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Abstract. We assess a body of work that has attempted to use co-occurrence networks to infer the existence and type 
of biotic interactions between species. Although we see considerable promise in the approach as an exploratory tool for 
understanding patterns of co-occurrence of species, we note and describe numerous problems in the step of inferring 
biotic interactions from the co-occurrence patterns. These problems are both theoretical and empirical in nature, and 
limit confidence in inferences about interactions rather severely. We examine a series of examples that demonstrates 
striking discords between interactions inferred from co-occurrence patterns and previous experimental results and known 
life-history details. 

Introduction
A series of contributions over the past decade 

has explored the application of networks of co-
occurrence to identifying interactions among spe-
cies (Sánchez‐Cordero et al. 2008; Stephens et 
al. 2009; González-Salazar and Stephens 2012;
Ibarra-Cerdeña et al. 2017; Stephens et al. 2019). 
That is, the authors purport to be able to use net-
works of co-occurrence or non-co-occurrence, based 
on spatial information in primary biodiversity data-
bases, to infer biotic interactions (Sánchez‐Cordero 
et al. 2008). Were such an inferential ability to prove 
feasible, it would represent an exciting new dimen-
sion in biodiversity informatics—for instance, with 
the emergence and existence of large-scale biodi-
versity information resources (Canhos et al. 2004; 
Stein and Wieczorek 2004), now beyond 109 records 
easily and readily available for analysis, species’ 
interactions could be assessed and inferred on global 
scales, adding an important new dimension to what 
have been termed “essential biodiversity variables” 
(Pereira et al. 2013).

This paper, however, examines critically the 
basic proposition that spatial co-occurrence can be 
translated into a hypothesis and prediction of biotic 
interactions. Specifically, we assess (1) whether con-
ceptually such a connection (co-occurrence  biotic 
interactions) should be expected to exist, and (2) 
the degree to which practical considerations (e.g., 
sampling biases) may further cloud and confuse any 
such relationships. Finally, (3) we examine a series 
of examples of such analyses, and show that in many 
cases, by applying the proposed methodology, con-

clusions are reached that are even opposite to those 
of both common sense and actual experimental data.

Conceptual Bases
Should a co-occurrence biotic interaction 

connection exist?
Imagining a (wonderful) situation in which the 

occurrence data used for inferences are comprehen-
sive, complete, and unbiased, one could then estimate 
patterns of co-occurrence with some confidence. 
However, whether spatial co-incidence can be a 
proxy for biotic interactions is a theme that has been 
debated for decades—the co-occurrence work makes 
brief reference to these debates (González-Salazar 
and Stephens 2012; Stephens et al. 2016; Stephens et 
al. 2017; Stephens et al. 2019), but generally fails to 
cite, mention, or assume their crucial elements (e.g., 
Connor and Simberloff 1979; Gilpin and Diamond 
1982; Hubbell 2001; Peres‐Neto et al. 2001; Ulrich 
2004; Ulrich et al. 2017). Quite generally, spatial 
co-incidence of species’ distributions may be a con-
sequence of geographic constraint, history, shared 
climate or substrate preferences, migratory patterns, 
or many other factors (Morueta‐Holme et al. 2016; 
Freilich et al. 2018). In tandem with co-occurrence 
patterns, since non-co-occurrence may derive simi-
larly from causes not related to biotic interactions, 
patterns of co-incidence and non-co-incidence are no 
indication of the processes causing them (Bell 2005). 

As such, the network patterns that are the focus 
of the inferences from the co-occurrence network 
analyses are simply numerical representations of 
patterns of co-occurrence in a particular database. In 
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sampling, NC invariably underestimates the actual 
numbers of counts that would be obtained from a sys-
tematic documentation of the range of species C, so 
NC/N will be, in the vast majority of cases, an under-
estimate of the true probability. The same problem 
occurs when estimating co-incidences of pairs or sets 
of species, which has been termed the “unseen shared 
species effect”—this problem is known to be serious, 
and detailed methods have been proposed to fix it 
(Colwell and Coddington 1994; Chao et al. 2000; 
Chao et al. 2005, 2006). However, these more robust 
estimation methods, which are clearly more appro-
priate than the simple, uncorrected NC/N, are not used 
in the co-occurrence network methodology. 

