
Nova Southeastern University Nova Southeastern University 

NSUWorks NSUWorks 

Mathematics Faculty Articles Department of Mathematics 

9-10-2020 

Tridiagonal and Pentadiagonal Doubly Stochastic Matrices Tridiagonal and Pentadiagonal Doubly Stochastic Matrices 

Lei Cao 
Shandong Normal University - China; Nova Southeastern University, lcao@nova.edu 

Darian McLaren 
Brandon University - Canada 

Sarah Plosker 
Brandon University - Canada 

Follow this and additional works at: https://nsuworks.nova.edu/math_facarticles 

 Part of the Mathematics Commons 

NSUWorks Citation NSUWorks Citation 
Cao, Lei; McLaren, Darian; and Plosker, Sarah, "Tridiagonal and Pentadiagonal Doubly Stochastic 
Matrices" (2020). Mathematics Faculty Articles. 300. 
https://nsuworks.nova.edu/math_facarticles/300 

This Article is brought to you for free and open access by the Department of Mathematics at NSUWorks. It has 
been accepted for inclusion in Mathematics Faculty Articles by an authorized administrator of NSUWorks. For more 
information, please contact nsuworks@nova.edu. 

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/math_facarticles
https://nsuworks.nova.edu/cnso_math
https://nsuworks.nova.edu/math_facarticles?utm_source=nsuworks.nova.edu%2Fmath_facarticles%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=nsuworks.nova.edu%2Fmath_facarticles%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/math_facarticles/300?utm_source=nsuworks.nova.edu%2Fmath_facarticles%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


ar
X

iv
:2

00
9.

05
10

0v
1 

 [
m

at
h.

C
O

] 
 1

0 
Se

p 
20

20

TRIDIAGONAL AND PENTADIAGONAL DOUBLY STOCHASTIC

MATRICES

LEI CAO 1,2, DARIAN MCLAREN 3, AND SARAH PLOSKER 3

Abstract. We provide a decomposition that is sufficient in showing when a symmetric
tridiagonal matrix A is completely positive and provide examples including how one can
change the initial conditions or deal with block matrices, which expands the range of matri-
ces to which our decomposition can be applied. Our decomposition leads us to a number of
related results, allowing us to prove that for tridiagonal doubly stochastic matrices, positive
semidefiniteness is equivalent to complete positivity (rather than merely being implied by
complete positivity). We then consider symmetric pentadiagonal matrices, proving some
analogous results, and providing two different decompositions sufficient for complete posi-
tivity, again illustrated by a number of examples.

1. Preliminaries

All matrices herein will be real-valued. Let A be an n× n symmetric tridiagonal matrix:

A =























a1 b1
b1 a2 b2

. . .
. . .

. . .
. . .

. . .
. . .

bn−3 an−2 bn−2

bn−2 an−1 bn−1

bn−1 an























.

Here, we are interested in the case where A is also doubly stochastic (although Proposition 2
holds for arbitrary symmetric tridiagonal matrices), so that ai = 1 − bi−1 − bi for i =
1, 2, . . . , n, with the convention that b0 = bn = 0. In fact, it is easy to see that if a tridiagonal
matrix is doubly stochastic, it must be symmetric, so the additional hypothesis of symmetry
can be dropped, as it is automatically true. Following [9, 7], we use the notation Ωt

n for the
set of all n×n tridiagonal doubly stochastic matrices, which is a subpolytope of the Birkhoff
polytope Ωn of n × n doubly stochastic matrices. We note that since the matrices in Ωt

n

are symmetric, their eigenvalues are real. Further, since the matrices are doubly stochastic,
they always have 1 as an eigenvalue (at least once), with corresponding eigenvector 1 (the
all-ones vector).
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Tridiagonal doubly stochastic matrices arise in the literature in a number of areas, in
particular with respect to the study of Markov chains and in majorization theory. The
facial structure of Ωt

n, with a connection to majorization, is explored in [9]. In [12], the
author develops relations involving sums of Jensen functionals to compare tuples of vectors;
a tridiagonal doubly stochastic matrix is used to demonstrate their results. In the study
of mixing rates for Markov chains the assumption of symmetry in the transition matrix is
sometimes seen, as in [5]. Other times, the Markov chain is assumed to be a path [6, 4] leading
to a tridiagonal transition matrix. The properties of symmetric doubly stochastic matrices
are explored in [13], where majorization relations are given for the eigenvalues. Properties
related to the facial structure of Ωt

n can be found in [8, 7]. In the former, alternating parity
sequences are used to express the number of vertices of a given face, and in the latter, the
number of q-faces of Ωt

n for arbitrary n is determined for q = 1, 2, 3.
We are interested in positivity conditions for tridiagonal doubly stochastic matrices. A

stronger condition than positive semidefiniteness, known as complete positivity, has applica-
tions in a variety of areas of study, including block designs, maximin efficiency-robust tests,
modelling DNA evolution, and more [3, Chapter 2], as well as recent use in mathematical
optimization and quantum information theory (see [11] and the references therein).

