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Abstract The exclusive photoproduction of ϒ(nS) meson
states from protons, γ p → ϒ(nS) p (with n = 1, 2, 3), is
studied in ultraperipheral pPb collisions at a centre-of-mass
energy per nucleon pair of

√
sNN = 5.02 TeV. The measure-

ment is performed using the ϒ(nS) → μ+μ− decay mode,
with data collected by the CMS experiment corresponding
to an integrated luminosity of 32.6 nb−1. Differential cross
sections as functions of the ϒ(nS) transverse momentum
squared p2

T, and rapidity y, are presented. The ϒ(1S) pho-
toproduction cross section is extracted in the rapidity range
|y| < 2.2, which corresponds to photon–proton centre-of-
mass energies in the range 91 < Wγ p < 826 GeV. The data
are compared to theoretical predictions based on perturbative
quantum chromodynamics and to previous measurements.

1 Introduction

This paper reports a first measurement of the exclusive pho-
toproduction of ϒ mesons from protons in pPb collisions
at a nucleon–nucleon centre-of-mass energy of

√
sNN =

5.02 TeV, performed at the CERN LHC with the CMS detec-
tor. Exclusive photoproduction of vector mesons can be
studied at the LHC in ultraperipheral collisions (UPCs) of
protons and/or ions occurring at impact parameters larger
than the sum of their radii, thereby largely suppressing their
hadronic interaction [1]. In such UPCs, one of the incom-
ing hadrons emits a quasi-real photon that converts into a qq
(vector meson) bound state following a colour-singlet gluon
exchange with the other “target” proton or ion [2,3]. Since
the incoming hadrons remain intact after the interaction and
only the vector meson is produced in the event, the process
is called “exclusive”. Given that the photon flux scales with
the square of the emitting electric charge, the radiation of
quasi-real photons from the Pb ion is strongly enhanced com-
pared to that from the proton. Figure 1a shows the dominant
diagram for the exclusive ϒ photoproduction signal in pPb
collisions, pPb → (γ p)Pb → p ϒ Pb. If the ϒ photoproduc-
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tion is followed by the proton breakup, the process is called
“semiexclusive” (Fig. 1b). The exchanged photon can also
interact with a photon radiated from the proton [1,4]. This
two-photon collision can produce an exclusive dimuon state,
as shown in Fig. 1c. Since we are interested in studying exclu-
sive ϒ production via its dimuon decay, the latter quantum
electrodynamics (QED) continuum production constitutes a
background process.

The study of exclusive photoproduction of quarkonia
offers a clean probe of the target hadron structure [1,3,5],
with the large mass of the J/ψ and ϒ mesons providing a hard
scale for calculations based on perturbative quantum chro-
modynamics (pQCD) [6–9]. In the kinematic region studied
here, the photoproduction of J/ψ and ϒ mesons from pro-
tons is sensitive to generalized parton distributions (GPDs),
which can be approximated by the square of the gluon den-
sity in the proton [6–19]. Experimentally, exclusive J/ψ and
ϒ photoproduction cross sections have been observed to rise
with photon–proton centre-of-mass energy Wγ p, following a
power-law dependence W δ

γ p with δ = 0.7–1.2 [20,21]. This
reflects the steep rise of the underlying gluon density in the
proton for decreasing values of the momentum fraction x of
the proton carried by the struck parton. The dependence of
the exclusive vector meson photoproduction cross section on
the squared four-momentum transfer at the proton vertex t ,
parameterized at low values of |t | with an exponential func-
tion of the form exp(−b|t |) [20,22–24], has also often been
studied; the b slope parameter provides valuable information
on the parton transverse density profile of the proton [7,8,25].

Exclusive ϒ meson photoproduction was first observed
in electron-proton collisions at HERA [20–22,24] with the
quasi-real photon radiated from the electron. At the CERN
LHC, the LHCb [26–28], CMS [29], and ALICE [30–33]
experiments have measured exclusive photoproduction of
J/ψ mesons in ultraperipheral proton-proton and nuclear col-
lisions. The LHCb experiment has also reported the measure-
ment of the exclusive ϒ photoproduction cross section in pp
collisions at

√
s = 7 and 8 TeV [34]. The larger mass of

the ϒ meson provides a larger perturbative scale at which
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Fig. 1 Diagrams representing a exclusive ϒ photoproduction, b proton dissociative , or “semiexclusive”, ϒ photoproduction, and c exclusive
dimuon QED continuum production in pPb collisions

the gluon distribution in the proton is sampled, and thereby
reduces theoretical uncertainties in pQCD calculations. This
allows the data to constrain the gluon distributions at low
values of Bjorken x in global PDF fits for the first time [35].
The present paper reports the measurement of ϒ photopro-
duction in pPb UPCs that probes the gluon density of the
proton in the region x = m2

ϒ/W 2
γ p = 10−4–10−2 [3], where

mϒ is the ϒ meson mass. This CMS measurement spans a
previously unexplored low-x region between the HERA and
LHCb data, and provides additional experimental insights
on the gluon content in the proton. In this low-x regime,
nonlinear QCD effects (gluon recombination) may become
important, possibly leading to the saturation of the parton
distribution functions (PDFs) [36–38].

