- B =0, (2.9)

where, (2.9) is Karush-Kuhn-Tucker (KKT) complementary condition. Substituting w0and bo
into (2.6) yields,
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Figure 2.4: Soft margin and error measurement. Circle and square symbols represent data from
different classes. Gray symbols are unclassified data inside the soft margin.

with the following constraints,

O<at, i=1.../ (2.11

(2.12

This problem is now in the form of a standard quadratic optimization problem and can be
solved using quadratic programming techniques and programs [231

2.1.2 Overlapping Data

In this case, the data cannot be separated linearly with zero training error. In other words,
constraints given by (2.5) cannot be satisfied and for any misclassified data, <, tends to infinity.
In order to overcome this issue, the SVM must allow some data to be unclassified. The notion
of soft margin allows the SVM to neglect all input data inside a specific margin (Fig. 2.4). The
width of this margin is adjustable using a penalty parameter C. This parameter controls the
trade-off between the training error and the estimation error.

The optimization problem now turns into minimization of the following statement,

(2.13)
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where £ are non-negative slack variables representing the distance of unclassified data to the
corresponding margin (Fig. 2.4). Correspondingly, the new constraints are,

ylwx> +b\ > 1-£, i=\,...,I. (2.14)

The optimal point of the new objective function is found at the saddle point of,

, /
vn\}m rré%x L(w,b.a, A =5 | w |2 +C( I/ 1O)
/

- 2 afy,jwrx,| +b\- 1+£}

A
/

(2-15)
=
Interestingly, transferring (2.15) into Lagrangian dual space (following the same procedure as

for the linearly separable data) leads to the same function as (2.10) 1231 The only difference is
related to at constraints, which are bounded by C,

0<a, <C,i=\...1 (2.16)

2.13 Non-linear Classifier

In many situations, input data cannot be separated efficiently using a linear classifier. The
SVM method can be easily extended to non-linear problems by introducing the notions of
feature space and kernelfunction. The main idea behind the extension is to map the input data
into a feature space with higher dimensions and apply a linear classifier on the feature space.

xe7? ->0>x) = [0](X)02(x)...0/(xX)]r e 'R1L (2.17)

Taking a closer look at 2.10, it is notable that the input data appear in inner products. Since the
result of an inner product is a scalar value, instead of expensive mapping to high dimensional
feature space, a kernel function can be used to solve the problem in the input space. A kernel
function is defined as,

K(Xi,X]j) = (0(x.), (P(X)))- (2.18)

Some commonly used kernels are listed in Table 2.1.

The following example is taken from 1231to better explain the idea of a feature space and
non-linear mapping to higher dimensional spaces. Assume a one dimensional classification
problem, given following set of data,

£={(1-10D0.(-1-D} (2.19)
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Table 2.1: SVM Kernel Examples

Kernel Function Description
A X)) =xj X Linear dot product
KOG X)) = (yxjx7+ Complete polynomial of degree d

K(Xi,Xj) = exp (=[x, - Xj\2) Gaussian Radial Basis Function
K(Xi,Xj) =tanh (yxjfxy + c0)  Sigmoid

Figure 2.5: Example of one dimensional non-linear classification problem with three input
data. The decision function is plotted using a solid line. The dashed line represents the sign of
the decision function and the classification result |23].

This problem is illustrated in Fig. 2.5. The input data is given in a form of a 3 x 1 matrix
X = [-1 0 17 which are labeled asy = |-1 | - 1I7. Considera mapping function as follows,

0>(X) = |0i(x)02(x)03(x)|/ = W2 y/2x 1]f. (2.20)
This mapping produces following data points in the three dimensional feature space,

V2
0
V2

1
F= 0 (2.21)
[

N

In (2.21), each row represents one point of data. Now, these three points can be separated
linearly by the plane <#2(x) = 20i(x) in a feature space. The same solution can be found using
a quadratic kernel function k(xiyx?) = (x7x-+ 1)2. It can be easily shown that (2.18) holds
between the above mapping and kernel function.

2.2 Local SVM-based Planner

As explained earlier, the proposed method is intended to define a potential field over the config-
uration space based on configuration obstacle samples. The main idea is to build a SVM model
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over the configuration obstacle samples and derive a risk function using that model. This risk
function will be used as the obstacle repulsive potential field.

This method is presented in three steps in the following sections; namely, obstacle sampling,
defining a risk function, and path planning. In order to better describe the method, the out-
come of each step is illustrated using simple simulations for a two degrees of freedom planar
manipulator.

2.2.1 Obstacle Sampling

To avoid the complexity of the exact mapping of an obstacle into the configuration space,
configuration obstacle samples can be used to estimate the corresponding obstacle region. The
sampling algorithm used in the proposed local SVM-based planner uses the information of the
manipulator inverse kinematics. Thus, this approach is applicable to a class of manipulators
with known closed-form inverse kinematics equations.

The first step begins with the sampling of the manipulator links (SmenP = (Mu— MV)
with a predetermined resolution. Also, each obstacle in the workspace is sampled ( S =
{O0, ..., Oh}represents all samples belong to <th obstacle). Next for each obstacle, the set of
all possible collisions is generated,

(2.22)

Each collision (m, 0) e collisions, represents a scenario in which the manipulator’s point in is in
collision with the sample point o from the /th obstacle. Using the manipulator’s kinematics,for
each pair, a number of manipulator configurations will be obtained. The set of configurations
obtained from all collision scenarios is the set of samples for a specific obstacle region in the
configuration space (Fig. 2.6),

Qobst, = UIWq) n ohst, TO|C O (2.23)
Besides workspace obstacles, the configuration space boundaries and the manipulator joint

limitations contribute in forming the configuration space obstacle regions. These regions, also,
must be sampled and added to the list of configuration obstacle samples.

All obstacle samples in the configuration space will be used later to calculate a risk function.

2.2.2 Risk Function

Using obstacle sampling, it is not possible to determine accurate boundaries of an obstacle
region. However it is reasonable to assume that a safe configuration for a manipulator is a
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Figure 2.6: (A) Workspace: Initial (solid line) and goal configuration (dashed line) for a 2DoF
planar manipulator in an environment with three obstacles. (B) Configuration space: Initial
(square) and goal configuration (diamond) are plotted. Each workspace obstacle and its corre-
sponding samples are illustrated with the same color. Solid line is used for labeling obstacle
samples.

configuration point with maximum distance from surrounding obstacle samples. This feature
is exactly what the SVM provides based on the maximal margin concept.

In order to prepare the configuration space for applying the SVM method, obstacle samples
must be first labeled as two different classes. To label obstacle samples, a similar approach
is used in 117, 19] for two dimensions which is extended to higher dimensions here. In this
labeling approach, given the initial and goal configurations, a hyperplane is considered as,

P(Q wp, bp) = (mp, q) +br =0. (2.24)

where g e Q. The parameters  and bp are calculated in such a way that Piquai, w/;, bp) -
P{gR A, y/P,br) = 0. Since there are many solutions for this problem, one of the hyperplanes is
selected at random. Next, each obstacle region class is calculated as follows,

y= X sign(P(qs,wp,bp)) (2.25)
0>sQoi,..(

wherey € {+1, -1} is the class label. In other words, this hyperplane divides the configuration
space into two domains. Each obstacle region belongs to the domain in which the majority of
its samples belong in (Fig. 2.7).

