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Abstract

Moving a robot between two configurations without making a collision is of high importance 
in planning problems. Sampling-based planners have gained popularity due to their acceptable 
performance in practical situations. This body of work introduces the notion of a risk function 
that is provided using the Support Vector Machine (SVM) algorithm to find safe configurations 
in a sampled configuration space. A configuration is called safe if it is placed at maximum dis
tance from surrounding obstacle samples. Compared to previous solutions, this function is less 
sensitive to a selected sampling method and resolution. The proposed function is first used as a 
repulsive potential field in a local SVM-based planner. Afterwards, a global planner using the 
notion of the risk function is suggested to address some of the shortcomings of the suggested 
local planner. The proposed global planner is able to solve a problem with fewer number of 
milestones and less number of referrals to the collision detection module in comparison to the 
classical Probabilistic Roadmap Planner (PRM). The two proposed methods are evaluated in 
both simulated and experimental environments and the results are reported.

Keywords: Motion Planning. Artificial Potential Field, Narrow Passages, Probabilistic Roadmap 
Planner, Support Vector Machine, Sampling-based Motion Planning, Obstacle-based Motion 
Planning
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The increasing application of robotic systems, has raised new challenges and introduced new 
fields of study. Mechanical design, control, sensors, interface, and planning are some of the is
sues in designing a robotic system. Planning is a process that “convert high-level specifications 
of tasks from humans into low-level description of how to move” |211. The very first task in 
this conversion is composing robot movements as a number of configurations. Assuming two 
initial and goal configurations are specified, the robot must be able to start from the initial and 
reach the goal configuration in an environment safely. Path planning algorithms are intended 
to solve this kind of problem in different circumstances.

Path planning is the task of finding a collision-free path, given geometry of a robot and envi
ronment’s obstacles. The Piano mover's problem is the classic example of path planning. The 
problem is defined as determining a way to carry a piano between two rooms without hitting 
any articles. Even though this seems easy, solving this problem is computationally difficult 
[34). Complex robot structures such as those of high degree of freedom manipulators, com
plex obstacles in the environment, capability of working in real-time in dynamic environments, 
etc., make the problem even more difficult. “Maintenance of cooling pipes in a nuclear plant, 
point-to-point welding in car assembly, and cleaning of airplane fuselages” are some of the 
applications in which a reliable planner is able to facilitate robot programming task 114|.

This work investigates the problem of finding a path and suggests a solution for high degrees 
freedom robots in complex static environments. The notion of static environment means that 
the shape and position of obstacles are known. This chapter starts with defining the problem 
(Section 1.2) followed by reviewing previous works (Section 1.3). Section 1.4 lays down the 
objectives of this body of work. Section 1.5 summarizes the main contributions of this work. 
Finally Section 1.6 plots the thesis outline.
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1.2 Problem Definition

Let 'W  describe the workspace which is a subset of (R} or 7?3. The set O refers to a subset of fW  
occupied by obstacles and Q composes the robot’s configuration space with dimensions equal 
to the number of controllable degrees of freedom. In the configuration space, a robot separated 
from its complex structure is represented by a point. If Jl(qo) c  'W  represents the robot at the 
configuration q0 e Q in the workspace then Qohsl = {q \ J/l(q) D O 0} describes the obstacles 
in the configuration space. The complement of the set is Qtn,e = Q -  Q„hu which contains 
all collision-free configurations that can be used for generating a valid path.

Now, given O, initial (</,„„) and goal (qK,Hii) configurations, the solution is defined as follows,

— \q pui • • • ■• q p,<\ ( i - i )

in which qri) = qimt and qPil = qKoai. This set is a feasible solution if all configurations in 
V  are collision-free and moving between two subsequent configurations without making any 
collision is a trivial task.

The objective of this body of work is to develop a planner for high degree of freedom robotic 
manipulators. This planner is intended to find a path in the configuration space so as a manip
ulator can move between two given configurations safely. Speed and generality are two of the 
features that this planner is expected to achieve. Although the planner is intended to be fast, 
working in real-time is not required.

1.3 Literature Review

There are many algorithms that tackle this problem from different perspectives. These algo
rithms can be broadly categorized into three classes based on their completeness. The three 
class of planners are Exact, Sampling-Based, and Local planners. This section discusses the 
major contributions in each category and talks about their advantages and shortcomings.

13.1 Exact Planners

Most of the planners in this category are of theoretical interest |34| and not applicable to real 
situations. A common characteristic of these planners is their need for an exact and explicit rep
resentation of obstacles in the robot’s configuration space. Solving problem in the configuration 
space is attractive since any complex robot would be described by a point in its configuration 
space. In order to find an explicit knowledge about the configuration space, some researchers 
looked at the problem geometrically and analytically. They have proposed descriptive con
straints to determine free configuration regions in the configuration space [24, 271. Assuming
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Figure 1.2: Shortest Path Roadmap 12 11.

complete knowledge of the obstacles is provided in the configuration space, different solutions 
have been suggested.

The first technique in this category is Cell Decomposition. The main idea behind the cell 
decomposition-based techniques is to divide the robot’s configuration space into a number 
of cells in a way that planning in each cell is trivial [211. These cells and their boundaries 
are stored as nodes of a graph. Each boundary node is connected to all adjacent cell nodes. 
Therefore, the path planning problem turns into a problem of searching for a path in a graph. 
Vertical Cell Decomposition method constructs a number of cells by sweeping the space and 
determining a boundary at each obstacle vertex. In this method, the graph nodes are placed at 
the center of each cell and on each boundary |8| (Fig. 1.1).

Shortest Path Roadmap (also called Reduced Visibility Graph) puts nodes on each obstacle 
vertex with the interior angle less than n. Next, each pair of the nodes that are mutually visible 
to each other will be connected together. To answer a query, the initial and goal configuration 
points find their way to their nearest nodes and the rest of the path is found by searching the 
graph 1341 (Fig. 1.2).
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Figure 1.3: Three possible situations to generate pieces with maximum distance |2I |.

Another idea known as Maximum-clearance Roadmap or Generalized Voronoi Diagram tries 
to keep the robot in maximum distance from the obstacles. In this method a roadmap is created 
based on three types of paths which are shown in Fig. 1.3 |28|.

All these methods are complete which means that they are able to report failure or success. 
Reporting failure is the ability of a planner to find out there is no solution for the problem in 
finite time. However, exact mapping of the workspace obstacles into the configuration space 
requires expensive computations and is memory consuming |9|. All complete planners have 
exponential time complexity in the number of degrees of freedom of the robot |4, 12,29|. This 
complexity restricts the application of exact planners and limit their use to robots with lower 
degrees of freedom.

13.2 Sampling-based Planners

The inevitable complexity of exact planners turned the researcher's attention towards methods 
that embed weaker notions of completeness 114). Unlike exact planners, these algorithms were 
mostly designed on practical interests rather than theoretical ones. Avoiding a continuous con
figuration space, a path planning problem is solvable in a discrete configuration space (sampled 
configuration space). This approach results in a weaker completeness known as probabilistic 
completeness. A method is probabilistically complete if approaching the number of samples 
to infinity, eventually, leads to finding the answer in a finite time, if any exists. Due to this fact, 
these planners, unlike exact planners, are not able to report failure.

All methods in this category have two fundamental components in common, namely collision 
detection and local planner. The efficiency of these components directly affect the efficiency of 
a method. The collision detection module is the bridge between the workspace and the robot’s 
configuration space. More precisely, this module tests a given configuration against collision 
(refer to [211 to find out about different collision detection techniques). Using this module, an 
algorithm is able to determine whether a configuration sample point is in the free space or an 
obstacle region.

The second component, local planner, is responsible for finding a local collision-free path 
between two configurations typically close together. As it will be explained later, methods in 
this category build a graph composed of sampled configuration points, as graph nodes, and
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a number of connecting edges. A query can be answered if a path between the requested 
configurations can be found in the graph. In this graph, there is an edge between two nodes 
if the local planner is able to connect them without making a collision. The problem is that 
storing this local path information for each edge is memory consuming. The better approach 
is to use local planners that are able to reproduce their outcome. Thus, no path is needed to be 
stored. Due to this fact, local planners are typically as simple as a straight line planner. Even 
though more complicated planners can be used to solve more challenging situations, increasing 
the time complexity of the local planner module increases the method’s time complexity.

Depending on the approach taken toward capturing configuration space connectivity, sampling- 
based methods are divided into two classes; multi-query and single-query. These two classes 
are explained in the following.

Multi-Query Planners

A class of sampling-based planners known as multi-query planners, try to capture the con
nectivity of the entire configuration space at once. As the name suggests, these methods are 
suitable for answering multiple queries over one environment. They spend a great portion of 
their execution time on exploring the configuration space and capturing its connectivity. Once 
this phase is finished, any query can be answered quickly in hundredths of a second using a 
graph search algorithm.

Probabilistic Roadmap Planner (PRM) is a well-known multi-query planner that is able to 
solve challenging problems even for a high degree of freedom robot 114|. The planner starts 
with an empty graph Q -  {'V,£}, known as roadmap. Set fV is composed of the graph nodes, 
called milestones, and £  stores edge information. This graph is expanded at each iteration by 
adding a randomly picked sample from the free configuration space to *V. Here, the collision 
detection module is called to assess whether a sampled configuration point is collision-free. 
Next, a local planner tests all possible connections between the newly added node and any 
neighboring milestones in *V. The neighboring distance is an adjustable parameter set by the 
operator. Any successful connection is represented by an edge in £. The roadmap expansion 
procedure continues until a predetermined number of nodes is reached. This is the first phase 
of the method, called the learning phase. In the next phase which is called the query phase, the 
method searches for an answer to a requested query. At the beginning, the local planner tries to 
connect the initial and the goal configurations to the roadmap. Then, a graph search algorithm 
is employed to find a path based on the verified connections stored in £. The configuration 
points involved in the resulting path along two subsequent milestones are reproduced using the 
local planner to compose the set V  as a final answer.

Even though the PRM is a powerful method, there are many situations in which the PRM is 
not able to find an answer. These situations mostly contain regions with a small volume of 
free space, known as narrow passages. Since the PRM method selects samples randomly, the 
probability of picking a sample from a small volume of a narrow passage is low. As a result, 
simple local planners cannot preserve roadmap connectivity via the few number of milestones
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Figure 1.4: Random reflection at configuration space obstacles to connect roadmap compo
nents [9|.

in a narrow passage. Therefore, instead of having one connected component , the roadmap will 
be composed of separate connected components, each isolated in one part of the configuration 
space. The method suggested in |9| is intended to improve the roadmap connectivity by taking 
random walks in the configuration space. This method starts exploring from one connected 
component in a random direction and looks for any milestone from the other components. If j
an obstacle is met, a new node is generated and walking continues towards another random ;
direction (Fig. 1.4). This process continues until two components are unified. I

There are other methods intended to improve the PRM by improving the set of milestones.
One of the suggested ideas is to oversample some specific regions in order to increase the 
number of milestones in those regions. The fewer number of milestones in a region is the 
main characteristic of that region which should be oversampled. This characteristic can be 
determined in a roadmap in many ways; these include a milestone with a few number of edges 
and a milestone with a large Voronoi region. A Voronoi region of a milestone is the set of 
all points closer to that milestone than any other milestones. The objection over this method 
is the considerable number of referrals to the collision detection module. Moreover, a greater 
number of milestones requires a greater number of connections. As reported in 1321, a large 
portion of the time of the PRM algorithm is spent on making connections. Therefore, a large 
number of milestones is a threat to the method's efficiency. Considering this reason several 
methods were proposed which only retained well-placed milestones. Artificial Potential Biased 
PRM (ABPRM) employs the artificial potential fields idea, explained in Section 1.3.3, to bias 
the distribution of the nodes in narrow passages 111. In this method, the workspace potential 
values calculated for each point of the robot in a specific configuration are combined to define 
a potential field over the configuration space.

