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CANCELLABLE ELEMENTS OF THE LATTICE

OF MONOID VARIETIES

SERGEY V. GUSEV AND EDMOND W.H. LEE

Abstract. The set of all cancellable elements of the lattice of semigroup
varieties has recently been shown to be countably infinite. But the description
of all cancellable elements of the lattice MON of monoid varieties remains
unknown. This problem is addressed in the present article. The first example
of a monoid variety with modular but non-distributive subvariety lattice is first
exhibited. Then a necessary condition of the modularity of an element in MON
is established. These results play a crucial role in the complete description of
all cancellable elements of the lattice MON. It turns out that there are precisely
five such elements.

1. Introduction and summary

The present article is concerned with the lattice MON of all monoid varieties,
where monoids are considered as semigroups with an identity element that is fixed
by a 0-ary operation. For many years, results on the lattice MON were scarce.
But recently, interest in this lattice has grown significantly; in particular, the study
of its special elements was initiated in the articles [5, 6]. In the present work, we
continue these investigations.

Special elements play an important role in general lattice theory; see [3, Sec-
tion III.2], for instance. We recall definitions of those types of special elements that
are relevant here. An element x of a lattice L is

cancellable if ∀ y, z ∈ L : x ∨ y = x ∨ z & x ∧ y = x ∧ z −→ y = z;

modular if ∀ y, z ∈ L : y ≤ z −→ (x ∧ z) ∨ y = (x ∨ y) ∧ z.

It is easy to see that every cancellable element is modular.
Our main goal is to describe all cancellable elements of the lattice MON. To

formulate our main result, we need some definitions and notation. Let X+ [respec-
tively, X∗] denote the free semigroup [respectively, monoid] over a countably infinite
alphabet X. Elements of X are called letters and elements of X∗ are called words.
Words unlike letters are written in bold. An identity is written as u ≈ v, where
u,v ∈ X

∗.
Let T, SL, and MON denote the variety of trivial monoids, the variety of

semilattice monoids, and the variety of all monoids, respectively. For any identity
system Σ, let varΣ denote the variety of monoids given by Σ. Put

C2 = var{x2 ≈ x3, xy ≈ yx} and D = var{x2 ≈ x3, x2y ≈ xyx ≈ yx2}.
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2 S.V. GUSEV AND E.W.H. LEE

Then the following is our main result.

Theorem 1.1. A monoid variety is a cancellable element of the lattice MON if

and only if it coincides with one of the varieties T, SL, C2, D or MON.

Many articles were devoted to special elements of different types in the lattice
SEM of all semigroup varieties; an overview of results published before 2015 can be
found in the survey [16].1 It is natural to compare Theorem 1.1 with the description
of cancellable elements of the lattice SEM that was found in 2019 [15]. Theorem 1.1
shows that there are only five cancellable elements in the lattice MON. In contrast,
the set of all cancellable elements of the lattice SEM is countably infinite.

In general, the set of cancellable elements in a lattice need not form a sublattice.
For example, the elements x and y of the lattice in Fig. 1 are cancellable but their
join x ∨ y is not. However, the class of all cancellable elements of SEM forms a
distributive sublattice of SEM; see Corollary 3.14 in the extended version of the
survey [16]. Theorem 1.1 shows that the same is true for monoid varieties too; in
fact, the five cancellable elements in MON constitute a chain.

s

s ss

s

s s

s s

s

x y

Figure 1.

Now since the chain T ⊂ SL ⊂ C2 ⊂ D coincides with the lattice L(D) of
subvarieties of D (see Fig. 2), a monoid variety V is a cancellable element of the
lattice MON if and only if either V ⊆ D or V = MON. It is routinely verified
that the variety D can be given by the single identity x3yz ≈ yxzx. Therefore it
is easy to check the cancellability of proper elements of the lattice MON; a monoid
variety is proper if it is different from MON.

Corollary 1.2. Suppose that M is any monoid that generates a proper subvariety

V of MON. Then V is a cancellable element of the lattice MON if and only if M
satisfies the identity x3yz ≈ yxzx.