The measurements presented here are carried out using
the μ+μ− decays of the ϒ(nS) (n = 1, 2, 3) bottomo-
nium mesons in the rapidity range |y| < 2.2 in the labora-
tory frame. These include differential cross sections as func-
tions of the ϒ rapidity and transverse momentum squared
p2

T (which approximates the absolute value of the four-
momentum transfer squared at the proton vertex, |t |), as well
as the total ϒ(1S) cross section as a function of Wγ p. The
results are compared to previous measurements and to the-
oretical predictions based on leading order (LO) and next-
to-leading-order (NLO) pQCD calculations [10], as well
as on colour dipole [15,16] and gluon saturation [15–19]
approaches.

2 Experimental setup

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a sil-
icon pixel and strip tracker, a lead tungstate crystal elec-
tromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel
and two endcap sections. The silicon pixel and strip tracker
measures charged-particle trajectories within the pseudora-
pidity range |η| < 2.5. It consists of 66 million pixel and
10 million strip sensor elements. For charged particles with

1 < pT < 10 GeV and |η| < 1.4, the track resolutions are
typically 1.5% in pT [39].

Muons are measured in gas-ionisation detectors embed-
ded in the steel flux-return yoke outside the solenoid over the
range |η| < 2.4, with detection planes based on three tech-
nologies: drift tubes, cathode strip chambers, and resistive-
plate chambers. The reconstruction algorithm considers all
tracks in the silicon tracker and identifies them as muons by
looking for compatible signatures in the calorimeters and in
the muon system. Because of the strong magnetic field and
the fine granularity of the tracker, the muon pT measure-
ment based on information from the tracker alone has a good
resolution [40].

Extensive forward calorimetry, based on Cherenkov radi-
ation detectors, complements the coverage provided by the
barrel and endcap calorimeters. Two hadron forward (HF)
calorimeters, consisting of iron absorbers and embedded
radiation-hard quartz fibres, cover 2.9 < |η| < 5.2, and
two zero-degree calorimeters (ZDCs), with alternating lay-
ers of tungsten and quartz fibers, are sensitive to neutrons
and photons with |η| > 8.3 [41].

The data are collected with a two-level trigger system. The
first level of the CMS trigger system, composed of custom
hardware processors, uses information from the calorimeters
and muon detectors to select the most interesting events [42].
The high-level trigger (HLT) processor farm runs a version
of the full event reconstruction software optimized for fast
processing. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in Ref. [43].

3 Data sample and Monte Carlo simulation

The data set used in this analysis corresponds to 32.6 nb−1

of integrated luminosity collected in pPb collisions by the
CMS experiment in 2013, with beam energies of 4 TeV for
the protons and 1.58 TeV per nucleon for the lead nuclei,
resulting in a nucleon–nucleon centre-of-mass energy of√
sNN = 5.02 TeV. The data are the sum of the collected

pPb and Pbp collision samples, with the incoming Pb ion
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going in the +z and −z beam directions, corresponding to
integrated luminosities of 18.8 and 13.8 nb−1, respectively.

The photon–proton centre-of-mass energy, Wγ p, is related
to the rapidity y of the ϒ meson in the laboratory frame by
W 2

γ p = 2Epmϒ exp(±y), where Ep is the proton energy,
and the +(−) sign corresponds to the pPb (Pbp) beam con-
figuration. This formula, derived neglecting the transverse
momenta involved in the interaction, approximates the true
value of Wγ p to better than 1 per mille in the Wγ p range of
this measurement. The data span the range 91 < Wγ p <

826 GeV, with the limits given by the maximum and mini-
mum rapidities, over |y| < 2.2, of the ϒ mesons. Because
the CMS detector is symmetric along z, the pPb and Pbp data
samples are merged in this analysis after changing the sign
of pz of the final state particles in the Pbp sample.

The starlight (v3.07) [44,45] Monte Carlo (MC) event
generator is used to simulate exclusive ϒ(nS) photoproduc-
tion events (Fig. 1a) and the exclusive QED background
(Fig. 1c). The starlight MC assumes that the photon flux
from the incoming hadron(s) is described by the Weizsäcker–
Williams equivalent photon approximation [46,47], and uses
an empirical fit of the exclusive vector meson photoproduc-
tion cross sections to the existing HERA γ p data. In the
ϒ(nS) sample, two contributions are simulated, with the pho-
ton being emitted either from the Pb ion or from the proton.
The γ p events where the photon is emitted from the Pb ion
constitute the signal, while the small fraction of γ Pb events
with the photon emitted from the proton is treated as a back-
ground. The signal events in the starlight MC are simu-
lated assuming a |t |-differential cross section following an
exp(−b|t |) dependence, and a power law dependence of the
cross section on the photon–proton centre-of-mass energy,
W δ

γ p, with the exponent δ. In this study, the b and δ param-
eters are tuned to reproduce the data through a reweighting
procedure described in Sect. 4. The backgrounds from inclu-
sive and semiexclusive ϒ and dimuon production processes
are obtained using templates derived from control samples

in the data, as explained in the next section. All simulated
events are passed through the Geant4-based [48–50] detec-
tor simulation and the event reconstruction chain of CMS.