The configuration space obstacles can help in obtaining appropriate milestone to improve a 
roadmap connectivity. Picking samples close to the obstacles, increases the number of mile-
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Figure 1.5: Milestones generated using Gaussian (left) and Bridge-test (right) samplers 110].

Figure 1.6: Finding obstacle boundary samples in OBPRM [3|.

stones in a narrow passage. A Gaussian Sampler samples the configuration space in pairs. In 
order to have a pair, for any picked-up sample, a second sample distanced according to a nor
mal (Gaussian) distribution is selected. The collision-free sample will be stored as a milestone 
if and only if the other sample in the pair is in collision |5] (Fig. 1.5). Similar to the Gaussian
sampler, a Bridge-Test sampler obtains paired samples distanced based on a Gaussian distribu
tion 110). The mid-sample of a pair is considered a milestone, if both samples in a pair are in 
collision and their mid sample is collision-free (Fig. 1.5). The outcomes of these two methods 
are strongly dependent on the selected value for the standard deviation of the Gaussian distri
bution 1131. The proper value for this parameter depends on the configuration space properties 
which cannot be easily calculated. Unlike previous methods, Obstacle-Based PRM (OBPRM) 
13,21 tries to distribute the milestones over the obstacle boundaries. This method begins with a 
sample selected from an obstacle region and emits multiple rays with determined angles (Fig. 
1.6). Next, a binary search is employed to find an obstacle boundary along each ray. These
samples, picked up from the obstacle boundaries, compose the set of milestones. As explained 
earlier, milestones close to the obstacle boundaries enhances the connectivity of the roadmap 
in narrow passages. However, putting nodes close to obstacles or in touching positions is 
not suitable for all applications. The reason is that getting closer to an obstacle increases the 
probability of the collision and consequently reduces the safety. None of the aforementioned 
methods are able to set a minimum distance for milestones from the obstacles.
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To improve the PRM idea, dilating and retraction based methods are used to modify the config
uration space 111,23, 311. They shrink the obstacles and the robot in the workspace to widen 
narrow passages in the configuration space. This modification lessens the difficulty caused 
by the small volume of a narrow passage. Thus a uniform sampler can be used to generate 
milestones in the widened configuration space. In order to use the same set of milestones 
in the original configuration space, these methods require a post-processing phase to fix the 
milestones positioned on the actual obstacles. One idea is to correct all misplaced milestones. 
However, those milestones deeply buried into obstacles are a bottleneck for the performance 
of the algorithm. An alternative idea is to compute a penetration depth for each milestone but 
at the expense of complex geometry operations. Implementing these operations is difficult in 
higher dimensions.

Single-Query Planners

In contrast to multi-query planners, single-query planners only discover part of the configura
tion space related to the requested query. They are popular due to their ability to find a solution 
quickly |35|. This feature makes these methods suitable for dynamic environments. Unlike 
the multi-query planner’s roadmap, these methods grow one or two tree graphs to explore the 
configuration space. These trees are expanded at each iteration until a path between the initial 
and the goal configurations is found. The expansion procedure can be as simple as choosing a 
random node and performing expansion towards a random direction ( 12|. However, in order to 
bias the expansion towards unexplored regions different heuristics are suggested; these include 
expanding the node with fewest number of edges, largest Voronoi region, or the node that is 
the closet node to the goal configuration.

Rapidly-exploring Random Trees (RRT) is one of the successful proposed methods |20|. This 
method starts the expansion by generating a random configuration point and finding the closest 
node of the tree to that configuration. Next, the algorithm searches for an input from the input 
space that minimizes the distance between the selected node and the random configuration. 
Finally using this input, the tree will be expanded for one step from the selected node. Since 
nodes with larger Voronoi regions have higher probability to be selected for expansion, this 
expansion is biased towards unexplored regions 1181 (Fig. 1.7). The RRT-Connect method only 
differs from this method in the expansion step size 1181. It expands the tree from a selected 
node until it reaches an obstacle.

Besides different heuristics, some methods tried to reduce the total execution time. The Lazy 
Collision-Checking is a technique that delays the process of checking an edge for collisions un
til that edge is selected as part of the final path |32|. According to the observations reported in 
|32], a short connection between two collision-free configurations is collision-free with a high 
probability. There are two other reasons that support this idea. First, most of the connections 
involved in making a tree do not contribute in the final path. Second, testing collision-free 
connections are more expensive than the others. Therefore, this intentional delay is able to 
improve the execution time in some scenarios.
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Figure 1.7: Rapidly exploring tree is biased toward exploring large Voronio Regions 1181.

1 3 3  Other Planners

There are many other methods that are neither complete nor probabilistically complete. These 
methods are mostly local, i.e. they decide about the next step based on the current state of a 
robot. Even though they are able to work in real-time, they suffer from the problem known 
as local minima. The Local minima are situations that lead to a stable positioning of a robot 
before reaching to the desired goal position.

Artificial Potential Field (APF) method creates two attractive and repulsive potential fields 1151. 
The former is sourced from the goal configuration and the latter from the obstacles. Superim
posing these potentials leads into a potential field that has its minimum at the goal configuration 
and high potentials on the obstacle regions. Therefore, seeking the negated gradient of this po
tential field at each configuration leads the robot towards the goal configuration and keeps it 
away from the obstacles.

As mentioned before, the main drawback of these methods is related to situations in which the 
robot is trapped into a local minimum. Since there is no systematic way to escape from these 
situations |4 |, some methods attempted to create local-minimum free potential fields. These 
methods are based on harmonic potential fields and theories discussed in fluid mechanics [6, 
16,17,3()|. However, these methods require complex calculations and have not been applied to 
higher degrees of freedom 114|. Introducing randomness is an alternative solution for escaping 
local minima. Randomized Path Planner (RPP) and Virtual Spring Method tackled the problem 
from this perspective |4 ,251.

Support Vector Machine-Based Methods

The Support Vector Machines (SVM) method, which is used as a foundation in this body of 
work, was originally proposed by Vapnik to solve classification and regression analysis prob
lems 1371. This technique has been widely used in a variety of applications such as image 
recognition and bioinformatics |7|. SVM has been used previously for mobile robot path plan
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ning in cluttered environments |26, 331. These methods divide obstacles into two classes and 
utilize classification to find a separation boundary between the two classes of data. Since the 
SVM method aims to maximizes the margin between the two classes, this boundary is a suit
able nominee as a path for the mobile robot. To the best of our knowledge, the only proposed 
methods based on the SVM in the field of path planning are those listed above. There are other 
methods in the field of robotics and mobile robots that utilized the SVM for data fusion and 
coping with the environment uncertainties [ 19,22,36|. However, these methods are not related 
to the context of this body of work and so are not explained here.

1.4 Objectives

Path planning is one of the basic components in robotic systems and to this date many different 
methods have been proposed to solve this problem. Each method is intended to solve a certain 
problem and as such performs poorly in more general problems. This work considers planners 
that work in the configuration space. Due to the high number of dimensions in the configuration 
space and the lack of exact knowledge about its topology, practical planners work on discrete 
(sampled) configuration space.

The objective of this work is to develop a planner for robotic manipulators with high degrees 
of freedom. The planner is expected to have the advantage of both sample-based and local 
planners in term of completeness and speed. The planner is intended for the environments in 
which the safety of operation is of high priority. While the planner is expected to be fast, it is 
not required to operate in real-time nor in a dynamic environment.

To achieve these objectives, one plausible idea is to estimate obstacle regions based on obstacle 
samples in the configuration space. This estimation can be the outcome of the SVM method 
and is used towards defining a function over the configuration space. This function can then 
be employed to obtain safe configurations. Using the maximal margin concept in the SVM 
algorithm, the proposed function, called a Risk Function, can be defined such that it obtains 
safe configurations with maximum distance from surrounding obstacles. This feature becomes 
especially important when dealing with narrow passages. It is envisioned that the proposed 
idea can be embedded in different planners to improve their performance.

1.5 Contributions

The contributions of this body of work are summarized as follows,

• To propose a function in the configuration space called a risk function using configu
ration space obstacle samples. The value of a risk function for each configuration can 
be interpreted as the risk of collision corresponding to that configuration. The proposed
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function is expected to have its local minimum at maximum distance from surrounding 
obstacle samples.

• To propose a local planner based on a risk function that finds a solution in a sampled 
configuration space for high degree of freedom manipulator.

• To propose a multi-query sampling based planner that employs a risk function to find 
a set of well-placed milestones. This planner is able to capture the connectivity of the 
configuration space even in an environment with narrow passages with fewer number of 
referral to the collision detection module.

1.6 Thesis Outline

The rest of this thesis is organized in four chapters. Chapter 2 presents a local planner that 
finds a solution in the configuration space using a risk function. The obstacle sampling method, 
risk function formulation, and robot guidance using the proposed local planner are discussed. 
Chapter 3 presents another planner based on PRM. The proposed planner takes advantage of a 
risk function defined using the SVM algorithm. In this chapter, a different obstacle sampling 
approach is discussed. Also, a procedure for finding milestones and making a roadmap is ex
plained. Chapter 4 discusses different case studies and contains implementation notes. Finally, 
Chapter 5 concludes the thesis and suggests future directions.
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Chapter 2

Local Support Vector Machine-based 
Planner

Path planning using local planners has gained popularity due to the ability of these methods to 
find solutions quickly and effectively. Because of this capability, local planners are widely used 
in mobile robots’ real-time planning. Potential field-based methods are a group of successful 
local planners for mobile robots |7, 8, 15, 21,24]. In the field of manipulators, this approach 
was first exercised by Khatib 1111. In this approach a potential field composed of attractive 
and repulsive potentials is defined over the work or configuration free-space. Generally, a goal 
region is the source of an attractive field and obstacles create repulsive potentials. Seeking 
minimum of the potential field at each point, attracts a robot towards the goal position and 
keeps it away from obstacles.

The main drawback of potential field-based methods is the problem known as local minimum. 
Local minimum is a situation in which manipulator becomes stable before reaching the goal 
configuration. In this situation there is an equilibrium between influential forces. Thus having 
no net force to move the manipulator, it becomes trapped in that situation (Fig. 2.1 ). To solve 
this problem, some local minimum-free potential fields have been suggested |5, 13, 14, 181. 
However, their application is limited due to the complexity of the required calculations 110] or 
restrictions over the shape of obstacles 111.

