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1 Introduction

In recent years, much attention has been dedicated to the study of differential equations with de-
lays and impulses, since they often produce realistic models for evolutionary systems which go through
abrupt changes, caused by random or predictable external factors. In the case of autonomous equa-
tions, it is particular relevant to study the existence and attractivity of equilibria. Periodic phenom-
ena however contribute significantly in population dynamical systems, artificial neural networks and
many other biological and physical processes as well, in which case the models are better portrayed
by periodic differential equations. For periodic differential equations, without and with impulses, a
key question is whether there exists any periodic solution, which in many models, due to their real
world interpretation, is required to be positive.

In this paper, we consider a family of periodic scalar differential equations with infinite delay and
impulses, written in the general abstract form{

x′(t) = −a(t)x(t) + g(t, xt), t ≥ 0, t 6= tk, k ∈ N,
x(t+k )− x(tk) = Ik(x(tk)), k ∈ N, (1.1)

1Corresponding author. E-mail: teresa.faria@fc.ul.pt

1



where the scalar functions a(t) and g(t, ϕ) are continuous, nonnegative and periodic in t with a
common period ω > 0, the impulsive functions Ik(u) are continuous, k ∈ N, and the impulses
∆x(tk) := x(t+k ) − x(tk) occur at times tk ↗ ∞ with a periodicity ω to be specified in the next
section. Here, g : [0,∞) × D → R, where D ⊂ B and B is an adequate Banach space of piecewise
continuous functions defined on (−∞, 0] with values in R, which are left-continuous. As usual, xt
denotes the entire past history of the system up to time t, or in other words, xt(s) = x(t + s) for
s ≤ 0. Eq. (1.1) sets a general framework for many relevant models from mathematical biology and
other sciences, for which only positive (or nonnegative) solutions of (1.1) are meaningful.

The main aim of the paper is to establish sufficient conditions for the existence of positive periodic
solutions for (1.1). Our technique is based on a version of the Krasnoselskii fixed point theorem in
cones [16] due to Guo [11], which is applied to a convenient operator whose fixed points are precisely
the ω-periodic solutions of (1.1) we are looking for.

In fact, there is an extensive literature on the application of fixed point theorems, such as Banach
contraction principle, Schauder or Krasnoselskii theorems, the continuation theorem, as well as other
methods, which include lower and upper solutions, monotone iterative schemes, combinations with
Lyapunov functionals – to the quest of positive periodic solutions to delay differential equations
(DDEs). Related to our research, we refer to the early works of Nieto [22], Chen [4], Jiang and
Wei [15], and to [2, 10, 19, 20, 21, 26, 27, 28, 31, 34, 35], most of them considering DDEs with a
single discrete delay. See also [6, 36], for results about permanence implying existence of positive
periodic solutions for DDEs. In spite of this wide array of techniques from nonlinear analysis, our
method is essentially new, since it relies on a fixed point argument applied to an original operator
constructed here. Our method, applicable under very mild restrictions, improves previous results in
the literature, and has straightforward extensions to other classes of impulsive DDEs.

The work reported here was highly motivated by the papers [9, 15, 19], which we refer to also
for further references. In [19], and extending the ideas in [15, 22], Li et al. considered a family of
impulsive DDEs, with a single discrete delay and positive impulses:{

x′(t) = −a(t)x(t) + f(t, x(t− τ(t))), t ≥ 0, t 6= tk, k ∈ N,
x(t+k )− x(tk) = Ik(x(tk)), k ∈ N. (1.2)

with a(t), f(t, u), τ(t) continuous, nonnegative and ω-periodic in t, (tk), (Ik) as in (1.1), and moreover
with Ik(u) > 0 for u > 0, k ∈ N. As in [21, 30, 34, 35] and many other papers, in [19] the authors
found positive periodic solutions as fixed points for a certain operator via a Krasnoselskii fixed point
theorem; since the definition of such operator requires summing all the impulses (multiplied by a
Green function) up to time t, the impulses must be positive in order to be sure that the operator
maps a cone of positive functions into itself. This creates some difficulties in applications, and it
turns out that some results in [19] cannot be used in the simple case of positive linear impulses (i.e.,
when Ik(u) = bku with bk > 0, k ∈ N). On the other hand, from the point of view of applications it
is very restrictive to consider only positive impulses. For a discussion of the role of impulses, see e.g.
[20, 25].

Recently, by introducing a different operator, Faria and Oliveira [9] studied more general equa-
tions with either finite multiple discrete delays or finite distributed delay – however, due to technical
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difficulties, only linear impulses were considered, as follows:{
x′(t) + a(t)x(t) = g(t, xt), t0 ≤ t 6= tk,
x(t+k )− x(tk) = bkx(tk), k ∈ N, (1.3)

with a(t), g(t, ϕ), (tk) as in (1.1) and constants bk ∈ (−1,∞). The existence of positive periodic
solutions for periodic DDEs (1.1) with impulses given by general continuous functions Ik(u) which
may change sign was the principal motivation for this paper, which can be seen as a continuation
of the work in [9]. We emphasise however that, even for impulsive DDEs (1.3) with finite delay, the
results in this paper are more general than the ones in [9].

One should stress that DDEs with infinite delay require a rigorous abstract formulation in an
admissible phase space [13, 14], in order to guarantee that the initial value problems are well-posed
and that the standard qualitative properties of solutions are valid.

The contents and organization of the next sections are now described. Section 2 is a section
of preliminaries, and begins with the choice of an appropriate Banach phase space to treat general
equations with infinite delays and impulses. Afterwards, we set the main hypotheses for (1.1), and
define a suitable cone K and a suitable operator Φ on K \ {0}, whose fixed points are precisely the
positive ω-periodic solutions to (1.1).

Section 3 contains the main results of the paper, which establish sufficient conditions for the
existence of fixed points of Φ. Such conditions arise by analysing the interplay between the behaviour
of the impulse functions and of the nonlinear terms, for solutions next to zero or to infinity, and are
easily verified in practice. The Krasnoselskii-Guo theorem [11] is used, both in its compressive and
expansive forms. Several criteria based on either a pointwise or an average comparison of a(t) and
g(t, ϕ) for t ∈ [0, ω] and ‖ϕ‖ in the vicinity of zero or infinity, are derived. Our results are illustrated
and analysed within the context of some related literature.

In Section 4, applications to impulsive Volterra integro-differential equations with delay are given,
with emphasis on the case of unbounded distributed delay. We remark that the situation with infinite
delay has not often been addressed, the works of Zhao [36] and Jiang and Wei [15] for DDEs without
impulses being exceptions. Generalisations of results in [15] are given in Subsection 4.1, namely we
highlight the treatment of a mixed monotonicity model. The case of impulsive DDEs with bounded
periodic distributed delay is analysed in Subsection 4.2, extending and enhancing previous criteria
in e.g. [2]. The models in these subsections are broad enough to include generalised Nicholson’s
blowflies and Mackey-Glass equations as particular concrete examples. Some attention to impulses
satisfying the requirements set in Section 2 is given in Subsection 4.3. We restrict ourselves only to
few applications and selected examples, to reduce the size of this manuscript; many other examples
can be given, e.g. straightforward generalisations of the models treated in [2, 9, 19, 34]. A short
section of final comments ends the paper.

2 An abstract framework and preliminary results

We now set an appropriate phase space to treat impulsive differential equations with infinite
delay. Although this abstract formulation does not seem to be relevant for the strict purpose of
finding periodic solutions of (1.1), it is essential to consider equations with abstract nonlinear terms
g(t, xt), instead of the form g(t, x(t−τ(t))), or even g(t,

∫ 0
−τ(t) k(s)x(t+s) ds) for some g : R+×R→ R.
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Moreover, for other reasons, e.g. to pursue with the study of their attractivity, it is important to
realise that we shall look for periodic solutions inside a Banach space X contained naturally in the
phase space for (1.1). For more details and results of existence, uniqueness, global continuation of
solutions for DDEs with impulses and infinite delay, we refer to [7, 24] and references therein. On
the other hand, a reader mostly motivated by concrete applications may simply concentrate his/her
attention on the definition of the space X in (2.1).

For a real interval I, let B(I;R) be the Banach space of bounded functions ϕ : I → R, endowed
with the supremum norm ‖ · ‖∞. For a compact interval I = [α, β] (α < β), consider the subspace
PC(I;R) of B(I;R) of the piecewise continuous functions defined on I which are left-continuous in
(α, β], i.e., PC(I;R) := {ϕ : I → R |ϕ is continuous except for a finite number of elements of I for
which ϕ(s−) and ϕ(s+) exist and ϕ(s) = ϕ(s−)}. The closure of PC(I;R) in B(I;R) is the space
R(I;R) of normalized regulated functions on I.

Next we shall consider systems with “infinite memory”, thus take I = (−∞, 0]. Define PC :=
PC((−∞, 0];R) as the space of functions ϕ : (−∞, 0]→ R whose restriction to any compact interval
[α, β] ⊂ (−∞, 0] is in R([α, β];R). The elements of PC are left-continuous and may have countable
discontinuities of the first kind. Note however that PC is not contained in B((−∞, 0];R). We need
to choose a subset of PC and an appropriate norm, in such a way that the new space is a Banach
space providing a suitable framework to handle DDEs with infinite delays and impulses [13, 14, 24].
We use a norm with a weight function f satisfying the properties below:

(f1) f : (−∞, 0]→ [1,∞) is a nonincreasing function with f(0) = 1,

(f2) limu→0−
f(t+ u)

f(t)
= 1 uniformly on (−∞, 0],

(f3) f(s)→∞ as s→ −∞.

The space

PCf :=

{
ϕ ∈ PC((−∞, 0];R) : sup

s≤0

|ϕ(s)|
f(s)

<∞
}

is a Banach space (see [7, Lemma 3.1]) with the norm

‖ϕ‖f := sup
s≤0

|ϕ(s)|
f(s)

.

Write R+ = [0,∞),R− = (−∞, 0]. In the space PCf , we consider a DDE with impulses in
the abstract form (1.1), where a : R+ → R+, g : R+ × PCf → R+ (or g : R+ × D → R+ with
D ⊂ PCf ), Ik : R+ → R (k ∈ N) are continuous, and (tk)k∈N is an increasing sequence of positive
real numbers, tk → ∞. As mentioned in the introduction, for any b ∈ R and x : (−∞, b) → R a
piecewise continuous function, xt : R− → R for t < b is defined by

xt(s) = x(t+ s), s ∈ R−.

For non-impulsive versions of (1.1), we take as phase space the subset Cf of continuous functions,
Cf = {ϕ ∈ C((−∞, 0];R) : sups≤0(|ϕ(s)|/f(s)) < ∞}, with the above norm ‖ · ‖f . This space has
often been considered in the literature of (non-impulsive) DDEs with infinite delay [14].