4 Event selection and background estimation

The ϒ(nS) states are studied in their dimuon decay chan-
nel. The UPC dimuon events are selected at the trigger level
with a dedicated HLT algorithm, requiring at least one muon
and at least one, but not more than six, tracks in the event.
At the offline level, additional selection criteria for muon
quality requirements, are applied [40,51]. In order to mini-
mize the uncertainties related to the low-pT muon reconstruc-
tion inefficiencies, muons with pμ

T > 3.3 GeV are selected
in the region |ημ| < 2.2 in the laboratory frame. Exclu-
sive events are selected by requiring two opposite-charge
muons with a single vertex and no extra charged particles
with pT > 0.1 GeV associated with it. In addition, no energy
deposits in the HF calorimeters are allowed. This is achieved
by requiring that the largest HF tower energy deposit be
smaller than 5 GeV. The HF energy threshold is set to be
larger than the detector noise, and is determined from the
energy distributions collected in dedicated data taking with
no LHC beams. Furthermore, the rapidity of the muon pair is
required to be in the region |y| < 2.2 in the laboratory frame.
Only events with the pT of the muon pair between 0.1 and
1 GeV are considered, thereby reducing the contamination
from QED pairs at very low pT and from ϒ meson produc-
tion in inclusive and semiexclusive (where the proton disso-
ciates into a low-mass hadronic system, Fig. 1b) processes
that dominate the region of large dimuon pT > 1 GeV.

Figure 2 shows the invariant mass distribution of μ+μ−
pairs in the range between 8 and 12 GeV that satisfy the
selection criteria described above. An unbinned likelihood
fit to the spectrum is performed using RooFit [52] with
a linear function to describe the QED γ γ → μ+μ− con-

Fig. 2 Invariant mass
distribution of the exclusive
muon pair candidates in the
range 8 < mμ+μ− < 12 GeV
that pass all the selection
criteria, fitted to a linear function
for the two-photon QED
continuum (blue dashed line)
plus three Gaussian distributions
corresponding to the ϒ(1S),
ϒ(2S), and ϒ(3S) mesons
(dashed-dotted-red curves)
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tinuum background, where the background slope parameter
is fixed to the starlight γ γ → μ+μ− simulation, plus
three Gaussian functions for the three ϒ signal peaks, since
the natural widths of the ϒ(nS) states are much smaller
than their (Gaussian) experimental invariant mass resolu-
tions. The six free parameters of the fit are the normaliza-
tions of the background and the three signal peaks, as well
as the mass and the width of the ϒ(1S) resonance. The
ϒ(2S) − ϒ(1S) and ϒ(3S) − ϒ(1S) mass differences are
fixed to their PDG values [53], while the widths of ϒ(2S)

and ϒ(3S) are expressed in terms of the ϒ(1S) width scaled
by the ratio of their masses. The parameters describing the
background plus the ϒ(1S) and ϒ(2S) resonances do not
change if the ϒ(3S) signal is neglected in the fit. The sta-
tistical significance of the ϒ(1S) + ϒ(2S) peaks over the
background is 3.9σ . The apparent excess at 8.5 GeV has a
local significance of 1.6σ , and is consistent with a statistical
fluctuation. Because of the overall small number of events in
the data sample, a determination of the separate ϒ(nS) differ-
ential cross sections by fitting the invariant mass spectrum in
each p2

T and y bin leads to results with large statistical fluctu-
ations. Instead, the cross sections are extracted by adding up
the events, after background subtraction, in the 9.1–10.6 GeV
mass region corresponding to the three ϒ states combined,
and the ϒ(1S) yield is derived from the ϒ(1S)/ϒ(sum) ratio,
where ϒ(sum) = ϒ(1S) + ϒ(2S) + ϒ(3S), as described in
Sect. 5.

Figure 3 shows the dimuon p2
T and rapidity distributions

in the invariant mass interval 9.1 < mμ+μ− < 10.6 GeV
for events passing all the selection criteria for the combined
pPb and Pbp samples. The data, uncorrected for detector
effects, are compared to the starlight simulation for exclu-
sive ϒ(nS) and QED dimuon production, normalized to the
recorded integrated luminosity, together with the inclusive
and semiexclusive backgrounds derived from the data them-
selves as discussed below. The simulated ϒ(nS) events from
starlight are shown separately for the γ p and γ Pb pro-
cesses; the latter (with much smaller cross sections) are con-
sidered as a background in this analysis. The ϒ(nS) events
generated with starlight are reweighted to describe the
data, using the parameters b = 5.8 GeV−2 for the |t | dis-
tribution slope, and δ = 0.99 for the cross section energy
dependence. These parameters minimize the χ2 goodness-
of-fit value calculated using the data and MC distributions of
Fig. 3. The minimization is performed as a function of the
rapidity simultaneously for the γ p and γ Pb samples, and as a
function of p2

T for the γ p events. For γ Pb events, the default
starlight pT spectrum is used.