A potential field can be defined over either the workspace or configuration space. Within the 
workspace, a potential field can affect the end-effector and some control points selected on the 
manipulator links |3, II, 12, 16|. These control points either have fixed positions or are se
lected dynamically as the closest point of each link to the obstacles. The manipulator’s forward 
dynamics are used to simulate the manipulator’s reaction to the influence of the artificial po
tential field. Therefore, the combination of the forces exerted on the manipulator, determines 
the manipulator’s next configuration. In robot manipulator, the problem of local minimum may 
appear as structural local minimum. This situation happens when the net forces on different 
joints become zero before reaching the goal position.

15
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Figure 2.1: Two examples of local minimum situation |2()|.

A potential field can be defined over the configuration space as well. To achieve this, two 
possible solutions exist. The first solution needs complete knowledge of the configuration 
space obstacles which is not always a feasible assumption 111. If this information is provided, 
the potential field is defined similar to the workspace for mobile robots. The second approach 
is to assign a potential value to each configuration based on a potential field defined over the 
workspace |2|. This is achievable by combining the potential fields influencing the control 
points on the manipulator links.

This chapter proposes an innovative solution for defining a potential field over the configura
tion space. The proposed method uses configuration obstacle samples to calculate a repulsive 
potential field. It implies that no exact information about the configuration space is required. 
In this space, a manipulator is represented by a point. Since configuration obstacle samples do 
not provide any reliable information about the obstacle boundaries, approaches merely based 
on distance are likely to fail. Also, if each sample point acts as a source of repulsive force, 
they have to have different repulsive force gains, because different obstacles are captured by 
different number of samples. In this situation, exerting the same amount of repulsive force 
from each sample point may put the manipulator too close to the obstacles with fewer number 
of samples. Moreover, attuned repulsive gains may prevent the manipulator from passing in 
between two obstacles.

The solution suggested in this chapter uses an optimization technique to automatically adjust 
the obstacle samples’ repulsive gain. The resulting repulsive potential field has its local mini
mum at maximum distance from surrounding obstacle samples in most cases. This is especially 
important while encountering situation such as Fig. 2.1 in which the manipulator must pass 
through a narrow passage. We call the repulsive potential field defined in this chapter, a risk 
function. The risk function is calculated with the help of Support Vector Machine (SVM) al
gorithm. The combination of a risk function and a simple attractive potential field defines the



Chapter 2. Local Support V ector Machine-based Planner 17

Figure 2.2: (A) Two possible classification with linear (dashed line) and non-linear (solid line) 
models. Overfitting occurred in the case of non-linear classifier which resulted in less general
ity. Gray symbols in (B) are the misclassified data based on the non-linear classifier. Squares 
and circles represent data from different classes |23|.

final potential function over the configuration space. This final potential field has its global 
minimum at the goal configuration.

The rest of the chapter is organized as follows; Section 2.1 explains the support vector ma
chine theoretical foundations. Section 2.2 presents the proposed method and simple simulation 
results in order to provide a better understanding of the method. Section 2.3 illustrates more 
simulation results and analyzes the method's parameters. Finally, Section 2.4 concludes the 
chapter and lists its shortcomings and future directions.

2.1 Support Vector Machine

Support Vector Machine (SVM) is a machine learning method originally proposed for regres
sion analysis and classification purposes |6,22|. In classification context, the method’s input is 
in the form of n-dimensional data points. Each data belongs to one of two classes. SVM finds 
a decision function (classification model) to minimize the estimation error while maintaining a 
constant training error. The training error is the error of classification model on input data and 
the estimation error is related to the model’s estimation reliability. Although a model can be 
built to have zero training error (overfitting), minimizing estimation error increases the gener
ality of a model (Fig. 2.2). An overfitted model is closely fitted around obstacle samples and 
is not a proper estimation of obstacle boundaries. In contrast, a model with higher generaliza
tion capability results in an estimation larger than the real obstacle region while it does not let 
different obstacles interfere with each other.
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In this section, the theoretical foundations of SVM are discussed. First, the basic idea is ex
plained using a simple example of linearly separable data. Then, the same concept is further 
extended to overlapped data and non-linear classifications.

2.1.1 Linearly Separable Data

Consider the problem of separating a set of data (x) belonging to two different classes (y),

£> = {(Xi,yl),(x2,y2),. . . , (X/,y,)},xe7?",  y e +1, - 1  (2.1)

using a hyperplane defined as,

F(x, w, b) = (w, x) + b = 0. (2.2)

The SVM is used to calculate the parameters of this hyperplane, i.e. w e <R" and the scalar 
b known as weights and bias parameters, respectively. The function F(x,w,b) is called a 
decision function and will be used to classify any new data point xnew. The classification result 
is obtained based on the sign of F(xnew, w, b). In other words,

• if F(xnew, w, b) > 0, xnew belongs to Class 1.

• if F(xnew, w, b) < 0, xnew belongs to Class - 1.

Data points for which F(x,w/,b) = 0, form a decision (separation) boundary between the two 
classes.

Note that if F(x, w, b) is a valid solution, all F(x, lew, kb) functions, where k is a positive scalar, 
are also valid and can be used instead. Therefore, without losing generality one of these hyper
planes, named canonical hyperplane, is selected which fulfills the following condition,

mm|(w, X/) + b\ = 1, / = ! . . . /  (2.3)

Separating by a hyperplane, the input set is “optimally separated if it is separated without 
error and the distance between the closest data to the hyperplane is maximal” (maximal margin 
concept) |9 |. The margin between the two classes can be derived algebraically or geometrically 
|9] as, (Fig. 2.3),

M = 2
i iwir

(2.4)

Therefore based on the definition of a canonical hyperplane, || w || or equivalently |w 7 w must 
be minimized while.

y,|<w,x> + /?| > 1, (2.5)
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Figure 2.3: Canonical hyperplane (solid line) and the margin width. Circle and square symbols 
represent data from different classes.

Introducing Lagrangian multipliers, the optimization problem can be solved by finding the 
saddle point of the following equation,

min max /,(w, b, a, A) =
w ,h a

1 r
-W W -2

/
£o r/W < w ,x /> + * | - i }
i=i

(2 .6)

where > 0 are Lagrangian multipliers. Since the objective function and the constraints are 
convex, the following conditions are satisfied at the optimal point (w0, bo, (To),

3L
f)w0

0 -> w0 = CtiViXi,
(=i

dL_
dbo

i
= 0 -» aiyt = 0,

i=i

(2.7)

(2 .8)

ar({y(|w7Xi + b \ -  1} = 0, (2.9)

where, (2.9) is Karush-Kuhn-Tucker (KKT) complementary condition. Substituting w0 and bo 
into (2.6) yields,
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Figure 2.4: Soft margin and error measurement. Circle and square symbols represent data from 
different classes. Gray symbols are unclassified data inside the soft margin.

with the following constraints,

This problem is now in the form of a standard quadratic optimization problem and can be 
solved using quadratic programming techniques and programs [231.

2.1.2 Overlapping Data

In this case, the data cannot be separated linearly with zero training error. In other words, 
constraints given by (2.5) cannot be satisfied and for any misclassified data, <r, tends to infinity. 
In order to overcome this issue, the SVM must allow some data to be unclassified. The notion 
of soft margin allows the SVM to neglect all input data inside a specific margin (Fig. 2.4). The 
width of this margin is adjustable using a penalty parameter C. This parameter controls the 
trade-off between the training error and the estimation error.

The optimization problem now turns into minimization of the following statement,

0 < at, i = 1 .. .  / ( 2 . 11)

(2 . 12)

(2.13)
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where £  are non-negative slack variables representing the distance of unclassified data to the 
corresponding margin (Fig. 2.4). Correspondingly, the new constraints are,

y,|(w,x> + b\ > 1 - £ ,  i = \ , . . . , l .  (2.14)

The optimal point of the new objective function is found at the saddle point of,

, /
min max L(w, b. a, A) =-  || w ||2 +C( /  Ci)w ,h,( a# 2 i- 1

/
-  2  a,{y,jwrx,| + b\ -  1 + £}

¿=1
/

(2-15)
/=i

Interestingly, transferring (2.15) into Lagrangian dual space (following the same procedure as 
for the linearly separable data) leads to the same function as (2.10) 1231. The only difference is 
related to at constraints, which are bounded by C,

0 < a, <C, i = \ . . . l  (2.16)

2.13 Non-linear Classifier

In many situations, input data cannot be separated efficiently using a linear classifier. The 
SVM method can be easily extended to non-linear problems by introducing the notions of 
feature space and kernel function. The main idea behind the extension is to map the input data 
into a feature space with higher dimensions and apply a linear classifier on the feature space.

x e 7 ?" -> 0>(x) = [0|(x)02( x ) . . .0 /(x)]r  e 'R1. (2.17)

Taking a closer look at 2.10, it is notable that the input data appear in inner products. Since the 
result of an inner product is a scalar value, instead of expensive mapping to high dimensional 
feature space, a kernel function can be used to solve the problem in the input space. A kernel 
function is defined as,

K(Xi,Xj) = (0(x,), (p(Xj)). (2.18)

Some commonly used kernels are listed in Table 2.1.

The following example is taken from 1231 to better explain the idea of a feature space and 
non-linear mapping to higher dimensional spaces. Assume a one dimensional classification 
problem, given following set of data,

£> = {(1, - 1), (0, 1), ( - 1, - 1)}. (2.19)
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Table 2.1: SVM Kernel Examples

Kernel Function Description
A'(X;,X/) = xj X/ Linear dot product
K(Xj,Xj) = (yxjx7+ Complete polynomial of degree d
K(Xi,Xj) = exp (—y|x, -  Xj\2) Gaussian Radial Basis Function
K(Xi,Xj) = tanh (yxjfxy + c0) Sigmoid

Figure 2.5: Example of one dimensional non-linear classification problem with three input 
data. The decision function is plotted using a solid line. The dashed line represents the sign of 
the decision function and the classification result |23|.

This problem is illustrated in Fig. 2.5. The input data is given in a form of a 3 x 1 matrix 
x = [-1 0 117 which are labeled as y = |-1 I -  117. Considera mapping function as follows,

0>(x) = |0 i(x) 0 2(x) 0 3(x) |/ = \x2 y/2x 1 |f . (2.20)

This mapping produces following data points in the three dimensional feature space,

F =
1 -  V2 1 
0 0 1 
I V2 1

( 2 .21)

In (2.21), each row represents one point of data. Now, these three points can be separated 
linearly by the plane <#?(x) = 20i(x) in a feature space. The same solution can be found using 
a quadratic kernel function k(xiyx7) = (x7x;- + l)2. It can be easily shown that (2.18) holds 
between the above mapping and kernel function.

2.2 Local SVM-based Planner

As explained earlier, the proposed method is intended to define a potential field over the config
uration space based on configuration obstacle samples. The main idea is to build a SVM model
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over the configuration obstacle samples and derive a risk function using that model. This risk 
function will be used as the obstacle repulsive potential field.

This method is presented in three steps in the following sections; namely, obstacle sampling, 
defining a risk function, and path planning. In order to better describe the method, the out
come of each step is illustrated using simple simulations for a two degrees of freedom planar 
manipulator.