With this motivation in mind, we study the positivity (in various forms) of tridiagonal
doubly stochastic matrices. The paper is organized as follows. In Section 2.1, we characterize
when a tridiagonal doubly stochastic matrix is positive semidefinite based on its nonzero
entries, specifically the entries of its sub- and super-diagonal, and we study the eigenvalues of
tridiagonal doubly stochastic matrices. Although it is NP-hard to determine if a given matrix
is completely positive [10], in Section 2.2 we provide a construction that is sufficient to show
that a given symmetric tridiagonal (not necessarily doubly stochastic) matrix is completely
positive. We provide a number of examples illustrating the utility of this construction,
and ultimately prove that positive definiteness and complete positivity coincide for these
matrices.

As a natural extension, we generalize many of our results to symmetric pentadiagonal
matrices in Section 3. While a construction analogous to that for the tridiagonal setting
works in the pentadiagonal setting, we also provide an alternate, more involved, construction
that works in many cases when the original construction does not.

2. Tridiagonal doubly stochastic matrices

2.1. Basic Properties. One can ask under what conditions is a tridiagonal doubly stochas-
tic matrix A positive semidefinite. It is known that a symmetric diagonally dominant matrix
A with non-negative diagonal entries is positive semidefinite. Thus, in our case, if

(1) bi−1 + bi ≤ 0.5

for all i = 1, 2, . . . , n, with b0 = bn = 0, then A is diagonally dominant, and hence A is
positive semidefinite. So (1) is sufficient for positive semidefiniteness of a tridiagonal doubly
stochastic matrix. The following result shows that (1) is also necessary.

Lemma 1. Let A be a tridiagonal doubly stochastic matrix. Then A is positive semidefinite
if and only if (1) holds for all i = 1, 2, . . . , n, with b0 = bn = 0.

Proof. The sufficiency proof is discussed above. For the necessity of (1), we note that by the
Gershgorin circle theorem, each eigenvalue of A lies in at least one Gershgorin disk. Using
the notation above, the disks are centered at ai and have radius bi−1 + bi. Thus if we want
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the eigenvalues to be non-negative, we need ai − bi−1 − bi ≥ 0. Subbing in ai = 1− bi−1 − bi
(the assumption that A is doubly stochastic) and rearranging yields (1). �

We now present some results related to the eigenvalues of tridiagonal doubly stochastic
matrices, which can be deduced from standard facts in the literature.

If λ is an eigenvalue of a stochastic matrix, it is well-known that λ ∈ C such that |λ| ≤ 1.
In our context, we note that if λ is an eigenvalue of a tridiagonal doubly stochastic matrix A,
then −1 ≤ λ ≤ 1. The fact that λ ∈ R follows immediately from the fact that a tridiagonal
doubly stochastic matrix is symmetric.

Lemma 2. Let A be a tridiagonal doubly stochastic matrix. The eigenvalues of A all lie in
[−1, 1].

In fact, we can say something stronger: The set of all possible eigenvalues of tridiagonal
doubly stochastic matrices is [−1, 1].

Proposition 1. Let n ≥ 2. λ is an eigenvalue of an n × n tridiagonal doubly stochastic
matrix if and only if λ ∈ [−1, 1].

Proof. Suppose λ ∈ [−1, 1] is arbitrary. The 2 × 2 tridiagonal doubly stochastic matrix

A =

(

a b
b a

)

with a + b = 1, a ∈ [0, 1], has eigenvalues 1 and 2a − 1. So choose a such

that 2a − 1 = λ, i.e. a = (λ + 1)/2. Then λ is an eigenvalue of the constructed matrix
A. For n > 2, note that we can construct an n × n tridiagonal doubly stochastic matrix
via A ⊕ B, where B is an (n − 2) × (n − 2) tridiagonal doubly stochastic matrix, and the
constructed matrix A⊕ B has λ as an eigenvalue (if v is an eigenvector corresponding to λ
for the matrix A, then v ⊕ 0n−2, where 0n−2 is the (n − 2)-dimensional zero vector, is an
eigenvector corresponding to λ for A ⊕ B). Thus one can construct a tridiagonal doubly
stochastic matrix of arbitrary size having the prescribed eigenvalue λ.

The converse follows from Lemma 2. �

2.2. Complete Positivity.

Definition 1. An n × n real matrix A is completely positive if it can be decomposed as
A = V V T , where V is an n× k entrywise non-negative matrix, for some k.

Equivalently, one can define A to be completely positive provided A =
∑k

i=1 viv
T
i , where

vi are entrywise non-negative vectors (namely, the columns of V ).
Completely positive matrices are positive semidefinite and symmetric entrywise non-

negative; such matrices are called doubly non-negative. Doubly non-negative matrices are
completely positive for n ≤ 4, while doubly non-negative matrices that are not completely
positive exist for all n ≥ 5; see [1] and the references therein. In other words, the set of
all completely positive matrices forms a strict subset of the set of all doubly non-negative
matrices for n ≥ 5.

