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Abstract 

During a woman’s reproductive years the human endometrium becomes a highly 

dynamic tissue that sheds and regenerates on a cyclic basis. Apart from the main cell 

populations (i.e. stromal, endothelial, epithelial and immune cells), the endometrium 

also comprises a hierarchy of stem and more committed cells that are responsible for 

the remarkable regenerative ability of this tissue. This heterogeneity hinders the 

interpretation of bulk RNA-seq data and subsequently, the identification of specific 

stem cell transcriptomic signatures. Hence, the aim of this thesis was to assess and 

interpret endometrial heterogeneity with a focus on the characterization of 

stem/progenitor cells. Firstly, a reference matrix with the transcriptome profile of 

epithelial, uNK and stromal subpopulations was generated and used in the 

deconvolution of whole tissue transcriptome data across the menstrual cycle. This 

analysis showed that the transition from early- to mid-secretory is followed by an 

adjustment in the stromal:epithelial ratio. Additionally, it was demonstrated that 

endometrial mesenchymal stem cells (eMSC) encompass a heterogeneous 

population, and that their microenvironment may share common stemness properties 

with other adult stem cells.  

Secondly, single cell RNA-seq was employed to analyse endometrial cell 

heterogeneity. Apart from stromal, endothelial, epithelial and diverse immune cell 

populations, a discrete population of highly proliferative mesenchymal cells was 

identified and further characterized. Through several lines of evidence, I 

demonstrated that these cells correspond to a putative progenitor cell population and 

that anillin is a candidate marker for endometrial clonogenicity. 

Lastly, single-nucleus transcriptomic analysis was optimized for archived endometrial 

samples in order to bypass the disadvantages inherent to single cell approaches that 

are dependent on fresh tissues. In summary, this thesis contributed to the 

characterization of endometrial stem cell biology and identified a progenitor cell 

population that might be related to the decidua remodelling during pregnancy. 
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1.1 Human endometrium 

The uterine corpus is composed of a specialized mucosa that lines the lumen of the 

uterus known as the endometrium, a fibromuscular wall called the myometrium and 

an outer serosal lining termed the peritoneum. The endometrium itself is divided into 

two layers, the stratum functionalis and stratum basalis. For each menstrual cycle, 

the upper functional layer (stratum functionalis) proliferates, vascularizes and is 

subsequently sloughed off during the process of menstruation, while the lower basal 

layer (stratum basalis) adjacent to the myometrium remains relatively constant and 

provides cells for generating a new functional layer (Spencer et al, 2012; Rendi et al, 

2012). Throughout the female adult reproductive life, the endometrium becomes a 

highly dynamic structure regulated directly by the ovarian hormones, progesterone 

and estradiol, and indirectly by various growth factors and cytokines. The key role of 

the endometrium is to create a suitable environment in the right window of time (from 

day 20 to day 24 of menstrual cycle) to receive the embryo and establish a successful 

pregnancy. 

 

1.1.2 Endometrial cellular composition 

The endometrium consists of a single layer of columnar epithelium supported by a 

specialized connective tissue (stroma) and a rich supply of blood vessels (Jiménez-

Ayala and Jiménez-Ayala, 2008). The endometrial blood vessels form a vascular bed 

and unlike most adult vasculature that maintains a constant structure and function 

throughout life, the endometrial vasculature alters dynamically responding to the 

cyclical fluctuations in sex steroids (Rogers, 1996). Arterial blood reaches the 

endometrium through the radial arteries present in the myometrium. After crossing 

the myometrial–endometrial junction the radial arteries split into smaller basal arteries 

that supply the basal layer and spiral arterioles, which extend towards the endometrial 

surface and supply the functional layer (Farrer-Brown et al, 1970; Rogers, 1996). The 

endometrial blood vessels are lined by a continuous single layer of endothelial cells 

surrounded by a specialized extracellular matrix called the basal lamina (Hickey and 

Fraser, 2000). 

The endometrial glands consist of a pseudostratified columnar epithelium that 

extends from the luminal epithelium to the endometrial/myometrial junction and are 

considered key regulators of uterine receptivity, blastocyst implantation and stromal 
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cell decidualization (Filant and Spencer, 2014). In addition, their secretory products 

act as an important source of nutrients, growth factors and cytokines for the conceptus 

during the first trimester (Hempstock et al, 2004). The stromal compartment is 

comprised of a heterogeneous population of mesenchymal cells including mature 

fibroblast, which differentiate into decidual cells, and stem/progenitor cells such as 

mesenchymal stem cells (MSC) and transit amplifying (TA) cells (Jiménez-Ayala and 

Jiménez-Ayala, 2008; Gargett et al, 2015).  

The endometrium also harbors resident immune populations, such as neutrophils, 

eosinophils, macrophages, B and T lymphocytes and uterine natural killer (uNK) cells 

(Salamonsen and Lathbury, 2000). Leukocytes are present in low numbers during the 

proliferative phase, followed by a striking influx during the secretory phase of the cycle 

(Kamat and Isaacson, 1987). If implantation ensues, these leukocytes continue to 

increase in number and are found in close contact with trophoblasts (Trundley and 

Moffett, 2003). Macrophages are thought to play an important role in the preparation 

of a receptive endometrium and subsequent differentiation of the endometrial stroma 

(decidualization), which is essential for successful implantation and establishment of 

early pregnancy (Thiruchelvam et al, 2012). In the human endometrium, uNK cells 

are phenotypically CD56bright CD16- and considered a unique subset of NK cells. 

CD56+ cells are present in proliferative phase, albeit in small number, and increase 

substantially in the mid-secretory phase becoming the major endometrial lymphocyte 

population in the late secretory phase and the first trimester of pregnancy (Bulmer et 

al, 1991). Instead of predominant cytotoxic actions against virus-infected or 

cancerous cells the uterine subsets show mostly angiogenic and vessel remodelling 

activities (Rätsep et al, 2015). uNK cells are detected predominantly in the functional 

layer during the secretory phase and early pregnancy decidua, often forming 

aggregates around spiral arterioles/arteries and glands (Bulmer et al, 1991). Once 

trophoblast invasion is complete (around week 20 of gestation) the number of uNK 

cells begins to decline, rendering the lymphocyte population much less prominent 

compared to first trimester (Williams et al, 2009). Ultimately, uNK cells that have been 

implicated in maintaining homeostasis in cycling endometrium, remodelling of the 

decidua vasculature, regulating the invasion of trophoblast cells, and providing 

immunity (Smith et al, 2009; Moffett and Colucci, 2014; Brighton et al, 2017). 
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Figure 1.1. Human endometrium. The endometrium is the inner layer of the uterus and is divided into the stratum 

basalis and the stratum funtionalis. It is a highly complex tissue composed by a luminal and glandular epithelium 

surrounded by a stromal compartment that harbours immune cells and blood vessels. The stratum functionalis is 

regenerated each menstrual cycle upon reprogramming of stromal and epithelial stem cells. 
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1.2 Menstrual Cycle 

The human menstrual cycle is characterized by a tightly coordinated interplay 

between the hypothalamus, which secretes gonadotropin-releasing hormone 

(GnRH); the pituitary, which secretes the glycoproteins luteinizing hormone (LH) and 

follicle stimulating hormone (FSH); the ovary, which secretes estrogen, progesterone 

and other modulators; and the endometrium, which responds to the ovarian hormones 

(Silberstein and Merriam, 2000) (Figure 1.2). A typical cycle lasts approximately 28 

days, although there is considerable variation between individuals. Apart from 

menstruation, the menstrual cycle is divided into proliferative and secretory phases.  

 

1.2.1 Proliferative phase 

The proliferative phase begins from the first day of menses until ovulation and is 

characterized by the development of ovarian follicles upon an increase of GnRH and 

consequently of FSH (Messinis et al, 2010). The main secretory product of the follicle 

during this phase is estradiol, which mediates the negative feedback regulation in the 

hypothalamic–pituitary system (Messinis et al, 2014). As the proliferative phase 

progresses, the ovaries also produce progesterone at low concentration (Wallach et 

al, 1970; Alexandris et al, 1997), which ultimately slows the follicular growth (Chaffkin 

et al, 1992). Towards the end of the proliferative phase, estradiol levels increase 

rapidly and stimulate the hypothalamus and the anterior pituitary. This positive 

feedback results in a LH surge responsible for the initiation of a cascade of proteolytic 

events that control ovulation (Conti et al, 2012).  

The ovaries also produce non-steroidal substances, such as inhibins (Messinis et al, 

2014). The major form of inhibin secreted during proliferative phase is inhibin B. Its 

serum levels rise sharply from early follicular phase and reach a first peak in early- to 

mid-proliferative phase, followed by a second peak 2 days after the midcycle LH peak 

(Groome et al, 1996; Luisi et al, 2005). Although the data concerning the role of inhibin 

B is still limited, it has been suggested that this glycoprotein participates in the 

negative feedback effect of the ovaries on FSH secretion and that it is an important 

regulator of follicle development (Messinis et al, 2014). 
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1.2.3 Secretory phase  

Ovulation occurs 1 to 2 days following the LH surge (Testart and Frydman, 1982) and 

the follicle is transformed into a corpus luteum that secretes mainly progesterone and 

lower concentrations of estradiol (Niswender et al, 2000). The ovarian control of 

pituitary hormone secretions during the secretory phase is mediated by a negative 

feedback mechanism, in which progesterone and estradiol inhibit the release of LH 

and FSH (Alexandris et al 1997; Messinis et al, 2014) and stimulate the formation of 

the secretory endometrium. In contrast to inhibin B, inhibin A concentration is low in 

the proliferative phase but increases to its maximal level during the mid-secretory 

phase (Groome et al, 1996). Inhibin A has been shown to negatively mediate FSH 

secretion (Muttukrishna et al, 2002), rendering it an important mediator of the negative 

feedback control of gonadotrophin during this phase. 

The secretory phase is characterized by the inhibition of endometrial growth and 

subsequent morphological and biochemical endometrial changes through a process 

called decidualization. This reaction is characterized by modification of uterine glands, 

influx of specialized natural killer cells, vascular remodelling and transformation of 

endometrial stromal fibroblasts into decidual cells (Gellersen and Brosens, 2014). 

In the absence of fertilization, the levels of ovarian hormones decline resulting in an 

intracycle rise of FSH 2 to 3 days before the onset of menstruation (Messinis et al, 

2006).  
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Figure 1.2 Human menstrual cycle. Coordination between gonadotropins (FSH and LH) and ovarian hormones 

(estradiol and progesterone) is essential to regulate cyclic endometrial modifications and divide the menstrual cycle 

into proliferative and secretory phases. 
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1.3 Endometrial remodelling 

 

1.3.1 Menstruation 

Cyclical growth and regression of the endometrium is a universal phenomenon in non-

pregnant mammals, but external loss of blood is only observed in primates (Old World 

monkeys, apes and humans), a few bats and the elephant shrew (Rasweiler and de 

Bonilla, 1992; Martin, 2007). Menstruation is the reproductive process whereby the 

functionalis layer is shed upon withdrawal of steroid hormones at the end of each 

menstrual cycle (Salamonsen, 2003) (Figure 1.3). It is comparable to an inflammatory 

response, characterized by the recruitment of immune cells to the area and 

associated release of pro-inflammatory cytokines (Finn, 1986). Progesterone 

withdrawal releases nuclear factor kB (NF-κB) from its inhibitor (IkB) leading to 

inflammatory gene induction, resulting in an influx of inflammatory cells. Interactions 

between these and decidualized stromal cells mediate release of a wide variety of 

pro-inflammatory mediators including chemokines, cytokines and prostaglandins 

(Evans and Salamonsen, 2012). Key inflammatory mediators such as interleukin-8 

(IL-8), monocyte chemoattractant protein-1 (MCP-1) and cyclooxygenase-2 (COX-2) 

have a perivascular location with a significant increase in the premenstrual 

endometrium (Jones et al, 1997; Milne et al, 1999). IL-8 and MCP-1 are potent 

chemoattractants and activators for neutrophils and monocytes respectively, while 

COX-2 is the inducible enzyme responsible for synthesis of prostaglandins. The 

presence of these inflammatory mediators coincide with the marked influx of 

leucocytes to the endometrium (Jones et al, 1997), which leads to activation of matrix 

metalloproteinases (MMP) that are important for tissue degradation during 

menstruation (Evans and Salamonsen, 2012).  

 

1.3.2 Tissue repair 

Although it was initially thought that endometrial repair followed menstruation, 

histological evidence combined with scanning electron microscopy showed that 

shedding and repair occur simultaneously in adjacent areas during menstruation 

(Garry et al, 2009). Endometrial tissue repair shares common features with the classic 

wound healing process, such as inflammation, tissue formation and tissue 

remodelling (Salamonsen, 2003). The inflammatory process that is the basis of 
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menstruation is also the initial point for the repair process. The occurrence of the 

apoptotic process is crucial for the resolution of inflammation, in particular by limiting 

the presence of inflammatory cells (Maybin and Critchley, 2012). By contrast to 

postnatal wound healing, but recapitulating fetal wound healing, endometrial repair is 

scar-free (Salamonsen, 2003) partially due to specific changes in the extracellular 

matrix (ECM) involving integrins, the TGFb superfamily, MMPs, and the innate 

immune system (Evans et al, 2011). Understanding how the endometrium limits 

inflammation, modulates immune-cell activity, rapidly repairs and remains scar-free 

has implications for the development of treatments in regenerative medicine (Evan et 

al, 2016). 

Endometrial regeneration starts with the re-epithelialization process, which is 

hormone-independent (Figure 1.3). It is still open to debate whether adult human 

endometrial glands originate from clonogenic epithelial or mesenchymal progenitors, 

or both cell types present in the basal layer (Garry et al, 2009; Nguyen et al, 2017). 

Once the endometrial surface is re-epithelialized, estrogen is required to stimulate 

glandular and stromal regeneration. As the levels of this hormone rise, estrogen 

receptors (ER) and progesterone receptors (PR) are induced in the epithelium and 

stroma and there is extensive proliferation of glandular epithelial and stromal cells in 

the functional layer (Gargett et al, 2012). Simultaneously with tissue breakdown and 

re-epithelization, formation of new blood vessels occurs from existing vessels. Apart 

from menstruation, angiogenesis also occurs during the rapid endometrial growth in 

the proliferative phase and during the secretory stage when spiral arterioles show 

significant growth and coiling (Gargett and Rogers, 2001). Numerous angiogenic 

factors have been identified in human endometrium at the time of endometrial repair, 

though the family of vascular endothelial growth factor (VEGF) genes is thought to be 

the most important (Smith, 2001). VEGF stimulation is triggered by progesterone 

withdrawal with hypoxia and prostaglandins as downstream mediators (Maybin et al, 

2011). Additionally, stromal cell-derived factor-1 (SDF-1, also known as CXCL12) and 

its receptor CXCR4 have been implicated in endometrial vascular regeneration.  SDF-

1 is present throughout the menstrual cycle and CXCR4 expression peaks in the early 

proliferative phase and is present in epithelial cells and endothelial cells (Laird et al, 

2011). Through synergistic interaction, VEGF and SDF-1 promote the functions of 

vascular endothelial cells such as cell migration, cell survival, and gene expression 

(Salcedo et al, 1999; Nishigaki et al, 2011). MMPs also play a key role in angiogenesis 

by degrading the extracellular matrix and permitting the migration and tube formation 

of endothelial cells (Smith, 2001). 
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The identification of rare epithelial and stromal populations of clonogenic cells in 

human endometrium suggests that stem/progenitor cells are responsible for the cyclic 

tissue regeneration (Gargett et al, 2016). The human endometrium is believed to hold 

both endogenous and exogenous sources of adult stem cell that are recruited to the 

perivascular niche during menstruation (Khatun et al, 2017). The identification and 

characterization of endometrial stem cells and their clinical applications will be further 

explored on following sections. 

 

1.3.3 The secretory endometrium 

After ovulation, the endometrium undergoes secretory changes and becomes 

receptive during the ‘window of implantation’ (WOI), which starts from day 6 to day 9 

after the LH surge (Achache and Revel, 2006; Aghajanova et al, 2008) (Figure 1.3). 

Key endometrial events associated with the WOI are the increased expression of 

chemokines and cytokines, the onset of decidualization, and the presence of 

increased numbers of leukocytes, including uNK cells (King et al, 2012). 

 

Epithelium 

The luminal epithelium is perceived as a major mediator of uterine receptivity since it 

is the first point of contact for blastocysts. To facilitate embryo attachment and 

subsequent implantation, the plasma membrane in cells of the luminal epithelium is 

transformed from a non-adhesive to an adhesive surface (Murphy et al, 2004). The 

plasma membrane remodelling encompasses transformation from a microvillous into 

a smooth and flattened apical membrane, downregulation of the junction complexes 

on the lateral membrane, and increase in the thickness of the basal lamina (Murphy 

et al, 2004).  

The transformation of the glandular epithelium during the secretory phase is 

associated with secretion of glycogen, presence of giant mitochondria and 

modifications in the nuclear channel system (Spornitz, 1992; Demir et al, 2002). The 

molecular mediators known to be important for the receptive phenotype include 

integrins, osteopontin, Notch signalling, heparin-binding EGF-like growth factor, cell-

surface-associated mucins, glycodelin and ion channels (Davidson and Coward, 

2016).  
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Decidualization 

In the mid- to late-secretory phase of each menstrual cycle, endometrial stromal cells 

(EnSC) differentiate into larger, round, secretory and epithelioid-like decidual cells 

(Aplin et al, 1988). Characteristic secretory products include prolactin (PRL) and 

insulin-like growth factor binding protein-1 (IGFBP1). Decidual cell also produce ECM 

proteins such as type IV-collagen, laminin, decorin, fibronectin and heparan sulphate 

proteoglycans (Gellersen and Brosens, 2014). In humans decidualization occurs 

spontaneously and independent of the presence of an implanting blastocyst, whereas 

in nonmenstruating species, this process is initiated by the implanting conceptus 

(Gellersen and Brosens, 2014).  

Decidualization is a progressive process, initiated around the terminal spiral arteries 

of the superficial endometrial layer in response to elevated progesterone levels and 

increased intracellular cyclic adenosine monophosphate (cAMP) production (Brosens 

et al, 2002; Gellersen and Brosens, 2014). The initial decidual response is 

characterized by cell cycle arrest at G0/G1 and a transient pro-inflammatory 

phenotype, followed by a profound anti-inflammatory response associated with the 

secretory phenotype (Logan et al, 2012; Gellersen and Brosens, 2014). Microarray 

analysis have been used to show that the decidual process is associated with the 

sequential reprogramming of functionally related families of genes involved in steroid 

hormone action and metabolism, cell cycle regulation, ECM organization, cell 

adhesion, cytoskeletal organization, angiogenesis, immune modulation of 

implantation, stress response and apoptosis modulation (Popovoci et al, 2000; 

Giudice et al, 2004).  

In vitro studies of decidual cells with conditioned medium of individually cultured 

human pre-implantation embryos inferred that at the time of implantation, the decidua 

is responsible for sensoring embryo quality (Brosens et al, 2014). Thus, cyclic 

decidualization coupled to menstruation emerged as a strategy for early detection and 

active rejection of developmentally abnormal embryos that have breached the luminal 

epithelium. Low quality embryos elicit an endoplasmic stress response in human 

decidual cells, which in turn compromises secretion of decidual factors, including PRL 

and IGFBP1, essential for placental formation and fetal development (Brosens et al, 

2014). 

The human decidua also contains a high number of immune cells, such as 

macrophages, natural killer cells and regulatory T cells. Although the origin of 
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endometrial leukocytes is still uncertain, most likely these cells are derived from 

circulating immune cells that undergo tissue-specific differentiation upon recruitment 

(Lee et al, 2015). This specific endometrial environmental supports multiple 

physiological functions, such as immune tolerance toward implanted allogeneic 

embryo, surveillance against infections and neoplastic transformations, and placenta 

development (Oreshkova et al, 2012).  

Recently, it has been demonstrated that receptive phenotype is intrinsically 

associated with a cell fate decision between differentiation and acute senescence in 

an IL-8 dependent manner (Brighton et al, 2017). While the decidual cells are highly 

resistant to various stress signals and protect the embryo-maternal interface from 

influx of T-cells, senescent decidual cells drive the transient inflammatory response 

associated with endometrial receptivity (Gellersen and Brosens, 2014; Brighton et al, 

2017). Toward the late secretory phase, the influx of uNK is responsible for clearing 

the senescent subpopulation and create ingresses in the tightly adherent decidual cell 

matrix to facilitate trophoblast invasion and anchoring of the conceptus (Brighton et 

al, 2017). Additionally, it has been suggested that a tight control of the senescence-

associated secretory phenotype (SASP) is essential to stimulate regenerative signals 

that induce cell plasticity and stemness (Ritschka et al, 2017; Brighton et al, 2017).  
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Figure 1.3 Human endometrial remodelling. Throughout the reproductive years, the endometrium demonstrates a 

remarkable regenerative capacity in cyclic manner. Each menstrual cycle starts with the shedding of the tissue and 

simultaneous regeneration, followed by induction of a receptive phenotype during the WOI. In the absence of 

implantation, the ovarian hormone levels decrease and the endometrium is prepared for a new cycle.  
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1.4 Stem cells 

The concept of stem cells originated at the end of the 19th century in the works of the 

German biologist Ernst Haeckel, who used the term ‘‘Stammzelle’’ (German for stem 

cell) to describe the fertilized egg that gives rise to all cells of the organism (reviewed 

in Ramalho-Santos and Willenbring, 2007). However, the first experimental evidence 

of stem cells was only achieved in 1961, when Ernest A McCulloch and James E Till 

documented the self-renewing activity of transplanted mouse bone marrow cells (Till 

and McCulloch, 1961). Since then, stem cells research has become a prominent 

subject in biosciences because of its transferrable relevance to a wide range of other 

fields, such as neurobiology, autoimmune diseases, cardiovascular diseases and 

cancer, among others (Ullah et al, 2015).  

Stem cells are defined as having the ability to both self-renew and give rise to 

differentiated cells. The capacity to differentiate into mature and specialized cell types 

is referred to as potency and can be divided in different levels (Hima Bindu and 

Srilatha, 2011): 

- Totipotent stem cells are produced from the fusion of an egg and sperm cell and 

can differentiate into embryonic and extraembryonic cell types.  

- Pluripotent stem cells are the descendants of totipotent cells and can differentiate 

into specialized cell types deriving from the three germ layers (ectoderm, 

endoderm, and mesoderm). These pluripotent cells are characterized by self-

renewal and a differentiation potential for all cell types of the adult organism 

(Romito and Cobellis, 2016). 

- Multipotent stem cells can only differentiate into only a closely related family of 

cells (e.g. hematopoietic stem cells differentiate into white blood cells, red blood 

cells, platelets, etc.) 

- Unipotent stem cells have the property of self-renewal but only can differentiate 

along one cell lineage (e.g. skin cells). 

While differentiating, the cell usually goes through several stages, becoming more 

specialized at each step through a process called asymmetric division. In a typical 

outcome of an asymmetric division, the cell generates a copy of itself, which retains 

self-renewal ability and differentiation potential, and one daughter (transit-amplifying 

cell/progenitor cell) that enters the path of differentiation (Figure 1.4). This process is 

essential to generate cellular diversity during development and maintain adult tissue 

homeostasis (Hima Bindu and Srilatha, 2011; Gómez-López et al, 2014).  
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Figure 1.4 The asymmetric cell division. The asymmetric stem cell division produces one copy of itself and one 

daughter cell that is more committed in the lineage differentiation. Transit-amplifying cells have intermediate properties 

between stem cells and mature differentiated cells, with limited proliferative and self-renewal potentials. Thus, the 

mechanism of asymmetric stem cell division is used to balance stem cell self-renewal and differentiation. 
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Stem cells can be divided into different categories according to their basis of origin. 

Embryonic stem cells (ESC) are derived from the inner cell mass (ICM) of 

blastocysts and characterized by their self-renewal ability and pluripotency. Due to 

their unlimited proliferation and transformation capacity in vitro and in vivo, allied to 

CRISPR/Cas9 genetic studies, ESC have become a comprehensive cell source to 

study development and new therapeutic approaches for regenerative medicine (Hima 

Bindu and Srilatha, 2011).  Induced pluripotent stem cells (iPSC) are generated 

from somatic cells and epigenetically reprogrammed to behave like embryonic stem 

cells. Initial iPSCs were obtained from mouse fibroblasts by introducing four 

transcription factors, Oct3/4, Sox2, c-Myc, and Klf4 (Takahashi and Yamanaka, 

2006). Although these cells are an important tool to study normal development and 

disease progression, their genomic stability is still questionable (Ullah et al, 2015). In 

fact, it is still unclear whether iPSCs generated from different cell types are 

molecularly and functionally similar (Polo et al, 2011). Lastly, adult stem cells (ASC), 

also called tissue stem cells, can be isolated from several tissue sources, including 

the central nervous system, bone marrow, retina and skeletal muscle (Gurusamy et 

al, 2018). ASC are multipotent cells that give rise to cell types of one particular tissue 

to maintain and replenish the function of organs or tissues. Evidence suggests that 

although there are many types of ASC, they all share common core characteristics, 

such as (Caplan et al, 2015): 

a) multipotency; 

b) localized in a well-defined niche or in contact with blood vessels; 

c) sense and respond to dynamic changes of their microenvironment; 

d) paracrine activity; 

e) immune-modulatory activity; 

f) homing: involved in site-specific regeneration, upon the loss of cells or injury to 

the tissue. 

 

ASCs include hematopoietic stem cells (HSC), which are generated in the bone 

marrow and differentiate into mature types of blood cells, and mesenchymal stem 

cells (MSC), which can be isolated from several sources (e.g. bone marrow, fat tissue 

and cord blood) and are considered the most promising pharmaceutical 

multipotent cells (Gazit et al, 2008; Gurusamy et al, 2018). 
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1.4.1 Hematopoietic stem cells (HSC) 

The initial observation of adult bone marrow as a source of HSC capable of 

regenerating the irradiation-ablated haematopoietic system led to an extreme effort to 

isolate and characterize these cells (Ng and Alexander, 2017). Nowadays, HSC are 

commonly isolated based on the combination of markers summarized in Table 1.1.  

In the hematopoietic system, HSC reside at the top of the hierarchy and give rise to 

more than ten diverse functional cell types, including erythrocytes, platelets, myeloid 

cells (macrophages and granulocytes), T- and B- lymphocytes, NK and dendritic cells 

(Seita and Weissman, 2010). Due to their characteristically short lifespan, one million 

blood cells are produced per second in an adult human to replenish the hematopoietic 

system. The immediate progeny of HSC are multipotent progenitor cells that have a 

limited capacity for self-renewal yet retaining full lineage potential (Seita and 

Weissman, 2010). These transiently hematopoietic progenitors have a high 

proliferative and developmental capacity, rendering them capable of reconstituting 

myeloablated recipients more rapidly than HSC (Bryder et al, 2006). The hierarchical 

differentiation structure creates a low proliferative pressure on HSCs, which primarily 

reside in the G0 phase of the cell cycle. Thus, HSC are less subjected to potentially 

mutagenic hazards of DNA replication and cell division, ultimately contributing to the 

integrity and longevity required for these cells (Bryder et al, 2006; Seita and 

Weissman, 2010).  

Research on the biology and regulation of HSC has revolutionised bone marrow 

transplantation and regenerative medicine (Ng and Alexander, 2017) and 

consequently can be applied to interpret the nature of other adult stem cells. 
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Table 9.1 Human HSC markers through positive and negative selection 

Marker Selection Description Reference 

CD34 Positive Major positive marker for human 
hematopoietic stem and progenitor cells 

Kondo et al, 2003 

CD90 (Thy-1) Positive Differentiates between HSC and 
multipotent hematopoietic progenitor cells 

Craig et al, 1993 

Majeti et al, 2007 

Lin Negative Lineage (Lin) markers expressed on 
mature blood cells such as, CD3, CD4, 

CD8, CD19, CD20, CD56, CD11b, CD14, 
and CD15 

Baum et al, 1992 

Kondo et al, 2003 

 

CD38 Negative CD38 Is expressed in more differentiated 
hematopoietic cells 

Terstappen et al, 1991 

CD45RA  

 

Negative CD45RA Is expressed in more 
differentiated hematopoietic cells 

Kondo et al, 2003 

 

 

1.4.2 Mesenchymal stem cells (MSC) 

MSC were first isolated from bone marrow and designated bone marrow-derived MSC 

(BM-MSC). They have osteogenic potential and are defined as clonogenic for their 

ability to generate colony-forming units (CFUs) of fibroblast-like cells from single cells 

when plated in culture (Owen and Friedenstein, 1988). Since then, MSC have been 

described in several other tissues including adipose tissue, umbilical cord blood 

(Wagner et al, 2005), dental tissues (Huang et al, 2009), endometrium (Chan et al, 

2004) menstrual blood (Allickson et al, 2011), placenta (Raynaud et al, 2012) and skin 

(Bartsch et al, 2005).  

The minimum criteria to define MSC was proposed by the Committee of the 

International Society for Cellular Therapy as follow (Dominici et al, 2006): 

a) exhibit plastic adherence; 

b) positive expression of CD73, CD90 and CD105; 

c) negative expression of HLA-DR, CD11b, CD14, CD19, CD34, CD45 and 

CD79a; 

d) have the ability to differentiate in vitro into adipocyte, chondrocyte and osteoblast. 
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Additionally, MSC from various human tissues exhibit different cell surface markers 

(summarized in Table 1.2). However, there is still no consensus on a single surface 

molecule to identify MSCs from various sources (Lv et al, 2014). Besides, the isolation 

process usually requires a culturing step to discriminate genuine clonogenic cells. 

Conversely, this process can modulate the expression of cell surface markers and 

underscores the necessity to characterize these cells. It has also been observed that 

sub-culturing MSC at higher passages induces senescence and loss of potency (Ullah 

et al, 2015).  