As usual, by a solution x of (1.1) on [σ, b), with 0 ≤ σ < b ≤ ∞, we mean a function x : (−∞, b)→
R such that xt ∈ PCf for t ∈ [σ, b), x, x′ are continuous on [σ, b)\{tk : k ∈ N}, and satisfies (1.1). For
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(1.1), the subset of bounded functions BPC := PC((−∞, 0];R) ∩ B((−∞, 0];R) ⊂ PCf is usually
taken as the space of admissible initial conditions [7, 24].

We recall that a function y : I → R, with I = R, I = R+ or I = R−, is called ω-periodic if
y(t+ω) = y(t), for any t, t+ω ∈ I. Since we are only interested in obtaining periodic solutions, the
spaces PCf and BPC are still too large for our purposes, hence we choose a subset of PCf that fits
well with the nature of the solutions we are looking for.

Consider ω > 0 and points t1, . . . , tp (for some p ∈ N) such that 0 ≤ t1 < · · · < tp < ω, and define
the sequence (tk)k∈N by tk+np = tk + nω for all n ∈ Z, k = 1, . . . , p. Take X as the space

X = {y : R→ R | y is ω−periodic, continuous for all t 6= tk,

and y(t−k ) = y(tk), y(t+k ) ∈ R, for k ∈ Z},
(2.1)

and
X̃ = {yt : y ∈ X, t ∈ R}.

For y ∈ X fixed, yt ∈ PCf for all t, thus X̃ ⊂ PCf . In this way, with the identification y ≡ y0 =
y|(−∞,0]

, X can also be identified with a subspace of ω-periodic functions in PCf , and therefore seen

as a (closed) subset of PCf . We now take the supremum norm in X and X̃, ‖y‖∞ = supt∈[0,ω] |y(t)|.

Lemma 2.1. There exists L > 0 such that, for any y ∈ X and t ∈ R, ‖yt‖f ≤ ‖y‖∞ = ‖yt‖∞ ≤
L‖yt‖f . In particular, the norms ‖ · ‖f and ‖ · ‖∞ are equivalent in both X̃ and X.

Proof. Let y ∈ X, t ∈ R. One has ‖y‖∞ = ‖yt‖∞. On the one hand, we have ‖yt‖f = sups≤0
|y(t+s)|
f(s) ≤

sups≤0 |y(t + s)| = sups∈[0,ω] |y(s)| = ‖y‖∞. On the other hand, ‖y‖∞ = sups∈[−ω,0] |y(t + s)| ≤
L sups≤0

|y(t+s)|
f(s) = L‖yt‖f , where L := sups∈[−ω,0] f(s) = f(−ω).

In view of the previous lemma, from now on we shall work in the Banach space X with the norm
‖ · ‖∞, simply denoted by ‖ · ‖, thus R+ × X̃ is taken as the domain of g(t, ϕ).

The following hypotheses on (1.1) will be assumed:

(A1) The functions a : R+ → R, g : R+ × X̃ → R are nonnegative, continuous, not identically zero,
ω-periodic in t ∈ R+, for some ω > 0, and g is bounded on bounded sets of R+ × X̃.

(A2) The functions Ik : [0,∞) → R are continuous and there is a positive integer p such that
0 ≤ t1 < · · · < tp < ω and tk+p = tk + ω, Ik+p = Ik, k ∈ N.

(A3) There exist constants ak > −1 and bk such that aky ≤ Ik(y) ≤ bky, for y ≥ 0, k ∈ {1, . . . , p}.

(A4)
∏p
i=1(1 + bk) < exp

(∫ ω
0 a(t) dt

)
.

We give a few comments about the choice of the above hypotheses. Under (A2)-(A3), the
constants ak and bk can be extended for k > p by ω-periodicity, ap+k = ak, bk+p = bk, k ∈ N,

and chosen as the sharpest ones: ak = infu>0
Ik(u)
u , bk = supu>0

Ik(u)
u , k ∈ N. In [9], Faria and

Oliveira studied impulsive periodic scalar equations (with finite delay) (1.3) subject to linear im-
pulses ∆x(tk) := x(t+k )−x(tk) = bkx(tk), with tk and Ik(u) = bku satisfying (A2). For such systems,
it was imposed in [9] that bk > −1, in order to guarantee that, after suffering an impulse at the
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instant tk, a positive solution remains positive. Hypothesis (A3) above is a generalisation of such
assumption. It also implies that Ik(0) = 0 for all k, a constraint considered by many authors, see e.g.
[29]. The situation Ik(0) 6= 0 will be analysed in a future work. Related to this aspect, see [23] and
references therein, for possible extensions of our method to impulsive DDEs (1.1) for which g(t, ϕ)
has a singularity at ϕ = 0. Condition (A4), also imposed in [9, 20], expresses that the impulses are
not too large when compared with the average of a(t) over an interval of length ω. We remark that
even in the case of linear impulses Ik(u) = bku, the stronger restriction

∏p
i=1(1 + bk) = 1 has often

been imposed [28, 31, 33, 35], see further comments in [20].

Let X+ be the subset of X of nonnegative functions, i.e., of functions y ∈ X such that y(t) ≥
0, t ∈ [0, ω]. In order to simplify the writing, we define the following auxiliary functions:

A(t) =

∫ t

0
a(u) du for t ≥ 0, Jk(u) =

u

u+ Ik(u)
for u > 0, k ∈ {1, . . . , p},

B(t; y) =
∏

k:tk∈[0,t)

Jk(y(tk)) and

B̃(s, t; y) =
B(s; y)

B(t; y)
=

∏
k:tk∈[t,s)

Jk(y(tk)) for 0 ≤ t ≤ s ≤ t+ ω, y ∈ X+ \ {0}.

Throughout the paper, we adopt the standard convention where a product is equal to one when the
number of factors is zero.

From the definitions above and hypotheses (A2)-(A4), it is clear that

(1 + bk)
−1 ≤ Jk(u) ≤ (1 + ak)

−1, u > 0, k = 1, . . . , p. (2.2)

The function B̃(s, t; y) has the property B̃(s + ω, t + ω; y) = B̃(s, t; y) for 0 ≤ t ≤ s ≤ t + ω, y ∈
X+ \ {0}. Since there is a finite number of impulses on each interval of length less than or equal to
ω, B̃(s, t; y) is uniformly bounded above and below by constants B,B ∈ (0,∞),

B ≤ B̃(s, t; y) ≤ B for 0 ≤ t ≤ s ≤ t+ ω, y ∈ X+ \ {0},

with B ≤ max
{∏j+l−1

k=j (1 + ak)
−1 : j = 1, . . . , p, l = 0, . . . , p

}
, B ≥ min

{∏j+l−1
k=j (1 + bk)

−1 : j =

1, . . . , p, l = 0, . . . , p
}

.
We stress that there are significant differences between our setting and the situation in [9],

where only linear impulses given by functions Ik(u) = bku are allowed: in contrast with [9], where
Jk(u) ≡ (1 + bk)

−1 is constant, in the present setting Jk(u) depends on u, need not be defined at
u = 0 (k ∈ N) and the functions B(t; y) and B̃(s, t; y) now depend on y ∈ X+ \ {0}.

Consider the partial order in X induced by the cone X+, i.e., for x, y ∈ X, x ≤ y means that
y − x ∈ X+. For any σ ∈ (0, 1), we consider a new cone in X, as defined by Nieto in [22] and in
many other papers:

Kσ := {y ∈ X+ : y(t) ≥ σ‖y‖}.

For a fixed constant σ ∈ (0, 1), we shall refer to Kσ simply as K. Next, we define the operator Φ on
K \ {0} by

(Φy)(t) = (B(ω; y) eA(ω)−1)−1
∫ t+ω

t
B̃(s, t; y)g(s, ys) e

∫ s
t a(u) du ds, t ≥ 0, (2.3)
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for y ∈ K, y 6= 0, where, according to the above notation,

A(ω) =

∫ ω

0
a(t) dt, B(ω; y) =

p∏
k=1

Jk(y(tk)).

Remark 2.1. It is worth mentioning that, at each impulse instant tk, a solution y of (1.1) satisfies
Jk(y(tk)) = y(tk)/y(t+k ), i.e., Jk(y(tk)) gives the ratio between the two lateral limits of y(t) at tk. As
a consequence, the function x(t) := B(t; y)y(t) is continuous (as already observed in [29]), and this
fact plays an important role, as the fixed points of the operator Φ turn out to be periodic solutions
of (1.1), cf. Lemma 2.3 below.

The construction in the remainder of this section, as well as the proofs of the next lemmas, follow
along the main ideas in [9, Section 2], which however have to be carefully adapted, in order to tackle
the problems caused by the dependence of the functions B(t; y) and B̃(s, t; y) on y ∈ K \{0}, and by
the fact that Φ may not be defined at y = 0. Most of the arguments are included here, nevertheless
the reader can check [9] for some omitted details.

Lemma 2.2. Assume (A1)-(A4) and take σ ≤ (B/B) e−A(ω). Then Φ(K \ {0}) ⊂ K.

Proof. Let y ∈ K, y 6= 0 be fixed. As seen above, yt ∈ X̃ ⊂ PCf for t ≥ 0. The definition of Φ,
(A1)-(A4) and a simple change of variables, show that Φy ≥ 0 and that Φ is ω-periodic. Moreover,
it is clear that t 7→ (Φy)(t) is continuous for every 0 ≤ t 6= tk and left-continuous on tk, k = 1, . . . , p.

Take ε > 0 with ε < min1≤k≤p(tk+1 − tk), 0 ≤ t ≤ ω and k ∈ {1, . . . , p}. We have

Jk(y(tk))B̃(s, tk + ε; y) = B̃(s, tk; y),

for any tk + ε ≤ s ≤ tk + ω, while B̃(s, tk + ε; y) = B̃(ω; y) if tk + ω < s ≤ tk + ω + ε. Hence,

(Φy)(tk + ε) = (B(ω; y) eA(ω)−1)−1 e
−

∫ tk+ε
tk

a(u)du
[
Jk(y(tk))

−1
∫ tk+ω

tk+ε
B̃(s, tk; y)g(s, ys) e

∫ s
tk
a(u)du

ds

+ B̃(ω; y)

∫ tk+ω+ε

tk+ω
g(s, ys) e

∫ s
tk
a(u)du

ds

]
.