We outline below a construction producing the completely positive decomposition A =
∑

i viv
T
i , which can be found by assuming that, since A is tridiagonal, each vi should have

only two nonzero entries (the i-th and (i + 1)-th entries), and brute-force solving for these
entries from the equation A = V V T ; these values can also be found somewhat indirectly,
assuming our initial condition is zero, through a construction of pairwise completely positive
matrices in [11, Theorem 4] by taking both matrices to be A.
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For a given n × n symmetric tridiagonal matrix A, define the set {vi}ni=0 of n + 1 n-
dimensional vectors where the j-th component of vi, denoted (vi)j, is recursively defined
by

(2) (vi)j =











√

ai − ((vi−1)i)2 j = i

bi/(vi)i j = i+ 1

0 otherwise

with initial condition v0 =
(

a0 0 . . . 0
)T

. This construction yields

v1 =
(√

a1 − a20
b1√
a1−a20

0 . . . 0
)T

v2 =

(

0
√

a2 − b21
a1−a20

b2
√

a2−
b2
1

a1−a20

0 . . . 0
)T

v3 =







0 0

√

a3 − b22

a2−
b2
1

a1−a2
0

b3
√

√

√

√

√

a3−
b2
2

a2−
b21

a1−a2
0

0 . . . 0







T

, etc.

The constant a0 must satisfy a0 ≥ 0, however it is worth noting that certain values of a0
(the most obvious case being a20 = a1) can lead to some of the vi vectors being ill-defined.

Proposition 2. Let A be an n × n symmetric tridiagonal matrix and a0 ≥ 0. Then A =
∑n

i=1 viv
T
i with the vi as defined in Equation (2). Assuming that all the components for each

vi are non-negative numbers, then A is completely positive.

We note that if A is entrywise non-negative, which includes the case of A being doubly
stochastic, then if the entries of the vi are all real, then they are automatically non-negative.

Proof. Consider a a symmetric tridiagonal matrix A such that the vectors in Equation (2)

are well-defined. Let Vi = viv
T
i for i = 0, 1, . . . , n and Ã =

∑n

i=0 Vi. We wish to show that

Ã = A. From the definition of the vi given in Equation (2), each Vi is tridiagonal with

only up to four nonzero entries and so Ã itself is tridiagonal. Now, consider a component
ãj,j+1 of Ã, where j = 1, 2, . . . , n − 1. The only Vi that will have a nonzero entry in the
(j, j + 1)-th component will be Vj as vj is the only vector with both the j and (j + 1)-th
components being nonzero. The (j, j+1)-th component of Vj is in fact bj and so ãj,j+1 = bj .

By symmetry, we also have ãj+1,j = bj . Now consider a component on the diagonal of Ã: ãjj,
where j = 1, 2, . . . , n. The only Vi that have nonzero entries in the (j, j)-th component will
be Vj and Vj−1, with respective values aj − ((vj−1)j)

2 and ((vj−1)j)
2. Clearly then ãjj = aj

for j = 1, 2, . . . , n. Therefore A = Ã =
∑n

i=1 viv
T
i ; i.e. A is completely positive. �

Example 1. Consider the 5 × 5 case, which is the first (in terms of smallest dimension)
non-trivial case. For the matrices

A =













3/4 1/4 0 0 0
1/4 1/2 1/4 0 0
0 1/4 1/2 1/4 0
0 0 1/4 1/2 1/4
0 0 0 1/4 3/4













and B =













7/9 2/9 0 0 0
2/9 5/9 2/9 0 0
0 2/9 7/9 0 0
0 0 0 8/9 1/9
0 0 0 1/9 8/9
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our construction with a0 = 0 gives A = V V T and B = WW T where

V =



















1
2

√
3 0 0 0 0

1
2
√
3

1
2

√

5
3

0 0 0

0 1
2

√

3
5

1
2

√

7
5

0 0

0 0 1
2

√

5
7

3
2
√
7

0

0 0 0 1
6

√
7 1

3

√
5



















and W =



















1
3

√
7 0 0 0 0

2
3
√
7

1
3

√

31
7

0 0 0

0 2
3

√

7
31

√

21
31

0 0

0 0 0 2
3

√
2 0

0 0 0 1
6
√
2

1
2

√

7
2



















.

Therefore the matrices A and B are completely positive. Note that V and W should be 6× 6
matrices; however, the selection of a0 = 0 forces v0 to be the zero vector and as such the first
column of both V and W is all zeroes, so can be omitted. For this reason, choosing a0 = 0
often leads to a much simpler decomposition.

It is important to emphasise here that a decomposition proving that a matrix A is com-
pletely positive is in general not unique. In particular, the choice of a0 can lead to different
decompositions, assuming they are still well-defined. For example, if we had instead chosen
a0 = 3/4, the matrix

W̃ =



















3
4

1
12

√
31 0 0 0 0

0 8
3
√
31

1
3

√

91
31

0 0 0

0 0 2
3

√

31
91

√

57
91

0 0

0 0 0 0 2
3

√
2 0

0 0 0 0 1
6
√
2

1
2

√

7
2



















works in the decomposition of B.

