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Analysis of global human 
gut metagenomes shows 
that metabolic resilience potential 
for short‑chain fatty acid 
production is strongly influenced 
by lifestyle
David K. Jacobson1,2, Tanvi P. Honap1,2, Andrew T. Ozga3, Nicolas Meda4, Thérèse S. Kagoné5, 
Hélène Carabin6,7,8,9, Paul Spicer2,10, Raul Y. Tito2, Alexandra J. Obregon‑Tito2, 
Luis Marin Reyes11, Luzmila Troncoso‑Corzo12, Emilio Guija‑Poma13, 
Krithivasan Sankaranarayanan1,14 & Cecil M. Lewis Jr.1,2*

High taxonomic diversity in non‑industrial human gut microbiomes is often interpreted as beneficial; 
however, it is unclear if taxonomic diversity engenders ecological resilience (i.e. community stability 
and metabolic continuity). We estimate resilience through genus and species‑level richness, 
phylogenetic diversity, and evenness in short‑chain fatty acid (SCFA) production among a global gut 
metagenome panel of 12 populations (n = 451) representing industrial and non‑industrial lifestyles, 
including novel metagenomic data from Burkina Faso (n = 90). We observe significantly higher genus‑
level resilience in non‑industrial populations, while SCFA production in industrial populations is 
driven by a few phylogenetically closely related species (belonging to Bacteroides and Clostridium), 
meaning industrial microbiomes have low resilience potential. Additionally, database bias obfuscates 
resilience estimates, as we were 2–5 times more likely to identify SCFA‑encoding species in industrial 
microbiomes compared to non‑industrial. Overall, we find high phylogenetic diversity, richness, and 
evenness of bacteria encoding SCFAs in non‑industrial gut microbiomes, signaling high potential 
for resilience in SCFA production, despite database biases that limit metagenomic analysis of non‑
industrial populations.

Lifestyle alterations have repeatedly coincided with biological changes throughout the human  past1 and this is 
particularly true for how industrialization changed the relationship between humans and our resident  microbes2. 
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Compared to industrial human gut microbiomes, non-industrial gut microbiomes have higher genus and species 
richness, functional enrichment of amino acid metabolism, greater diversity of genes involved in complex car-
bohydrate metabolism, and higher amounts of short chain fatty acids (SCFAs) in  stool3,4. These trends have been 
linked to plant-based diets rich in fibers, infrequent consumption of highly processed foods, and low exposure 
to pharmaceutical drugs, such as antibiotics, in non-industrial  populations5.

Higher diversity in the gut microbiome is typically considered healthy, all other factors being  equal2, which 
would imply that a non-industrial gut is healthier than the industrial gut, in the absence of confounding vari-
ables, such as bacterial  pathogens6, eukaryotic  parasites7, and  malnutrition8. Yet, commonly used diversity 
statistics oversimplify more complex microbial associations. Ecological approaches that provide context for 
microbe-microbe interactions, and present insights into how taxonomic shifts influence microbial and host 
metabolic processes, are making progress towards mitigating this issue. Taxa-gene relationships are at the heart 
of deeper ecological understandings of human microbiomes and can be assessed through functional diversity 
and  redundancy9,10. Functional diversity, which is similar to the macroecological concept of response  diversity11, 
refers to the abundance and phylogenetic diversity (PD) of taxa that encode specific genes. It conceptualizes 
structure–function relationships in the microbiome by tying together taxonomic and metagenomic gene abun-
dance data. Similarly, redundancy can be thought of as the total number of taxa encoding a function, as well as 
how evenly the production of any given protein is spread amongst taxa.

Functional diversity can be multi-layered, ranging from a fine-tuned focus on individual genes to a broad 
genome-wide approach. Gene-centric approaches present the opportunity for niche-specific interpretations, 
while a broader approach allows for study of how entire microbiomes may shift in the face of outside perturba-
tions. No matter the depth and focus of study, high functional diversity is found in microbiomes where phy-
logenetically diverse bacteria encode the same functions. Under an idealized model, phylogenetically diverse 
taxa will have an equal contribution to gene production, leading to high redundancy. Functional diversity and 
redundancy are intertwined and together estimate microbiome resilience. Shifts in taxonomic abundance are 
less likely to alter the functional potential of a resilient community because any given function is encoded by a 
wide range of bacteria and production is distributed between these diverse taxa. Consequently, the loss of one 
phylogenetic branch of bacteria within the ecosystem will not cause a loss of function that those bacteria encode; 
however, communities with low functional diversity and redundancy may suffer ecosystem-wide functional 
changes during minor taxonomic perturbations. Accurately quantifying functional diversity is therefore a neces-
sary part of ecologically minded microbiome research because it more deeply describes how structure–function 
relationships influence resilience in a microbiome.

