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Abstract
In this note we prove the strong unique continuation property at the origin for the
solutions of the parabolic differential inequality

|�u − ut | ≤ M

|x |2 |u|,

with the critical inverse square potential. Our main result sharpens a previous one of
Vessella concerned with the subcritical case.
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1 Introduction

The unique continuation property (ucp) for second order elliptic and parabolic equa-
tions represents one of the most fundamental aspects of pde’s with a long history and
several important ramifications. In this paper we prove the strong unique continuation
property (sucp) for solutions to the parabolic differential inequality

|�u − ut | ≤ M

|x |2 |u|, (1.1)

where M > 0 is arbitrary. In [9] (see also [2]) Vessella proved a general sucp result
for sub-critical parabolic equations of the type

| div(A(x, t)∇u) − ut | ≤ M

|x |2−δ
|u|, δ > 0, (1.2)

under Lipschitz regularity assumptions on the principal part A(x, t). This provided
a parabolic counterpart to the previous work of Hörmander in [5]. Comparing (1.1)
with (1.2), it is obvious that our result sharpens Vessella’s theorem, when the latter is
specialised to the heat equation.

As it is well-known, the inverse-square potential V (x) = M
|x |2 represents a critical

scaling threshold in quantummechanics [1], and it is equally known that its singularity
is the limiting case for the sucp for the differential inequality |�u| ≤ M

|x |m |u|, see the
counterexample in [3]. Such potential fails to be in Ln/2

loc , and in general does not have
small Ln/2,∞ seminorm, thus in the context of the Laplacian the sucp cannot be treated
by the celebrated result of Jerison and Kenig in [4] or the subsequent improvement by
Stein in the appendix to the same paper. We recall that, in the time-independent case
of the Laplacian, the sucp for the unrestricted inverse square potential was proved by
Pan in [7]. One should also see Regbaoui [8] for further generalisations to variable
coefficient equations and Lin et al. [6] for quantitative results.

The main new ingredient in this note is the following improved Carleman estimate
for the heat operator � − ∂t in a space-time cylinder that is tailor-made for the differ-
ential inequality (1.1). Such result replaces the corresponding sub-critical estimate in
[9, Theorem 13] (see also [2, Theorem 2]). Similarly to the time-independent case in
[7,8], our proof of Theorem 1.1 also exploits the spectral gap on S

n−1. In addition, it
relies in an essential way on a delicate a priori estimate which we prove in Lemma 2.2
below, and which we feel is of independent interest. We emphasise for the unfamiliar
reader that, although related sub-critical estimates appear in the works [2], [9], the
weight in our Carleman estimate (1.3) is different from that in such works, and a new
result was required.

Theorem 1.1 Let R < 1 and let u ∈ C∞
0 ((BR \ {0}) × (0, T )). There exist universal

constants α(n) >> 1, and ε(n) ∈ (0, 1), such that for all α > α(n) of the form
α = k + n+1

2 , with k ∈ N, and every 0 < ε < ε(n), one has
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α

∫
BR×(0,T )

|x |−2α−4e2α|x |ε u2dxdt + α3
∫
BR×(0,T )

|x |−2α−4+εe2α|x |εu2 (1.3)

≤ C
∫
BR×(0,T )

|x |−2αe2α|x |ε (�u − ∂t u)2dxdt,

where C = C(ε, n) > 0.

With Theorem 1.1 in hands, we establish the following strong unique continuation
result. In the sequel, parabolic vanishing to infinite order means that as r → 0 one has
for all k > 0, ∫

Br×(0,T )

u2 = O(rk). (1.4)

Theorem 1.2 Suppose that for some M, R, T > 0 the function u ∈ H2,1
loc be a solution

in BR ×(0, T ) to the differential inequality (1.1). If u parabolically vanishes to infinite
order, then u ≡ 0 in BR × (0, T ).

For the reader’s comprehension we remark that the first integral in the left-hand
side of (1.3) represents the critical term which, in the proof of Theorem 1.2, allows to
absorb the term with the inverse square potential in the differential inequality (1.1).
The second integral, instead, can be thought of as a sub-critical term. As the proof of
Theorem 1.2 will show the presence of the coefficient α3 in front of such term plays
a crucial role in the proof of Theorem 1.2, similarly to what happens in [9].

The plan of the paper is as follows. In Sect. 2 we prove Theorem 1.1. The second
part of the section is devoted to proving the crucial Lemma 2.2 which is needed for the
completion of the proof of Theorem1.1. In Sect. 3we establish Theorem1.2.Oneword
of caution for the reader. It is generally accepted among experts that, once a proper
Carleman estimate is available, the ucp, or the sucp follow from a standard application
of the former. While this is generally true, in the time-dependent setting of the present
note deducing Theorem 1.2 from Theorem 1.1 requires a delicate adaptation of the
analogous treatment of the subcritical case in [9]. For this reason, we have not followed
the tradition of skipping details, but we have carefully presented them in the proof of
Theorem 1.2.

2 Proof of Theorem 1.1

We begin by introducing the relevant notation. Given r > 0 we denote by Br (x0) the
Euclidean ball centred at x0 ∈ R

n with radius r . When x0 = 0, we will use the simpler
notation Br . A generic point in space time R

n × (0,∞) will be denoted by (x, t).
For notational convenience, ∇ f and div f will, respectively, refer to the quantities
∇x f and divx f of a given function f . The partial derivative in t will be denoted by
∂t f and also by ft . We indicate with C∞

0 (�) the set of compactly supported smooth

functions in the region� in space-time. By H2,1
loc (�)we refer to the parabolic Sobolev

class of functions f ∈ L2
loc(�) for which the weak derivatives ∇ f ,∇2 f and ∂t f

belong to L2
loc(�). For a point x ∈ R

n \ {0}, we will routinely adopt the notation
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r = r(x) = |x | and ω = x
r ∈ S

n−1, so that x = rω. The radial derivative of a function
v is vr =< ∇v, x

|x | >.
The following simple observations will be repeatedly used in what follows. Let

γ ∈ R, then in Rn \ {0} we have

div(r−γ x) = (n − γ )r−γ . (2.1)

In particular, (2.1) gives

Lemma 2.1 Let f ∈ C∞
0 (Rn \ {0}), g ∈ C∞(Rn \ {0}), then

∫
Rn

fr gdx = −
∫
Rn

f grdx − (n − 1)
∫
Rn

r−1 f gdx .

Proof It suffices to observe that (2.1) gives

div( f gr−1x) = f gr + g fr + (n − 1)r−1 f g.