If our matrix is in block form but our decomposition does not work, we may employ the
technique illustrated in the example below: treating each block separately.

Example 2. Consider the matrix

C =













1 0 0 0 0
0 1/2 1/2 0 0
0 1/2 1/2 0 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2













.

Since we have b1 = 0 this gives (v1)2 = 0. Therefore we also have (v3)3 =
√

a3 − b22
a2

=
√

1/2− 1/2 = 0. Hence, regardless of our choice of a0 the component (v3)4 will never be
well-defined. To get around this fact consider C as the block matrix

C =

(

C1 03,2
02,3 C2

)

.

where 0n,m denotes the n×m all-zeros matrix and

C1 =





1 0 0
0 1/2 1/2
0 1/2 1/2



 and C2 =

(

1/2 1/2
1/2 1/2

)

.
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The matrices C1 and C2 on the other hand we have no issues with decomposing. Choosing
a0 = 0 we obtain

V1 =





1 0 0
0 1√

2
0

0 1√
2

0



 and V2 =

( 1√
2

0
1√
2

0

)

where C1 = V1V
T
1 and C2 = V2V

T
2 . Therefore

V =

(

V1 03,2
02,3 V2

)

=















1 0 0 0 0
0 1√

2
0 0 0

0 1√
2

0 0 0

0 0 0 1√
2

0

0 0 0 1√
2

0















where C = V V T and hence C is completely positive.

Definition 2. Let A be an n× n matrix. A is said to be reducible if it can be transformed
via row and column permutations to a block upper triangular matrix, with block sizes < n.
A is irreducible if it is not reducible.

Note that in the context of tridiagonal doubly stochastic matrices, irreducibility is equiv-
alent to bi > 0 for all i = 1, . . . , n, i.e. that A cannot be written as the direct sum of smaller
tridiagonal doubly stochastic matrices. When considering whether or not a tridiagonal dou-
bly stochastic matrix A is completely positive, we may assume A is irreducible. Indeed, if
A were a direct sum of smaller doubly stochastic matrices—implying that some bi = 0—we
could consider these smaller doubly stochastic matrices separately. The V corresponding to
A in the decomposition would have the same direct sum structure: it would be the direct
sum of the V ’s corresponding to the smaller doubly stochastic matrices. If some bi = 0, then
the corresponding vi only has one nonzero element. B in Example 1 is a direct sum of two
doubly stochastic matrices and C in Example 2 is a direct sum of three doubly stochastic
matrices.

The decomposition given by Equation (2) leads to the following result.

Proposition 3. Let A be a tridiagonal doubly stochastic matrix. If A is positive definite,
then A is completely positive.

Proof. Sylvester’s criterion tells us that for a real symmetric matrix A, positive definiteness
is equivalent to all leading principal minors of A being positive.

Note that all square roots in the denominators of the entries in Equation (2) being well-
defined with a0 = 0 imply that all leading principal minors are positive. Indeed, taking
a0 = 0 in the construction of Equation (2), we find the following. For v1 to be well-defined,
we have a1 > 0, which is the 1× 1 leading principal minor.

For v2 to be well-defined, we have a2−
b21
a1

> 0, which is equivalent to a1a2− b21 > 0, which

is the 2× 2 leading principal minor.

For v3 to be well-defined, we have a3−
b22

a2 − b21
a1

> 0, which is equivalent to a1a2a3−a3b
2
1−

a1b
2
2 > 0, which is the 3× 3 leading principal minor.
Continuing in this manner, the result follows. �
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We are now in a position to discuss the relationship between positive semidefiniteness and
complete positivity for tridiagonal doubly stochastic matrices.

It is clear that if a matrix A is completely positive, then it is automatically positive
semidefinite. Taussky’s theorem [14, Theorem II] allows us to use the eigenvalues of a given
tridiagonal doubly stochastic matrix to characterize the converse statement.

Theorem 1. (Taussky’s Theorem) Let A be an n × n irreducible matrix. An eigenvalue of
A cannot lie on the boundary of a Gershgorin disk unless it lies on the boundary of every
Gershgorin disk.

Equivalently, Taussky’s theorem states that if A is an irreducible, diagonally dominant
matrix with at least one inequality of the diagonal dominance being strict (in the context of
tridiagonal doubly stochastic matrices, this means that (1) holds with strict inequality for
at least one i), then A is nonsingular. This is in fact the original formulation of the theorem
in [14].

Proposition 4. Let A be an n×n irreducible tridiagonal doubly stochastic matrix. If n ≥ 3
and A is positive semidefinite, then A is positive definite or, equivalently, A is nonsingular.