In order to extract the exclusive γ p → ϒ(μ+μ−)p
signal events, the exclusive QED and other nonexclusive
background contributions need to be subtracted. The QED
γ γ → μ+μ− continuum under the ϒ(nS) peaks is esti-
mated with the starlight MC simulation. The absolute
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Fig. 3 Distributions of the a transverse momentum squared p2
T, and b

rapidity y of exclusive muon pairs with invariant mass 9.1 < mμ+μ− <

10.6 GeV after all selection criteria have been applied. Both distri-
butions are compared to the expectations of signal and background
contributions discussed in the text

prediction of the cross section from this generator is cross-
checked by comparing the data and the simulation in a
control region, corresponding to small values of dimuon
pT, pT < 0.15 GeV, and away from the ϒ resonances,
8 < mμ+μ− < 9.1 GeV and 10.6 < mμ+μ− < 12 GeV,
where the QED process is dominant. The ratio of the mea-
sured yields in the data to those from the starlight MC
in the control region is measured to be 1.03 ± 0.10, con-
firming that this event generator reproduces the QED back-
ground well, as observed previously in pPb and PbPb col-
lisions at the LHC [29–32]. The QED contribution, esti-
mated from the starlight MC in the signal region, amounts
to 40% (64 and 8% in the lowest and highest dimuon p2

T
bins of the corresponding differential cross section, respec-
tively).
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Backgrounds to the exclusive ϒ → μ+μ− signal also
originate from semiexclusive and inclusive ϒ meson and
Drell–Yan (DY) continuum production, where any additional
hadronic activity falls outside the detector acceptance or
below the detection thresholds. These background contribu-
tions are estimated from the data, by removing selectively the
neutral or charged exclusivity requirements. A template dom-
inated by semiexclusive contributions is constructed using
events with only two muon tracks in the tracker accompanied
by at least one HF tower having an energy deposit larger than
the noise threshold of 5 GeV, in the direction of the outgoing
proton. Events with two muons satisfying the selection crite-
ria, but with at least one additional track with pT > 0.1 GeV,
are used to build a template dominated by inclusive DY pro-
duction events. The normalizations of the two templates are
obtained from a fit to the measured p2

T distribution extended
up to p2

T = 10 GeV2, where proton dissociation and inclu-
sive events dominate, as seen in the tail of the distribution
of Fig. 3a. The combination of the normalized inclusive and
semiexclusive templates describes the region of high dimuon
p2

T well in the data in all four y bins used for the cross sec-
tion extraction. The overall fraction of both backgrounds in
the signal sample is estimated to be 11% (3 and 48% in the
lowest and highest dimuon p2

T bin, respectively). As an extra
cross check of the nonexclusive background subtraction, the
signal extraction is repeated by requiring in addition no neu-
tron detection in the ZDC calorimeters [29]. The extracted
yield of exclusive ϒ candidates at low pT is found to be con-
sistent with the nominal results without applying the ZDC
veto requirement, thereby confirming the efficiency of the
nonexclusive background rejection.

An additional background in this analysis originates from
a small contribution of exclusive γ Pb → ϒPb events. It is
estimated using the reweighted starlight ϒ MC sample,
and amounts to 6% (16 and 1% in the lowest and highest
dimuon p2

T bin, respectively) of the γ p MC signal. Relative
to the data, this contribution amounts to 3% (5 and 1% at
the lowest and highest dimuon p2

T bin, respectively). These
simulation-based fractions are used to subtract the γ Pb →
ϒPb contribution from the data.

5 Extraction of cross sections

The dimuon events selected as described above are used to
determine the differential ϒ photoproduction cross sections
in four bins of p2

T over p2
T = 0.01–1 GeV2, and in four bins

of y over |y| < 2.2. Because of the limited size of the data
sample, we first extract the differential cross sections for all
ϒ(nS) resonances combined. Then, the total cross section as
a function of Wγ p is extracted for the ϒ(1S) state alone, as
described below, and is compared with previous experimental
measurements and theoretical predictions.

The background-subtracted p2
T and y distributions are first

unfolded over the region 0.01 < p2
T < 1 GeV2, |y| < 2.2,

and muon pμ
T > 3.3 GeV, by using the Bayesian iterative

unfolding technique [54], as implemented in the RooUn-
fold package [55], with four iterations. This procedure cor-
rects for detector effects and data migration between bins.
The response matrix is obtained from the starlight γ p
simulation. The differential cross section dσ/dp2

T is further
extrapolated to the full range of single-muon pT by means
of an acceptance correction factor Acorr = Nϒ(nS)(p

μ
T >

3.3 GeV)/Nϒ(nS)(p
μ
T > 0), estimated with the starlight

γ p simulation. The measured dσ/dy values in each rapidity
bin are also similarly extrapolated down to zero dimuon pT.
The Acorr ≈ 0.6 factor does not significantly depend on p2

T
but varies as a function of y as shown later in Table 3. The p2

T-
and y-differential cross sections, multiplied by the dimuon
branching fraction, are extracted for the three ϒ(nS) states
combined as follows,

∑

n

Bϒ(nS)→μ+μ−
dσϒ(nS)

dp2
T

= N corr
ϒ(sum)

L
p2
T

,

∑

n

Bϒ(nS)→μ+μ−
dσϒ(nS)

dy
= N corr

ϒ(sum)

L
y
.

(1)

Here N corr
ϒ(sum) denotes the background-subtracted, unfolded,

and acceptance-corrected number of ϒ(1S), ϒ(2S) and
ϒ(3S) signal events in each p2

T and y bin, L is the inte-
grated luminosity, 
p2

T and 
y are the widths of the p2
T

and y bins, and Bϒ(nS)→μ+μ− is the dimuon branching frac-
tion [53]. The differential ϒ(1S) photoproduction cross sec-
tion dσϒ(1S)/dy is then extracted via

dσϒ(1S)

dy
= fϒ(1S)

Bϒ(1S)→μ+μ−(1 + fFD)

×
[
∑

n

Bϒ(nS)→μ+μ−
dσϒ(nS)

dy

]
, (2)

where the factor fϒ(1S) is the ratio of ϒ(1S) to ϒ(sum) =
ϒ(1S) + ϒ(2S) + ϒ(3S) events, fFD is the feed-down con-
tribution to the ϒ(1S) events originating from the ϒ(2S) →
ϒ(1S) + X decays (where X = π+π− or π0π0), and
Bϒ(1S)→μ+μ− = (2.48 ± 0.05)% [53] is the branching frac-
tion for the dimuon ϒ(1S) meson decay channel.