2.2.1 Obstacle Sampling

To avoid the complexity of the exact mapping of an obstacle into the configuration space, 
configuration obstacle samples can be used to estimate the corresponding obstacle region. The 
sampling algorithm used in the proposed local SVM-based planner uses the information of the 
manipulator inverse kinematics. Thus, this approach is applicable to a class of manipulators 
with known closed-form inverse kinematics equations.

The first step begins with the sampling of the manipulator links (S maniP = (Mu —  Mv|) 
with a predetermined resolution. Also, each obstacle in the workspace is sampled ( S = 
{O/0, . . . ,  Oh} represents all samples belong to <th obstacle). Next for each obstacle, the set of 
all possible collisions is generated,

Each collision (m, o) e collisions, represents a scenario in which the manipulator’s point in is in 
collision with the sample point o from the /th obstacle. Using the manipulator’s kinematics,for 
each pair, a number of manipulator configurations will be obtained. The set of configurations 
obtained from all collision scenarios is the set of samples for a specific obstacle region in the 
configuration space (Fig. 2.6),

Besides workspace obstacles, the configuration space boundaries and the manipulator joint 
limitations contribute in forming the configuration space obstacle regions. These regions, also, 
must be sampled and added to the list of configuration obstacle samples.

All obstacle samples in the configuration space will be used later to calculate a risk function.

2.2.2 Risk Function

( 2 .22)

Qobst, = UlWq) n ohst, Î 0 | C Ô (2.23)

Using obstacle sampling, it is not possible to determine accurate boundaries of an obstacle 
region. However it is reasonable to assume that a safe configuration for a manipulator is a
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Figure 2.6: (A) Workspace: Initial (solid line) and goal configuration (dashed line) for a 2DoF 
planar manipulator in an environment with three obstacles. (B) Configuration space: Initial 
(square) and goal configuration (diamond) are plotted. Each workspace obstacle and its corre
sponding samples are illustrated with the same color. Solid line is used for labeling obstacle 
samples.

configuration point with maximum distance from surrounding obstacle samples. This feature 
is exactly what the SVM provides based on the maximal margin concept.

In order to prepare the configuration space for applying the SVM method, obstacle samples 
must be first labeled as two different classes. To label obstacle samples, a similar approach 
is used in 117, 19] for two dimensions which is extended to higher dimensions here. In this 
labeling approach, given the initial and goal configurations, a hyperplane is considered as,

P( q, w p, bp) = (m/p, q) + br = 0. (2.24)

where q e Q. The parameters and bp are calculated in such a way that Piquai, w/;, bp) -  
P{qR„ai, y/P, br) = 0. Since there are many solutions for this problem, one of the hyperplanes is 
selected at random. Next, each obstacle region class is calculated as follows,

y=  X  sign(P(qs,w p,bp)) (2.25)
q>sQoi,„(

where y € {+1, -1} is the class label. In other words, this hyperplane divides the configuration 
space into two domains. Each obstacle region belongs to the domain in which the majority of 
its samples belong in (Fig. 2.7).

To this end, obstacle regions and the configuration space boundaries are sampled and labeled 
into two classes. Now the SVM can be applied directly over the configuration space. The 
output of the SVM is a decision function F(q,Wo,b0). Due to the maximal margin concept, 
the decision boundaries formed by F(q, w0, b0) = 0, are placed at maximum distance between 
obstacle samples of different classes. Thus, these decision boundaries potentially contain the 
safest possible configuration points (Fig. 2.8).
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Figure 2.7: 2D hyperplane (a line) which is used for labeling obstacle and configuration space 
boundary samples. Different classes are shown with different colors and symbols.

Figure 2.8: (A) Decision function calculated by SVM. (B) Decision boundaries shown over 
configuration space.
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Here there is a need for a procedure which is able to guide the manipulator towards the decision 
boundaries from each configuration. For this purpose, a function named risk function is defined 
as follows,

R(q) = |F(q, w0, bQ)\. (2.26)

This non-negative risk function has its minimums on decision boundaries, i.e., where R( q) = 0. 
Hence, following the negated gradient of this risk function leads the manipulator towards the 
decision boundaries that are safe configurations, away from surrounding obstacles.

2.23 Path Planning

The previous section defined a risk function based on a SVM model. The value of this risk 
function for each configuration can be interpreted as a risk value associated with that con
figuration. The configurations with lower risk values are typically more distanced from the 
configuration space obstacle samples. This statement is not always true because the curvature 
of the risk function depends also on the choice of the SVM kernel and its parameters. Thus, a 
risk function is not always able to resemble narrow passages or obstacle boundaries curvature 
(refer to Section 2.3).

Intuitively, a risk function can be used as a repulsive potential over configuration space. Follow
ing the negated gradient of this potential, leads the manipulator towards safer configurations. 
However, this function is not sufficient for finding a path for the manipulator to move toward 
the goal configuration. In order to add this motion, a simple attractive potential field based on 
the distance is introduced,

Uanractiq) = F II q -  qgoat II • (2.27)
where ¡j. is a constant predetermined gain. This attractive potential has its minimum at the goal 
configuration. Combining attractive and repulsive potentials leads to the function Uanra<-,(q) + 
R(q), whose negated gradient can be followed to reach the minimum potential and the goal 
configuration.

2.3 Case Studies and Implementation Notes

As mentioned previously, the SVM algorithm tends to build a more generalized model. Thus, 
a low sampling resolution can be compensated for, to some extent, by building a SVM model. 
However, there are two parameters in a SVM model that need to be discussed. The first param
eter is related to the SVM kernel. Intuitively, a kernel function must be a monotonic function. 
This is due to the fact that the repulsive influence of a sample on a manipulator must decrease 
monotonically as the manipulator recedes. In our study, a Gaussian Radial Basis Function was 
selected as a suitable kernel (Table 2.1). This kernel can be rewritten in the following form,

K ( X i , X i )  =  exp i-^ lx,- -  x / ) (2.28)
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where y = The parameter cr determines the neighborhood in which each sample has 
an influence. Increasing this parameter yields larger estimated regions for obstacles and also 
reduces the curvature of the resulting decision function and vice versa (refer to Section 4.1.1). 
On the one hand, an increased curvature allows a decision function to follow more accurately 
the topology of narrow passages or obstacle boundaries. At the same time, smaller estimated 
regions are closely fitted to obstacle samples and as such they may not be a proper estimation 
for the entire obstacle. Therefore, the parameter cr should be adjusted to control this trade-off.

The other parameter is the penalty parameter C. As (2.16) describes, the penalty parameter 
limits the maximum allowable repulsive gain of a sample. The samples with higher gains 
are able to force the decision boundaries to be placed at larger distances. Thus, a penalty 
parameter can bias one obstacle over the others, providing a greater safety margin for the 
selected obstacle. For example in scenarios involving humans, decision boundaries can be 
biased in order to stay farther from humans.

An other parameter in local SVM-based planner is /i which sets the gain for the attractive 
potential field. A larger value of ¡j results in a greater attractive force on the manipulator and 
vice versa. This force may assist the manipulator to pull out of a local minimum. However, if 
the force is greater than the repulsive forces, it may pull the manipulator towards an obstacle 
region. On the other hand, smaller values of increase the probability of getting stuck withing 
local minima. Since no exact information related to obstacle boundaries exist, setting this gain 
is challenging.

The proposed method in this chapter was implemented in the C++ language. The libsvm library 
was used to train a SVM model |4 |. All experiments were conducted on a 2.53 GHz Intel Core 
2 Duo CPU. The proposed method was tested on a 2 DoF planar manipulator and a simplified 
model of a CRS-F3 manipulator using its first three joints in simulation environment. The 
former manipulator was mainly used to provide explanations of the method itself (Fig. 2.6(A)). 
The results of this simulation were discussed throughout this chapter. The CRS-F3 model was 
used to assess the proposed method in a close-to-real scenario, where a manipulator needs to 
enter a car frame through its door opening (Fig. 2.9). In this scenario the door opening presents 
a narrow passage in the configuration space (Fig. 2.10(B)).

To obtain a solution some guides, named virtual obstacles, were used. The virtual obstacles 
were treated as real obstacles with an exception. The exception was that a collision between 
the manipulator and a virtual obstacle were permitted. The purpose of the virtual obstacles was 
to help the manipulator in finding a narrow passage opening. In this case, the virtual obstacles 
were three line segments perpendicular to the window planes (Fig. 2.10).

Since the virtual obstacles were actually safe configurations, the penalty parameter was set 
such that it biased real obstacles over virtual obstacles. This selection allowed the SVM to 
decrease the training error for real obstacle samples and consequently the decision boundaries 
stayed farther away from real obstacles. The calculated paths for this scenario are depicted in 
the work and configuration spaces in Fig. 2.11.
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Figure 2.9: A manipulator working on a car body frame.

Figure 2.10: (A) Counterpart simulation environment of Fig. 2.9. Green dashed lines are vir
tual obstacles.(B) Corresponding obstacle samples in configuration space. The narrow passage 
is emphasized by an arrow.

f l o r a d )  02( r a d )

(A) (B)

Figure 2.11: Path obtained using the local SVM-based planner for a CRS-F3 simplified model 
in (A) the workspace, and (B) the configuration space.
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2.4 Conclusion

This chapter introduced an innovative solution to define a potential field directly over a discrete 
configuration space. In contrast to previously suggested methods, the proposed method needed 
only samples from configuration space obstacle regions. The proposed local SVM-based plan
ner consisted of three steps. In the first step, dilferent collision scenarios were generated and 
configuration obstacle samples were obtained using the inverse kinematics of the manipula
tor. Next, the configuration space was divided into two domains to label obstacle regions. 
The labeled samples were used to train a SVM model. This model contributed in defining a 
risk function which was utilized as a repulsive potential field. Finally, this risk function and 
a simple attractive potential towards the goal configuration were combined to compose a final 
potential field over the configuration space. The negated gradient of the resulting potential 
field led the manipulator towards the goal configuration while keeping it away from obstacles. 
Simulation results for two and three degrees of freedom models were illustrated to demonstrate 
the method’s capabilities.

The main contribution of this method is to define a repulsive potential function based on con
figuration obstacle samples. The gain of these samples are automatically adjusted to repel 
the manipulator towards the configurations with maximum distance from surrounding obsta
cle samples. This is especially important when a manipulator encounters a narrow passage, 
since attuned repulsive gains may prevent the manipulator from entering the narrow passage. 
Moreover, the maximum margin concept embedded in SVM, makes the proposed method less 
sensitive to the selected sampling method and resolution (refer to Section 4.1.3).

There are, however, several shortcomings as listed in the following which require further in
vestigations,

• Decision boundaries do not always form a connected component (Fig. 2.12(A)). There
fore, the problem of local minima stills exist in this method.

• The method used for sampling required the inverse kinematics of the manipulator which 
are not always provided.

• The execution time required for training SVM and finding risk values depends on the 
number of samples. However, experiments showed that for higher degrees of freedom 
manipulators, it was always beyond real-time threshold (hundredths of a millisecond).

• Using a random hyperplane for labeling input data was not successful in practice and 
failed frequently for higher degrees of freedom, for e.g., labeling all sample points as 
one class of data.