To this end, obstacle regions and the configuration space boundaries are sampled and labeled
into two classes. Now the SVM can be applied directly over the configuration space. The
output of the SVM s a decision function F(q,Wo,b0). Due to the maximal margin concept,
the decision boundaries formed by F(q, w0, b0) = 0, are placed at maximum distance between
obstacle samples of different classes. Thus, these decision boundaries potentially contain the
safest possible configuration points (Fig. 2.8).
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Figure 2.7: 2D hyperplane (a line) which is used for labeling obstacle and configuration space
boundary samples. Different classes are shown with different colors and symbols.

Figure 2.8: (A) Decision function calculated by SVM. (B) Decision boundaries shown over
configuration space.
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Here there is a need for a procedure which is able to guide the manipulator towards the decision
boundaries from each configuration. For this purpose, a function named risk function is defined
as follows,

R(q) = |F(qg, w0, bQ\. (2.26)

This non-negative risk function has its minimums on decision boundaries, i.e., where R(q) = 0.
Hence, following the negated gradient of this risk function leads the manipulator towards the
decision boundaries that are safe configurations, away from surrounding obstacles.

2.23 Path Planning

The previous section defined a risk function based on a SVM model. The value of this risk
function for each configuration can be interpreted as a risk value associated with that con-
figuration. The configurations with lower risk values are typically more distanced from the
configuration space obstacle samples. This statement is not always true because the curvature
of the risk function depends also on the choice of the SVM kernel and its parameters. Thus, a
risk function is not always able to resemble narrow passages or obstacle boundaries curvature
(refer to Section 2.3).

Intuitively, a risk function can be used as a repulsive potential over configuration space. Follow-
ing the negated gradient of this potential, leads the manipulator towards safer configurations.
However, this function is not sufficient for finding a path for the manipulator to move toward
the goal configuration. In order to add this motion, a simple attractive potential field based on
the distance is introduced,

Uanracti) =F 10]- qgoet I » (2.27)

where jj. is a constant predetermined gain. This attractive potential has its minimum at the goal
configuration. Combining attractive and repulsive potentials leads to the function Uara<,(q) +
R(g), whose negated gradient can be followed to reach the minimum potential and the goal
configuration.

2.3 Case Studies and Implementation Notes

As mentioned previously, the SVM algorithm tends to build a more generalized model. Thus,
a low sampling resolution can be compensated for, to some extent, by building a SVM maodel.
However, there are two parameters in a SVM model that need to be discussed. The first param-
eter is related to the SVM kernel. Intuitively, a kernel function must be a monotonic function.
This is due to the fact that the repulsive influence of a sample on a manipulator must decrease
monotonically as the manipulator recedes. In our study, a Gaussian Radial Basis Function was
selected as a suitable kernel (Table 2.1). This kernel can be rewritten in the following form,

K(Xi,Xi) = expi-"x,- - x/) (2.28)
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where y = The parameter cr determines the neighborhood in which each sample has
an influence. Increasing this parameter yields larger estimated regions for obstacles and also
reduces the curvature of the resulting decision function and vice versa (refer to Section 4.1.1).
On the one hand, an increased curvature allows a decision function to follow more accurately
the topology of narrow passages or obstacle boundaries. At the same time, smaller estimated
regions are closely fitted to obstacle samples and as such they may not be a proper estimation
for the entire obstacle. Therefore, the parameter cr should be adjusted to control this trade-off.

The other parameter is the penalty parameter C. As (2.16) describes, the penalty parameter
limits the maximum allowable repulsive gain of a sample. The samples with higher gains
are able to force the decision boundaries to be placed at larger distances. Thus, a penalty
parameter can bias one obstacle over the others, providing a greater safety margin for the
selected obstacle. For example in scenarios involving humans, decision boundaries can be
biased in order to stay farther from humans.

An other parameter in local SVM-based planner is /i which sets the gain for the attractive
potential field. A larger value of jj results in a greater attractive force on the manipulator and
vice versa. This force may assist the manipulator to pull out of a local minimum. However, if
the force is greater than the repulsive forces, it may pull the manipulator towards an obstacle
region. On the other hand, smaller values of increase the probability of getting stuck withing
local minima. Since no exact information related to obstacle boundaries exist, setting this gain
is challenging.

The proposed method in this chapter was implemented in the C++ language. The libsvm library
was used to train a SVM model |4|. All experiments were conducted on a 2.53 GHz Intel Core
2 Duo CPU. The proposed method was tested on a 2 DoF planar manipulator and a simplified
model of a CRS-F3 manipulator using its first three joints in simulation environment. The
former manipulator was mainly used to provide explanations of the method itself (Fig. 2.6(A)).
The results of this simulation were discussed throughout this chapter. The CRS-F3 model was
used to assess the proposed method in a close-to-real scenario, where a manipulator needs to
enter a car frame through its door opening (Fig. 2.9). In this scenario the door opening presents
a narrow passage in the configuration space (Fig. 2.10(B)).

To obtain a solution some guides, named virtual obstacles, were used. The virtual obstacles
were treated as real obstacles with an exception. The exception was that a collision between
the manipulator and a virtual obstacle were permitted. The purpose of the virtual obstacles was
to help the manipulator in finding a narrow passage opening. In this case, the virtual obstacles
were three line segments perpendicular to the window planes (Fig. 2.10).

Since the virtual obstacles were actually safe configurations, the penalty parameter was set
such that it biased real obstacles over virtual obstacles. This selection allowed the SVM to
decrease the training error for real obstacle samples and consequently the decision boundaries
stayed farther away from real obstacles. The calculated paths for this scenario are depicted in
the work and configuration spaces in Fig. 2.11.
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Figure 2.9: A manipulator working on a car body frame.

Figure 2.10: (A) Counterpart simulation environment of Fig. 2.9. Green dashed lines are vir-
tual obstacles.(B) Corresponding obstacle samples in configuration space. The narrow passage
Is emphasized by an arrow.

florad) 02(rad)
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Figure 2.11: Path obtained using the local SVM-based planner for a CRS-F3 simplified model
in (A) the workspace, and (B) the configuration space.



Chapter 2. Local Support Vector Machine-based Planner 29

2.4 Conclusion

This chapter introduced an innovative solution to define a potential field directly over a discrete
configuration space. In contrast to previously suggested methods, the proposed method needed
only samples from configuration space obstacle regions. The proposed local SVM-based plan-
ner consisted of three steps. In the first step, dilferent collision scenarios were generated and
configuration obstacle samples were obtained using the inverse kinematics of the manipula-
tor. Next, the configuration space was divided into two domains to label obstacle regions.
The labeled samples were used to train a SVM model. This model contributed in defining a
risk function which was utilized as a repulsive potential field. Finally, this risk function and
a simple attractive potential towards the goal configuration were combined to compose a final
potential field over the configuration space. The negated gradient of the resulting potential
field led the manipulator towards the goal configuration while keeping it away from obstacles.
Simulation results for two and three degrees of freedom models were illustrated to demonstrate
the method’s capabilities.

The main contribution of this method is to define a repulsive potential function based on con-
figuration obstacle samples. The gain of these samples are automatically adjusted to repel
the manipulator towards the configurations with maximum distance from surrounding obsta-
cle samples. This is especially important when a manipulator encounters a narrow passage,
since attuned repulsive gains may prevent the manipulator from entering the narrow passage.
Moreover, the maximum margin concept embedded in SVM, makes the proposed method less
sensitive to the selected sampling method and resolution (refer to Section 4.1.3).