The fraction of ϒ(1S) to ϒ(sum) = ϒ(1S) + ϒ(2S) +
ϒ(3S) yields is first derived from the event yield ratios r21 =
Nϒ(2S)/Nϒ(1S) = 0.78 ± 0.31 and r31 = Nϒ(3S)/Nϒ(1S) =
0.21 ± 0.22 extracted from the invariant mass fit shown in
Fig. 2, giving fϒ(1S) = (1 + r21 + r31)

−1 = 0.50 ± 0.09,
where the correlation between the two fitted parameters was
not taken into account. Since this fraction has a relatively
large statistical uncertainty, we use the value derived from the
analysis [51] of inclusive ϒ(nS) meson production instead,
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which is performed at the same nucleon–nucleon collision
centre-of-mass energy and in a similar ϒ rapidity range as the
current pPb measurement, in which the fraction is expressed
as a function of the number of additional charged particles in
the event (Nch) and extrapolated to Nch = 0. This procedure
yields fϒ(1S) = 0.68 ± 0.04, consistent within statistical
uncertainties with the factor obtained from the current data, as
well as with the fϒ(1S) = 0.71±0.03 and 0.73±0.05 values
obtained in the measurements based on proton-(anti)proton
data by LHCb [34] and CDF [56], at very forward and central
ϒ rapidities, respectively.

The feed-down contribution is estimated using the MC
simulation in the following way: the initial ϒ(2S) pT and
y distributions are taken from the starlight generator,
and their ϒ(1S) + ππ decays, followed by ϒ(1S) →
μ+μ− are simulated with pythia 6.4 [57]. After apply-
ing all selections, the fraction of dimuon events from
ϒ(2S) feed-down is found to be 8% of the exclusive sig-
nal ϒ(1S) events reconstructed using the starlight sim-
ulation. The contribution from feed-down of exclusive χb

states is neglected because these mesons can only be pro-
duced in double-pomeron exchange processes (or in pairs,
via γ γ → χbχb, with very small cross sections), which
have comparatively much smaller yields in proton-nucleus
collisions [58,59].

Finally, the exclusive ϒ(1S) photoproduction cross sec-
tion as a function of Wγ p, is obtained from the dσϒ(1S)/dy
cross section via the relation

σγ p→ϒ(1S)p(W
2
γ p) = 1

�

dσϒ(1S)

dy
, (3)

in four different rapidity bins, with associated Wγ p intervals,
given in Table 3. The cross sections are given at the value W0,
which corresponds to the average rapidity over a bin, 〈y〉.
The photon flux � in Eq. (3), evaluated at 〈y〉, is obtained
from the starlight simulation and calculated in the impact
parameter space requiring the pPb separation to be larger
than the sum of their radii.

6 Systematic uncertainties

The following sources of systematic uncertainty are taken
into account in the measurements of all differential and total
ϒ meson production cross sections, as well as for the extrac-
tion of the exponential slope b of the p2

T spectrum:

– The muon reconstruction and selection efficiency has
three components: the efficiency to find a track in the
inner tracker, the efficiency to pass the track quality
requirements, and the probability to pass the HLT selec-
tion. These efficiencies are estimated following the ”tag-

and-probe” method [51], using first a sample of inclu-
sive ϒ(1S) events selected with a trigger that requires
two muons (to determine track and muon-quality effi-
ciencies), and second a ϒ(1S) event sample similar to
the one used in the nominal analysis, but collected with
an independent trigger (to determine the trigger effi-
ciency). The associated systematic uncertainty is eval-
uated from the difference in efficiencies obtained from
the data and simulation, and it leads to uncertainties
of 10.5%, 4.1% and 1.7% for track, muon-quality and
trigger component, respectively. The overall uncertainty
is estimated by adding the three numbers in quadra-
ture, and leads to an 11% uncertainty in the normaliza-
tion of the cross sections, but no effect on the b slope
measurement.

– To estimate the systematic uncertainty due to the model
dependence of the acceptance correction, the parameters
b and δ of the simulated starlight spectra are changed
by ± 30% (chosen conservatively by the uncertainties
of the corresponding fits to the data), and the resulting
MC distributions are used for the determination of the
extrapolation factor Acorr, the unfolding, and the γ Pb →
ϒPb background subtraction, resulting in 2–3% changes
in the measured observables.

– The uncertainty due to the unfolding procedure is stud-
ied by modifying the number of iterations used for the
Bayesian unfolding from the nominal value of 4 to 3 and
5, resulting in an uncertainty of 1% for the p2

T spectrum,
0.2% for the b slope, and no change for the much flatter
dσ/dy distribution, which has negligible net bin-to-bin
migrations.