• Due to the problem of local minima, selecting the // parameter in the attractive potential 
function is challenging.

• Due to the inclination of the SVM to find a more general obstacle region estimation, the 
final path may be placed far away from the optimal one (Fig. 2.12(B)).
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(A) (B)

Figure 2.12: Two possible problem of Local SVM-based Planner: (A) isolated decision bound
aries, and (B) a non-optimal path. In (B) the final path is shown using a solid black line.

To address the aforementioned shortcomings, some suggestions to improve the work are listed 
in the following,

• Utilizing a sampling approach used in sampling-based planners so as to decouple the 
complexity of the manipulator's structure from the sampling method,

• Embedding the risk function in a sampling-based planner in order to bias the selection 
of graph nodes and milestones,

• Using multiple SVM approach instead of labeling data into two classes. Using this ap
proach, samples of each obstacle can be labeled as a class. Then the One-Versus-Rest 
(OVR) SVM idea can be employed to find the separation boundaries between classes,

• Investigating the possibility of real-time solution if the SVM optimization procedure 
starts from a proper initial point. In other words, since in a dynamic environment the 
changes between the two subsequent time steps are small, the risk function parameters 
found for one step are potentially a good start point for the next step optimization.
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Chapter 3

Global Support Vector Machine-based 
Planner

The theoretical foundations of the Support Vector Machine (SVM) algorithm were discussed in 
Chapter 2. In a nutshell, the SVM classifiers attempt to find a decision boundary between two 
classes of data by maximizing the distance of the closest data points to the decision boundary 
(Fig. 2.3). The same principles are applied in order to obtain a path among obstacle samples 
within a robot configuration space. Since exact mapping of the configuration space is often not 
provided, SVM can become useful in estimating obstacle regions. This estimation according 
to the maximal margin concept can be used to find safe configuration points in a sampled 
configuration space.

In Chapter 2, a local planner based on the potential fields approach was proposed. In this 
method, a repulsive potential field was defined using an SVM model in a manipulator’s sampled 
configuration space. The repulsive potential field was combined with an attractive potential 
field of the goal configuration to create a final potential function. The negated gradient of the 
resulting potential function led the manipulator towards the goal configuration. However, the 
application of this method was restricted due to the following reasons; the first reason was 
that the time needed for the training of a SVM model and acquiring values of a risk function 
were typically long. Thus, the method did not meet the requirements of real-time planning as 
expected from local planners. Second, obstacle sampling in this method relied heavily on the 
inverse kinematics of a manipulator which are not always provided. Finally, similar to other 
local planners, this method still is prone to the problem of local minima.

In order to tackle the above mentioned issues, this chapter tries to develop a global sampling- 
based planner while taking advantage of the previously proposed risk function. Unlike the 
previous method, this current method is not limited to a specific type of robotic manipulator. 
The method is not, however, still intended for real-time applications.

A Probabilistic Roadmap Planner is one of the most accepted global planners which works 
on a discrete configuration space. The main idea behind a classical PRM is to build a graph

33
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composed of random collision-free samples in the robot’s configuration space |9|. This graph 
is named a roadmap and each of its nodes is called a milestone. There is an edge between 
two milestones if they can be connected safely using a local planner. If this roadmap captures 
the connectivity of the configuration space, the path planning problem boils down to a simple 
graph search task.

The PRM is able to solve difficult problems even in higher dimensional spaces. However, this 
method is not as successful when a robot’s configuration space contains narrow passages. A 
narrow passage is recognized by the small volume of free space in a part of the configuration 
space. This difficulty arises due to the low probability of picking a sample from a small volume 
of a narrow passage |7 ,9 |.

A number of schemes have been suggested to deal with this difficulty. The very first solution is 
to increase the number of milestones in narrow passages by oversampling regions identified as 
difficult. 18, 9|. A difficult region is a region which is important in capturing the connectivity 
of the configuration space and at the same maintaining the connectivity via that region is not 
an easy task. A region containing a milestone with a large Voronoi region or a few number of 
edges is typically recognized as a difficult region. As the idea suggests, these methods require 
a large number of referrals to the collision detection module. Moreover, the greater number of 
milestones increases the required time for making a roadmap 115|.

Another group of methods try to decrease the number of milestones obtained by oversampling 
to speed up the process of making a roadmap. The Gaussian Sampler and Bridge-Test methods 
retain only the milestones that are close to the obstacle boundaries [3, 6|. This approach in
creases the number of milestones in narrow passages since all narrow passages are surrounded 
by obstacles. These methods sample the configuration space in pairs. In other words, for any 
random configuration, another sample in its neighborhood according to a Gaussian (normal) 
distribution is selected. The former method keeps a collision-free sample as a milestone if the 
other sample in the pair is in collision. Similarly, the bridge-test selects the mid-sample of the 
pair as a milestone if it is collision-free and the two samples of the pair are in collision. Even 
though selecting milestones close to obstacles is a promising heuristic, the results are strongly 
dependent on the selected standard deviation for the Gaussian distribution. In the Bridge-Test 
method, an attuned parameter can decrease the number of milestones drastically; even it is 
possible to select no milestone in a narrow passage. To address this issue an appropriate value 
for the standard deviation parameter needs to be selected. However, this requires the topology 
of the configuration space which is not always available. In addition, neither of these methods 
is able to guarantee a safe margin for the obstacles and may place a milestone in a touching 
position. Unlike previous methods, Obstacle Based PRM (OBPRM) tries to sample obstacle 
boundaries instead of the free space (Fig. 1.6) |2, 1 ]. Similar to the Gaussian and bridge-test 
sample, this method increases the number of milestones in a narrow passage. However, the 
approach suffers from a number of drawbacks including the touching position of milestones 
and restrictions applied on the shape of the configuration space obstacles.

The last category of methods intended to improve the classical PRM works on a modified con
figuration space and then transfers the solution to the original one. These methods are called
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Dilation and Retraction-Based methods 112, I4|. These methods shrink the manipulator links 
and the workspace obstacles to broaden the corresponding narrow passages in the configura
tion space. The milestones selected in this space need to be fixed before being transferred to 
the intact configuration space. In other words, milestones positioned on the actual obstacles 
must be repaired. One idea is to correct all misplaced milestones. However, this approach is 
not efficient since the milestones deeply buried into the obstacles are a bottleneck for the per
formance of the algorithm. An alternative is to compute a penetration depth for each milestone 
which comes at the expense of complex geometry operations. These operations are difficult to 
implement in higher dimensional spaces.

Considering the shortcomings of the previous methods and the local SVM-based planner, a 
new global sampling-based planner is proposed in this chapter. There are two main motiva
tions behind this approach. The very first motive is that unlike free-space sampling, obstacle 
sampling does not encounter the problem of picking samples from the small volume of a nar
row passage. The second is that providing no information about the obstacle boundaries, the 
probability of a collision, intuitively, is decreased by selecting configurations that are farther 
from obstacles samples. The proposed method builds a risk function in the configuration space 
based on samples from the obstacle regions. This risk function is calculated using the SVM 
method. As a result, its local minima are placed in maximum distance from the surrounding 
obstacle samples. This risk function is used to spur the milestones to appropriate safe positions.

The rest of this chapter is organized as follows; Section 3.1 presents a new method for obstacle 
sampling. Section 3.2 explains the procedure of calculating a risk function. This risk function 
plays an important role in the proposed method. Section 3.3 describes the approach for gener
ating milestones followed by making a roadmap. Simulation results related to a 2 DoF point 
robot are discussed in Section 3.4. Finally, Section 3.5 concludes the chapter and lists some of 
possible future directions.

3.1 Obstacle Sampling

The idea behind obstacle sampling is to avoid the exact mapping of an obstacle into the config
uration space. Since exact mapping of the obstacles is computationally expensive, the planning 
problem is solved in a discrete (sampled) configuration space. These obstacle samples are used 
to estimate the obstacle regions in the configuration space.

Therefore, the very first step in the proposed sampling-based planner is to obtain configuration 
space obstacle samples. Since each obstacle region is estimated only based on its samples, 
samples from different obstacles must be recognizable. The problem is that even for convex 
workspace obstacles, it is not guaranteed that the corresponding configuration space obstacles 
are connected 1131. Thus, it is not feasible to use a uniform sampler.

Instead, an obstacle sampling approach similar to Rapidly-exploring Random Trees (RRT) 11 I ] 
is proposed (Algorithm I). This approach grows a tree similar to RRT to find obstacle samples
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(Fig. 3.1). The only difference is that trees instead of free-space are expanded over obstacle 
regions. This approach of tree expansion biases the expansion towards unexplored regions. 
This is due to the fact that a node is selected for expansion by a probability that is proportional 
to the area of its Voronoi region 11()|.

The obstacle sampling method grows a number of trees typically equal to the number of obsta
cle regions. Each tree is rooted at a given configuration space obstacle sample selected from 
a specific obstacle region. In order to expand a tree, at each iteration a random configuration, 
qranj, is generated. Then, the nearest node of the tree to this configuration, qexrimsi<m, is deter
mined. Next, a new configuration, q,ww, is calculated such that it is distanced one step from 
qexpansion towards qrcw,j■ If qnew is in collision, it will be added to the tree. Otherwise, qeXpansi<»T 
will be labeled as a boundary sample and qnew is ignored. The samples marked as boundary 
will be used later to find milestones. The expansion procedure continues until a predetermined 
number of nodes are added to the tree.

Algorithm 1 Obstacle Sampling
I: samples 0 
2: Add q<) to samples
3: A:predefmed number of samples requested per CSpace obstacle 
4: while samples.size < N do 
3: qnmd <— random sample from CSpace
6: qexpansion «-closest node to qran<i
7: Calculating qnew by expanding qexpmsi«n toward qrami for one step
8: if qnew is in free CSpace then
9: Label q expansion as boundary sample

10: end if
11: Add q„ew to samples
12: end while
13: return samples

3.2 Risk Function

The risk function is the core component of the proposed method. This function determines the 
configurations with maximum distance from surrounding obstacle samples (i.e. the middle of 
a narrow passage). These configurations have a high probability to be safe and are suitable for 
placing milestones.

A risk function is calculated based on a trained SVM model over the obtained configuration 
space obstacle samples. Assume that samples related to two obstacle regions are provided. 
Using two different labels for samples from different regions and applying SVM, a decision 
function, F(q,y\'0,bo). is obtained (Fig. 3.2(A)). As explained in Section 2.1, this decision 
function divides the configuration space into three domains, i.e.,
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•  if F (q, Wo, bo) > 0, q belongs to Class + 1 .

• if F{q, w0, bo) < 0, q belongs to Class - 1.

• if F (q, w0, bo) = 0, q belongs to the decision boundaries.

Since the SVM method maximizes the margin between two classes, this function is opti
mized to place the decision boundaries at maximum distance from surrounding obstacles (Fig. 
3.2(C)). Depending on selected values of the SVM parameters, the maximum distance may 
not be always satisfied . Nevertheless, these configurations are a proper choice for placing 
milestones.