The article consists of five sections. Section 2 contains definitions, notation,
certain known results and their simple corollaries. In Section 3, the first example
of a monoid variety with modular but non-distributive subvariety lattice is given.
In Section 4, a necessary condition of the modularity of an element in MON is
established in Proposition 4.3. Results from Sections 3 and 4 will then be used in
Section 5 to prove Theorem 1.1.

1An extended version of this survey, which is periodically updated as new results are found
and/or new articles are published, is available at http://arxiv.org/abs/1309.0228v20.

http://arxiv.org/abs/1309.0228v20
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2. Preliminaries

Acquaintance with rudiments of universal algebra is assumed of the reader. Refer
to the monograph [2] for more information.

Recall that a variety is periodic if it consists of periodic monoids. Equivalently,
a variety is periodic if and only if it satisfies the identity xn ≈ xn+m for some
n,m ≥ 1. For any word w and any set X of letters, the word obtained from w by
deleting all the letters of X is denoted by wX . The content of a word w, denoted
by con(w), is the set of letters occurring in w. The partition lattice over a set
X is denoted by Part(X). Let LFIC(X∗) denote the lattice of all fully invariant
congruences on the monoid X

∗, and for any variety V of monoids, let FIC(V)
denote the fully invariant congruence on X

∗ corresponding to V. It is well known
that the mapping FIC: MON −→ LFIC(X

∗) is an anti-isomorphism of lattices;
see [2, Theorem 11.9 and Corollary 14.10], for instance. For any u,v ∈ X

+, we put
u � v if v = aξ(u)b for some words a,b ∈ X

∗ and some endomorphism ξ of X+. It
is easily seen that the relation � on X

+ is a quasi-order. For an arbitrary anti-chain
A ⊆ X

+ under the relation �, let LA denote the set of all monoid varieties V for
which A is a union of FIC(V)-classes. Define the map ϕA : LA −→ Part(A) by the
rule ϕA(V) = FIC(V)|A for any V ∈ LA.

Lemma 2.1 ( [4, Lemma 3]). Let A be any anti-chain under the quasi-order �.

Suppose that for any words u,v ∈ A and any nonempty set X ⊆ con(u), the

equalities con(u) = con(v) and uX = vX hold. Then

(i) the set LA is a sublattice of the lattice MON;
(ii) the map ϕA is a surjective anti-homomorpism of the lattice LA onto the

lattice Part(A);
(iii) for any partition β ∈ Part(A), there exists a non-periodic monoid variety

V ∈ LA such that ϕA(V) = β.

Recall that a band is left regular if it is a semilattice of left zero bands. It is well
known that the class of left regular band monoids coincides with the variety

LRB = var{xy ≈ xyx}.

The initial part of a word w, denoted by ini(w), is the word obtained from w by
retaining the first occurrence of each letter. The following assertion is well known
and easily verified.

Lemma 2.2. An identity u ≈ v holds in LRB if and only if ini(u) = ini(v).

For any n ≥ 2, the variety

Cn = var{xn ≈ xn+1, xy ≈ yx}

is generated by the monoid 〈a, 1 | an = 0〉 [1, Corollary 6.1.5]. Note that the variety
C2 has already been introduced in Section 1. A word w is an isoterm for a variety
V if the FIC(V)-class of w is singleton. The following result is easily deduced
from [10, Lemma 3.3].

Lemma 2.3. Let n ≥ 1. For any monoid variety V, the following are equivalent:

a) xn is not an isoterm for V;

b) V satisfies the identity xn ≈ xn+m for some m ≥ 1;
c) Cn+1 * V.
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A monoid is completely regular if it is a union of its maximal subgroups. A
variety is completely regular if it consists of completely regular monoids. It is well
known that a monoid variety is completely regular if and only if it satisfies the
identity x ≈ xn+1 for some n ≥ 1.

Lemma 2.4 ( [7, Lemma 2.14]). If a monoid variety V is non-completely regular

and noncommutative, then D ⊆ V.

Lemma 2.5. Let V be any monoid variety such that C2 ⊆ V. Suppose that V

does not contain the variety

E = var{x2 ≈ x3, x2y ≈ xyx, x2y2 ≈ y2x2}.

Then V satisfies the identity xpyxq ≈ yxr for some p, q ≥ 1 and r ≥ 2.