– The uncertainty associated with the exclusive QED
background contribution is estimated by comparing the
starlight simulation to the data in sideband regions of
the invariant mass distribution, 8.0 < mμ+μ− < 9.1 GeV
and 10.6 < mμ+μ− < 12.0 GeV, for pT < 0.15 GeV.
The ratio of the simulation to the data in that region is
found to be unity with a statistical uncertainty of 5%.
To estimate the uncertainty due to the QED background
subtraction, the MC normalization is scaled by ± 5%,
resulting in 3–4% changes in the experimental observ-
ables.

– The uncertainty in the nonexclusive background contri-
butions is estimated by varying the HF energy threshold
by ± 10%. The resulting uncertainties of the observables
vary between 3 and 6%.

– The uncertainty introduced by the ϒ(2S) → ϒ(1S)+ X
decays is estimated by modifying the values of the b and δ

parameters of the ϒ(2S) spectra in the starlight MC to
those obtained from the reweighting described in Sect. 4.
This resulted in a ± 2% variation of the ϒ(1S) cross
sections. The uncertainty in fϒ(1S) = ϒ(1S)/ϒ(sum)

is 7%, estimated as the quadratic sum of the uncertainty
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obtained from the extrapolation discussed in Sect. 5 and
from the difference between this result and that obtained
by LHCb in Ref. [34]. The latter takes into account possi-
ble differences between inclusive and exclusive processes
in proton-proton and proton-lead collisions. An addi-
tional 2% uncertainty in the ϒ(1S) → μ+μ− branch-
ing fraction is taken from the PDG world average [53].
All these uncertainties affect only the ϒ(1S) cross
sections.

– The theoretical uncertainty in the photon flux affects
only the total cross section σγ p→ϒ(1S)p and is estimated
by changing the Pb radius by ± 0.5 fm, conservatively
covering different estimates of the neutron skin thick-
ness [60]. It amounts to 2, 3, 3, and 9% in the four y
bins, respectively. The photon flux uncertainty (listed in
the bottom row of Table 3) is larger for higher photon
energies as they are dominated by smaller impact param-
eters.

– A systematic normalization uncertainty of ± 4% asso-
ciated with the integrated luminosity [61] is assigned to
the measurement of differential and total cross sections,
with no effect on the b slope uncertainty.

The summary of the systematic uncertainties for all mea-
surements is presented in Table 1. The dominant sources are
the muon reconstruction efficiency and the modeling of the
nonexclusive backgrounds. The total uncertainty is calcu-
lated by adding in quadrature the individual contributions,
and varies between ± 5% for the b slope to ± 16% for
σγ p→ϒ(1S)p. Given the limited integrated luminosity avail-
able, the measurements are dominated by statistical uncer-
tainties.

7 Results

7.1 Differential cross section as a function of p2
T and y

The differential cross sections (multiplied by the dimuon
branching fractions) for exclusive ϒ(nS) photoproduc-
tion,

∑Bϒ(nS)→μ+μ−dσϒ(nS)/dp2
T and

∑Bϒ(nS)→μ+μ−
dσϒ(nS)/dy, measured over |y| < 2.2, are shown in Fig. 4
and tabulated in Table 2. The p2

T-differential cross sec-
tion is fitted with an exponential function in the region
0.01 < p2

T < 1.0 GeV2, using a χ2 goodness-of-fit min-
imization method. A slope of b = 6.0 ± 2.1 (stat) ±
0.3 (syst) GeV−2 is extracted, in agreement with the value
b = 4.3+2.0

−1.3 (stat)+0.5
−0.6 (syst) GeV−2 measured by the ZEUS

experiment [24] in the photon–proton centre-of-mass energy
range 60 < Wγ p < 220 GeV, and with the predictions of
pQCD-based models [10].

Figure 5 shows the rapidity distribution of the ϒ(1S) state
obtained according to Eq. (2). The values of all relevant
parameters needed to compute the ϒ(1S) cross sections in the
four rapidity bins under consideration are listed in Table 3.
The CMS measurements are compared to the following the-
oretical predictions:

– The JMRT model [10], a pQCD approach that uses stan-
dard (collinear) PDFs with a skewness factor to approx-
imate GPDs, including LO and NLO corrections, and a
gap survival factor to account for the exclusive produc-
tion;

– The factorized impact parameter saturation model, fIP-
sat, with an eikonalized gluon distribution function
that uses the colour glass condensate (CGC) formal-
ism to incorporate gluon saturation at low x [17,
18];

Table 1 Relative systematic uncertainties in percent in the measure-
ments of

∑Bϒ(nS)→μ+μ− dσ/dp2
T, the exponential b slope of the p2

T
spectrum,

∑Bϒ(nS)→μ+μ− dσ/dy, dσϒ(1S)/dy, and σγ p→ϒ(1S)p. Indi-

vidual contributions, as well as total systematic uncertainties added in
quadrature are presented. For the p2

T- and y-differential cross sections,
the values averaged over all bins are shown

Source
∑Bϒ(nS)→μ+μ− dσ/dp2

T b
∑Bϒ(nS)→μ+μ− dσ/dy dσϒ(1S)/dy σγ p→ϒ(1S)p

Muon efficiency ± 11 – ± 11 ± 11 ± 11

Acceptance ± 3 ± 2 ± 2 ± 2 ± 2

Unfolding ± 1 ± 0.2 – – –

Exclusive QED background ± 4 ± 3 ± 4 ± 4 ± 4

Nonexclusive background ± 3 ± 3 ± 6 ± 6 ± 6

Integrated luminosity ± 4 – ± 4 ± 4 ± 4

Feed-down – – – ± 2 ± 2

Branching fraction Bϒ(1S) → μ+μ− – – – ± 2 ± 2

fϒ(1S) fraction – – – ± 7 ± 7

Photon flux � – – – – ± 4

Total ± 13 ± 5 ± 14 ± 16 ± 16

123



277 Page 8 of 26 Eur. Phys. J. C (2019) 79 :277

2 (GeV)2
T

p

2
 n

b/
(G

eV
)