Since B̃(ω; y) ≤ B and g is bounded on bounded sets of R+ × X̃, it follows

0 ≤ B̃(ω; y)

∫ tk+ω+ε

tk+ω
g(s, ys) e

∫ s
tk
a(u)du

ds ≤ eA(ω)B

∫ tk+ω+ε

tk+ω
g(s, ys) ds→ 0 as ε→ 0

By letting ε→ 0+, we obtain

Φy(t+k ) = Jk(y(tk))
−1Φy(tk) ∈ R. (2.4)

Thus, we conclude that Φ(K \ {0}) ⊂ X+.
Now, we check that Φ(K \ {0}) ⊂ K. Take y ∈ K, y 6= 0, and t ≥ 0. Then,

‖Φy‖ ≤ (B(ω; y) eA(ω)−1)−1B eA(ω)
∫ ω

0
g(s, ys)ds,

(Φy)(t) ≥ (B(ω; y) eA(ω)−1)−1B

∫ ω

0
g(s, ys)ds.
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These two inequalities imply that

(Φy)(t) ≥ (B/B) e−A(ω) ‖Φy‖ ≥ σ‖Φy‖,

which leads to Φ(K \ {0}) ⊂ K.

From the former lemma, we can suppose hereafter that σ is chosen so that K = Kσ satisfies
Φ(K \ {0}) ⊂ K.

Lemma 2.3. Assume (A1)-(A4). Then y ∈ K \ {0} is a positive ω-periodic solution of (1.1) if and
only if y is a fixed point of Φ.

Proof. Let y be a positive ω-periodic solution to (1.1). As observed in Remark 2.1 the function
x(t) := B(t; y)y(t) is continuous, and it satisfies

x′(t) = B(t; y)y′(t) = −a(t)x(t) +B(t; y)g(t, yt),

for any t ≥ 0, t 6= tk, k ∈ {1, . . . , p}. Integration over [t, t+ ω] leads to

x(t+ ω)eA(t+ω) − x(t)eA(t) =
[
B(t+ ω; y)eA(ω) −B(t; y)

]
y(t)eA(t)

=

∫ t+ω

t
B(s; y)g(s, ys)e

A(s) ds.

Since B(t+ ω; y) = B(ω; y)B(t; y) and B̃(s, t; y) = B(s; y)B(t; y)−1, one obtains

(
B(ω; y)eA(ω) − 1

)
y(t) =

∫ t+ω

t
B̃(s, t; y)g(s, ys)e

∫ s
t a(u) du ds,

and thus y = Φy. The converse follows along similar lines.

In view of Lemma 2.3, finding positive periodic solutions of (1.1) in a cone K is equivalent to
finding fixed points of the operator Φ. To provide criteria for the existence of a fixed point of Φ in
K \ {0}, the Krasnoselskii-Guo fixed point theorem in the version given below will be used.

Theorem 2.1. [11] Let X be a Banach space, K a cone in X and Ar,R := {y ∈ K : r ≤ ‖y‖ ≤ R},
for some 0 < r < R. Let T : Ar,R → K be a completely continuous operator. Suppose that there exist
r,R with 0 < r < R such that one of the following forms is satisfied:

(a) compressive form: ‖Ty‖ ≤ R if y ∈ K, ‖y‖ = R and ‖Ty‖ ≥ r if y ∈ K, ‖y‖ = r;
(b) expansive form: ‖Ty‖ ≤ r if y ∈ K, ‖y‖ = r and ‖Ty‖ ≥ R if y ∈ K, ‖y‖ = R.

Then there exists a fixed point y∗ of T in Ar,R.

In order to apply this theorem to our setting, we need to check that Φ is completely continuous
on a conical shell Ar,R. The proof of the continuity of Φ requires an extra technical hypothesis:

(A5) The family of operators g(t, ·), with t ∈ [0, ω], is uniformly equicontinuous on bounded sets of
X̃ \ {0}, in the sense that, for any A ⊂ X̃ \ {0} bounded and ε > 0, there is δ = δ(ε) > 0 such
that |g(t, ϕ1)− g(t, ϕ2)| < ε, for all t ∈ [0, ω] and ϕ1, ϕ2 ∈ A with ‖ϕ1 − ϕ2‖ < δ.
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Note that in (A5) one can replace X̃ by K̃ := {yt : y ∈ K, t ≥ 0}. It is clear that (A5) is satisfied
if g is uniformly continuous on bounded sets of [0, ω] × X̃, however this latter requirement is too
strong for our purposes.

Lemma 2.4. If (A1)-(A5) hold, Φ is completely continuous on any conical sector Ar,R, 0 < r < R.

Proof. First, we prove that Φ is continuous on K \ {0}. In view of (A2), the functions u 7→ Jk(u)
are continuous on (0,∞), thus B(ω; y) and B̃(s, t; y) are continuous in y ∈ K \ {0}. Recall also
that B(ω; y), B̃(s, t; y) are uniformly bounded from below and above by positive constants B,B on
D × (X+ \ {0}), where D = {(s, t) : t ∈ [0, ω], s ∈ [t, t + ω]}, and g is bounded on bounded sets of
[0, ω]× X̃.

Fix y∗ ∈ K, y∗ 6= 0. For any ε ∈ (0, ‖y∗‖), t ∈ [0, ω] and y ∈ K ∩Bε(y∗), write

|Φy(t)− Φy∗(t)| ≤
∣∣∣(B(ω; y) eA(ω)−1)−1 − (B(ω; y∗) eA(ω)−1)−1

∣∣∣B eA(ω)
∫ ω

0
g(s, ys) ds

+ (B(ω; y∗) eA(ω)−1)−1 eA(ω)B

∫ ω

0
|g(s, ys)− g(s, y∗,s)| ds

+ (B(ω; y∗) eA(ω)−1)−1 eA(ω)
∫ t+ω

t

∣∣∣B̃(s, t; y)− B̃(s, t; y∗)
∣∣∣ g(s, y∗,s) ds.

(2.5)

Clearly,
(B(ω; y) eA(ω)−1)−1 − (B(ω; y∗) eA(ω)−1)−1 → 0 as y → y∗.

By induction on p, it is easy to prove that∣∣∣B̃(s, t; y)− B̃(s, t; y∗)
∣∣∣ ≤ B p∑

k=1

|Jk(y(tk))− Jk(y∗(tk))|

for 0 ≤ t ≤ s ≤ t+ ω. Consequently, there exists δ1 ∈ (0, ε) such that, if ‖y − y∗‖ < δ1, then∣∣∣B̃(s, t; y)− B̃(s, t; y∗)
∣∣∣ ≤ ε for all (s, t) ∈ D,

and we derive that

max
t∈[0,ω]

∫ t+ω

t

∣∣∣B̃(s, t; y)− B̃(s, t; y∗)
∣∣∣ g(s, y∗,s) ds→ 0 as y → y∗.

Finally, for R = ε+ ‖y∗‖, from (A5) there exists δ2 ∈ (0, ε) such that |g(s, ϕ1)− g(s, ϕ2)| < εω−1

for s ∈ [0, ω] and ϕ1, ϕ2 ∈ X̃ \ {0} with ‖ϕ1‖, ‖ϕ2‖ ≤ R and ‖ϕ1 − ϕ2‖ < δ2.
Note also that ‖ys − y∗,s‖ = ‖y − y∗‖ for all s ≥ 0, implying that, for y ∈ K ∩Bδ2(y∗), we have∫ ω

0
|g(s, ys)− g(s, y∗,s)| ds < ε.

From (2.5) and the above computations, we conclude that ‖Φy − Φy∗‖ → 0 as ‖y − y∗‖ → 0.
Next, fix Ar,R with 0 < r < R. To show that Φ : Ar,R → K is a compact operator, we define the

operator
(Fy)(t) = B(t; y)(Φy)(t), y ∈ K \ {0}.
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From formula (2.4), (Fy)(t) is continuous on [0,∞). Reasoning as in [9, Lemma 2.3], one proves
that F0 := {(Fy)|[0,ω] : y ∈ Ar,R} ⊂ C([0, ω];R) is bounded and equicontinuous, and this procedure
allows us to conclude that Φ(Ar,R) is relatively compact in K. Details are omitted.

Remark 2.2. For the case of DDEs with finite delay (1.3), in [9] a technical condition was also
imposed, in order to prove that Φ is a continuous operator: hypothesis (h5) in [9] requires that
the function (t, y) 7→ g(t, yt) is uniformly continuous on bounded sets of [0, ω] × K. However, this
condition is not fulfilled by most of the functions g, since the map t 7→ yt is not continuous in
the impulsive case; in fact, the additional assumption (h5) in [9] should be replaced by the above
requirement (A5).

3 Existence of positive periodic solutions

We are now ready to state the main result of the paper. Beforehand, we introduce some further
notation, which allows us to simplify the exposition.

Since Jk(u) are bounded below and above by positive constants, there exist in (0,∞)

Jk(0)s := lim sup
u→0+

Jk(u), Jk(0)i := lim inf
u→0+

Jk(u),

Jk(∞)s := lim sup
u→∞

Jk(u), Jk(∞)i := lim inf
u→∞

Jk(u), k = 1, . . . , p.

We further denote

B0 :=

p∏
k=1

Jk(0)s, B0 :=

p∏
k=1

Jk(0)i, (3.1)

B∞ :=

p∏
k=1

Jk(∞)s, B∞ :=

p∏
k=1

Jk(∞)i. (3.2)

For a continuous function h : [0,∞)→ [0,∞), let Li(h), Li(h) ∈ [0,∞], i = 0,∞, be defined by

L0(h) = lim inf
u→0+

h(u)

u
, L∞(h) = lim inf

u→∞

h(u)

u

L0(h) = lim sup
u→0+

h(u)

u
, L∞(h) = lim sup

u→∞

h(u)

u
.

(3.3)

If it is clear which function h we are referring to, we may simply write Li, L
i for Li(h), Li(h), i = 0,∞.