There are, however, several shortcomings as listed in the following which require further in-
vestigations,

» Decision boundaries do not always form a connected component (Fig. 2.12(A)). There-
fore, the problem of local minima stills exist in this method.

» The method used for sampling required the inverse kinematics of the manipulator which
are not always provided.

» The execution time required for training SVM and finding risk values depends on the
number of samples. However, experiments showed that for higher degrees of freedom
manipulators, it was always beyond real-time threshold (hundredths of a millisecond).

» Using a random hyperplane for labeling input data was not successful in practice and
failed frequently for higher degrees of freedom, for e.g., labeling all sample points as
one class of data.

» Due to the problem of local minima, selecting the / parameter in the attractive potential
function is challenging.

» Due to the inclination of the SVM to find a more general obstacle region estimation, the
final path may be placed far away from the optimal one (Fig. 2.12(B)).
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» (B)

Figure 2.12: Two possible problem of Local SVM-based Planner: (A) isolated decision bound-
aries, and (B) a non-optimal path. In (B) the final path is shown using a solid black line.

To address the aforementioned shortcomings, some suggestions to improve the work are listed
in the following,

 Utilizing a sampling approach used in sampling-based planners so as to decouple the
complexity of the manipulator's structure from the sampling method,

» Embedding the risk function in a sampling-based planner in order to bias the selection
of graph nodes and milestones,

» Using multiple SVM approach instead of labeling data into two classes. Using this ap-
proach, samples of each obstacle can be labeled as a class. Then the One-Versus-Rest
(OVR) SVM idea can be employed to find the separation boundaries between classes,

* Investigating the possibility of real-time solution if the SVM optimization procedure
starts from a proper initial point. In other words, since in a dynamic environment the
changes between the two subsequent time steps are small, the risk function parameters
found for one step are potentially a good start point for the next step optimization.
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Chapter 3

Global Support Vector Machine-based
Planner

The theoretical foundations of the Support Vector Machine (SVM) algorithm were discussed in
Chapter 2. In a nutshell, the SVM classifiers attempt to find a decision boundary between two
classes of data by maximizing the distance of the closest data points to the decision boundary
(Fig. 2.3). The same principles are applied in order to obtain a path among obstacle samples
within a robot configuration space. Since exact mapping of the configuration space is often not
provided, SVM can become useful in estimating obstacle regions. This estimation according
to the maximal margin concept can be used to find safe configuration points in a sampled
configuration space.

In Chapter 2, a local planner based on the potential fields approach was proposed. In this
method, a repulsive potential field was defined using an SVM model in a manipulator’s sampled
configuration space. The repulsive potential field was combined with an attractive potential
field of the goal configuration to create a final potential function. The negated gradient of the
resulting potential function led the manipulator towards the goal configuration. However, the
application of this method was restricted due to the following reasons; the first reason was
that the time needed for the training of a SVM model and acquiring values of a risk function
were typically long. Thus, the method did not meet the requirements of real-time planning as
expected from local planners. Second, obstacle sampling in this method relied heavily on the
inverse kinematics of a manipulator which are not always provided. Finally, similar to other
local planners, this method still is prone to the problem of local minima.

In order to tackle the above mentioned issues, this chapter tries to develop a global sampling-
based planner while taking advantage of the previously proposed risk function. Unlike the
previous method, this current method is not limited to a specific type of robotic manipulator.
The method is not, however, still intended for real-time applications.

A Probabilistic Roadmap Planner is one of the most accepted global planners which works
on a discrete configuration space. The main idea behind a classical PRM is to build a graph

33
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composed of random collision-free samples in the robot’s configuration space |9|. This graph
iIs named a roadmap and each of its nodes is called a milestone. There is an edge between
two milestones if they can be connected safely using a local planner. If this roadmap captures
the connectivity of the configuration space, the path planning problem boils down to a simple
graph search task.

The PRM is able to solve difficult problems even in higher dimensional spaces. However, this
method is not as successful when a robot’s configuration space contains narrow passages. A
narrow passage is recognized by the small volume of free space in a part of the configuration
space. This difficulty arises due to the low probability of picking a sample from a small volume
of a narrow passage |7,9].

A number of schemes have been suggested to deal with this difficulty. The very first solution is
to increase the number of milestones in narrow passages by oversampling regions identified as
difficult. 18, 9|. A difficult region is a region which is important in capturing the connectivity
of the configuration space and at the same maintaining the connectivity via that region is not
an easy task. A region containing a milestone with a large Voronoi region or a few number of
edges is typically recognized as a difficult region. As the idea suggests, these methods require
a large number of referrals to the collision detection module. Moreover, the greater number of
milestones increases the required time for making a roadmap 115|.

Another group of methods try to decrease the number of milestones obtained by oversampling
to speed up the process of making a roadmap. The Gaussian Sampler and Bridge-Test methods
retain only the milestones that are close to the obstacle boundaries [3, 6]. This approach in-
creases the number of milestones in narrow passages since all narrow passages are surrounded
by obstacles. These methods sample the configuration space in pairs. In other words, for any
random configuration, another sample in its neighborhood according to a Gaussian (normal)
distribution is selected. The former method keeps a collision-free sample as a milestone if the
other sample in the pair is in collision. Similarly, the bridge-test selects the mid-sample of the
pair as a milestone if it is collision-free and the two samples of the pair are in collision. Even
though selecting milestones close to obstacles is a promising heuristic, the results are strongly
dependent on the selected standard deviation for the Gaussian distribution. In the Bridge-Test
method, an attuned parameter can decrease the number of milestones drastically; even it is
possible to select no milestone in a narrow passage. To address this issue an appropriate value
for the standard deviation parameter needs to be selected. However, this requires the topology
of the configuration space which is not always available. In addition, neither of these methods
is able to guarantee a safe margin for the obstacles and may place a milestone in a touching
position. Unlike previous methods, Obstacle Based PRM (OBPRM) tries to sample obstacle
boundaries instead of the free space (Fig. 1.6) |2, 1]. Similar to the Gaussian and bridge-test
sample, this method increases the number of milestones in a narrow passage. However, the
approach suffers from a number of drawbacks including the touching position of milestones
and restrictions applied on the shape of the configuration space obstacles.

The last category of methods intended to improve the classical PRM works on a modified con-
figuration space and then transfers the solution to the original one. These methods are called
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Dilation and Retraction-Based methods 112, 14|. These methods shrink the manipulator links
and the workspace obstacles to broaden the corresponding narrow passages in the configura-
tion space. The milestones selected in this space need to be fixed before being transferred to
the intact configuration space. In other words, milestones positioned on the actual obstacles
must be repaired. One idea is to correct all misplaced milestones. However, this approach is
not efficient since the milestones deeply buried into the obstacles are a bottleneck for the per-
formance of the algorithm. An alternative is to compute a penetration depth for each milestone
which comes at the expense of complex geometry operations. These operations are difficult to
implement in higher dimensional spaces.

Considering the shortcomings of the previous methods and the local SVM-based planner, a
new global sampling-based planner is proposed in this chapter. There are two main motiva-
tions behind this approach. The very first motive is that unlike free-space sampling, obstacle
sampling does not encounter the problem of picking samples from the small volume of a nar-
row passage. The second is that providing no information about the obstacle boundaries, the
probability of a collision, intuitively, is decreased by selecting configurations that are farther
from obstacles samples. The proposed method builds a risk function in the configuration space
based on samples from the obstacle regions. This risk function is calculated using the SVM
method. As a result, its local minima are placed in maximum distance from the surrounding
obstacle samples. This risk function is used to spur the milestones to appropriate safe positions.