Integrating this identity we reach the desired conclusion. �	
Proof of Theorem 1.1 In all subsequent integrals, for given R ∈ (0, 1), T > 0, the
domain of integration will be the parabolic cylinder BR × (0, T ) (or, for that matter,
the whole of Rn × R, in view of the support property of the integrands), but this will
not be explicitly indicated. Nor, we will explicitly write the measure dxdt in any of the
integrals involved. Let u ∈ C∞

0 ((BR \ {0}) × (0, T )). We set v = r−βeαrε
u, where β

is to be carefully chosen subsequently. Clearly, u = rβe−αrε
v. A standard calculation

shows

�(rβe−αrε

) =
(
α2ε2rβ+2ε−2 + β(β + n − 2)rβ−2 − αε ((2β + ε + n − 2)) rβ+ε−2

)
e−αrε

.

We thus have

�u = rβe−αrε �v +
(
α2ε2rβ+2ε−2 + β(β + n − 2)rβ−2 − αε ((2β + ε + n − 2)) rβ+ε−2

)
e−αrε v

+
(
2βrβ−2 − 2εαrβ+ε−2

)
e−αrε < x,∇v > .

Since �v(x, t) = vrr (rω, t) + n−1
r vr (rω, t) + 1

r2
�Sn−1v(rω, t), where ω ∈ S

n−1

and �Sn−1 denotes the Laplacian on S
n−1, we obtain

�u − ∂t u = rβe−αrε

[ (
α2ε2r2ε−2 + β(β + n − 2)r−2 − αε (2β + ε + n − 2) rε−2) v

(2.2)

+ (
(2β + n − 1)r−1 − 2αεrε−1) vr + r−2�Sn−1v + vrr − vt

]
.
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We now apply the numerical inequality (a + b)2 ≥ a2 + 2ab, with

a = rβ−2e−αrε (
β(β + n − 2)v + �Sn−1v + (2β + n − 1)rvr

)
,

and

b = rβe−αrε
(
α2ε2r2ε−2v − αε(2β + ε + n − 2)rε−2v − 2αεrε−1vr + vrr − vt

)
,

obtaining

∫
r−2αe2αr

ε

(�u − ∂t u)2 ≥
∫

r−2α+2β−4(β(β + n − 2)v + �Sn−1v)2 (2.3)

+ (2β + n − 1)2
∫

r−2α+2β−2v2r + 2(2β + n − 1)
∫

r−2α+2β−3vr�Sn−1v

+ 2β(β + n − 2)(2β + n − 1)
∫

r−2α+2β−3vvr

+ 2β(β + n − 2)
∫

r−2α+2β−2vvrr + 2
∫

r−2α+2β−2vrr�Sn−1v

+ 2(2β + n − 1)
∫

r−2α+2β−1vrvrr − 2β(β + n − 2)
∫

r−2α+2β−2vvt

− 2
∫

r−2α+2β−2vt�Sn−1v − 2(2β + n − 1)
∫

r−2α+2β−1vtvr

− 2αε(2β + n − 1)(2β + ε + n − 2)
∫

r−2α+2β+ε−3vvr + 2α2ε2(2β + n − 1)
∫

r−2α+2β+2ε−3vvr

− 4αε(2β + n − 1)
∫

r−2α+2β+ε−2v2r − 4αεβ(β + n − 2)
∫

r−2α+2β+ε−3vvr

− 2αεβ(β + n − 2)(2β + ε + n − 2)∫
r−2α+2β+ε−4v2 + 2α2ε2β(β + n − 2)

∫
r−2α+2β+2ε−4v2

− 4αε

∫
r−2α+2β+ε−3vr�Sn−1v − 2αε (2β + ε + n − 2)

∫
r−2α+2β+ε−4v�Sn−1v

+ 2α2ε2
∫

r−2α+2β+2ε−4v�Sn−1v.

We now handle each integral in the right-hand side of (2.3) separately. Our first objec-
tive is to select β in such a way that the integral

∫
r−2α+2β−3vvr vanishes. We note

that such integral multiplies the cubic factor 2β(β + n − 2)(2β + n − 1) in the forth
term in the right-hand side of (2.3). To accomplish this we observe that Lemma 2.1
gives
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2
∫

r−2α+2β−3vvr =
∫

r−2α+2β−3(v2)r (2.4)

= −(−2α + 2β − 3)
∫

r−2α+2β−4v2 − (n − 1)
∫

r−2α+2β−4v2 = 0,

provided that we choose

2β − 2α − 4 = −n ⇐⇒ β = α + 2 − n

2
. (2.5)

We now substitute the value of β given by (2.5) in the remaining integrals in the
right-hand side of (2.3) obtaining the following conclusions. First, we have

∫
r−2α+2β−2vvt =

∫
r−n+2vvt =

∫
∂t (r

−n+2v2) = 0.

Next, using polar coordinates and Stokes’ theorem on S
n−1, we find

2
∫

r−2α+2β−2vt�Sn−1v = 2
∫

r−n+2vt�Sn−1v = 2
∫ T

0

∫ ∞
0

r
∫
Sn−1

vt�Sn−1vdωdrdt

= −2
∫ T

0

∫ ∞
0

r
∫
Sn−1

< ∇
Sn−1v, ∇

Sn−1vt > drdωdt

= −
∫ ∞
0

r
∫ T

0
∂t

(∫
Sn−1

|∇
Sn−1v|2dω

)
dtdr = 0.

Similarly, we have

2
∫

r−2α+2β−3vr�Sn−1v = 2
∫

r−n+1vr�Sn−1v

= 2
∫ T

0

∫ ∞

0

∫
Sn−1

vr�Sn−1vdωdrdt = −2
∫ T

0

∫ ∞

0

∫
Sn−1

〈∇Sn−1vr ,∇Sn−1v〉dωdrdt

= −
∫ T

0

∫ ∞

0

d

dr

∫
Sn−1

|∇Sn−1v|2dωdrdt = 0. (2.6)

Now, an integration by parts similar to (2.6) gives

− 4αε

∫
r−2α+2β+ε−3vr�Sn−1v = −2αε2

∫
r−n+ε|∇Sn−1v|2. (2.7)

On the other hand, applying again the divergence theorem on S
n−1, we find

− 2αε (2β + ε + n − 2)
∫

r−2α+2β+ε−4v�Sn−1v

= 2αε (2α + ε + 2)
∫

r−n+ε|∇Sn−1v|2, (2.8)
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and

2α2ε2
∫

r−2α+2β+2ε−4v�Sn−1v = −2α2ε2
∫

r−n+2ε|∇Sn−1v|2. (2.9)

Keeping in mind that on the domain of integration we have 0 < r ≤ R < 1, from
(2.7), (2.8) and (2.9) we deduce that if ε is sufficiently small, for instance, 0 < ε ≤ 3

20
would do, we can guarantee that

− 4εα
∫

r−2α+2β+ε−3vr�Sn−1v − 2αε (2β + ε + n − 2)
∫

r−2α+2β+ε−4v�Sn−1v

(2.10)

+ 2α2ε2
∫

r−2α+2β+2ε−4v�Sn−1v ≥ 37

10
α2ε

∫
r−n+ε|∇Sn−1v|2.