In the sequel, we shall impose one of the following assumptions:

(A6) There are constants r0, R0 with 0 < r0 < R0 and continuous functions b, h : [0,∞) → [0,∞),
with b(t) 6≡ 0 and ω-periodic, such that for r > 0, y ∈ K and t ≥ 0 it holds:

g(t, yt) ≤ b(t)h(r) if R0 ≤ y ≤ r,
g(t, yt) ≥ b(t)h(r) if r ≤ y ≤ r0;

(3.4)
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(A7) There are constants r0, R0 with 0 < r0 < R0 and continuous functions b, h : [0,∞) → [0,∞),
with b(t) 6≡ 0 and ω-periodic, such that for r > 0, y ∈ K and t ≥ 0 it holds:

g(t, yt) ≥ b(t)h(r) if y ≥ r ≥ R0,

g(t, yt) ≤ b(t)h(r) if 0 < y ≤ r ≤ r0.
(3.5)

Theorem 3.1. For (1.1), assume (A1)-(A5). In addition, assume one of the following conditions:

(i) (sublinear case) (A6) holds with b, h satisfying

C1L0 > 1 and C2L
∞ < 1, (3.6)

where L0 = L0(h), L∞ = L∞(h) are as in (3.3) and Ci = Ci(b) (i = 1, 2) are given by

C1(b) =
(

eA(ω)B0 − 1
)−1

min
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u) du

∏
k:tk∈[t,s)

Jk(0)i ds,

C2(b) =
(

eA(ω)B∞ − 1
)−1

max
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u) du

∏
k:tk∈[t,s)

Jk(∞)s ds;

(3.7)

(ii) (superlinear case) (A7) holds with b, h satisfying

C4L
0 < 1 and C3L∞ > 1, (3.8)

where L0 = L0(h), L∞ = L∞(h) are as in (3.3) and Ci = Ci(b) (i = 3, 4) are given by

C3(b) =
(

eA(ω)B∞ − 1
)−1

min
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u) du

∏
k:tk∈[t,s)

Jk(∞)i ds,

C4(b) =
(

eA(ω)B0 − 1
)−1

max
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u) du

∏
k:tk∈[t,s)

Jk(0)s ds.

(3.9)

Then there exists at least one positive ω-periodic solution of (1.1).

Proof. We shall use Theorem 2.1, to conclude that Φ : Ar,R → K has a fixed point in a conical sector
Ar,R := {y ∈ K : r ≤ ‖y‖ ≤ R}, for some 0 < r < R.

First, suppose the sublinear case (i) is satisfied. From (A4), (2.2), (3.1) and C2L
∞ < 1, where C2

is as in (3.7), one can choose ε > 0 sufficiently small so that eA(ω)(B∞−ε)−1 > 0 and C2(ε)L
∞ < 1,

where

C2(ε) =
(

eA(ω)(B∞ − ε)− 1
)−1

max
t∈[0,ω]

∫ t+ω

t
(
∏

k:tk∈[t,s)

Jk(∞)s + ε)b(s) e
∫ s
t a(u) du ds.

Take R1 ≥ R0 such that

j+l−1∏
k=j

Jk(uk) ≤
j+l−1∏
k=j

Jk(∞)s + ε for uk ≥ R1, k ∈ {j, . . . , j + l − 1}, j, l = 1, . . . , p,
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and
p∏

k=1

Jk(uk) ≥ B∞ − ε for u1, . . . , up ≥ R1.

For any R ≥ σ−1R1 and y ∈ K such that ‖y‖ = R, from the definition of K we obtain that
R0 ≤ R1 ≤ y(t) ≤ R, B̃(s, t; y) ≤

∏
k:tk∈[t,s) Jk(∞)s + ε, thus the first inequality in (3.4) implies

(Φy)(t) ≤
(

eA(ω)(B∞ − ε)− 1
)−1

h(R)

∫ t+ω

t
(
∏

k:tk∈[t,s)

Jk(∞)s + ε)b(s) e
∫ s
t a(u)du ds

≤ h(R)C2(ε),

(3.10)

for t ∈ [0, ω]. Since C2(ε)L
∞ < 1, there exists M ∈ R such that C2(ε)

h(u)
u < 1 for u ≥ M , hence we

can choose any R ≥ max{M,σ−1R1}, to obtain

‖Φy‖ < R for y ∈ K, ‖y‖ = R.

Now, from C1L0 > 1, where C1 is as in (3.7), one can choose ε > 0 such that
∏j+l−1
k=j Jk(0)i− ε >

0 (1 ≤ j, l ≤ p) and C1(ε)L0 > 1, where

C1(ε) =
(

eA(ω)(B0 + ε)− 1
)−1

min
t∈[0,ω]

∫ t+ω

t
(
∏

k:tk∈[t,s)

Jk(0)i − ε)b(s) e
∫ s
t a(u) du ds.

If one considers r ∈ (0, r0) small enough so that C1(ε)
h(u)
u > 1, if 0 < u ≤ r,

j+l−1∏
k=j

Jk(uk) ≥
j+l−1∏
k=j

Jk(0)i − ε for uk ≤ r, k ∈ {j, . . . , j + l − 1}, j, l = 1, . . . , p,

and
p∏

k=1

Jk(uk) ≤ B0 + ε for 0 < u1, . . . , up ≤ r,

from the second condition in (3.4), for y ∈ K with 0 < ‖y‖ ≤ r, it holds

(Φy)(t) ≥
(

eA(ω)(B0 + ε)− 1
)−1

h(r)

∫ t+ω

t
(
∏

k:tk∈[t,s)

Jk(0)i − ε)b(s) e
∫ s
t a(u) du ds

≥ h(r)C1(ε) > r, for t ∈ [0, ω].

(3.11)

Thus, ‖Φy‖ > r. From Theorem 2.1(a), we conclude that there exists at least one ω-periodic solution
of (1.1) in the sector Ar,R.

For the superlinear case (ii), the proof follows from Theorem 2.1(b) by arguing in a similar way,
as the reader can easily check. To avoid repetitions, we do not include it here.

Remark 3.1. As in e.g. [1, 10, 19, 21, 35], under suitable hypotheses, a combination of both the
compressive and expansive forms of Krasnoselskii cone theorem (see [11, 16]) can lead to the existence
of more than one positive period solution to (1.1).
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Remark 3.2. It is apparent that the above method can be extended to other families of impulsive
scalar DDEs. For instance, under the same general assumptions (A1)-(A3),(A5), and with (A4)
replaced by

∏p
i=1(1 + ak) > exp

(
−
∫ ω
0 a(t) dt

)
, Theorem 3.1 applies to impulsive DDEs where the

equation x′(t) = −a(t)x(t) + g(t, xt) is replaced by x′(t) = a(t)x(t) − g(t, xt). By straightforward
adjustments, the above technique can also be used to treat DDEs in the more general form x′(t) =
(−1)i[−a(t)x(t)g0(t, x(t)) + g(t, xt)], with i = 1, 2, g0 continuous, nonnegative and bounded above
and below by positive constants, and subject to impulses as in (1.1). For results along these lines,
see [2, 21, 30, 34]. Extensions to DDEs where g(t, ϕ) has a singularity at ϕ = 0 are also feasible,
since the operator Φ in (2.3) is not required to be defined at y = 0.

Whenever either (A6) or (A7) is satisfied by some functions b, h, now we would like to establish
alternative criteria for the existence of a positive periodic solution based on either a pointwise or
an average comparison between a(t) and b(t). Of course, the contribution of the impulses has to
be taken into account. Some results using a pointwise comparison between a(t) and g(t, ·) can be
found in [2, 9, 18, 19, 27], where typically a restriction b(t) > a(t) is imposed. The second approach,
relating the integral averages of a(t), b(t) over [0, ω], has rarely been used in the literature, even for
the case of DDEs without impulses; see [4, 9, 21]. We explore these ideas separately for the sublinear
and the superlinear cases in the next corollaries, which turn out to be very usual in applications.

Corollary 3.1. (sublinear case) Consider (1.1) and suppose that (A1)-(A6) hold. For functions b, h

as in (A6), let L0 = L0(h), L∞ = L∞(h) be as in (3.3) and define B(0) = min{
∏j+l−1
k=j Jk(0)i : 1 ≤

j ≤ p, 0 ≤ l ≤ p}, B(∞) = max{
∏j+l−1
k=j Jk(∞)s : 1 ≤ j ≤ p, 0 ≤ l ≤ p}. Assume in addition that:

(a) either
m1C

∗
1L0 > 1, m2C

∗
2L
∞ < 1, (3.12)

where m1,m2 > 0 are such that m1a(t) ≤ b(t) ≤ m2a(t) for t ∈ [0, ω] and

C∗1 =
(

eA(ω)B0 − 1
)−1

B(0)(eA(ω)−1), C∗2 =
(

eA(ω)B∞ − 1
)−1

B(∞)(eA(ω)−1); (3.13)

(b) or
C∗∗1 L0 ≥ 1, C∗∗2 eA(ω) L∞ ≤ 1, (3.14)

where

C∗∗1 =
(

eA(ω)B0 − 1
)−1

B(0)

∫ ω

0
b(t) dt, C∗∗2 =

(
eA(ω)B∞ − 1

)−1
B(∞)

∫ ω

0
b(t) dt. (3.15)

Then there exists at least one positive ω-periodic solution of (1.1).

Proof. If m1a(t) ≤ b(t) ≤ m2a(t) for t ∈ [0, ω], we have

m1

∫ t+ω

t
a(s) e

∫ s
t a(u) du ds ≤

∫ t+ω

t
b(s) e

∫ s
t a(u) du ds ≤ m2

∫ t+ω

t
a(s) e

∫ s
t a(u) du ds

and
∫ t+ω
t a(s) e

∫ s
t a(u) du ds = eA(ω)−1. For Ci and C∗i , i = 1, 2, given by (3.7) and (3.13), we get the

estimates
C1 ≥ m1C

∗
1 and C2 ≤ m2C

∗
2 , (3.16)
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and the result follows from Theorem 3.1(a).
On the other hand, since a(t) 6≡ 0,

∫ ω
0 b(s) ds <

∫ t+ω
t b(s) e

∫ s
t a(u) du ds < eA(ω)

∫ ω
0 b(s) ds for

t ∈ [0, ω], thus from (b) and the definition of Ci, C
∗∗
i , i = 1, 2, it is clear that

C1 > C∗∗1 and C2 < C∗∗2 eA(ω) .

Again from Theorem 3.1(a), we obtain the result.

Remark 3.3. In (a) of the above corollary, if b(t) − m1a(t) ≥ 0, respectively m2a(t) − b(t) ≥ 0, is
not identically zero, in (3.12) one can replace the strict inequality m1C

∗
1L0 > 1 by m1C

∗
1L0 ≥ 1,

respectively m2C
∗
2L
∞ < 1 by m2C

∗
2L
∞ ≤ 1. Also, if (3.4) is fulfilled with b(t) = a(t), condition

(3.12) reduces to C∗2L
∞ < 1 < C∗1L0. Moreover, obviously in (3.13), (3.15) one can replace B(0) by

B and B(∞) by B.