SCFA synthesis is the most intuitive area of study for understanding ecological differences between indus-
trial and non-industrial gut microbiomes, given the trends attributed to high-fiber diets among non-industrial 
populations. SCFAs are important byproducts of microbial metabolism and dietary fiber fermentation in the 
human gut. The three most prominent SCFAs in the human gut (acetate, butyrate, and propionate) are vital for 
maintenance of tight junction integrity between epithelial cells in the gastrointestinal (GI) tract, serve as an 
energy source for colonocytes, and signal immune cells, amongst a number of other  functions12,13. Unsurpris-
ingly, variation in SCFA abundance is a classic link to human health. For example, high butyrate levels are found 
to decrease diastolic blood pressure via regulating inflammation, and acetate abundance is tied to appetite, thus 
impacting metabolic  regulation12,13.

Studying SCFA functional diversity is particularly intriguing as it provides a line of evidence as to whether 
estimates of taxa/gene diversity and ecological resilience are concordant. Research suggests that non-industrial 
populations have high SCFA abundance, which is attributed to dietary  composition4,5. It is assumed that non-
industrial gut microbiomes bear an ecology that is resilient for SCFA production due to high overall taxonomic 
diversity and high SCFA levels in stool, but this has not been demonstrated. We address this gap by analyzing 
functional diversity and redundancy of SCFA synthesis genes in metagenomic datasets from 12 different popu-
lations (Fig. 1). Datasets were grouped together based on similarity of lifestyle because diet and lifestyle have 
been shown to be major drivers of microbiome  diversity2,14, resulting in the following general lifestyle groups: 
industrial (European/North American and Central/East Asian), pastoral, rural agricultural, and hunter-gatherer 
populations. Industrial populations were split between North America/Europe and Central/East because pre-
vious work has suggested variation in gut microbiome composition between these  regions15, although more 
work needs to be done in this area. We chose to evaluate SCFA genes that are involved in end-stage synthesis in 
different pathways for each SCFA: acetate kinase (ackA) for  acetate16, butyrate kinase (buk) and butyryl-CoA: 
acetate CoA transferase (but) for  butyrate17,18, and methylmalonyl-CoA decarboxylase (mmdA), lactoyl-CoA 
dehydratase (lcdA), and CoA-dependent propionaldehyde dehydrogenase (pduP) for  propionate17,19. These genes 
are known to be encoded by a diverse range of bacteria (Table S1), which permits ecological investigation into the 
resilience of SCFA production. Our study includes previously published metagenomic datasets from industrial 
and non-industrial  populations3,20–27, as well as novel gut microbiome metagenomic data generated from fecal 
samples collected from rural agriculturalists living in central Burkina Faso (n = 90). We functionally profiled 
these metagenomes using  HUMAnN228.

Each gene we analyzed is involved in terminal or near-terminal steps of production of each respective 
 SCFA16–19. For analytical purposes, taxonomic-gene abundance for but and buk were combined for butyrate 
and data for mmdA, lcdA, and pduP were aggregated for propionate. Response diversity was estimated through 
genus and species richness and phylogenetic diversity, while the Gini-Simpson index and Hill Numbers were used 
to assess redundancy by documenting evenness in the community. For our purposes, the Gini-Simpson  index29 
represents the probability that two sequencing reads originate from different taxa, and therefore values close to 1 
represent a community with a high diversity of taxa encoding the SCFA, while values close to 0 indicate that the 
SCFA is encoded almost entirely by one taxon. Hill  numbers30 are a diversity measure that allows for interpreta-
tion of effective taxonomic richness at different levels: at diversity order 0 the Hill number value is equal to the 
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total number of taxa (i.e. richness), at diversity order 1 the Hill number value is the effective number of com-
monly occurring taxa, and at diversity order 2 the Hill number value is the effective number of dominant taxa. A 
higher number of common and dominant taxa indicates resilience, as a community with minimal common and 
dominant taxa would be prone to function elimination if those few common/dominant taxa are removed from 
the community. Therefore, Gini-Simpson and Hill number investigations permit analyzing how evenly SCFA 
production is distributed between taxa and present opportunities for resilience estimation.

Results
Independent of lifestyle, acetate synthesis was significantly more abundant than the other two SCFAs 
(p-value < 8 × 10–84) and butyrate was more abundant than propionate (p-value < 6 × 10–8, Table S2). The overall 
higher abundance of butyrate compared to propionate across the full dataset is driven by the non-industrial 
populations, as propionate and butyrate are at similar abundance in industrial populations (Table S2). The relative 
abundance ratio of SCFA synthesis genes of acetate:butyrate:propionate (mean = 0.600 [standard error = 0.001] 
: 0.215 [SE = 0.001]: 0.184 [SE = 0.001]) (Table S2), supports the previous finding of a 60:20:20 ratio of SCFA 
molarity in  stool12; however, non-industrial populations have been reported to have higher a concentration of 
propionate than  butyrate31,32. Comparing between lifestyles, acetate (FDR-adjusted p-value < 3 × 10–18, n = 451) 
and butyrate (FDR-adjusted p-value < 0.004, n = 451) synthesis genes were more abundant in each of the non-
industrial populations (Fig. 2). Propionate synthesis genes were similar between lifestyle groups, with the excep-
tion of being at significantly lower abundance in rural agriculturalists compared to all lifestyles (FDR-adjusted 
p-value < 0.02, n = 451, Fig. 2). Within the general lifestyle categories, the rural agriculturalists had significantly 
lower abundance of butyrate and propionate compared to hunter-gatherers and pastoralists (FDR-adjusted 
p-value < 0.02, n = 241) while there was no significant difference between European/North American industrial 
and Central/East Asian industrial populations for any of the SCFA gene groups (FDR-adjusted p-value > 0.05, 
n = 210) (Fig. 2).