Proof. If A is positive semidefinite, then according to Lemma 1, bi + bi+1 ≤ 0.5 for all
i = 0, 1, 2, . . . , n with b0 = bn = 0. Suppose 0 is an eigenvalue of A, then by Gorshgorin circle
theorem, there exists some i such that bi+ bi+1 = 0.5 meaning that 0 is an eigenvalue on the
boundary of a disk, so by Taussky’s Theorem, every disk must have boundary at 0; that is,
bi + bi+1 = 0.5 for all i. We have b1 = 0.5, which makes b2 = 0, which contradicts with the
assumption that A is irreducible. �

Note that the tridiagonal doubly stochastic matrix

(

1/2 1/2
1/2 1/2

)

is the only 2×2 tridiagonal

doubly stochastic matrix that is positive semidefinite, without being positive definite (that
is, it is the only 2 × 2 positive semidefinite tridiagonal doubly stochastic matrix with zero
as an eigenvalue). One can see this from (1) and the equivalent formulation of Taussky’s
theorem. One can verify that it is completely positive with V = (1/

√
2, 1/

√
2)T .

A number of corollaries follow from Proposition 4.

Corollary 1. Let A be an n × n tridiagonal doubly stochastic matrix with n ≥ 3. If A is
positive semidefinite, with zero as an eigenvalue, then A must be reducible with at least one

block of the form

(

1/2 1/2
1/2 1/2

)

.

In light of the following corollary, we note that for tridiagonal doubly stochastic matrices,
the notions of completely positive and positive semidefinite coincide. This is a more general
statement than our previous Proposition 3. This result appears to be known (e.g. it is men-
tioned in [9, Section 3] that diagonally dominant tridiagonal doubly stochastic matrices are
completely positive), yet we are unaware of a proof in the literature. Given some subtleties
in, and the length of, the proof, we have provided the details herein, which culminate in the
corollary below. We note that [2, Example 2] states that all tridiagonal doubly stochastic
matrices are completely positive, which is not true in general without the assumption of
positive semidefiniteness.

Corollary 2. Let A be an n × n tridiagonal doubly stochastic matrix. If A is positive
semidefinite, then A is completely positive.
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Proof. From the discussion following Definition 2, we can assume that A is irreducible. If

A has a zero eigenvalue, then either A =

(

1/2 1/2
1/2 1/2

)

, which is completely positive with

V = (1/
√
2, 1/

√
2)T , or by Corollary 1, the block corresponding to the zero eigenvalue is

(

1/2 1/2
1/2 1/2

)

, and the V corresponding to A will have a direct sum decomposition with

corresponding Vi = (1/
√
2, 1/

√
2)T .

So, we may assume that A is irreducible. By Proposition 4, A is therefore positive definite.
�

3. Symmetric pentadiagonal doubly stochastic matrices

Let A be an n× n symmetric pentadiagonal matrix:

A =



























a1 b1 c1
b1 a2 b2 c2
c1 b2 a3 b3 c3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
cn−4 bn−3 an−2 bn−2 cn−2

cn−3 bn−2 an−1 bn−1

cn−2 bn−1 an



























.

Here, we are interested in the case where A is also doubly stochastic (although Proposition 6
holds for arbitrary symmetric pentadiagonal matrices), so that ai = 1− (bi−1+ bi+ ci−2+ ci)
for i = 1, 2, . . . , n, where bk = 0 for k ≤ 0 or k ≥ n and cℓ = 0 for ℓ ≤ 0 or ℓ ≥ n− 1.

Unlike in the tridiagonal matrix setting, the property of being doubly stochastic does not
immediately imply symmetry, and thus we assume as a hypothesis this extra condition.

3.1. Basic Properties. Many of the arguments from Section 2.1 carry through into the
pentadiagonal setting. As in the tridiagonal case (Lemma 1), diagonal dominance is equiv-
alent to the property of being positive semidefinite. The proof is analogous.

Lemma 3. Let A be a symmetric pentadiagonal doubly stochastic matrix. Then A is positive
semidefinite if and only if

(3) bi−1 + bi + ci−2 + ci ≤ 0.5

for all i = 1, 2, . . . , n holds for all i = 1, 2, . . . , n, with b0 = bn = c−1 = c0 = cn−1 = cn = 0.

Similarly, the eigenvalues of a symmetric pentadiagonal doubly stochastic matrix are
bounded between -1 and 1, as in Lemma 2.

Lemma 4. Let A be a symmetric pentadiagonal doubly stochastic matrix. The eigenvalues
of A all lie in [−1, 1].

Again, as in the case of tridiagonal doubly stochastic matrices (Proposition 1), any value
in [−1, 1] can be realized as an eigenvalue of an n × n symmetric pentadiagonal doubly
stochastic matrix. One can, if desired, use the bonafide pentadiagonal matrix

A =





a b b
b a b
b b a
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for the n ≥ 3 cases.

Proposition 5. Let n ≥ 3. λ is an eigenvalue of an n× n symmetric pentadiagonal doubly
stochastic matrix if and only if λ ∈ [−1, 1].