Similar arguments and Theorem 3.1(b) lead to:

Corollary 3.2. (superlinear case) Consider (1.1) and suppose that (A1)-(A5) and (A7) hold. For

functions b, h as in (A7), let L0 = L0(h), L∞ = L∞(h) be as in (3.3), B(0) = max{
∏j+l−1
k=j Jk(0)u :

1 ≤ j ≤ p, 0 ≤ l ≤ p}, B(∞) = min{
∏j+l−1
k=j Jk(∞)i : 1 ≤ j ≤ p, 0 ≤ l ≤ p} and further define C∗i and

C∗∗i = C∗∗i (b) (i = 3, 4) by

C∗3 =
(

eA(ω)B∞ − 1
)−1

B(∞)(eA(ω)−1), C∗4 =
(

eA(ω)B0 − 1
)−1

B(0)(eA(ω)−1), (3.17)

C∗∗3 =
(

eA(ω)B∞ − 1
)−1

B(∞)

∫ ω

0
b(t) dt, C∗∗4 =

(
eA(ω)B0 − 1

)−1
B(0)

∫ ω

0
b(t) dt. (3.18)

Then (1.1) has at least one positive ω-periodic solution if one of the following conditions is satisfied:
(a) m2C

∗
4L

0 < 1 < m1C
∗
3L∞, where m1,m2 are such that m1a(t) ≤ b(t) ≤ m2a(t) for t ∈ [0, ω];

(b) C∗∗4 eA(ω) L0 ≤ 1 ≤ C∗∗3 L∞.

Remark 3.4. Note that the constants in (3.13) and (3.17) do not depend explicitly on the function
b(t), but this dependence appears in the choice of m1,m2. In fact, if a(t) > 0 on [0, ω], in (a) of

Corollaries 3.1 and 3.2 one may take m1 = mint∈[0,ω]
b(t)
a(t) , m2 = maxt∈[0,ω]

b(t)
a(t) .

Remark 3.5. If limu→∞
h(u)
u = 0, then condition (3.6) reduces to C1L0 > 1; by replacing h(u) by

h̄(u) = C1h(u) and b(t) by b̄(t) = C−11 b(t), this latter condition reads as L0 = L0(h̄) > 1. In an

analogous way, if limu→0
h(u)
u = ∞, then (3.6) reduces to C2L

∞ < 1, and, rescaling the functions
b, h, this latter requirement is given by L∞ = L∞(h̄) < 1 for h̄(u) = C2h(u), b̄(t) = C−12 b(t). Similar

considerations can be given for the superlinear case when either limu→∞
h(u)
u =∞ or limu→0

h(u)
u = 0.

Hence, when one (or more) of the limits Li or Li is 0 or ∞, the above criteria can be simplified.

From the viewpoint of applications, the sublinear case is more useful. Note also that for many
models from biomathematics the nonlinearity g has a strictly “sublinear” growth at∞, thus L∞ = 0
(e.g. this always happens if g is bounded). We portray this situation below.

Corollary 3.3. Consider (1.1), assume that (A1)-(A6) hold, with functions b, h in (A6) such that

limu→∞
h(u)
u = 0 and, for C∗1 , C

∗∗
1 as in (3.13), (3.15), one of the following conditions is satisfied:

(a) b(t) ≥ a(t), t ∈ [0, ω], and C∗1L0 > 1; (b) C∗∗1 L0 ≥ 1.
Then, (1.1) has a positive ω-periodic solution.
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Next, we use the framework above to derive results for the non-impulsive version of (1.1):

x′(t) = −a(t)x(t) + g(t, xt), t ≥ 0, (3.19)

which is the particular case of (1.1) with Ik ≡ 0, for k ∈ N. In this situation, X is simply the space
of continuous and ω-periodic functions y : R → R, endowed with the supremum norm. For (3.19),
Theorem 3.1 reads as follows:

Theorem 3.2. Consider (3.19), assume (A1), (A5) and one of the following sets of requirements:
(a) (A6) holds with b, h satisfying CminL0 > 1, CmaxL

∞ < 1;
(b) (A7) holds with b, h satisfying CmaxL

0 < 1, CminL∞ > 1;
here, Li = Li(h), Li = Li(h) (i = 0,∞) and Cmin = Cmin(b), Cmax = Cmax(b) are defined by

Cmin =
(

eA(ω)−1
)−1

min
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u) du ds,

Cmax =
(

eA(ω)−1
)−1

max
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u) du ds.

(3.20)

Then (3.19) has at least one positive ω-periodic solution.

The non-impulsive versions of the corollaries above are easily derived. For the sake of illustration,
here we only write Corollary 3.1 for the situation without impulses, for which C∗1 = C∗2 = 1 and
C∗∗1 = C∗∗2 = (eA(ω) − 1)−1

∫ ω
0 b(t) dt.

Corollary 3.4. Consider (3.19) and assume (A1), (A5), (A6), where b, h in (A6) are such that:
(a) either m1a(t) ≤ b(t) ≤ m2a(t) for t ∈ [0, ω] and m2L

∞ < 1 < m1L0;
(b) or L0

∫ ω
0 b(t) dt ≥ eA(ω)−1, L∞

∫ ω
0 b(t) dt ≤ 1− e−A(ω) .

Then (3.19) admits at least one positive ω-periodic solution.

We end this section with a few examples, to which our criteria are applied and analysed within
the context of related literature.

Example 3.1. In [27], Wan et al. considered the following family of non-impulsive scalar DDEs with
a single discrete delay:

x′(t) = −a(t)x(t) + f(t, x(t− τ(t))), t ≥ 0, (3.21)

where a(t) > 0, τ(t) ≥ 0, f(t, u) ≥ 0 are continuous and ω-periodic in t. This equation has the form
(3.19), for g(t, ϕ) = f(t, ϕ(−τ(t))). In order to conclude the existence of an ω-periodic solution, in
[27, Theorem 2.1] the authors prescribed the following sufficient conditions on f :

f0 := lim inf
u→0+

min
t∈[0,ω]

f(t, u)

a(t)u
> 1, f∞ := lim sup

u→∞
max
t∈[0,ω]

f(t, u)

a(t)u
< 1. (3.22)

Note that, with (3.22) satisfied, there exist constants ε,M,α, β with M > ε > 0 and f∞ ≤ β <
1, f0 ≥ α > 1 such that f(t, u) ≥ a(t)αu, 0 < u < ε and f(t, u) ≤ a(t)βu, u > M . Consequently,
Corollary 3.4(a) applies with b(t) = a(t), m1 = m2 = 1 and h : R+ → R+ continuous and such that

h(u) =

{
αu, 0 < u < ε
βu, u > M.

(3.23)
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With our notations, L0 = α > 1 > L∞ = β, thus the result in [27] is generalised here via Corollary
3.4(a).

On the other hand, Amster and Idels [2] considered (3.21) with a possible state dependent delay
τ(t) = σ(t, x(t)). It was shown in [2, Theorem 2.6] that (3.21) has a positive ω-periodic solution if

γ∞ := lim sup
u→∞

max
t∈[0,ω]

f(t, u)

u
< a(t) < γ0 := lim inf

u→0+
min
t∈[0,ω]

f(t, u)

u
for t ∈ [0, ω].

For f0, f
∞ as in (3.22), we have f0 ≥ γ0/a(t) and f∞ ≤ γ∞/a(t) for t ∈ [0, ω]. Clearly, γ∞ < a(t) < γ0

implies f∞ < 1 < f0, thus this criterion is again a particular case of Corollary 3.4(a).

Example 3.2. In [19], the impulsive version of (3.21) was considered (see also [30, 34]):{
x′(t) = −a(t)x(t) + f(t, x(t− τ(t))), t ≥ 0, t 6= tk, k ∈ N,
x(t+k )− x(tk) = Ik(x(tk)), k ∈ N. (3.24)

where a(t), f(t, u), τ(t) are as in (3.21) and all the impulses are given by nonnegative continuous
functions Ik(u) satisfying (A2). For b(t) = a(t) and h(u) as in (3.23), from the arguments above and
Corollary 3.1(a) we get the existence of at least one positive periodic solution if f∞C∗2 < 1 < f0C

∗
1 .

As verified in many applications, next suppose also that f∞ = 0.

Proposition 3.1. For the impulsive DDE (3.24), with a(t) > 0, τ(t) ≥ 0, f(t, u) ≥ 0, Ik(u) ≥ 0
continuous and ω-periodic in t, for t, u ∈ R+, assume (A2)-(A4) and f∞ = 0. If

f0(e
A(ω)−1)B0 > eA(ω)B0 − 1, (3.25)

then there exists at least one positive ω-periodic solution. In particular, this holds if f0B0 > 1.

Proof. From (3.25), choose α such that f0 > α and α(eA(ω)−1)B0 > eA(ω)B0 − 1, define b(t) = a(t)
and h(u) as in (3.23). As observed above, we only need to verify that αC∗1 > 1 for C∗1 as in (3.13).
Since Ik(u) ≥ 0 for u > 0, then Jk(u) ≤ 1 for all k, B(0) = B0, and therefore

C∗1 = (eA(ω)−1)
(

eA(ω)B0 − 1
)−1

B0, (3.26)

The above choice of α implies αC∗1 > 1. Note also that B0 ≤ 1, thus C∗1 ≥ B0.

For the impulsive DDE (3.24), with a(t), f(t, u), τ(t) as above and Ik(u) nonnegative functions
satisfying (A2), Li et al. [19] studied both the sublinear and superlinear cases. For the sublinear
situation, Theorem 2.3(i) in [19] asserts that (3.24) has a positive ω-periodic solution provided that

f0 + (eA(ω)−1)−1I0 > 1 and f∞ + eA(ω)(eA(ω)−1)−1I∞ < 1, (3.27)

where f0 and f∞ are already defined by (3.22) and

I0 = lim inf
u→0+

p∑
k=1

Ik(u)

u
, I∞ = lim sup

u→∞

p∑
k=1

Ik(u)

u
.
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Similar results can be found in [30]. In addition, suppose e.g. f∞ = 0 and also that Jk(0)i =
Jk(0)s = limu→0+ Jk(u) for k = 1, . . . , p. In this setting, we observe that only the first condition in
(3.27) is more restrictive than (3.25). In fact, since Ik(u) ≥ 0 and B0 = B0, we have

1 +

p∑
k=1

Ik(u)

u
≤

p∏
k=1

(
1 +

Ik(u)

u

)
,

which implies 1 + I0 ≤ (B0)−1. Thus, for C∗1 in (3.26) we get

1

C∗1
−
[
1− (eA(ω)−1)−1I0

]
= (eA(ω)−1)−1

[(
eA(ω)B0 − 1

)
B−10 − (eA(ω)−1− I0)

]
= (eA(ω)−1)−1[−(B0)−1 + 1 + I0] ≤ 0,

which shows that f0+(eA(ω)−1)−1I0 > 1 implies f0C
∗
1 > 1. In conclusion, the criterion in Proposition

3.1 is proven under less restrictions than in [19].