Currently, the concept of ‘mesenchymal stem cell’ is wrapped up in controversy over 

the real in situ identity of these cells. The term was first coined in Caplan (1991) for 

stem cells isolated solely from bone marrow and with progeny exclusively committed 

to cartilage or bone. However, as described above, over the subsequent three 

decades the MSC research field has fallen into ‘one size fits all’ stem cell type, 

accepting adult stem cells isolated from different tissues that display distinct 

differentiation patterns and different cell surface proteins (Elahi et al, 2016; Laplane 

and Solary, 2019). In parallel, MSC have been identified in vivo as perivascular/mural 

cells, i.e., pericytes and vascular smooth muscle cells (vSMC) that express MSC 

markers and behave as MCS in vitro as well as upon heterologous transplantation 

(Crisan et al, 2008).  On the other hand, a recent study published by Guimarães-

Camboa and colleagues (2017) challenge this concept and use lineage tracing to 

demonstrate that perivascular cells do not behave as tissue-specific progenitors 

during aging and repair in multiple adult mice organs, despite showing MSC potential 

in vitro. Interestingly, it is important to highlight that a small percentage of perivascular 

cells failed to label in this study, an observation overlooked in the final conclusion. 

Above all, it is crucial to have a better understanding of MSC biology and improved 

laboratory platforms to accurately identify these cells. 
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Table 1.2 Summary of potential MSC sole markers 

Marker Description MSC source References 

Stro-1 May be involved in clonogenicity and play a 
role in homing and angiogenesis of MSCs. 

It has also been detected in endothelial cells. 

BM-MSC Psaltis et al, 2010 

Ning et al, 2011 

CD271 CD271-selected MSC from adipose tissue 
enhance cartilage repair 

BM-MSC 

Adipose tissue 

Bühring et al, 
2007 

Kohli et al, 2019 

SSEA-4 An ESC marker. BM-MSC Gang et al, 2007 

CD146 Used in combination with PDGFRb to isolate 
endometrial MSC. 

CD146 expression also defines MSCs with 
higher multipotency. 

Endometrium 

BM-MSC 

Periodontal 
ligament 

Schwab and 
Gargett, 2007 

Sorrentino et al, 
2008 

CD49f Also known as ITGA6. 

Expression of CD49f is regulated by Oct-4 
and Sox-2. 

Identified as a specific HSC 

marker 

BM-MSCs 

Umbilical cord 

blood 

Yu et al, 2012 

Nystedt et al, 
2013 

CD349 Not essential for enriching MSC function Placenta Battula et al, 2008 

GD2 High specificity for isolating MSCs from BM BM-MSC 

Umbilical cord 

Nystedt et al, 
2013 

Martinez et al, 
2008 

3G5 Pericyte marker. 

Hematopoietic cells also express 3G5. 

BM-MSCs, 

Dental pulp 

Decidua 

Shi et al, 2003 

Castrechini et al, 
2012 

SUSD2 Perivascular marker Endometrium Masuda et al, 
2012 

CD200 CD200 expression is related to the 
osteoblastic lineage 

BM-MSC Pontikoglou et al, 
2016 

SSEA-3 Enrich cells with clonogenicity and 
ectodermal, endodermal, and mesodermal 

differentiation potency 

BM-MSC 

Placenta 

Kuroda et al, 2010 

Nazarov et al, 
2012 

MSCA-1 Also known as tissue nonspecific alkaline 
phosphatase (TNAP). It is involved in a wide 
range of MSC features described below from 

cell differentiation to immunomodulatory 
properties 

BM-MSC 

Endometrium 

Sobiesiak et al, 
2010 
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1.5 Endometrial stem / progenitor cells  

The human endometrium is a complex multicellular tissue that undergoes dynamic 

remodelling through cycles of regeneration, differentiation and shedding in order to 

establish a microenvironment that is suitable for implantation. This remarkable 

regenerative potential is mediated via endogenous and exogenous stem/progenitor 

cells that are recruited during menstruation (Khatun et al, 2017). Emerging evidence 

also suggests that these cells are essential modulators of tissue homeostasis and 

subsequently, alterations in this subpopulation are associated with endometrial 

disorders. 

 

1.5.1 Endometrial stromal stem / progenitor cells 

The first functional evidence of endometrial stem cells was published in 2004 by Chan 

and colleagues that identified rare clonogenic cells from purified populations of human 

endometrial epithelial and stromal cells (Chan et al, 2004). This study identified a 

small population (1.25%) of EnSC with colony-forming ability. This population was 

composed by two types of CFUs: small (1.23 % of EnSC) and large CFUs (0.02% of 

EnSC). Both large and small colonies expressed fibroblast markers, with some cells 

expressing α smooth muscle actin (α-SMA), which is indicative of myofibroblast 

differentiation (Chan et al, 2004). Later, it was suggested that large CFUs originate 

from stem/progenitor cell with a greater potential for self-renewal, whereas small 

CFUs are derived from more differentiated TA cells (Gargett et al, 2009). 

A sub-population of human EnSC, CD146+PDGFRβ+, has been described to exhibit 

MSC properties such as, clonogenicity, multi-lineage (adipogenic, myogenic, 

chondrogenic and osteoblastic) differentiation and expression of typical MSC surface 

markers (CD29, CD44, CD73, CD90 and CD105) (Schwab and Gargett, 2007). These 

endometrial MSC (eMSC) are located at perivascular sites in the functional and basal 

layer of the human endometrium (Schwab and Gargett, 2007). Gene profiling of 

freshly isolated CD146+PDGFRβ+ alongside CD146-PDGFRβ+ (fibroblasts) and 

CD146+PDGFRβ- (endothelial) showed that CD146+PDGFRβ+ cells express genes 

involved in angiogenesis/vasculogenesis, steroid hormone/hypoxia responses, 

inflammation, immunomodulation, cell communication, and proteolysis/inhibition, and 

exhibited increased Notch, TGFb, IGF, Hedgehog, and G-protein-coupled receptor 

signalling pathways, characteristic of adult tissue MSC self-renewal and multipotency 
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(Spitzer et al, 2012). Nevertheless, it is important to state that equating 

CD146+PDGFRβ+ to eMSC is a misconception, since the conjugation of both markers, 

CD146+PDGFRβ+, labels the perivascular population (Figure 1.5) and only 7.7% of 

these cells exhibit clonogenic ability (Schwab and Gargett, 2007).  

SUSD2 was identified as a single marker of eMSC. Purified SUSD2+ cells exhibit self-

renewal ability; differentiate into various cell lineages (adipogenic, osteogenic, 

chondrogenic, and myogenic) and reconstitute mesodermal tissue in vivo (Masuda et 

al, 2012). W5C5 antibody recognizes the sushi domain containing-2 (SUSD2) antigen 

and like CD146+PDGFRβ+, SUSD2/W5C5 expressing cells surround the spiral 

arteries throughout the endometrium. W5C5+ cells account for 4.2% of EnSC and 

express MSC markers, CD29, CD44, CD73, CD90, CD105, CD117, CD140b 

(PDGFRβ) and CD146.  The cloning efficiency of W5C5+ is 1.3- and 14.7-fold higher 

than CD146+PDGFRβ+ and W5C5- (TA), respectively (Masuda et al, 2012). As in other 

endometrial stem cell- associated populations, W5C5+ perivascular cells do not 

express ERa (Ulrich et al, 2014). Inhibition of TGFβ receptor signalling maintains 

SUSD2+ eMSC stemness and promotes proliferation by blocking senescence and 

apoptosis in late passage cultures (Gurung et al, 2015). Once again, SUSD2 is 

considered a MSC marker, although it should be viewed as a perivascular marker 

(Figure 1.5). Ultimately, this leads to a misperception between EnSC, perivascular 

cells (PVC), eMSC and TA cells. Currently, the only way to purify eMSC is through 

isolation of perivascular cells followed by a CFU assay, in which cells are seeded at 

low density and propagated in culturing conditions that maintain their stemness.  

Taken together, evidence suggests that in the endometrium, the perivascular space 

around spiral arterioles constitutes an important regulatory niche, likely consisting of 

both quiescent and active MSCs, TA cells, and neighbouring stromal cells. 

Simultaneously, this is also the starting point for the decidualization process. The 

comparison between the decidual response by cultured W5C5+ and W5C5- cells 

demonstrated that perivascular cells establish a specific chemokine profile around the 

uterine vessels (Murakami et al, 2014). This differential molecular response at the 

perivascular site might be important during early pregnancy to promote endovascular 

trophoblast invasion and coordinate immune cell trafficking (Murakami et al, 2014). 

Furthermore, it has been demonstrated that decidualization is associated with a 

significant increase in CFUs driven by senescent cells implying that the decidual 

transformation increases tissue plasticity prior to pregnancy (Brighton et al, 2017). 
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Surprisingly, despite the fact that the extensive proliferation and remodelling of the 

human uterus has been explored for many years, studies on adult stem cells and their 

role in the uterine tissue lag far behind other areas of stem cell research (Ghobadi et 

al, 2015). This is in spite of the obvious potential application of these cells in cellular 

therapies and regenerative medicine.  

 

 

 

Figure 1.5 Combination of PDGFRb and CD146 alongside SUSD2 antibodies label endometrial PVC. The 

micrographs were obtained from The Human Protein Atlas (http://www.proteinatlas.org/). The schematic 

representation shows perivascular cells surrounding the endothelial cells.   
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1.5.2 Side population   

In addition to CFUs, a rare endometrial side population (SP) has been isolated from 

human endometrial stromal cell suspensions through its unique ability to efflux 

intracellular DNA-binding dye Hoechst 33342 via the multi drug resistance (MDR) 

proteins, such as the ATP-binding cassette transporter G2 (ABCG2) (Masuda et al, 

2010). These cells exhibit stem-cell like properties, low clonogenic capacity in short-

term cultures due to their quiescent stage, express ERβ rather than ERα, and are 

speculated to give rise to TA cells (Masuda et al, 2010; Masuda et al, 2015).  

Endometrial SP cells show long-term repopulating properties and produce gland and 

stroma-like cells when cultured in vitro (Kato et al, 2007). When transplanted under 

the kidney capsule of severely immunodeficient mice, these cells were able to 

reconstitute an organized endometrial tissue with well-delineated glandular structures 

(Masuda et al, 2010). In vivo these cells are distributed across both the functional and 

basal layers, preferentially located around small capillaries rather than large vessels 

(Masuda et al, 2010). These observations suggest that SP cells are bone marrow-

derived and may be closely related to eMSC as constituents of a potential endometrial 

stem cell hierarchy (Masuda et al, 2015). 

 

1.5.3 Endometrial epithelial stem cells 

Initial cell cloning studies on human endometrium showed that 0.2% of epithelial cells 

have CFU activity and that two types of CFUs are formed: large (0.09%) and small 

(0.14%) (Chan et al, 2004; Gargett et al, 2009). Additionally, it was described that 

different sizes of CFU present different epithelial markers. Small CFU expressed 

epithelial differentiation markers [i.e. cytokeratin, epithelial cell adhesion molecule 

(EpCAM) and integrin α6 (ITGA6/CD49f)], whereas large CFU only expressed ITGA6. 

The loss of differentiation molecule EpCAM in the large colonies and their high 

nuclear:cytoplasmic ratio suggested that these cells were associated with an 

undifferentiated phenotype (Chan et al, 2004). Later, it was described that large 

single-cell-derived epithelial CFUs have the ability of in vitro self-renewal and 

differentiated into gland-like structures in three-dimensional (3D) culture (Gargett et 

al, 2009). Interestingly, when a stromal feeder layer was included, these gland-like 

structures became larger, indicating that stromal cells provide epithelial progenitor cell 
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niche factors that promote differentiation and morphogenesis (Gargett et al, 2009; 

Valentijn et al, 2013). 

Other studies hypothesized that the basalis endometrium harbours the epithelial 

progenitor cell population, specifically located at the remaining glands after 

menstruation (Gargett et al, 2008). Thus, stage-specific embryonic antigen 1 (SSEA-

1, CD15) was used as a marker of endometrial basalis epithelium (Figure 1.6) and it 

was demonstrated that the SSEA-1+ cells have greater telomerase activity and are 

more quiescent with lower proliferation rates than SSEA-1- epithelial cells. 

Additionally, the transcripts for ERa and PR are significantly lower in SSEA-1+ 

epithelial cells compared with SSEA-1- epithelial cells. SSEA-1+ cells also formed 

spheroids in 3D culture and differentiated into spheres with polarized epithelium 

(Valentijn et al, 2013). However, this study did not demonstrate stem cell activity of 

human endometrial SSEA-1+ cells. 

Only recently, N-cadherin (CDH2) was identified as a specific endometrial epithelial 

progenitor cell candidate marker (Nguyen et al, 2017). N-cadherin+ cells were 

enriched for clonogenic and self-renewing epithelial cells with high proliferative 

potential that differentiated into cytokeratin+ gland-like structures in 3D cultures. In 

vivo, these cells are quiescent, express ERα and locate predominantly in the deep 

basalis of endometrial glands. It was also suggested a potential hierarchy of epithelial 

differentiation starting adjacent to the myometrium and through the basalis toward the 

lumen (Nguyen et al, 2017). 

Overall, the research regarding the epithelium and the epithelial stem cells has been 

a challenge due to the inaccessibility in vivo and the absence of in vitro models (Turco 

et al, 2017). In addition, cultured primary human epithelial cells (EpC) on a monolayer 

have limited lifespan and undergo cellular de-differentiation making them difficult to 

maintain in long-term (Hombach-Klonisch et al, 2005). Recently, Turco et al, (2017) 

established 3D endometrial gland organoid cultures, which are able to respond to 

hormonal signals and differentiate into ciliated luminal epithelial cells. These 

organoids can be cultured long-term and recapitulate the molecular signature of 

endometrial glands in vivo. 
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Figure 1.6 Expression of SSEA-1 in endometrial basal layer. The micrographs were obtained from The Human 

Protein Atlas (http://www.proteinatlas.org/). 

 

 

1.5.4 Endometrial stem cells in menstrual blood  

Menstrual blood- derived stem cells (MenSC) have been extensively investigated due 

to their advantageous non-invasive collection process (Chen et al, 2019). Stem cells 

cultured from menstrual blood have been given various names as summarized in 

Table 1.3. In general, epithelial cells were not observed in cultured menstrual blood, 

either because they were not present or had been overgrown by the stromal fibroblast 

populations (Musina et al, 2008). This observation also corroborates the theory that 

epithelial progenitors are more likely located in the basalis and not normally shed 

during menstruation (Gargett and Masuda, 2010; Gargett et al, 2016).  

MenSC are highly proliferative, pluripotent and express telomerase reverse 

transcriptase (hTERT) as well as typical MSC phenotypic markers: CD29, CD73, 

CD90, and CD105 (Meng et al, 2007; Khanmohammadi et al, 2014; Wu et al, 2014). 

Additionally, these cells are positive for other surface molecules, such as CD9, CD29, 

CD44, CD59, OCT-4 and CD166 (Meng et al, 2007; Patel et al, 2008). MenSCs are 
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also negative for hematopoietic stem/progenitor cell markers, such as CD34, CD45, 

and CD133 (Meng et al, 2007).  

Cultured MenSC double every 20 h, which is twice as fast as BM-MSCs (estimated 

40–45 h) and retain a stable karyotype for 68 passages (Meng et al, 2007; Wu et al, 

2014). Such a high proliferative rate and stable genetic characteristic, as well as the 

apparent pluripotency, are exceptional characteristics essential for regenerative 

medicine (Chen et al, 2019). MenSC also have a broad in vitro differentiation capacity. 

Under specific culturing conditions, MenSC can differentiate into adipocyte, 

chondrocyte, osteoblast, endothelial, neurogenic, cardiogenic, pancreatic, 

hepatocytes and decidual cells (Meng et al, 2007; Patel et al, 2008; Sugawara et al, 

2014; Khoury et al, 2014). The therapeutic potential of MenSCs has already been 

recognized in pre-clinical research of several diseases and could possibly be 

incorporated for future clinical applications in tissue repair and regenerative medicine 

(Chen et al, 2019; Table 1.4). 

 

 

Table 1.3 Nomenclatures for MenSC in different studies. 

Names Reference 

Endometrial regenerative cells (ERC) Meng et al, 2007 

Menstrual blood stromal stem cells (MenSC) Patel et al, 2008 

Menstrual blood MSC (mbMSC) Gargett and Masuda, 2010 

Endometrial decidual tissue MSC (EDT-MSC) Rossignoli et al, 2013 

Endometrial stem cells  Jiang et al, 2013 

Menstrual blood-derived mesenchymal stem cells  Mou et al, 2013 

Menstrual blood progenitor cells (MBPC) Wu et al, 2014 

Menstrual stem cells Alcayaga-Miranda et al, 2015 
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Table 1.4 Pre-clinical research in MenSC therapeutic potential 

Disease Application description Reference 

Fulminant hepatic failure 
(FHF) 

MenSC-derived exosomes possess 
therapeutic potential by inhibiting hepatocyte 

apoptosis in induced FHF in mice, 
suggesting that exosomes may be an 

alternative therapeutic approach to treat FHF  

Chen et al, 2017 

Type 1 diabetes mellitus 
(T1DM) 

T1DM is characterized by the deficiency of 
secreting insulin in islet β cells. 

Transplantation of MenSC in T1DM mice 
recovered islet structures and increased the 
β-cell number by promoting differentiation of 

endogenous progenitor cells 

Wu et al, 2014 

Ischemic stroke Intracerebral/intravenous transplantation of 
MenSC improved the behaviour and 

neurostructure in ischemic stroke induced rat 

Borlongan et al, 
2010 

Duchenne muscular 
dystrophy (DMD) 

MenSC restored muscle degeneration and 
repaired skeletal muscle abnormalities by 

increasing muscle-like protein expression in 
immunodeficient DMD model mice 

Cui et al, 2007 

Epithelial ovarian cancer 
(EOC) 

Transplantation of MenSCs improved the 
symptoms of EOC in mice model. In vitro, co-

culture with MenSCs induced angiogenic 
ability and reduced EOC cells 

Bu et al, 2016 

Asherman syndrome Autologous MenSC transplantation 
significantly increased endometrial thickness 

in Asherman syndrome women 

Tan et al, 2016 

Alzheimer’s disease Intracerebral transplantation of MenSC 
improved the spatial learning and memory of 

APP/PS1 mice 

Zhao et al, 2018 

Acute lung injury (ALI) MenSCs promoted the repair of injured lung 
by inhibiting the inflammatory response in 

LPS-induced ALI in mice 

Xiang et al, 2017 
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1.5.5 Stem cells in endometrial decidua 

Human endometrial stromal cells terminally differentiate into the decidua from mid- to 

late-secretory phase of the menstrual cycle. It has been demonstrated that first 

trimester decidua also harbours multipotent MSC, which have clonogenic properties, 

can differentiate into different cell lineages, and express surface markers specific to 

mesenchymal stem cells (Dimitrov et al, 2010; Abomaray et al, 2016). Additionally, 

clonogenic SP cells, which are negative for CD34, CD45 and the mature decidual cell 

marker CD13 have also been isolated from first-trimester decidua and suggested to 

be part of the MSC population (Guo et al, 2010). Purified decidual SP cells 

differentiated into endothelial cells in vitro and induced functional revascularization 

following intramuscular injection in a mouse ischaemic hind limb injury model, 

rescuing the limb (Wang et al, 2013). These SP cells also have a higher proliferation 

and migration rate compared to the main population under estrogen and progesterone 

treatment (Wang et al, 2013). More studies are required to determine the relationship 

among eMSC, decidual MSC and the potential therapeutic application of the latter 

(Gargett et al, 2016). 

 

1.5.6 Endometrial plasticity and reproductive disorders 

The key role of stem cells in tissue homeostasis also implies that alterations in this 

population are likely associated with benign gynaecological diseases. The activation, 

proliferation and differentiation of stem/progenitor cells are regulated by the stem cell 

niche, which may also have roles in the development and progression of 

endometriosis, Asherman’s syndrome and recurrent pregnancy loss.  

 

Endometriosis 

Endometriosis is a benign gynecologic condition defined by the presence of ectopic 

endometrial tissue, most commonly in the peritoneal cavity (involving the ovary, cul-

de-sac, uterosacral, broad and round ligaments, fallopian tubes, colon, and 

appendix). Less common sites include the intestine, bladder, pelvic lymph nodes and 

rarely the cervix, abdominal wall, vagina, pleura, skin and brain (Dhesi and Morelli, 

2015). This disease affects 6–10% of reproductive aged women, and 20% to 50% of 

infertile women (Eskenazi and Warner, 1997).  
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Endometriosis is an inflammatory process that often manifests as painful periods 

(dysmenorrhea) associated with intermenstrual bleeding, painful urination (dysuria), 

painful intercourse (dyspareunia) and infertility (Parasar et al, 2017). The most widely 

accepted theory to explain the pathogenesis of this disease is Sampson’s theory of 

retrograde menstruation, first described in 1922 (Sampson, 1922; Dhesi and Morelli, 

2015). This hypothesis was then modified upon discovery of endometrial 

stem/progenitor cells. Nowadays, it is proposed that endometrial stem/progenitor cells 

shed during menses, gain access to the peritoneal cavity by retrograde menstruation 

and establish ectopic implants, causing endometriosis (Gargett et al, 2016). 

Furthermore, based on the observation that this disease is also present in normal 

young girls before menarche, Brosens and Benagiano postulated that endometrial 

stem/progenitor cells may be involved in the onset of endometriosis through 

retrograde neonatal uterine bleeding due to maternal progesterone withdrawal at birth 

(Brosens and Benagiano, 2013).  

Several lines of evidence contributed to support the effect of endometrial 

stem/progenitor cells in ectopic endometriotic lesions. Leyendecker and colleagues 

identified significantly more basalis fragments in the menstrual blood of endometriosis 

patients, suggesting that an increased number of stem cells in this layer that can result 

in a propensity for endometriosis (Leyendecker et al, 2002). Additionally, SSEA-1, a 

marker of basal endometrial epithelial cells, was found in endometriotic lesions 

(Valentijn et al, 2013). Cultured ectopic eMSC express OCT4, present MSC 

phenotypic surface markers and demonstrate greater ability of cell migration and 

invasion. Also, when transplanted in immune-deficient mice, ectopic endometrial MSC 

increase angiogenesis and invasion into surrounding tissue (Kao et al, 2011). 

Stemness-related genes (e.g. SOX2, NANOG, and OCT4) were significantly higher 

in the eutopic endometrium of endometriosis patients, thus supporting a role for stem 

cell origin of endometriosis (Song et al, 2014). Nevertheless, it is still necessary to 

parse the functions of endometrial stem/progenitor cells in the pathogenesis and 

severity of this enigmatic disease (Gargett et al, 2016).  

 

Asherman’s syndrome 

Asherman’s Syndrome or intrauterine adhesions (IUA) is an acquired gynecological 

condition characterized by fibrous scars (uterine synechiae), resulting in reduced 

menstrual flow, pelvic pain and infertility. The distinction between the functional and 
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basal layer of the endometrium is lost. The endometrial stroma is largely replaced by 

fibrous tissue, and the glands usually contain inactive epithelial cell that are 

nonresponsive to hormone stimulation (Yu et al, 2008). Consequently, uterine 

synechiae are associated with a considerable increase in the risk of placental 

abruption and preterm premature rupture of membranes (Tuuli et al, 2012).  

The main cause of Asherman’s syndrome is the occurrence of trauma to a gravid 

uterine cavity, which can be induced by postpartum curettage, from termination of 

pregnancy, spontaneous miscarriage or Caesarean section. Low estrogen levels at 

the time of the operation, or immediately afterwards, are one of the possible 

explanations why gravid uterus is susceptible to Asherman’s syndrome (Yu et al, 

2008). Although after menstruation or parturition the endometrial surface epithelium 

repairs without scarring in the absence of estrogen, it is considered that the deep 

trauma involving the basalis and underlying myometrium may explain the failure of 

the endometrial functional layer to regenerate in Asherman’s syndrome and IUA. 

Additionally, it is hypothesized that resident endometrial stem/progenitor cells may be 

damaged or lost, particularly in basalis layer (Gargett and Ye, 2012). 

Transplantation of male bone marrow cells in a mouse model of Asherman’s 

syndrome led to reduced fibrosis and pregnancies with normal litter sizes (Alawadhi 

et al, 2014). However, only a small number (0.1%) of Y+CD45- cells were detected in 

the endometrium of the transplanted mice, suggesting that either an immediate 

systemic cytokine effector or an indirect activation of endogenous endometrial 

stem/progenitor cells or their niches (Alawadhi et al, 2014; Gargett et al, 2016). A 

recent non-controlled pilot study also reported that autologous cell therapy using 

peripheral blood CD133+ bone marrow-derived stem cells in conjunction with 

hormonal replacement therapy temporarily improves endometrium thickness in 

patients with refractory Asherman's syndrome (Santamaria et al, 2016).  

 

Recurrent pregnancy loss 

Miscarriage is defined as the loss of pregnancy before a fetus reaches viability and is 

estimated to occur in 15-25% of all clinically recognized pregnancies (Pfeifer et al, 

2012). Consequently, recurrent pregnancy loss (RPL) is defined as the loss of two or 

more pregnancies. In RPL, the incidence of euploid fetal loss increases with each 

additional miscarriage, whereas the likelihood of a future successful pregnancy 

gradually decreases (Ogasawara et al, 2000). Additionally, the cumulative live-birth 
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rate for most RPL patients is high, irrespective of medical intervention. These 

observations suggests that there is a dynamic interaction between embryo and 

endometrium that progresses in order to adapt to a successful pregnancy (Ewington 

et al, 2019).  

As previously described, the decidualization of endometrial stromal cells act as sensor 

that responds to embryonic serine proteases in a manner that either supports further 

development (positive selection) or ensures rapid disposal through menstruation-like 

shedding (negative selection) (Brosens et al, 2014). Decidualization is a gradual 

process initially characterized by an acute pro-inflammatory response that transitions 

into an anti-inflammatory phenotype, which limits the “window of implantation” to a 

restricted timing (Gellersen and Brosens, 2014). RPL is associated with a prolonged 

pro-inflammatory decidual response, which promotes out-of-phase implantation, and 

disables embryo selection (Salker et al, 2010; Salker et al, 2012). 

Another key event in endometrial remodelling is the onset of menstruation and 

simultaneous tissue regeneration. Over the last decade the participation of stem/ 

progenitor cells in endometrial regeneration has been widely investigated. Recently, 

it was identified that RPL is associated with a marked reduction in methylation of 

defined CA-rich motifs, which is a hallmark of stem cells, embryos and gametes 

(Lucas et al, 2016). To explain this difference in the methylation signature, the authors 

compared the total number of freshly isolated SUSD2/W5C5+ cells, the abundance of 

clonogenic SUSD2/W5C5+ eMSC and the abundance of clonogenic SUSD2/W5C5- 

TA cells between RPL and control subjects. The total number of SUSD2/W5C5+ cells 

did not differ between the study and control groups. However, RPL was associated 

with significant reduction in the abundance of clonogenic eMSC and TA cells (Lucas 

et al, 2016). Once again, these results corroborate the previous statement that 

SUSD2/W5C5 should be viewed as a perivascular marker and not as a specific eMSC 

cell surface protein.  
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1.6 Research Justification and Aims 

The human endometrium is a highly heterogeneous tissue comprising multiple cell-

types and cellular states that change in cycle-dependent manner. Apart from the main 

cell populations (i.e. stromal, endothelial, epithelial and immune cells), the 

endometrium also comprises a hierarchy of stem and more committed cells that are 

responsible for the remarkable regenerative ability of this tissue. Nevertheless, this 

endometrial cell heterogeneity is a major drawback when interpreting bulk (whole 

biopsy) transcriptomic data. Additionally, there is a lack of specific stem cell markers 

that hinders the study of these cells in vivo. Therefore, the main goal of my project 

was to assess and interpret endometrial heterogeneity with a focus on the 

characterization of rare stem/progenitor cells. For this, different aims were established 

as follow: 

 

1) To generate a reference matrix consisting of the transcriptome profiles of 

epithelial, uNK and stromal subsets (EnSC, PVC, eMSC and TA) for the 

computational deconvolution of whole tissue transcriptome data.  

2) Compare the transcriptional data of each stromal subpopulation in order to 

characterize cultured eMSC and identify specific cell surface proteins. 

3) Use high-throughput single-cell droplet barcoding to profile the transcriptome of 

peri-implantation endometrial biopsies. 

4) Identify rare populations from single cell transcriptomic data and further 

characterize them. 