The rest of this chapter is organized as follows; Section 3.1 presents a new method for obstacle
sampling. Section 3.2 explains the procedure of calculating a risk function. This risk function
plays an important role in the proposed method. Section 3.3 describes the approach for gener-
ating milestones followed by making a roadmap. Simulation results related to a 2 DoF point
robot are discussed in Section 3.4. Finally, Section 3.5 concludes the chapter and lists some of
possible future directions.

3.1 Obstacle Sampling

The idea behind obstacle sampling is to avoid the exact mapping of an obstacle into the config-
uration space. Since exact mapping of the obstacles is computationally expensive, the planning
problem is solved in a discrete (sampled) configuration space. These obstacle samples are used
to estimate the obstacle regions in the configuration space.

Therefore, the very first step in the proposed sampling-based planner is to obtain configuration
space obstacle samples. Since each obstacle region is estimated only based on its samples,
samples from different obstacles must be recognizable. The problem is that even for convex
workspace obstacles, it is not guaranteed that the corresponding configuration space obstacles
are connected 1131 Thus, it is not feasible to use a uniform sampler.

Instead, an obstacle sampling approach similar to Rapidly-exploring Random Trees (RRT) 111]
is proposed (Algorithm 1). This approach grows a tree similar to RRT to find obstacle samples
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(Fig. 3.1). The only difference is that trees instead of free-space are expanded over obstacle
regions. This approach of tree expansion biases the expansion towards unexplored regions.
This is due to the fact that a node is selected for expansion by a probability that is proportional
to the area of its Voronoi region 11()|.

The obstacle sampling method grows a number of trees typically equal to the number of obsta-
cle regions. Each tree is rooted at a given configuration space obstacle sample selected from
a specific obstacle region. In order to expand a tree, at each iteration a random configuration,
gray, is generated. Then, the nearest node of the tree to this configuration, gexring<m is deter-
mined. Next, a new configuration, g,ww, is calculated such that it is distanced one step from
geqansion towards qronjmif grew is in collision, it will be added to the tree. Otherwise, qeaa<sT
will be labeled as a boundary sample and grew is ignored. The samples marked as boundary
will be used later to find milestones. The expansion procedure continues until a predetermined
number of nodes are added to the tree.

Algorithm 1 Obstacle Sampling

I: samples O
2 Add g to samples
3 A:predefmed number of samples requested per CSpace obstacle
4 whlle samples.size < N do
gnmd <—random sample from CSpace
gpgansion «-closest node to grax
Calculating grew by expanding geqnsi«n toward qrani for one step
if grewis in free CSpace then
Label geqasion as boundary sample
end if
Add g,ewto samples
122 end while
13 return samples

Iiﬁcgoo\lc»oo

3.2 Risk Function

The risk function is the core component of the proposed method. This function determines the
configurations with maximum distance from surrounding obstacle samples (i.e. the middle of
a narrow passage). These configurations have a high probability to be safe and are suitable for
placing milestones.

A risk function is calculated based on a trained SVM model over the obtained configuration
space obstacle samples. Assume that samples related to two obstacle regions are provided.
Using two different labels for samples from different regions and applying SVM, a decision
function, F(q,y\'0,bo). is obtained (Fig. 3.2(A)). As explained in Section 2.1, this decision
function divides the configuration space into three domains, i.e.,
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o if F(q, Wo,bo) >0,q belongs toClass +1.
e if F{gq, w0,b0) <0,q belongs to Class -1.

e if F(q,w0,bo) =0,q belongs to the decisionboundaries.

Since the SVM method maximizes the marginbetween two classes, this function is opti-
mized to place the decision boundaries at maximum distance from surrounding obstacles (Fig.
3.2(C)). Depending on selected values of the SVM parameters, the maximum distance may
not be always satisfied . Nevertheless, these configurations are a proper choice for placing
milestones.

The linear SVM method is not an appropriate choice for estimating configuration space obsta-
cles. Therefore, a non-linear SVM kernel must be used in training a SVM model. The problem
is that by using a non-liner kernel, the decision boundaries cannot be calculated analytically.
Therefore, to provide a systematic procedure to reach the configurations on the decision bound-
aries, a function is defined as,

R(q) = |F(q,w0,iho)|. (3.1)

This non-negative function with local minima on decision boundaries is called a risk function
(Fig. 3.2(B)). Hence, starting at a configuration g. the negated gradient of R(q) can be followed
to reach a local minimum, i.e., a point on the decision boundaries.

A similar solution can be easily extended to the cases with more than two obstacle regions.
This is achieved by associating a risk function to each obstacle region. In other words, first
all samples related to one obstacle region are labeled as one class. Next, a multi-class SVM
approach known as One-Versus-Rest (OVR) is taken to find a set of risk functions. Assuming
n classes of data exist, this approach trains n SVM models such that each model separates one
class from the rest of the classes. Consequently, n number of risk functions are obtained based
on the trained models. The resulting risk function in each scenario is assigned to a region which
is classified against the others.

3.3 Obtaining Milestones and Making a Roadmap

To obtain milestones and create a roadmap, multiple obstacle regions were sampled and each
region was associated with a risk function. Each of these risk functions has its local minimum
in @ maximum distance from surrounding obstacles. This condition is not always satisfied
depending on the choice of the SVM kernel and its parameters. The kernel and its parameters
determine the curvature of the risk function and the region of influence for each sample (refer
to Section 4.1.1). Hence, a risk function is not always able to represent a narrow passage or
obstacle boundaries.

As mentioned previously, in a sampled configuration space, the configurations that are more
distanced from obstacle samples are more likely to be safe and collision-free. This is exactly
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the condition that is fulfilled on the local minimum of a risk function. The local minimum
coincides with the decision boundaries of the corresponding SVM model. Due to the use of
non-linear kernels, these decision boundaries can not be calculated analytically. However, start-
ing from a random configuration and seeking the negated gradient of a risk function typically
end in a point on the decision boundaries. Because a risk function is not monotonic all over
the configuration space, this procedure does not always reach the decision boundaries. How-
ever, selecting a monotonic SVM kernel, the risk function will be monotonic near the decision
boundaries. Because these boundaries are placed among obstacles, samples close to the obsta-
cle boundaries have higher probability to fall in these regions. Therefore, instead of adopting
random starting points, the previous obstacle samples labeled as boundary are chosen. The
boundary samples from each region follow the negated gradient of the risk function associated
with that region to reach the local minimum. The final point will be added as a milestone if it
is collision-free (Fig. 3.3).

There are several advantages in this approach of selecting milestones. One, due to unknown
topology of the configuration space, re-using boundary obstacle samples speeds up the process
with fewer referrals to the collision detection module. Second, if a region is sampled suffi-
ciently, this method distributes the milestones more uniformly over the configuration space.
Moreover, a proper model and risk function pushes the milestones towards configurations with
maximum distance from surrounding obstacle samples, i.e., the middle of a narrow passage.
Finally, provided a sufficient number of samples, milestones can be placed in a known dis-
tance from obstacle samples (refer to Section 4.1.1). This distance is adjustable by appropriate
selection of the kernel parameter.