The pastoralist and rural agricultural populations have significantly higher genus richness (Hill diversity 
order 0) for acetate and butyrate synthesis compared to the industrial populations (FDR-adjusted p-value < 0.006, 
Fig. 3A,B, n = 401); however, hunter-gathers only have significantly greater abundance than the Central/East-
ern Asia population for genera involved in acetate synthesis (FDR-adjusted p-value = 0.014, Fig. 3A, n = 261 ). 
Hunter-gatherers have significantly lower genus richness for propionate synthesis compared to both the indus-
trial and non-industrial populations (FDR-adjusted p-value < 3 × 10–5, Fig. 3C, n = 261). The high genus-level 
richness observed in the non-industrial populations for acetate and butyrate is not observed at the species level, 
as every non-industrial population has significantly lower species richness for each SCFA gene (FDR-adjusted 
p-value < 0.05, Fig. 3D–F, n = 451). Additionally, the rural agricultural and hunter-gatherer populations have 
significantly lower species richness than the pastoralists for acetate, butyrate, and propionate (FDR-adjusted 
p-value < 3 × 10–4, Fig. 3D–F, n = 241). Similar to species richness, we observed lower species phylogenetic 
diversity (PD) in the non-industrial populations, but the effect sizes were not as large as in species richness 

Figure 1.  Map of human gut microbiome metagenomes analyzed. Analyzed microbial metagenomes originated 
from the following populations/datasets: Industrial North American/European—Human Microbiome  Project25 
(Missouri, Texas—USA, n = 50),  Oklahoma3 (USA, n = 21), Northern  Europe27(n = 43) ; Industrial Central/
East Asia—China21 (Guandong Province, China, n = 38),  Tokyo20 (Japan, n = 32),  Astana24 (Kazakhstan, n = 26); 
Pastoral—Mongolia23 (Khentii Province, n = 50); Rural Agriculturalist—Burkina Faso (n = 90),  Madagascar26 
(n = 50); Hunter Gatherer—Matses3 (Peru, n = 25),  Hadza22 (Tanzania, n = 26).
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(Fig. S1A–C). The hunter-gatherers had significantly lower PD for each SCFA, compared to the industrial popu-
lations (FDR-adjusted p-value < 0.04, Fig. S1C, n = 261); however, the rural-agriculturalists only have lower PD 
for butyrate and propionate (FDR-adjusted p-value < 5 × 10–8, Fig. S1C, n = 350) and there were no significant 
differences between pastoralists and industrial populations for species PD. The small drop-off in species PD, 
compared to species richness, suggests there are a large number of closely phylogenetically related species in 
the industrial gut microbiome. We found Bacteroides and Clostridium, which are found at high abundance in 
industrial gut microbiomes, to have up to nine species encoding SCFAs, while known SCFA producers at high 
abundance in non-industrial gut microbiomes (Prevotella, Faecalibacterium, and Phascolarctobacterium) only 
had one or two species per each genus (Table S3).

Genus evenness, as gauged through effective number of genera at Hill diversity order 1 (number of common 
genera) and diversity order 2 (number of dominant genera), tell a unique story for each SCFA. Hunter-gatherers 
and rural agriculturalists have higher effective number of common and dominant genera compared to the 
industrial populations for butyrate and propionate, but diversity is only greater in non-industrial populations at 
Hill number 1 for acetate when compared to the Central/East Asian population (FDR-adjusted p-value < 0.02, 
Fig. 3A–C, n = 451). Additionally, for Hill numbers 1 and 2 the pastoralists have significantly higher diversity 
than the industrial populations for butyrate (FDR-adjusted p-value < 3 × 10–10, n = 260) but lower diversity than 
the European/North American industrial population for acetate (FDR-adjusted p-value < 0.003, n = 260). These 
results demonstrate the industrial populations have only a few common and dominant genera encoding SCFAs, 
indicating that they are prone to loss in SCFA production if those common/dominant genera are lost. At the 
species level, evenness is significantly lower for each SCFA in every non-industrial population compared to the 
industrial groups (FDR-adjusted p-value < 0.05, Fig. 3D–F, n = 451). Similar to the richness and Hill numbers, 
the Gini-Simpson index is higher in non-industrial populations at the genus-level but lower at the species level 
(Fig. S2).