5) Optimize a single nucleus transcriptomic technique for archived endometrial 

samples in order to bypass the disadvantages inherent to single cell approaches 

that are dependent on fresh tissues. 
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2.1 Materials 

 

2.1.1 Cell culture reagents 

Reagent Concentration Manufacturer 

Dulbecco’s Modified Eagle Medium 
(DMEM)/F12 (1:1) with phenol red 

1X Thermo Fisher 
Scientific 

Collagenase type IA 0.5 mg/ml Sigma-Aldrich 

Deoxyribonuclease I (DNAse I) 0.1 mg/ml Roche 

Insulin 2 μg/ml Sigma-Aldrich 

L-Glutamine 1% Thermo Fisher 
Scientific 

Penicillin (10,000 μg/ml)- 
Streptomycin (10,000μg/ml) solution 

1% Thermo Fisher 
Scientific 

Dextran and charcoal-treated fetal 
bovine serum (DCC-FBS) 

10% Thermo Fisher 
Scientific 

β-estradiol 1 nM Sigma-Aldrich 

Ficoll-Paque PLUS n/a GE Healthcare 

Basic fibroblast growth factor (bFGF) 10 ng/ml Merck Millipore 

Fibronectin 1 mg/ml Sigma-Aldrich 

Dimethyl sulfoxide (DMSO) 10% Life Technologies 

RNA-later n/a Sigma-Aldrich 

Matrigel n/a Corning 

Cell Recovery Solution n/a Corning 

Trypsin n/a  
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Expansion medium reagents 

Reagent Concentration Manufacturer 

Advanced DMEM/F12 1X Life Technologies 

N2 supplement 1X Life Technologies 

B27 supplement minus vitamin A 1X Life Technologies 

Antibiotic-antimycotic 1 % Invitrogen 

N-Acetyl-L-cysteine 1.25 mM Sigma-Aldrich 

L-Glutamine 2 mM Life Technologies 

Recombinant human EGF 50 ng/ml Peprotech 

Recombinant human Noggin 100 ng/ml Peprotech 

Recombinant human Rspondin-1 500 ng/ml Peprotech 

Recombinant human FGF-10 100 ng/ml Peprotech 

Recombinant human HGF 50 ng/ml Peprotech 

ALK-4, -5, -7 inhibitor, A83-01 500 nM System Biosciences 

Nicotinamide 10 nM Sigma-Aldrich 

Y-27632 10 μM Abcam 

 

Consumables 

Consumable Manufacturer 

MS columns Miltenyi Biotec 

Luna automated cell counter slides Logos Biosystems 

Haemacytometer VWR International Ltd 

Cell scraper Corning 

Anti-PE-magnetic-activated cell sorting 
microbeads 

Miltenyi Biotec 
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2.1.2 Antibodies  

 

Primary 

Antibody Host Dilution Manufacturer 

Anti SUSD2-PE Mouse 1:50 Miltenyi Biotec 

Anti MRP4-PE Mouse 1:100 Santa Cruz 

ANLN Mouse & rabbit 1:100 Sigma-Aldrich 

CD34 Rabbit 1:250 Abcam 

CD56  Mouse 1:200 Leica Biosystems 

CD163 Rabbit 1:200 Abcam 

 

Secondary 

Antibody Manufacturer Dilution 

Alexa-Fluor™ 488 anti-rabbit 
secondary 

Invitrogen 1:500 

Alexa-Fluor™ 594 anti-mouse 
secondary  

Invitrogen 1:500 (IHC) / 1:1000 
(IC) 

 

 

2.1.3 General chemical reagents 

Reagent Manufacturer 

4 % Formaldehyde VWR International Ltd 

Bovine serum albumin   Sigma-Aldrich 

Chloroform VWR International Ltd 

DPX coverslip mountant Sigma-Aldrich 

Haemotoxyxlin Leica 



 

 38 

Isopropanol Sigma-Aldrich 

Precision plus qPCR master mix SYBR 
Green 

PrimerDesign 

ProLong Gold antifade mounting medium 
with DAPI 

Invitrogen 

RNase free water Life Technologies 

RNase ZAP Fisher Scientific 

STAT-60 AMS Biotechnology 

Triton X-100 Sigma-Aldrich 

Trypan blue Invitrogen 

Tween 20 Sigma-Aldrich 

VECTASHIELD antifade mounting medium 
with DAPI 

Vector Laboratories 

 

 

2.1.4 Kits 

Kit Manufacturer 

AllPrep DNA/RNA Micro Kit  QIAGEN 

Autofluorescence quenching kit Vector Laboratories 

QIAquick Gel Extraction Kit QIAGEN 

QuantiTECT Reverse Transcription Kit QIAGEN 

TruSeq RNA Library preparation kit V2 Illumina 

Qubit RNA BR Assay kit Invitrogen 
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2.1.5 General solutions 

Separation buffer (for MACS separation) 

1X PBS 

0.5 % BSA  

 

Sodium citrate buffer (antigen retrieval) 

10 mM sodium citrate 

 0.05% Tween-20, pH 6 

 

Blocking solution 

1X PBS 

1% BSA 

 

2.1.6 scRNA Seq & snRNA Seq 

 

Reagents and Consumables 

Reagent Manufacturer 

0.5 M EDTA Sigma-Aldrich 

1 M Tris pH 7.5 Fisher Scientific 

1 M Tris pH 8.0 Fisher Scientific 

1 M DTT Fisher Scientific 

20X SSC Fisher Scientific 

1H,1H,2H,2H-Perfluorooctan-1-ol (PFO) Sigma-Aldrich 

10 mM dNTPs Clontech 

200 Proof Ethanol Sigma-Aldrich 

Ampure XP beads Beckman Coulter 
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Barcoded beads SeqB ChemGenes (Macosko et al, 
2015) 

Exonuclease I kit NEB 

Ficoll PM-400  Fisher Scientific 

Kapa HiFi Hotstart PCR Kit Roche 

Maxima H RT buffer Fisher Scientific 

Maxima H RT enzyme Fisher Scientific 

Nuclease free water  Life Technologies 

Nextera XT sample prep kit Illumina 

Nuclei EZ lysis buffer Sigma-Aldrich 

PBS buffer Fisher Scientific 

QX200 DG Oil for EvaGreen Bio Rad 

Qubit dsDNA HS Assay kit Invitrogen 

RNase inhibitor (RT master mix) Lucigen 

RNase inhibitor (Nuclei isolation buffer) Clontech 

Sarkosyl Fisher Scientific 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich 

Trypan Blue Invitrogen 

 

 

Primer Sequence 

Template Switch 
Oligo (TSO) 

AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG 

SMART PCR 
primer 

AAGCAGTGGTATCAACGCAGAGT 

SMART P5-PCR 
hybrid oligo 

AATGATACGGCGACCACCGAGATCTACACGCCTGTC 
CGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 

Custom Read 1 
primer 

GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC 
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Solutions 

PBS-BSA  

1X PBS  

0.01% BSA  

 

Nuclei Suspension Buffer (NSB) 

1X PBS  

0.01% BSA  

0.1% RNAse inhibitor 

 

Lysis buffer (1 mL) 

400 µL H2O  

300 µL 20 % Ficoll PM400  

10 µL 20% Sarkosyl  

40 µL 0.5 M EDTA  

200 µL 1 M Tris pH 7.5  

50 µL 1 M DTT → add this just prior to starting each experiment  

Consumable Manufacturer 

Cell strainers 35, 40 and 70 µm Fisher Scientific 

Dounce homogenizers  

C-chip Fuchs-Rosenthal hemocytometer Labtech 

scRNA seq microfluidic chip (100 µm etch 
depth) 

Dolomite Bio 

sNuc-Seq microfluidic chip (85 µm etch depth) Dolomite Bio 

BioAnalyzer High Sensitivity Chip DNA Agilent 

LoBind 1.5 tubes Eppendorf 

Illumina NextSeq 75 cycle v3 High Output Illumina 
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TE-SDS (50 mL)  

0.5 mL 1M Tris pH 8.0  

0.1 mL 0.5 M EDTA  

0.5 g SDS (or 25 mL of a 1% solution)  

Nuclease free water 

 

TE-TW (50 mL)  

0.5 mL 1M Tris pH 8.0  

0.1 mL 0.5 M EDTA  

5 µL Tween-20 

Nuclease free water 

 

Reverse transcriptase mix 

75 µl water 

40 µl Maxima 5X RT buffer 

40 µl 20 % Ficoll PM400 

20 µl 10 mM dNTPs 

5 µl RNase inhibitor 

10 µl 50 µM TSO 

10 µl Maxima H RTase 

 

Exonuclease I mix 

20 µl 10X Exo I buffer 

170 µl water 

10 µl Exo I 

 

PCR mix 
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24.6 µl water 

0.4 µl 100 µM SMART PCR primer 

25 µl 2X KAPA HiFi HotStart Readymix 

 

Tagmentation mix 

15 µl Nextera PCR mix 

8 µl water 

1 µl 10 µM P5-SMART PCR hybrid primer 

1 µl 10 µM Nextera N70X oligo 
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2.2 Methods 

 

2.2.1 Human endometrial biopsies 

Endometrial biopsies were obtained from women attending the Implantation Clinic, a 

dedicated research unit at University Hospitals Coventry and Warwickshire National 

Health Service Trust. Written informed consent was obtained from all participants in 

accordance with the guidelines in The Declaration of Helsinki 2000. Samples were 

obtained using a Wallach Endocell™ sampler under ultrasound guidance and 

immediately portioned for use in multiple applications: snap frozen in liquid nitrogen 

and stored at -80 ºC; placed in growth media for cell dissociation and culture; in RNA-

later for RNA studies or in formalin for paraffin embedded tissue blocks. 

 

2.2.2 Cell culture 

 

2.2.2.1 Endometrial tissue processing 

All biopsies were processed immediately and cultured as described previously 

(Barros et al., 2016). Samples were washed in DMEM/F12 medium, finely minced, 

and enzymatically digested with collagenase type IA and DNase type I for 1 hour at 

37 °C. The dissociated cells were filtered through a 40-μm cell strainer. Stromal cells 

and blood cells, present as a single-cell suspension, passed through the cell strainer, 

whereas the undigested fragments, mostly comprising glandular clumps, were 

retained on the strainer. EnSC used in repeat biopsy experiments were cryopreserved 

in 10% DMSO in FBS and stored in liquid nitrogen. 

 

2.2.2.2 Isolation of W5C5+/W5C5- and MRP4+/MRP4- stromal cells and primary 

cell culture 

EnSC suspensions were layered over Ficoll-Paque PLUS and centrifuged to remove 

erythrocytes. The medium/Ficoll-Paque PLUS interface, containing EnSC, was 

carefully collected, washed with growth medium, and counted. A total of 3 x 106 cells 
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were used for magnetic bead separation of W5C5+/W5C5− and MRP4+/MRP4- cells, 

as described previously (Barros et al, 2016). Remaining cells were plated into a T-25 

flask for isolation of uNK cell. For W5C5 and MRP4 separation, EnSC were 

resuspended in separation buffer (100 μl/ 1 x 106 cells) containing phycoerythrin (PE) 

conjugated antihuman W5C5 (SUSD2) or MRP4 antibody for 20 minutes at 4 ºC. Cell 

suspensions were then incubated with anti-PE-magnetic-activated cell sorting 

microbeads (20 μl/ 1 x 107 cells) for 20 minutes at 4 ºC. Cell suspensions were applied 

onto MS columns in a magnetic field, followed by washing with 500 μl of separation 

buffer three times. The columns were removed from the magnetic field and magnetic 

labelled cells were flushed with 1 ml of separation buffer. To increase cell purity, 

W5C5+ and MRP4+ cells were separated again using a new MS column and washed 

as previously described. Positive and negative selected cells were cultured in growth 

medium: DMEM/F12 medium containing DCC-FBS, L-glutamine, antibiotic-

antimycotic solution, insulin and estradiol until 90% confluence and collected for RNA 

extraction. Media was changed every 3 days. 

 

2.2.2.3 In vitro Colony Forming Unit (CFU) assay 

Freshly isolated W5C5+ and W5C5- cells were seeded at a clonal density of 30 

cells/cm2 onto fibronectin-coated 6 well plates and cultured in growth medium 

supplemented with bFGF. The first half medium change was after the first 7 days. 

Subsequently, half media was changed every 3-4 days. Colonies were monitored 

microscopically to ensure that they were derived from single cells. Cultures were 

terminated at 15 days and collected for RNA extraction.  

For CFU staining experiments, W5C5+ and MRP4+ cells were seeded at a clonal 

density of 50 cells/cm2 and cultured for 10 days. 

 

2.2.2.4 Isolation of Epithelial cells and organoid culture 

To isolate epithelial cells (EpC), the 40 μm cell strainer was inverted over a 50 ml 

falcon and backwashed with additive-free, phenol-red free DMEM/F12 media. The 

glandular clumps were centrifuged and resuspended in trypsin for 10 min at 37 °C to 

disperse clustered cells. Cells were washed with media, centrifuged, resuspended 

and counted. EpC were resuspended in ice cold Matrigel (Corning, New York, USA) 

in order to obtain 1000 cells per 5 μl of matrigel. Matrigel-cell suspension was plated 
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in 96-well plates at 5 μl per well. After 1 hour, 100 μl of Expansion Medium 

supplemented with Y-27632 was added to each well. Media was changed every 3 

days and after 10 days cells were recovered using Cell Recovery Solution. After 

complete release from the gel, cells were centrifuged, washed with cold PBS, pelleted 

and stored at -80 ºC until RNA extraction. 

 

2.2.2.5 uNK cell isolation 

Following overnight culture, the supernatant from EnSC cultures in T-25 was collected 

and cells were washed with PBS, which was pooled with the original supernatant. 

Collected medium was centrifuged to pellet suspended cells. CD56+ cells were 

isolated following the same protocol used for W5C5+ MACS separation with CD56 

antibody and frozen at -80 ºC for later RNA extraction. 

 

 

2.2.3 Microscopy 

 

2.2.3.1 Immunohistochemistry 

Endometrial biopsies were fixed overnight in 10% neutral buffered formalin at 4°C and 

wax embedded in Surgipath Formula ‘R’ paraffin using the Shandon Excelsior ES 

Tissue processor (ThermoFisher). Tissues were sliced into 3 μm sections on a 

microtome and adhered to coverslips by overnight incubation at 60°C. 

Deparaffinization, antigen retrieval, antibody staining, hematoxylin counter stain and 

DAB colour development were fully automated in a Leica BondMax autostainer (Leica 

BioSystems). Tissue sections were labelled for ANLN. Stained slides were de-

hydrated, cleared and cover-slipped in a Tissue-Tek Prisma Automated Slide Stainer, 

model 6134 (Sakura Flinetek Inc. CA, USA) using DPX coverslip mountant. A Mirax 

Midi slide scanner with a 20x objective lens was used to obtain bright-field images of 

each slide. Per sample, three randomly selected areas of interest underlying the 

luminal epithelium were identified and captured using Pannoramic Viewer v1.15.3 

(3DHISTECH Ltd, Budapest, Hungary). Each field was divided manually into 3 

compartments: stroma, glandular epithelium, and luminal epithelium. ImageJ image 

analysis software (Rasband, W. S., ImageJ, National Institutes of Health) was applied 
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for ANLN+ cells quantification. Staining intensity of positive area was manually 

determined by background threshold (Ruifrok and Johnston, 2003). Target cell 

density in each sample was calculated by the percentage of ANLN+ cells within the 

selected compartment (i.e. ANLN+ cells/total cells in selected compartment x 100%) 

(Drury et al, 2011). 

 

2.2.3.2 Immunofluorescence 

CFUs and EnSC monolayers in 6-well plates were fixed in 4% paraformaldehyde for 

10 min, permeabilised with 0.5% Triton X-100 for 10 min and blocked with 1% 

BSA/PBS for 30 min. Cells were probed with mouse anti-ANLN monoclonal primary 

antibody overnight at 4°C. Labelled cells were stained with Alexa-Fluor™ 594 anti-

mouse secondary antibody for 1 hr at RT and counterstained with VECTASHIELD 

antifade mounting medium with DAPI.  

Tissue sections were double-labelled with ANLN and either CD34, CD56, CD163 or 

cytokeratin overnight at 4°C. Labelled cells were labelled with Alexa FluorTM 594 anti-

mouse secondary antibody and Alexa FluorTM 488 anti-rabbit secondary antibody.  

Tissue autofluorescence was eliminated using the Autofluorescence quenching kit 

according to manufacturer’s instructions. Tissue sections were stained with ProLong 

Gold antifade mounting medium with DAPI. Imaging was performed on EVOS FL Auto 

fluorescence microscope (Life Technologies, Paisley, UK). For cell counting, three 

randomly selected fields were assessed using ImageJ image analysis software.  

 

2.2.3.3 CFU Staining 

Following 10 days of culture, colonies were washed with PBS and fixed with 4 % 

formaldehyde for 10 minutes at room temperature. Cells were washed again with PBS 

and distilled water. Staining was performed with filtered haematoxylin for 4 minutes, 

followed by washes with distilled water. PBS was added to colonies to intensify the 

staining for 4 minutes at room temperature, aspirated and dishes allowed to dry. 

Clusters of ³ 50 cells were counted and cloning efficiency (CE) was determined from 

the formula: 

CE	(%) 	= 	
number	of	colonies

number	of	cells	seeded	× 	100 
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2.2.4 RNA extraction 

To minimize risks of RNA degradation, RNase-free plastic-ware and nuclease free 

water were used throughout in combination with RNase ZAP decontamination. Total 

RNA was extracted from cells and tissues using STAT-60 reagent, which maintains 

RNA integrity while disrupting other cellular components. For RNA experiments, cells 

were cultured in 6-well plates. At the end of the experiment, cells were washed with 

PBS and 400 µl of Stat-60 was added to each well for 5 minutes at room temperature. 

Cells were scraped thoroughly and transferred to RNase-free 1.5ml eppendorfs 

placed on ice. 80 µl of cold chloroform (0.2 volume of Stat-60) was added and mixed 

well by vortexing. Samples were snap frozen and placed at -80°C overnight. After 

defrosting on ice, tubes were centrifuged at 12,000 x g at 4°C for 30 minutes in order 

to separate the sample into three phases: upper colourless aqueous phase, white 

interphase and lower red phenol chloroform phase.  The aqueous phase, containing 

the RNA, was carefully transferred into half of the original Stat-60 volume of 

isopropanol and incubated at room temperature for 10 minutes to precipitate the RNA. 

RNA was pelleted by centrifugation at 12,000 x g at 4 °C for 10 minutes, washed twice 

with 1 ml 75% ice cold ethanol, air-dried and dissolved in 20 µl of nuclease free water. 

RNA concentration and quality were assessed by Nanodrop ND 1000 and cDNA 

synthesis was carried out. In RNA extraction experiments from tissue samples, it was 

followed the same protocol with an additional homogenization step in Stat-60 with a 

mechanical probe. 

 

2.2.5 Gene expression analysis 

 

2.2.5.1 Reverse transcriptase reaction: cDNA synthesis  

In order to synthesize cDNA from previously extracted RNA, the QuantiTech Reverse 

Transcription Kit was used according to the manufacturer instructions. 2 μl of gDNA 

wipeout buffer (7x) was added to 1μg of template RNA and made up to a total volume 

of 14 μl with RNase-free water, to remove any traces of genomic DNA. Samples were 

incubated at 42 °C for 2 minutes and placed immediately on ice. A master mix 

containing 1 μl of Quantiscript Reverse Transcriptase, 4 μl 5x Quantiscript RT Buffer 

and 1 μl RT Primer Mix was added to each sample. Minus RT controls were also 

prepared in which Quantiscript Reverse Transcriptase was replaced by 1 μl nuclease 
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free water. Reactions were incubated at 42 °C for 30 minutes followed by an 

incubation at 95 ˚C for 3 minutes. cDNA samples were diluted to 20 ng/ul and stored 

at -20 °C 
 
 

2.2.5.1 Primer design and optimization 

Primers were designed using Universal Probe Library Assay Design Center from 

Roche and Primer3. Primers were chosen according to the following requirements:  

a) Primers are required to be exon spanning (to distinguish between cDNA and 

gDNA) 

b) Melting temperature (Tm) between 58.0 °C and 59.9 °C and shouldn’t differ 

between the forward and reverse primer by greater than 1˚C 

c) Total amplicon length to be between 75 and 110 base pairs  

d) At the 3’ end of the primer, of the last five bases, 2 bases should be either G 

or C 

e) Primer length should be between 18-24 bases 

f) No more than four of the same base consecutively 

 

Per pair of primers, standard curve PCRs were run in order to determine the primer 

efficiency. The amplified product was mixed with loading dye and run on a 1 % 

agarose gel for approximately 50 minutes at 100V. The purified product was excised 

from the gel using Qiagen Gel Extraction Kit and cDNA concentration measured using 

Nanodrop. The cDNA was serially diluted between 100 pg/μl to 10 ag/μl in 10 fold 

dilution providing 8 dilutions that were amplified using the appropriate primers and 

PrecisionPlus 2x Mastermix. The log of the concentration of cDNA was plotted against 

average Ct values. Primer efficiency was determined from the formula: 

 

 

 

Primer	efficiency = 10
<=

>?@ABCDE	FG	EHC	IBDC 
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Gene Primers Primer efficiency 

CBLN2 (F) AAGAAGAGAAGCGACCGGTG 

(R) AGAAGAAAGGCGCCTGTGAA 
1.92 

COL10A1 (F) GCCAGAAGGCATTGGAAA 

(R) CCCAGGGAGACCTTTTGTTC 
1.97 

LRRC17 (F) ACACCGCAGCAAAGAGAGAAGA 

(R) GGCTGAACTTGGGGAATGGA 

1.96 

NPWBR1 (F) GCTGGTCATCGCTATCTCCT 

(R) CGTAGAGGAAGGGGTTGAGG 

1.98 

ITGA8 (F) GGACCAAGTACCATCAGTGACA 

(R) GCAGAGGTCCCAGAGTTTGA 

1.96 

PCDH9 (F) TTAAGTTGGTGCCCCTCTCA 

(R) CCAGTGTCAACATCCACTGC 

1.98 

KRT40 (F) GCCCGGATTATCAGCGTTAC 

(R) GGCCAGTTTGCAGTTGTCAA 

1.98 

DPT (F) GGGAACTTGTGGGGATGAGA 

(R) AGGTGCCAGTGACTCAAACT 

2 

CLDN11 (F) CCACAGAGGTGCTGTAGATGC 

(R) GGCAGAGGAATGGGCTTC 

2 

CST1 (F) ACTTGGACACCTGTGCCTTC 

(R) GGATTTCACCAGGGACCTTC 

1.96 

MRP4 (F) CTGGCGAATTGTTAGCTGTG 

(R) AGCACGGCACTTAACAGTGA 

2 

ANLN (F) GCATCGAAGATGGTGTGTTC 

(R) CCTATGGGATTCTTGCGTTT 

1.97 

ACTA2 (F) CTGTTCCAGCCATCCTTCAT 

(R) TCATGATGCTGTTGTAGGTGGT 

1.81 

S100A4 (F) AGGGTGACAAGTTCAAGCTCAA 

(R) GTCCTTTTCCCCAAGAAGCTG 

1.95 

ABCG2 (F) GATAAATGGAGCACCGCGAC 

(R) CGTCAGAGTGCCCATCACAA 

1.98 
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2.2.5.2 Real-Time polymerase chain reaction 

Real Time PCR was performed using the PrecisionPlus qPCR Master Mix according 

to the manufacturer instructions. Primers were used at a concentration of 300 nM and 

at a 50:50 ratio between forward and reverse. Reactions were carried out on a 96 well 

plate in a total volume of 20 μl. 1 μl of cDNA template was added to the well and set 

up in triplicate for technical replicate. Non-template controls in which 1 μl nuclease 

free water replaced the cDNA were also used. The reaction plate was sealed, 

centrifuged briefly and placed in the Real time-PCR machine. Thermocycling 

conditions were as follow: 1) 95 °C for 2 mins; 2) 40 cycles of 95 °C for 10 seconds 

and 60 °C for 60 seconds. Analysis was carried out according to Pfaffl, 2004. The 

cycle threshold (Ct) values of the samples were normalised to the reference gene L19 

(Lucas et al, 2016).  

 

2.2.6 RNA sequencing 

Total RNA was extracted from whole tissue, uNK, organoids, W5C5+ CFUs, W5C5- 

CFUs, W5C5+ standard and W5C5- standard using the AllPrep DNA/RNA Micro Kit 

following the manufacturer’s protocol (QIAGEN). RNA concentration was assessed 

using the Qubit RNA BR assay and RNA quality was analysed on an Agilent 2100 

Bioanalyser (Agilent Technologies) at the Genomics facility and assessed with either 

the Eukaryotic Total RNA Nano or Pico chip, as appropriate based on Qubit results, 

according to the manufacturer's instructions. Libraries were prepared using the 

TruSeq RNA Library preparation kit V2 and sequenced on HiSeq 4000 with 75 bp PE 

reads at the Wellcome Trust Centre for Human Genetics (Oxford, UK). Transcriptomic 

maps of single-end reads were generated using Bowtie-2.2.3, Samtools-0.1.19, and 

Tophat-2.0.12 against the University of California Santa Cruz (UCSC) hg19 reference 

transcriptome from the Illumina Genomes resource. Transcript counts were assessed 

by HTSeq-0.6.1 using the reverse strand setting and intersection non-empty mode 

and counts were assigned to gene IDs. Transcripts per million were calculated using 

the method described by Wagner et al. [67]. Count data from the TopHat-HTSeq 

pipeline were analysed using DESeq2. To characterize the relative proportions of 

epithelial, stromal and uNK cells, gene expression profiling was performed with the 

online analytical platform CIBERSORT (https://cibersort.stanford.edu/). 
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2.2.7 Single-molecule in situ hybridization.  

Formalin-fixed paraffin-embedded (FFPE) samples were cut to 5 μm sections. RNA 

in situ hybridization was carried with RNAscope® 2.5 HD assay -RED (ACD, 

California, USA) with probe for ABCC (422321) according to manufacturer’s 

guidelines. Following hybridization and amplification, slides were counterstained with 

50 % haematoxylin. Images were obtained using an EVOS AUTO microscope 

(ThermoFisher Scientific) with a 40x objective lens. 

 

2.2.8 Single cell RNA-Seq & single nuclei RNA-Seq 

2.2.8.1 Sample preparation 

Endometrial biopsies were processed as described in section 2.2.2.1 with an 

additional Ficoll-Paque PLUS density gradient step. Cells were then resuspended and 

diluted to 300 cells/µl in PBS-BSA. 

 

2.2.8.2 Nuclei isolation 

Nuclei were isolated from frozen tissues as described by Habib and colleagues (Habib 

et al., 2017). Snap frozen samples were homogenized with a dounce homogenizer in 

1.8 ml of ice cold Nuclei EZ lysis buffer. Tissue was dounced 25 times with pestle A, 

followed by 25 times with pestle B. After transferring the fragmented tissue in a 15 ml 

conical tube, 2 ml of ice cold Nuclei EZ lysis buffer were added to the sample and 

incubated on ice for 5 minutes. Nuclei were collected by centrifugation at 500 x g for 

5 minutes at 4 °C and then resuspended in ice cold Nuclei EZ lysis buffer for another 

5 minutes. Nuclei were collected once more by centrifugation, resuspended in 2ml of 

NSB and filtered through a 35 µm cell strainer. 20 µl of the single nuclei suspension 

were stained with trypan blue, loaded on an Fuchs-Rosenthal (FR) hemocytometer 

and counted under a microscope. A final concentration of 453 nuclei/µl was used for 

snRNA-seq experiments. 
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2.2.8.3 Barcoded beads preparation 

Beads were prepared according to the manufacturer’s instructions. Briefly, dry resin 

was washed twice with 30 mL of 100% EtOH and twice with 30 mL of TE/TW. The 

bead pellet was resuspended in 10 mL TE/TW and passed through a 70 μm filter into 

a 50 ml falcon tube for long-term storage at 4 °C. For snRNA-seq, beads were filtered 

a second time through a 40 μm filter. For scRNA-seq and snRNA-seq, an aliquot of 

beads was removed from the stock tube and resuspended in appropriate volume of 

lysis buffer at a concentration of 280 and 420 beads/ul, respectively. 

 

2.2.8.4 Droplet generation and cDNA library preparation  

Single cell transcriptome studies were performed using a droplet based microfluidic 

system (scRNA, Dolomite Bio) according to the manufacturer’s protocol, which 

integrates the Drop-seq protocol described by Macosko and colleagues (Macosko et 

al, 2015).  Oil, cells and barcoded beads in suspension were loaded into each 

corresponding pump and connected to a microfluidic chip. Cell and bead solutions 

were run at a flow rate of 30 µl/ min, along with carrier oil at a flow rate of 200 µl/ min 

for 18 minutes. Droplets were collected into a 50 ml Falcon tube, quality checked 

using a C-Chip Fuchs-Rosenthal Haemocytometer and bead doublets counted. 

Excess oil was removed from the bottom of the collection tube and droplets were 

washed with 30 ml of 6X SSC. To break droplets, 1ml of Perfluoro-1-octanol was 

added and the tube was shaken vigorously. After centrifugation for 1 minute at 1000 

x g and 4 °C, supernatant was removed, and beads were washed with additional 30 

ml of 6X SSC. The aqueous layer with beads in suspension was transferred to a new 

tube and centrifuged again. The supernatant was removed, and the bead pellet 

transferred to a LoBind 1.5 mL microcentrifuge tubes. The pellet was then washed 

twice with 1 mL 6X SSC, and once with 300 µl of 5x Maxima H RT buffer. Reverse 

transcription was performed for 30 minutes at room temperature, followed by 90 

minutes at 42 ºC. Beads were then washed once with 1ml TE-SDS, twice with 1 ml 

TE/TW and once with 1 ml 10 mM Tris pH 7.5. The bead pellet was then resuspended 

in Exonuclease I mix and incubated at 37 ºC for 45 minutes. The beads were then 

washed once with 1 mL TE-SDS, twice with 1 mL TE-TW, once with 1 mL water, and 

resuspended in water. Bead concentration was determined using a Fuchs-Rosenthal 

cell counter. 
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PCR was performed on 8000 beads per reaction, with two reactions per sample, to 

give ~800 single-cell transcriptomes attached to microparticles (STAMPS). Aliquots 

were resuspended in PCR mix and thermocycled as follow: 95 ºC 3 min; four cycles 

of: 98 ºC for 20 sec, 65 ºC for 45 sec, 72 ºCfor 3 min; 9 cycles of: 98 ºC for 20 sec, 67 

ºC for 20 sec, 72 ºC for 3 min; then a final extension step of 5 min. 

Ampure XP clean-up was performed according to standard Illumina RNAseq 

protocols with a 0.6X beads to sample ratio. cDNA concentration was determined by 

Qubit High Sensitivity DNA assay, while quality and size were assessed using an 

Agilent Bioanalyzer High Sensitivity DNA chip.  

Tagmentation was performed using Illumina Nextera XT DNA Sample Kit and 

Indexing Kit. 600 pg cDNA was diluted in water to the final volume of 5 µl. 10 µl 

Nextera TD buffer and 5 µl Amplicon Tagment were added to each sample and 

incubated at 55 ºC for 5 minutes. After addition of 5 µl neutralization buffer, samples 

were incubated at room temperature for 5 min and reagents of tagmentation mix were 

added to the tube. The samples were then amplified as follows: 95 ºC for 30 sec; 12 

cycles of 95 ºC for 10 sec, 55 ºC for 30 sec, 72 ºC for 30 sec; then a final extension 

step of 72 ºC for 5 min. Tagmented libraries were cleaned up using AMPure XP beads 

with a 0.6´ beads ratio followed by a repeat clean-up using 1´ beads. Eluted libraries 

were analysed using Qubit High Sensitivity DNA assay and Agilent Bioanalyzer High 

Sensitivity DNA chip. Library dilution and denaturation was performed as per standard 

Illumina protocols and sequenced using NextSeq High Output 75 cycle V2 kit to 

sequence paired-end reads as follows: 20 bp (Read 1), 50 bp (Read 2), and 8 bp for 

Index 1 with Custom Read1 primer.  