Details
The co-occurrence network work to date has 

used a mathematical notation that is extremely cum-
bersome to describe the methodology (Stephens et 
al. 2017; Stephens et al. 2019). For instance, Xa rep-
resents a cell, but since only the sub-index matters… 
why use Xa at all? We have also noted changes of 
meaning—for instance, in Stephens et al. (2017), Xa 
is used to denote a cell in one place, but elsewhere to 
denote a variable. The co-occurrence network meth-
odology also falls into the trap of unnecessary intro-
duction of symbols—in Stephens et al. (2009), the 
symbol for variable i in cell Xi is Bi(Xi), but later these 
same variables are denoted C and Xi, which is con-
fusing. Similarly, the definition of the epsilon index 
is presented in two different symbologies in the same 
paper (Stephens et al. 2009).

Much more appropriate would be to stick to the 
simpler and transparent symbols that are used in 
the software SPECIES. That is, nj should be used to 
denote the number of incidences of species j. Then, 
nj,k can be used to denote the number of co-occur-
rences of species j and k; N is used to denote the total 
number of cells in the grid. Everything in the meth-
odology (including the cardinality of complement 
sets) can be calculated from these three quantities. 
For instance, epsilon is:

The above formula immediately raises questions.
First, it is asymmetric: that is,                        , and

particular, their SPECIES tool (Stephens et al. 2019), 
which calculates indices of co-occurrence of species 
in the form of a statistic epsilon, is certainly useful as 
an exploratory tool focused on patterns of co-occur-
rence. However, going beyond the pattern to make 
inferences of process, is immediately suspect. the 
co-occurrence network group ostensibly tested the 
predictive capacity of their method empirically by 
correlating their interaction coefficient epsilon values 
with numbers of positive tests for the presence of a 
parasite in independent samples (González-Salazar 
and Stephens 2012). However, given almost 30 years 
of empirical and theoretical literature casting doubts 
on the robustness of such results, this claim cannot be 
accepted at face value and based on a single test, and 
rather needs to be examined critically, using a prop-
erly constructed battery of tests (Gotelli and Graves 
1996; Gotelli 2000).  

Practicalities
What other factors become important?

The co-occurrence network approach is based 
on databases of primary biodiversity occurrences, 
which is attractive in that it is primary (i.e., based 
on data deriving directly from individual occurrence 
records of each species), rather than secondary infor-
mation (i.e., deriving from some interpretation or 
synthesis of primary data). However, such data are 
well-known to be massively influenced by biases 
related to sampling, in terms of the diverse logistic, 
practical, historical, and political factors that struc-
ture how biologists have been able to sample biodi-
versity on Earth, and report those data to the broader 
scientific community. These biases have been doc-
umented thoroughly in general (Yesson et al. 2007; 
Beck et al. 2013; Gaiji et al. 2013; Otegui et al. 
2013a; Otegui et al. 2013b; Beck et al. 2014; Idohou 
et al. 2015; Anderson et al. 2016; Asase and Peterson 
2016; Peterson and Soberón 2018), and specifically 
for Mexico (Bojórquez-Tapia et al. 1995; Peterson et 
al. 1998; Soberón et al. 2000; Soberón et al. 2007). 

To claim to estimate co-occurrence rates (let 
alone biotic interactions) robustly on the basis of such 
incomplete, sparse, uneven, and biased sampling is 
rather doubtful. For instance, in various descriptions 
of the co-occurrence network method (e.g., Stephens 
et al. 2019), the “probability” of species C being 
present in a random cell is stated as NC/N, where NC is 
the number of counts of presences of C, in a total of N 
cells. However, given incomplete, uneven, and biased 
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exploration of an example with Mexican felids (see 
below) suggests that the asymmetry can be by as 
much as 20%. What is the meaning of these two 
values for the co-occurrence of the two species? 