The discrepancy between genus and species results, particularly the drastic drop-off in diversity in non-
industrial populations at the species level suggests a loss of information during annotation of non-industrial 

Figure 2.  Relative abundance of SCFA genes compared between lifestyle categories. Acetate and butyrate 
are significantly higher in each of the non-industrial populations as compared to the industrial populations. 
Propionate is significantly lower in the rural agriculturalists compared to all other lifestyles, whereas butyrate 
was significantly lower in abundance in rural agriculturalists compared to hunter gatherers and pastoralists. 
There were no significant differences between the European/North American (Europe + N.A.) and Central/East 
Asian industrial population, and likewise, no significant differences between pastoralists and hunter-gatherers 
for any of the SCFA genes. FDR adjusted p-values for all statistical comparisons can be found in Data File S1.
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gut metagenomes. To probe this further, we assessed the proportion of total DNA fragments that mapped to a 
gene between lifestyles, as well as the proportion of those gene-mapped fragments that were classified to a taxon. 
After normalizing gene abundance to genes per 1 million DNA molecules, genes are positively identified from 
approximately 75% of DNA fragments in the industrial populations, but gene identification drops to about 65% of 
DNA fragments in non-industrial populations (p-value < 5.41 × 10–15, n = 451). The stratified HUMAnN2 output 
provides abundance of genes matched to bacteria at different taxonomic levels (‘classified’), as well as gene abun-
dance not accounted for by any taxon (‘unclassified’). Across all genes identified in each metagenome, there is a 
significant decrease in the proportion of gene abundance that is classified to a bacterium at each taxonomic level 
from industrial to non-industrial populations (FDR-adjusted p-values: phylum < 5.13 × 10–9, family < 6.27 × 10–9, 
genus < 4.24 × 10–8, species < 8.25 × 10–8; Fig. S3, n = 451). Only 25–30% of gene abundance is classified to a spe-
cies in hunter-gatherers and rural agriculturalists but upwards of 65% to 75% of genes are classified to species in 
industrial populations. Therefore, there are significantly fewer genes identified in non-industrial metagenomes 
and this loss of information is compounded by substantially worse identification of the taxa that encode those 
genes in non-industrial gut metagenomes.

The afore-mentioned pattern is replicated for each of the SCFA synthesis gene groups, as there is signifi-
cantly lower classification percentage at every taxonomic level in the non-industrial populations (FDR-adjusted 
p-value < 0.05, Fig. S4A–C, n = 451), with the exception of the pastoral populations for all taxonomic levels for 
acetate and at the phylum level for butyrate. Nevertheless, there are interesting trends for each of the SCFAs. 
Even though acetate is the most abundant SCFA, the classification percentage is essentially the same for the 
other two SCFAs (Fig. S4). For butyrate, the species-level information for non-industrial populations is by far the 
lowest of any of the SCFAs (Fig. S4B). All taxonomic levels have poor classification in rural agriculturalists and 

Figure 3.  Hill Numbers for SCFA-encoding Taxa. Effective number of genera (A–C) and species (D–F) for 
each SCFA as determined through Hill numbers at diversity order 0 (richness), 1 (number of common taxa), 
2 (number of dominant taxa). Non-industrial populations have significantly greater genus richness for acetate 
and butyrate but not propionate, while species richness is significantly lower in non-industrial for all SCFAs. 
Rural agriculturalists and hunter-gatherers have significantly higher number of common and dominant genera 
than both industrial populations for butyrate and propionate, but only greater diversity than the Central + East 
Asian dataset for acetate at diversity order 1. This means the distribution of SCFA production in non-industrial 
populations is more even. The number of effective number of species is significantly lower in the non-industrial 
populations for each SCFA. FDR adjusted p-values for all statistical comparisons can be found in Data File S1.
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hunter-gatherers for propionate; phylum-level classification in hunter-gatherers is nearly half of species-level clas-
sification in industrial populations (Fig. S4C). A closer examination of genus and species-level mapping for each 
SCFA reveals a steep drop-off from genus-level classification to species-level classification in the non-industrial 
populations compared to industrial populations. In industrial populations the proportion of genes mapped 
to genera and proportion of genes mapped to species is similar (FDR-adjusted p-value > 0.05; Fig. 4, n = 210), 
while in rural agriculturalists and hunter-gatherers only 25–75% of genes mapped to genera are also mapped to 
species. The drop-off in mapping at the species level is significantly worse in the non-industrial populations for 
each SCFA (FDR-adjusted p-value < 0.02; Fig. 4, n = 451).

Discussion
Our results are consistent with a non-industrial gut harboring a more resilient ecology with respect to SCFA 
production, while the industrial gut ecology would be vulnerable to disruption of such pathways, yet the pat-
tern is complex and nuanced. The increased gene abundance in non-industrial populations and overall ratio of 
acetate:butyrate:propionate generally agrees with previous studies of  SCFAs5,12. Similarly, the higher genus-level 
diversity of bacteria encoding acetate, compared to the other SCFAs, is expected and matches studies that have 
documented the taxa that encode different  SCFAs13,17,19. The overall high richness, high diversity at Hill numbers 
1 and 2, and high Gini-Simpson indices found in non-industrial populations at the genus level indicates a highly 
diverse and evenly distributed production of SCFAs. From an ecological perspective, uneven production of SCFA 
dominated by a few bacteria in industrial gut microbiomes means lower functional diversity and less redundancy, 
which ultimately leads to an expectation of decreased resilience. In other words, this study finds that industrial 
gut microbiomes are at a higher risk of reduced SCFA production because SCFA synthesis is dominated by only 
a few genera. Given the lower resilience, factors that disrupt the gut ecology are expected to have a more extreme 
consequence to those living an industrial lifestyle.