For single nuclei transcriptome studies, the same protocol was used as previously 

described, with small modifications. The sample loop from Dolomite bio used for 

snRNA-seq is 6 meters long instead of the 10 meters scRNA-seq system. In order to 

accommodate the lower amount of RNA in nuclei compared to whole cells, the chips 

used for snRNA-seq (85  µm  Etch Depth) are smaller than the chips used in scRNA-

seq (100 µm Etch Depth). Running flow rates were: 20 µl/min for beads and nuclei 

lines and 120 µl/min for carrier oil. PCR was performed on 5000 beads per reaction, 

with four or eight reactions per sample. Any additional optimizations are described 

separately in Chapter 5.  
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2.2.8.5 Computational data analysis 

Computational data analysis was performed as described in Lucas et al, 2020. Initial 

data processing was done using Drop-seq_tools-1.0.1 following the protocol 

described by Nemesh (seqAlignmentCookbook_v1.2Jan2016.pdf, 

http://mccarrolllab.com/dropseq). Reads with low-quality bases in either cell or 

molecular barcode were filtered and trimmed for contaminating primer or poly-A 

sequence. Sequencing errors in barcodes were inferred and corrected, as 

implemented by Drop-seq_tools-1.0.1. Reads were aligned to the reference genome 

human hg19 (Human) using STAR-2.5.3a (Dobin et al., 2013). Uniquely mapped 

reads, with ≤ 1 insertion or deletion, were used in quantification. Cell numbers were 

selected computationally from the inflection point in a cumulative distribution of 

reads plotted against the cell barcodes ordered by descending number of reads. 

Cell barcodes beyond the inflection point are believed to represent ’ambient RNA’ 

(e.g. contaminating RNA from damaged cells), not cellular transcriptomes, and 

therefore excluded from further analysis.  

The expression count (or number of transcripts) for a given gene in a given cell was 

determined by counting unique UMIs, and compiled into a digital gene expression 

matrix. Analysis of DGE data was performed with Seurat (Satija et al, 2015). To select 

high quality data for analysis, cells were included when at least 200 genes were 

detected, while genes were included if they were detected in at least 3 cells. Cells 

which had more than 4500 genes were excluded from the analysis as were cells with 

more than 5% mitochondrial gene transcripts to minimize doublets and low-quality 

(broken or damaged) cells, respectively. After scaling and normalization of the raw 

counts in the digital gene expression  matrix, cell-cycle regression was applied.  

For cell aggregation, a set of highly variable genes was first identified, with an average 

expression mean between 0.0125 and 3 and a Log Variant to Mean Ratio of at least 

0.5, which were used to perform principal component (PC) analysis. Judged by their 

statistical significance and the robustness of the results, the first 10 PCs were 

subsequently used as inputs for clustering via shared nearest neighbour (SNN) and 

subsequent t-distributed stochastic neighbour embedding (t-SNE) representation. 

The Seurat function 'FindAllMarkers' employing the Wilcox test was used to identify 

marker genes for each cell state cluster in the t-SNE representation.  
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2.2.9 Statistical Analysis 

 

Data was analysed using the statistical package GraphPad Prism (GraphPad 

Software, CA, USA). Data were checked for normal distribution using Kolmogorov-

Smirnov test. Where appropriate, a Mann-Whitney U test, t-test, one-way analysis of 

variance (ANOVA) or Kruskal-Wallis test was applied.  ANOVA and Kruskal-Willis test 

were followed up by multiple comparisons, in which the mean or mean rank of each 

group was compared to the mean or mean rank of every other column. Spearman’s’ 

rank or Pearson test was used for correlative analysis. Values of P<0.05 were 

considered statistically significant. 

In the Tukey box plots, the line within the box marks the median, the boundary of the 

box closest to zero indicates the 25 th percentile, and the boundary of the box farthest 

from zero indicates the 75 th percentile. Individual dots represent outliers. 

For RNA-seq data analysis, statistical significance was assessed on a large number 

of variables (i.e. genes). Benjamin-Hochberg post-hoc test was applied to control the 

false discovery rate. Adjusted P values < 0.05 were considered statistically significant. 
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Chapter 3 

 

Transcriptomic Deconvolution of 

the Human Endometrium   
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3.1 Introduction 

In recent decades, transcriptome profiling has become indispensable to define and 

investigate pathological mechanisms associated with human disease. Specially, with 

the advent of next generation sequencing, a technology that enables sequencing of 

millions of small fragments of DNA in parallel, RNA-Seq has emerged as a powerful 

methodology to study the transcriptome (Herzyk et al, 2014). Bulk RNA-Seq is the 

most revolutionary and widely used tool for transcriptomic studies but when applied 

to tissues it assumes and represents all the cells as a homogeneous material and 

loses sight of specific cell subset variance (Li and Xie, 2013). Since most genes are 

expressed to varying degrees across multiple cell subsets in a tissue, when the 

genome-wide transcriptional profile of heterogeneous samples is measured under 

different physiological states, any observed differences are strongly confounded by 

differences in cell type compositions between samples (Shen-Orr and Gaujoux, 2013; 

Zhong et al, 2013). Therefore, it is critical to be able to measure and interpret 

phenotypic changes at the cellular context between specific conditions in order to 

understand the role of each cell subset. 

As for most biological samples, the endometrium has a heterogeneous and varying 

cellular composition comprising multiple cell types and subsets. In general, the total 

measured abundance of a gene in a biological sample is dependent on characteristic 

condition (e.g. disease type), individual variation and cell subsets variation (Shen-Orr 

and Gaujoux, 2013). In addition, when dealing with endometrial samples, it is 

important to consider one more component as the basis of gene expression variation. 

Due to its cyclic and dynamic regeneration, the day of the cycle on which the sample 

is obtained has an impact on gene expression and therefore the temporal variation 

should also be taken into account in the analysis. In fact, a previous study using laser 

microdissection microscopy to separate the two dominant endometrial cell types, 

epithelial and stromal cells, during the WOI has shown that each compartment has a 

distinct transcriptomic signature, which varies depending on the day of the cycle 

(Evans et al, 2012).  

Until recently, when facing the problem of sample heterogeneity, researchers had to 

choose between one of two approaches. One method involves cell isolation and 

focusing on a single cell type, which entails a loss of a systems perspective. On the 

other hand, whole tissue transcriptome analysis may lead to misinterpretation of the 

results (Shen-Orr and Gaujoux, 2013). To overcome this hurdle, it is possible, through 
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the development of alternative in silico approaches, to deconvolve the transcriptome 

of heterogeneous samples and estimate the proportion and/or gene expression profile 

of different cell subsets.  

One of the available computational methods is the cell-type identification by 

estimating relative subsets of RNA transcript (CIBERSORT) that accurately resolves 

relative fractions of diverse cell subsets in gene expression profiles from complex 

tissues (Newman et al, 2015). CIBERSORT requires the gene expression profiles of 

isolated cell populations as an input to create a custom gene expression signature 

matrix, which is then applied to deconvolve the transcriptome profile of whole tissue 

(Figure 3.1). CIBERSORT is based on a machine learning approach with a novel 

application of linear support vector regression that unlike previous methods, performs 

a feature selection, in which genes from the signature matrix are adaptively selected 

to deconvolve a given mixture. Consequently, this method is highly effective for 

mixtures with unknown content and noise and for discriminating closely related cell 

types (Newman et al, 2015).  

CIBERSORT has been widely used to infer the proportion of immune cell types in 

cancer tissues (Gentles et al, 2015; Chen et al, 2019; Deng et al, 2020; Zhang et al, 

2020). Tumor infiltrating leukocytes are an essential component of the tumor 

microenvironment and have been found to correlate with prognosis and response to 

therapy (Chen et al, 2019). Therefore, the analysis of the leukocyte population is an 

important tool to identify candidates for immunotherapy.  Nevertheless, CIBERSORT 

algorithm has the potential to be applied to other signature matrices of tissues with 

complex compositions (Newman et al, 2015).  

The most significant limitation of CIBERSORT, as well as all signature gene–based 

methods, is the fidelity of reference profiles, which could deviate in cells undergoing 

phenotypic plasticity. Additionally, CIBERSORT systematically over- or 

underestimates some cell types, even though it shows a considerably lower 

estimation bias than other (Newman et al, 2015). 
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Figure 3.1. Schematic of the CIBERSORT. This computational approach requires as an input the gene expression 

matrix of isolated cell populations to resolve relative fractions of diverse cell subsets from complex tissues (Newman 

et al, 2015). 

 

 

 

The first aim of this work was to deconvolve the whole endometrial tissue 

transcriptomics using CIBERSORT by assigning a specific gene expression profile to 

stromal, epithelial and uNK cells. Furthermore, as the stroma compartment is 

represented by an intricate cell hierarchy, an additional aim was to identify a specific 

transcriptome signature of cell subsets present at low proportion and apply them in 

the deconvolution. Hence, RNA-seq analysis was performed on four isolated stromal 

cell populations [W5C5+ perivascular stromal cells (PVC), endometrial stromal cells 

(EnSC), W5C5+ clonal cells (eMSC), and clonal transit amplifying cells (TA)], 

glandular epithelial cells, uNK cells, and matched whole tissue. 

As described in Chapter 1, one of the challenges to be overcome is the lack of 

consensus on a single surface molecule to identify endometrial stem/progenitor cells. 

Thus, the second aim was to use the previous data to identify specific cell surface 

markers and key transcription factors of adult stem/progenitor cells that can then be 

used to determine stem cell deficiency in clinical samples.  
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3.2 Results 

3.2.1 Endometrial cell types isolation 

The first goal for this project was to generate a reference matrix consisting of the 

transcriptome profiles of epithelial, uNK and stromal subsets for the deconvolution of 

whole tissue transcriptome data. In parallel, differential gene expression (DGE) 

analysis was performed between the stromal subtypes in order to characterize de 

eMSC population (Figure 3.2).  

Three independent midluteal biopsies were used to isolate, culture and sequence 

different endometrial cell types and stromal subsets. Following enzymatic digestion, 

EpC were separated from the stromal cell fraction as described (Barros et al, 2016)  

PVC and EnSC were then subjected to magnetic activated cell sorting (MACS) using 

the W5C5 antibody that recognises SUSD2, a cell surface protein selectively 

expressed on PVC (Masuda et al, 2012). PVC and EnSC were maintained in standard 

cultures (Figure 3.3 A, C) as well as subjected to colony forming unit (CFU) assays. 

Briefly, freshly isolated PVC and EnSC were seeded at low density (30 cells/cm2) and 

cultured in the presence of bFGF. Total RNA was then extracted from the resulted 

clones, designated eMSC and TA, respectively (Figure 3.3 B, D). The standard PVC 

and EnSC cultures were propagated until 90% confluence and then subjected to total 

RNA extractions.  

EpC isolated from midluteal biopsies undergo rapid cellular senescence when 

cultured as a monolayer (Barros, 2017), precluding further expansion in culture. To 

resolve this problem, primary EpC were subjected to gland organoid formation using 

a recently described protocol (Turco et al, 2017). Briefly, primary EpC were first 

seeded in Matrigel and cultured in a chemically defined medium. After 10 days in 

culture, the gland-like structures were harvested and total RNA extracted (Figure 

3.3E). 

uNK cells were also isolated although not cultured. After overnight incubation, the 

supernatant of the stromal cell fraction was subjected to MACS to isolate uNK cells 

using a PE-conjugated anti-human CD56 monoclonal antibody. As shown in Figure 

3.3F, this method yields highly purified uNK cells as described previously (Brighton et 

al, 2017). Cells were isolated from 3 biopsies and subjected to RNA extraction.  
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Figure 3.2. Schematic workflow of different endometrial cell types isolation and further in silico analysis. From 

the top: the total RNA from whole tissue, uterine gland organoids, uterine natural killer (uNK) cells, perivascular cells 

(PVC), endometrial mesenchymal stem cells  (eMSC), endometrial stromal cells (EnSC) and transit-amplifying cells 

(TA) was extracted and sent for RNA-seq. Libraries were used for two different in silico analysis: Computational 

deconvolution of whole transcriptome profiles 1) throughout the menstrual cycle and 2) associated with different 

patients phenotype. Differential gene expression (DGE) analysis using DESeq2 to identify genes enriched in eMSC 

using as selection criteria fold change ³ 2 and adjust P value < 0.05. 
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Figure 3.3. Representative pictures of cultured endometrial cell types. A) Perivascular cells (PVC) cultured until 

90% confluence B) Close up of a colony from endometrial mesencgymal stem cells (eMSC) C) Endometrial stromal 

cells (EnSC) cultured until 90% confluence  D) Close up of a colony from transit-amplifying cells (TA) E) Gland 

organoids cultured for 10 days in matrigel and expansion media  F) Hematoxylin-eosin staining of uNK cells sorted 

using a PE-conjugated anti-human CD56 monoclonal antibody.  

 

Total RNA from 6 different cell types/subsets and the corresponding whole tissue 

sample was subjected to RNA-seq analysis. As aforementioned, this analysis was 

performed on 3 separate mid-luteal biopsies. Principal component analysis (PCA) 

was then performed on the 21 libraries. PCA is a statistical procedure used for 

exploratory analysis of multidimensional data. It is based on DESeq2 regularized 

logarithm transformation (rlog) that stabilizes the variance across the data and avoids 

that the analysis becomes dominated by highly variable genes (Love et al, 2015). 

Whole tissue, uNK, gland organoids and stromal subsets (PVC, EnSC, eMSC, and 

TA) showed distinct spatial distribution in the two-dimensional space constructed by 

the first and second principal components (PC1 and PC2, respectively). Within each 

cell type, the three biological replicates clustered together, demonstrating that 

different cell types exhibit similar transcription profiles across biopsies (Figure 3.4 A). 
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When restricting the PCA to the stromal subsets, standard cultures (EnSC and PVC) 

were distinctly separated from clonogenic cells (eMSC and TA) in PC1 (Figure 3.4 B). 

Notably, all six libraries from clonal cells clustered tightly together. On the other hand, 

PVC and EnSC clustered together depending on the sample of origin. This 

observation suggests marked inter-patient variability in the transcriptome of 

committed endometrial stromal cells, which appears less pronounced in their 

progenitor cells.  

The kinship between various cell types and subsets was further investigated using 

unsupervised hierarchical clustering based on Euclidean distance. As shown in Figure 

3.4 C, the first bifurcation in the dendogram separated the stromal subsets from whole 

tissue, uNK cells and gland organoids. It was surprising that the whole tissue 

transcriptome was closer to that of uNK than stromal subsets, which probably reflects 

transcriptional drift induced upon culturing of cells in monolayers. The hierarchical 

cluster analysis further revealed that eMSC and TA also clustered by sample of origin. 
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Figure 3.4. Principal component analysis and hierarchical clustering of endometrial cell populations RNA-seq. Different cell types from three independent endometrial biopsies were isolated 

and cultured. Each cell type or subtype was subjected to RNA-Seq analysis. (A) Principal-component analysis of RNA-seq data of six cell types plus whole tissue. Principal-component scores of RNA-

seq are plotted on components 1 and 2. Patient samples and cell subtypes are distinguished by different symbols and colours, respectively. (B) Principal-component analysis of RNA-seq data of 

stromal subtypes. Principal-component scores of RNA-seq are plotted on components 1 and 2. (C) Heatmap representing the Euclidean distance on Log2 transformed counts from stromal (EnSCs, 

PVCs, eMSCs and TAs), epithelial and uNK cell populations and whole tissue libraries.   
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3.2.2 Computational deconvolution of whole endometrial gene expression 
profiles 

The transcriptomic profiles of uNK cells, endometrial gland organoids, and stromal 

subsets were used as “signature matrices” for computational deconvolution of bulk 

endometrial gene expression profiles. Although a number of computational 

approaches have been described (Mohammadi et al, 2015), CIBERSORT is 

considered superior as it implements a machine learning approach, called support 

vector regression, that improves deconvolution performance through a combination 

of feature selection and mathematical optimization techniques (Newman et al, 2015).  

 

CIBERSORT analysis was first applied to a publicly available microarray data set 

consisting of endometrial biopsies obtained throughout the cycle (Gene Expression 

Omnibus (GEO) repository, accession number: GSE4888). Analysis was based on 

histologically dated endometrial biopsies obtained during the proliferative (PE; n=4), 

early-secretory (ESE; n=3); mid-secretory (MSE; n=8) and late-secretory (LSE; n=6) 

phase of the cycle (Talbi et al, 2006). Computational deconvolution of this data 

showed an increase in the relative proportion of uNK cells throughout the menstrual 

cycle peaking - as expected - in the late secretory phase (Figure 3.5). CIBERSORT 

was not able to deconvolute different stromal subsets. However, it clearly showed that 

the relative abundance stromal versus epithelial cells changes dynamically 

throughout the cycle. As shown in Figure 3.5, the abundance of stromal cells was 

significantly higher than the abundance of epithelial cells throughout the cycle except 

during the midluteal WOI.  
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Figure 3.5. Deconvolution of microarray data of 21 endometrial biopsies collected across the menstrual cycle. 
PE-proliferative (n=4); ESE-early secretory (n=3); MSE-mid-secretory (n=8) and LSE-late secretory endometrium 

(n=6). Two-way ANOVA followed by Tukey’s test was applied for multiple comparisons within each phase of the cycle, 

Different letters above the error bars indicate that those groups are significantly different from each other at p < 0.05. 

Data represent mean ± SEM. Data retrieved from Gene Expression Omnibus (GEO) repository, accession 

number: GSE4888 (Talbi et al, 2006) 
 

 

 

Although CIBERSORT deconvolution yielded no information on stromal subsets, we 

reasoned that that the change in stromal/epithelial cell ratio during the WOI may be 

important for successful embryo implantation and pregnancy. To test this hypothesis, 

CIBERSORT deconvolution was applied to RNA-seq data of 36 endometrial biopsies 

obtained between LH+6 and LH+9. The data was generated by Dr. Emma Lucas in 

the Brosens’ lab to determine if a pre-pregnancy endometrial gene expression 

signature could be identified as predictive of subsequent pregnancy outcome. The 

samples were obtained from 3 different patient groups: 

• Group A (n=12): infertile patients who subsequently had a successful IVF 

cycle resulting in live birth.  

• Group B (n=12): Recurrent miscarriage (RM) patients who subsequently had 

a successful pregnancy resulting in live birth. 

• Group C (n=12): RM patients who subsequently suffered another pregnancy 

loss.  

 

Demographic details of the 3 clinical groups are summarized in Table 3.1. The groups 

were matched for age, day of the biopsy relative to the preovulatory LH surge and 

uNK cell count.  
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Table 3.1. Demographic details of patients from each clinical group. Data is presented as median (range, N). 

Kruskal-Wallis test, Different superscript letters indicate significant difference between groups after Dunn's multiple 

comparison test. 

 
Group A Group B Group C P value 

Age 33 
(25-39, 12) 

33.5 
(27-39,12) 

32.5  
(25-36, 12) 

0.74 

BMI 25  
(21-31, 10) 

23.5  
(21-32, 8) 

24.5  
(21-34, 10) 

0.9674 

Cycle Day 8  
(7-9, 12) 

8  
(6-9, 11) 

7  
(6-9, 12) 

0.1646 

Previous 
Losses 

0a 
(0-1, 12) 

4.5b 
(3-7, 12) 

4.5b 
(3-9, 12) 

<0.0001 

uNK % 3.05  
(0.48-8.84, 12) 

3.91  
(0.88-10.73, 11) 

6.22  
(0.71-13.6, 12) 

0.3979 

 
 

PCA showed that the samples did not cluster by patient group (Figure 3.6). PC1 was 

accounted for by the expression of receptivity-associated genes, including those used 

in the commercially available endometrial receptivity array (ERA) (Díaz-Gimeno et al, 

2011). ERA encompasses a transcriptomic signature for human endometrial 

receptivity based defined by 238 genes with a prediction sensitivity of 0.99758 for 

endometrial dating (Díaz-Gimeno et al, 2011).  

Briefly, from right to left the samples could be classified as pre-receptive (n=4), early-

receptive (n=7) and receptive (n=25). To ensure that the designation of the samples 

was correct, I examined the transcript levels of 6 validated receptivity marker genes 

(SLC15A1, CD55, C4BPA, DPP4, GPX3 and PAEP), all of which are selectively 

expressed in glandular epithelium ((Díaz-Gimeno et al, 2011; Suhorutshenko et al, 

2018). As show in Figure 3.7, all 6 marker genes were significantly induced in the 

receptive phase when compared to the pre-receptive phase (P < 0.05). The early-

receptive samples show an expression pattern with levels between the pre- and 

receptive samples, especially for CD55, C4BPA and SLC15A1 (Figure 3.7). 
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Figure 3.6. Principal component analysis of endometrial bulk RNA-Seq. Principal-component scores of RNA-seq 

are plotted on components 1 and 2. Patient samples were colour coded according to their original group : group A, 

blue – infertile followed by live birth, group B, green – RM followed by live birth and group C, pink – RM followed by 

miscarriage. From right to left the samples could be classified as pre-receptive, early-receptive and receptive. The 

RNA-seq data sets were generated previously by Dr. Emma Lucas in Professor Brosens lab.  
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Figure 3.7. Receptivity biomarkers expression in endometrial samples. Vertical axis corresponds to transcripts 

per million (TPM) values from bulk RNA-seq. Group comparison by one-way ANOVA on ranks (Kruskal-Wallis) test. 

Different letters above bars indicate that those groups are significantly different from each other at P < 0.05. Data is 

presented as median. 

 

 

 

All 36 biopsies were also subjected to uNK cell analysis using a clinically validated 

test based quantitative analysis of CD56-positive cells underlying the luminal 

epithelium (Brighton et al, 2017). The % uNK cells was calculated based on the 

number of CD56-positive cells per 100 CD56-negative stromal cells. Hence, to 

validate the CIBERSORT approach, uNK cell quantification by immunohistochemistry 

was compared to the proportion of uNK cells from the deconvolution analysis of whole 

tissue transcriptome data. As shown in Figure 3.8 A, there was a significant albeit 

imperfect correlation in uNK cell estimates based on these very different approaches 

(r = 0.45; P = 0.003) 

Next I used the computational deconvolution to assess the relative abundance of 

stromal, epithelial, and uNK cells in endometrial biopsies from the 3 clinical groups 

(Figure 3.8 B). Although no statistical significant differences were observed, it was 

notable that the spread of data (i.e. variation in proportion of cells) was more 

pronounced in Group C (RM patients who experienced another miscarriage) in all 3 

cell types.  
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Computational deconvolution analysis of the previous data set (Figure 3.5) indicated 

that the WOI coincided with a sudden change in stromal/epithelial cell ratio 

approximating 1. However, the RNA-seq data from the 36 endometrial samples 

enabled further classification of mid-luteal biopsies in pre-receptive, early-receptive 

and receptive.  

Hence, computational deconvolution analysis was performed on pre-, early- and 

receptive samples to time the change in stromal/epithelial cell ratio more accurately. 

As shown in Figure 3.8 C-E, stromal cells were always more abundant to epithelial 

cells except in the early-receptive samples when the ratio equaled ~1. The relative 

increase in uNK cells from pre-receptive to receptive was as expected.  

Taken together, computational deconvolution analysis of endometrial transcriptomic 

data suggests that the start of the WOI coincides with a dramatic and sudden change 

in epithelial/stromal cell ratio. Furthermore, the data suggest that the change in this 

ratio may be more pronounced in RM patients, although this requires further 

examination in a larger cohort of samples. Once again, CIBERSORT analysis failed 

to identify different stromal subsets.  
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Figure 3.8 Deconvolution of in-house RNA-Seq data of endometrial samples. (A) Spearman’s rank correlation 

between uNK quantification by immunohistochemistry and CIBERSORT uNK proportion. (B) Proportions of stromal, 

epithelial and uNK cells in endometrial biopsies estimated by the computational deconvolution approach per group of 

patients: group A, blue – infertile followed by live birth, group B, green – RM followed by live birth and group C, pink 

– RM followed by miscarriage. Two-way ANOVA followed by Tukey’s test showed no significant difference between 

groups. Box plot displays the median value and the full range of variation, (n=12 per group). (C-F) Proportions of 

stromal, epithelial and uNK cells in endometrial biopsies timed as pre-, early- and receptive. Data is represented as 

median.  
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3.3.3 Transcriptomic analysis of cultured stem cells 

The ‘signature matrices’ for the CIBERSORT analysis were based on RNA-seq 

analysis of cultured eMSC, TA, PVC and EnSC from 3 different endometrial data. A 

step-wise approach was taken to mine these RNA-seq data sets to identify putative 

markers that can be used to isolate or quantify endometrial stem cells.  

Differential gene expression (DGE) between cultured PVC and EnSC 

DGE were defined on basis of fold-change ³ 2 and an adjusted (Benjamini-Hochberg) 

P-value < 0.05. When comparing cultured PVC and EnSC, 91 differently expressed 

genes were identified, from which 16 and 75 were enriched in PVC and EnSC, 

respectively (Supplemental Tables 1 and 2). The relative low number of DGE is not 

surprising as PVC partly de-differentiate when propagated in culture as previously 

described (Murakami et al, 2014). Nevertheless, several genes enriched in cultured 

PVC encode for factors that selectively expressed around the endometrial vasculature 

upon cross-referencing the Human Protein Atlas (http://www.proteinatlas.org/) 

(Supplemental Figure 1; Figure 3.9). Perivascular marker genes, CDH13, ITGA7, 

MYH11, KCNE4 and ESAM are upregulated in cultured PVC. In addition, POSTN has 

been previously associated with cultured PVC (Murakami et al, 2014) 

 

 
Figure 3.9. Established perivascular markers in cultured PVC. Transcripts per million (TPM) values from RNA-

seq data between perivascular cells (PVC) and endometrial stromal cells (EnSC). Samples from the same patient are 

colour coded. Data is represented as median (n=3) 
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Differential gene expression between cultured eMSC and TA 

Only 33 DGE were identified between the clonogenic populations, eMSC and TA, 

showing that endometrial stem/progenitor cells share a basal transcriptome profile, at 

least when cultured in vitro (Supplemental table 3). Out of 33 DGE, 30 were 

upregulated in eMSC and 3 in TA. Figure 3.10 depicts the top 6 DGE (Figure 3.10). 

Interestingly, the top marker gene for eMSC, SERPINB2, is a master regulator of 

sonic hedgehod (SHH) signalling that antagonizes aging process (senescence) in 

endometrial stem cells (Cho et al, 2019).  

 

 

 

Figure 3.10. Top 6 genes enriched in eMSC, when compared to TA. Transcripts per million (TPM)  values from 

RNA-seq data between endometrial mesenchymal stem cells (eMSC) and transit-amplifying cells (TA). Samples from 

the same patient are colour coded. Data is represented as median (n=3) 
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Differential gene expression between cultured eMSC and EnSC / PVC  

Due to the similarity between eMSC and TA profiles, the following analysis was 

performed focusing only on the eMSC transcriptome profile. To assess which is the 

eMSC genetic signature that differentiates these cells from other stromal populations, 

the expression profile was compared with PVCs and EnSC (Figure 3.11). Between 

eMSC and EnSC 314 genes were upregulated, while 1423 were downregulated. 

When compared with PVCs, a similar pattern was observed, with 473 upregulated 

genes and 1334 downregulated genes. The venn-diagram shows that 258 genes 

were commonly upregulated in eMSC compared with PVC and EnSC. On the other 

hand, 1002 genes were commonly downregulated in eMSC compared with PVC and 

EnSC (Figure 3.11 A).  

Gene ontology (GO) enrichment analysis was applied to the up and downregulated 

genes depicted in the venn-diagram. GO analysis showed that the extracellular 

environment is highly distinguished between populations with collagen deposition 

enriched in eMSC (Figure 3.11 B-E). On the other hand, markers of aging and 

apoptotic pathways are downregulated in the stem cell fraction indicative of the naïve 

nature of the eMSC population.  
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Figure 3.11. Characterization of eMSC gene signature. (A) Venn diagram showing overlap of 258 genes 

upregulated and 1002 genes downregulated in eMSC. Genes were selected based on fold change ³ 2 and adjust P-

value < 0.05 (B and C) GO analysis of the 258 upregulated genes from b using DAVID database. (C and D) GO 

analysis of the 1002 downregulated genes. GO terms associated with ‘biological processes’ and ‘cellular components’ 

were taken into consideration for this analysis. 
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From the 258 genes, the top 10 markers were identified and the correlation between 

their expression in bulk tissue and clonogenic efficiency was assessed. Top markers 

include: ITGA8, CBLN2, PCDH9, COL10A1, CLDN11, KRT40, DPT, NPWBR, CST 

and LRRC17. The expression of these putative marker genes was analysed in 33 

biopsies. In parallel, CFU assays were performed on the same biopsy samples as 

depicted schematically in Figure 3.12A. For the cloning efficiency experiments, 

unselected stromal cells were used and cultured at low density (50 cells / cm2) for 10 

days. None of these markers showed a significant positive correlation with the 

clonogenic efficiency (Figure 3.12B). One possible explanation is that these genes 

might not be exclusive of the clonogenic cells. Even if the expression levels are lower 

in other cells, the results will be masked by the abundance of other cell types. One of 

the genes, KRT40, was eliminated from the analysis since it was not possible to detect 

the transcript during the RT-qPCR. 
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Figure 3.12. Top markers of eMSC do not correlate with clonogenic efficiency. (A) Schematic of experimental 

workflow. (B) Spearman’s rank correlation between RT-qPCR in whole tissue and parallel CFU assays (n=34). 
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To characterize the phenotype and putative signalling pathways involved in eMSC 

identity, cell surface proteins and transcription factors were identified through in silico 

analysis using the Cell Surface Protein Atlas and the FANTOM consortium, 

respectively (Bausch-Fluck et al, 2015; Ravasi et al, 2010) (Supplemental table 4). 