The linear SVM method is not an appropriate choice for estimating configuration space obsta
cles. Therefore, a non-linear SVM kernel must be used in training a SVM model. The problem 
is that by using a non-liner kernel, the decision boundaries cannot be calculated analytically. 
Therefore, to provide a systematic procedure to reach the configurations on the decision bound
aries, a function is defined as,

R(q) = |F (q ,w 0,iho)|. (3.1)

This non-negative function with local minima on decision boundaries is called a risk function 
(Fig. 3.2(B)). Hence, starting at a configuration q. the negated gradient of R(q) can be followed 
to reach a local minimum, i.e., a point on the decision boundaries.

A similar solution can be easily extended to the cases with more than two obstacle regions. 
This is achieved by associating a risk function to each obstacle region. In other words, first 
all samples related to one obstacle region are labeled as one class. Next, a multi-class SVM 
approach known as One-Versus-Rest (OVR) is taken to find a set of risk functions. Assuming 
n classes of data exist, this approach trains n SVM models such that each model separates one 
class from the rest of the classes. Consequently, n number of risk functions are obtained based 
on the trained models. The resulting risk function in each scenario is assigned to a region which 
is classified against the others.

3.3 Obtaining Milestones and Making a Roadmap

To obtain milestones and create a roadmap, multiple obstacle regions were sampled and each 
region was associated with a risk function. Each of these risk functions has its local minimum 
in a maximum distance from surrounding obstacles. This condition is not always satisfied 
depending on the choice of the SVM kernel and its parameters. The kernel and its parameters 
determine the curvature of the risk function and the region of influence for each sample (refer 
to Section 4.1.1). Hence, a risk function is not always able to represent a narrow passage or 
obstacle boundaries.

As mentioned previously, in a sampled configuration space, the configurations that are more 
distanced from obstacle samples are more likely to be safe and collision-free. This is exactly
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the condition that is fulfilled on the local minimum of a risk function. The local minimum 
coincides with the decision boundaries of the corresponding SVM model. Due to the use of 
non-linear kernels, these decision boundaries can not be calculated analytically. However, start
ing from a random configuration and seeking the negated gradient of a risk function typically 
end in a point on the decision boundaries. Because a risk function is not monotonic all over 
the configuration space, this procedure does not always reach the decision boundaries. How
ever, selecting a monotonic SVM kernel, the risk function will be monotonic near the decision 
boundaries. Because these boundaries are placed among obstacles, samples close to the obsta
cle boundaries have higher probability to fall in these regions. Therefore, instead of adopting 
random starting points, the previous obstacle samples labeled as boundary are chosen. The 
boundary samples from each region follow the negated gradient of the risk function associated 
with that region to reach the local minimum. The final point will be added as a milestone if it 
is collision-free (Fig. 3.3).

There are several advantages in this approach of selecting milestones. One, due to unknown 
topology of the configuration space, re-using boundary obstacle samples speeds up the process 
with fewer referrals to the collision detection module. Second, if a region is sampled suffi
ciently, this method distributes the milestones more uniformly over the configuration space. 
Moreover, a proper model and risk function pushes the milestones towards configurations with 
maximum distance from surrounding obstacle samples, i.e., the middle of a narrow passage. 
Finally, provided a sufficient number of samples, milestones can be placed in a known dis
tance from obstacle samples (refer to Section 4.1.1). This distance is adjustable by appropriate 
selection of the kernel parameter.

After obtaining a set of milestones, in order to make a roadmap, each milestone becomes con
nected to a predetermined number of closest milestones not in the same connected components 
(Fig. 3.4). If this connection is feasible using a local planner, an edge will be added between the 
two milestones. Creating a roadmap, each query will be answered by searching the roadmap 
for a path between closest nodes to the requested initial and goal configurations.

3.4 Simulation Results and Implementation Notes

The proposed method was implemented in the C++ language. The libsvm and Robust and 
Accurate Polygon Interference Detection (RAPID) libraries were used to train SVM models 
and detecting collisions, respectively |4, 5|. All simulations were conducted on a 2.53 GHz 
Intel Core 2 Duo CPU. The proposed method was evaluated on a 2 DoF point robot in the 
simulated environments. The results of the simulation for the point robot are demonstrated 
in this chapter and compared to the classical PRM results. The rest of the results along with 
parameter analysis are discussed in the next chapter.

The first simulation environment for a 2 DoF point robot is shown in Fig. 3.5. An identical 
problem is solved using both the classical PRM and global SVM-based planners with the same 
number of samples picked from the configuration space.
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Table 3.1: Comparison of the number of referral to the collision detection module (CD) and 
the local planner (LP) for the classical PRM and the proposed SVM-based method (SVMP). 
The number of generated milestones and the execution times are compared.

Environment Planner CD LP Milestones Time (ms)

Fig. 3.5 SVMP 2384±I08 91 ±1 47±2 74±2
PRM 4297+187 284±58 168 ±5 91 ±9

Fig. 3.7 SVMP 8027±408 756+117 190±9 1041±48
PRM 16073+1917 2919+601 962±20 872±32

The comparison between the results of the two methods are depicted in Fig. 3.6. In this 
experiment both planners were able to find a path but the PRM could not pass through the 
narrow passage.

In another experiment, the proposed method was evaluated in a more challenging environment 
(Fig. 3.7). The narrow passage in this environment is longer and preserving the connectivity 
of the configuration space is more difficult.

Similar to the previous experiment, this problem was solved using both the classical PRM and 
global SVM-based planners. The comparisons of the results are shown in Fig. 3.8. In this 
experiment, the classical PRM was not able to capture the connectivity in several different 
executions.

Table 3.1 compares the number of referral to collision detection module and the number of 
times that the local planner was called in multiple execution of previous studies. As it was ex
pected, the number of milestones and referral to the collision detection module is significantly 
less in the global SVM-based planner. However, in these simulations, the total execution time 
of the classical PRM is typically less than the global SVM-bsed planner. The reason is that 
training of SVM models and acquiring the risk function values are time consuming.

3.5 Conclusion

This chapter proposed a global SVM-based planner that improved the capability of the classical 
PRM planner in environments containing narrow passages. The proposed method started by 
sampling obstacle regions using a method similar to RRT. Next, the resulting samples were 
classified into a number of classes. The One-Versus-Rest SVM approach was utilized to build a 
set of risk functions. These risk functions had their local minimum on the corresponding SVM 
model decision boundaries. Thus, they were used to place milestones at maximum distance 
from obstacle samples. The proposed method was tested on a 2 DoF point robot. The results of 
the simulation performed on the point robot were discussed to show the ability of the planner 
to solve problems containing narrow passages.

The main contribution of the proposed method is related to the definition of a risk function.
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This function, which is calculated based on a SVM model, is able to determine the safe config
urations with maximum distance from surrounding obstacle samples. Sampling the obstacles 
instead of the free space alleviates the problem of picking samples from the small volume of a 
narrow passage. Since no boundary information about the obstacles are provided, staying at a 
maximum distance decreases the probability of a collision. Due to this approach, the proposed 
method is able to use fewer milestones that are placed in appropriate positions to capture the 
connectivity of the configuration space. The fewer number of milestones and the method used 
for selecting milestones, decreases the number of referral to the collision detection module. 
The smaller number of referral to the collision detection module improves the speed of the 
planner in challenging situations. The method also distributes the milestones more uniformly 
over the configuration space. Utilizing SVM and the notion of maximal margin embedded 
in SVM results in a planning method which is less sensitive to the sampling method and the 
resolution.

There are, however, some issues which need further investigations,

• Alternative obstacle sampling methods that focus on boundary samples can replace the 
current sampling method.

• Due to the fact that a SVM model is trained over the entire configuration space, the 
act of acquiring a risk function value becomes time consuming. However, based on the 
selection of the SVM kernel parameters, the influence of the sample points far from a 
given configuration is zero at that configuration. Hence, some heuristics can be used to 
obtain the result of a risk function faster.

• Even though the proposed planner tries to place milestones in safe positions, the resulting 
roadmap may be composed of different connected components. Therefore, improving 
roadmap connectivity must be the next step. This is achievable by generating random 
points near a region of disconnectivity and guiding them towards the decision bound
aries. This approach increases the number of milestones and consequently improves the 
roadmap connectivity.

• In situations in which obstacle regions are dominant, more samples are necessary in order 
to have a good estimation of the obstacle regions. In this situation the classical PRM may 
perform better. Thus, the idea of combining these methods should be investigated.

• Since the method is less sensitive to sampling resolution, utilizing the idea of incremental 
sampling can potentially improve the performance.

• Since in dynamic environments the change between two subsequent time steps is not 
substantial, the result of the SVM in one step can be used as the initial point for the 
next step optimization. Using this approach, it is conjectured that the global SVM-based 
planner can be extended to real-time environments.
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Figure 3.1: Different steps of obstacle sampling using RRT. Boundary samples are enclosed in 
circles. The samples from two different obstacles are labeled as two classes.
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(C)

Figure 3.2: Output of the SVM method and the resulting risk function. (A) Decision function, 
(B) risk function, and (C) decision boundary.
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Figure 3.3: Generated milestones illustrated using black dots.
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Figure 3.4: Resulting roadmap created based on generated milestones (shown as black dots).
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Figure 3.5: A test environment for a point robot containing a narrow passage. The Initial and 
goal configurations are shown with a square and a diamond, respectively.
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Figure 3.6: Comparison between the results of the classical PRM and the proposed SVM-based 
planner in different steps. (A) milestones, (C) roadmap, and (E) the final path generated using 
the proposed method. (B) Milestones, (D) roadmap, and (F) the final path generated using the 
classical PRM method.
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Figure 3.7: A test environment for a point robot containing a narrow passage. The Initial and 
goal configurations are shown with a square and a diamond.
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Figure 3.8: The comparison between results of the classical PRM and the proposed method 
in different steps. (A) Milestones, (C) roadmap, and (E) the final path generated using the 
proposed method. (B) Milestones, (D) roadmap, and (F) the final path generated using the 
classical PRM method.
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Chapter 4

Case Studies and Experimental Results

The previous chapter introduced a new sampling-based planner that utilized the notion of a risk 
function. This planner differs from a classical PRM planner in the configuration space sampling 
method and generating milestones. The proposed method began by sampling obstacle regions 
instead of the free space to create a set of risk functions. Each risk function was optimized 
using the SVM method to have its local minimum at maximum distance from surrounding 
obstacle samples. Finally a set of milestones was generated on local minima of the calculated 
risk functions to make a roadmap. The method was tested on a two degrees of freedom point 
robot in two challenging environments and the results were discussed.

This chapter studies the same method more throughly in higher dimensional spaces. Moreover, 
the chapter investigates the effect of different parameters involved. All designed scenarios were 
solved using both the proposed method and the classical PRM planner and compared. The 
comparison of the results are reported. The main purpose of these studies is to evaluate the 
performance of the proposed planner in higher dimensional spaces. All case studies were, to 
some extent, challenging in a sense that the configuration space contains narrow passages. The 
simulation studies were performed using high degree of freedom planar robots and a CRS-F3 
articulated manipulator. The final solutions obtained for the CRS-F3 were implemented on a 
real CRS-F3 manipulator to verify their accuracies.