While there is an overall trend of increased genus-level functional diversity and redundancy for SCFA pro-
duction in non-industrial populations, variation exists when examining the SCFAs and populations individually. 
At the genus-level, the pastoral and rural agricultural populations have increased richness of genera encoding 
genes involved in acetate and butyrate synthesis, while there is similarity across the different lifestyles for genus 

Figure 4.  Genus: species relative mapping index. Relative index of genes mapped to a taxon at the species level 
(each box) normalized to genes mapped to a taxon at the genus level (1.0). In the non-industrial populations, 
there is a significant drop-off in the genes mapped to a taxon at the species level for each gene (FDR-adjusted 
p-value < 0.001, n = 241), while in industrial populations the rate of mapping is similar at the genus and species 
level (FDR-adjusted p-value > 0.05, n = 210). Values above 1.0 are due to genes that map to taxa at the species 
level but not the genus level. This is the result of candidate species (primarily in Lachnospiraceae family) that 
are annotated at the species level but have a missing annotation at the genus level. This is more common in 
the industrial populations in our dataset, once again likely due to bias that favors for industrial datasets. FDR 
adjusted p-values for all statistical comparisons can be found in Data File S1.
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richness for propionate encoding taxa. Although hunter-gatherers have similar, or lower, genus richness as 
industrial populations, they have significantly higher diversity at Hill number orders 1 and 2 and Gini-Simpson 
indices for butyrate and propionate. Additionally, the pastoralists have a generally similar profile to the industrial 
populations for acetate and propionate Hill number diversity, as well as similarity to the industrial populations 
in species PD, which may be linked to this pastoralist group having a diet similar to some industrial populations; 
namely, a diet high in dairy and red meat consumption, coupled with few dietary sources of plant-derived  fibers23. 
This paints a complex picture. Non-industrial populations have a high diversity of genera encoding butyrate 
synthesis, and butyrate production is spread more evenly across genera in non-industrial populations than in 
industrial populations. Hunter-gatherers and rural agriculturalists have significantly greater evenness of propion-
ate production, even though they have fewer number of total genera encoding this SCFA. Finally, the richness 
and evenness of genera encoding acetate is similar between industrial and non-industrial populations. Ecologi-
cally, we would expect the industrial populations to be less resilient for production of butyrate and propionate 
when faced with a shift in taxonomic composition, while non-industrial populations may be only marginally 
more resilient for acetate production compared to industrial populations. Intriguingly, SCFA relative abundance 
does not appear to correlate to resilience profile. Acetate and butyrate are significantly more abundant in non-
industrial populations but only butyrate shows much stronger resilience profile for non-industrial populations. 
Additionally, propionate is slightly more abundant in industrial populations, although not significantly, yet our 
results indicate greater resilience in non-industrial groups for propionate production. This indicates that measur-
ing only total gene, and/or molar, abundance is not enough to make statements about metabolic processes in the 
human microbiome; rather, ecological approaches are necessary to understand diversity in functional potential 
of the human microbiome.

The increased species-level alpha diversity in industrial populations initially runs counter to the genus-level 
results but the genus and species level results ultimately yield similar interpretations after accounting for ecology 
and ascertainment bias, as discussed below. The substantially higher species richness in industrial populations 
is striking; however, the differences in PD between industrial and non-industrial populations are not nearly as 
extreme. This means that the high species richness in the industrial populations is driven by species that are 
closely phylogenetically related. Indeed, we observed SCFA producing genera found at high abundance in indus-
trial populations (Bacteroides and Clostridium) to have up to nine species encoding SCFAs, while highly abundant 
non-industrial genera only have one or two species. Therefore, what first appears to indicate high species-level 
ecological resilience in SCFA production in the industrial populations is actually the result of closely related spe-
cies performing the same function. It follows that closely related species may be prone to changes in abundance 
or even elimination after certain types of ecosystem shift events. For example, narrow-spectrum  antibiotics33 
and exposure to various xenobiotic compounds that lead to variable bacterial metabolic  responses34 are events 
that can affect a limited range of bacteria and lead to shifts in microbial abundance and metabolic activity. While 
this result has ecological implications, it is also likely the result of historical trends of microbiology research. 
Bacterial taxa at high abundance in non-industrial gut microbiomes have not been a focus of microbiological 
isolation and species identification until recently; therefore, we expect more species to be identified from non-
industrial gut microbiomes in the  future35. Additionally, classification of bacteria into distinct genera and species 
is undergoing a revolution in the genomic  era36 meaning that the high number of species classified to Bacteroides 
and Clostridium may ultimately be reclassified to different genera. Nevertheless, the fact that we observe a large 
jump in species richness, but only a minor increase in species PD, in the industrial gut microbiomes suggests 
that the high industrial species richness is driven by closely related species and therefore, results in the same 
interpretation as the genus richness results: diversity is high in non-industrial populations.