Proof. If D ⊆ V, then the result follows from [7, Lemma 4.1 and Proposition 4.2].
Therefore suppose that D * V, so that by Lemma 2.4, the variety V is either
completely regular or commutative. But V cannot be completely regular because
C2 ⊆ V. Hence V is commutative and satisfies the identity xyx ≈ yx2. �

3. Monoid variety with modular but non-distributive subvariety

lattice

There are many examples of monoid varieties with non-distributive subvariety
lattice; see [5, 6, 13], for instance. However, all these varieties have non-modular
subvariety lattice as well. In this section, we present the first example of a monoid
variety whose subvariety lattice is modular but non-distributive. To this end, the
following varieties are required: the variety D2 generated by the monoid

〈a, b, 1 | a2 = b2 = bab = 0〉 = {a, b, ab, ba, aba, 1, 0},

the variety R generated by the monoid

〈a, b, 1 | a3 = b2 = ba = 0〉 = {a, b, a2, ab, a2b, 1, 0}

and the variety Rδ dual to R. It is proved in [9, Lemmas 2.2.8 and 2.2.9] that

D2 = var{x3 ≈ x2, x3yzt ≈ yxzxtx,

xyzxty ≈ yxzxty, xzxyty ≈ xzyxty, xtyzxy ≈ xtyzyx},

R ∨Rδ = var{x4 ≈ x3, x3yzt ≈ yxzxtx,

xyzxty ≈ yxzxty, xzxyty ≈ xzyxty, xtyzxy ≈ xtyzyx}.

It is easily seen that D2 = (R ∨Rδ) ∧ var{x3 ≈ x2}.

Proposition 3.1. The lattice L(R ∨ Rδ) of subvarieties of R ∨ Rδ is given in

Fig. 2. In particular, this lattice is modular but not distributive.

Proof. It is easily shown thatC3 ⊆ R∨Rδ. According to Lemma 2.3, any subvariety
V of R ∨ Rδ such that C3 * V satisfies the identity x3 ≈ x2, whence V ⊆ D2.

Therefore, the lattice L(R ∨Rδ) is the disjoint union of the lattice L(D2) and the
interval [C3,R∨Rδ]. It is proved in [10, Lemmas 4.4 and 4.5] that the lattice L(D2)
coincides with the 5-element chain in Fig. 2. Thus it remains to describe the interval
[C3,R ∨ Rδ]. It follows from [12, Proposition 4.1] that every noncommutative
variety in this interval is defined within R∨Rδ by some of the identities xyx ≈ x2y,



CANCELLABLE ELEMENTS OF THE LATTICE OF MONOID VARIETIES 5

s

s

s

s

s

s

s

s

s

s

s

C2

C3D

D2

R

R ∨Rδ

Rδ

SL

T

Figure 2. The subvariety lattice L(R ∨Rδ)

xyx ≈ yx2 or x2y ≈ yx2. It is then routinely shown that the interval [C3,R ∨Rδ]
is as described in Fig. 2, where

R = (R ∨Rδ) ∧ var{xyx ≈ yx2},

D2 ∨C3 = (R ∨Rδ) ∧ var{x2y ≈ yx2},

and D ∨ C3 = (D2 ∨ C3) ∧ R = (D2 ∨ C3) ∧ Rδ = R ∨ Rδ. The proof of this
proposition is thus complete. �

4. Necessary condition of the modularity of an element in MON

Given any word w and letter x, let occx(w) denote the number of occurrences
of x in w. Let λ denote the empty word. Let W = W1 ∪W2, where

W1 = {yr1xtr2zr3yr4tr5xzr6 | r1, r2, r3, r4, r5, r6 ≥ 2},

W2 = {yr1xtr2zr3xyr4tr5xzr6 | r1, r2, r3, r4, r5, r6 ≥ 2}.

Let us fix the following two words:

p = y2xt2z2y2t2xz2 and q = y2xt2z2xy2t2xz2.

Put K = var{p ≈ q}.

Lemma 4.1. The set W is a FIC(K)-class.