From the sixteen transcription factors enriched in eMSC, FOXF1, TFAP2C, SATB2 

and GLI3 have been implicated in stemness maintenance in different cellular systems 

(Sturtzel et al, 2018; Wang et al, 2018b; Zhou et al, 2016; Rodrigues et al, 2018). 

Although there is a lack of information in literature regarding eMSC regulation, this 

analysis indicates there are common transcription factors that govern the phenotype 

between eMSC and other ASC.  

To explore specific eMSC markers, 49 cell surface proteins were initially identified 

and further selected following the criteria:  

1) > 3 transcripts per million (TPM) in eMSC 

2) Fold change > 2 

3) Absence of expression in either glandular or stromal compartment (Human Protein 

Atlas).  

Out of 49 putative cell surface markers, 21 met the pre-specified criteria (Table 3.2). 

Note that some genes designated as cell surface markers encode for ECM proteins 

(e.g. TNC, COL7A1) or signal intermediates (e.g. WNT5B). Interestingly, a multi-drug 

resistance gene, ABCC4, which is associated with SP, was amongst the marker 

genes. This is the first time that a list of transcription factors and cell surface proteins 

involved in cultured eMSC identity has been generated.  
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Table 3.2. Short-list of genes of cell surface proteins enriched in eMSC.  

Gene FoldChange 
eMSC_vs_PVC 

FoldChange 
eMSC_vs_EnSC 

eMSC_TPM TA_TPM PVC_TPM EnSC_TPM 

OLFML3 6.68 5.55 241.72 214.87 34.50 43.38 

TNC 2.28 2.68 155.46 99.17 56.49 43.54 

COL7A1 2.71 2.41 129.79 114.20 45.20 50.88 

WNT5B 2.27 2.32 107.35 65.44 42.60 41.60 

LRP11 2.33 2.03 48.90 61.68 19.85 22.65 

ABCC4 3.80 3.07 45.15 53.89 11.13 13.61 

GLT8D2 3.35 3.23 38.52 36.74 10.82 10.89 

GPR126 4.22 3.68 37.27 47.93 8.06 9.29 

THSD4 2.85 2.68 36.64 40.59 11.70 12.27 

CD109 3.26 2.96 30.50 25.19 8.64 9.34 

GPR39 8.18 3.64 25.99 11.18 3.07 8.10 

TRHDE 7.68 6.53 20.30 21.84 2.87 3.04 

ITGA8 15.85 14.14 19.96 26.65 1.29 1.35 

SLIT2 6.52 11.80 19.48 5.23 2.52 1.57 

ELTD1 4.02 5.44 13.44 7.21 3.26 2.33 

PCDH9 11.37 13.10 13.27 6.54 1.09 0.93 

MPZ 7.21 14.04 11.10 9.07 1.61 0.77 

TMEM26 4.16 3.45 9.68 15.44 1.77 2.06 

ODZ4 3.49 3.35 7.07 4.68 2.09 2.17 

COLEC12 7.19 10.44 6.81 10.70 0.72 0.52 

PRSS35 4.50 8.81 6.74 6.67 1.43 0.89 

NCAM2 4.29 4.65 4.43 3.42 0.94 0.86 
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3.3.4 MRP4, a putative marker of an endometrial side population 

Multidrug resistance protein 4 (MRP4), encoded by the gene ABCC4, is a member of 

the C subfamily of ATP-binding cassette (ABC) transporters. MRP4/ABCC4 has the 

remarkable ability to transport a range of endogenous molecules that have a key role 

in cellular communication and signalling, including cyclic nucleotides, ADP, 

eicosanoids, urate and conjugated steroid hormones (Russel et al, 2008). ABC 

transporters have been linked to the existence of SP, characterized by specific 

Hoechst dye efflux pattern in flow cytometry analysis. SP fraction cells are enriched 

in cells capable of self-renewal and differentiation with reconstitution of the original 

cell population (Al-Hajj and Clarke, 2004; Masuda et al, 2010). In the endometrium, 

immunostaining for ABCG2/Bcrp1, a characteristic cell surface transporter in SP cells, 

shows a distribution across both the functionalis and basalis layers with a higher 

incidence around small capillaries (Masuda et al, 2010).  

To test if the endometrium harbours MRP4+ cells, I performed MACS on freshly 

isolated stromal cells from 12 individual biopsies using a PE-conjugated antibody 

against MRP4. In parallel, W5C5+ cells were used for comparison. As expected, PVC 

represent about 5% of the stroma compartment (Murakami et al, 2013), while MRP4+ 

population corresponds to 0.7% (Figure 3.13 A). Due to such low percentage and to 

exclude that it was not just background from the MACS, a negative control without 

primary antibody was added showing to retain only 0.12% of “false positive” cells.   

After MACS, cells from 3 samples were expanded in culture and their phenotype was 

validated by RT-qPCR (Figure 3.13 B). Although not statistically significant, SUSD2 

transcript levels were tendency higher in PVC (P = 0.05, Mann-Whitney test), while 

MRP4 transcript levels were higher in MRP4+ cells (P = 0.1, Mann-Whitney test) 

confirming the identity of the cells sorted by MACS. Additionally, the quiescent and 

activated phenotype of these cells was investigated by the expression of a quiescent 

fibroblast marker, fibroblast specific FSP1 (also known as S100A4), and compared to 

ACTA2, a marker of activated fibroblasts (Kalluri, 2016). It was observed that the 

expression of ACTA2 was equivalent between both cell subsets (Figure 3.13), which 

could be due to the processing of cells in culture. Although not statistically significant, 

the median of S100A4 transcript levels was higher in MRP4+ cells (P = 0.05, Mann-

Whitney test), indicative of a quiescent phenotype.  

The expression of ABCG2 was also explored in these cell subsets. As mentioned 

above, ABCG2 is an ABC transporter, with the ability to extrude lipophilic dye Hoechst 
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33342 and commonly associated with SP. Again, although not statistically significant, 

the expression of ABCG2 was higher in MRP4+ cells (P = 0.2, Mann-Whitney test) 

linking this cell subset to a SP phenotype. Figure 3.13C shows the percentage change 

between MRP4+ and W5C5+ cells. MRP4+ cells are characterized by an increase of 

expression of the multi-drug resistance genes, ABCC4 and ABCG2, and the 

quiescent fibroblast marker, S100A4. 

 

 

 

Figure 3.13. W5C5+ and MRP4+ cell sorting and validation.  (A) Percentage of W5C5+ (PVC) and MRP4+ cells from 

fresh endometrial biopsies. Box plot displays the median value and the full range of variation. Individual dots represent 

outliers, (n=12 ). (B) RT-qPCR analysis of indicated gene expression on cultured PVC and MRP4+ cells after magnetic 

activated cell sorting. Mann Whitney test was used.  Data represent median. (C) Percentage change between MRP4+ 

and W5C5+ cells. PCR carried out in 3 different biological samples and in technical triplicates per sample. Data 

represent median. 
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To investigate the localization of MRP4+ cells on the tissue, immunohistochemistry 

was performed initially on endometrium tissue slides. However, this technique failed 

to yield any positive results, probably due to an antibody inefficiency. As an 

alternative, single molecule in situ hybridization (ISH) was performed on mid-luteal 

endometrial biopsies. This technique enables the visualization of single RNA 

molecules (red dots) per cell in tissue samples. Peptidylpropyl isomerase B (PPIB) 

and bacterial gene DapB were used as a positive and negative control probes, 

respectively. Figure 3.14 shows at the top left and right a representative image of the 

positive and negative probes (magnification: X40), respectively. When tested against 

an MRP4/ABCC4 probe, positive cells showed to be rarely dispersed in the stroma 

and with higher prevalence at the perivascular sites (Figure 3.14C).  
 
 
 

 
 

Figure 3.14. RNA in situ hybridization (ISH) on mid-luteal phase endometrial biopsies. (A) Positive control 

(PPIB). (B) Negative control (DapB). (C) MRP4+ probe. Right panel shows a magnification of MRP4+ cells (pink, 

arrows). Scale bar: 100 μM. Original magnification: x40. 
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To test the cloning efficiency, cells were subjected to a CFU assay. As described 

above, when freshly isolated PVC are seeded at low density, the resulting clones are 

designated as eMSC. Alongside the eMSC, the MRP4+ population also showed the 

ability to form colonies (Figure 3.15 A and B). Although the efficiency value was 

markedly lower (0.6 ± 0.2, mean ± sem) when compared to eMSC (5.3 ± 0.8), results 

show that both efficiencies correlate significantly (r = 0.63, P < 0.05) (Figure 3.15 C 

and D).  

Initial studies classified large CFUs as the original stem cells while small CFUs are 

derived from more differentiated transit-amplifying cells (Gargett et al, 2009). Thus, 

the large size of the colonies from MRP4+ was indicative that they relate to an 

endometrial stem population.  

  

 

 

Figure 3.15. Cloning efficiency of eMSC and MRP4+ cells. (A) Representative clonogenic assays established from 

PVC. (B) Representative clonogenic assays established from MRP4+ cells.  (C) Cloning efficiency from MRP4+ and 

W5C5+.  Box plot displays the median value and the full range of variation. (D) Pearson correlation between MRP4+ 

and W5C5+ cloning efficiencies. 
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To test the self-renewal ability of both cell types, colonies were passaged until P4 

(Figure 3.16A). Initially, it was observed that from P0 to P1, colonies became confluent 

when cells were plated at 50 cells/ cm2 so it was necessary to reduce the number of 

cells for the passage. Although not statistically significant, it was observed that when 

MRP4+ colonies were passaged, the cloning efficiency matched the eMSC for P1 and 

surpassed for P2 (Figure 3.16B). For later passages, cloning efficiencies tended to 

match between cell populations.  

The initial low cloning efficiency and notable increase upon passaging suggests that 

MRP4+ cells are in a quiescent state in vivo and that under culturing conditions cells 

become activated and proliferate with a higher ability to self-renewal than W5C5+ 

cells, as previously demonstrated by Masuda et al, 2015.  

 

 

 

 
Figure 3.16. Self-renewal ability of eMSC and MRP4+ cells. A) Schematic workflow of CFU passage from P0 until 

P4. B) Cloning efficiency of eMSC and MRP4+ CFUs throughout colony passaging (n = 4). 
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3.3 Discussion 

The first main objective of this study was to isolate the different endometrial cell types 

and subsets in order to create a signature matrix for each population that 

retrospectively could be used for different in silico analysis. First, this matrix was used 

to investigate whether the changes in gene expression levels between the different 

phases of the menstrual cycle might be influenced by the cellular composition of the 

biopsy. Through a computational deconvolution approach, it was detected that as the 

cycle progresses, the epithelial fraction becomes more dominant. This switch is more 

pronounced in the transition from early- to mid- secretory phase. Recently, another 

group published the deconvolution of endometrial transcriptomes from early- and mid- 

secretory samples. Suhorutshenko et al (2018) combined histological analysis to 

transcriptome deconvolution and showed that stromal and epithelial cells are present 

in a proportion of 70% and 30%, respectively in early secretory samples. As the cycle 

progresses, the proportion changes to 50% for each cell population. Additionally, the 

group identified that only 26 % of the initial differentially expressed genes remained 

after adjustment for biopsy cellular composition, such as SLC15A1, CD55, HABP2, 

DPP4, GPX3 and PAEP (Suhorutshenko et al, 2018). In contrast, in this project the 

immune fraction and other stromal subpopulations were also taken into consideration. 

One of the biggest drawbacks of sample heterogeneity is the signal dilution, in which 

genes expressed in cell subsets present at low proportion may be masked by the 

signal coming from the same gene expressed in a prevalent cell subset (Shen-Orr 

and Gaujoux, 2013). Nevertheless, when different stromal subpopulations were used, 

the deconvolution method did not yield a specific signal. This could be due to the 

similarity between cultured EnSC, PVC, eMSC and TA transcriptome signatures 

preventing CIBERSORT to discern the proportion of each cell subtype.  

The shift in the transcriptional profile of PVC after culturing has been reported before 

for both CD146+PDGFRβ+ and SUSD2/W5C5+ cells (Schwab and Gargett, 2007; 

Murakami et al, 2014). The same phenomenon was observed for eMSC and TA cells, 

although it is also pertinent to question if these populations share a basal 

transcriptome signature in vivo. It is critical to acknowledge that by removing these 

subpopulations from their niche and culturing them in vitro we might be inducing 

modifications in their expression profile. In fact, hierarchical clustering showed that 

the stromal subpopulations are the first to diverge from the whole tissue. However, 

the uNK cells, which are at a low representation in the endometrium, have a 

transcriptomic profile more akin to the whole tissue. Since immune cells were only 
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incubated overnight while other populations were propagated for longer, it could be 

implied that the Euclidean distance metric analysis is a visualization of the 

transcription adaptation to the culturing process. Additionally, the hierarchical 

clustering analysis showed a proximity between gland organoids and whole tissue 

transcriptome. Since the gland organoids were set from fresh cultures, it is possible 

that the initial separation of epithelial cell was not completely efficient and thus the 

matrigel droplets were cultured with a mix of epithelial cells and other cell types (e.g. 

stromal and uNK). 

Although the culturing process may interfere with the transcriptome profile of each cell 

type , the data here shows that cultured PVC retained gene signatures of perivascular 

niche cells. In addition, eMSC gene expression analysis indicated that they 

maintained their naïve profile when compared to PVC and EnSC.  

This work contributes the first description of the transcription factors and cell surface 

proteins enriched in in vitro eMSC. Cross-referencing of transcription factors between 

different systems suggests that the regulation mechanisms of stem cell properties 

might be conserved between eMSC from different sources. For example, forkhead box 

transcription factor FOXF1 has been reported to be selectively expressed in 

endothelial colony forming cells compared to mature endothelial cells and to regulate 

Notch2 signalling (Sturtzel et al, 2018). Recently, Pastor et al (2018) also described 

the role of TFAP2C as an important regulator of human naïve pluripotency during the 

embryo development. On the other hand, zinc-finger transcription factors of the Gli 

family are involved in the signal transduction of the SHH pathway, which is essential 

for the maintenance and response of several types of stem cells (Hui and Angers, 

2011; Zhang et al, 2017). In the liver, the SHH/GLI3 axis regulates CD90-cancer stem 

cells (Zhang et al, 2018). In oral squamous cancer stem cells, GLI3 knockdown 

decreases stemness, cell proliferation and invasion (Rodrigues et al, 2018). For future 

experiments, it would be interesting to investigate the role of specific transcription 

factors through gene knockdown experiments followed by functional analysis. 

My analysis identified MRP4 as a candidate cell surface marker for endometrial stem 

cells. MRP4+ cloning efficiency correlates with eMSC, suggesting that MRP4 

subpopulation accounts for 10% of eMSC.  Due to the nature of MRP4 as an ATP-

dependent unidirectional efflux transporter, it was hypothesized that MRP4+ cells 

could be related to an endometrial SP. 
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Cell isolation based on flow cytometry sorting may have detrimental effects on the 

viability of the SP cells (Masuda et al, 2015), whereas MACS is a more gentle 

technique (Masuda et al, 2012). The quiescent state of magnetic bead-selected 

MRP4+ endometrial cells evidenced by the expression of S100A4 ties in with the 

previous finding that endometrial SP cells isolated directly from tissue are mainly in 

G0 phase (Tsuji et al, 2008). However, when isolated from cultured cells, SP had 

been recruited into G1 and showed a greater cloning efficiency (Tsuji et al, 2008). The 

same phenomenon of cell activation was observed with MRP4+ selected cells, when 

after colony passaging, the cloning efficiency tendentially increased to higher values 

than eMSC to later stabilize at the same level.  

Taken all together, the data here presented reinforces the concept of a hierarchy of 

endometrial stem / progenitor cell populations responsible for the regeneration of the 

tissue (Gargett et al, 2016). Additionally, it suggests that endometrial stem/progenitor 

cell populations share a naive basal transcriptomic profile. However, due to the 

inevitable culturing process to isolate endometrial stem cells, the access to a specific 

marker might be masked by transcriptome modifications. Thus, it is crucial to use 

alternatives to surpass the in vitro propagation process and the use of bulk RNA-seq, 

which dilutes the information from low representative populations in one sample. 	
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4.1 Introduction 

As described previously, bulk RNA-seq technology is a powerful tool to study gene 

expression patterns, but it is limited in decoding tissue complexity. To investigate the 

role and regulation of different cell types and subsets in a complex and heterogenous 

tissue, it is essential to map the transcriptome of individual cells. Since Tang and 

colleagues published the first single-cell RNA-sequencing (scRNA-seq) study in 2009 

(Tang et al, 2009), there has been an exponential increase in the number of 

publications employing and improving different scRNA-seq platforms.		scRNA-seq has 

already been used to investigate distinct tissues and organs, both during development 

and adulthood. These studies include various brain regions (Rosenber et al, 2018; Li 

et al, 2019; Sauders et al, 2018), lung (Guo et al, 2019; Zilionis et al, 2019, Angelidis 

et al, 2019), heart (Cui et al, 2019; Massaia et al, 2018), immune system (Papalexi 

and Satija, 2017), and in hematopoiesis (Pellin et al, 2019; Povinelli et al, 2018). The 

development of methods for high-throughput single-cell molecular profiling has been 

adopted rapidly by the scientific community to the point where it is now possible to 

access comprehensive transcriptomic maps of different cell types and subsets across 

many human tissues (Human Cell Atlas, https://www.humancellatlas.org), in different 

cancer types  (CancerSEA, http://biocc.hrbmu.edu.cn/CancerSEA/), and even across 

different species (Single Cell Expression Atlas, https://www.ebi.ac.uk/gxa/sc/home).   

The recent rapid spread of scRNA-seq methods has resulted in a large variety of 

experimental protocols and computational pipelines. Each scRNA-seq analysis can 

have different goals including differential expression (DE) analysis, classification and 

clustering of cells and trajectory reconstruction (Vieth et al, 2019). Commonly, scRNA-

Seq analysis workflow encompasses single-cell dissociation, single-cell isolation, 

library construction and sequencing. The most popular platforms for scRNA-Seq use 

microfluidic technology, which requires low sample consumption, low analysis cost 

and enables precise fluid control. Importantly, the nanoliter-sized volumes required 

for this technique substantially reduce the risk of external contamination (Hwang et 

al, 2018). Several in-house (e.g. Drop-seq) and commercial (e.g 10X Chromium) 

microdroplet-based microfluidics protocols are available diverging in cost per 

experiment and capture efficiency.  

Common steps required for the generation of scRNA- seq libraries include cell lysis, 

reverse transcription into first-strand cDNA, second-strand synthesis, and cDNA 

amplification. Analysis tools for scRNA-seq data are written in a variety of 
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programming languages—most prominently R and Python. Popular platforms such 

as Seurat, Scater, or Scanpy provide integrated environments to develop pipelines 

and contain large analysis toolboxes (Luecken and Theis, 2019). Additionally, some 

commercial companies provide software tools, such as 10x Genomics and Fluidigm 

(Hwang et al, 2018). After sequencing, alignment and de-duplication are performed 

to quantify an initial gene expression profile matrix. Next, normalization is performed 

with raw expression data using various statistical methods. Additional QC is 

performed based on three QC covariates: the number of counts per cell (count depth), 

the number of genes per cell, and the fraction of counts from mitochondrial genes per 

cell. Finally, the normalized matrix is then subjected to main analysis through 

clustering of cells to identify subtypes (Hwang et al, 2018; Luecken and Theis, 2019). 

The continuous improvement of analysis tools is beneficial for generating new 

scientific insight, although it also hinders standardization between studies.  

 

Due to the cellular heterogeneity and cyclic transformative nature of the endometrium, 

scRNA-seq has become a valuable tool to investigate both static and dynamic aspects 

of the tissue across the menstrual cycle (Wang et al, 2018a), in first-trimester 

pregnancy (Surayawanshi et al, 2018; Vento-Tormo et al, 2018) and the end of 

gestation (Tsang et al, 2017). Six different cell types have been characterized during 

the menstrual cycle – stroma, endothelium, macrophages, lymphocytes, ciliated 

epithellium and non-ciliated epithelium (Wang et al, 2018a). One of the features 

enabled by scRNA-seq analysis is the placing of single cells along a continuous 

trajectory. This approach, termed pseudotime, enables visualization of progression of 

cells towards different fates, such as differentiation or cell death (Trapnell et al, 2014). 

This type of analysis revealed that the start of the WOI coincides with an abrupt 

transcriptomic transition in epithelial cells, accompanied by a more continuous 

transition in stromal fibroblasts (Wang et al, 2018a).	An in-depth analysis of different 

stromal populations has so far only been performed in the decidua in early pregnancy, 

in which discrete clusters of perivascular and stromal cells were identified in distinct 

decidua layers (Vento-Tormo et al, 2018). Two clusters of perivascular cells were 

distinguished by different levels of MCAM and MMP11. Additionally, three clusters of 

stromal cells were identified in different layers of the decidua and with divergent levels 

of expression of the classical decidual markers prolactin (PRL) and IGFBP1 (Vento-

Tormo et al, 2018).  
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High-throughput scRNA-seq has not yet been employed to identify putative 

stem/progenitor cell populations in cycling human endometrium. It has been reported 

that scRNA-seq has the unique ability to identify rare cell populations, representing 

<1% of cellular constituents in a given tissue (Grün et al, 2015; Segerstolpe et al, 

2016; Villani et al, 2017). Rare cell populations are undetectable in bulk analytical 

approaches. Therefore, in this study, high-throughput single-cell droplet barcoding 

was employed to profile the transcriptome of peri-implantation endometrial biopsies. 

In the stroma, a rare population of highly proliferative mesenchymal cells was 

identified and subjected to further explorative analysis.  
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4.2 Results 

4.2.1 Single-cell analysis of mid- luteal endometrial biopsies 

To characterize the endometrial complexity in situ, freshly isolated cells from seven 

endometrial biopsies were subjected to single-cell analysis using nanoliter droplet 

barcoding and high throughput sequencing of RNA (Drop-Seq). Table 4.1 shows the 

demographic details of the samples used for this study. Three samples were LH+8 

whereas the other four were LH+10. The median (range) age and BMI were 35 (31-

42) and 27 (24-32), respectively. Previous losses ranged from 0 and 5 miscarriages, 

but only two patients had one live birth.  

 

Table 4.1. Demographic details of patients from whom biopsies were used for scRNA-seq 

Age BMI Cycle Day Previous 
losses 

Live-births 

39 24 8 2 0 
31 23 8 4 0 
39 27 8 0 0 
32 32 10 0 0 
42 31 10 2 1 
33 26 

 

10 0 0 

35 30 10 5 1 

 

Figure 4.1 summarizes the workflow applied to this study. Each endometrial biopsy 

was enzymatically digested with collagenase type IA and DNase type I for 1 hour at 

37 °C. The dissociated cells were filtered through a 40-μm cell strainer, which resulted 

in the underrepresentation of EpCs, as the endometrial glands are relatively resistant 

to the enzymatic digestion. The single cell suspension was then layered over Ficoll-

Paque PLUS and centrifuged to remove red blood cells. Using a microfluidic device, 

each cell was co-encapsulated with a distinct barcoded microparticle (bead) in a 

nanoliter-scale droplet. Inside each droplet, the cell membrane was lysed and the 

mRNA was released and hybridized to the primers on the microparticle. Droplets were 

broken and the microparticles plus mRNA were collected. The mRNA was reverse 

transcribed into cDNA, which is then amplified, tagmented and sequenced (Macosko 

et al, 2015). 

 



 

 94 

 

Figure 4.1. Schematic workflow of single-cell analysis of peri-implantation endometrial biopsies. A single cell 

suspension was obtained following tissue digestion, filtering and ficoll density gradient centrifugation. Each cell was 

then encapsulated with a barcoded microparticle inside a droplet, in which the mRNA was released and attached the 

primers on the microparticle. The mRNA was reversed-transcribed into cDNA, amplified and sequenced. 

 

Computational dimensional reduction via t-distributed stochastic neighbour 

embedding (t-SNE) (Maaten and Hinton, 2008) combined with Shared Nearest 

Neighbor (SNN) analysis revealed segregation of 3282 cells into four main groups: 

endothelial (EC; n=156), epithelial (EpC; n=384), immune (IC; n=356), and stromal 

cells (EnSC; n=2,345) (Figure 4.2 A). Four distinct EpC populations were identified. 

The most abundant population, EpC1, highly expressed marker genes of secretory 

epithelium (e.g. GPX3, PAEP, and DPP4) (Figure 4.2 B). EpC2 were identified as 

ciliated endometrial cells, first described in human endometrium in 1894 (Benda, 

1894; More and Masterton, 1976). Cross-referencing the EpC2 marker genes (e.g. 

RSPH1, DNAAF1 and CAPS) with Protein Atlas showed that ciliated cells are 

localized between non-ciliated cells across endometrial glands (Supplemental Figure 

2). Although EpC3 were enriched in genes highly expressed during the early- to mid-

luteal phase of the cycle (e.g. SCGB2A1 and PDK4), almost all cells in this population 

came from a single biopsy, suggesting either mistiming of the biopsy or retarded 

glandular maturation. Finally, EpC4 was considered an ambiguous population, 

characterized by expression both epithelial (e.g. PAEP, CMC2) and stromal (e.g. 

DCN, ZEB1) markers. 

The IC were subjected to further dimension reduction (t-SNE) analysis (Figure 4.2 C); 

revealing that 89% of ICs in cycling endometrium are NCAM1/CD56+ uNK cells. uNK 

cells segregated into 3 subpopulations (NK1-3), matching the different NK populations 

described recently in pregnant decidua (Vento-Tormo et al, 2018). These uNK states 
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were in part defined by the relative abundance of cell cycle genes. The NK1 

population represented the most proliferating uNK cells expressing genes involved in 

granule exocytosis (e.g. PRF1, GNLY, GZMA and GZMB). On the other hand, NK3 

cells expressed low levels of cell cycle genes but were defined by CCL5 and CXCR4 

expression. Notably, CXCR4+ uNK cells have previously been implicated in vascular 

remodeling in pregnancy (Gibson et al, 2015). Cross-referencing with canonical 

markers curated from the literature identified IC1, IC2 and IC3 as naive B-cells, 

monocytes and macrophage/dendritic cells, respectively. The gene CD79A is 

expressed at the very early stages of B cell development (Dworzak et al, 1998) and 

maintained until the last stage of maturation before differentiation to plasma cells 

(Luger et al, 2013). On the other hand, CD19 and MS4A1 (also known as CD20) are 

lineage-restricted molecules expressed throughout B-cell differentiation prior to 

terminal differentiation of B cells to plasma cells (Naeim et al, 2013). Human blood 

monocytes are heterogeneous and conventionally subdivided into three subsets 

based on CD14 and CD16 expression. The expression of CD74 and HLA-DR are 

specific markers of the intermediate monocyte subset (Wong et al, 2012). As 

observed on the heatmap (Figure 4.2 D) and already described in literature, the 

allograft inflammatory factor-1 (AIF-1) is expressed in both monocytes and 

macrophages (Utans et al, 1995; Pawlik et al, 2016). Endometrial macrophages are 

recognized as critical players in the initiation of menstruation and repair and 

remodelling of the functional layer of the endometrium post-menses (Thiruchelvam et 

al, 2013; Cousins et al 2016). In a tissue injury situation, the angiogenic proteins, IL-

8 and CXCL2, are expressed by macrophages to control neutrophil recruitment (Koch 

et al, 1992; Arici, 2002; De Filippo et al, 2013). Interestingly, also GPNMB, a 

macrophage transmembrane glycoprotein, regulates the viability, proliferation, and 

migration of MSCs, which are key players in the repair of injured or diseased tissues 

(Yu et al, 2016). 

EnSC represented the bulk of cells captured by scRNA-seq analysis. However, the t-

SNE analysis also identified a discrete population of proliferating cells (PC), 

representing 1.8% of cells in the stromal compartment. PC were distinct from both 

EnSC and IC. Their presence during the secretory phase, which is characterized by 

the suppression of proliferation and induction of cell differentiation in response to 

elevated progesterone levels (Strowitzki et al, 2006), was the focus of my further 

analysis.  
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Figure 4.2. Identification of cell-types in mid-luteal endometrial samples. (A)  t-SNE plot of 3283 cells isolated 

from 7 LH-timed biopsies captures all major endometrial cell types, including epithelial cells (EpC), immune cells (IC), 

endothelial cells (EC), stromal cells (EnSC) and a discrete but transcriptionally distinct proliferative (PC) stromal 

subpopulation. (B) Immune cells (IC) were subjected to additional t-SNE analysis, revealing three uNK cell subsets 

(NK1-3) and naïve B-cells (IC1), monocytes (IC2) and macrophage/dendritic cells (IC3). (C) Heatmap showing relative 

expression (z-score) of markers defining cell-types and EpC subpopulations. (D) Heatmap showing relative 

expression of markers defining endometrial IC populations during the implantation window.  
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4.2.2 Transcriptome profile of PC in the endometrium  

To explore the nature of PC, the cell cycle status of all cell types in the 7 midluteal 

biopsies was first determined computationally using the Seurat package 

(https://satijalab.org/seurat/). Figure 4.3 A shows a schematic representation of the 

different phases of the cell cycle whereas Figure 4.3 B depicts the t-SNE plot colour-

coded to indicate the various phases of the cell cycle: G1 phase, S phase (synthesis), 

and G2/M phase (interphase and mitosis/cytokinesis). Figure 4.3C shows the relative 

proportion of cells in different phases of the cell cycle for all endometrial cell types. 

The PC population is composed exclusively of cells in either S-phase (40%) or G2/M-

phase (60%). By contrast, a majority of EnSC (55%) were found to be in G1 (Fig. 4.3 

C). Likewise, most of EpC (63%) were assigned to G1 with only a minor proportion of 

cells in either S or G2/M phase. The abundance of EC and IC in G1-phase was 42% 

and 28%, respectively. Conversely, the proportion of EC or IC in either S or G2/M-

phase was 58% and 72%, respectively (Figure 4.3 C). Thus, based on computational 

analysis of the cell cycle, the antiproliferative effects of the postovulatory rise in 

progesterone levels are most pronounced in EpC followed by EnSC and then EC. PC 

and to a lesser extend IC continue to proliferate during the progesterone-dominant 

luteal phase of the cycle.  
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Figure 4.3. Analysis of the cell cycle in the endometrial clusters. (A) Schematic of the cell cycle phases (B) t-
SNE projection of midluteal endometrial cell populations [epithelial (EpC), immune (IC), endothelial (EC), stromal 

(EnSC) and proliferative cells (PC)] colour-coded to indicate cells in different phases of the cell cycle (G1, S and 

G2/M). (C) Graph showing the distribution of cell in the cell cycle for each endometrial cluster.  