Second, epsilon is dependent on the size of the 
grid, N, even though the magnitude and direction of 
the interaction of the two species should not depend 
on such contextual information. Third, in this for-
mula, it is possible to have divisions by zero, which 
would produce undefined epsilon values. This unde-
sirable situation will happen when ni = N, which is 
relatively likely for coarse-grained grids. What is 
the meaning of these undefined values? Fourth, the 
authors claim that associations are significant when 
associated with epsilon values >1.96 (i.e., equivalent 
to two standard deviations of a normal distribution). 
Still,  epsilon(Bi|lik) is most certainly not normally 
distributed, as any exploration of the SPECIES soft-
ware will show, and therefore the use of a symmetric, 
normal distribution is not appropriate. 

Finally, the gaps and biases in the Sistema 
Nacional de Información sobre Biodiversidad 
(SNIB) make the entire probabilistic argument 
behind the epsilon index very doubtful. The numbers 
in that formula, in general, cannot be regarded as 
probabilities, but as proportions of observations, for 
a given species, or proportions of observed co-occur-
rences, for pairs of species, in a particular database. 
Since the quantities NXi, P(C | Xi), and P(C) would 
mostly be underestimated relative to some hypo-
thetical “true” value, often extremely so, the index 
epsilon will present serious problems. For example, 
imagine a grid of 32 km grid cells, it will have 6736 
cells covering Mexico. Consider some species j with 
a true incidence of 60%, and some species k with a 
true incidence of 40%. If the true co-incidence of the 
two species is 20%, epsilon (j, k) is 3.79. However, if 
species j is sampled in only 10% of its localities, the 
epsilon value shifts to -0.75! 

Worked examples
 The co-occurrence network-based method-

ology has been implemented elegantly on a platform 
called SPECIES, which has been connected to the 
Sistema Nacional para Información de la Biodiver-
sidad (SNIB), maintained by the Comisión Nacional 
para el Uso y Conocimiento de la Biodiversidad 
(CONABIO), of the Mexican government (see the 
“SPECIES” site1). This facility offers the opportu-

1http://species.conabio.gob.mx

nity to explore the methodology in relation to real 
data, and in diverse contexts. The outcome, however, 
is rather damning for the conclusions that one might 
wish to make from the co-occurrence network anal-
yses. 

For example, we explored the “interactions” 
between two taxa—the family Trogonidae (Aves) 
and the family Scarabeidae (Insecta) across Mexico, 
and found a complex set of attractions and interde-
pendencies (Figure 1). That is, we noted some scarab 
species that were tightly and significantly associated 
with particular trogon or quetzal species, and others 
that were not closely associated at all. The inter-
esting feature, however, is that trogons are arboreal 
and frugivorous, in largest part, and have tiny feet 
that would not permit any terrestrial activity (For-
shaw 2009), whereas scarabs are terrestrial. We see 
no direct or indirect scenario that would lead to what 
could be termed biotic interactions between these 
two taxa, yet the epsilon index misinterprets distribu-
tional coincidence or distributional non-coincidence 
as positive or negative interactions.

To provide a more concrete calibration of the 
co-occurrence network interaction coefficients, we 
explored situations in which actual field experi-
ments have been conducted. That is, we explored 
the co-occurrence of the rodents Dipodomys mer-
riami and Perognathus longimembris (based on data 
derived from the Global Biodiversity Information 
Facility; https://www.gbif.org/occurrence/down-
load/0000059-190415153152247), which yielded 
a substantial positive epsilon value of 15.37, which 
is highly statistically significant using the SPECIES 
methodology. A positive epsilon should reflect pos-
itive interactions (i.e., mutualism, symbiosis), yet 
detailed field experiments (Lemen and Freeman 
1983; Lemen and Freeman 1986) indicate that these 
species rather have a strong negative interaction, in 
which Dipodomys depresses populations of Perog-
nathus dramatically. Similarly, we compared three 
Dipodomys spp. against a suite of six other rodent 
species (based on data derived from the Global Bio-
diversity Information Facility2) all of the pairwise 
epsilon values were >4.39, and all were statistically 
significant, yet Heske et al. (1994) documented 
diverse, strong negative interactions among these 
same species. 