Remark 3.6. Due to the nature of our operator Φ, where the impulses intervene in a multiplicative
mode (rather than additive as in [19, 30, 34] and many other papers) by means of the products of
the auxiliary functions Jk(u), the major results given here and in [19] are not always comparable. In
[19], a key idea is that e.g. a decay at 0 faster than linear can be tackled with an appropriate choice
of positive impulses. For example, if one chooses

g(t, ϕ) = a(t)ϕ(−τ(t))2 e−ϕ(−τ(t)),

so that g(t, ϕ) = f(t, ϕ(−τ(t))) for f(t, u) := a(t)u2 e−u and functions a(t), τ(t) as in (3.24), we have
f0 = 0, f∞ = 0; from (3.27), in [19] the authors established the existence of ω-periodic orbits for
(3.24) provided that

I0 > eA(ω)−1 and I∞ < 1− e−A(ω),

whereas in this situation we are not able to apply Theorem 3.1. On the other hand, as pointed out in
Remark 3.1, when L0 = 0, L∞ = 0, one could introduce impulses in such a way that Krasnoselskii’s
results yield the existence of two fixed points of Φ in a suitable conical sector Ar,R ⊂ K. In conclusion,
our Theorem 3.1 is not a proper extension of the main results in [19], however our criteria apply to
equations which are much more general than (3.24), and with impulses which may change sign.

4 Applications to delayed Volterra integro-differential equations

In this section, we apply the results of Section 3 to some Volterra integro-differential equations
which are based on well-known models from mathematical biology. In view of the applications, we
will focus on consequences of the sublinear case of Theorem 3.1, and on equations with distributed,
possibly unbounded delay, since the situation of (multiple) discrete delays was largely illustrated in
[9]. We begin with a general setting of Volterra integro-differential equations.

Consider a DDE with distributed delay and nonlinear impulses of the formx′(t) = −a(t)x(t) +

∫ 0

−∞
k(t, s)F (t, s, x(t+ s)) ds, t ≥ 0, t 6= tk, k ∈ N,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.1)
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where:

(h1) a : [0,∞)→ [0,∞) is continuous, ω-periodic and a 6≡ 0;

(h2) k : [0,∞)×(−∞, 0]→ [0,∞) is measurable, ω-periodic and continuous in t, and k(t∗, ·) 6≡ 0 a.e.
on (−∞, 0], for some t∗; furthermore, for any t0 ∈ [0, ω] there exist a constant ε = ε(t0) > 0
and a function Kt0(s) Lebesgue integrable on (−∞, 0], such that

k(t, s) ≤ Kt0(s) for t ∈ Iε(t0) := [t0 − ε, t0 + ε]; (4.2)

(h3) F : [0,∞)× (−∞, 0]× [0,∞)→ [0,∞) is continuous, ω-periodic in the first variable and F 6≡ 0;
furthermore, F (t, s, x) is bounded and uniformly equicontinuous with respect to the variable
x, on sets [0, ω]× (−∞, 0]× A for any bounded set A ⊂ [0,∞): i.e., for any L > 0 and ε > 0,
there exist M > 0 and δ > 0 such that, for all (t, s) ∈ [0, ω]× (−∞, 0] and x1, x2 ∈ [0, L] with
|x1 − x2| < δ,

|F (t, s, x1)| ≤M and |F (t, s, x1)− F (t, s, x2)| < ε.

For (4.1), we shall also assume that the impulsive assumptions (A2)-(A4) are satisfied.
Under (h2), the functions s 7→ k(t, s) are summable on (−∞, 0], and

b(t) :=

∫ 0

−∞
k(t, s) ds, t ≥ 0, (4.3)

is continuous. Of course, b(t) is also nonnegative, ω-periodic and b(t∗) > 0 for some t∗. Together
with (4.1), we shall also consider its non-impulsive version

x′(t) = −a(t)x(t) +

∫ 0

−∞
k(t, s)F (t, s, x(t+ s)) ds, t ≥ 0. (4.4)

System (4.1) has the form of our general model (1.1), with the nonlinearity given by

g(t, ϕ) =

∫ 0

−∞
k(t, s)F (t, s, ϕ(s)) ds, t ∈ R+, ϕ ∈ X̃, (4.5)

and is sufficiently general to encompass models with both discrete and distributed delays. Without
loss of generality, suppose that g 6≡ 0.

Lemma 4.1. Under (h1)-(h3), a(t) and the nonlinearity g(t, ϕ) in (4.5) satisfy (A1) and (A5).

Proof. Fix L > 0. From (h3), there is M > 0 such that 0 ≤ F (t, s, ϕ(s)) ≤ M for t ∈ [0, ω], s ∈ R−
and ϕ ∈ X̃ with ‖ϕ‖ ≤ L, thus 0 ≤ g(t, ϕ) ≤ M maxt∈[0,ω] b(t), which proves that g is well-defined

on R× X̃ and bounded on R× (X̃ ∩ B̄L(0)).
We now observe that, for any fixed ϕ ∈ X̃ with ‖ϕ‖ ≤ L, the map t 7→ g(t, ϕ) is continuous

on [0, ω]. In fact, for t, t0 ∈ [0, ω] and s ∈ R−, k(t, s)F (t, s, ϕ(s)) → k(t0, s)F (t0, s, ϕ(s)) as t → t0,
with 0 ≤ k(t, s)F (t, s, ϕ(s)) ≤ MKt0(s) for t ∈ Iε(t0), where Kt0 is as in (h2). By the Lesbesgue
dominated convergence theorem, we have g(t, ϕ)→ g(t0, ϕ) as t→ t0.
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Next, fix ε > 0. Since the family {F (t, s, ·) : (t, s) ∈ [0, ω]× R−} is uniformly equicontinuous on
[0, L], there is δ > 0 such that, for any t ∈ [0, ω], s ∈ R− and ϕ1, ϕ2 ∈ X̃ ∩ B̄L(0) with ‖ϕ1−ϕ2‖ < δ,
we have

|F (t, s, ϕ1(s))− F (t, s, ϕ2(s))| < ε,

and therefore obtain

|g(t, ϕ1)− g(t, ϕ2)| ≤ ε
∫ 0

−∞
k(t, s) ds ≤ ε max

t∈[0,ω]
b(t).

This proves that g satisfies (A5). Together with the continuity of t 7→ g(t, ϕ) (for any ϕ ∈ X̃) it also
shows that g(t, ϕ) is continuous on [0, ω]× X̃.

Fix r0, R0 with 0 < r0 < R0. Under (h2)-(h3), it is clear that (A6) is satisfied with b(t) defined
by (4.3) and any continuous function h such that

h(u) = sup{F (t, s, x) : t ∈ [0, ω], s ∈ R−, x ∈ [R0, u]} for u ≥ R0,

h(u) = inf{F (t, s, x) : t ∈ [0, ω], s ∈ R−, x ∈ [u, r0]} for u ≤ r0.
(4.6)

From Theorem 3.1(a), we derive:

Theorem 4.1. Consider (4.1), assume (h1)-(h3) and (A2)-(A4), let b(t) be as in (4.3) and h(u) as
in (4.6). Then there exists a positive periodic solution of (4.1) if L0C1 > 1 and L∞C2 < 1.

Similarly, we can construct h(u) such that (3.5) holds. This shows that, not only the results in
Section 3 apply to broad classes of impulsive and non-impulsive models included in the form (4.1),
but also that the sufficient conditions in Theorem 3.1 and its corollaries are easy to check.

Recall also that, as observed previously, in many applications the nonlinearity g(t, ϕ) is strictly
sublinear at ∞, i.e., L∞(h) = 0, thus condition (3.6) reduces to L0(h)C1(b) > 1 - and that, after
rescaling b and h as described in Remark 3.5, we may assume that L0(h) = 1.

To illustrate our results, we further analise two selected families of impulsive DDEs which fall
within the scope of (4.1). They are most relevant in mathematical biology and other sciences, as
they include many important models. A few concrete classic examples will also be treated.

4.1 Integro-differential equations with infinite distributed delay

The examples treated in [15] can be inserted in the following class of integro-differential equations:

x′(t) = −a(t)x(t) + b(t)

∫ 0

−∞
k(s)F (t, x(t+ s)) ds, t ≥ 0, (4.7)

with a, b : R+ → R+ continuous and ω-periodic, k : R− → R+ integrable and normalized so that∫ 0
−∞ k(s) ds = 1, F : R+ × R+ → R+ continuous and ω-periodic in the first variable, and a, b, F not

identically zero. This equation has the form (4.4), it satisfies (h1)-(h3), and the nonlinearity in (4.5)
reads as g(t, ϕ) = b(t)

∫ 0
−∞ k(s)F (t, ϕ(s)) ds. Next, we consider the impulsive version of (4.7).
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Theorem 4.2. Consider the systemx′(t) = −a(t)x(t) + b(t)

∫ 0

−∞
k(s)F (t, x(t+ s)) ds, t ≥ 0, t 6= tk, k ∈ N,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.8)

assume that a, b, k, F satisfy the above properties as in (4.7), and that conditions (A2)-(A4) are
satisfied. For Ci = Ci(b), i ∈ {1, 2, 3, 4}, as in (3.7), (3.9) and F0, F

0, F∞, F
∞ ∈ [0,∞] defined by

F0 = lim inf
u→0+

(
min
t∈[0,ω]

F (t, u)

u

)
, F 0 = lim sup

u→0+

(
max
t∈[0,ω]

F (t, u)

u

)
,

F∞ = lim inf
u→∞

(
min
t∈[0,ω]

F (t, u)

u

)
, F∞ = lim sup

u→∞

(
max
t∈[0,ω]

F (t, u)

u

)
,

(4.9)

assume also that either
C2F

∞ < 1 < C1F0,

or
C3F∞ > 1 > C4F

0.

Then (4.8) has at least one positive ω-periodic solution.

Proof. Assume that C2F
∞ < 1 < C1F0. For any r0, R0 with e.g. 0 < r0 < 1 < R0, (A6) holds with

b(t) the coefficient in (4.8) and hr0,R0 : R+ → R+ a continuous function defined in [0, r0] ∪ [R0,∞)
by (4.6):

hr0,R0(u) =


min

t∈[0,ω],x∈[u,r0]
F (t, x) if 0 ≤ u ≤ r0.

max
t∈[0,ω],x∈[R0,u]

F (t, x) if u ≥ R0.
(4.10)

For L0(hr0,R0) as in (3.3), we have L0(hr0,R0) ≤ F0 for any r0 ∈ (0, 1). If F0 = ∞, it is clear that
L0(hr0,R0) → ∞ as r0 → 0+. Otherwise, simple calculations show that, for any ε > 0, we may
choose r0 small enough such that L0(hr0,R0) ≥ F0 − ε. In this way, if 1 < C1(F0 − ε) the assertion
C1L0(hr0,R0) > 1 holds true for r0 small. An analogous procedure allows us to conclude that we can
choose R0 > 1 sufficiently large such that C2L

∞(hr0,R0) < 1. The superlinear case is treated in a
similar way. Theorem 3.1 implies the result.