We also claim that

∫
r−2α+2β−2vvrr =

∫
r−n+2vvrr = −

∫
r−n+2v2r . (2.11)

To see (2.11) we apply Lemma 2.1 with g = r−n+2v and f = vr , obtaining

∫
r−2α+2β−2vvrr =

∫
r−n+2vvrr = −

∫
r−n+2v2r + (n − 2)

∫
r−n+1vvr .

Since the last term vanishes in view of (2.4), we conclude that (2.11) holds. Next,
again by Lemma 2.1 we have

∫
r−2α+2β−1vrvrr = 1

2

∫
r−n+3(v2r )r = −

∫
r−n+2v2r . (2.12)

Yet another application of Lemma 2.1 gives

2
∫

r−2α+2β−2vrr�Sn−1v = 2
∫

r−n+2vrr�Sn−1v (2.13)

= −2
∫

r−n+2vr�Sn−1vr − 2(n − 1)
∫

r−n+1vr�Sn−1v

= 2
∫ T

0

∫ ∞

0
r
∫
Sn−1

|∇Sn−1vr |2dωdrdt ≥ 0.

Note that in the third equality above we have used that
∫
r−n+1�Sn−1vvr = 0, a fact

which was earlier established in (2.6).
A further application of Lemma 2.1 gives

2
∫

r−2α+2β+ε−3vvr = −ε

∫
r−n+εv2.
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Using this observation along with (2.5) we obtain

− 2αε(2β + n − 1)(2β + ε + n − 2)
∫

r−2α+2β+ε−3vvr + 2α2ε2(2β + n − 1)
∫

r−2α+2β+2ε−3vvr

− 4αεβ(β + n − 2)
∫

r−2α+2β+ε−3vvr

= αε2
[
(2α + ε)(2α + ε + 2) − αε(2α + 3) + (2α + 4 − n)(2α + n)

] ∫
r−n+εv2.

On the other hand, again by (2.5) we have

− 2αεβ(β + n − 2)(2β + ε + n − 2)∫
r−2α+2β+ε−4v2 + 2α2ε2β(β + n − 2)

∫
r−2α+2β+2ε−4v2

= −αε

2
(2α + 4 − n)(2α + n)(2α + 2 + ε(1 − α

2
))

∫
r−n+2εv2.

Combining the latter two observations we conclude that there exists a universal con-
stant C > 0 such that, if 0 < ε ≤ 3

20 as above, and α > 1 is sufficiently large
depending on the dimension n, then

− 2αε(2β + n − 1)(2β + ε + n − 2)
∫

r−2α+2β+ε−3vvr + 2α2ε2(2β + n − 1)
∫

r−2α+2β+2ε−3vvr (2.14)

− 4αεβ(β + n − 2)
∫

r−2α+2β+ε−3vvr

− 2αεβ(β + n − 2)(2β + ε + n − 2)
∫

r−2α+2β+ε−4v2 + 2α2ε2β(β + n − 2)
∫

r−2α+2β+2ε−4v2

≥ −Cα4ε

∫
r−n+εv2.

We also note that by further restricting ε, say 0 < ε ≤ 1
20 , we can ensure by (2.5) that

for α > 1 we have

4αε(2β + n− 1)
∫

r−2α+2β+ε−2v2r = 4αε(2α + 3)
∫

r−n+2+εv2r ≤ α2
∫

r−n+2v2r .

(2.15)
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From (2.12), (2.15) and (2.5) once again, we infer the following estimate for α large
enough (say, α ≥ 10)

(2β + n − 1)2
∫

r−2α+2β−2v2r + 2(2β + n − 1)
∫

r−2α+2β−1vrvrr (2.16)

− 4αε(2β + n − 1)
∫

r−2α+2β+ε−2v2r

≥ [
(2α + 3)2 − 2(2α + 3) − α2] ∫

r−n+2v2r ≥ 2α2
∫

r−n+2v2r .

The tenth integral in the right-hand side of (2.3) is simply handled as follows

∣∣∣∣2(2β + n − 1)
∫

r−2α+2β−1vtvr

∣∣∣∣ ≤ 4α(1 + 3

2α
)

∫
r−n+3|vt ||vr | (2.17)

≤ 5α

(
α

5

∫
r−n+2v2r + 5

α

∫
r−n+4v2t

)
≤ α2

∫
r−n+2v2r + 25

∫
r−n+4v2t .

Finally, we handle the first integral in the right-hand side of (2.3). We stress that
such integral accounts for the critical term in the Carleman estimate (1.3). Recall
that in the Fourier decomposition of L2(Sn−1), if Yk(ω) is a spherical harmonic of
degree k ∈ N ∪ {0} (that we assume normalised so that

∫
Sn−1 |Yk(ω)|2dω = 1),

then �Sn−1Yk = −k(k + n − 2)Yk . Therefore, if we write v(x, t) = v(rω, t), and
we indicate with vk(r , t) = ∫

Sn−1 v(rω, t)Yk(ω)dω its k-th Fourier coefficient in the
Fourier decomposition v(rω, t) = ∑∞

k=0 vk(r , t)Yk(ω), then we have

�Sn−1v(rω, t) = −
∞∑
k=0

k(k + n − 2)vk(r , t)Yk(ω).

Using this representation and Parseval’s theorem, we obtain

∫
r−2α+2β−4(β(β + n − 2)v + �Sn−1v)2 =

∫
r−n(β(β + n − 2)v + �Sn−1v)2

=
∫ T

0

∫ ∞

0
r−1

∞∑
k=0

(β(β + n − 2) − k(k + n − 2))2vk(r , t)
2drdt

At this point, we assume that dist(β,N) = 1/2. Since for every k ∈ N ∪ {0} we have

(β(β + n − 2) − k(k + n − 2))2 = ((β − k)(β + k + n − 2))2 ≥ 1

4

(
α + 2k + n

2

)2
,

we thus infer
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∫
r−n(β(β + n − 2)v + �Sn−1v)2

≥ α2

4

∫ T

0

∫ ∞

0
r−1

∞∑
k=0

vk(r , t)
2drdt = α2

4

∫
r−nv2. (2.18)

We now observe that, in view of (2.5), we have β = k + 1
2 for some k ∈ N if and only

if α = k − 2 + n+1
2 . This shows that for α large (depending on n)

dist(β,N) = 1

2
⇐⇒ α = k + n + 1

2
, for some k ∈ N. (2.19)

Combining (2.3)–(2.18), we reach the conclusion that there exists a universal C > 0
such that for all α > 1 sufficiently large (depending on n) and as in (2.19), and for
every 0 < ε ≤ 1

20 , one has

∫
r−2αe2αr

ε

(�u − ut )
2 ≥ α2

4

∫
r−nv2 + 2α2

∫
r−n+2v2r + 37

10
α2ε

∫
r−n+ε|∇Sn−1v|2

− α2
∫

r−n+2v2r − 25
∫

r−n+4v2t − Cα4ε

∫
r−n+εv2

= α2

4

∫
r−nv2 + α2

∫
r−n+2v2r + 37

10
α2ε

∫
r−n+ε|∇Sn−1v|2

− 25
∫

r−n+4v2t − Cα4ε

∫
r−n+εv2.