After obtaining a set of milestones, in order to make a roadmap, each milestone becomes con-
nected to a predetermined number of closest milestones not in the same connected components
(Fig. 3.4). Ifthis connection is feasible using a local planner, an edge will be added between the
two milestones. Creating a roadmap, each query will be answered by searching the roadmap
for a path between closest nodes to the requested initial and goal configurations.

3.4 Simulation Results and Implementation Notes

The proposed method was implemented in the C++ language. The libsvm and Robust and
Accurate Polygon Interference Detection (RAPID) libraries were used to train SVM models
and detecting collisions, respectively |4, 5|. All simulations were conducted on a 2.53 GHz
Intel Core 2 Duo CPU. The proposed method was evaluated on a 2 DoF point robot in the
simulated environments. The results of the simulation for the point robot are demonstrated
in this chapter and compared to the classical PRM results. The rest of the results along with
parameter analysis are discussed in the next chapter.

The first simulation environment for a 2 DoF point robot is shown in Fig. 3.5. An identical
problem is solved using both the classical PRM and global SVM-based planners with the same
number of samples picked from the configuration space.
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Table 3.1: Comparison of the number of referral to the collision detection module (CD) and
the local planner (LP) for the classical PRM and the proposed SVM-based method (SVMP).
The number of generated milestones and the execution times are compared.

Environment  Planner CD LP Milestones Time (ms)
. SVMP 2384+108 91+1 47+2 7412

Fig. 35 PRM 4297+187 284+58 168+5 9149

Fig. 3.7 SVMP 8027+408  756+117 190+9 1041+48

PRM 16073+1917 2919+601 962+20 872+32

The comparison between the results of the two methods are depicted in Fig. 3.6. In this
experiment both planners were able to find a path but the PRM could not pass through the
narrow passage.

In another experiment, the proposed method was evaluated in a more challenging environment
(Fig. 3.7). The narrow passage in this environment is longer and preserving the connectivity
of the configuration space is more difficult.

Similar to the previous experiment, this problem was solved using both the classical PRM and
global SVM-based planners. The comparisons of the results are shown in Fig. 3.8. In this
experiment, the classical PRM was not able to capture the connectivity in several different
executions.

Table 3.1 compares the number of referral to collision detection module and the number of
times that the local planner was called in multiple execution of previous studies. As it was ex-
pected, the number of milestones and referral to the collision detection module is significantly
less in the global SVM-based planner. However, in these simulations, the total execution time
of the classical PRM is typically less than the global SVM-bsed planner. The reason is that
training of SVM models and acquiring the risk function values are time consuming.

3.5 Conclusion

This chapter proposed a global SVM-based planner that improved the capability of the classical
PRM planner in environments containing narrow passages. The proposed method started by
sampling obstacle regions using a method similar to RRT. Next, the resulting samples were
classified into a number of classes. The One-Versus-Rest SVM approach was utilized to build a
set of risk functions. These risk functions had their local minimum on the corresponding SVM
model decision boundaries. Thus, they were used to place milestones at maximum distance
from obstacle samples. The proposed method was tested on a 2 DoF point robot. The results of
the simulation performed on the point robot were discussed to show the ability of the planner
to solve problems containing narrow passages.

The main contribution of the proposed method is related to the definition of a risk function.
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This function, which is calculated based on a SVM model, is able to determine the safe config-
urations with maximum distance from surrounding obstacle samples. Sampling the obstacles
instead of the free space alleviates the problem of picking samples from the small volume of a
narrow passage. Since no boundary information about the obstacles are provided, staying at a
maximum distance decreases the probability of a collision. Due to this approach, the proposed
method is able to use fewer milestones that are placed in appropriate positions to capture the
connectivity of the configuration space. The fewer number of milestones and the method used
for selecting milestones, decreases the number of referral to the collision detection module.
The smaller number of referral to the collision detection module improves the speed of the
planner in challenging situations. The method also distributes the milestones more uniformly
over the configuration space. Utilizing SVM and the notion of maximal margin embedded
in SVM results in a planning method which is less sensitive to the sampling method and the
resolution.

There are, however, some issues which need further investigations,

 Alternative obstacle sampling methods that focus on boundary samples can replace the
current sampling method.

* Due to the fact that a SVM model is trained over the entire configuration space, the
act of acquiring a risk function value becomes time consuming. However, based on the
selection of the SVM kernel parameters, the influence of the sample points far from a
given configuration is zero at that configuration. Hence, some heuristics can be used to
obtain the result of a risk function faster.

» Even though the proposed planner tries to place milestones in safe positions, the resulting
roadmap may be composed of different connected components. Therefore, improving
roadmap connectivity must be the next step. This is achievable by generating random
points near a region of disconnectivity and guiding them towards the decision bound-
aries. This approach increases the number of milestones and consequently improves the
roadmap connectivity.

* In situations in which obstacle regions are dominant, more samples are necessary in order
to have a good estimation of the obstacle regions. In this situation the classical PRM may
perform better. Thus, the idea of combining these methods should be investigated.

* Since the method is less sensitive to sampling resolution, utilizing the idea of incremental
sampling can potentially improve the performance.

 Since in dynamic environments the change between two subsequent time steps is not
substantial, the result of the SVM in one step can be used as the initial point for the
next step optimization. Using this approach, it is conjectured that the global S\VM-based
planner can be extended to real-time environments.
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Figure 3.1: Different steps of obstacle sampling using RRT. Boundary samples are enclosed in
circles. The samples from two different obstacles are labeled as two classes.
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©

Figure 3.2: Output of the SVM method and the resulting risk function. (A) Decision function,
(B) risk function, and (C) decision boundary.
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Figure 3.3: Generated milestones illustrated using black dots.
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Figure 3.4: Resulting roadmap created based on generated milestones (shown as black dots).
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Figure 3.5: A test environment for a point robot containing a narrow passage. The Initial and
goal configurations are shown with a square and a diamond, respectively.
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Figure 3.6: Comparison between the results of the classical PRM and the proposed SVM-based
planner in different steps. (A) milestones, (C) roadmap, and (E) the final path generated using
the proposed method. (B) Milestones, (D) roadmap, and (F) the final path generated using the

classical PRM method.
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Figure 3.7: A test environment for a point robot containing a narrow passage. The Initial and
goal configurations are shown with a square and a diamond.
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Figure 3.8: The comparison between results of the classical PRM and the proposed method
in different steps. (A) Milestones, (C) roadmap, and (E) the final path generated using the
proposed method. (B) Milestones, (D) roadmap, and (F) the final path generated using the
classical PRM method.
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Chapter 4

Case Studies and Experimental Results

The previous chapter introduced a new sampling-based planner that utilized the notion of a risk
function. This planner differs from a classical PRM planner in the configuration space sampling
method and generating milestones. The proposed method began by sampling obstacle regions
instead of the free space to create a set of risk functions. Each risk function was optimized
using the SVM method to have its local minimum at maximum distance from surrounding
obstacle samples. Finally a set of milestones was generated on local minima of the calculated
risk functions to make a roadmap. The method was tested on a two degrees of freedom point
robot in two challenging environments and the results were discussed.

This chapter studies the same method more throughly in higher dimensional spaces. Moreover,
the chapter investigates the effect of different parameters involved. All designed scenarios were
solved using both the proposed method and the classical PRM planner and compared. The
comparison of the results are reported. The main purpose of these studies is to evaluate the
performance of the proposed planner in higher dimensional spaces. All case studies were, to
some extent, challenging in a sense that the configuration space contains narrow passages. The
simulation studies were performed using high degree of freedom planar robots and a CRS-F3
articulated manipulator. The final solutions obtained for the CRS-F3 were implemented on a
real CRS-F3 manipulator to verify their accuracies.