For the non-impulsive version (4.7), Corollary 3.3 and Remark 3.3 yield the criterion below.

Corollary 4.1. For (4.7) with a, b, k, F as above, assume F∞ = 0 and
(a) either b(t) ≥ a(t) with b(t) 6≡ a(t) in [0, ω] and F0 ≥ 1; (b) or F0

∫ ω
0 b(t) dt ≥ eA(ω)−1.

Then, (4.7) has at least one positive ω-periodic solution.

Remark 4.1. Theorem 3.2 and Corollary 4.1 generalise the work of Jiang and Wei [15], where the
authors obtained two results about existence of a positive ω-periodic solution for (4.7): in [15,
Theorem 2.1] under the assumptions F0 = ∞, F∞ = 0, and in [15, Theorem 2.2] assuming that
F0 ≥ 1, F∞ = 0, and b(t) > a(t) for t ∈ [0, ω], these latter hypotheses slightly stronger than the
requisites in Corollary 4.1(a).
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Straightforward generalisations of these results are derived if (4.7) is replaced by

x′(t) = −a(t)x(t) +

m∑
i=1

bi(t)

∫ 0

−∞
ki(s)Fi(t, x(t+ s)) ds,

where bi, ki, Fi (1 ≤ i ≤ m) are as b, k, F in (4.7). We now give some concrete examples.

Example 4.1. Consider an impulsive equation with distributed delay of Mackey-Glass type:x′(t) = −a(t)x(t) + b(t)

∫ 0

−∞
k(s)

x(t+ s)

1 + c(t)x(t+ s)n
ds, t ≥ 0, t 6= tk, k ∈ N,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.11)

where a, b, c : R+ → R+ are continuous and ω-periodic, with a(t) 6≡ 0, b(t) 6≡ 0 and c(t) > 0 for
t ∈ [0, ω], k : R− → R+ is integrable with

∫ 0
−∞ k(s) ds = 1 and n > 0. Suppose also that the instants

tk and the functions Ik (k ∈ N) satisfy (A2)-(A4). Eq. (4.11) is a particular case of (4.8) with

F (t, x) =
x

1 + c(t)xn
.

With the previous notations, we obtain F0 = 1, F∞ = 0 in (4.9). For the constants defined in (3.13)
and (3.15), from Corollary 3.1 we have that (4.11) admits at least one positive ω-periodic solution
if one of the following conditions is satisfied: (a) b(t) ≥ m1a(t) for t ∈ [0, ω] with maxt∈[0,ω](b(t) −
m1a(t)) > 0, andm1C

∗
1 ≥ 1; (b) C∗∗1 ≥ 1. Thus, for (4.11) with no impulses, Corollary 4.1 asserts that

a positive ω-periodic solution must exist if either maxt∈[0,ω](b(t)−a(t)) > 0,mint∈[0,ω](b(t)−a(t)) ≥ 0,

or
∫ ω
0 b(t) dt ≥ eA(ω)−1.

For the sake of illustration, suppose now that a, b : R+ → (0,∞) with m1 = mint∈[0,ω]
b(t)
a(t) and

b(t0) > m1a(t0) for some t0, and first assume in addition that all the impulses are nonpositive, i.e.,
Ik(u) ≤ 0 for u ≥ 0 and k = 1, . . . , p. Then we have Jk(0)s ≥ Jk(0)i ≥ 1 for all k, B0 ≥ 1 = B(0)
and

C∗1 =
(

eA(ω)B0 − 1
)−1

(eA(ω)−1), C∗∗1 =
(

eA(ω)B0 − 1
)−1 ∫ ω

0
b(s) ds.

Therefore, from Corollary 3.1, the existence of a positive ω-periodic solution of (4.11) follows if

max

{
m1(e

A(ω)−1),

∫ ω

0
b(s) ds

}
≥ eA(ω)B0 − 1.

On the contrary, if all the impulses are nonnegative, i.e., Ik(u) ≥ 0 for u ≥ 0 and k = 1, . . . , p, then
Jk(0)i ≤ Jk(0)s ≤ 1 for all k, B0 = B(0), and

C∗1 =
(

eA(ω)B0 − 1
)−1

B0(e
A(ω)−1), C∗∗1 =

(
eA(ω)B0 − 1

)−1
B0

∫ ω

0
b(s) ds.

Thus, since B0 ≤ 1, Corollary 3.1 guarantees that (4.11) admits a positive ω-periodic solution if

max

{
m1, (e

A(ω)−1)−1
∫ ω

0
b(s) ds

}
≥ B−10 .
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Recently, there has been an increasing interest in DDEs with mixed monotonicity, where the non-
linear terms involve one or more functions with different delays e.g. of the form f(t, x(t− τ(t)), x(t−
σ(t))), with f(t, x, y) monotone increasing in the variable x and monotone decreasing in y. Although
small delays are in general harmless, in the sense that the delayed model has the same global proper-
ties of the equation without delays, the presence of two or more delays in the same nonlinear function
may change this situation drastically, as illustrated in [3]. However, DDEs with different delays in
the same nonlinear term appear naturally in real-world models, see [17, 32] and references therein.
The global dynamics of such equations have been the subject of a few recent studies, where questions
of stability, persistence, permanence, existence of periodic solutions were addressed [1, 3, 4, 9, 12, 32].
Nevertheless, as far as the authors know, only the case of discrete delays has been considered.

The next example is a model with mixed monotonicity, where the different delays in the nonlinear
terms have a different nature: discrete and distributed. Two further comments are in order. First,
this example shows that the choice of σ for the cone K = Kσ may have an important role. Secondly,
to work on K is very useful to treat DDEs with a mixed monotonicity, since the definition of K
provides natural uniform lower and upper bounds for functions y ∈ K: σ‖y‖ ≤ y(t) ≤ ‖y‖ on [0, ω].

Example 4.2. Consider an impulsive Nicholson-type equation given by x′(t) = −a(t)x(t) +
m∑
i=1

bi(t)x(t− σi(t))
∫ 0

−∞
ki(s) e−ci(t)x(t+s) ds, t ≥ 0, t 6= tk,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N.
(4.12)

where a, bi, ci, σi : R+ → R+ are continuous and ω-periodic, with a(t) 6≡ 0, b(t) :=
∑m

i=1 bi(t) 6≡ 0

and ci(t) > 0 for t ∈ [0, ω], ki : R− → R+ are integrable with
∫ 0
−∞ ki(s) ds = 1, i = 1, . . . ,m, and

tk, Ik(u) (k ∈ N) satisfy (A2),(A3),(A4). Here, g in (4.5) reads as

g(t, ϕ) =
m∑
i=1

fi(t, ϕ(−σi(t)), ϕ), t ≥ 0, ϕ ∈ X̃,

where fi(t, x, ϕ) := bi(t)x
∫ 0
−∞ ki(s)e

−ci(t)ϕ(s)ds increases in the argument x ∈ R+ and decreases in

the argument ϕ ∈ X̃+, i = 1, . . . ,m. In the next result, we explore the criteria in Corollary 3.1.

Proposition 4.1. Fix K = Kσ, where σ = (B/B) e−A(ω) as in Lemma 2.2. Under the above conditions
and notations, (4.12) admits at least one positive ω-periodic solution if in addition one of the following
statements holds:

(a) C∗1
∑m

i=1 bi(t) ≥
B
Ba(t) eA(ω) on [0, ω] and C∗1

∑m
i=1 bi(t0) >

B
Ba(t0) eA(ω) for some t0;

(b) C∗∗1 ≥ B
B eA(ω) .

In particular, the non-impulsive version of (4.12) has a positive ω-periodic solution if either γ(t) :=∑m
i=1 bi(t)− a(t)eA(ω) ≥ 0 on [0, ω] and γ(t) 6≡ 0, or

∑m
i=1

∫ ω
0 bi(t) dt ≥ eA(ω)(eA(ω)−1).

Proof. We adapt the reasoning in the former example. Write b(t) =
∑m

i=1 bi(t). Define ci =
min[0,ω] ci(t), ci = max[0,ω] ci(t), c = min1≤i≤m ci, c = max1≤i≤m ci. Recall that the function θ(u) =
u e−cu, where c > 0, attaints its maximum (c e)−1 at u = c−1 and is increasing on [0, c−1]. Take
r0, R0 > 0, with r0 < c−1 and σR0 > c−1.
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Let t ≥ 0, and y ∈ K, and note that y(t) ≥ σ‖y‖. If R0 ≤ y ≤ R, it holds

g(t, yt) ≤
m∑
i=1

bi(t)y(t− σi(t)) e−cσ‖y‖ ≤ b(t)‖y‖ e−cσ‖y‖ ≤ b(t)(cσ e)−1.

And if r ≤ y ≤ r0, we have

g(t, yt) ≥
m∑
i=1

bi(t)y(t− σi(t)) e−c‖y‖ ≥ b(t)σ‖y‖ e−c‖y‖ ≥ b(t)σr e−cr .

Thus (3.4) is satisfied with h : R+ → R+ continuous such that h(R) = (cσ e)−1 for R ≥ R0 and
h(r) = σr e−cr for r ≤ r0, for which L0 = σ and L∞ = 0. If (a) is satisfied, then take m1 = (C∗1σ)−1;
the result follows from Corollary 3.1(a) and Remark 3.3. If (b) holds, we apply Corollary 3.1(b).

We remark that Chen [4] considered the DDE

y′(t) + a(t)y(t) = b(t)y(t− σ(t)) e−c(t)y(t−τ(t))),

with a(t), b(t), σ(t), τ(t), c(t) positive, ω-periodic continuous functions, and used the continuation the-
orem of degree theory to prove the existence of a positive periodic solution provided that

∫ ω
0 b(s) ds >

A(ω) e2A(ω); this condition is more restrictive than
∫ ω
0 b(s) ds ≥ eA(ω)(eA(ω)−1) in Proposition 4.1.

4.2 Integro-differential equations with periodic distributed delay

Consider the family of impulsive DDEsx′(t) = −a(t)x(t) + β(t)

∫ t

t−τ(t)
c(s)H(s, x(s)) ds, t ≥ 0, t 6= tk, k ∈ N,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.13)

with the functions a, β, τ : R+ → R+, c : R → R+, H : R × R+ → R+ continuous, ω-periodic in t
and not identically zero. Assume also (A2)-(A4). See e.g. [2, 6] for non-impulsive versions of (4.13).
This system has the form (4.1), with

k(t, s) = β(t)c(s+ t)χ[−τ(t),0](s), F (t, s, x) = H(s+ t, x),

so that the nonlinearity is given by g(t, ϕ) = β(t)
∫ 0
−τ(t) c(s+ t)H(s+ t, ϕ(s)) ds. Of course, (h1)-(h3)

are fulfilled. Set

b(t) = β(t)

∫ 0

−τ(t)
c(s+ t) ds.