2 T
/d

p
Y

(n
S

)
σ

 d- μ+ μ
→

Y
(n

S
)

 BΣ

1−10

1

10

210
(a)

 (5.02 TeV)-1pPb 32.6 nbCMS

Data
 minimization fit to data2χ

y
2− 1.5− 1− 0.5−0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2

/d
y 

(n
b)

 
Y

(n
S

)
σ

 d- μ+ μ
→

Y
(n

S
)

 BΣ

0

0.5

1

1.5

2

2.5

3
Data

 (5.02 TeV)-1pPb 32.6 nbCMS
(b)

Fig. 4 Differential ϒ(nS) → μ+μ− photoproduction cross section
as a function of a p2

T and b rapidity y, measured in pPb collisions at√
sNN = 5.02 TeV. In the left plot, the data points are placed along

the abscissa following the prescription of [62], and the solid line is an

exponential fit of the form e−bp2
T . In the right plot, the horizontal bars

are shown to indicate the width of each y bin. In both plots, the vertical
bars represent the statistical uncertainties and the boxes represent the
systematic uncertainties

Table 2 Differential exclusive ϒ(nS) → μ+μ− photoproduction cross sections in four p2
T and y bins. The first and second uncertainties correspond

to statistical and systematic components, respectively

p2
T bin (GeV2)

∑Bϒ(nS)→μ+μ− dσϒ(nS)/dp2
T (nb/GeV2) y bin

∑Bϒ(nS)→μ+μ− dσϒ(nS)/dy (nb)

(0.01, 0.05) 25.4 ± 14.8 ± 4.9 (− 2.2,− 0.7) 0.8 ± 0.4 ± 0.1

(0.05, 0.20) 9.5 ± 3.4 ± 1.1 (− 0.7, 0.0) 0.9 ± 0.5 ± 0.1

(0.20, 0.35) 4.4 ± 2.4 ± 0.5 (0.0, 0.7) 1.2 ± 0.5 ± 0.1

(0.35, 1.00) 0.7 ± 0.6 ± 0.1 (0.7, 2.2) 0.7 ± 0.2 ± 0.1

– the Iancu, Itakura and Munier (IIM) colour dipole
formalism [63] with two sets of meson wave func-
tions, boosted Gaussian (BG) and light-cone Gaussian
(LCG), which also incorporate saturation effects [15,
16];

– the impact parameter CGC model (bCGC), which takes
into account the t-dependence of the differential cross
section, using the BG wave function [19,64].

As shown in Fig. 5, most theoretical predictions are con-
sistent with the data, within the relatively large experimental
uncertainties, with the JMRT-LO results being systematically
above the data points as well as all the other calculations.

7.2 Cross section as a function of Wγ p

The values of the σγ p→ϒ(1S)p cross section obtained via
Eq. (3) are plotted as a function ofWγ p in Fig. 6, together with
the previous measurements from H1 [20], ZEUS [21,22], and
LHCb [34], and the five model predictions described in the
previous section. The CMS results (listed in Table 3) cover
the range of energies between the HERA and LHCb data. As
σ(Wγ p) is, to first approximation, proportional to the square

y
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/d
y 
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S

)
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Fig. 5 Differential ϒ(1S) photoproduction cross section as a func-
tion of rapidity measured in pPb collisions at

√
sNN = 5.02 TeV in the

dimuon rapidity region |y| < 2.2, compared to various theoretical pre-
dictions [10,15–19]. The horizontal bars are plotted to indicate the width
of each y bin. The vertical bars represent the statistical uncertainties and
the boxes represent the systematic uncertainties

of the gluon density of the proton, and since the gluon dis-
tribution at low Bjorken x is well described by a power law,
the cross section also follows a power-law energy depen-
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Table 3 Values of the ϒ(1S) photoproduction cross section in four
rapidity y bins, corresponding to four photon–proton Wγ p centre-of-
mass energy ranges (with central W0 value obtained following the pro-
cedure outlined in Ref. [62]), in pPb collisions at

√
sNN = 5.02 TeV.

The symbols N back-sub
ϒ(sum) , N unfol

ϒ(sum), and N corr
ϒ(sum) represent the numbers

of ϒ(sum) = ϒ(1S) + ϒ(2S) + ϒ(3S) candidates after background

subtraction, unfolding, and extrapolation with the Acorr factor, respec-
tively; Nϒ(1S) is the extracted number of ϒ(1S) mesons, and � is the
theoretical effective photon flux (see text). The first (second, if given)
uncertainty quoted corresponds to the statistical (systematic) compo-
nent

y range (− 2.2,− 0.7) (− 0.7, 0.0) (0.0, 0.7) (0.7, 2.2)