Proof. Let u ≈ v be any identity of K with u ∈ W . We need to verify that v ∈ W .
By assumption, there is a deduction of the identity u ≈ v from the identity p ≈ q,
that is, a sequence w0,w1, . . . ,wm of words such that w0 = u, wm = v and, for
each i = 0, 1, . . . ,m − 1, there are words ai,bi ∈ X

∗ and an endomorphism ξi of
X

∗ such that wi = aiξi(si)bi and wi+1 = aiξi(ti)bi, where {si, ti} = {p,q}. By
trivial induction on m, it suffices to only consider the case when u = aξ(s)b and
v = aξ(t)b for some words a,b ∈ X

∗, an endomorphism ξ of X∗ and words s and
t such that {s, t} = {p,q}.
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Since any subword of u of the form ab, where a an b are distinct letters, occurs
only once in u and all letters occurring in s are multiple, the following holds:

(I) For any a ∈ con(s), either ξ(a) = λ or ξ(a) is a power of some letter.

Further, since occx(u) ≤ 3 and occy(s) = occz(s) = occt(s) = 4, we have

(II) x /∈ con(ξ(yzt)).

We note that if ξ(s) = λ or ξ(s) is a power of some letter, then the required
statement is evident. So, we may assume that

(III) | con(ξ(s))| ≥ 2.

Let u = yℓ1xtℓ2zℓ3xcyℓ4tℓ5xzℓ6 , where c ∈ {0, 1} and ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6 ≥ 2, and let

d =

{

0 if s = p,

1 if s = q.

If ξ(x) = λ, then ξ(s) = ξ(t), whence v = u ∈ W . So, it remains to consider the
case when ξ(x) 6= λ. Then (I) implies that ξ(x) is a power of some letter.

Suppose that ξ(x) is a power of y. Then (III) implies that con(ξ(t2z2xdy2t2))
contains one of the letters x, z and t. This is only possible when ξ(t2z2xdy2t2) =
ypxtℓ2zℓ3xcyq for some 0 ≤ p ≤ ℓ1 and 0 ≤ q ≤ ℓ4. But since x /∈ {y} = con(ξ(x))
by assumption and x /∈ con(ξ(yzt)) by (II), the contradiction x /∈ con(ξ(t2z2xdy2t2))
is deduced. Therefore, ξ(x) cannot be a power of y. Similarly, ξ(x) cannot be a
power of z as well.

Suppose now that ξ(x) is a power of t. Then (III) implies that con(ξ(t2z2xdy2t2))
contains one of the letters x, y and z. This is only possible when ξ(t2z2xdy2t2) =
tpzℓ3xcyℓ4tq for some 0 ≤ p ≤ ℓ2 and 0 ≤ q ≤ ℓ5. Then by (I), either ξ(t) = λ or ξ(t)
is a power of t. This implies that ξ(z2xdy2) = zℓ3xcyℓ4 . Taking into account that
ξ(x) is a power of t, we apply (I) again and obtain that ξ(z2) = zℓ3, ξ(y2) = yℓ4

and c = d = 0. This is only possible when ξ(xt2z2xd) = yrxtℓ2zℓ3xc for some
0 ≤ r ≤ ℓ1. But since x /∈ {t} = con(ξ(x)) by assumption and x /∈ con(ξ(yzt)) by
(II), the contradiction x /∈ con(ξ(xt2z2xd)) is deduced. Therefore, ξ(x) cannot be
a power of t.

Finally, suppose that ξ(x) is a power of x. Then since x2 is not a subword of u,
we have ξ(x) = x.

Suppose that c = 0. Then d = 0 because otherwise, occx(u) < occx(ξ(s)). Then
ξ(t2z2y2t2) = tℓ2zℓ3yℓ4tℓ5 . It follow from (I) that ξ(z2) = zℓ3, ξ(y2) = yℓ4 and
ξ(t2) = tℓ2 = tℓ5 . Then ξ(s) = yℓ4xtℓ2zℓ3yℓ4tℓ5xzℓ3 , a = yℓ1−ℓ4 and b = zℓ6−ℓ3 .
Therefore, ξ(t) = yℓ4xtℓ2zℓ3xyℓ4tℓ5xzℓ3 , whence v = yℓ1xtℓ2zℓ3xyℓ4tℓ5xzℓ6 ∈ W ,
and we are done.

Suppose now that c = 1. If x ∈ con(b), then d = 0 because otherwise, occx(u) <
occx(ξ(s)b). This is only possible when

aξ(y2) = yℓ1 , xξ(t2z2y2t2)x = xtℓ2zℓ3x and ξ(z2)b = yℓ4tℓ5xzℓ6 .