Ascertainment bias extends to the databases used to identify taxa and genes: fewer genes were identified in 
non-industrial populations and a smaller proportion of these genes can be linked back to bacteria at every taxo-
nomic level, in non-industrial gut microbiomes. In some cases, such as butyrate synthesis genes, less than 10% of 
genes are identified to species for non-industrial populations, while over 50% of such identifications were possible 
for industrial populations. A decreased ability to identify the genus and species encoding SCFA synthesis genes 
in non-industrial populations means that the ecological metrics underestimate the true ecological diversity of 
these genes. Moreover, the drop-off in classification from the genus to the species level was significantly greater 
in non-industrial populations compared to industrial populations. This drop-off means a much lesser ability to 
identify species compared to genera in non-industrial populations, which helps explain why species diversity was 
substantially lower in non-industrial populations. Nevertheless, the statistically significant differences observed 
at the genus-level send a strong signal of the high functional diversity, and potential resilience, of SCFA synthesis 
genes in non-industrial gut microbiomes.

The metagenome-wide poor performance in terms of gene identification and classifying SCFA genes to 
genera and species indicates a bias in reference databases that underrepresents diversity in non-industrial gut 
microbiomes, which is unsurprising. Bias is expected because the vast majority of human gut microbiome stud-
ies have used samples from industrial populations. There is an immense challenge in including non-industrial 
communities in biomedical research, including recruiting research participants, sustaining longitudinal sampling, 
building culturally appropriate community relationships, and even securing transport of  samples35. This has 
resulted in comparatively few metagenomic studies of human gut microbiomes from non-industrial  settings35. 
Nevertheless, our data demonstrate the extent of this bias and how it can hinder more in-depth study of human 
gut microbiome health. Given this sizable ascertainment bias favored industrial populations, the non-industrial 
populations are likely even more diverse, more resilient, than our databases can sufficiently characterize, making 
our genus-level results even stronger. Without a serious investment to include such populations, the charac-
terization of microbiomes will remain naive to the ecological breadth of the core, healthy, human gut. Imagine 
studying forest ecology, with only city parks at your disposal. This has been, overwhelmingly, the analogous 
practice of human microbiome research.
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The relative lack of microbiome studies with non-industrial populations means an underrepresentation of 
not only metagenomic data and genome annotation but also fewer opportunities for cultivation and validation 
of novel species of bacteria. This ultimately leads to an inequality in the depth to which researchers can describe 
microbiome samples from non-industrial communities, compared to industrial microbiomes, as diverse groups 
of novel taxa may be grouped into a single group of “unknown” or “unclassified”  bacteria35. Similarly, an incom-
plete picture of microbial functional potential means that genes may be misidentified or even unannotated com-
pletely. Unknown taxa and misidentified genes may be playing key roles in ecological and metabolic processes 
but researchers are unable to confidently identify them, let alone make statements about their importance in a 
microbial  ecology35. Recent human gut microbiome metagenome studies from diverse populations will undoubt-
edly improve database representation but the number of studies and metagenomic samples from non-industrial 
populations still pales in comparison to industrial gut  microbiomes26,35,37,38.

Limitations in annotating the full extent of microbial diversity impacts health research. Recently proposed 
‘Microbiota Insufficiency Syndrome (MIS)’2 postulates that, while the microbiome has adapted to industrializa-
tion, these adaptations are maladaptive to human health. The decreased phylogenetic diversity and loss of specific 
taxa (e.g. Prevotellaceae, Succinivibrionaceae, and Spirochaetaceae) observed in industrial gut microbiomes 
may contribute to the increase in non-communicable chronic diseases found at higher prevalence in industrial 
populations. The root cause of MIS in industrial populations is undoubtedly multifactorial; however, diet is 
suggested to play a major  role2. This syndrome is compelling and we postulate that this insufficiency precisely 
rests on the stability of functional capacity. Our findings of decreased resilience in industrial populations, as well 
as species-level diversity driven by a few closely related species, fits in well with MIS. Low resilience in SCFA 
production may ultimately manifest itself as altered colonocyte function and/or autoimmune disruptions (both 
symptoms of MIS) due to a decrease in SCFA bioavailability after a group SCFA-producing bacteria were wiped-
out during an ecological shift, such as antibiotic or xenobiotic exposure. Similar to MIS, diet is likely to play an 
important role in SCFA resilience. The non-industrial populations studied in this paper consume much more 
fiber than industrial populations, on  average3,5,14,25,26, and microbial fermentation of dietary fibers is a major 
source of SCFAs in the human digestive  tract39. A diet poor in dietary fiber means less substrate for microbial 
fermentation and therefore less SCFA production and also higher competition for that fiber, potentially result-
ing in competitive exclusion and less microbial diversity. Nevertheless, if we are unable to fully characterize and 
annotate non-industrial gut microbiomes then we will be unable to paint a complete picture of MIS. Currently, 
we have confidence that there is a wealth of undiscovered resilience in non-industrial gut microbiomes. Once 
we describe the extent of this diversity/resilience, through increased sampling and focus on partnerships with 
research institutes in industrializing countries, we will have a more complete picture of MIS and possibly develop 
therapeutic approaches to combat non-communicable chronic diseases related to the human gut microbiome.