 

 

The cell cycle phase has a profound impact on gene expression (Ma et al, 2015; 

Müller and Nieduszynksi, 2017). Hence, subsequent analysis was restricted to cells 

assigned to the same phase of the cycle: i.e. G2/M. A total of 19 DGE were identified 

in PC compared to all other cell types in luteal-phase endometrium (Table 4.2, 

Bonferroni adjusted P < 0.05). Cross-referencing of upregulated genes against the 

Cell Surface Protein Atlas (Bausch-Fluck et al, 2015) yielded no specific cell surface 

marker for PC. Although the analysis was restricted to cells in G2/M phase of the cell 

cycle, PC were conspicuously enriched in genes involved in cell cycle progression 

(Figure 4.4), suggesting that they are highly proliferative. One of the top DGE in PC 

is ANLN (Fig. 4.4), which encodes the actin-binding protein anillin involved in 

cytokinesis, cell growth and migration (Field and Alberts, 1995; Zhang and Maddox, 

2010). Analysis of the Protein Atlas database revealed the presence of rare anillin+ 

cells that are scattered throughout the endometrium (Supplemental Figure 3). At a 

glance, the abundance of anillin+ cells in luteal endometrium appeared compatible 

with the scRNA-Seq analysis. Hence, I used anillin as a surrogate marker for PC in 

subsequent analyses.  
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Figure 4.4. Transcriptome profile of PC in mid luteal endometrial samples. Violin plots showing log-transformed, 

normalized expression levels for the PC top markers in cells at G2/M across clusters. Bonferroni adjusted P-values 

shown on top left corner of each plot for the expression of each gene in PC when compared to the other clusters. 
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Table 4.2. Genes enriched in PC at G2M  

Gene Gene name  
Fold 

Change 
Adjusted P 

value 
TOP2A DNA Topoisomerase II Alpha 141.63 9.43E-23 

MKI67 Marker of Proliferation Ki-67 82.15 4.45E-19 

NUSAP1 Nucleolar and Spindle Associated Protein 1 81.63 1.40E-24 

ANLN Anillin 37.45 1.46E-24 

KIF4A Kinesin Family Member 4A 34.63 5.48E-25 

PRC1 Protein Regulator of cytokinesis 1  33.46 6.49E-18 

KIF23 Kinesin Family Member 23 29.55 9.46E-27 

SHCBP1 SHC Binding and Spindle Associated 1 22.50 3.30E-18 

NDC80 Kinetochore-Associated Protein 2 18.09 3.67E-17 

DLGAP5 Disks Large-Associated Protein 5 15.46 1.84E-15 

MLF1IP Centromere protein U  12.92 3.39E-12 

TYMS Thymidylate Synthetase  12.06 2.00E-14 

TK1 Thymidine Kinase 1 11.22 5.38E-15 

MELK Maternal Embryonic Leucine Zipper Kinase 10.44 4.18E-19 

HJURP Holliday Junction Recognition Protein 9.86 2.11E-16 

PBK PDZ Binding Kinase 9.77 2.53E-13 

SPC25 Kinetochore Protein Spc25 8.35 2.35E-16 

RRM2 
Ribonucleotide Reductase Regulatory Subunit 
M2 5.85 1.83E-05 

BRIP1 BRCA1-Associated C-Terminal Helicase 5.29 3.29E-12 
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4.2.3 Anillin+ cells in the peri-implantation endometrium   

Immunohistochemistry (IHC) was performed to assess the spatiotemporal distribution 

of anillin+ cells in the endometrium throughout the luteal phase. A total of 61 LH-timed 

biopsies were analysed and divided in three groups depending on the timing of the 

sample: Group 1 (LH+6/7, n = 20), Group 2 (LH+8/9, n = 24), and Group 3 (LH+10/11, 

n = 17). The demographic characteristics of the samples are summarized in 

Supplementary Table 5. Initial analysis revealed that anillin+ cells are present not only 

in the stroma but also in glandular and luminal epithelium. Thus, quantification of 

anillin+ cells was performed separately for each of the 3 endometrial compartments. 

As shown in Figure 4.6, anillin-labelled cells are scarcely dispersed throughout the 

stroma although they appeared more abundant around the terminal spiral arteries; i.e. 

in the perivascular niche where eMSC also reside (Masuda et al, 2012) (Fig. 4.5A). 

Rare anillin+ cells were also observed in endometrial glands and in luminal epithelial 

(Fig. 4.5 B and C). The average (± SEM) abundance of anillin+ cells in this 

compartment across all timepoints was 2.06 ± 0.6 % versus 1.63 ± 0.6 % in glandular 

epithelium. By contrast to glandular or luminal epithelium, the abundance of anillin+ 

cells increased significantly in the stroma upon progression of LH+6/7 to LH+10/11 

(Fig. 4.5 D-F). Figure 4.6A shows the relative distribution of anillin+ cells in stromal, 

glandular and luminal epithelium in each biopsy. Across all timepoints, the stroma 

compartment harboured on average significantly more (72.5 ± 3 %) when compared 

to either the glandular compartment (14.3 ± 2 %) or luminal epithelium (14.6 ± 1.7 %) 

(P < 0.05, Mann Whitney test). Additionally, figure 4.6B-D shows that the 

quantification of anillin+ cells is significantly correlated between the three different 

compartments. The stroma and the luminal epithelium have the weakest correlation 

(r = 0.4, P = 0.002; Figure 4.6C) compared to glandular epithelium and stroma or 

luminal epithelium (r = 0.7, P < 0.0001; Figure 4.6 B and D). 
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Figure 4.5. Anillin+ cells in peri-implantation endometrium. (A-C) Anillin immunohistochemistry in stroma, 

glandular and luminal epithelium. (D-F) Quantification of Anillin+ cell density in endometrial biopsies obtained from 5 

to 12 days after the LH-surge. Different letters above the box plots indicate that groups are significantly different from 

each other at P < 0.05. Group comparison by one-way ANOVA on ranks (Kruskal-Wallis) test. 
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Figure 4.6. Correlation of anillin+ cell between compartments. (A) Distribution of anillin+ cell density quantified by 

IHC in different endometrial compartments. (B) Spearman’s rank correlation of anillin immunohistochemistry in stroma 

and glandular epithelium. (C) Spearman’s rank correlation of anillin immunohistochemistry in stroma and luminal 

epithelium. (D) Spearman’s rank correlation of anillin immunohistochemistry in glandular and luminal epithelium. Raw 

data was square root (sqrt) transformed to reduce left skewness. 

 

 

In parallel with IHC, the expression of ANLN was analysed in whole tissue samples 

by RT-qPCR. Interestingly, ANLN mRNA levels correlated positively with the relative 

abundance (%) of anillin+ cells in both the stromal compartment and glandular 

epithelium (r = 0.33, P = 0.01, test; Fig. 4.7A and B). Further, ANLN gene expression 

also showed a positive trend with anillin+ cells in luminal epithelium, although this 

association was not statistically significant (r = 0.25, P = 0.08, test; Fig. 4.7C).  

Taken together, anillin+ cells are present throughout the endometrium during the luteal 

phase. They are enriched around the spiral arteries and rare cells are scattered 

throughout the stroma, glands and luminal epithelial. The relative abundance of 

anillin+ cells in endometrial glands and luminal epithelium does not change during the 

luteal phase of the cycle whereas more and more cells accumulate in the stroma in a 

time-dependent manner.  
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Figure 4.7. Comparison between histochemistry and RT-qPCR analysis for ANLN expression. (A) Spearman’s 

rank correlation of ANLN expression in whole tissue RT-qPCR and immunohistochemistry in stroma. (B) Spearman’s 

rank correlation of ANLN expression in whole tissue RT-qPCR and immunohistochemistry in glandular epithelium. (C) 

Spearman’s rank correlation of ANLN expression in whole tissue RT- qPCR and immunohistochemistry in luminal 

epithelium. Raw data was square root (sqrt) transformed to reduce left skewness. 

 
 
 
 

4.2.4 Immune cells contribute to the anillin+ cell population in endometrial 
stroma 

Anillin marks both proliferating and migratory cells (Chuang et al, 2014; Tian et al, 

2015). The transition of mid- to late-luteal phase coincides with influx of proliferating 

uNK cells and macrophages (Pace et al, 1989; Starkey et al, 1991), which potentially 

accounts for the time-dependent increase in anillin+ cells in the stroma. To investigate 

this possibility, double-labelling immunofluorescence microscopy was used to 

quantify co-expression of anillin with CD163 and CD56, a macrophage and uNK cell 

markers, respectively (Fabriek et al, 2005; Brighton et al, 2017). Also, to assess the 

contribution of leukocyte precursors, the abundance of anillin+ cells co-expressing the 

common hematopoietic stem cell marker CD34 was also quantified (Berenson et al, 

1988).  

Quantitative double-labelling immuno-fluorescence microscopy was performed on a 

total of 18 biopsies obtained on LH+7 (n=6), LH+9 (n=6) and LH+11 (n=6), 

representing early-, mid-, and late-luteal phase endometrium, respectively. The 
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demographic characteristics of the samples are summarized in Supplementary Table 

6. For each biopsy, 5 randomly chosen high-power fields were analysed. 

Representative images are shown in Figure 4.8A-C.  On LH+7, the median proportion 

of anillin+ cells co-expressing CD34, CD163 or CD56 was 24.9%, 12% and 0%, 

respectively (Fig. 4.8D-E). However, as the menstrual cycle progresses the overall 

abundance of anillin+ cells increases but the contribution of proliferating CD34 

hematopoietic progenitor cells decreases significantly to 11.51%. In fact, the increase 

in anillin+ cell population was entirely accounted for by the significant expansion of 

anillin+/CD163+ macrophages and anillin+/CD56+ uNK cells in the stroma (Fig. 4.8 E 

and F).  

 

 

 
 

Figure 4.8. Localization analysis of anillin vs hematopoietic and immune markers. (A) Immunofluorescence of 

anillin vs hematopoietic stem cells (B) Immunofluorescence of anillin vs macrophages (C) Immunofluorescence of 

anillin vs uNK cells. Arrows indicate anillin+ cells. Scale bar = 20µm. (D-F) Quantification of double stained cells for 

each cell surface marker in midluteal endometrial biopsies obtained 7, 9 and 11 days after the LH surge, representing 

the early, mid and late luteal phases, respectively (n=6 per timepoint). Bar charts show the median from six 

independent biopsies per timepoint. Different letters above the bars indicate that groups are significantly different from 

each other at P < 0.05. Group comparison by one-way ANOVA on ranks (Kruskal-Wallis) test. 
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4.2.5 The abundance of anillin+ cells in vivo correlates with endometrial 
clonogenicity  

To explore the possibility that anillin marks mesenchymal progenitor cells, I 

established paired clonal assays and standard primary EnSC cultures from 3 

individual endometrial biopsies. The relative abundance of anillin+ cells was quantified 

using immunofluorescence microscopy after 7 days in culture. As shown in Figure 

4.9A, the abundance of anillin+ cells in standard cultures was 1.7% (median) versus 

17% in clonal assays (P < 0.05, Mann-Whitney test). I reasoned that culturing may 

lead to progressive loss of the proliferative capacity of MSC. To test this hypothesis, 

abundance of anillin+ cells was quantified using immunofluorescence microscopy in 

CFU assays after 3, 6 or 9 days in culture. Notably, the abundance of anillin+ MSC 

after 3 days was 68% (median). By day 9, this had dropped significantly to 15% 

(median) (P < 0.05, one-way ANOVA on ranks test). 

Next, I examined if the abundance of anillin+ cells in vivo is a marker of endometrial 

clonogenicity. To test this conjecture, CFU assays were established from 47 

endometrial biopsies and, in parallel, the abundance of anillin+ cells in the stromal 

compartment was quantified using immunohistochemistry. Figure 4.10A depicts the 

design of the analysis and the demographic characteristics of the samples are 

summarized in Supplementary Table 7. An unexpectedly strong correlation was 

observed between the abundance of anillin+ stromal cells in vivo and CFU activity of 

isolated EnSC in vitro (r = 0.5, P = 0.0004, test; Fig. 4.10B).   
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Figure 4.9. Anillin expression in clonogenic populations. (A) Percentage of anillin+ cells in stromal standard 

cultures and CFUs after 7 days in culture. Bar charts show median in three independent primary cultures and matched 

CFU assay. Mann Whitney test was used.  (B) Percentage of anillin+ cells in colonies at day 3, 6 and 9 of culture. Bar 

charts show median in four independent CFU assays. Group comparison by one-way ANOVA on ranks (Kruskal-

Wallis) test.  

 
 
 
 

 

Figure 4.10 Anillin staining versus clonogenic populations. (A) Schematic workflow for anillin IHC and CFU 

analysis from the corresponding biopsy. (B) Spearman’s rank correlation of anillin immunohistochemistry in the stroma 

compartment and CFUs from corresponding biopsy. 
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4.2.6 A shared gene signature in PC in vivo and clonal MSC in vitro  

The lack a specific cell surface marker precluded isolation and direct characterization 

of PC. Hence, I compared the transcriptome profile of PC in vivo to the gene 

signatures obtained from different cultured stromal subpopulations (i.e. eMSC, TA, 

PVC and EnSC) as described in Chapter 3. The scRNA-seq profiles of EnSC and EC 

in vivo were also integrated in this analysis.  

As shown in Figure 4.11, both eMSC and TA express proliferation markers that match 

the PC profile. This proliferation signature included multiple genes that reportedly play 

critical roles in cancer stem cells (e.g. PBK, NUSAP1, MELK, CDC20 and ASPM) (Li 

et al, 2019; Dougherty et al, 2005; Ren et al, 2019, Bikeye et al, 2010). Apart from the 

proliferation markers, genes highly enriched in eMSC and TA cells were also enriched 

in either PC or EC in vivo. ALDH1L1, encoding aldehyde dehydrogenase 1 family 

member L1, and CD109 are putative biomarkers of cancer stem-like cells (Douville et 

al, 2009; Emori et al, 2013) whereas profilin 2 (PFN2) promotes migration, invasion 

and stemness of HT29 human colorectal cancer stem cells (Kim et al, 2015). Matrix 

metallopeptidase 16 (MMP16) controls the migration of human cardiomyocyte 

progenitor cells (Liu et al, 2012). Intriguingly, eMSC, and to a lesser extend TA cells, 

also express a endothelial-like gene signature, although non correspond to known 

endothelial cell markers. Genes in this signature, such as SKP2, ITGA8, SLIT2 and 

SOX9, have been shown to be involved in different stem/progenitor cell niches 

(Polisetti et al, 2015; Wang et al, 2014; Shibata et al, 2009; Kadaja et al, 2014).  

In addition, PC is enriched in genes implicated in stem cells function were identified 

to be differentially expressed in PC (e.g. POU2F1, CXCR4 and KIT). POU2F1, also 

known as OCT1, although less characterized than its paralogous gene OCT4, has 

been described as a normal and cancer stem cell determinant and a stem cell marker 

(Maddox et al, 2012). The expression of the receptors CXCR4 and c-kit by PC and 

their corresponding ligands, CXCL12 and stem cell factor (encoded by KITLG), by 

stromal and endothelial cells, respectively, are indicative of the presence of paracrine 

stem cell regulating signalling pathways. Taken together, the transcriptomic analysis 

provided additional evidence of the kinship between PC in vivo and eMSC/TA cells in 

vitro. Interestingly, cultured eMSC/TA cells also express marker genes of EC in vivo, 

which are silenced in PC.  
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Figure 4.11. Comparison between PC and cultured stromal subpopulations. Side by side heatmap analysis of 

top markers previously identified through RNA-seq in cultured endometrial mesenchymal stem cells (eMSC) and 

transit-amplifying cells (TA) vs endometrial stromal cells (EnSC) and perivascular cells (PVC) and the gene expression 

levels identified through scRNA-Seq in vivo endothelial (EC), stromal (EnSC)  and proliferative cells (PC). Expression 

for each gene is scaled (z-scored) across clusters and stromal subsets. Red and blue represent high or low expression 

of a given marker gene, respectively.  
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4.2.7 Quantification of anillin+ cells in midluteal biopsies from RPL patients 

Previously, it has been reported that RPL is associated with a deficiency in eMSC as 

assessed by CFU assays (Lucas et al, 2016). However, the lack of specific markers 

precluded in situ analysis of eMSC in tissue samples. Here, I demonstrated that the 

anillin+ cells in the endometrial stroma correlate significantly with the CFU activity of 

freshly isolated EnSC. Hence, I examined if RPL is associated with loss of non- 

hematopoietic anillin+ cells during the midluteal implantation window. To mitigate 

against interference of anillin+ immune cells, the analysis was restricted to endometrial 

biopsies obtained on LH+7 from control (n = 15) and RPL (n = 15) patients. The 

demographic characteristics of the samples are summarized in Supplementary Table 

8. Each tissue section was double-labelled for CD34 and anillin in order to distinguish 

between stromal and hematopoietic stem cells. The samples were blinded to the 

clinical diagnosis and abundance of anillin+ cells, anillin+/CD34+ cells and 

anillin+/CD34- cells quantified in 3 randomly chosen high-power fields (magnification: 

20X). As shown in Figure 4.12, RPL appeared to be associated with an overall 

reduction in the abundance of anillin+ stromal cells, although this observation was not 

statistically different (P = 0.08, Mann-Whitney test). However, there was a significant 

reduction anillin+/CD34- cells in RPL patients compared to control subjects (69% 

versus 84%, respectively; P < 0.05, Mann-Whitney test). Intriguingly, this reduction 

anillin+/CD34- cells corresponded to a reciprocal increase in anillin+/CD34+ cells (31% 

versus 19%, respectively; P < 0.05, Mann-Whitney test). Taken together, the data 

suggest that RPL is associated with an imbalance in endometrial mesenchymal / 

hematopoietic progenitor populations.  
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Figure 4.12 Anillin+ cells in control and recurrent pregnancy loss (RPL) patients. (A) Mean of 3 random high-

power fields was calculated per sample and analysed per group (control versus RPL). (B)  Percentage of anillin+/CD34- 

cells was quantified over the total number of anillin+ cells in in control and recurrent pregnancy loss (RPL) patients. 

(C) Percentage of anillin+/CD34+ cells was quantified over the total number of anillin+ cells in in control and recurrent 

pregnancy loss (RPL) patients. Mann Whitney test was used.  Different letters above the bars indicate that groups are 

significantly different from each other at P < 0.05.  
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4.3 Discussion 

Previously in Chapter 3, the interpretation of endometrial heterogeneity and 

characterization of stem/progenitor cell populations was tackled by the combination 

of cell culture, bulk RNA-seq and computation deconvolution, yielding to the 

identification of a switch in the cell type proportions during the luteal phase of the cycle 

and the description of a list of cell surface proteins and transcription factors expressed 

in eMSC. However, it was also demonstrated that in vitro cell propagation introduces 

modifications in the transcriptomic profile and hinders the identification of in vivo cell 

markers. 

In this Chapter, single-cell transcriptomic analysis was applied to freshly isolated cells 

from luteal-phase endometrial biopsies. Apart from the main stromal population, the 

analysis also highlighted the cellular complexity of endometrial glands, including 

transcriptional characterization of ciliated epithelial cells. Within the immune 

compartment, 3 uNK cell states were identified corresponding to the different decidual 

NK cell subsets recently identified by single-cell analysis in early pregnancy (Vento-

Tormo et al, 2018). Additionally, it was identified a discrete population of highly 

proliferative mesenchymal cells. This subpopulation, termed PC, was further 

investigated. 

Anillin was used as a putative marker of PC in midluteal cells. I demonstrated that 

anillin also marks proliferating immune cells, i.e. macrophages and uNK cells, 

especially in the late-luteal phase. Further, a proportion of anillin+ cells co-expressed 

CD34, indicative of hematopoietic progenitor cells. Despite these shortcomings, 

several lines of evidence indicated that anillin also included eMSC/TA cells.  

First, highly proliferating cells are widely implicated in the proliferation and self-

renewal of progenitor cells of different systems (Nakano et al, 2005; Majewski et al, 

2010; Dougherty et al, 2005). Adult stem cells are maintained in a quiescent state but 

are able to exit quiescence and rapidly expand and differentiate (Li and Bhatia, 2011). 

In fact, highly proliferative cells are commonly associated to progenitor cells and 

tissue regeneration (Ranger-Huerat and Maldonado, 2017). For example, in the 

human vascular system endothelial progenitor cells with high proliferative rate had 

the ability to form vascular tubules in vitro in a stromal supported co-culture assay 

(Watt et al, 2010). Also, recently, a proliferative trophoblast progenitor cell population 

was identified at the base of the cytotrophoblast in first trimester placentas 
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contributing to the villous cytotrophoblast and extravillous cytotrophoblast cell layer 

(Lee et al, 2018).  

Unfortunately, the lack of specific cell surface markers in the PC population restricted 

the direct access to these cells. This absence could be due to a technical issue since 

even for the most sensitive scRNA-seq protocols, it is frequent that some specific 

transcripts cannot be detected (termed dropout events) (Haque et al, 2017; Chen et 

al, 2019). On the other hand, this is not the first time that it was noted a lack of specific 

surface markers associated to a putative stem/ progenitor population. Ishibashi and 

colleagues (2016) reported that when comparing chondrocytes with different 

proliferation rates, the cell group with the higher rate presented a higher chondrogenic 

ability, showed somatic stem cell-like characteristics but did not express a specific 

surface marker. Also, stem cells from human exfoliated deciduous teeth have high 

proliferation potency and present MSC characteristics but no specific surface marker 

(Sukarawan and Osathanon, 2017). Hence, the lack of specific surface markers might 

be a characteristic of the high proliferation profile of an intermediate (transit) cell 

population in a tissue. 

As a second line of evidence, it was demonstrated that anillin+ cells are present in the 

stroma and epithelium. Additionally, it was also observed a positive correlation 

between the abundance of anillin+ cells in both compartments. This result supports 

the hypothesis that both subpopulations are originated from one common source of 

cells that proliferate and differentiate into various cell types (Figueira et al, 2011). 

Corroborative bone marrow transplant studies in human and mice showed the 

participation of bone marrow-derived stem cells in the repopulation of endometrial 

stroma and glands (Taylor, 2004; Taylor and Du, 2007; Ikoma et al, 2009).  

Third, double-labelling experiments allowed to discern that at the timepoint LH+7, 

63% (median) of anillin+ cells correspond to mesenchymal cells. The increase of 

anillin+ cells in the stromal compartment towards the end of the cycle was explained 

by the influx of proliferative immune cells, i.e., macrophages and uNK cells. 

Fourth, the expression of anillin was identified in clonogenic populations. Clonogenic 

assays showed that anillin+ cells are present in 68% of cells that form a colony by day 

3 of culturing. Additionally, these cells are also in higher abundance in colonies than 

in standard monolayer cultures. Furthermore, the quantification of anillin+ cells in the 

stroma compartment presents a strong correlation to the cloning efficiency of 
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endometrial stem/progenitor cells, showing that anillin could be used as a marker of 

clonogenicity.  

However, the identity of these endometrial mesenchymal anillin+ cell was still unclear. 

Therefore, the transcriptomic profile of PC from scRNA-seq data was compared to 

the transcriptome of cultured stromal populations, i.e., eMSC, TA, PVC and EnSC, 

described in the previous chapter. Thus, as the fifth line of evidence, it was 

demonstrated that PC shares part of its gene signature with the clonogenic 

populations, eMSC and TA. Further examination of the data showed that PC is 

associated with stem cell function genes, such as, POU2F1, CXCR4 and KIT (Miller 

et al, 2008; Maddox et al, 2012; Lennartsson and Lars Rönnstrand, 2012).  

Ultimately, the aim was to find a connection to translational medicine. Anillin+ cells 

were segregated in non-hematopoietic (CD34-) and hematopoietic stem cells (CD34+) 

and quantified on LH+7 samples from control and RPL patients. Here, I showed that 

RPL is associated with a reduction of anillin+CD34- , which links with previous findings 

that this clinal phenotype is associated with a depletion of eMSC (Lucas et al, 2016). 

For the first time, scRNA-seq allowed the identification of a putative endometrial 

progenitor cell population and corresponding candidate intracellular marker, anillin, in 

peri-implantation endometrial biopsies. It was demonstrated that not only anillin 

correlates with the cloning efficiency, as it also represents the deficiency of eMSC in 

the RPL group. This study brings a new insight into the endometrial stem/progenitor 

cell biology and the identification of a marker that in the future could be used for the 

analysis of clinical samples.  
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5.1 Introduction 
The field of single cell transcriptomics has become a fundamental tool in the 

identification of new cell types, cell states and regulatory networks between different 

populations. For in vivo samples, the success of scRNA-seq starts with dissociation 

of tissue into intact and viable cells (Nguyen et al, 2018). However, single cell 

suspensions must be prepared from freshly obtained tissue, which is a major hurdle 

to assess clinical samples, archived materials and tissues that cannot be readily 

dissociated (Habib et al, 2017). Enzymatic dissociation can be particularly problematic 

for certain tissues (e.g. brain and kidney) affecting the integrity of the RNA and 

introducing artefactual transcriptional stress responses (Habib et al, 2017; Wu et al, 

2019). An alternative to these cases is to lyse and dounce homogenize the tissue in 

order to isolate intact nuclei for single-nucleus RNA sequencing (snRNA-seq) 

(Nguyen et al, 2018).  

In contrast to scRNA-seq, snRNA-seq offers not only the possibility to handle complex 

tissues that cannot be dissociated, but also unique access to archived tissues such 

as flash-frozen and stored clinical samples (Nguyen et al, 2018). Comparative studies 

of scRNA-seq and snRNA-seq in matched cortical cell types demonstrated that 

although more transcripts are detected in individual whole cells than nuclei, closely 

related neuronal cell types can be similarly discriminated with both methods (Bakken 

et al, 2018). In adult kidney, single-cell and single-nucleus platforms presented 

equivalent gene detection sensitivity, but snRNA-seq captured a diversity of kidney 

cell types that were not represented in the scRNA-seq (Wu et al, 2019). This 

difference was due to cell-enriched genes involved in mitochondria, ribosome and 

heat shock response genes, while nuclei-enriched genes predominantly encoded 

drivers of cell identity, such as solute carriers, transcription factors, and long 

noncoding RNA (Wu et al, 2019). Single-cell and nuclei RNA sequencing of 3T3 cells 

detected an average of 5,134 and 3,295 genes for cells and nuclei, respectively with 

a high correlation (Pearson, r = 0.87) for average expression profile (Habib et al, 

2017). Together these results suggest that the relative transcript profile between cells 

and nuclei is highly correlated but still dependent on tissue-type.  

Different snRNA-seq methods have been developed recently (Habib et al, 2016, Lake 

et al, 2016) including the DroNc-seq technology, which is a modification of Drop-seq 

that combines the advantages of snRNA-seq and droplet microfluidics to profile nuclei 

at low cost and high throughput (Figure 5.1; Habib et al, 2017). Briefly, after tissue 
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dissociation and nuclei isolation, each nucleus is co-encapsulated with a distinct 

barcoded microparticle (bead) in a nanoliter-scale droplet.  At this stage, the nuclear 

membrane is lysed and the mRNA binds to the primers on the microparticle. The 

mRNA is reverse transcribed into cDNA, which is then amplified, tagmented and 

sequenced (Macosko et al, 2015; Habib et al, 2017).  

Previously, scRNA-seq was used to profile the transcriptome of fresh endometrial 

biopsies. However, due to the limitations of this technique, it is essential to investigate 

whether snRNA-seq can be a viable alternative for archived endometrial samples. In 

that case, snRNA-seq would become a valuable tool for prospective studies, in which 

the clinical outcome is only known months apart from the initial sample collection. 

Therefore, this chapter focuses on optimization of the snRNA-seq process for 

archived endometrial samples. All single nuclei transcriptome studies were performed 

using the DroNc-seq platform (Habib et al, 2017). 
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Figure 5.1. Schematic workflow of single-cell and single-nucleus analysis. Although sample preparation is 

different for both techniques, the following procedure is similar. A microfluidic device connects two aqueous flows 

(cells/nucleus and barcoded primer beads suspended in a lysis buffer) before their encapsulation into discrete 

droplets. The cell/nucleus is lysed and the mRNA binds to the primers on the microparticle. The droplets are broken 

and the microparticles collected and washed. The mRNA is reverse transcribed into cDNA, which is then amplified, 

tagmented and sequenced. Quality control (QC) steps are important to check library quality. For the computational 

analysis, the reads are first aligned to a reference genome to identify the gene-of-origin and then organized by their 

cell barcodes. Multiple transcriptomic analysis can be performed to inform cell heterogeneity through cell 

clustering and differential expression analysis. 
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5.2 Results 

5.2.1 Nuclei isolation from snap-frozen and RNAlater preserved tissue 

The biological material for snRNA-seq can either be cultured cells or tissue that was 

previously preserved in RNAlater or snap-frozen (Habib et al, 2017). The first step in 

this study was to compare the nuclei isolation process between snap frozen and RNA-

later preserved endometrial tissue. Both methods are known to stabilize RNA, 

although snap-frozen tissues require rapid homogenization to avoid the fast RNA 

degeneration that occurs during thawing (Mutter et al, 2004), whereas RNAlater 

solution inactivates RNases and stabilizes RNA within tissues or cells, thus providing 

some protection during processing. The sample can then be stored indefinitely at -

80°C. 

In parallel, two pieces of tissue from the same patient, each preserved by a different 

method, were dounce homogenised in Nuclei EZ lysis buffer and the resulting nuclei 

were stained with DAPI. As shown in Figure 5.2, nuclei isolated from the RNAlater 

preserved sample presented clumps of nuclei and debris due to insufficient tissue 

lysis. In contrast, snap-frozen tissue was readily dissociated into a single nuclei 

solution (Figure 5.2). The presence of clumps makes the scRNA system more prone 

to clogging events during droplet generation and might interfere with data 

interpretation.  