(A6) is satisfied with h : R+ → R+ continuous if we define h(u) as in (4.6) on [0, r0] ∪ [R0,∞), for
0 < r0 < R0, thus the results for the sublinear case in Section 3 can be applied.
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Example 4.3. System (4.13) represents a periodic Nicholson’s blowfly model with periodic distributed
finite delay τ(t) when

F (t, s, x) = H(s+ t, x) = x e−d(t+s)x, (4.14)

where d : R→ (0,∞) is a continuous ω-periodic function, in which case we obtain the systemx′(t) = −a(t)x(t) + β(t)

∫ t

t−τ(t)
c(s)x(s) e−d(s)x(s) ds, t ≥ 0, t 6= tk, k ∈ N,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N.
(4.15)

Following along the lines in Example 4.2, for d and d the maximum and minimum values of d,

respectively, choose r0 = d
−1

and R0 = d−1, so that in (4.6) we obtain h(u) = u e−du if 0 ≤ u < r0,
h(u) = R0 e−dR0 if u ≥ R0, for which L0(h) = 1, L∞(h) = 0. Under the stated conditions on
a, β, τ, c, d and (A2)-(A4), Theorem 4.1 asserts that (4.15) has at least one positive ω-periodic solution
if C1(b) > 1. In particular, the non-impulsive Nicholson equation

x′(t) = −a(t)x(t) + β(t)

∫ t

t−τ(t)
c(s)x(s) e−d(s)x(s) ds, t ≥ 0, (4.16)

admits at least one positive ω-periodic solution if either

max
t∈[0,ω]

(
β(t)

∫ t

t−τ(t)
c(s) ds− a(t)

)
> 0, min

t∈[0,ω]

(
β(t)

∫ t

t−τ(t)
c(s) ds− a(t)

)
≥ 0 (4.17)

or ∫ ω

0
β(t)

∫ t

t−τ(t)
c(s) dsdt ≥ e

∫ ω
0 a(t) dt−1. (4.18)

In [2], Amster and Idels proved this result for (4.16) under the sufficient condition

min
t∈[0,ω]

c(t) > max
t∈[0,ω]

a(t)

β(t)τ(t)
, (4.19)

which is much more restrictive than (4.17). In summary, we improve significantly the criterion in [2].
If instead of H(t, x) = x e−d(t)x in (4.13) we choose H(t, x) = xγ e−d(t)x where γ ∈ (0, 1), we

obtain a modified version of the Nicholson model, for which there are b(t), h(u) such that (3.4) is
true and L0(h) = ∞, L∞(h) = 0. Theorem 3.1 guarantees that there exists a positive ω-periodic
solution, regardless the sign or profile of the impulses, provided that they verify (A2)-(A4). If one
chooses H(t, x) = x

1+d(t)xn (n > 0) in (4.13), a Mackey-Glass-type model with distributed periodic

delay is obtained; conclusions as the ones for (4.15) can be stated.

4.3 Effect of the impulses

It turns out that the introduction of impulses in periodic scalar DDEs can create positive period
solutions, which do not exist otherwise. For instance, in [5, 9] concrete examples of a periodic DDE
of the form (1.3) exhibiting a positive period solution were given, for which the zero solution of the
associated equation without impulses is a global attractor of all its positive solutions. Consequently,
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it is worth while to illustrate circumstances under which the impulses satisfy our set of assumptions,
and moreover either generate or at least do not destroy periodic orbits.

Thus, we go back to impulsive equations (1.1), suppose that a(t), g(t, ϕ) in (4.5) satisfy (A1),
(A5) and (A6) with, as often occurs in applications (see the above examples), functions b(t), h(u)
such that L0 = 1, L∞ = 0. Within this scenario, we now give examples of impulsive functions Ik(u)
whose sign may vary, for which (A2)-(A4) and condition C1 > 1 are fulfilled, ensuring that a positive
ω-period solution must exist.

Example 4.4. Take Ik(u) = I(u) := sin(u) for all k, and suppose that 2p < eA(ω). Then (A3),
(A4) are satisfied with ak = −1/π, bk = 1 and J(0) := Jk(0)s = Jk(0)i = 2−1, for all k ∈ N.
Moreover, C1 = C1(b) > 1 holds if mint∈[0,ω]

∫ t+ω
t b(s) e

∫ s
t a(u)du ds > eA(ω)−2p. In particular, C1 > 1

if
∫ ω
0 b(s)ds ≥ eA(ω)−2p. Thus, impulses can create a periodic solution.
To illustrate this situation, consider a periodic DDE with multiple discrete delays and subject to

the above impulses: {
x′(t) = −a(t)x(t) +

∑m
i=1 fi(t, x(t− τi(t))), 0 ≤ t 6= tk,

x(t+k )− x(tk) = sin(x(tk)), k ∈ N, (4.20)

with a(t) > 0, τi(t) ≥ 0, fi(t, u) ≥ 0 continuous, ω-periodic in t, fi(t, u) bounded (1 ≤ i ≤ m) and
such that

b(t)h−(u) ≤
m∑
i=1

fi(t, u) ≤ b(t)h+(u) for t ∈ [0, ω], u ≥ 0, (4.21)

for some continuous functions b, h−, h+ : R+ → R+ satisfying

h+(u) < u for u > 0,

h±(0) = 0, (h±)′(0) = 1.
(4.22)

For the non-impulsive equation x′(t) = −a(t)x(t) +
∑m

i=1 fi(t, x(t− τ(t))), Theorem 3.2 in [8] implies
that its zero solution is globally asymptotically stable (in the set of all nonnegative solutions) if
b(t) ≤ a(t), t ∈ [0, ω]. On the other hand, (A6) holds. Thus, if there exists p ∈ N such that

eA(ω)−
∫ ω

0
b(s)ds ≤ 2p < eA(ω),

the introduction of p impulses on each interval of length ω generates at least one positive ω-periodic
solution for (4.20); e.g. with

∫ ω
0 a(s) ds = 2

∫ ω
0 b(s) ds = 1, it suffices to implement one impulse

∆(x(t1)) = sin(x(t1)), for any t1 ∈ [0, ω[, an repeat it at times t1 + kω, k ∈ N. Note also that the
requirements (4.21),(4.22) are satisfied by a broad family of equations, which includes Nicholson and
Mackey-Glass type equations.

Example 4.5. Let p = 2m with m ∈ N, β ∈ (0, 1) and δ > 0. Define Ik(u) = (−1)kβu e−δu for k ∈ N
and u ≥ 0. Hence, |Ik(u)|/u < β, there exist Jk(0) := limu→0+ Jk(u) = (1 + (−1)kβ)−1 for all u > 0
and k ∈ N. Here, ak = −β, bk = 0 for k odd and ak = 0, bk = β for k even, and (A2)-(A4) are
satisfied if (1 + β)m < eA(ω). We have C1 > 1 if

min
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u)du

∏
k:tk∈[t,s)

Jk(0) ds >
eA(ω)

(1− β2)m
− 1.
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In particular, this condition is fulfilled if
∫ ω
0 b(s) ds ≥ (1 + β)

(
eA(ω)

(1−β2)m
− 1
)
.

Example 4.6. Define the impulse functions as Ik(u) = I(u) := βu e−δu−αu, for any k ∈ N, where
β > 0 > α − 1 and δ > 0. Note that, for u > 0, the impulses are always negative if β ≤ α, always
positive if α < 0, whereas the sign of the impulses changes if β > α > 0, with I ′(0) = β − α > 0 and
I(∞) = −∞. With the previous notation, ak = −α, bk = β − α, Jk(u) = (1 + β e−δu−α)−1, hence

J(0) := lim
u→0+

Jk(u) = (1 + β − α)−1, J(∞) := lim
u→∞

Jk(u) = (1− α)−1, k ∈ N,

B0 = B0 = (1 + β − α)−p.

Hypotheses (A2)-(A4) are fulfilled if (1 + β − α)p < eA(ω) . Here, C1 > 1 holds if

min
t∈[0,ω]

∫ t+ω

t
b(s) e

∫ s
t a(u)du

∏
k:tk∈[t,s)

(1 + β − α)−1 ds >
(

eA(ω)(1 + β − α)−p − 1
)
.

In particular, J(0) ≥ 1 if β ≤ α, and we get C1 > 1 provided that
∫ ω
0 b(s) ds ≥ eA(ω)(1+β−α)−p−1.

For β > α, J(0) < 1; thus, C1 > 1 if either b(t) ≥ a(t), t ∈ [0, ω], or
∫ ω
0 b(s) ds ≥ eA(ω)−(1 +β−α)p.

5 Final comments

In this paper, we apply a Krasnoselskii-Guo fixed point theorem to establish sufficient conditions
under which the impulsive periodic DDE (1.1) admits at least one positive periodic solution. The
novelty of our approach derives from the operator Φ constructed in (2.3), whose fixed points are the
periodic solutions we are looking for. Our method allows the treatment of equations with a very
general nonlinearity g and infinite delay, subject to impulses whose signs may vary. Applications
to Volterra integro-differential equations (4.1) are given. In particular, the study of a Nicholson-
type equation with mixed monotonicity is included as an illustration of our results. Eq. (1.1) is
broad enough to incorporate as special cases a large number of problems studied by many authors,
nevertheless our criteria strongly improve several known results.

The present paper pursues the study in the former work of Faria and Oliveira [9], which dealt
with Eq. (1.2). The main result here, Theorem 3.1, generalises [9, Theorem 2.3] in several ways: (i)
as mentioned above, infinite delays as well as nonlinear impulses are allowed in (1.1); (ii) rather than
being bounded, g is now allowed to have sublinear growth at infinity; the superlinear case is also
addressed; (iii) finally, following the suggestion in [9, Remark 2.1], here limits inferior and superior
are used in (3.6) and (3.8), instead of limits.

Although several open problems posed in [9] were solved here, relevant lines of future investigation
were not addressed. Namely, the global attractivity of a positive periodic solution to (1.1) was not
studied: it depends heavily on the particular shape of the nonlinearity g, and more conditions on
the impulses should be imposed. Also, it would be desirable to adapt the present approach to quasi-
periodic DDEs, due to their relevance in real world phenomena. On the other hand, our method can
be extended to other classes of impulsive scalar DDEs, as outlined briefly in Remark 3.2. The ideas
developed here can be carefully adjusted to deal with some classes of periodic impulsive n-dimensional
systems, as it will be shown in a forthcoming paper.
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