In a further example, we took the six cat species 
(family Felidae) occurring in Mexico, and calculated 

2https://www.gbif.org/occurrence/download/0000059-190415153152247) 
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epsilon values for each pair; however, we used two 
distinct databases to construct the presence-absence 
matrices (PAMs) from which epsilon is calculated: 
one was the 2018 SNIB database, and the other was 
for the same species, but with distributional data 
derived from the IUCN extent-of-occurrence datasets 
(IUCN 2016). Both PAMs have errors, of course, but 
they also have contrasting properties: the IUCN data 
generally overpredict alpha (i.e., single-site) diver-
sity and under-predict beta (i.e., among-site) diver-
sity, whereas the opposite is true for the SNIB data-
base (Lira-Noriega et al. 2007). The outcomes were 
quite contrasting (Figure 2): epsilon values from the 

IUCN data were centered on zero but quite variable, 
whereas those from the SNIB data were generally 
positive but less variable. This result highlights that 
the epsilon index is database-dependent, such that 
inferences about true processes will remain doubtful, 
even if, as commented above, the database were the 
outcome of perfect and comprehensive sampling. 

Discussion
Importance in ecology

Finding a way by which to infer process from 
pattern has always been a Holy Grail in ecology. The 
specific challenge of inferring biotic interactions 

Figure 1. Summary and visualization of a co-occurrence network of trogons and quetzals (Trogonidae; blue circles) and scarab bee-
tles (Scarabeidae, orange circles). The trogons and quetzals are labeled as to species, and highland species are aligned along the left, 
whereas the lowland species are aligned along the right. Scarab species are not labeled, as they are quite numerous. Inset: Distribution 
of epsilon values, with significant values shown in blue.
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from data documenting only occurrences is com-
plicated by the facts that interactions are scale-de-
pendent, and that co-occurrences are determined by 
complex interactions among dispersal, physiology, 
behavior, habitat preferences, and evolutionary his-
tory. The bottom line is that epsilon, particularly 
when used with real-world data with the ever-present 
biases and gaps, produces highly doubtful results that 
are certainly not interpretable as indices of real co-in-
cidence, much less of ecological interactions.

Now, fixes exist for this set of problems and chal-
lenges. (1) One can perform a completeness analysis 
for every grid cell, and use in analyses only those 
cells that have good completeness indices (Sousa‐
Baena et al. 2014). This approach will produce a data-
base with a species x site matrix that has fewer rows 
(i.e., fewer sites), but those sites will have invento-
ries that are more directly comparable. (2) One can 
use a species x site matrix created not from obser-
vations, but from expert data, such as IUCN’s extent 
of occurrence maps (Hurlbert and Jetz 2007). This 
approach will probably overestimate incidences and 
co-incidences (nj, nk, and nj,k), but the error would be 
much less marked than when using raw occurrence 
data, which will inevitably underestimate these three 
quantities. (3) One can develop detailed species dis-
tribution models, and use careful interpretations of 
the outputs of the models to create the species x site 

matrix (Rojas-Soto et al. 2003; Cooper and Soberón 
2018). These three approaches allow researchers to 
deal with the serious problems involved in using a 
database of simple occurrence data; epsilon values 
deriving from such analyses will be a truer measure 
of co-incidence of species j and k. 

If one desires to interpret patterns of co-occur-
rence as reflecting biotic interactions, approaches 
have been explored that would clarify and refine 
that interpretation. For instance, Morueta‐Holme et 
al. (2016) refined simple interpretations of networks 
by correcting for indirect effects of other species, 
avoiding spurious associations driven by regional‐
scale distributions, and describing associations in 
multi‐species contexts—these refinements permitted 
some degree of direct interpretation of co-occurrence 
networks in the context of interactions. Such refine-
ments, however, appear not to have been contem-
plated—much less implemented—by the co-occur-
rence network group.