 

 

Figure 5.2. Nuclei isolation from snap-frozen and RNAlater preserved endometrial tissue. (A) Representative 

phase contrast image of DAPI stained nuclei isolated from snap frozen tissue. (B) Representative phase contrast 

image of DAPI stained nuclei isolated from RNA later preserved tissue.  
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Both nuclei preparations were used for droplet generation on the scRNAseq system 

and samples were processed until tagmentation. Figure 5.3 shows the bioanalyzer 

traces from an example, the RNAlater and the snap-frozen tissue. An ideal tagmented 

library should be fairly smooth, with an average bp size of 500-680 bp. Although none 

of the libraries were similar to the example, the snap-frozen sample presented the 

most uniform and reliable bioanalyzer trace for sequencing (Figure 5.3). Taking into 

consideration the tissue dissociation efficiency and the final library quality, the 

following experiments were performed using snap-frozen tissue.  

 

 

 

 

Figure 5.3. Bioanalyzer High Sensitivity DNA traces of tagmented libraries. From left to right are presented the 

traces for an ideal example, RNAlater and snap-frozen samples. The example trace was obtained from an in-house 

snRNA-seq experiment with cultured endometrial cells.  

 

 

5.2.2 Modifications in lysis buffer 

Tagmented library from the snap frozen tissue presented in the previous section was 

sequenced and analysed. As part of the data analysis workflow nuclei were filtered 

based on quality control (QC) metrics such as number of genes, number of transcripts 

and percentage of mitochondrial genes (Figure 5.4 A). While the scRNA-seq 

experiment from the previous chapter had an average of 1,284 genes per cell, the 

snRNA-seq had an average of 296 genes per nuclei. As expected, the percentage of 

mitochondrial genes was markedly lower when compared to whole cells. After initial 

quality filtering, a total of 1929 single nuclei were computationally assigned to the two 

main endometrial cell types, EpC and EnSC (Figure 5.4 B). Unexpectedly, the 

proportion between cell types was biased towards the epithelial compartment 

comprising 94.3% of total number of nuclei. In addition, it was not possible to identify 

immune or endothelial cells.  
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Figure 5.4. snRNA-seq with 0.2% lysis buffer. (A) Violin plots of number of genes, number of UMI and percent of 

mitochondrial genes per cell. Cells were included for further analysis if their number of genes ranged from 200 to 1500 

and their proportion of mitochondrial genes did not exceed 5%.  (B) t-SNE plot of 1928 nuclei from a mid-luteal biopsy 

captured the two main endometrial cell types, EpC and EnSC.  

 
 
 

Previously, it has been described that for proper cell and nuclear membrane lysis, 

different buffers should be used with increasing detergent strength (Baghirova et al, 

2015). In the original DroNc-seq protocol, the nuclei lysis buffer used during droplet 

generation is the same as the cell lysis buffer from the Drop-seq protocol (Macosko 

et al, 2015; Habib et al, 2017). However, Sathyamurthy and colleagues later modified 

the DroNc-seq protocol to profile spinal cord cell types, in which they used lysis buffer 

containing 0.7% sarkosyl instead of the original 0.2% concentration (Sathyamurthy et 

al, 2018). 

To test the nuclei lysis efficiency, I isolated nuclei from three independent frozen 

samples, incubated with DAPI for 5 min and then used the nuclei for droplet 

generation with lysis buffer containing three concentrations of sarkosyl: 0, 0.2 and 

0.7%. Droplets were visualized immediately after generation (0 minutes) and after an 

incubation period (30 minutes). Figure 5.5 and Table 5.1 summarize the results for 

this test showing the lysis efficiency and capture rate, which is calculated as the 

percentage of intact and lysed nuclei over the total number of droplets. When the 

nuclear membrane is lysed, the DNA is released and DAPI signal will be distributed 

throughout the droplet.  

The lysis buffer containing 0% sarkosyl did not affect the nuclear membrane at 0 min 

and after the incubation only 6% of encapsulated nuclei were lysed, confirming the 

requirement for sarkosyl in the buffer to facilitate lysis (Table 5.1 and Figure 5.5 A). It 

was also observed that 7.07% of droplets contained one nucleus and that there were 

no nuclei doublets. At 0.2% sarkosyl, the buffer lysed 46% of the encapsulated nuclei 
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immediately and this efficiency increased slightly to 53% after the incubation period, 

indicating limited suitability of this concentration for snap-frozen endometrial samples 

(Figure 5.5 B). The capture rate was highly similar to the 0% sarkosyl droplets. In 

comparison, lysis was highly efficient with the 0.7% sarkosyl lysis buffer, with 100 % 

of captured nuclei lysed immediately after droplet generation and approximately the 

same capture rate as the previous buffers (Table 5.1). However, when observed 

under the microscope, the droplet sizes were not uniform throughout the emulsion 

(Figure 5.5 C). In order to generate uniform droplets, the flow rates for the bead and 

nuclei lines were reduced from 20 µl/min to 15 µl/min, which had a negative impact 

on the capture rate (Figure 5.5 D and Table 5.1). Since there is a correlation between 

droplet volume and yield of captured mRNA (Habib et al, 2017) it is important to 

maintain a uniform emulsion. Therefore, for subsequent experiments, the 0.7% 

sarkosyl lysis buffer was used in combination with the reduced flow rates despite the 

reduced capture rate.  

 

 

Table 5.1. Comparison between 0.2% and 0.7% lysis buffer efficiency and capture rate. Data is presented as 

median (range); n=3.  

  Lysis efficiency (%) Capture rate (%) 
  0 % Sarkosyl 

0 min 0 (0 - 0)   

30 min 6 (0 - 8.5) 7.07 (6.63 - 7.45) 

  0.2 % Sarkosyl 

0 min 46 (35 - 85)   

30 min 53 (47 - 93) 7.10 (7.00 - 7.27) 

  0.7 % Sarkosyl 

0 min 100 (100 - 100)   

30 min 100 (100 - 100) 6.97 (6.6 - .3) 

  0.7 % Sarkosyl (reduced flow rates) 

0 min 100 (100 - 100)   

30 min 100 (100 - 100) 4.20 (4.15 - 4.24) 
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Figure 5.5. Comparison between 0, 0.2 and 0.7% lysis buffer efficiency. (A) Representative phase contrast 

images of DAPI stained nuclei inside droplets with 0% lysis buffer at 0 and 30 minutes. (B) Representative phase 

contrast images of DAPI stained nuclei inside droplets with 0.2% lysis buffer at 0 and 30 minutes. (C) Representative 

phase contrast images of DAPI stained nuclei inside droplets with 0.7% lysis buffer at 0 and 30 minutes. (D) 

Representative phase contrast images of DAPI stained nuclei inside droplets generated at reduced flow rates with 

0.7% lysis buffer at 0 and 30 minutes. 
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Taking into account the previous observations, a new snap-frozen endometrial 

sample was subjected to snRNA-seq with 0.7% lysis buffer. A total of 3884 nuclei 

passed the initial quality filtering with an average of 925 genes per nuclei and a lower 

percentage of mitochondrial genes (Figure 5.6 A). Dimensional reduction analysis 

segregated the nuclei into 8 clusters corresponding to 4 main cell types: EpC, EnSC, 

EC and IC (Figure 5.6 B).  

The immune population represents 1.3% of total number of cells and is segregated in 

two clusters, IC1 and IC2. The expression of HLA-DRA, LST1 and STAB1 has been 

reported in a variety of leukocytes, which hinders the accurate identification of immune 

subpopulations inside IC1 (Draber et al, 2012; Skirecki et al, 2016; Kondo et al, 2016). 

On the other hand, uNK cells are specifically allocated in IC2 as denoted by the 

expression of GNLY and NCAM1. Additionally, ITGAX (Integrin alpha X, CD11c) has 

been described to be expressed in naïve NK cells (Bezman et al, 2012), while ITGA 

(Integrin alpha D, CD11d) is expressed in human decidual NK cells (Koopman et al, 

2003).  

An advantage of snRNA-seq for endometrial samples is the possibility to have the 

complete representation of the epithelial compartment, whereas scRNA-seq is limited 

by insufficient enzymatic digestion of the epithelial compartment. Amidst the 4 

epithelial clusters, EpC1 was characterized by the expression of receptivity-

associated genes, such as, PAEP, HAP1 and AIMP1 (Bhagwat et al, 2013; Chan et 

al, 2013; Altmäe et al, 2017). Similarly, EpC2 showed a profile associated with 

receptivity, based on expression of RXFP1 (relaxin receptor) and PTGS1 

(prostaglandin endoperoxidase synthase 1, previously known as COX-1). Once 

again, one of the epithelial clusters, EpC3, was characterized by an ambiguous profile 

with expression of epithelial (e.g. CMC2) and stromal (e.g. C1S, ZEB1) markers. 

Dimensionality reduction analysis also identified a ciliated population, EpC4, depicted 

by the expression of DNAAF1 and FHAD1. 
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The EnSC population was characterized by the expression of stromal markers, ZEB1, 

MEG3, C1S and COL3A1, and comprised 9.1% of the total number of cells. 

Additionally, the presence of EC was identified by the expression of A2M and MCAM. 

These results show that the increase in the lysis buffer improved the quality of the 

analysis but still there was a discrepancy in the ratio between epithelial and stromal 

cells. This observation could be due to an intrinsic biological variation or a technical 

issue. For example, if different types of tissue have different sensitivity to the 

concentration of the lysis buffer, then it is also possible that the distinctive cell types 

from the same sample react differently to the lysis buffer.  

 

 

 

Figure 5.6. snRNA-seq with 0.7% lysis buffer. (A) Violin plots of number of genes, number of UMI and percent of 

mitochondrial genes per cell. Cells were included for further analysis if their number of genes ranged from 200 to 3000 

and their proportion of mitochondrial genes did not exceed 5%.  (B) t-SNE plot of 3729 nuclei from a mid-luteal biopsy 

captured epithelial (EpC), stromal (EnSC), endothelial (EC) and immune (IC) populations. (C) Heatmap showing 

relative expression (z-score) of markers defining cell-types. 
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5.2.3 Transcriptome profile of endometrial samples across the menstrual 
cycle 

Single nucleus transcriptome analysis was then extended to frozen endometrial 

samples collected at specific timepoints of the menstrual cycle: proliferative phase, 

LH+5, LH+8 and LH+11.  The libraries and sequencing were prepared in two batches 

(A and B), each with one sample per timepoint. Table 5.2 presents the demographic 

details of patient samples used on scRNA-seq.  

Unexpectedly, computational analysis showed that the proliferative and LH+11 

samples had low QC values and on average only 67 nuclei passed the initial filtering 

steps (Figure 5.7). Congruence between both batches showed that this result is 

biologically dependent and timepoint specific. Therefore, proliferative and LH+11 

samples were excluded, and further analysis was limited to biopsies LH+5 and LH+8.  

 

Table 5.2. Demographic details of patient samples used on snRNA-seq. 

Batch Day of Cycle Age Live-
births 

Previous 
losses 

BMI NK (%) 

A Proliferative 39 1 5 28 N/A 
B 31 1 4 23 N/A 
A LH+5 39 1 2 24 1.15 
B 35 0 1 22 1.82 
A LH+8 35 0 4 28 1.16 
B 37 0 3 25 11.22 
A LH+11 38 0 4 24 6.11 
B 31 0 1 N/A 17.03 
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Figure 5.7. Quality control metrics of snap-frozen endometrial samples across the menstrual cycle. Violin plots 

of number of genes, number of UMI and percent of mitochondrial genes per cell. Cells were included for further 

analysis if their number of genes ranged from 200 to 2000 and their proportion of mitochondrial genes did not exceed 

5%. 

 

Dimensionality reduction analysis of LH+5 and LH+8 samples segregated the nuclei 

into 9 clusters corresponding to EnSC, EpC and IC populations (Figure 5.8). tSNE 

plots A and B from Figure 5.8 show the same nuclei colour coded according to the 

different clusters and to the sample of origin, respectively. Figure 5.8C shows the 

heatmap with the top 5 markers of each cluster as identified on Figure 5.8A. 

The ciliated epithelial cluster, EpC5, had the contribution of all 4 samples, while the 

EpC clusters from 1 to 4 correspond to each individual sample. To further investigate 

these 4 main EpC clusters, the marker genes were cross-referenced with the RNA-

seq data from Chapter 3, section 3.2.2, in which 36 endometrial samples were 

classified as pre-receptive, early-receptive and receptive (Figure 5.8 D). The 

expression pattern of LRP4 and ESR1, suggest that the sample LH+5A (EpC1) is in 

an early-receptive stage, while LH+5B (EpC2) might be transitioning between pre and 

early-receptive, according to the expression markers, DUOX1 and DNAJC15. 

Interestingly, LH+8A (EpC3) shares the same epithelial markers as EpC2, suggesting 

that this sample might be delayed and hasn’t reached the receptive phenotype (Figure 

5.8 D). On the other hand, the sample LH+8B (EpC4) has already transitioned into a 

receptive phenotype according to the expression of KIF12 and IRX3 (Figure 5.8 D) 

and the receptivity-associated genes PAEP and HAP1 (Figure 5.8 C).  
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Contrary to the previous snRNA-seq, in this analysis 42% of the captured nuclei were 

identified as stromal cells. Once again, the segregation between the transcriptome 

profile of LH+8B (EnSC2) and the other samples (EnSC1) reinforces the suggestion 

that these biopsies are in different phases of the cycle. Dimensionality reduction 

analysis didn’t identify an endothelial cluster, which could be due to the reduced 

number of nuclei explored per sample. On the other hand it was possible to identify 

uNK and other lymphocyte markers segregated into 2 clusters, IC1 and IC2. While 

IC2 is composed exclusively by the sample LH+8B, IC1 integrates nuclei from all four 

samples. According to the demographic details previously presented on table 5.2, the 

sample LH+8B has the highest percentage of uNK. This data suggests that the high 

abundance of uNK in endometrial samples might be associated to the influx of specific 

cell subsets, which are then represented as discrete clusters in single cell/nuclei 

transcriptomic studies.  
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Figure 5.8. Identification of endometrial cell-types. (A)  t-SNE plot of 3755 cells isolated from LH+5 and LH+8 

archived biopies identified EpC, IC and EnSC. (B) t-SNE plot of the previous samples colour coded according to the 

sample of origin. (C) Heatmap showing relative expression (z-score) of markers defining cell-types. (D) Expression 

analysis of the EpC markers from snRNA-seq in pre-, early- and receptive. Vertical axis corresponds to transcripts 

per million (TPM) values from bulk RNA-seq. Group comparison by one-way ANOVA on ranks (Kruskal-Wallis) test. 

Different letters above the error bars indicate that those groups are significantly different from each other at P < 0.05. 

Data is presented as median. 
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5.3 Discussion 

This chapter presents an alternative method to bypass the drawbacks of single cell 

transcriptomics and how it can be used to investigate frozen endometrial samples. 

scRNA-seq is restricted to freshly obtained tissues and the intrinsic process of 

enzymatic dissociation can affect RNA integrity and introduce artefactual 

transcriptional stress response (Habib et al, 2017; Wu et al, 2019). Thus, snRNA-seq, 

a technique that does not require any enzymatic procedure and can be employed on 

archived samples, has become a resourceful substitute of scRNA-seq.  

The first step was to test and compare the nuclei isolation of snap-frozen and 

RNAlater preserved endometrial tissue. It was observed that the RNAlater 

preservation methodology was less efficient resulting in clumps of nuclei and cell 

debris. Previously, it has been reported in cochlear samples that RNAlater alters the 

physical properties of the tissue (Cai et al, 2013), which could also explain the 

previous results in the endometrial samples making it harder to break the tissue and 

lyse the cell membrane. The poor nuclei isolation from RNAlater tissue had a 

subsequent impact on the sequencing library quality when compared to the snap-

frozen sample. Furthermore, it should be considered that the disruption of the tissue 

could be biased toward a specific cell type and thus the subsequent analysis would 

show unrealistic cell type proportions. Therefore, following experiments were 

performed using snap-frozen tissue.  

The analysis of the first snRNA-seq fell short of expectations right at the initial QC 

filtering steps. The low number of genes and transcripts suggested that at the time of 

the nuclei lysis, a low number of mRNA molecules attached to the barcoded beads, 

which could be due an inefficient lysis of the nuclear membrane. To test this theory 

the concentration of sarkosyl in the lysis buffer was increased from 0.2% to 0.7%. 

Although the latter showed higher efficiency, it altered the viscosity of the fluid in the 

beads line, ultimately disturbing the droplet generation. In order to uniformize the 

droplet emulsion, the flow rates had to be reduced, which also affected the capture 

rate with a decrease from 6.97% to 4.20%. Curiously, the original capture rate 

reported by Dolomite Bio, the system manufacturer, was 5%, which is closer to the 

reduced values here observed. Even so, it was observed that there are no nuclei 

doublets at a capture rate of 7%. Therefore, for future experiments, parameters such 

as concentration of nuclei and beads can be adjusted in order to increase the capture 

rate when using a higher concentration of sarkosyl.  
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Although snRNA-seq often detects a lower number of RNA than scRNA-seq, as it 

excludes transcripts outside the nucleus, previous studies demonstrated that nuclear 

RNA represents a significant population of transcripts important for cell identity (Habib 

et al, 2017; Bakken et al, 2018; Nguyen et al, 2018). Thus, it was expected that 

snRNA-seq analysis on endometrial samples would identify the same cell populations 

as scRNA-seq or even to overpower it and capture a higher diversity of cell types (Wu 

et al, 2019). However, when the snRNA-seq was performed with a higher sarkosyl 

concentration, it was observed an improvement on data quality than the previous 

experiment, but still there was a lack of biological information when compared to 

scRNA-seq (Chapter 4). Although, the four main endometrial cell types were 

captured, there was a distinct bias towards the epithelial compartment reducing the 

information regarding the other cell clusters, specially the IC and EC. Hence, to make 

the snRNA-seq a promising tool for the study of endometrial heterogeneity, it is 

required to scale up the experiments and to analyse a higher number of nuclei.  

One of the obstacles when interpreting snRNA-seq data can be driven by the 

differences between nuclear and cell transcriptomic profiles (Nguyen et al, 2018). 

Despite the high concordance in the nuclear and cell gene expression (Habib et al, 

2017), nuclear transcriptome is enriched for long noncoding RNAs (lncRNA), nuclear-

function genes and intronic regions (Gao et al, 2017, Wu et al, 2019). The presence 

of these features need to be accounted during the analysis, especially when they are 

markers of cell clusters, such as MEG3 (LINC00023) and LINC00116 are markers of 

endometrial stroma and epithelial clusters, respectively.  

The snRNA-seq methodology used in this study is based on the capture of RNA 

molecules by their poly(A)-tail that hybridize to the oligo dT sequence present at the 

end of the barcoded beads. The failure in performing single nucleus transcriptome 

analysis on proliferative and LH+11 samples, whereas early and mid-secretory 

biopsies were successful, suggests that the capture of the nuclear RNA at both 

timepoints was unsuccessful. Taking into consideration that Wang and colleagues 

(2018) employed scRNA-seq to investigate the transcriptome profile of endometrial 

samples across the menstrual cycle, it is suitable to consider that the obstacle is 

specific to the nuclear transcriptome. The restriction to capture nuclear RNA in 

proliferative samples could be related with the fast turnover that endometrial cells are 

subjected during this phase. Proliferating cells have a higher rate of replication, 

transcription and therefore processing, export and protein translation to maintain cell 

division (Russell and Zomerdijk, 2005; Heath et al, 2016). Nuclear transport factors 
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are key players in RNA translocation into the cytoplasm and subsequent translation 

to the point that alteration of these factors affects both mRNA export and cell 

proliferation (Wickramasinghe et al, 2014; Heath et al, 2016). Therefore, it is 

suggested that the rapid turnover dependent on mRNA export limits the access to the 

nuclear transcriptome for snRNA-seq of proliferative phase endometrial samples. On 

the other hand, the late secretory phase is characterized by an increase of stressed 

cells followed by a peak of senescent cells and the regulation mechanisms of 

autophagy and apoptosis (Harada et al, 2004; Brighton et al, 2017; Yang et al, 2019). 

Studies have shown that animal cells under such cellular processes are associated 

with a tight posttranscriptional regulation often dependent on deadenylases (Mauxion 

et al, 2008; Thomas et al, 2015; Tokmakov et al, 2017). These enzymes are localized 

both in the nucleus and the cytoplasm and their role is to either modulate the length 

of the poly(A) tail or to decrease the mRNA levels. After the deadenylation process, 

some mRNAs might undergo a new round of poly(A) tail extension and translation, 

while others might be degraded (Zhang et al, 2010). Thus, mRNA deadenylation may 

indirectly contribute to cell turnover via translational shutdown and it might be behind 

the obstacle to capture nuclear poly (A) tail mRNA in late-secretory samples.  

To conclude, snRNA-seq is a viable but limited tool to study the endometrial cell 

heterogeneity. Although it has the ability to identify all main endometrial cell types in 

snap-frozen sample its efficiency is highly dependent on the phase of the menstrual 

cycle. However, new promising and alternative methodologies are arising such as 

single cell ATAC seq, which measures chromatin accessibility on a single cell level 

allowing the unbiased discovery of cell types and regulatory elements (Lareau et al, 

2019). Single cell ATAC seq technology overcomes the limitation of snRNA-seq, since 

it does not involve the analysis of transcriptome and instead directly identifies open 

chromatin regions that are indicative of active regulatory regions at single cell 

resolution. 

 

 

 



 

 133 

 

 

 

 

Chapter 6 

 

General Discussion 

 

 

 

 

 

 



 

 134 

Discussion 

The preparation of a receptive endometrium is driven by an intricate interplay between 

ovarian steroid hormones and the different endometrial cell populations. While the 

luminal epithelium undergoes apical surface specialization expressing cell adhesion 

molecules to permit adherence of the blastocyst, the glandular epithelial cells secrete 

substances that support blastocyst development (Strauss and Lessey, 2009). 

Meanwhile endometrial stromal cells differentiate into specialized secretory decidual 

cells upon the postovulatory rise in progesterone levels and increasing local cAMP 

production. The decidualization process and simultaneous influx and proliferation of 

leukocytes modulate endometrial angiogenesis and provide an immunoprivileged 

matrix essential for embryo implantation and placental development (Gellersen and 

Brosens, 2014). The combined actions of the locally acting molecules and ECM 

promote trophoblast attachment and, at the same time, limit the aggressive invasion 

by the embryonic tissue (Strauss and Lessey, 2009). In the absence of pregnancy 

and following progesterone withdrawal, the functional layer is shed during 

menstruation, and the endometrium is prepared for a new menstrual cycle.  

One of the key factors behind the remarkable plasticity of the endometrium is the 

existence of rare stem cell populations. Typically, adult stem cells play a crucial role 

in tissue homeostasis and integrity by maintaining, generating and replacing 

terminally differentiated cells as part of the routine cellular turnover or for repair of 

damaged tissues (Li and Xie, 2005). Despite the extensive proliferation and 

remodelling that the endometrium undergoes in each cycle, studies on endometrial 

stem cell biology lag far behind other areas of stem cell research (Ghobadi et al, 

2015). Only recently, N-cadherin was identified as a specific endometrial epithelial 

progenitor cell marker that can possibly be used for further characterization of these 

cells and their role in endometrial proliferative disorders, including endometriosis and 

Asherman’s syndrome (Nguyen et al, 2017). On the other hand, the investigation on 

eMSC has benefited from sharing the same in vitro properties as BM-MSC. The 

defining features of these cells are plastic adherence, clonogenicity, multilineage 

differentiation (osteocytes, chondrocytes, adipocytes) in vitro, and a distinct 

phenotype (CD73+, CD90+, CD105+, CD14-, CD34-, CD45-) (Gargett et al, 2016).  

CD146+PDGFRb+ and SUSD2/W5C5 are recognized in literature as eMSC markers 

(Gargett et al, 2016), although as previously described they should be regarded as 

PVC-specific cell surface proteins. For example, when Barragan and colleagues 
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(2016), compared the gene profiles of freshly isolated CD146+PDGFRb+ and CD146-

PDGFRb+ with clonal cultures of both cell types, they labelled the freshly sorted 

CD146+PDGFRb+ as eMSC. Thus, the authors drew their conclusions on fresh eMSC 

versus cultured eMSC when genuinely the comparison was done between freshly 

isolated PVC and cultured eMSC. This inaccuracy has been propagated in literature 

due to the lack of specific eMSC markers.  

Hence, this thesis has investigated endometrial stem cell biology through the 

comparison of cultured stromal subpopulations (eMSC, TA, PVC and EnSC) and 

employed new methods to identify in vivo endometrial stem/progenitor cell 

populations. Additionally, the potential of nucleus transcriptomics to analyze archived 

endometrial samples was also explored. 

In summary, I provide evidence that: 

i. The transition from early- to mid-secretory is followed by an adjustment in the 

stromal:epithelial ratio. 

ii. The maintenance of eMSC stemness might be related to key transcription 

factors that are shared with other adult stem cell populations. Additionally, 

cultured eMSC is a heterogeneous population, which includes a quiescent SP. 

iii. scRNA-seq can be employed to analyse endometrial cell heterogeneity. Apart 

from stromal, endothelial, epithelial and diverse immune cell populations, it 

was also identified a discrete population of highly proliferative mesenchymal 

cells. 

iv. A putative progenitor cell population characterized by a high proliferation 

transcriptome signature is present in peri-implantation endometrial samples. 

Anillin is a candidate marker for this population and in the future could be used 

to screen for stem cell deficiency in RPL patients.   

v. snRNA-seq is a viable but limited tool to study the endometrial cell 

heterogeneity. Despite its the ability to identify all main endometrial cell types 

in snap-frozen samples, efficiency of this technique is highly dependent on the 

phase of the menstrual cycle.  
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6.1 Interpretation of tissue complexity 

The endometrial cellular heterogeneity allied to the morphological modifications that 

this tissue undergoes throughout the menstrual cycle become a major hurdle when 

interpreting bulk (whole biopsy) transcriptomic data. The expression of the same 

genes in varying degrees across multiple cell subsets imply that the measured 

abundance of any such transcript is confounded by the composition of the sample 

from which it is measured (Shen-Orr and Gaujoux, 2013). To address this issue, I 

presented three different approaches.  

First, I generated a reference matrix consisting of the transcriptome profile of 

epithelial, uNK and stromal subsets to be used in computational deconvolution 

analysis of whole tissue transcriptome data. Initially, deconvolution of microarray data 

of proliferative, early-, mid- and late-secretory phase endometrial samples showed 

that the WOI coincided with a sudden change in stroma:epithelial cell ratio 

approximating 1. Recently, this result has been corroborated by Suhorutshenko and 

colleagues (2018), who combined histological analysis to transcriptome 

deconvolution. Further analysis of endometrial samples ranging from pre- to receptive 

phase demonstrated that the stromal cells were always more abundant to epithelial 

cells except in the early-receptive phase when the ratio equaled ~1. This modulation 

in the stroma:epithelial ration could be related to the fact that hypersecretory grands 

precedes the decidualization process (Crum et al, 2003). Additionally, a previous 

study has demonstrated that proliferation of glandular epithelial cells cease 

completely from day 21 onwards of the menstrual cycle, whereas proliferation of the 

stromal compartment is reduced postovulatory until day 20, followed by a subtle and 

continuous proliferation until the end of the cycle (Jürgensen et al, 1996), which could 

explain the dominance of the stromal cells in the late secretory phase. It is important 

to note that due to the date of the study, the authors did not question the nature of 

this stromal proliferation (Jürgensen et al, 1996), but it could be related to expansion 

of a progenitor cell population, proliferation of resident immune cells, or both. 

Previously, it was demonstrated that RPL is associated with a disordered and 

prolonged pro-inflammatory decidual response, which extends the WOI, promotes 

out-of-phase implantation and disables embryo selection (Salker et al, 2010; Salker 

et al, 2012). This result was explained by an alteration in the IL-33/ST2L/sST2 axis, 

decreased expression of the decidual marker prolactin (PRL) and increased levels of 

prokineticin-1 (PROK1), a cytokine that promotes implantation, in RPL patients 

(Salker et al, 2010; Salker et al, 2012). Apart from the differences in the regulation of 
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specific genes, here I showed for the first time that the RPL might also be associated 

with more pronounced variation in cell types, although this observation requires 

further investigation with a larger number of samples.  

On the other hand, endometrial cellular heterogeneity was analysed using scRNA-

seq. While the deconvolution methodology is confined to the knowledge of existing 

cell populations in a specific type of tissue (Shen-Orr and Gaujoux, 2013), the 

development of scRNA-seq enabled to determine the transcriptome profile on a 

single-cell basis and subsequently, to identify de novo populations (Andrews and 

Hemberg, 2018). scRNA-seq analysis of mid-luteal endometrial samples identified 

EnSC, EC, ciliated and non-ciliated EpC, a discrete PC population and IC comprising 

uNK, macrophages, monocytes and B-cells. The existence of ciliated cells has been 

described over a century ago (Benda, 1894), but there is still no clear concept 

regarding their role. One of the speculated functions of cilia is to remove products 

discharged by the cells (Demir et al, 2002). Alterations in ciliogenesis and non-

ciliated:ciliated cells ratio has been linked to infertility in patients with septate uterus 

(Fedele et al, 1996). Although the investigation on these cells is still limited, the 

identification of specific markers (RSPH1, CAPS and DNAAF1) can be used in future 

experiments to track and further elucidate the importance of endometrial ciliated cells. 

Resident immune cells were also captured, including three subpopulations of uNK 

cells, likely reflecting cell state transitions from a proliferative to a differentiated 

phenotype. Thus scRNA-seq superceed previous methodology by providing insightful 

information regarding endometrial heterogeneity. Nevertheless, it was predicted that 

the captured EpCs were an underrepresentation of the in vivo glandular compartment 

owing to the fact that endometrial glands are relatively refractory to mild enzymatic 

digestion. Therefore, I also investigated an alternative to scRNA-seq. 