3.2. Complete Positivity. We now provide a construction similar to that for tridiagonal
doubly stochastic matrices, to provide a sufficient condition for when a symmetric pentadi-
agonal doubly stochastic matrix A is completely positive. Define the set {vi}ni=−1 of n + 2
n-dimensional vectors where the j-th component of vi, denoted (vi)j (where j = 1, . . . , n), is
recursively defined by

(4) (vi)j =



















√

ai − [((vi−1)i)2 + ((vi−2)i)2] j = i
bi−(vi−1)j(vi−1)j−1

(vi)i
j = i+ 1

ci/(vi)i j = i+ 2

0 otherwise

with initial conditions v−1 =
(

a−1 0 . . . 0
)T

and v0 =
(

a0 b0 0 . . . 0
)T

. This con-
struction yields

v1 =
(
√

a1 − (a20 + a2−1)
b1−b0a0√

a1−(a20+a2
−1)

c1√
a1−(a20+a2

−1)
0 . . . 0

)T

v2 =




0

√

a2 −
(

(b1−b0a0)2

a1−(a20+a2
−1)

+ b20

) b2−
c1(b1−b0a0)

a1−(a2
0
+a2

−1
)

√

a2−

(

(b1−b0a0)
2

a1−(a20+a2
−1)

+b20

)

c2
√

a2−

(

(b1−b0a0)
2

a1−(a20+a2
−1)

+b20

)

0 . . . 0





T

etc.

Similar to the tridiagonal case, the constants a−1, a0, and b0 are taken to be non-negative
numbers with the caveat that there will be some collections of initial values that will lead
the decomposition to be ill-defined.

Proposition 6. Let A be a symmetric pentadiagonal matrix. Then A =
∑n

i=1 viv
T
i with vi

as defined in Equation (4). Assuming that all the components for each vi are non-negative
numbers, then A is completely positive.

Proof. The proof is similar to tridiagonal case. Consider a symmetric pentadiagonal n × n
matrix A such that the vectors in Equation (4) are well-defined. Let Vi = viv

T
i for i =

−1, . . . , n and Ã =
∑n

i=−1 Vi. We wish to show that Ã = A. From the definition of the vi
given in Equation (4), each Vi is symmetric and pentadiagonal with only up to six nonzero

entries and so Ã itself is symmetric and pentadiagonal.
Now, consider a component ãj,j+1 of Ã, where j = 1, 2, . . . , n − 1. The only Vi that will

have a nonzero entry in the (j, j + 1)-th component will be Vj−1 and Vj as vj−1 and vj are
the only vectors with both the j and (j+1)-th components being nonzero. The (j, j +1)-th
component of Vj−1 + Vj is (vj−1)j(vj−1)j+1 + (vj)j(vj)j+1 which, after simplifying, is in fact
bj and so ãj,j+1 = bj . By symmetry, we also have ãj+1,j = bj .

Now, consider a component ãj,j+2 of Ã, where j = 1, 2, . . . , n − 2. The only Vi that will
have a nonzero entry in the (j, j + 2)-th component will be Vj as vj and vj+2 are the only
vectors with both the j and (j + 2)-th components being nonzero. The value of (vj)j is the
same as the denominator of (vj)j+2, and so we simply obtain ãj,j+2 = cj. By symmetry, we
also have ãj+2,j = cj.
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Now consider a component on the diagonal of Ã: ãjj, where j = 1, 2, . . . , n. The only Vi

that have nonzero entries in the (j, j)-th component will be Vj−2, Vj−1, and Vj, and the sum of

the respective values is precisely ãjj = aj for j = 1, 2, . . . , n. Therefore A = Ã =
∑n

i=−1 viv
T
i ;

i.e. A is completely positive. �

When using Equation (4) to find a decomposition of a pentadiagonal matrix, it is simplest
to choose the initial vectors v−1 and v0 to both be the zero vector. However, Example 3
shows that it is sometimes necessary to choose nonzero initial conditions in order to prove
that the given matrix is completely positive.

Example 3. Consider the matrix

A =













3/4 1/8 1/8 0 0
1/8 3/4 0 1/8 0
1/8 0 1/2 13/40 1/20
0 1/8 13/40 1/2 1/20
0 0 1/20 1/20 9/10













.

Using Equation (4) with initial vectors v−1 and v0 both taken to be the zero vector, we compute
the matrix V such that A = V V T to be

V =























0 0
√
3
2

0 0 0 0

0 0 1
4
√
3

√
35
3

4
0 0 0

0 0 1
4
√
3

− 1
4
√
105

√
67
35

2
0 0

0 0 0

√
3
35

2
23√
2345

√
339
335

2
0

0 0 0 0

√
7

335

2

7
√

3
37855

2

√

101
113























.

We note that the component (v2)3 is negative and hence this decomposition cannot be used
to prove that A is completely positive. It is not surprising that taking the initial conditions
to be all zero does not work: if both v−1 and v0 are zero vectors, i.e. a−1 = a0 = b0 = 0, then
(v2)3 > 0 is equivalent to a1b2 ≥ b1c1. But in A, b1 = c1 = 1/8 while b2 = 0, so a1b2 < b1c1.