In sum, we perceive a set of points that would 
improve the ideas and methods of those who would 
wish to interpret co-occurrence networks as interac-
tions. They should (1) refer to their epsilon values as 
simple measures of association, rather than making 
conclusions about interactions and other biological 
processes that may or may not be producing those 
associations. (2) They should make clear that the data 
in the SNIB are simply examples, and make explicit 
that unless the database is a “true,” complete, and 
comprehensive presence-absence database, their 
epsilon calculations are not appropriate measures 
of co-incidence, much less indicators of ecological 
interactions. Finally (3), those using co-occurrence 
network properties should describe for what type of 
database and in what sense epsilon can be calculated 
and how this index can and should be interpreted. 
This latter point clearly affects much of the substance 
of the work, such that no doubt exists that those using 
these methods are seriously overinterpreting the 
meaning of the epsilon statistic.

Importance in epidemiology and public health
The arena in which co-occurrence networks have 

been used most intensively is that of detecting species 
interactions relevant to transmission of pathogens 
from reservoir or host species to humans via insect 
vectors (Stephens et al. 2009). The interaction net-
works of interest in this area are interactions between 
pathogens and vectors, pathogens and hosts, and 

Figure 2. Boxplots of epsilon values obtained for pairwise com-
parisons among the six species of Felidae in Mexico, from the 
Sistema Nacional para Información de la Biodiversidad (SNIB) 
database, and from the International Union for the Conservation 
of Nature (IUCN) database. Both datasets were assessed at a spa-
tial resolution of ½º, or about 55 km.
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vectors and hosts. In each case, knowledge of these 
biotic associations is too-often incomplete, fragmen-
tary, and/or incorrect (Woolhouse and Gowtage-Se-
queria 2005; Peterson et al. 2007; Estrada-Peña et 
al. 2015). In this sense, the potential inferences that 
these researchers explore are exciting, but only if 
they hold robust and well-founded promise of antici-
pating real associations.

The co-occurrence network group has focused 
most on transmission of Leishmania spp. parasites 
from vertebrates via sandflies of the genus Lutzomyia 
to humans (e.g., González-Salazar and Stephens 
2012; Stephens et al. 2016). The key assertion is that 
geographic co-occurrence implies biotic interactions 
such as vectoring and hosting pathogens—this prop-
osition can be examined empirically for this same 
system. For instance, Pech‐May et al. (2010), in 
detailed sampling at two sites in the Calakmul region 
of southeastern Mexico, found 7 species of Lutzo-
myia species present, with Leishmania infections 
common; however, those infections were common in 
only three species (Lu. shannoni, Lu. cruciata, Lu. 
ylephiletor), and rare or absent in the remaining spe-
cies. Similar results obtained in a later study in the 
same region, with several species co-occurring with 
Leishmania infections, but apparently not interacting 
with the pathogen (Pech‐May et al. 2016). Similarly, 
Sánchez-García et al. (2010) collected large samples 
of 10 sandfly species in the Chetumal region of south-
eastern Mexico, but found only three of them to carry 
Leishmania infections. These carefully designed 
studies demonstrate the differential vector capacity 
of phlebotomine species, despite co-occurrence, and 
the rash nature of conclusions based simply on distri-
butional coincidence.

In terms of Leishmania-mammal interactions, 
Rodríguez-Rojas et al. (2017) sampled rodents and 
sandflies in northeastern Mexico, and tested them for 
infection with Leishmania. Four of 10 rodent species 
were infected with Le. mexicana at an overall infec-
tion rate of ~10%, yet 9 sandfly species—including 
two species (Lu. cruciata, Lu. shannoni) for which 
sampling was numerous enough that Leishmania 
should have been detected—revealed no positive 
samples. This comment is not to assert that such 
infections do not exist, but rather to emphasize the 
tenuous, assumption-laden, and uncertain nature 
of the inferential linkage between co-occurrence in 
space and participation in biotic interactions, and 
more importantly, linkages to human disease risk.