Improved sampling, metabolic profiling, and annotation will not only improve our understanding of SCFA 
resilience, but it will also permit more detailed picture microbiome wide resilience. Our work shows the value 
of focusing on specific SCFA genes, due to their importance in human biology and previously reported variation 
in SCFA molar abundance between industrial and non-industrial  populations31,32; however, future work will 
undoubtedly add to our findings. One avenue for future work is through analyzing SCFA molar concentrations 
in fecal samples in a longitudinal setting and comparing these results to predicted SCFA resilience from metage-
nome panels. Unlike genomic data, where we can infer about SCFA production potential via taxonomic diversity, 
one-time measures of fecal SCFA molar concentrations will not inform about future resilience because SCFA 
molar concentrations carry no information about which taxa produce each SCFA. Longitudinal SCFA concen-
tration and metagenomic data from non-industrial populations, or animal models, is necessary to inform about 
SCFA resilience and production in diverse lifestyles. Another avenue for future work is to focus resilience analysis 
on other microbiome functions of interest, such as resilience of antibiotic resistance genes and amino acid bio-
synthetic pathways. These valuable studies would be valuable for comparing microbiome resilience dynamics for 
different functions, with the caveat that there is sufficient genomic annotation data to yield interpretable results.

Lack of sample diversity is not unique to human microbiome research, as human genetics research has been 
grappling with this very issue for decades. In 2009, 96% of individuals included in human genome-wide asso-
ciation studies (GWAS) claimed European ancestry, as compared to 78% in  201940. Thus, while there have been 
improvements, GWAS clearly fail to reflect the breadth of human diversity. Incorporating diverse populations in 
human genome and microbiome research has the potential to greatly benefit the scientific community’s under-
standing of human biology and develop treatments that are based on human diversity rather than European-
ancestry genetics and microbiomes. A key component of increasing representation in genetics and microbiome 
studies is that these studies are designed as partnerships with minority and/or indigenous communities in a 
manner that builds both trust between the community and researchers, as well as facilitates the ability for the 
sample donors to exercise their rights on how data are treated and  shared41.

Materials and methods
Study design. Sample size. Datasets were chosen because they represent a wide diversity of lifestyles, have 
a minimum of 20 samples per population, and were sequenced to an average read depth of 10 million reads per 
sample. We used 20 samples as a threshold based on previous  research42 showing that at least 20 samples per 
population are required for the types of ecological analyses pursued in this study. Similarly, 10 million reads was 
chosen as a threshold to allow for sufficient read depth to attain coverage of as many genes as possible from each 
metagenome. The number of reads generated for the Burkina Faso samples is available in Data File S2 and the 
SRA accession number and number of reads analyzed for the comparative datasets are provided in Data File S3.
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Data inclusion/exclusion criteria. For datasets with available metadata, we included only healthy adults (i.e. 
non-obese BMI, non-diabetic) in the analysis; however, children were included in the Matses and Hadza datasets 
due to limitation in sample size.

Outliers. Outliers were included in all analysis.

Research objectives. Our research objective was to assess resilience in SCFA production across different life-
styles. SCFAs are a key component of human-microbiome interaction and taxonomic diversity is higher in non-
industrial populations. Our pre-specified hypothesis was that resilience would be higher in non-industrial popu-
lations. After our first phase of analysis, we uncovered the contradictory results between genus and species level 
resilience and we hypothesized this was due to reference database bias.

Research subjects. All participants from Burkina Faso (n = 90) were healthy volunteers. After filtering the data-
sets according to our inclusion/exclusion criteria, we analyzed following number of samples from each popu-
lation: Industrial North American/European—Human Microbiome  Project25 (Missouri, Texas—USA, n = 50), 
 Oklahoma3 (USA, n = 21), Northern  Europe27 (n = 43); Industrial Central/East Asia—China 21 (Guandong 
Province, China, n = 38), Tokyo 20 (Japan, n = 32), Astana 24 (Kazakhstan, n = 26); Pastoral—Mongolia23 (Khentii 
Province, n = 50); Rural Agriculturalist—Burkina Faso (n = 90), Madagascar (n = 50); Hunter Gatherer—Matses3 
(Peru, n = 25),  Hadza22 (Tanzania, n = 26).

Experimental design. Human fecal samples were collected with informed consent from resident volunteers 
of a single village in central Burkina Faso under the ethics review committee of Centre MURAZ, a national 
health research institute in Burkina Faso (IRB ID No. 31/2016/CE-CM); the US-based University of Oklahoma 
(OU) researchers received these samples de-identified, omitting individual names, however, with consent, sex, 
age, education level, and residential area was recorded for each individual and is reported in Data File S2. OU 
IRB deemed this project consistent with US policy 45 CFR 46.101(b) exempt category 4 (OU IRB 6976). Gut 
metagenomic data were generated as given in Borry et al.37. All experiments were performed in accordance with 
relevant guidelines and regulations, with the University of Oklahoma Institutional Biosafety Committee approv-
ing the chemical assays (IBC #1044).