If we instead use the initial conditions v−1 =
(

0 0 . . . 0
)T

and v0 =
(

1
2

1
4

0 . . . 0
)T

,

we obtain the decomposition A = WW T , where

W =



















0 1
2

1√
2

0 0 0 0

0 1
4

0
√
11
4

0 0 0

0 0 1
4
√
2

0

√
15
2

4
0 0

0 0 0 1
2
√
11

13
5
√
30

√
4157
165

10
0

0 0 0 0

√
2
15

5

23
√

11
62355

10

√
14861
4157

2



















.

This decomposition shows that A is in fact completely positive.
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Example 4. As an analogue to Example 2 consider the matrix














1/2 1/4 1/4 0 0 0
1/4 1/2 1/4 0 0 0
1/4 1/4 1/2 0 0 0
0 0 0 1/2 1/2 0
0 0 0 1/2 1/2 0
0 0 0 0 0 1















.

For this matrix, the construction we outline through Equation (4) will never give a well-
defined decomposition regardless of the choice of initial conditions. To see why this is the
case, note that c2 = b3 = c3 = 0. Here we may assume that we have chosen initial conditions
such that (v1)1, (v2)2, and (v3)3 are nonzero (otherwise the decomposition would already be
ill-defined). From this we immediately obtain

(v2)4 =
c2

(v2)2
= 0

(v3)4 =
b3−(v2)4(v2)3

(v3)3
= 0

(v3)5 =
c3

(v3)3
= 0.

Therefore we can compute the following components of v4 to be:

(v4)4 =
√

a4 − ((v3)4)2 + ((v2)4)2 =
√
a4 =

1√
2

(v4)5 =
b4−(v3)5(v3)4

(v4)4
= b4√

a4
= 1√

2

(v4)6 =
c4

(v4)4
= 0.

Now, all six of the components that have been calculated so far are completely independent
of the initial conditions (except for the requirement that all previous components were well-
defined). Therefore the vector v5 will be independent of the initial conditions. We then find
that

(v5)5 =
√

a5 − (((v4)5)2 + ((v3)5)2) =

√

√

√

√

1

2
−
(

(

1√
2

)2

+ 0

)

= 0.

Hence (v5)6 will not be well-defined.
Similar to Example 2, we can still make use of our construction to prove that A is com-

pletely positive by considering A as the block diagonal matrix

A =





A1 03,2 03,1
02,3 A2 02,1
01,3 01,2 A3





where

A1 =





1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2



 , A2 =

(

1/2 1/2
1/2 1/2

)

, A3 =
(

1
)
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From here we can find a decomposition for the three matrices A1, A2, and A3 separately. We
find that

V1 =







0 0 1√
2

0 0

0 0 1
2
√
2

√
3
2

2
0

0 0 1
2
√
2

1
2
√
6

1√
3






, V2 =

(

0 1√
2

0

0 1√
2

0

)

, V3 =
(

1
)

where A1 = V1V
T
1 , A2 = V2V

T
2 , and A3 = V3V

T
3 . A decomposition for A can then be formed

by creating the block diagonal matrix

V =





V1 03,3 03,1
02,5 V2 02,1
01,5 01,3 V3



 =





















0 0 1√
2

0 0 0 0 0 0

0 0 1
2
√
2

√
3
2

2
0 0 0 0 0

0 0 1
2
√
2

1
2
√
6

1√
3

0 0 0 0

0 0 0 0 0 0 1√
2

0 0

0 0 0 0 0 0 1√
2

0 0

0 0 0 0 0 0 0 0 1





















and noting that A = V V T . This proves that A is completely positive.
Similar to Example 1, we note that for any matrix M , if M has columns consisting entirely

of zeros these columns can be removed from the matrix M without changing the value of
MMT . Therefore we can simplify V to be the 5 × 5 matrix below, rather than the 9 × 9
matrix above;

V =





















1√
2

0 0 0 0

1
2
√
2

√
3
2

2
0 0 0

1
2
√
2

1
2
√
6

1√
3

0 0

0 0 0 1√
2

0

0 0 0 1√
2

0

0 0 0 0 1





















We leave a result analogous to Proposition 3 in the setting of symmetric pentadiagonal
doubly stochastic matrices as an open problem. Example 3 shows that there is a connection
between elements in A and how should one choose v−1 and v0, however it is not immediately
clear in general. Consider the matrix A′ which is equal to A except for the following entries:

a′11 = a1 − (a20 + a2−1)

a′22 = a2 − b20
a′21 = a′12 = b1 − b0a0.