To consider a very different class of diseases, 
arboviruses are of increasing concern in many 
regions in light of the important disease burden that 
they create, particularly where they are invasive 
(Gubler 1998). Vectorial capacity and competence 
are key factors driving pathogen transmission. For 
instance, dengue virus is now well-established in 
the Americas via the invasive vector species Aedes 
aegypti and A. albopictus, and overlaps broadly in 
terms of geographic distribution with large numbers 
of mammal species, which those using co-occur-
rence networks would interpret as positive interac-
tions (e.g., host-parasite interactions). Nonetheless, 
dengue has been identified only tentatively in several 
bat species in Mexico, which likely reflects incidental 
infection, since an elegant recent study demonstrates 
that those species are not competent reservoirs, and 
neither co-incidence, viremia or duration of the latter 
are sufficient for vector infection (Vicente-Santos et 
al. 2017)—bats are therefore dead-end hosts for the 
virus, despite broad co-occurrence.

A recent review of Zika virus (ZIKV) etiology 
(Gutiérrez-Bugallo et al. 2019) sets out current infor-
mation regarding infection and competency of vector 
and host associations, focusing on regions where the 
virus circulates. Despite known ZIKV infections in 
numerous species of bats in Africa and Asia, they 
have not been found to be competent reservoirs, 
contra the predictions of González-Salazar et al. 
(2017). Experimentally infected rodents, particu-
larly mice, are not susceptible to ZIKV infection and 
development of sustained viremia, thanks at least in 
part to differences in viral detection by the rodents’ 
innate immune system (Ding et al. 2018). Indeed, 
even among invertebrates found infected with ZIKV, 
only a handful are competent vectors (Garcia-Rejon 
et al. 2010). These results contrast and highlight the 
incomplete and weak inferences that derive from 
assumptions that co-occurrence implies biotic inter-
actions that may impact human disease risk.  

General conclusions
A key point in this debate, quite clearly, is why 

species co-occur and why do other species not 
co-occur? The naive application of the competitive 
exclusion principle (Gause 1934) would suggest that 
two species with identical ecological niches will not 
be able to coexist. This idea immediately causes con-
cern for the co-occurrence network methodology, 
which uses co-occurrence to infer interactions: com-
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petitors would never be found co-occurring. How-
ever, the complexities that enter into this debate are 
quite daunting. That is, many species pairs indeed 
interact strongly in a negative sense, but are quite able 
to exist at different times, or on spatial scales finer 
than those that are considered by the co-occurrence 
network methodology. That is, a substantial body of 
ecological theory treats how the competitive exclu-
sion principle is necessarily modified by the existence 
of spatial heterogeneity in a landscape (Amarasekare 
2003), or by the possibility of temporal partitioning 
to avoid strong, negative interactions between spe-
cies (Chesson and Warner 1981). Indeed, the classic 
book, Geographical Ecology (MacArthur 1972) has 
entire chapters treating mechanisms of co-existence 
of species pairs that might otherwise compete. 

A related question is that of why species do not 
co-occur. The co-occurrence network methodology 
interprets non-co-occurrences as evidence of nega-
tive interactions between species. However, many 
other factors may enter the picture. For instance, the 
species concerned may simply have distinct ecolog-
ical niches—that is, they may belong to lineages that 
have adapted to different sets of conditions, and for 
that reason do not co-occur. They may also have dif-
ferent areas of origin, which is still reflected in dis-
tinct distributional areas. The important point is that 
such species may never have even been close to one 
another, much less interacted (D’Amen et al. 2018).

Overall, indeed, the SPECIES software is quite 
attractive in that it is fast and user-friendly, consti-
tuting an elegant exploratory tool for primary biodi-
versity occurrence datasets. The epsilon calculations 
are valid tools, but should be interpreted as indi-
cating co-occurrence in a particular database only, 
which may have many meanings and interpretations, 
depending on the particular situation and conditions. 
We note that more sophisticated approaches to these 
questions of links between co-occurrence and inter-
actions have been published (e.g., Morueta‐Holme 
et al. 2016) that take into account ecological niche 
differences and other factors (see review in Dormann 
et al. 2018), and that simple, site- or pixel-based spa-
tial coincidence could be refined via consideration of 
spatial topology or via fuzzy spatial matching (Visser 
and de Nijs 2006). As we have discussed and demon-
strated above, the further inferential step of inter-
preting epsilon as summarizing the magnitude and 
direction of biotic interactions is quite inappropriate. 
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