The second equality implies that ξ(t2z2y2t2) = tℓ2zℓ3. Clearly, ξ(t2) = λ, whence
ξ(z2y2) = tℓ2zℓ3. In view of (I), we have ξ(z2) = tℓ2 and ξ(y2) = zℓ3. But this
contradicts the fact that ξ(z2)b = zℓ4tℓ5xzℓ6 . Therefore, x /∈ con(b). Analogously,
one can verify that x /∈ con(a). It follows that d = 1. Then

aξ(y2) = yℓ1 , xξ(t2z2)xξ(y2t2)x = xtℓ2zℓ3xyℓ4tℓ5x and ξ(z2)b = zℓ6.
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It follows from (I) that ξ(z2) = zℓ3, ξ(y2) = yℓ4 and ξ(t2) = tℓ2 = tℓ5 . Then
ξ(s) = yℓ3xtℓ2zℓ3xyℓ4tℓ5xzℓ4 , a = yℓ1−ℓ3 and b = zℓ6−ℓ4 . Therefore, ξ(t) =
yℓ3xtℓ2zℓ3xyℓ4tℓ5xzℓ4 , whence v = yℓ1xtℓ2zℓ3yℓ4tℓ5xzℓ6 ∈ W , and we are done. �

For any n ≥ 1, put

Bn = var{xn ≈ xn+1}.

Lemma 4.2. Suppose that V is any proper monoid variety that is a modular ele-

ment of the lattice MON. Then V is periodic.

Proof. Seeking a contradiction, suppose that V is not periodic, so that V contains
the variety COM of all commutative monoids. Since V is proper and non-periodic,
it satisfies some nontrivial identity u ≈ v such that every letter from con(uv)
occurs n times on both sides for some n ≥ 1, that is, n = occa(u) = occa(v) for all
a ∈ con(uv). Then by [14, Lemma 3.2], there exist two distinct letters x and y such
that the identity obtained from u ≈ v by retaining x and y is nontrivial. Therefore
we may assume that con(u) = con(v) = {x, y} with n = occx(u) = occx(v) =
occy(u) = occy(v).

Suppose that LRB ⊆ V. In view of Lemma 2.2, we may assume without loss
of generality that ini(u) = ini(v) = xy. Let u′ and v′ be words that obtain
from u and v, respectively, by making the substitution (x, y) 7→ (y, x). Then
ini(u′) = ini(v′) = yx. Put

A = {w ∈ {x, y}+ | occx(w) = n+ 1, occy(w) = n}.

Letw,w′ ∈ A andw � w′. This means thatw′ = aξ(w)b for some words a,b ∈ X
∗

and some endomorphism ξ of X+. Since the length of w equals to the length of w′,
we have a = b = λ. Then w′ = ξ(w). But this is only possible when ξ(x) = x and
ξ(y) = y because occy(w) < occx(w). Hence w = w′. So, A is an anti-chain under
the quasi-order �. Then LA is a sublattice of MON by Lemma 2.1(i) and V ∈ LA.

Clearly, ux,u′x,vx,v′x ∈ A. Evidently, ini(ux) = ini(vx) = xy and ini(u′x) =
ini(v′x) = yx. In view of Lemma 2.2, the words ux and u′x lie in distinct FIC(V)-
classes. Then, since V satisfies the nontrivial identities ux ≈ vx and u′x ≈ v′x,
the equivalence γ = ϕ(V) contains at least two non-singleton classes. It is verified
in [11, Proposition 2.2] that a partition ρ ∈ Part(X) is a modular element in
Part(X) if and only if ρ has at most one non-singleton class. This result implies that
γ is not a modular element of the lattice Part(A). Then there are α, β ∈ Part(A)
such that α ⊂ β and

(4.1) (γ ∧ β) ∨ α ⊂ (γ ∨ α) ∧ β.

According to Lemma 2.1, we can find a non-periodic variety X ∈ LA such that
ϕ(X) = α. Put

Y = X ∧ var{w ≈ w′ | (w,w′) ∈ β}.