The rest of the chapter is organized as follows; Section 4.1 discusses the effect of different pa
rameters involved in the method. Section 4.2 illustrates different case studies and compares the 
results of the global SVM-based planner with classical PRM. Section 4.3 discusses about some 
implementation notes to improve the method. Moreover, this section describes the structure of 
the developed application for later references. Finally, Section 4.4 concludes the chapter.

50
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4.1 Parameter Analysis

There are different parameters involved in global SVM-based planners. Two of these parame
ters are related to the SVM algorithm and are common between the proposed local and global 
planners. In addition, there are parameters regarding obstacle sampling method which are 
discussed in this section.

There are many different choices for a SVM kernel, some of which are listed in Table 2.1. Due 
to the nature of the problem at hand, the only sensible assumption is that the influence of an 
obstacle sample decreases as the distance from the obstacle increases. Thus, the choices of 
the kernel are limited to monotonic kernels. In this body of work, the Radial Basis Gaussian 
Function (RBF) was selected as the kernel for SVM models, i.e..

The y  is the only adjustable parameter in this kernel, which is related to the region of influence 
of each obstacle sample. Increasing y shrinks the region of influence of each sample and vice 
versa. To analyze this parameter, an equivalent notation of the RBF kernel was used, i.e.,

where y  -  . The cr parameter in this definition, unlike y, has a direct relation to the region
of influence. In other words, increasing cr broadens the region of influence of each sample 
and vice versa. Therefore, this parameter can directly control the margin between a decision 
boundary and a class of samples where no other classes interfere. This parameter, also, affects 
the curvature of a risk function and decision boundaries. Several decision boundaries are shown 
in Fig. 4.1 related to different values of cr. As illustrated, a large value of cr decreases the 
curvature of the decision boundaries whereas small values of cr cause overfitting.

Even though setting a proper value for this parameter requires knowledge about the configu
ration space, by selecting a small value of cr and a high sampling resolution we can overcome 
this issue. In this case, the larger number of samples compensates for the problem of overfit
ting which may happen due to the small value of cr. It is recommended to set cr such that the 
influence regions of two neighboring samples have an overlap with each other. This approach 
avoids overfitting and does not let the SVM optimization algorithm divide an obstacle region 
into smaller regions.

4.1.1 SVM Kernel

(4 . 1)

K(Xi, Xj) = exp(-— |x( -  x / ) (4 .2)

4.1.2 Penalty Parameter (C)

This parameter becomes especially important in building a model where zero training error 
is not possible (refer to Section 2.1.2). In a planning problem, due to unknown topology of
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(A) ir = 0.2 (B) <x = 0.5

(C) cr — 1.0 (D) it = 2.0

Figure 4.1: Effect of the parameter cr on the curvature of the decision boundaries (blue solid 
line) and estimated obstacle regions. The width of the narrow passage is 1.0 in the simulated 
environment. The milestones and two classes of obstacle samples are shown in black dots, blue 
plus signs, and red stars, respectively.
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the configuration space and inaccurate nature of the sampling methods, estimating a proper 
curvature using cr is difficult. Thus, it is probable to have a model with non-zero training error.

The penalty parameter is intended to bias some samples over others. These biased samples are 
able to have more influence on the decision boundaries and a risk function as shown in Fig. 
4.2. According to (2.16) the amount of the influence of each sample, a,, is constrained by C. 
Hence, in environments involving humans, obstacles can be prioritized. Those obstacles that 
need a greater safety margin can be biased over others. On the other hand, by limiting the 
influence of some obstacles among others, the planner can be permitted to consider collisions 
with specific obstacles in order to obtain a solution in challenging scenarios.

4.13 Sampling Parameters

Similar to other sampling methods, increasing sampling resolution yields a more accurate esti
mation of the obstacle regions. However, in this method providing a more uniform distribution 
is more important than the sampling resolution, as the effect of the resolution can be compen
sated for by setting an appropriate value of cr parameter.

In a local SVM-based planner, samples are obtained by considering a number of collisions be
tween specific control points on each link and obstacle sample points in the workspace. In this 
approach increasing the number of control points and obstacle sample points will increase the 
configuration obstacle sampling resolution. This method for obtaining configuration obstacle 
samples properly distributes the samples. However, the method is limited to situations where 
the inverse kinematics of a manipulator is known.

The global SVM-based planner employs another approach for sampling. Unlike the local 
SVM-based planner, this approach does not require the inverse kinematics of a manipulator 
and as a result is more general. This sampling method expands a tree on each obstacle region 
similar to the RRT expansion method. The procedure for the tree expansion involves two pa
rameters; namely the sampling step, and the number of samples. The sampling step parameter 
determines the maximum distance that a node can reach after one level of expansion. A large 
value of this parameter typically speeds up the process of obstacle region exploration. How
ever, obstacle regions that are separated by a free space narrower than the step parameter, might 
be captured as one obstacle region during the expansion procedure (Fig. 4.3).

The other parameter is the maximum number of nodes that each tree contains. Each tree is 
expanded until the number of its nodes reaches a predetermined value. Even though a greater 
number of samples improves the estimation, it also increases the required processing time 
for training a model and calculating risk function values. Typically, picking a larger number 
of samples results in discovering a larger number of boundary samples. This, consequently, 
results in a greater number of milestones.

Taking a closer look at Fig. 4.3, a behavioral model can be defined for the cr parameter. 
The smaller sigma values should be selected as the number of samples or the step size in
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creases. However, this statement is true if different obstacle samples do not cross the other 
region boundaries as shown in the last column of Fig. 4.3.

4.2 Case Studies and Experimental Results

The global SVM-based planner has been evaluated in several environments. We considered 
simulated and experimental setups and all environments were designed to be, to some extent, 
challenging. In the first case, a high degree of freedom planar manipulator was used in a 
simulated environment. Even though the manipulator was planar, the solution was required to 
be generated in a high dimensional configuration space. Hence, the fact that a manipulator was 
a planar one did not reduce the complexity of the problem. Next,aCRS-F3 robotic manipulator 
was employed to study the capabilities of the proposed method. The generated paths were also 
implemented on a real CRS-F3 manipulator and the results proved the validity of the solutions. 
In addition, all problems were solved using both a SVM-based planner and a classical PRM 
multiple times. The average results over successful executions are reported and compared when 
the success rates were in the same range and more than 60 percents.

4.2.1 High Degree of Freedom Planar Manipulator

Two different planar manipulators were used in this study. Since all solutions were to be 
found in the manipulator’s configuration space, the use of a planar manipulator did not simplify 
the problem. These two planar manipulators and their simulated environments are described 
separately in the following sections.

Five Degrees of Freedom Planar Manipulator

The first simulation environment along with the desired initial and goal configurations are 
illustrated in Fig. 4.4. Such a problem represents a class of environments for which a solution 
cannot be easily obtained using local planning methods. The solution obtained using the global 
SVM-based planner is shown in Fig. 4.5. Table 4.1 shows the comparison of the results 
with those obtained using a classical PRM planner. This comparison clearly shows that the 
time spent on the training of SVM models and acquiring risk function values can significantly 
slow down the process in comparison to a classical PRM method. However, as expected, the 
global SVM-based can solve the problem with fewer number of milestones and referrals to the 
collision detection module.
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Figure 4.2: Effect of the penalty parameter C on biasing obstacle samples. Samples of the 
lower shape are biased in (B) and (C).

Table 4.1: Comparison of the global SVM-based (SVMP) and the classical PRM planner in 
the environment shown in Fig. 4.4. CD and LP refer to the number of referrals to the collision 
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP 17993±1745 1770±383 171 ±8 102487±5074
PRM 21833±1874 3165±467 324±20 895±71
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Figure 4.4: Initial (solid black line) and goal (dashed gray line) configurations of a five degrees 
of freedom planar manipulator surrounded by four obstacles. Link one and four are l .0 m long. 
Link two, three, and five are 0.5 m long. All links are 0.01 m wide.

Figure 4.5: Resulting path using the global SVM-based planner.
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Figure 4.6: Initial (black) and goal (gray) configurations of a six degrees of freedom planar 
manipulator with two obstacles. Link one and four are 1.5 m long. Link two, three, five, and 
six are 1.0 m long. All links are 0.5 m wide.

Six Degrees of Freedom Planar Manipulator

A similar test was repeated for a planar manipulator with six serial revolute joints as depicted 
in Fig. 4.6.

One of the possible solutions calculated using the proposed method is illustrated in Fig. 4.7. 
The same pattern as that observed in the previous simulation studies was repeated in this case 
(Table 4.2). However, as complexity of the problem increases, the difference between the two 
planners in their number of referrals to the collision detection and the local planner modules 
increases.

4.2.2 CRS-F3 Robotic Manipulator

The Thermo CRS F3 manipulator is an articulated manipulator with six degrees of freedom 
(Fig. 4.9(A)). This manipulator is connected to a PC through a C500C controller (Fig. 4.8).
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Figure 4.7: Resulting path using the global SVM-based planner.

This controller communicates with a PC via a serial port and transfers the commands given by 
the user to the manipulator via a fiber optic cable. In this study, the manipulator links were 
estimated using cubic polygons (Fig. 4.9). This simplification facilitated the use of the RAPID 
collision detection library. At each step, the location of each link was calculated using the 
manipulator’s Denavit-Hartenberg (DH) parameters (Table 4.3). Afterwards, each link was 
tested against collision with any of the obstacles in the environment.

Table 4.2: Comparison of the global SVM-based (SVMP) and the classical PRM planner in 
the environment shown in Fig. 4.6. CD and LP refer to the number of referrals to the collision 
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP 47722±2144 3754±526 559±32 138743±6182
PRM 53281±5454 5503±1264 1121±44 3278±328
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Figure 4.8: A C500C controller which connects the CRS-F3 manipulator to a PC.

Table 4.3: DH parameters of a CRS-F3 articulated manipulator.

/ Oli-1 ai- 1 di 0i
1 0 0 0.35 0|
2 n i l 0.1 0 02 + n i l
3 0 0.265 0 03
4 n i l 0 0.27 04
5 - n i l 0 0 05
6 n/1 0 0.075 06
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(A) (B)

Figure 4.9: (A) Actual and (B) simulated models of a CRS-F3 articulated manipulator.

Table 4.4: Comparison of the global SVM-based (SVMP) and the classical PRM planner in the 
environment shown in Fig. 4.10. CD and LP refer to the number of referrals to the collision 
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP 50309±2808 1557±246 221±11 137618±6926
PRM 61759±2389 2752±425 360±9 5743±280

Moving between Obstacles

In our first experiment, the CRS-F3 manipulator was moved between two T-shaped obstacles 
(Fig. 4.10). The manipulator was limited by its joint motions while moving between two obsta
cles that simulated a narrow passage situation. Fig. 4.11 shows four snapshots of the resulting 
path. The results of the SVM-based method and the classical PRM planner are compared in 
Table 4.4.

Similar to the previous case studies, the global SVM-based planner was able to solve the prob
lem with a fewer number of milestones, and fewer referrals to the collision detection and local 
planner modules. However, the execution time is less in the classical PRM method.
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Figure 4.10: Initial (blue) and goal (gray) configurations of a six degrees of freedom CRS-F3 
manipulator within two T-shaped obstacles.