≥ α2

4

∫
r−nv2 − 25

∫
r−n+4v2t − Cα4ε

∫
r−n+εv2.

Recalling (2.5), and that v = r−βeαrε
u, we conclude that we have established the

following bound

∫
r−2αe2αr

ε

(�u − ut )
2 ≥ α2

4

∫
r−2α−4e2αr

ε

u2 (2.20)

− 25
∫

r−2αe2αr
ε

u2t − Cα4ε

∫
r−2α−4+εe2αr

ε

u2.

Keeping in mind that our final objective is proving (1.3), we mention at this point that
the two negative terms in the right-hand side of (2.20) represent a series obstruction
toward such goal. To overcome such difficulty we will establish the following delicate
a priori bound. We stress that, differently from (2.20), the spectral gap assumption
(2.19) is not needed.

Lemma 2.2 Let R < 1 and let u ∈ C∞
0 ((BR \ {0}) × (0, T )). There exist constants

C0 = C0(n) > 0, α(n) >> 1 and 0 < ε(n) << 1, such that for all α ≥ α(n) and
every 0 < ε < ε(n) one has
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C0

α

∫
r−2αe2αr

ε

u2t + C0α
3ε2

∫
r−2α−4+εe2αr

ε

u2 ≤
∫

r−2αe2αr
ε

(�u − ut )
2.

(2.21)

The proof of Lemma 2.2 is postponed to the end of the section. With such result in
hands we now proceed to complete the proof of Theorem 1.1. We fix 0 < ε(n) < 1
and α(n) >> 1 such that (2.20) and (2.21) hold simultaneously for 0 < ε < ε(n) and
α > α(n) and satisfying (2.19). We then choose and fix ε ∈ (0, ε(n)). Corresponding
to such a choice of ε, we now select C2 = C2(n, ε) > 1 such that

C2C0ε ≥ 2C and C2C0 > 25.

With such constant C2 in hands, we multiply (2.21) by C2α and add the resulting
inequality to (2.20), obtaining

α2

4

∫
r−2α−4e2αr

ε

u2 + (C2C0ε − C)α4ε

∫
r−2α−4+εe2αr

ε

u2 (2.22)

+ (C2C0 − 25)
∫

r−2αe2αr
ε

u2t ≤ (C2α + 1)
∫

r−2αe2αr
ε

(�u − ut )
2.

By our choice of C2, and after dividing through by α, the following inequality easily
follows from (2.22)

α

∫
r−2α−4e2αr

ε
u2 + α3

∫
r−2α−4+εe2αr

ε
u2 ≤ 2C2

min{1/4,Cε}
∫

r−2αe2αr
ε
(�u − ut )

2.

Modulo Lemma 2.2, this completes the proof of the Carleman estimate (1.3). �	
We now turn to the

Proof of Lemma 2.2 The proof of the estimate (2.21) is somewhat delicate. Letting as
before v = r−βeαrε

u, at first we write the expression of �u − ut in (2.2) in the form

�u − ut = a + b,

with

a = rβe−αrε

(vrr + B(r , α, β)v + r−2�Sn−1v),

and

b = rβe−αrε

(A(r , α, β)vr − vt ),

where
{
B(r , α, β) = (

α2ε2r2ε−2 + β(β + n − 2)r−2 − αε(2β + ε + n − 2)rε−2
)
,

A(r , α, β) = (2β + n − 1)r−1 − 2αεrε−1.

(2.23)
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In what follows, for the sake of brevity we simply write A and B, instead of A(r , α, β)

and B(r , α, β). Also, the Eq. (2.5) will be repeatedly used without further reference to
it. For instance, we note that, using such equation, we have from (2.23) the following
alternative expression of A and B

{
B = (

α2ε2r2ε−2 + α2(1 + o(1))r−2 − 2α2ε(1 + o(1))rε−2
)
,

A = 2α(1 + o(1))r−1 − 2αεrε−1,
(2.24)

where we have denoted with o(1) quantities which do not depend of r and such that
|o(1)| → 0 as α → ∞. The reader should note that among the ensuing computations
that lead to (2.21), some are similar to those of (2.3)-(2.18), and therefore several
details will be skipped.

With this being said, our strategy is to expand (�u − ut )2 = a2 + b2 + 2ab,
and then estimate from below each of the corresponding integrals

∫
r−2αe2αr

ε
a2,∫

r−2αe2αr
ε
b2, and 2

∫
r−2αe2αr

ε
ab in an appropriate way. We begin with

2
∫

r−2αe2αr
ε

ab = 2
∫

Ar−2α+2βvrvrr + 2
∫

ABr−2α+2βvvr (2.25)

+ 2
∫

Ar−2α+2β−2vr�Sn−1v − 2
∫

r−2α+2βvt (vrr + Bv + r−2�Sn−1v),

and estimate each term that appears in the right-hand side of (2.25) separately. By
Lemma 2.1 we have

2
∫

Ar−2α+2βvrvrr = −2(2α + 3)
∫ ∫

r−n+2v2r (2.26)

+ 2αε(2 − ε)

∫ ∫
r−n+2+εv2r ≥ −5α

∫
r−n+2v2r ,

provided α ≥ 6. Next, we find from (2.24)

2
∫

ABr−2α+2βvvr = 4α3(1 + o(1))
∫

r−n+1vvr

+ 12α3ε2(1 + o(1))
∫

r−n+1+2εvvr (2.27)

− 12α3ε(1 + o(1))
∫

r−n+1+εvvr − 4α3ε3
∫

r−n+1+3εvvr .

As in (2.4), we have

∫
r−n+1vvr = 0.

A repeated application of Lemma 2.1, and the fact that r ≤ R < 1, give
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2
∫

r−n+1+2εvvr ≥ −2ε
∫

r−n+εv2,

−2
∫

r−n+1+εvvr = ε

∫
r−n+εv2,

and

−2
∫

r−n+1+3εvvr = 3ε
∫

r−n+3εv2 ≥ 0.