Clearly, Y ∈ LA and ϕ(Y) = β. Then

(V ∧X) ∨Y ⊂ (V ∨Y) ∧X

because otherwise, the inclusion (4.1) does not hold. We see thatV is not a modular
element of the lattice MON, which is a contradiction.

Suppose now that LRB * V. Then Lemma 2.2 allows us to assume that u

starts with the letter x but v starts with the letter y. Let

Z = var{xn+1 ≈ xn+2, xnv ≈ xn+1v}.
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We note that V ∧Bn+1 ⊆ Z. Indeed, V ∧Bn+1 satisfies the identities

xnv ≈ xnu ≈ xn+1u ≈ xn+1v

and so the identity xnv ≈ xn+1v. Clearly, the word xnv is an isoterm for both
V ∨ Z and Bn+1. It follows that xnv is an isoterm for (V ∨ Z) ∧ Bn+1 as well.
However, xnv is not an isoterm for Z because Z satisfies xnv ≈ xn+1v. Therefore,

(V ∧Bn+1) ∨ Z = Z ⊂ (V ∨ Z) ∧Bn+1.

This means that V is not a modular element of the lattice MON, which again is a
contradiction. �

The following is the main result of this section.

Proposition 4.3. Suppose that V is any proper monoid variety that is a modular

element of the lattice MON. Then V satisfies the identities

x2 ≈ x3,(4.2)

x2y ≈ yx2.(4.3)

Proof. By Lemma 4.2, the variety V is periodic and so it satisfies the identity
xn ≈ xn+m for some n,m ≥ 1; we may assume n and m to be the least possible.

First, suppose that n = 1, so that V is completely regular. If X is a noncom-
mutative completely regular variety, then it is verified in [5, Lemma 3.1] that

(X ∧D) ∨C2 ⊂ (X ∨C2) ∧D,

whence X is not a modular element of the lattice MON. If X is a commutative
variety containing a nontrivial group, then it is proved in [5, Lemma 3.2] that

(X ∧B2) ∨Q ⊂ (X ∨Q) ∧B2,

where Q = var{yxyzxy ≈ yxzxyxz}, whence X is again not a modular element
of the lattice MON. In view of these two facts, the variety V is commutative and
does not contain any nontrivial group. Since V is also completely regular, it is
idempotent and so is contained in SL. Obviously, SL satisfies (4.2) and (4.3).

So, it remains to consider the case when n > 1. Then Cn ⊆ V and Cn+1 * V

by Lemma 2.3. It follows from [6, Lemma 2] that E * V. Then by Lemma 2.5,
V satisfies the identity xp1yxq1 ≈ yxr1 for some p1, q1 ≥ 1 and r1 ≥ 2. The
dual arguments imply that V also satisfies the identity xp2yxq2 ≈ xr2y for some
p2, q2 ≥ 1 and r2 ≥ 2. Since one can substitute xn for x in these identities and V

satisfies xn ≈ xn+m, we may assume without loss of generality that

p1, p2, q1, q2, r1, r2 ∈ {n, n+ 1, . . . , n+m− 1}.

Evidently, there exist ℓ1 and ℓ2 such that the identities

xp1yxq1+ℓ1 ≈ yxr1+ℓ1 and xp2+ℓ2yxq2 ≈ xr2+ℓ2y

are equivalent modulo xn ≈ xn+m to the identities

xp1yxq2 ≈ yxr1+ℓ1 and xp1yxq2 ≈ xr2+ℓ2y,

respectively. Therefore V satisfies xr2+ℓ2y ≈ yxr1+ℓ1 , whence it satisfies

(4.4) xky ≈ yxk
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for some k ≥ n. It follows that the meet V ∧ B2 satisfies the identities (4.2) and
(4.4); it also satisfies the identity p ≈ q because

p = y2xt2z2y2t2xz2
(4.2)
≈ ykxtkzkyktkxzk

(4.4)
≈ x2y2kz2kt2k

(4.2)
≈ x3y2kz2kt2k

(4.4)
≈ ykxtkzkxyktkxzk

(4.2)
≈ y2xt2z2xy2t2xz2 = q.

Therefore V ∧B2 ⊆ K, so that (V ∧B2) ∨K = K.
Suppose that n > 2 or m > 1. Recall from the beginning of the section that

W1 = {yr1xtr2zr3yr4tr5xzr6 | r1, r2, r3, r4, r5, r6 ≥ 2}.