The rest of the chapter is organized as follows; Section 4.1 discusses the effect of different pa-
rameters involved in the method. Section 4.2 illustrates different case studies and compares the
results of the global SVM-based planner with classical PRM. Section 4.3 discusses about some
implementation notes to improve the method. Moreover, this section describes the structure of
the developed application for later references. Finally, Section 4.4 concludes the chapter.

50
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4.1 Parameter Analysis

There are different parameters involved in global SVM-based planners. Two of these parame-
ters are related to the SVM algorithm and are common between the proposed local and global
planners. In addition, there are parameters regarding obstacle sampling method which are
discussed in this section.

41.1 SVM Kernel

There are many different choices for a SVM kernel, some of which are listed in Table 2.1. Due
to the nature of the problem at hand, the only sensible assumption is that the influence of an
obstacle sample decreases as the distance from the obstacle increases. Thus, the choices of
the kernel are limited to monotonic kernels. In this body of work, the Radial Basis Gaussian
Function (RBF) was selected as the kernel for SVM models, i.e..

4.0

The y is the only adjustable parameter in this kernel, which is related to the region of influence
of each obstacle sample. Increasing y shrinks the region of influence of each sample and vice
versa. To analyze this parameter, an equivalent notation of the RBF kernel was used, i.e.,

KXi, Xj) =exp(-— [x(- x/) 4 2)

where y - . The cr parameter in this definition, unlike y, has a direct relation to the region
of influence. In other words, increasing cr broadens the region of influence of each sample
and vice versa. Therefore, this parameter can directly control the margin between a decision
boundary and a class of samples where no other classes interfere. This parameter, also, affects
the curvature of a risk function and decision boundaries. Several decision boundaries are shown
in Fig. 4.1 related to different values of cr. As illustrated, a large value of cr decreases the
curvature of the decision boundaries whereas small values of cr cause overfitting.

Even though setting a proper value for this parameter requires knowledge about the configu-
ration space, by selecting a small value of cr and a high sampling resolution we can overcome
this issue. In this case, the larger number of samples compensates for the problem of overfit-
ting which may happen due to the small value of cr. It is recommended to set cr such that the
influence regions of two neighboring samples have an overlap with each other. This approach
avoids overfitting and does not let the SVM optimization algorithm divide an obstacle region
into smaller regions.

4.1.2 Penalty Parameter (C)

This parameter becomes especially important in building a model where zero training error
is not possible (refer to Section 2.1.2). In a planning problem, due to unknown topology of
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(A) ir =0.2 (B) <x=05

©cr—10 D) it =2.0

Figure 4.1: Effect of the parameter cr on the curvature of the decision boundaries (blue solid
line) and estimated obstacle regions. The width of the narrow passage is 1.0 in the simulated
environment. The milestones and two classes of obstacle samples are shown in black dots, blue
plus signs, and red stars, respectively.
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the configuration space and inaccurate nature of the sampling methods, estimating a proper
curvature using cr is difficult. Thus, it is probable to have a model with non-zero training error.

The penalty parameter is intended to bias some samples over others. These biased samples are
able to have more influence on the decision boundaries and a risk function as shown in Fig.
4.2. According to (2.16) the amount of the influence of each sample, a,, is constrained by C.
Hence, in environments involving humans, obstacles can be prioritized. Those obstacles that
need a greater safety margin can be biased over others. On the other hand, by limiting the
influence of some obstacles among others, the planner can be permitted to consider collisions
with specific obstacles in order to obtain a solution in challenging scenarios.

4.13 Sampling Parameters

Similar to other sampling methods, increasing sampling resolution yields a more accurate esti-
mation of the obstacle regions. However, in this method providing a more uniform distribution
IS more important than the sampling resolution, as the effect of the resolution can be compen-
sated for by setting an appropriate value of cr parameter.

In a local SVM-based planner, samples are obtained by considering a number of collisions be-
tween specific control points on each link and obstacle sample points in the workspace. In this
approach increasing the number of control points and obstacle sample points will increase the
configuration obstacle sampling resolution. This method for obtaining configuration obstacle
samples properly distributes the samples. However, the method is limited to situations where
the inverse kinematics of a manipulator is known.

The global SVM-based planner employs another approach for sampling. Unlike the local
SVM-based planner, this approach does not require the inverse kinematics of a manipulator
and as a result is more general. This sampling method expands a tree on each obstacle region
similar to the RRT expansion method. The procedure for the tree expansion involves two pa-
rameters; namely the sampling step, and the number of samples. The sampling step parameter
determines the maximum distance that a node can reach after one level of expansion. A large
value of this parameter typically speeds up the process of obstacle region exploration. How-
ever, obstacle regions that are separated by a free space narrower than the step parameter, might
be captured as one obstacle region during the expansion procedure (Fig. 4.3).

The other parameter is the maximum number of nodes that each tree contains. Each tree is
expanded until the number of its nodes reaches a predetermined value. Even though a greater
number of samples improves the estimation, it also increases the required processing time
for training a model and calculating risk function values. Typically, picking a larger number
of samples results in discovering a larger number of boundary samples. This, consequently,
results in a greater number of milestones.

Taking a closer look at Fig. 4.3, a behavioral model can be defined for the cr parameter.
The smaller sigma values should be selected as the number of samples or the step size in-
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creases. However, this statement is true if different obstacle samples do not cross the other
region boundaries as shown in the last column of Fig. 4.3.

4.2 Case Studies and Experimental Results

The global SVM-based planner has been evaluated in several environments. We considered
simulated and experimental setups and all environments were designed to be, to some extent,
challenging. In the first case, a high degree of freedom planar manipulator was used in a
simulated environment. Even though the manipulator was planar, the solution was required to
be generated in a high dimensional configuration space. Hence, the fact that a manipulator was
a planar one did not reduce the complexity of the problem. Next,aCRS-F3 robotic manipulator
was employed to study the capabilities of the proposed method. The generated paths were also
implemented on a real CRS-F3 manipulator and the results proved the validity of the solutions.
In addition, all problems were solved using both a SVM-based planner and a classical PRM
multiple times. The average results over successful executions are reported and compared when
the success rates were in the same range and more than 60 percents.

4.2.1 High Degree of Freedom Planar Manipulator

Two different planar manipulators were used in this study. Since all solutions were to be
found in the manipulator’s configuration space, the use of a planar manipulator did not simplify
the problem. These two planar manipulators and their simulated environments are described
separately in the following sections.

Five Degrees of Freedom Planar Manipulator

The first simulation environment along with the desired initial and goal configurations are
illustrated in Fig. 4.4. Such a problem represents a class of environments for which a solution
cannot be easily obtained using local planning methods. The solution obtained using the global
SVM-based planner is shown in Fig. 4.5. Table 4.1 shows the comparison of the results
with those obtained using a classical PRM planner. This comparison clearly shows that the
time spent on the training of SVM models and acquiring risk function values can significantly
slow down the process in comparison to a classical PRM method. However, as expected, the
global SVM-based can solve the problem with fewer number of milestones and referrals to the
collision detection module.
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Figure 4.2: Effect of the penalty parameter C on biasing obstacle samples. Samples of the
lower shape are biased in (B) and (C).

Table 4.1: Comparison of the global SVM-based (SVMP) and the classical PRM planner in
the environment shown in Fig. 4.4. CD and LP refer to the number of referrals to the collision

detection and local planner modules, respectively.