Using the latter four relations in (2.27), we conclude

2
∫

ABr−2α+2βvvr ≥
[
6α3ε2(1 + o(1)) − 12α3ε3(1 + o(1))

] ∫
r−n+εv2

= 6α3ε2(1 − 2ε)(1 + o(1))
∫

r−n+εv2.

It is clear from this estimate that, if 0 < ε < 1
240 , then for α >> 1 sufficiently large

we have

2
∫

ABr−2α+2βvvr ≥ 59

10
α3ε2

∫
r−n+εv2. (2.28)

Furthermore, we obtain from (2.24)

2
∫

Ar−2α+2β−2vr�Sn−1v = 4α(1 + o(1))
∫

r−n+1vr�Sn−1v (2.29)

− 4αε

∫
r−n+1+εvr�Sn−1v = −2αε2

∫
r−n+ε|∇Sn−1v|2,

where in the last equality we have used (2.6) and (2.7). We also have

− 2
∫

r−2α+2βvt (vrr + Bv + r−2�Sn−1v) = −2
∫

r−n+4vtvrr

− 2
∫

Br−n+4vvt − 2
∫

r−n+2vt�Sn−1v.

The latter two integrals in the right-hand side vanish, similarly to the two computations
following (2.5). Using instead Lemma 2.1, we find

− 2
∫

r−n+4vrrvt = 6
∫

r−n+3vtvr + 2
∫

r−n+4vrvtr

= 6
∫

r−n+3vtvr +
∫

∂t (r
−n+4v2r ) = 6

∫
r−n+3vtvr .

We deduce that

− 2
∫

r−2α+2βvt (vrr + Bv + r−2�Sn−1v) = 6
∫

r−n+3vtvr . (2.30)
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If we now combine (2.25)-(2.30) we conclude that

2
∫

r−2αe2αr
2ε
ab ≥ 59

10
α3ε2

∫
r−n+εv2 + 6

∫
r−n+3vtvr

−2αε2
∫

r−n+ε|∇Sn−1v|2 − 5α
∫

r−n+2v2r . (2.31)

Our next objective is to eliminate the negative term −2αε2
∫
r−n+ε|∇Sn−1v|2 in

the right hand side of (2.31). We stress that, although at a first glance it might
seem that such integral could be absorbed by the above discarded positive term
37
10α

2ε
∫
r−n+ε|∇Sn−1v|2 in (2.20), a careful look at the analysis that led to (2.22)

reveals that this would not work.
Having said this, to accomplish our objective we instead proceed with estimating

from below
∫
r−2αe2αr

ε
a2 as follows

∫
r−2αe2αr

ε

a2 =
∫

r−2α+2β(vrr + Bv + r−2�Sn−1v)2 (2.32)

=
∫

r−2α+2β
(
(vrr + Bv + r−2�Sn−1v + αε2rε−2v) − αε2rε−2v

)2

≥ −2αε2
∫

r−n+2+εv
(
vrr + (B + αε2rε−2)v + r−2�Sn−1v

)

where in the last inequality above we have used (c1 + c2)2 ≥ 2c1c2, with

c1 = vrr + (B + αε2rε−2)v + r−2�Sn−1v, c2 = −αε2rε−2v.

We then estimate each term in the right-hand side of (2.32) as follows. First, the
divergence theorem on S

n−1 gives

− 2αε2
∫

r−n+εv�Sn−1v = 2αε2
∫

r−n+ε|∇Sn−1v|2, (2.33)

which precisely eliminates the negative term −2αε2
∫
r−n+ε|∇Sn−1v|2 in (2.31), see

(2.37) below. Secondly, a repeated application of Lemma 2.1 gives

− 2αε2
∫

r−n+2+εvvrr = 2αε2
∫

r−n+2+εv2r − αε3(1 + ε)

∫
r−n+εv2. (2.34)

Thirdly, using the expression of B in (2.24) it is easily seen that forα >> 1 sufficiently
large and 0 < ε < 1

240 we have

− 2αε2
∫

r−n+2+ε(B + αε2rε−2)v2 ≥ −3α3ε2
∫

r−n+εv2. (2.35)
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From (2.32)-(2.35) we infer that
∫

r−2αe2αr
ε

a2 ≥ 2αε2
∫

r−n+ε|∇Sn−1v|2 − αε3(1 + ε)

∫
r−n+εv2 − 3α3ε2

∫
r−n+εv2.

(2.36)
Combining now (2.31) and (2.36), and keeping in mind that b = rβe−αrε

(Avr − vt ),
we obtain

∫
r−2αe2αr

ε

(�u − ut )
2 ≥

(
29

10
α3ε2 − αε3(ε + 1)

) ∫
r−n+εv2 − 5α

∫
rn+2v2r

(2.37)

+ 6
∫

r−n+3vtvr +
∫

r−n+2(r Avr − rvt )
2.

Now, for 0 < ε < 1
10 we have

29

10
α3ε2 − αε3(ε + 1) ≥ 2α3ε2.

Using this in (2.37) above, we deduce the following estimate

∫
r−2αe2αr

ε

(�u − ut )
2 ≥ 2α3ε2

∫
r−n+εv2 − 5α

∫
rn+2v2r (2.38)

+ 6
∫

r−n+3vtvr +
∫

r−n+2(r Avr − rvt )
2.

Our next and final objective is to bound from below the right-hand side of (2.38)
by an expression that includes C0

α

∫
r−n+4v2t , as desired in (2.21). In the process, we

also need to control the negative term −5α
∫
r−n+2v2r . To achieve this we consider

the last two terms in the right-hand side of (2.38) and, adapting a similar idea in [2,9],
we estimate them in two different ways. First, we proceed as follows

R de f= 6
∫

r−n+3vtvr +
∫

r−n+2(r Avr − rvt )
2

= 6
∫

r−n+3vtvr +
∫

r−n+2((r A − 3)vr − rvt + 3vr )
2

=
∫

r−n+2(6r A − 9)v2r +
∫

r−n+2((r A − 3)vr − rvt )
2

≥
∫

r−n+2(6r A − 9)v2r .