Let a ≈ b be any identity of V ∨ K with a ∈ W1. If n > 2, then b ∈ W1 by
Lemmas 2.3 and 4.1. Clearly, V contains the variety Am of all Abelian groups of
exponent m. It is well known and easily verified that an identity w ≈ w′ holds
in Am if and only if occa(w) ≡ occa(w

′) (mod m) for all a ∈ X. This fact and
Lemma 4.1 imply that if m > 1, then b ∈ W1. We see that if n > 2 or m > 1, then
b ∈ W1 in either case. Evidently, if B2 satisfies an identity c ≈ d with c ∈ W1, then
d ∈ W1. This implies that if an identity of the form p ≈ w holds in (V ∨K)∧B2,
then w ∈ W1. In particular, (V ∨K) ∧B2 violates p ≈ q. Therefore,

(V ∧B2) ∨K = K ⊂ (V ∨K) ∧B2.

This means that V is not a modular element in MON. It follows that n = 2 and
m = 1. Then V satisfies (4.2). Besides that, since (4.4) holds in the variety V, this
variety satisfies (4.3).

Proposition 4.3 is thus proved. �

5. Proof of Theorem 1.1

Necessity. Let V be any proper monoid variety that is a cancellable element of
the lattice MON. Since any cancellable element is modular, Proposition 4.3 implies
that V satisfies the identities (4.2) and (4.3). If V does not coincide with any of the
varieties T, SL, C2 and D, then V contains the variety D2 by [8, Lemma 3.3(i)].
Proposition 3.1 and the fact that C3 * V imply that V ∨ R = V ∨ Rδ and

V ∧ R = V ∧ Rδ = D, contradicting the assumption that V is a cancellable
element of MON. Hence V coincides with one of the varieties T, SL, C2 and D.

Sufficiency. Obviously, T and MON are cancellable elements of MON. An
element x of a lattice L is costandard if

∀ y, z ∈ L : (x ∧ z) ∨ y = (x ∨ y) ∧ (z ∨ y).

It is easily seen that any costandard element is cancellable. It is shown in [5,
Theorem 1.2] that the varieties SL and C2 are costandard elements of the lattice
MON. Therefore, these varieties are cancellable elements of this lattice.

So, it remains to establish that D is a cancellable element in MON. Let X and
Y be monoid varieties such that D ∨X = D ∨Y and D ∧X = D ∧Y. If D ⊆ X,
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then D = D∧X = D ∧Y, so that D ⊆ Y, whence X = D ∨X = D∨Y = Y and
we are done. Therefore by symmetry, we may assume that D * X and D * Y.

Now the subvariety lattice L(D) is the chain T ⊂ SL ⊂ C2 ⊂ D; see Fig. 2. It
follows that D ∧X = D ∧Y ∈ {T,SL,C2}. If D ∧X = D ∧Y = T, then X and
Y are varieties of groups by [7, Lemma 2.1]. Then X∨Y is a variety of groups too
and so SL * X ∨Y, whence

(5.1) D ∧ (X ∨Y) = D ∧X = D ∧Y.

If D ∧ X = D ∧ Y = SL, then X and Y are completely regular varieties by [7,
Corollary 2.6]. Then X ∨ Y is completely regular and so C2 * X ∨ Y, whence
the equality (5.1) is true. Finally, if D ∧ X = D ∧ Y = C2, then X and Y are
commutative by Lemma 2.4. Then X ∨ Y is commutative and so D * X ∨ Y,
whence the equality (5.1) is true again. We see that the equality (5.1) holds in any
case.

Clearly,

(5.2) D ∨ (X ∨Y) = D ∨X = D ∨Y.

Then

X = (D ∧X) ∨X because D ∧X ⊂ X

= (D ∧ (X ∨Y)) ∨X by (5.1)

= (D ∨X) ∧ (X ∨Y) by [6, Proposition 7]

= (D ∨ (X ∨Y)) ∧ (X ∨Y) by (5.2)

= (X ∨Y) because X ∨Y ⊂ D ∨ (X ∨Y).

We see that X = X ∨Y. By symmetry, Y = X ∨Y, whence X = Y. Therefore,
D is a cancellable element in MON. �
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