〈y〉 −1.45 −0.35 0.35 1.45

N back-sub
ϒ(sum) 14 ± 6 9 ± 5 12 ± 5 12 ± 5

N unfol
ϒ(sum) 19 ± 9 13 ± 7 17 ± 7 16 ± 6

Acorr 0.46 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.50 ± 0.01

N corr
ϒ(sum) 41 ± 19 ± 7 21 ± 11 ± 3 28 ± 11 ± 4 33 ± 13 ± 5

Nϒ(1S) = fϒ(1S)Nϒ(sum)

(1+ fFD)
26 ± 12 ± 4 13 ± 7 ± 2 18 ± 7 ± 2 21 ± 8 ± 3

dσϒ(1S)/dy (nb) 21 ± 10 ± 4 23 ± 12 ± 3 31 ± 12 ± 4 17 ± 7 ± 3

Wγ p range (GeV) 91–194 194–275 275–390 390–826

W0 (GeV) 133 231 328 568

Photon flux (�) 102.2 ± 2.0 68.3 ± 2.0 46.9 ± 1.4 17.9 ± 1.6

σγ p→ϒ(1S)p (pb) 208 ± 96 ± 37 343 ± 180 ± 51 663 ± 260 ± 93 956 ± 376 ± 162

Fig. 6 Cross section for
exclusive ϒ(1S)

photoproduction,
γ p → ϒ(1S)p, as a function of
photon–proton centre-of-mass
energy, Wγ p, compared to
previous HERA [20–22] and
LHCb [34] data as well as to
various theoretical
predictions [10,15–19]. The
vertical bars represent the
statistical uncertainties and the
boxes represent the systematic
uncertainties
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dence. A fit of the extracted CMS σγ p→ϒ(1S)p cross section
with a function of the form A (Wγ p[GeV]/400)δ (with the
constant A corresponding to the cross section at the mid-
dle value, Wγ p = 400 GeV, over the range of energies cov-
ered) gives δ = 1.08 ± 0.42 and A = 690 ± 183 pb (black
solid line in Fig 6), consistent with the value δ = 1.2 ± 0.8
obtained by ZEUS [21]. A similar fit to the CMS, H1 [20],
and ZEUS [21] data together gives δ = 0.99 ± 0.27, in good
agreement with the results of the fit to the CMS data alone.
The fit over the whole kinematic range, including the higher-
Wγ p LHCb data, yields an exponent of δ = 0.77 ± 0.14,

consistent with the collision-energy dependence of the J/ψ
photoproduction and light vector meson electroproduction
cross sections [65].

The data are compared to the predictions of the JMRT
model, including LO and NLO corrections. A fit with the
power-law function in the entire Wγ p range of the data yields
δ = 1.39 and δ = 0.84 for the LO and NLO calculations,
respectively. The LO predictions show a steeper increase of
the cross section with energy than seen in the data over the full
kinematic range. The NLO prediction reproduces the mea-
sured rise of the cross section with Wγ p. The recent LHCb
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results at higher Wγ p [34] also disfavour the JMRT LO pre-
diction. Figure 6 shows theoretical predictions from the fIP-
sat, IIM, and bCGC models, which overall bracket the com-
bined HERA and LHC results. The fIPsat calculations are
consistent with the CMS measurement, but predict a some-
what higher cross section than that measured by LHCb. The
IIM and bCGC predictions satisfactorily describe the rise
of the cross section with γ p centre-of-mass energy. As dis-
cussed in Ref. [10], the gluon PDF associated with the JMRT
NLO prediction, which is consistent with the CMS+LHCb
data presented here, has a somewhat different shape at low-x
than that predicted by standard pQCD collinear fits used at the
LHC such as CT14 [66], NNPDF3.0 [67], and MMHT [68].
However, given the currently large statistical uncertainty of
the results presented here, an improved understanding of the
low-x gluon density, and its evolution with energy scale,
will require more precise measurements with larger inte-
grated luminosities and/or at higher centre-of-mass ener-
gies.

8 Summary

The first study of the exclusive photoproduction of ϒ(1S,2S,
3S) mesons, in the μ+μ− decay mode, from protons in ultra-
peripheral pPb collisions at

√
sNN = 5.02 TeV, has been

reported using data collected with the CMS detector cor-
responding to an integrated luminosity of 32.6 nb−1. The
differential cross section dσ/dp2

T and associated exponen-
tial slope b have been measured in the squared transverse
momentum range p2

T < 1.0 GeV2. The extracted value of
b = 6.0 ± 2.1 (stat) ± 0.3 (syst) GeV−2 is consistent with
the slope measurement at other centre-of-mass energies. The
exclusive ϒ(1S) photoproduction cross sections, differen-
tial in rapidity y and as a function of the photon–proton
centre-of-mass energy Wγ p, have been measured in the range
91 < Wγ p < 826 GeV. Such measurements probe the region
of parton fractional momenta x ≈ 10−4–10−2 in the proton,
bridging a previously unexplored region between the HERA
and LHCb measurements. The dependence of σγ p→ϒ(1S)p

on Wγ p is well described by a power law with an expo-
nent smaller than that predicted by leading order perturbative
quantum chromodynamics (pQCD) approaches. The expo-
nent is, however, consistent with that extracted from a fit to
the HERA and LHCb data, and with that predicted by next-
to-leading-order pQCD calculations. The data, within their
currently large statistical uncertainties, are consistent with
various pQCD approaches that model the behaviour of the
low-x gluon density, and provide new insights on the gluon
distribution in the proton in this poorly explored region.
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