Randomization. We randomly subsampled 50 individuals, in R, from each of the Madagascar, Human Micro-
biome Project, and Mongolian datasets, due to the much higher numbers of individuals in these studies as com-
pared to the remaining datasets. We did not want to skew the different lifestyle groups with overrepresentation 
from a single dataset.

Statistical analysis. Bioinformatic processing. Metagenomic reads for the following datasets were down-
loaded from either the NCBI Sequence Read Archive or European Nucleotide Archive: hunter-gatherers (Mat-
ses from  Peru3 and Hadza from  Tanzania22), pastoralists (residents of Khentii region,  Mongolia23), rural-agri-
culturalists  (Madagascar26), industrial European/North American populations (Human Microbiome  Project25, 
 Europe21,27, and Oklahoma,  USA3), and industrial Central/East Asian populations  (Japan20,  China21, and 
 Kazakhstan24). Accession numbers can be found in Data File S3.

All metagenomic data (newly generated from Burkina Faso and downloaded) was processed as follows: 
AdapterRemoval  v243 was used to quality filter and merge reads (quality score > 30, maxns = 0, minlength > 50, 
minalignmentlength = 10). The resulting FASTQ files (forward, reverse, and merged) were used as input for 
 HUMAnN228 with default parameters and using the UniRef50  database44. Briefly, pangenomes are generated for 
each species identified from metagenomic reads using  MetaPhlAn245. Metagenomic reads are mapped against 
those pangenomes to identify genes; reads not mapping to any pangenome are then mapped against the UniRef50 
 database44 to identify ‘unclassified’ genes. Reads not mapping to neither the pangenomes nor UniRef50 data-
base are termed ‘UNAMAPPED’. Gene abundance is normalized to reads per kilobase (RPKs) to account for 
differences in reference database size. The gene family output at the species level from HUMAnN2 was used to 
perform downstream analysis. Each sample’s output was normalized to gene abundance RPKs per 1 million DNA 
kilobases and then merged into a single file with all samples. The RPK gene abundance is further stratified by the 
abundance of the gene that is mapped to a species. Phylum, Family, and Genus level tables were created using 
the humann2_infer_taxonomy script from HUMAnN2. Acetate, Butyrate, and Propionate gene family tables 
were generated by pulling out all lines that were annotated with the gene names listed above from the respective 
normalized phylum, family, genus, species normalized gene abundance tables.

The following gene names were used to identify SCFAs: acetate kinase, butyrate kinase, butyryl-CoA: acetate 
CoA transferase, methylmalonyl-CoA decarboxylase, lactoyl-CoA dehydratase, and CoA-dependent propional-
dehyde dehydrogenase. Acetate kinase (ackA) is the primary end stage enzyme for acetate  synthesis16. Butyrate 
kinase (buk) and butyryl-CoA:acetate CoA transferase (but) can both catalyze butyrate production from butyryl-
CoA18. Propionate synthesis can follow three different biochemical pathways: succinate, acrylate, and propanediol 
depending on the initial  substrate19. Methylmalonyl-CoA decarboxylase (mmdA) is a biomarker for the succinate 
pathway, lactoyl-CoA dehydratase (lcdA) for the acrylate, and CoA-dependent propionaldehyde dehydrogenase 
(pduP) for the propanediol  pathway19. Taxonomic-gene abundance for but and buk were combined for butyrate 
and likewise data for mmdA, lcdA, and pduP combined for propionate to facilitate SCFA comparisons.

Total gene copies per 1 million DNA fragments was calculated in  R46 using the normalized ‘UNMAPPED’ 
gene abundance generated from HUMAnN2. The stratified gene family tables, after removal of ‘UNMAPPED’ 
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abundance, were used for the remainder of analysis. The proportion of total gene abundance classified to a taxon 
was determined by summing the abundance of each gene that mapped to taxon and dividing that value by each 
sample’s total gene abundance. This was repeated at each taxonomic level. The same procedures were applied to 
the Acetate, Butyrate, and Propionate gene family tables.

Ecological Metrics. Richness, phylogenetic diversity (PD), Gini-Simpson, and Hill  Numbers30 values were 
generated using the vegan  package47 in R. Richness was determined as the number of taxa that have a gene abun-
dance value > 0 for each SCFA. PD was calculated using the 16S rRNA gene as a proxy. The 16S rRNA gene for 
each taxon found across the full dataset was extracted from the  EzTaxon48 reference database and concatenated 
into a single 16S rRNA gene FASTA file. This sequences were aligned using  mafft49 with default parameters and 
a phylogenetic tree was built using  FastTree50 in QIIMEv1.951. PD was calculated with resulting tree and gene 
family tables using vegan. Gini-Simpson and Hill Number values were determined using the gene family tables 
with vegan. P-values were determined using the Kruskal–Wallis H test and the post-hoc Dunn Test. False dis-
covery rate (FDR) was used to account for multiple testing and all p-values can be found in Data File S1. Plots 
were generated using  ggplot252.

Data availability
The Burkina Faso gut microbiome metagenome samples produced in this study are available in NCBI under 
BioProjectID PRJNA690543.
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