CD LP Milestones ~ Time(ms)
SVMP  17993+1745 1770+383 17148 102487+5074
PRM  21833+1874 3165+467  324+20 895+71
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Figure 4.4: Initial (solid black line) and goal (dashed gray line) configurations of a five degrees
of freedom planar manipulator surrounded by four obstacles. Link one and four are 1.0 m long.
Link two, three, and five are 0.5 m long. All links are 0.01m wide.

Figure 4.5: Resulting path using the global SVM-based planner.
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Figure 4.6: Initial (black) and goal (gray) configurations of a six degrees of freedom planar
manipulator with two obstacles. Link one and four are 1.5 m long. Link two, three, five, and

six are 1.0 m long. All links are 0.5 m wide.

Six Degrees of Freedom Planar Manipulator

A similar test was repeated for a planar manipulator with six serial revolute joints as depicted
in Fig. 4.6.

One of the possible solutions calculated using the proposed method is illustrated in Fig. 4.7.
The same pattern as that observed in the previous simulation studies was repeated in this case
(Table 4.2). However, as complexity of the problem increases, the difference between the two
planners in their number of referrals to the collision detection and the local planner modules
increases.

4.2.2 CRS-F3 Robotic Manipulator

The Thermo CRS F3 manipulator is an articulated manipulator with six degrees of freedom
(Fig. 4.9(A)). This manipulator is connected to a PC through a C500C controller (Fig. 4.8).
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Figure 4.7: Resulting path using the global SVM-based planner.
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This controller communicates with a PC via a serial port and transfers the commands given by
the user to the manipulator via a fiber optic cable. In this study, the manipulator links were
estimated using cubic polygons (Fig. 4.9). This simplification facilitated the use of the RAPID
collision detection library. At each step, the location of each link was calculated using the
manipulator’s Denavit-Hartenberg (DH) parameters (Table 4.3). Afterwards, each link was

tested against collision with any of the obstacles in the environment.

Table 4.2: Comparison of the global SVM-based (SVMP) and the classical PRM planner in
the environment shown in Fig. 4.6. CD and LP refer to the number of referrals to the collision

detection and local planner modules, respectively.

CD LP
SVMP 47722+2144 37544526
PRM  53281+5454 5503+1264

Milestones
13874346182
3278+328
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Figure 4.8: A C500C controller which connects the CRS-F3 manipulator to a PC.

Table 4.3: DH parameters of a CRS-F3 articulated manipulator.

/[ Qi1 ai-1 di Oi
1 0 0 0.35 0|
2 nil 0.1 0 @ +nil
3 0 0.265 0 0¢)
4 nil 0 0.27 M
5 -nil 0 0 »
6 n/l 0 0.075 06
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QY ®
Figure 4.9: (A) Actual and (B) simulated models of a CRS-F3 articulated manipulator.

Table 4.4: Comparison of the global SVM-based (SVMP) and the classical PRM planner in the
environment shown in Fig. 4.10. CD and LP refer to the number of referrals to the collision
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP 50309+2808 15574246  221+11 13761846926
PRM 6175942389 2752+425 36019 5743+280

Moving between Obstacles

In our first experiment, the CRS-F3 manipulator was moved between two T-shaped obstacles
(Fig. 4.10). The manipulator was limited by itsjoint motions while moving between two obsta-
cles that simulated a narrow passage situation. Fig. 4.11 shows four snapshots of the resulting
path. The results of the SVM-based method and the classical PRM planner are compared in
Table 4.4.

Similar to the previous case studies, the global SVM-based planner was able to solve the prob-
lem with a fewer number of milestones, and fewer referrals to the collision detection and local
planner modules. However, the execution time is less in the classical PRM method.
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Figure 4.10: Initial (blue) and goal (gray) configurations of a six degrees of freedom CRS-F3
manipulator within two T-shaped obstacles.

Table 4.5: Comparison of the global SVM-based planner (SVMP) and classical PRM in the
environment shown in Fig. 4.12. CD and LP refer to the number of referrals to the collision
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP  502013+37309 76148+8183 3591+458 544392+22219
PRM 1142015+£79993 112183+4411 14313+37 23457245465

Cubic Frame and Bar

In our last experiment, a cubic frame was attached to the end-effector. In this case, the manip-
ulator required to move the frame along a bar without making a collision (Fig. 4.12). Solving
this problem was difficult since the manipulator had many restrictions on each joint. Since
the SVM classification required two classes of obstacles, another auxiliary bar was arbitrarily
placed in the environment. The classical PRM planner frequently failed to solve this problem.
However, as Table 4.5 shows the same pattern regarding the number of milestones, the number
of referrals to the collision detection and local planner modules, and the execution time were
repeated here. Fig. 4.13 illustrates an actual CRS-F3 manipulator while tracking the resulting
path of the global SVM-based planner.
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Figure 4.11: Snapshots of the resulting path using the global SVM-based planner.
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Figure 4.12: Initial (blue) and goal (gray) configurations of a six degrees of freedom CRS-F3
manipulator with a cubic frame end-effector. The frame is 9 cm long and 1.2 cm wide. The bar
is 0.4 cm x 0.4 cm in cross section and 104 cm long.

4.3 Implementation and Application Notes

This section describes some of the ideas applied in practice to improve the performance of the
method. A brief description of the developed application is given in order to facilitate later
referrals to the implemented code.

43.1 Implementation Notes

Several heuristics and improvements were employed in implementing the current method. The
first modification was to consider the fact that in a configuration space different dimensions
did not have the same importance. More specifically, the motion of the lower joints of a ma-
nipulator is of higher importance as such motions propagate through the upper joints of the
manipulator. As a result, the motion of the lower joints must be sampled with a higher resolu-
tion. Due to this reason, the distances in a configuration space were calculated as follows.

distigo.qi) A Him - g,,)2 (4.3)
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Figure 4.13: Snapshots of the solution generated using the global SVM-based planner in the
environment shown in Fig. 4.12.

where n was the number of joints and w, was the weight assigned to the i'h dimension. This
approach biases the obstacle sampling procedure to have a higher resolution in the lower di-
mensions.

The second modification was made in acquiring the value of a risk function where the value of
exp(-5) = iT3was considered as zero. The global SVM-based planner spends a great portion
of its time in finding milestones. This process is time consuming because of the risk function
calculations. This modification could improve the execution time up to 60% in some cases.

43.2 Application Notes

The current method was implemented in the C++ language. The implementation consisted of
four main classes which are explained in following sections. Understanding these classes are
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necessary in order to apply the method to new environments.

WsObstacle Class

This class is the base of all obstacles that exist in an environment. This class stores an actual
obstacle in the form of a RAPID..model and its transformation related to the world coordinates.
This way of representation is aimed to facilitate the use of the RAPID library 111 Therefore,
each obstacle must represent itself in this form in its constructor, which is a collection of
triangles.

Environment Class

This class contains a set of Obstacle instances and represents an environment.

Manipulator Class

This class is the base class for all types of manipulators. Any new manipulator must extend
this class and implement the following methods,

e CalcDhParam which returns the requested link parameters based on the current values
of the joints.

* IsCollidingWith which takes an instance of Environment class as input and returns the
identification number of the obstacle which is in collision with the manipulator. If the
manipulator is not in collision the method must return zero.