Using (2.24), it is easy now to recognise that for α >> 1 large and 0 < ε < 1
300 , we

have r A ≥ 19
10α, and therefore (6r A − 9) ≥ 114

10 α − 9 ≥ 112
10 α, by increasing further

the value of α >> 1. In conclusion, we obtain

R ≥ 112

10
α

∫
r−n+2v2r . (2.39)
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Proceeding in a similar way, we recognise that

R = 6
∫

r−n+3vtvr +
∫

r−n+2
(
r Avr − r

(
1 − 3

r A

)
vt − 3

A
vt

)2

= 6
∫

r−n+3vtvr +
∫

r−n+4
(
Avr −

(
1 − 3

r A

)
vt

)2

+ 9
∫

r−n+2 1

A2 v2t − 2
∫

r−n+3
(
Avr −

(
1 − 3

r A

)
vt

)
3

A
vt

≥
∫

r−n+4 1

(r A)2
(6r A − 9) v2t .

At this point we note that (2.24) implies r A ≤ 2α(1 + o(1)) ≤ 3α, for α >> 1
sufficiently large. Combining this with the previous estimate from below 6r A − 9 ≥
112
10 α, we obtain 1

(r A)2
(6r A − 9) ≥ 1

α
, for α >> 1 large and 0 < ε < 1

300 . This gives

R ≥ 1

α

∫
r−n+4v2t . (2.40)

If we now split R = 9
10R + 1

10R, and apply (2.39) to 9
10R, and (2.40) to 1

10R, we
finally obtain

R ≥ 1008

100
α

∫
r−n+2v2r + 1

10α

∫
r−n+4v2t . (2.41)

At this point we are almost done. Using the inequality (2.41) in (2.38), we obtain

∫
r−2αe2αr

ε

(�u − ut )
2 ≥ 2α3ε2

∫
r−n+εv2

+
(
1008

100
− 5

)
α

∫
r−n+2v2r + 1

10α

∫
r−n+4v2t

≥ 2α3ε2
∫

r−n+εv2 + + 1

10α

∫
r−n+4v2t ,

where we have taken advantage of the crucial gain in positivity of the coefficient of∫
r−n+2v2r . If we now keep in mind that v = r−βeαrε

u, we finally deduce that (2.21)
holds. �	

3 Proof of Theorem 1.2

In this section we show how to obtain the sucp result in Theorem 1.2 from Theorem
1.1. With the new estimate (1.3) in hands, we can adapt to the critical differential
inequality (1.1) some of the ideas that in [9, Theor. 15, pp. 658–664] were developed
in the subcritical context of (1.2). As we have mentioned in the introduction, this
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entails a delicate modification of Vessella’s proof. For this reason, and for the sake
of the reader’s comprehension, we will present a detailed account. We begin with the
following simple Caccioppoli type inequality.

Lemma 3.1 Let u be a solution to (1.1) in BR × (−T , T ) and let 0 < a < 1 < b.
Then, there exists a constant C1 > 0, depending on n, a, b, T and M in (1.1), such
that for every r < min{1, R} the following holds

∫
{r/2<|x |<r}×(−T /2,T /2)

|∇u|2 ≤ C1

r2

∫
{r(1−a)/2<|x |<br}×(−T ,T )

u2.

Proof From (1.1), we may assume that u solves �u − ut = Vu, where |V (x, t)| ≤
M

|x |2 . Let now φ ≡ 1 in {r/2 < |x | < r} × (−T /2, T /2), and vanishing outside

{r(1 − a)/2 < |x | < br} × (−T , T ). Using φ2u as a test function in the weak form
of the equation we obtain

∫
|∇u|2φ2 +

∫
uutφ

2 ≤ 2
∫

|∇u||∇φ||φ||u| +
∫

|V |u2φ2 (3.1)

Since an integration by parts gives

∫
uutφ

2 = 1

2

∫
(u2)tφ

2 = −
∫

u2φφt ,

we obtain from (3.1)

∫
|∇u|2φ2 ≤ 2

∫
|∇u||∇φ||φ||u| +

∫
|V |u2φ2 +

∫
u2|φ||φt |.

By theCauchy-Schwarz inequalitywehave in a standard fashion2
∫ |∇u||∇φ||φ||u| ≤

1
2

∫ |∇u|2φ2 + 2
∫
u2|∇φ|2. Substitution in the latter inequality gives

∫
|∇u|2φ2 ≤ 4

∫
u2|∇φ|2 + 2

∫
|V |u2φ2 + 2

∫
u2|φ||φt |. (3.2)

Using the bounds |∇φ| ≤ C2/|x |, |φt | ≤ C3/T , and the fact that φ,∇φ, φt are
supported in {r(1 − a)/2 < |x | < br} × (−T , T ), we obtain from (3.2) that the
following holds,

∫
|∇u|2φ2 ≤ C1

r2

∫
{r(1−a)/2<|x |<br}×(−T ,T )

u2,

for someC1 depending on n, a, b, T andM . The desired conclusion follows by bound-
ing from below the integral in the left-hand side with one over the region where
φ ≡ 1. �	
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Proof of Theorem 1.2 Throughout the proof the letter C will indicate an all purpose
constant which might change from line to line, and which could depend in some
occurrences on the number T . In what follows it will be easier for the computations
if we work with the symmetric time-interval (−T , T ), instead of (0, T ). Without loss
of generality, we also assume that R < 1. Let 0 < r1 < r2/2 < 4r2 < r3 < R/2
be fixed, and let φ(x) be a smooth function such that φ(x) ≡ 0 when |x | < r1/2,
φ(x) ≡ 1 when r1 < |x | < r2, φ(x) ≡ 0 when |x | > r3. We now let T2 = T /2
and T1 = 3T /4, so that 0 < T2 < T1 < T . As in [9], we let η(t) be a smooth even
function such that η(t) ≡ 1 when |t | < T2, η(t) ≡ 0, when |t | > T1. Furthermore,
it will be important in the sequel (see (3.15) below) that η decay exponentially near
t = ±T1. As in (118) of [9] we take

η(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 − T ≤ t ≤ −T1

exp
(
− T 3(T2+t)4

(T1+t)3(T1−T2)4

)
− T1 ≤ t ≤ −T2,

1, t ∈ −T2 ≤ t ≤ 0.

(3.3)

We suppose that u parabolically vanishes to infinite order in the sense of (1.4), and
we want to conclude that u ≡ 0 in BR × (−T , T ). We assume that this not the case
and show that we reach a contradiction. Without loss of generality we can (and will)
assume that ∫

Br2×(−T2,T2)
u2 �= 0. (3.4)

Otherwise, the result in [9] implies u ≡ 0 in BR × (−T2, T2) and by the arguments
that follow we could conclude that u ≡ 0 also for |t | > T2. The assumption (3.4) will
be used in the very end in the Eq. (3.24).

Now, with u as in Theorem 1.2 we let v = φηu. A standard limiting argument
allows to use such v in the Carleman estimate (1.3), obtaining

α

∫
r−2α−4e2αr

ε

v2 + α3
∫

r−2α−4+εe2αr
ε

v2 ≤ C
∫

r−2αe2αr
ε

(�v − vt )
2.