Table 4.5: Comparison of the global SVM-based planner (SVMP) and classical PRM in the 
environment shown in Fig. 4.12. CD and LP refer to the number of referrals to the collision 
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP 502013±37309 76148±8183 3591±458 544392±22219
PRM 1142015±79993 112183±4411 14313±37 234572±5465

Cubic Frame and Bar

In our last experiment, a cubic frame was attached to the end-effector. In this case, the manip
ulator required to move the frame along a bar without making a collision (Fig. 4.12). Solving 
this problem was difficult since the manipulator had many restrictions on each joint. Since 
the SVM classification required two classes of obstacles, another auxiliary bar was arbitrarily 
placed in the environment. The classical PRM planner frequently failed to solve this problem. 
However, as Table 4.5 shows the same pattern regarding the number of milestones, the number 
of referrals to the collision detection and local planner modules, and the execution time were 
repeated here. Fig. 4.13 illustrates an actual CRS-F3 manipulator while tracking the resulting 
path of the global SVM-based planner.
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Figure 4.11: Snapshots of the resulting path using the global SVM-based planner.
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Figure 4.12: Initial (blue) and goal (gray) configurations of a six degrees of freedom CRS-F3 
manipulator with a cubic frame end-effector. The frame is 9 cm long and 1.2 cm wide. The bar 
is 0.4 cm x 0.4 cm in cross section and 104 cm long.

4.3 Implementation and Application Notes

This section describes some of the ideas applied in practice to improve the performance of the 
method. A brief description of the developed application is given in order to facilitate later 
referrals to the implemented code.

43.1 Implementation Notes

Several heuristics and improvements were employed in implementing the current method. The 
first modification was to consider the fact that in a configuration space different dimensions 
did not have the same importance. More specifically, the motion of the lower joints of a ma
nipulator is of higher importance as such motions propagate through the upper joints of the 
manipulator. As a result, the motion of the lower joints must be sampled with a higher resolu
tion. Due to this reason, the distances in a configuration space were calculated as follows.

disti qo.qi)
A ,/-l

H’dfqo, - qi„)2 (4.3)
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Figure 4.13: Snapshots of the solution generated using the global SVM-based planner in the 
environment shown in Fig. 4.12.

where n was the number of joints and w, was the weight assigned to the i'h dimension. This 
approach biases the obstacle sampling procedure to have a higher resolution in the lower di
mensions.

The second modification was made in acquiring the value of a risk function where the value of 
exp(-5) = iT3 was considered as zero. The global SVM-based planner spends a great portion 
of its time in finding milestones. This process is time consuming because of the risk function 
calculations. This modification could improve the execution time up to 60% in some cases.

43.2 Application Notes

The current method was implemented in the C++ language. The implementation consisted of 
four main classes which are explained in following sections. Understanding these classes are
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necessary in order to apply the method to new environments.

WsObstacle Class

This class is the base of all obstacles that exist in an environment. This class stores an actual 
obstacle in the form of a RAPID ..model and its transformation related to the world coordinates. 
This way of representation is aimed to facilitate the use of the RAPID library 111. Therefore, 
each obstacle must represent itself in this form in its constructor, which is a collection of 
triangles.

Environment Class

This class contains a set of Obstacle instances and represents an environment.

Manipulator Class

This class is the base class for all types of manipulators. Any new manipulator must extend 
this class and implement the following methods,

• CalcDhParam which returns the requested link parameters based on the current values 
of the joints.

• IsCollidingWith which takes an instance of Environment class as input and returns the 
identification number of the obstacle which is in collision with the manipulator. If the 
manipulator is not in collision the method must return zero.

• IsMeetingConstraints which tests a given configuration against joint limits and self 
collision. In order to fully capture the configuration space obstacle regions, this method 
should be called in the IsCollidingWith method.

Planner Class

This is the core class of the method in which all different steps are implemented explicitly. 
This class works on a given instance of Manipulator and Environment classes. Each step is 
executed by calling a method and has a state variable that must be set at least once prior to its 
call. All steps of the planner are implemented in the following methods,

• SampIeObstacle which takes an initial obstacle sample point as the root of the tree and 
expands it over the enclosing obstacle region. The corresponding options can be set 
using the set sampling-params method.
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• TrainMultiSVM which takes obstacle samples and returns a set of trained SVM models.
The corresponding options can be set using the setJivmqjarams method.

• FindBoundaryMilestones is responsible for generating milestones based on the previ
ously trained SVM models and obstacle samples. The corresponding options can be set 
using the set-find.milestones-param method.

• MakeRoadmap which makes a roadmap by adding possible connections between given 
milestones using a local planner. The corresponding options can be set using the set.roadmajparams 
method.

• Query which performs a query on the results of the last step to find a path between 
given initial and goal configurations. The corresponding options can be set using the 
set .query -params method.

In summary, the method starts by defining a manipulator, obstacles, and an environment. Then 
each of the above method are called in the given order to find the final solution.

4.4 Conclusion

The proposed global SVM-based method was evaluated in different environments and the re
sults were reported. Considering two simulation environments discussed in Chapter 3, the 
following pattern was clearly observed in the comparisons. The global SVM-based planner 
was able to solve the problem with a fewer number of milestones and less number of referrals 
to the collision detection and local planner modules. However, the classical PRM planner was 
typically faster. To be compatible with RAPID library, all environments were modeled as a 
collection of triangles. It should be noted that in all cases, the number of triangles used for 
modeling the entire environment, including the manipulator, never exceeded 50. Therefore, 
the effect of the smaller number of calls to the collision detection module in the execution 
time was underestimated. This issue is of paramount importance where the performance of the 
collision detection module becomes a bottleneck for the performance of the overall method. 
The performance of a planner becomes highly dependent on the collision detection module in 
cluttered environments and in situations where an environment is more precisely modeled.
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Chapter 5

Conclusion and Future Directions

This body of work introduced the notion of a risk function in the robot’s configuration space. 
A risk function was calculated using configuration space obstacle samples. The risk function 
allowed the determination of safe configurations in a discrete (sampled) configuration space. 
In a sampled configuration space no obstacle boundary information is provided. The only 
valid assumption is that the probability of a collision decreases as the distance to the obstacle 
samples increases. Due to this reason, a safe configuration was defined as a configuration with 
the maximum distance from the surrounding obstacle samples. The Support Vector Machine 
method provided a risk function with this property. More precisely, the function had its local 
minimum on the decision boundaries of a SVM model which were maximally distanced from 
obstacle samples.

This definition of a risk function was first used as a repulsive potential field in a local SVM- 
based planner. Taking this approach, a potential field was directly defined over a sampled 
configuration space. In this method, a manipulator stayed in a safe distance from obstacle 
samples by following the negated gradient of the calculated risk function. This function was 
combined with an attractive potential field in order to pull the manipulator towards the goal 
configuration, simultaneously. The proposed method was evaluated in a simulated environment 
for two different manipulators with two and three degrees of freedom. The shortcomings of 
this method which restricted its application in practice was highlighted. The very first issue 
was related to the embedded obstacle sampling method that heavily relied on a manipulator's 
inverse kinematics. As a result, the method was limited to a certain class of manipulators with 
known inverse kinematics. The second issue was related to the execution time of the method 
that made it not suitable for real-time applications. Local planners are typically expected to 
work in real-time. Finally, similar to many other local planners, this method was prone to the 
problem of local minima.

To address the aforementioned shortcomings, another planner was suggested in Chapter 3 that 
again adopted the notion of the risk function. This method was a global planner and intended 
to improve the performance of classical PRM planners. A classical PRM planner is not suc
cessful in environments containing narrow passages. The proposed method began by sampling
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the configuration obstacle regions to make a risk function. In contrast to the previous sampling 
method proposed for the local SVM-based planner, the sampling method decoupled the sam
pling process from a manipulator’s structural complexities. The suggested sampling method 
developed a number of trees similar to RRT but over obstacle regions. This set of obstacle sam
ples was used to train multiple SVM models and consequently risk functions. The obtained risk 
functions were employed to generate a set of milestones with the maximum distance from the 
surrounding obstacle samples, i.e., the middle of a narrow passage. This method was eval
uated and compared to the classical PRM planner in different environments. The simulation 
results were discussed in Chapters 3 and 4. Two of the case studies evaluated the method on a 
CRS-F3 manipulator. In these cases, the final solutions were implemented on a actual CRS-F3 
manipulator in order to validate the solutions.

The main contribution of this body of work is the introduction of a risk function in a SVM- 
based planner. This function is calculated using the optimization technique embedded in the 
SVM method. Since a risk function is able to find safe configurations at maximum distance 
from surrounding obstacle samples, it can be combined with different methods. Also, employ
ing SVM results in a risk function that is less sensitive to the selected sampling method and 
resolution. The second contribution of the work is to propose a local method based on a risk 
function. The risk function that is used as a repulsive potential is created by adding the repul
sive force of each obstacle sample. This approach differs from previous works in a sense that 
each repulsive force is automatically adjusted to keep the manipulator at maximum distance 
from surrounding obstacle samples. The third contribution of this work is the introduction of a 
global planner that utilizes a risk function to find a set of well-placed milestones. This method 
is able to solve a problem with a smaller number of milestones, especially in environments 
containing narrow passages. Moreover, this method requires fewer referrals to the collision 
detection and local planner modules in comparison to the classical PRM planner. This feature 
becomes specially important within cluttered environments.

5.1 Future Directions

To the best of our knowledge, this is the first time that support vector machine algorithms have 
been used in the context of path planning for higher degrees of freedom robot manipulators. 
There are several remaining issues that require further investigation,

• Evaluating the method in scenarios where the performance of the method heavily de
pends on the performance of the collision detection module. A cluttered environment 
and an environment modeled in details are two possible scenarios.

• The study of alternative obstacle sampling methods that focus on boundary samples.

• Due to the fact that a SVM model is trained over the entire configuration space, the 
act of acquiring a risk function value becomes time consuming. However, based on the 
selection of the SVM kernel parameters, the influence of the sample points far from a
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given configuration is zero at that configuration. Hence, some heuristics can be used to 
obtain the result of a risk function faster.

• Even though the proposed planner tries to place milestones in safe positions, the resulting 
roadmap may be composed of different connected components. Therefore, improving 
roadmap connectivity must be the next step. This is achievable by generating random 
points near a region of disconnectivity and guiding them towards the decision bound
aries. This approach increases the number of milestones and consequently improves the 
roadmap connectivity.

• In situations for which obstacle regions are dominant, more samples are necessary in 
order to have a good estimation of the obstacle regions. In these situations the clas
sical PRM may perform better. Thus, the idea of combining these methods should be 
investigated.

• The effect of each method’s parameters was discussed individually. Further studies need 
to be conducted to observe the effects of the parameters all together.

• Since the method is less sensitive to the sampling resolution, utilizing the idea of incre
mental sampling can potentially improve the performance.

• Since in dynamic environments the change between two subsequent time steps is not 
substantial, the result of the SVM in one step can be used as the initial point for the 
next step optimization. Using this approach, it is conjectured that the global SVM-based 
planner can be extended to real-time environments.
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