 IsMeetingConstraints which tests a given configuration against joint limits and self
collision. In order to fully capture the configuration space obstacle regions, this method
should be called in the IsCollidingWith method.

Planner Class

This is the core class of the method in which all different steps are implemented explicitly.
This class works on a given instance of Manipulator and Environment classes. Each step is
executed by calling a method and has a state variable that must be set at least once prior to its
call. All steps of the planner are implemented in the following methods,

» SampleObstacle which takes an initial obstacle sample point as the root of the tree and
expands it over the enclosing obstacle region. The corresponding options can be set
using the setsampling-params method.
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* TrainMultiSVM which takes obstacle samples and returns a set of trained SVM models.
The corresponding options can be set using the setJivmgjarams method.

* FindBoundaryMilestones is responsible for generating milestones based on the previ-
ously trained SVM models and obstacle samples. The corresponding options can be set
using the set-find.milestones-param method.

» MakeRoadmap which makes a roadmap by adding possible connections between given
milestones using a local planner. The corresponding options can be set using the set.roadmajparams
method.

* Query which performs a query on the results of the last step to find a path between
given initial and goal configurations. The corresponding options can be set using the
set.query-params method.

In summary, the method starts by defining a manipulator, obstacles, and an environment. Then
each of the above method are called in the given order to find the final solution.

4.4 Conclusion

The proposed global SVM-based method was evaluated in different environments and the re-
sults were reported. Considering two simulation environments discussed in Chapter 3, the
following pattern was clearly observed in the comparisons. The global SVM-based planner
was able to solve the problem with a fewer number of milestones and less number of referrals
to the collision detection and local planner modules. However, the classical PRM planner was
typically faster. To be compatible with RAPID library, all environments were modeled as a
collection of triangles. It should be noted that in all cases, the number of triangles used for
modeling the entire environment, including the manipulator, never exceeded 50. Therefore,
the effect of the smaller number of calls to the collision detection module in the execution
time was underestimated. This issue is of paramount importance where the performance of the
collision detection module becomes a bottleneck for the performance of the overall method.
The performance of a planner becomes highly dependent on the collision detection module in
cluttered environments and in situations where an environment is more precisely modeled.
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Chapter 5

Conclusion and Future Directions

This body of work introduced the notion of a risk function in the robot’s configuration space.
A risk function was calculated using configuration space obstacle samples. The risk function
allowed the determination of safe configurations in a discrete (sampled) configuration space.
In a sampled configuration space no obstacle boundary information is provided. The only
valid assumption is that the probability of a collision decreases as the distance to the obstacle
samples increases. Due to this reason, a safe configuration was defined as a configuration with
the maximum distance from the surrounding obstacle samples. The Support Vector Machine
method provided a risk function with this property. More precisely, the function had its local
minimum on the decision boundaries of a SVM model which were maximally distanced from
obstacle samples.

This definition of a risk function was first used as a repulsive potential field in a local SVM-
based planner. Taking this approach, a potential field was directly defined over a sampled
configuration space. In this method, a manipulator stayed in a safe distance from obstacle
samples by following the negated gradient of the calculated risk function. This function was
combined with an attractive potential field in order to pull the manipulator towards the goal
configuration, simultaneously. The proposed method was evaluated in a simulated environment
for two different manipulators with two and three degrees of freedom. The shortcomings of
this method which restricted its application in practice was highlighted. The very first issue
was related to the embedded obstacle sampling method that heavily relied on a manipulator's
inverse kinematics. As a result, the method was limited to a certain class of manipulators with
known inverse kinematics. The second issue was related to the execution time of the method
that made it not suitable for real-time applications. Local planners are typically expected to
work in real-time. Finally, similar to many other local planners, this method was prone to the
problem of local minima.

To address the aforementioned shortcomings, another planner was suggested in Chapter 3 that
again adopted the notion of the risk function. This method was a global planner and intended
to improve the performance of classical PRM planners. A classical PRM planner is not suc-
cessful in environments containing narrow passages. The proposed method began by sampling

69



Chapter 5. Conclusion and Future Directions 70

the configuration obstacle regions to make a risk function. In contrast to the previous sampling
method proposed for the local SVM-based planner, the sampling method decoupled the sam-
pling process from a manipulator’s structural complexities. The suggested sampling method
developed a number of trees similar to RRT but over obstacle regions. This set of obstacle sam-
ples was used to train multiple SVM models and consequently risk functions. The obtained risk
functions were employed to generate a set of milestones with the maximum distance from the
surrounding obstacle samples, i.e., the middle of a narrow passage. This method was eval-
uated and compared to the classical PRM planner in different environments. The simulation
results were discussed in Chapters 3 and 4. Two of the case studies evaluated the method on a
CRS-F3 manipulator. In these cases, the final solutions were implemented on a actual CRS-F3
manipulator in order to validate the solutions.

The main contribution of this body of work is the introduction of a risk function in a SVM-
based planner. This function is calculated using the optimization technique embedded in the
SVM method. Since a risk function is able to find safe configurations at maximum distance
from surrounding obstacle samples, it can be combined with different methods. Also, employ-
ing SVM results in a risk function that is less sensitive to the selected sampling method and
resolution. The second contribution of the work is to propose a local method based on a risk
function. The risk function that is used as a repulsive potential is created by adding the repul-
sive force of each obstacle sample. This approach differs from previous works in a sense that
each repulsive force is automatically adjusted to keep the manipulator at maximum distance
from surrounding obstacle samples. The third contribution of this work is the introduction of a
global planner that utilizes a risk function to find a set of well-placed milestones. This method
is able to solve a problem with a smaller number of milestones, especially in environments
containing narrow passages. Moreover, this method requires fewer referrals to the collision
detection and local planner modules in comparison to the classical PRM planner. This feature
becomes specially important within cluttered environments.

5.1 Future Directions

To the best of our knowledge, this is the first time that support vector machine algorithms have
been used in the context of path planning for higher degrees of freedom robot manipulators.
There are several remaining issues that require further investigation,

» Evaluating the method in scenarios where the performance of the method heavily de-
pends on the performance of the collision detection module. A cluttered environment
and an environment modeled in details are two possible scenarios.

» The study of alternative obstacle sampling methods that focus on boundary samples.

» Due to the fact that a SVM model is trained over the entire configuration space, the
act of acquiring a risk function value becomes time consuming. However, based on the
selection of the SVM kernel parameters, the influence of the sample points far from a
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given configuration is zero at that configuration. Hence, some heuristics can be used to
obtain the result of a risk function faster.

» Even though the proposed planner tries to place milestones in safe positions, the resulting
roadmap may be composed of different connected components. Therefore, improving
roadmap connectivity must be the next step. This is achievable by generating random
points near a region of disconnectivity and guiding them towards the decision bound-
aries. This approach increases the number of milestones and consequently improves the
roadmap connectivity.

* In situations for which obstacle regions are dominant, more samples are necessary in
order to have a good estimation of the obstacle regions. In these situations the clas-
sical PRM may perform better. Thus, the idea of combining these methods should be
investigated.

» The effect of each method’s parameters was discussed individually. Further studies need
to be conducted to observe the effects of the parameters all together.

 Since the method is less sensitive to the sampling resolution, utilizing the idea of incre-
mental sampling can potentially improve the performance.

 Since in dynamic environments the change between two subsequent time steps is not
substantial, the result of the SVM in one step can be used as the initial point for the
next step optimization. Using this approach, it is conjectured that the global SVM-based
planner can be extended to real-time environments.
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