Note that A = A′ provided the initial conditions are zero. If A′ is positive definite, then all
of its leading principal minors are positive. However, this does not appear to be enough to
conclude that A is completely positive in this setting. Indeed, Equation (4) yields (v2)3 =

b2−
c1(b1−b0a0)

a1−(a20+a2
−1)

√

a2−

(

(b1−b0a0)
2

a1−(a2
0
+a2

−1
)
+b20

)

, and (v2)3 > 0 is equivalent to b2 − c1(b1−b0a0)
a1−(a20+a2

−1)
> 0 (assuming the

denominator of (v2)3 is well-defined). This expression is equivalent to requiring that the
3 × 3 leading principal submatrix of A′ with the last row and second last column removed,
has positive determinant.
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In general, requiring that (vi)i+1 > 0, assuming the denominator is well-defined, is equiv-
alent to requiring that the (i + 1) × (i + 1) leading principal submatrix of A′ with the last
row and second last column removed, has positive determinant.

3.3. Alternate Construction. As Example 3 illustrates, there can be some trial and error
when it comes to finding a decomposition with all components being positive. Selecting initial
conditions that can achieve this may be difficult or even impossible in certain cases. One
workaround to this is in the case where the given matrix is block diagonal, as in Example 4.

Another technique one can use if decomposing A directly as described by Equation (2)
or (4) does not yield results, is described in this Section. It can be used when the given

matrix is not necessarily block diagonal. The main idea is to find matrices Ã and Â such
that A = Ã + Â and then decompose Ã and Â using Equation (2) or (4). If Ã and Â

are completely positive with decompositions Ã = V V T and Â = WW T , then A will have
decomposition given by the matrix

(

V W
)

, which is simply the matrix constructed with
the columns of V followed by the columns of W . Below, we provide a construction that
gives A as a sum of two specified positive semidefinite matrices Ã and Â that can often be
convenient to consider, but in general there are other matrices that work.

Let A be a n×n symmetric pentadiagonal doubly stochastic matrix. Recall the convention
that b0 = bn = c−1 = c0 = cn−1 = cn = 0. Define the n× n matrix Ã to be the matrix with
components ãii =

1
2
−bi−bi−1 for i ∈ {1, . . . , n}, ãi,i+2 = ãi+2,i = ci, and all other components

being zero. We will similarly define the n × n matrix Â to be the matrix with components
âii =

1
2
− ci − ci−2 for i ∈ {1, . . . , n}, âi,i+1 = âi+1,i = bi, and all other components being

zero. We find that Ã + Â = A, as desired.
Since the property of complete positivity implies that the given matrix A is positive

semidefinite, if we can find a decomposition showing that A is completely positive, it will
automatically be positive semidefinite (and hence diagonally dominant by Lemma 3). If A

is diagonally dominant, Ã and Â are diagonally dominant as well, and hence also positive
semidefinite. As Ã and Â are much simpler than A, finding decompositions for both Ã and
Â with all positive components is often much simpler (if it is possible), as the next example
shows.

Example 5. Consider the matrix

A =









7/12 1/3 1/12 0
1/3 7/12 1/156 1/13
1/12 1/156 7/12 17/52
0 1/13 17/52 31/52









.

Since the matrix has dimension 4 and is doubly non-negative it must be completely positive
by [1]. However, if we try to decompose A using the all zero vectors as our initial conditions,
we obtain

















0 0

√
7
3

2
0 0 0

0 0 2√
21

√
11
7

2
0 0

0 0 1
2
√
21

− 15
26

√
77

√
4217
11

26
0

0 0 0
2
√

7
11

13
2491

26
√
46387

4
√

101
4217

















.
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Note the single negative entry. We can try using different initial conditions, but taking a
guess-and-check approach is not an ideal strategy. Instead, now consider the matrices Ã and
Â:

Ã =









1/6 0 1/12 0
0 25/156 0 1/13

1/12 0 1/6 0
0 1/13 0 9/52









, Â =









5/12 1/3 0 0
1/3 11/26 1/156 0
0 1/156 5/12 17/52
0 0 17/52 11/26









Decomposing both of these we obtain

V =











0 0 1√
6

0 0 0

0 0 0 5
2
√
39

0 0

0 0 1
2
√
6

0 1
2
√
2

0

0 0 0
2
√

3
13

5
0

√
177
13

10











, W =















0 0

√
5
3

2
0 0 0

0 0 2√
15

√

61
390

0 0

0 0 0

√
5

4758

2

5
√

317
4758

2
0

0 0 0 0
17
√

183
8242

5

2
√

4286
4121

5















where Ã = V V T and Â = WW T . One can check that A =
(

V W
) (

V W
)T

, where we set
(

V W
)

to be (we deleted unnecessary all-zero columns):

(5)
(

V W
)

=

















1√
6

0 0 0

√
5
3

2
0 0 0

0 5
2
√
39

0 0 2√
15

√

61
390

0 0

1
2
√
6

0 1
2
√
2

0 0

√
5

4758

2

5
√

317
4758

2
0

0
2
√

3
13

5
0

√
177
13

10
0 0

17
√

183
8242

5

2
√

4286
4121

5

















This shows that A is completely positive.
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