Here, we have fixed some ε ∈ (0, ε(n)), where ε(n) is as in the hypothesis of Theorem
1.1. Keeping in mind that

�v − vt = φη(�u − ut ) + u(η�φ − φηt ) + 2η < ∇u,∇φ >,

we obtain

α

∫
r−2α−4e2αr

ε

v2 + α3
∫

r−2α−4+εe2αr
ε

v2 ≤ C
∫

r−2αe2αr
ε

(�u − ut )
2φ2η2

(3.5)

+ C
∫

r−2αe2αr
ε

(|∇u|2|∇φ|2 + u2(�φ)2)η2 + u2φ2η2t .
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Since the differential inequality (1.1) gives

C
∫

r−2αe2αr
ε

(�u − ut )
2φ2η2 ≤ CM2

∫
r−2α−4e2αr

ε

v2,

if we choose
α ≥ 2CM2, (3.6)

then the first integral in the right-hand side of (3.5) can be absorbed in the left-hand
side. Consequently, from the way φ and η have been chosen, and bearing in mind that
∇φ is supported in {r1/2 < r < r1} ∪ {r2 < r < r3} and that we have in such a set
|∇φ| = O(1/r), |�φ| = O(1/r2), we obtain from (3.5)

α

∫
r−2α−4e2αr

ε

v2 ≤ C
∫

{r1/2<r<r1}×(−T1,T1)
e2αr

ε

(r−2α−4u2 + r−2α−2|∇u|2)
(3.7)

+ Cr−2α−4
2 e2αr

ε
2

∫
{r2<r<r3}×(−T1,T1)

(u2 + |∇u|2)

+ C
∫

{r1/2<|x |<r3}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t − 2α3
∫

r−2α−4+εe2αr
ε

v2.

In (3.7), we have also used the fact that, since the functions

r → r−2α−4e2αr
ε

and r → r−2αe2αr
ε

(3.8)

are decreasing in (0, 1), we can estimate

∫
{r2<r<r3}×(−T1,T1)

r−2αe2αr
ε

(u2(�φ)2 + |∇u|2|∇φ|2)

≤ Cr−2α−4
2 e2αr

ε
2

∫
{r2<r<r3}×(−T1,T1)

(u2 + |∇u|2).

We now split the second to the last term in the right-hand side of (3.7) in three parts

C
∫

{r1/2<|x |<r3}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t = C
∫

{r1/2<|x |<r1}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t

+C
∫

{r1<|x |<r2}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t + C
∫

{r2<|x |<r3}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t .

(3.9)

Since |ηt | ≤ C/T , the first and third terms in the right-hand side of (3.9) are, respec-
tively, estimated as follows using (3.8)
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C
∫

{r1/2<|x |<r1}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t ≤ C
(r1
2

)−2α
e
2αr1
2

∫
{r1/2<|x |<r1}×(−T1,T1)

u2

≤ C

(
r1
2C1

)−2α ∫
{r1/2<|x |<r1}×(−T1,T1)

u2 (3.10)

where in the last inequality in (3.10), we have used the fact that e
2αr1
2 ≤ e2αr3 ≤ C2α

1 ,
for some C1 > 0 depending only on r3, which has been fixed. Similarly, we have

C
∫

{r2<|x |<r3}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t ≤ Cr−2α
2 e2αr

ε
2

∫
{r2<|x |<r3}×(−T1,T1)

u2.

(3.11)
In order to estimate the second term in the right-hand side of (3.9), we combine it with
the last integral in the right-hand side of (3.7) andobserve that, sinceφ ≡ 1 in the region
{r1 < |x | < r2}, and the function ηt is supported in the set (−T1,−T2) ∪ (T2, T1), if
we indicate U = {r1 < |x | < r2} × [(−T1,−T2) ∪ (T2, T1)], we can bound

C
∫

{r1<|x |<r2}×(−T1,T1)
r−2αe2αr

ε

u2φ2η2t − 2α3
∫

r−2α−4+εe2αr
ε

v2

≤
∫
U
r−2α−4+εe2αr

ε

u2η2
(
Cr4−ε η2t

η2
− 2α3

)

≤
∫
U
r−2α−4+εe2αr

ε

u2η2
(
Cr3

η2t

η2
− 2α3

)

Note that in the last inequality above, we used that for ε < 1, we have r4−ε < r3, for
all r < 1. At this point our objective is to establish the following estimate

∫
U
r−2α−4+εe2αr

ε

u2η2
(
Cr3

η2t

η2
− 2α3

)
≤ C

∫
BR×(−T ,T )

u2. (3.12)

The proof of (3.12) will be accomplished in several steps. First, we note that it suffices
to concern ourselves with the portion of the integral in the left-hand side of (3.12)
over the region U− = {r1 < |x | < r2} × (−T1,−T2), since the estimate on U+ =
{r1 < |x | < r2} × (T2, T1) is similar. Now, if −T1 ≤ t ≤ −T2, keeping in mind that
T1 − T2 = T

4 , |T2 + t | ≤ T1 − T2 = T
4 , and that

3
4T ≤ 4T1 − 3T2 + t ≤ T , from (3.3)

a standard calculation shows

∣∣∣∣ηtη
∣∣∣∣ =

∣∣∣∣T
3(T2 + t)3(4T1 − 3T2 + t)

(T1 − T2)4(T1 + t)4

∣∣∣∣ ≤ 4T 3

|T1 + t |4 .

Using this estimate in the above inequality, we obtain
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∫
U−

e2αr
ε

r−2α−4+εu2η2
(
Cr3

η2t

η2
− 2α3

)

≤
∫
U−

e2αr
ε

r−2α−4+εu2η2
(
Cr3

T 6

(T1 + t)8
− 2α3

)
.

Next, we writeU− = D∪(U−\D), where D is the region inU− where the inequality

2α3 ≤ Cr3
T 6

(T1 + t)8
(3.13)

holds. Since we clearly have
∫
U−\D e2αr

ε
r−2α−3u2η2

(
Cr3 T 6

(T1+t)8
− 2α3

)
≤ 0, we

obtain

∫
U−

e2αr
ε

r−2α−4+εu2η2
(
Cr3

η2t

η2
− 2α3

)
(3.14)

≤
∫
D
e2αr

ε

r−2α−4+εu2η2
(
Cr3

T 6

(T1 + t)8
− 2α3

)

≤ C
∫
D
e2αr

ε

r−2α−4+εηu2
ηT 6

(T1 + t)8
.