In contrast to scRNA-seq, single nucleus transcriptome analysis does not require any 

enzymatic procedure and can be employed on archived samples. However, here I 

showed that snRNA-seq is limited to on early- to mid-secretory samples and thus it is 

not a viable technique to study endometrial heterogeneity throughout the menstrual 

cycle. This limitation may also reflect differences in mRNA processing during the 

proliferative and late-secretory phase of the cycle (Tollervey and Caceres, 2000). 

Further investigation is required to fully understand this observation.  

Taken together, computational deconvolution may be useful to reappraise RNA-seq 

data, but for future experiments scRNA-seq or emerging technology such as single 

cell ATAC-seq become a better alternative to profile endometrial transformations 
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across the menstrual cycle. Additionally, to improve the scRNA-seq analysis, it is 

important to search for new methodology that efficiently digest the endometrial 

glandular compartment. 

 

6.2 Hierarchy of endometrial stem cells and their niche 

ASC mediate the fine balance between quiescence, self-renewal, proliferation and 

differentiation through interaction with the local microenvironment (O’Brien and Bilder, 

2013). The stem cell-niche unit remains one of the most challenging targets in cell 

biology research. More than just the physical location for stem cells, the niche is also 

the dynamic place where cell-to-cell and cell-to-matrix interactions, soluble molecules 

signalling, physical and mechanical stimuli determine cell behaviour (O’Brien and 

Bilder, 2013). Being able to isolate and expand ASC in vitro became a powerful tool 

to further explore stem cell biology and develop regenerative medicine applications. 

However, it is technically challenging, since ASC removal from their native 

microenvironment has negative repercussions on their sustainability (Redondo et al, 

2017).  

In humans, the endometrial stem cell niche encompasses the perivascular space 

around the rapidly growing spiral arterioles (Murakami et al, 2014). This niche 

promotes activation and migration of eMSC to regenerate the endometrial functional 

layer (Khatun et al, 2017). Although stem cell niches vary among tissues, they share 

common microenvironmental features (Redondo et al, 2017). One of the key 

components of stem cell niche is the ECM, which has a major impact on tissue 

homeostasis and regeneration under physiological and pathological conditions 

(Gattazzo et al, 2014). In the endometrium, the stem cell niche is still poorly defined, 

but in this project, I observed that the in vitro expansion of eMSC involved modulation 

of the extracellular environment with enrichment of collagen deposition. As variations 

of collagen-coated substrates are now more regularly used to expand stem cells 

(Redondo et al, 2017), tracing the collagen signature of the native eMSC niche may 

offer a significant improvement to further understand the biology of these cells. 

Additionally, I identified a list of transcription factors and cell surface proteins in eMSC 

that support the concept of a conserved regulation between different sources of ASC. 

Another important feature of stem cell niches are the neighbouring cells, which may 

be other stem cell copies, more committed progenitors, fibroblasts, immune cells, 
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endothelial cells and nerves (Redondo et al, 2017). In the endometrium, the PVC are 

responsive to Notch signalling (Murakami et al, 2014), which is a common niche 

feature essential for cell-fate specification and maintenance of stem cells in a poised 

quiescent state (Cheung and Rando, 2013). I demonstrated that apart from the PVC 

and eMSC, the perivascular niche also encompasses a SP and highly proliferative 

progenitor cells. These observations support the concept of a hierarchy of stem cells 

in the endometrium that is responsible for the regeneration of this tissue (Gargett et 

al, 2016). Transversally, the presence of a differentiation hierarchy of stem cells has 

been identified in other systems as an important regulator of tissue homeostasis and 

regeneration (Hardy et al, 2017; Lukowski et al, 2019). Moreover, I showed that the 

isolated eMSC population is heterogeneous and comprises cells with a SP 

phenotype. Gradually, the assumption of MSC clonal purity is being revisited and new 

data is showing that in MSC cultures there is variation within single-cell-derived 

colonies (Rennerfeldt and Vliet, 2016). Nevertheless, one question that remains is the 

purpose of this identified hierarchy in endometrial samples from the secretory phase.   

 

6.3 Stem/progenitor cells in preparation for pregnancy 

The origin and recruitment mechanism of eMSC are still controversial aspects of the 

endometrial regeneration process. Several studies have demonstrated that 

endometrial repair after menstruation involves the activation of epithelial progenitor 

cells and eMSC residing in the basal layer (Masuda et al, 2010; Gargett et al, 2016). 

Simultaneously, bone marrow-derived cells (BMDC) are recruited to the endometrium 

and differentiate into non-hematopoietic endometrial lineages, including endothelial, 

stromal and epithelial cells (Taylor, 2004; Aghajanova et al, 2010; Gil-Sanchis et al, 

2015).  

Steroid hormone withdrawal during the late secretory phase triggers the menstruation 

process characterized by a pro-inflammatory production of several cytokines and 

chemokines (Evans and Salamonsen, 2012), such as SDF-1 (CXCL12), which is 

considered a potential mediator of BMDC recruitment and homing to the endometrium 

(Hu et al, 2013; Wang et al, 2015). SDF-1 is proteolytically inactivated by dipeptidyl-

peptidase IV (DPP4). Subsequently, it has been demonstrated that DPP4 inhibitors 

recruit stem cells and mediate regeneration of ischaemia-reperfusion injury in mouse 

lung (Jungraithmayr et al, 2012). Recently, a preclinical trial hypothesised that 

sitagliptin, which is a DPP4 inhibitor, would enhance the abundance of eMSC in RPL 
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patients (Tewary et al, 2020). The authors observed that the CFU count increased 

1.68-fold in the sitagliptin group and 1.08-fold in the placebo group. This result 

supports the hypothesis that BMDC are recruited to the endometrial niches by a SDF-

1-dependent mechanism, where they differentiate into eMSC and thereby contribute 

to endometrial renewal (Khatun et al, 2017). Here, following the identification of a 

putative highly proliferative progenitor population, it was also observed a correlation 

in the abundance of anillin+ cells between the stroma and glandular compartment. 

Again, this result suggests a common origin for both stromal and glandular stem cells 

(Taylor, 2004; Aghajanova et al, 2010).   

Moreover, the identification of a putative progenitor population with a high proliferative 

transcriptomic signature in mid-secretory biopsies suggests that there is a second 

signalling mechanism in the menstrual cycle to activate endometrial stem/progenitor 

cell population. At the time of submitting this thesis, a new study reported the 

recruitment of BMDC to the decidua of pregnant mice (Tal et al, 2019). Initially, the 

authors traced GFP-expressing bone marrow cells transplanted in 

immunocompromised mice and showed that during pregnancy proliferating 

nonhematopoietic BMDC are recruited into the decidua and differentiate into stromal 

decidual cells. To explore the role of BMDC to implantation and pregnancy, the 

following experiments were performed on Hoxa11 genetic knockout (KO) mice 

models, which are associated with pregnancy loss in heterozygous (+/−) mice and 

decidualization failure and lack of pregnancy in homozygous (−/−) mice. 

Transplantation of BM from wild type (WT) donor into Hoxa11+/− mice resulted in 

normalization of uterine expression of decidualization-related genes and rescued 

pregnancy loss. BM transplantation into Hoxa11-/− mice induced endometrial stromal 

expansion, gland formation, and decidualization. Thus, the authors demonstrated that 

BMDC have a nonhematopoietic physiologic contribution to the decidual stroma and 

play an important role in implantation and pregnancy maintenance.  

In parallel, the identification of a putative proliferating progenitor cell population in 

endometrial samples during the WOI, suggests that these cells might be important for 

the decidua expansion during pregnancy. Over the course of pregnancy, the human 

uterus undergoes a 500–1000-fold increase in volume. Subsequentially, the decidua 

increases noticeably too (Guo et al, 2010). In contrast to decidualization in mice that 

only occurs after blastocyst attachment (Dey et al, 2004), in humans this process is 

spontaneous and embryo independent (Gellersen and Brosens, 2014). As previously 

described in vitro decidualization is associated with a modest but significant increase 
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in colony-forming cells suggesting that decidualization also contributes to increases 

tissue plasticity prior to pregnancy (Brighton et al, 2017). Taken together, I postulate 

that in each cycle the decidualization, also characterized by a transient pro-

inflammatory period, will recruit and lead to the activation and proliferation of 

stem/progenitor cells important for decidual remodelling. In the absence of 

implantation the PC population will be shed with menstruation and thus create a pool 

of MenSC, which are characterized by a high proliferation rate (Chen et al, 2019). 

The deficiency of eMSC in RPL (Lucas et al, 2016) was once again corroborated by 

the decrease of anillin+ cells in mid-luteal samples of this clinical group. As previously 

described, this deficiency can be modulated by pharmacological approaches that 

induce the recruitment of BMDC to the endometrium (Tewary et al, 2020). Until 

recently, the research on endometrial stem cells and their impact on reproductive 

disorders has been mainly focused on their role in the cyclic tissue regeneration 

(Gargett et al, 2016). However, here I present a paradigm shift whereby this 

population is also recruited and activated in the secretory phase of the cycle to 

possibly support the decidua expansion and pregnancy maintenance. Thus, 

alterations in the recruitment and proliferation of endometrial stem cells during the 

WOI might directly impact on the remodelling of the maternal tissues and pregnancy 

outcome. 

  

6.4 Future work 

The transcriptome analysis of endometrial stem/ progenitor cells provided information 

regarding the biology of these cells and led to the identification of a progenitor cell 

population that might be related to the remodelling of the decidua during pregnancy.  

The RNA-seq performed on cultured endometrial cell populations generated a list of 

upregulated genes in cultured eMSC that requires further data mining. Additionally, it 

would be interesting to investigate the role of the identified transcription factors 

through gene knockdown experiments followed by functional analysis.  

It is also important to profile the single-cell transcriptome of endometrial samples 

across the menstrual cycle. Here I performed the analysis of LH+8 and +10 

endometrial samples and identified EnSC, EpC, EC, various IC and PC. Thus, this is 

a valuable technique to trace the modulation and transformation of these populations 
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throughout the cycle. For this, a cohort of proliferative to late secretory phase samples 

should be used. It would be particularly interesting to follow the activation of the PC 

population and possibly compare it to stem/progenitor cell populations identified in the 

proliferative phase. Moreover, knowing that the hallmarks of RPL are the alteration in 

the transient pro-inflammatory process during decidualization and a deficiency of 

stem cells, it would be crucial to compare the regulation between endometrial cell 

populations in RPL and control groups.  

Lastly, the optimization of snRNA-seq for archived endometrial samples opened the 

doors to new questions regarding the mRNA processing in proliferative and late 

secretory phase. It would be interesting to study the processes of mRNA nuclear 

export and deadenylation through the western blot analysis of nucleo-cytoplasmic 

transporting factors and PCR-based analysis of the poly(A) tail length.   
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Supplemental Figure 1. Tissue distribution of perivascular marker genes enriched in cultured PVC. The 

micrographs were obtained from The Human Protein Atlas (http://www.proteinatlas.org/). 

 

 

 

Supplemental Figure 2.  Ciliated cell marker genes. The micrographs were obtained from The Human Protein Atlas 

(http://www.proteinatlas.org/). 
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Supplemental Figure 3. Anillin expression on endometrial tissue. Micrographs was obtained from The Human 

Protein Atlas (http://www.proteinatlas.org/). 

 

 

 

Supplemental Table 10. Genes enriched in cultured PVC 

Gene Description Fold Change 
GPR116 G protein-coupled receptor 116  4.10 
POSTN periostin, osteoblast specific factor  3.00 
NDUFA4L2 NADH dehydrogenase 1 alpha subcomplex, 4-like 2 2.83 
ITGA7 integrin, alpha 7 2.67 
SGCD sarcoglycan, delta  2.42 
ANKRD1 ankyrin repeat domain 1  2.35 
KCNE4 potassium voltage-gated channel, member 4 2.34 
GDF6 growth differentiation factor 6 2.32 
COL15A1 collagen, type XV, alpha 1 2.21 
ACTG2 actin, gamma 2, smooth muscle, enteric  2.14 
ESAM endothelial cell adhesion molecule  2.09 
COL16A1 collagen, type XVI, alpha 1 2.07 
MYH11 myosin, heavy chain 11, smooth muscle  2.02 
ITGBL1 integrin, beta-like 1  2.02 
CDH13 cadherin 13  2.02 
LTBP1 latent transforming growth factor beta binding protein 1  2.00 

 
Supplemental Table 11. Genes enriched in cultured EnSC 

Gene Description Fold Change 
AIM1L absent in melanoma 1-like 2.04 
KRTAP2-3 keratin associated protein 2-3  2.04 
B4GALNT3 beta-1,4-N-acetyl-galactosaminyl transferase 3  2.05 
TRIM16 tripartite motif containing 16  2.06 
CLIC5 chloride intracellular channel 5  2.06 
FAM83H family with sequence similarity 83, member H  2.08 
SOX9 SRY (sex determining region Y)-box 9  2.08 
IFI27 interferon, alpha-inducible protein 27  2.08 
CXCL5 chemokine (C-X-C motif) ligand 5  2.10 
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AIM1 absent in melanoma 1  2.12 
BSPRY B-box and SPRY domain containing 2.14 
ZBED2 zinc finger, BED-type containing 2  2.14 
ARL4C ADP-ribosylation factor-like 4C  2.14 
RAB25 RAB25, member RAS oncogene family 2.17 
ESRP1 epithelial splicing regulatory protein 1  2.17 
MBP myelin basic protein 2.18 
MISP mitotic spindle positioning  2.22 
CDCP1 CUB domain containing protein 1  2.24 
CD74 CD74 molecule 2.25 
DSC2 desmocollin 2  2.26 
SCNN1A sodium channel, non-voltage-gated 1 alpha subunit  2.28 
EPS8L1 EPS8-like 1  2.30 
LSR lipolysis stimulated lipoprotein receptor 2.30 
CDC42BPG CDC42 binding protein kinase gamma 2.30 
SLC44A4 solute carrier family 44, member 4  2.31 
LIF leukemia inhibitory factor  2.31 
ELF3 E74-like factor 3  2.32 
GJB3 gap junction protein, beta 3, 31kDa  2.32 
AP1M2 adaptor-related protein complex 1, mu 2 subunit 2.32 
LRRN1 leucine rich repeat neuronal 1  2.33 
CGN cingulin  2.35 
IL18 interleukin 18 (interferon-gamma-inducing factor)  2.36 
SLC4A11 solute carrier family 4, member 11 2.39 
EVPL envoplakin  2.40 
XDH xanthine dehydrogenase 2.46 
FAM107A family with sequence similarity 107, member A  2.48 
LCN2 lipocalin 2 2.48 
DSG2 desmoglein 2 2.48 
JUP junction plakoglobin 2.48 
CXCL16 chemokine (C-X-C motif) ligand 16 2.49 
UNC5A unc-5 homolog A (C. elegans) 2.51 
GPR110 G protein-coupled receptor 110 2.52 
EDN2 endothelin 2  2.53 
PLCB4 phospholipase C, beta 4 2.54 
EHF ets homologous factor 2.54 
LLGL2 lethal giant larvae homolog 2 (Drosophila) 2.57 
COBL cordon-bleu WH2 repeat protein 2.57 
CLDN3 claudin 3 2.58 
GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 2.60 
C10orf55 chromosome 10 open reading frame 55 2.62 
TUBA4A tubulin, alpha 4a 2.62 
CLDN7 claudin 7 2.68 
PLAU plasminogen activator, urokinase 2.70 
SPNS2 spinster homolog 2 2.74 
C3 complement component 3 2.77 
KRT23 keratin 23 2.79 
PLLP plasmolipin 2.80 
MYO5B myosin VB 2.81 
CST6 cystatin E/M  2.83 
SGPP2 sphingosine-1-phosphate phosphatase 2  2.85 
ANXA3 annexin A3  2.86 
CLDN4 claudin 4 2.91 
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TGFA transforming growth factor, alpha 2.94 
PRSS8 protease, serine, 8  3.03 
PDZK1IP1 PDZK1 interacting protein 1 3.05 
SOX17 SRY (sex determining region Y)-box 17 3.06 
C1orf116 chromosome 1 open reading frame 116  3.09 
MSLN mesothelin 3.12 
L1CAM L1 cell adhesion molecule 3.24 
WWC1 WW and C2 domain containing 1  3.30 
SERPINA1 serpin peptidase inhibitor, clade A, member 1 3.36 
MUC16 mucin 16, cell surface associated  3.55 
ITGB4 integrin, beta 4  3.59 
MYH14 myosin, heavy chain 14, non-muscle  3.63 
LAMB3 laminin, beta 3 4.00 
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Supplemental Table 12. DGE between eMSC and TA 

 

 
 

 

 

 

Gene Description Fold Change 

SERPINB2 serpin peptidase inhibitor, clade B, member 2 3.52 

NEFM neurofilament, medium polypeptide 3.38 

KIAA1549L KIAA1549-like 2.70 

FST follistatin 2.59 

CCBE1 collagen and calcium binding EGF domains 1 2.43 

FGF5 fibroblast growth factor 5 2.35 

SERPINE1 serpin peptidase inhibitor, clade E, member 1 2.32 

SERPINB7 serpin peptidase inhibitor, clade B, member 7 2.30 

FAM167A family with sequence similarity 167, member A 2.29 

MSC musculin 2.26 

NRG1 neuregulin 1 2.25 

SPHK1 sphingosine kinase 1 2.25 

LYPD1 LY6/PLAUR domain containing 1 2.19 

COL15A1 collagen, type XV, alpha 1 2.19 

POU2F2 POU class 2 homeobox 2 2.18 

PDGFA platelet-derived growth factor alpha polypeptide  2.15 

LTBP1 latent transforming growth factor beta binding protein 1 2.14 

STC1 stanniocalcin 1 2.09 

HMGA2 high mobility group AT-hook 2 2.08 

IL11 interleukin 11  2.07 

NNMT nicotinamide N-methyltransferase 2.07 

TNFAIP6 tumor necrosis factor, alpha-induced protein 6 2.05 

ITGBL1 integrin, beta-like 1 2.05 

STMN3 stathmin-like 3 2.03 

SLC22A23 solute carrier family 22, member 23 2.03 

TMEM158 transmembrane protein 158 2.03 

DOCK10 dedicator of cytokinesis 10 2.03 

RGMB-AS1 RGMB antisense RNA 1 2.02 

COL10A1 collagen, type X, alpha 1 2.02 

GPR39 G protein-coupled receptor 39 2.00 

BRINP1 
bone morphogenetic protein/retinoic acid inducible 
neural-specific 1 -2.31 

COCH cochlin -2.12 

ACKR3 atypical chemokine receptor 3 -2.04 
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Supplemental Table 13. Genes enriched in eMSC when compared to PVC and EnSC. Genes were classified in 
transcription factors (green), cell surface proteins (blue), and 10 top markers (purple). 

Gene FoldChange 
MSC_vs_PVC 

FoldChange 
MSC_vs_EnSC Classification 

CBLN2 255.26 140.71     
COL10A1 63.04 70.30     
LRRC17 57.29 64.19     
AL121963.1 128.63 46.40   
NPBWR1 83.56 45.62     
CLEC1B 76.38 39.51     
CDK15 15.37 38.45   
KRT40 159.51 33.63     
EVI2B 11.49 30.68   
TMEM119 8.50 27.25   
GREM2 33.22 22.45   
SLITRK5 14.05 21.39   
DPT 20.24 21.09     
SLC38A4 13.80 20.88   
CLDN11 25.16 18.80     
BAI3 11.79 18.17   
FBXL13 15.34 17.42   
AKR1C1 9.01 16.99   
CST1 23.76 16.20     
ALDH1L1 22.07 16.15   
HGF 39.95 15.41   
ITGA8 15.85 14.14     
MPZ 7.21 14.04     
ITPRIPL1 11.09 14.01   
PCDH9 11.37 13.10     
AKR1C2 11.28 12.30   
CXXC4 11.01 12.20   
SLIT2 6.52 11.80     
AK5 12.14 11.38   
COLEC12 7.19 10.44     
TRPV2 9.81 9.87     
CST4 13.18 9.69   
CNIH3 14.84 9.63   
LINC00942 4.17 9.44   
BNC1 13.56 9.13     
NQO1 10.03 9.06   
RP11-138I1.2 10.44 9.00   
RP11-3L21.2 14.30 8.94   
EDARADD 6.19 8.91   
ETV1 13.47 8.84     
PRSS35 4.50 8.81     
TRPA1 5.42 8.71   
FOXF1 12.49 8.58     
DACH1 6.04 8.55   
CD163L1 9.21 8.54   
TOX 9.69 8.51     
FST 4.94 8.15   
SLC14A1 26.02 8.11     
ISM1 7.68 7.96   
PRSS3 6.18 7.90   
VEPH1 4.51 7.85   
S100A4 9.06 7.78   
LRP1B 13.74 7.67     



 

 150 

CTD-
2033A16.1 7.32 7.65   
FAM180A 4.37 7.54   
LPAR3 14.90 7.48   
ST8SIA4 5.34 7.44     
SCN9A 3.37 7.19   
LAG3 8.49 7.04   
NCKAP5 9.53 7.02   
GALNT6 7.25 6.96   
MMP1 13.01 6.56   
TRHDE 7.68 6.53     
GSG1 4.98 6.40   
ENOX1 4.46 6.39   
VAT1L 8.36 6.28   
HTR1B 4.23 6.23   
NHSL2 3.05 6.20   
WTAPP1 11.71 6.13   
SLC7A11 6.82 6.10   
RAC2 9.45 5.89   
HSD17B2 6.13 5.88     
SERPINF1 5.50 5.88     
DOCK10 3.35 5.73   
BFSP1 7.24 5.71   
LRRC8C 6.43 5.65     
PLA2G4A 19.99 5.62   
OLFML3 6.68 5.55     
GABRA2 5.88 5.51     
HMCN1 7.33 5.48     
TRHDE-AS1 5.33 5.47   
ELTD1 4.02 5.44     
ENAM 8.90 5.40   
PTGER4 11.19 5.37   
PIR 9.57 5.28     
ST6GAL2 6.31 5.19   
SLC4A4 9.05 5.18   
SYTL5 8.18 5.16   
SLC7A11-AS1 5.67 5.13   
RP11-
342D11.2 3.80 5.13   
STEAP3 6.17 5.07   
ADAMTS17 9.45 5.02   
CAMK1G 9.03 4.87   
AL121578.2 8.62 4.86   
STEAP3-AS1 5.20 4.84   
RP11-
133O22.6 6.01 4.79   
E2F7 4.81 4.76     
RP11-25K19.1 5.62 4.75   
PLEK2 7.37 4.74   
AKR1C3 15.46 4.67   
NCAM2 4.29 4.65     
CPNE7 2.71 4.61   
POPDC3 4.95 4.60   
G6PD 5.90 4.59   
NRP1 3.62 4.47     
FRMD3 3.48 4.46   
LIN7A 3.49 4.45   
METTL7A 4.60 4.44   
ITGA10 5.14 4.41     



 

 151 

F2RL2 4.27 4.36   
SNCG 4.06 4.35   
ANO4 3.18 4.29   
ADIRF 3.22 4.19   
RASGRF2 7.46 4.17   
AC098617.1 3.52 4.07   
ARHGAP18 3.88 4.03   
ABI3BP 2.60 4.00     
TNFSF15 6.17 4.00   
ATP2B1 3.49 3.98   
RP11-34A14.3 3.28 3.93   
LYPD1 10.08 3.90   
COL6A3 3.77 3.88     
SEMA3D 4.56 3.82   
TFAP2C 5.26 3.78     
SPRY2 4.78 3.74   
TNFRSF19 5.41 3.69   
GPR126 4.22 3.68     
LOXL4 3.41 3.68     
GPR39 8.18 3.64     
CHN1 3.47 3.63   
CROT 3.72 3.47   
TMEM26 4.16 3.45     
HS3ST3A1 4.50 3.44   
LINC00883 3.89 3.42   
PCDHGA10 3.12 3.40   
NR2F1 3.75 3.39     
ADAM23 3.02 3.38   
TENM4 3.49 3.35     
FRMD4A 3.01 3.29   
DPYD 2.47 3.27   
EHD3 3.41 3.27   
PREX1 5.67 3.26   
MMP16 2.56 3.25   
GLT8D2 3.35 3.23     
SECTM1 5.66 3.22   
RP11-879F14.2 3.24 3.19   
RPS6KA5 4.15 3.18   
SEMA6A 4.49 3.17   
TKT 4.23 3.17   
NRGN 4.19 3.16   
GLI3 3.48 3.15     
AOX1 3.21 3.10   
ABCC4 3.80 3.07     
TMEM200A 2.32 3.06   
SH2B3 3.00 3.05   
CARD16 4.46 3.03   
SCPEP1 3.09 3.02   
CD109 3.26 2.96     
ADRA1D 4.39 2.96   
MAP1A 2.48 2.89   
COL6A1 2.14 2.89     
SCN1B 3.58 2.88   
ITGA2 3.40 2.88     
B4GALNT1 2.90 2.86   
DOCK4 4.00 2.85   
AHRR 2.66 2.85   
SLC20A1 2.66 2.84   
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SERPINB7 5.43 2.81   
BEND6 2.69 2.80   
PRDM8 3.15 2.80     
F2RL1 5.12 2.73   
TBC1D4 2.40 2.73   
SRPX 2.44 2.70   
SLC4A8 2.69 2.69   
THSD4 2.85 2.68     
GPER1 2.76 2.68   
TNC 2.28 2.68     
WLS 3.02 2.67   
PTGR1 3.18 2.66   
TBC1D8 3.41 2.66   
LRP8 3.07 2.65   
MLLT11 2.88 2.64   
MUM1L1 2.99 2.63   
PCDHGA11 2.25 2.63   
TLE3 2.73 2.62     
EMILIN1 2.66 2.61     
AEBP1 2.45 2.61     
SLC6A6 2.75 2.60     
RGL1 2.75 2.59   
MXRA5 3.41 2.56     
MAP3K7CL 2.34 2.55     
PHKA1 2.82 2.54   
HS3ST3B1 3.33 2.54   
COL4A5 2.25 2.51   
CPT1A 2.82 2.49   
SKP2 2.57 2.49   
DUSP6 2.98 2.48   
NR2F1-AS1 2.64 2.48   
GSTM2 2.43 2.47   
PGD 3.41 2.46   
LRRN4CL 3.08 2.45     
SAMD12 3.24 2.45   
PVRL3 2.43 2.44     
BMP2K 2.49 2.44   
ME1 2.48 2.43   
SPRY4 2.68 2.41   
RP11-290L1.3 3.28 2.41   
COL7A1 2.71 2.41     
MMP14 2.54 2.39   
TXNRD1 2.58 2.37   
TMEM164 2.90 2.37   
PRNP 2.27 2.35     
RP11-
867G23.12 2.65 2.34   
PHLDA1 2.76 2.32   
WNT5B 2.27 2.32     
SDPR 2.82 2.32   
TRERF1 2.36 2.32     
DNM1 2.67 2.31   
ACAT2 2.60 2.29   
PFN2 2.13 2.28   
UCHL1 2.01 2.28   
NLRC5 2.29 2.27   
NXPE3 2.31 2.26   
TMEM51 3.89 2.26   
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RIN1 2.77 2.25   
IDH1 2.90 2.24   
IQGAP2 2.40 2.23   
MMP17 2.07 2.23   
CPED1 2.61 2.23   
MELK 2.62 2.22   
CDC20 2.85 2.21   
SRPX2 2.61 2.20   
PDIA4 2.86 2.20   
PLAU 6.70 2.18   
ARRB1 2.53 2.17   
FTL 2.25 2.15   
GNG11 2.12 2.15   
COL13A1 2.99 2.15   
SATB2 2.43 2.14     
HERC3 2.04 2.14   
AGPAT9 4.47 2.13   
PTPLAD2 2.27 2.13   
CDC25B 2.41 2.11   
RP11-529K1.4 2.23 2.11   
ARHGAP19 2.67 2.11   
RUNX2 2.84 2.09     
CTSL 2.19 2.09   
KIAA0101 2.09 2.09   
SSTR1 2.59 2.08   
FAH 2.28 2.08   
FHOD1 2.12 2.08   
PPT1 2.12 2.07   
IKBKG 2.32 2.07   
ZDHHC2 2.03 2.04     
ASPM 2.28 2.03   
LRP11 2.33 2.03   
SH3BP1 2.05 2.01   
C6orf201 2.12 2.00   

 
 
 
 
Supplemental Table 14. Summary of demographic details of patient samples used on section 4.2.3. Data is 

represented as median (range).  

 
Day of 
Cycle  

Age  Live-
births 

Previous 
losses 

BMI  

Group 1 LH+6/7 35.5 (25-41) 0 (0-2) 5 (0-18) 25 (20-43) 

Group 2 LH+8/9 36.5 (31-40) 0 (0-1) 1.5 (0-9) 25.5 (20-
34) 

Group 3  LH+10/11 36 (30-41) 0 (0-1) 1.5 (0-7) 24 (20-41) 
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Supplemental Table 15. Summary of demographic details of patient samples used on section 4.2.4. Data is 

represented as median (range). 

Day of 
Cycle  

Age live-births Previous losses BMI 

7 38 (31-41) 0 (0-1) 5 (1-7) 26.5 (21-
50) 

9 38 (31-46) 0 (0-1) 3.5 (2-6) 24 (22-32) 

11 34.5 (30-
40) 

0 (0-1) 5 (0-6) 23 (21-29) 

 
 
 
 
Supplemental Table 16. Summary of demographic details of patient samples used on section 4.2.5. Data is 

represented as median (range). 

Day of the Cycle Previous losses  n 
7 5 (3-14) 14 

8 5 (0-9) 13 

9 7 (1-14) 11 

10 1 (1-5) 3 

11 7 (2-8) 4 

 
 
 
Supplemental Table 17. Summary of demographic details of patient samples used on section 4.2.7. Data is 

represented as median (range). 

Group Age Live 
Births 

Previuos 
losses 

BMI 

Control 34 (31-40) 0 (0-0) 0 (0-1) 22 (20-29) 

RPL 35.5 (31-39) 0 (0-1) 5.5 (3-18) 24.5 (21-58) 
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