Comparing the right-hand side of (3.14) with that of (3.12), it should be clear to the
reader that, in order to establish (3.12), it suffices at this point to be able to bound from

above in D the quantity r−2α−4+εe2αr
ε
η

ηT 6

(T1+t)8
. We accomplish this by first observing

that, thanks to the exponential vanishing of η at t = −T1, see (3.3), we obtain for
t ∈ (−T1,−T2),

ηT 6

(T1 + t)8
≤ C, (3.15)

for some universal C > 0 (depending on T ). Secondly, we show that, thanks to the
inequality (3.13), the following holds in the region D provided that we choose the
parameter α large enough

r−2α−4+εe2αr
ε

η ≤ 1. (3.16)

Using the expression (3.3) for η(t), we see that (3.16) does hold in D if and only if
for α sufficiently large we have in such set

(2α + 4 − ε) log r + T 3(T2 + t)4

(T1 + t)3(T1 − T2)4
− 2αrε ≥ 0. (3.17)

To prove (3.17) observe that (3.13) can be equivalently written in D as

T1 + t

T
≤

(
C

2T 2

)1/8 ( r

α

)3/8 = C
( r

α

)3/8
,
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for some universal C > 0. Since for α sufficiently large we trivially have

C
( r

α

)3/8 ≤ C

(
R

α

)3/8

≤ 1

12
,

we conclude that in D we must have

T1 + t

T
≤ 1

12
, (3.18)

if α > 1 has been chosen large enough. Since T
4 = T1 − T2 = T1 + t + |T2 + t |, from

(3.18) we conclude that we must have in D

|T2 + t | ≥ T

6
.

If we now use this bound from below along with (3.13), we find in D

(2α + 4 − ε) log r + T 3(T2 + t)4

(T1 + t)3(T1 − T2)4
− 2αrε (3.19)

≥
(
4

6

)4 (
2

C

)3/8

T 3/4
(α

r

)9/8 − (2α + 4 − ε) log
1

r

− 2αrε = C
(α

r

)9/8 − (2α + 4 − ε) log
1

r
− 2αrε ≥ 0,

provided that r < r3 ≤ 1, and that α is sufficiently large. We stress here the crit-
ical role of the power α9/8, versus the linear term 2α + 4 − ε, in reaching the
above conclusion. This is precisely why we needed to incorporate the subcritical term
α3

∫
r−2α−4+εe2αr

ε
u2 in our main Carleman estimate (1.3). We have thus proved

(3.17), and consequently (3.16). Combining (3.14), (3.15) and (3.16), we conclude
that (3.12) holds.

Using now the estimates (3.9), (3.10), (3.11) and (3.12) in (3.7), we find

α

∫
r−2α−4e2αr

ε

v2 ≤ C
∫

{r1/2<|x |<r1}×(−T1,T1)
e2αr

ε

(r−2α−4u2 + r−2α−2|∇u|2)
(3.20)

+ Cr−2α−4
2 e2αr

ε
2

∫
{r2<|x |<r3}×(−T1,T1)

(u2 + |∇u|2)

+ C

(
r1
C2

)−2α ∫
{r1/2<|x |<r1}×(−T1,T1)

u2 + C
∫
BR×(−T ,T )

u2.

Note that in (3.20) we have let C2 = 2C1, with C1 as in (3.10).
Now by Lemma 3.1 and (3.8) it follows that for some universal C4,

∫
{r1/2<|x |<r1}×(−T1,T1)

r−2α−2e2αr
ε |∇u|2 ≤ C

(
r1
C4

)−2α−4 ∫
{r1/4<|x |<3r1/2}×(−T ,T )

u2,
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and also
∫

{r2<|x |<r3}×(−T1,T1)
|∇u|2 ≤ C

∫
BR×(−T ,T )

u2,

where the constant in the latter estimate depends also on the parameters r2 < r3 ≤ 1,
which are finally fixed at this point. Substituting these bounds in (3.20), we conclude
that the following inequality holds for some new universal constants C and C1,

α

∫
r−2α−4e2αr

ε

v2 ≤ C

(
r1
C1

)−2α−4 ∫
{r1/4<|x |<3r1/2}×(−T ,T )

u2 (3.21)

+ Cr−2α−4
2 e2αr

ε
2

∫
BR×(−T ,T )

u2.

The integral in the left-hand side of (3.21) can be bounded from below in the following
way using (3.8),

α

∫
r−2α−4e2αr

ε

v2 ≥ αr−2α−4
2 e2αr

ε
2

∫
{r1<|x |<r2}×(−T2,T2)

u2. (3.22)

Substituting (3.22) in (3.21), and dividing both sides by r−2α−4
2 e2αr

ε
2 , we obtain

α

∫
{r1<|x |<r2}×(−T2,T2)

u2 ≤ C

(
r1

C1r2

)−2α−4 ∫
{r1/4<|x |<3r1/2}×(−T ,T )

u2 + C
∫
BR×(−T ,T )

u2.

Now adding α
∫
Br1×(−T2,T2)

u2 to both sides of the latter inequality, we obtain

α

∫
Br2×(−T2,T2)

u2 ≤ C

(
r1

C1r2

)−2α−4 ∫
{r1/4<|x |<3r1/2}×(−T ,T )

u2 (3.23)

+ α

∫
Br1×(−T2,T2)

u2 + C
∫
BR×(−T ,T )

u2

≤ 2C

(
r1

C1r2

)−2α−4 ∫
B3r1/2×(−T ,T )

u2 + C
∫
BR×(−T ,T )

u2,

where, recalling our initial choice r1 < r2, we note that in the second inequality in
(3.23) we have used

α ≤
(

r1
C2r2

)−2α−4

.

Keeping in mind the hypothesis (3.4), we now choose α (depending on u) such that

α

∫
Br2×(−T2,T2)

u2 ≥ 2C
∫
BR×(−T ,T )

u2, (3.24)
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where C is as in (3.23). Thus, by subtracting off C
∫
BR×(−T ,T )

u2 from both sides of
(3.23), we obtain

(
r1

C1r2

)2α+4
α

2

∫
Br2×(−T2,T2)

u2 ≤ 2C
∫
B3r1/2×(−T ,T )

u2. (3.25)

At this point, we fix α sufficiently large in such a way that (3.6), (3.18), (3.19) and
(3.24) simultaneously hold. Letting 3r1/2 = s, we obtain from (3.25) that for some

new constants C, A depending on r2, r3, R, the ratio
∫
BR×(−T ,T ) u

2

∫
Br2×(−T2,T2) u

2 , and α (which at

this point is fixed), the following holds for all 0 < s ≤ r2/8,

∫
Bs×(−T ,T )

u2 ≥ CsA.

Since this estimate is in contradiction with the hypothesis that u parabolically vanish
to infinite order in the sense of (1.4), we have finally proved the theorem. �	
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