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Abstract—Task replication has been advocated as a practical
solution to reduce response times in parallel systems. The analysis
of replication-based systems typically rests on some strong
assumptions: Poisson arrivals, exponential service times, or inde-
pendent service times of the replicas. This study is motivated not
only by several studies which indicate that these assumptions are
unrealistic, but also by some elementary observations highlighting
some contriving behaviour. For instance, when service times
are not exponential, adding a replication factor can stabilize
an unstable system, i.e., having infinite delays, but a tempting
higher replication factor can push the system back in a perilous
unstable state. This behaviour disappears however if the replicas
are sufficiently correlated, in which case any replication factor
would even be detrimental.

Motivated by the need to dispense with such common yet
unrealistic and misleading assumptions, we provide a robust
theoretical framework to compute stochastic bounds on response
time distributions in general replication systems subject to
Markovian arrivals, quite general service times, and correlated
replicas. Numerical results show that our bounds are accurate
and improve state-of-the-art bounds in the case of Markovian
arrivals by as much as three orders of magnitude. We apply
our results to a practical application and highlight that correctly
setting the replication factor crucially depends on both the service
time distributions of the replicas and the degree of correlation
amongst.

I. INTRODUCTION

Despite a significant increase in network bandwidth and
computing resources, the revenue of online service providers
(and not only) is very sensitive to the variability of latencies,
especially in their tails (e.g., the 95th-percentile). Several
convincing studies reported significant potential revenue loss
by Google, Bing, or Amazon, were the latencies higher [36],
[23], [38]; a typical cited argument is that an additional 100ms
in latency would cost Amazon 1% of sales.

Given the abundance of computing resources, a very simple
way to improve latencies is replication, a concept which
was traditionally used to improve the reliability of fault-
tolerant systems [35]. In the context of a multi-server (parallel)
system, the idea is merely to replicate a task into multiple
copies/replicas, and to execute each replica on a different
server. By leveraging the statistical variability of the servers it
is expected that some replicas would finish much faster than
others; for a discussion of various system/OS factors affecting
execution times see [11]. The key gain of executing multiple
replicas is not to reduce the average latency but its tail, which
is recognized as critically important for ensuring a consistently
fluid responsiveness of systems. Therefore, replication can
be instrumental to the development of “latency tail-tolerant
systems”, similarly to its role in fault-tolerant systems [11].

While the idea of using redundant requests is not new,
as it was used to speeding up parallel programs [20], [22],
it has become very attractive with its implementation in
the MapReduce framework through the so-called ‘backup-
tasks’ [12]. Subsequent empirical work demonstrated signifi-
cant benefits, e.g., to latency reductions in Google’s distributed
systems [10], in DNS queries and database servers [41], key-
value storage systems [39], cloud storage systems [44], or
speed-ups of small jobs in data-centers [2] or short TCP
flows [45]. Complementary analytical studies (see the Related
Work section) provided fundamental insight into the benefits
of replication. Constrained by analytical tractability, most of
these works rely on several strong assumptions: not only the
arrivals are Poisson and the service times are exponentially
distributed, but the service times of the replicas are statistically
independent.

The motivation of this paper is to advance the understanding
of replication systems beyond these three assumptions, which
have been shown to be unrealistic. Indeed, the Poisson as-
sumption was shown to fail in the case of a large-scale Google
production trace, both in terms of the exponential distribution
and the renewal property for the inter-arrival times [29]; for a
similar and popular study in the case of (older) HPC workloads
see [33]; for a recent related survey see [5]. In turn, analysis
of Google, Facebook, and Bing traces indicated heavy-tailed
distributions for the job sizes [2], whereas the assumption of
independent replicas was shown to be unrealistic in [17] using
a real trace.

In addition to these convincing empirical justifications, we
provide some elementary analytical arguments, along with
simulation results, highlighting that the benefits of replication
crucially depend on both the distributional and correlation
structures of the service times. A key observation is that
the stability region of a system is not monotonous in the
replication factor. For instance, an overloaded system (i.e.,
with infinite latencies/delays) can be stabilized by adding a
replica server (i.e., latencies become finite), but adding even
more replica servers can push the system back in the perilous
unstable state.

To better capture and understand the behaviour of modern
workloads in replication-based systems, our contribution is
a robust analytical framework to compute stochastic bounds
on response time distributions. In particular, our framework
covers scenarios with Markovian arrivals, general service time
distributions (subject to a finite moment generating function
(MGF)), and a correlation model amongst the replicas. Using
back-of-the-envelope calculations, our results can be imme-



diately used for engineering purposes (e.g., to determine the
optimum number of replicated servers to minimize the top
percentiles of latencies).

Our analysis relies on a powerful martingale methodology
which was recently shown to provide remarkably accurate
stochastic bounds in various and challenging queueing systems
with non-Poisson arrivals (see, e.g., [7], [8]). Central to this
methodology are concepts and techniques from both queueing
theory (e.g., [30]) and the stochastic network calculus, a
robust methodology yet prone to large numerical inaccuracies
in the non-Poisson case [9]. According to several numeri-
cal/simulation illustrations, our results are highly accurate, in-
cluding the case of Markovian arrivals. Moreover, our bounds
improve upon the state-of-the-art bounds from [15], [16],
relying on the standard network calculus approach, by as much
as three orders of magnitude.

To demonstrate the applicability of our theoretical frame-
work we study a scenario whereby replicas can be deferred
for execution to better balance the tradeoff between resource
usage and response times under replication; such a system has
recently been addressed through Google and Bing empirical
studies. The key finding is that “statistical independence
matters”, i.e., unless the replicas are ‘sufficiently’ independent
then replication gains are either marginal or even negative.

The rest of the paper is organized as follows: In § II we
introduce the analytical models and discuss related work. In
§ III we provide our robust theoretical framework dealing with
both Poisson and Markovian arrivals, and independent and
correlated replicas; we also validate the underlying correlated
replica model using real traces. In § IV we investigate a case
study and in §V we conclude the paper.

II. REPLICATION MODELS AND RELATED WORK

We consider a parallel system with K homogeneous servers
with identical speeds (see Figure 1). A stream of tasks arrives
at a dispatcher according to some stationary and ergodic point
process; the interarrival times are denoted by ti with mean
E [t1] = 1

λ . The process (ti)i can have a Markov structure, to
be more precisely defined in § III-B.

The service times of the tasks are denoted by xi and
are drawn from some general distribution subject to a finite
moment generating function; the average is set to E [x1] = 1

µ .
The utilization of one server, in a system without replicas

where tasks are symmetrically distributed, is denoted by

ρ :=
λ

Kµ
.

In general, it is assumed for stability that ρ < 1. However, in a
system with replication, the expression of the utilization ρ may
change depending on various factors (e.g., the distribution of
tasks’ service times) whereas the stability condition may fail
(such occurrences will be specifically indicated).

A. Task Assignment Policies

A crucial design component in the parallel server system is
the task assignment policy, i.e., how are the incoming tasks

...
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Fig. 1. A parallel system with K servers; tasks are dispatched to the servers
in a possibly replicated manner (i.e., the same task to multiple servers)

assigned to the K servers for processing? While many such
policies have been analytically and empirically studied, we
focus on few relevant ones in terms of both performance and
overhead:
• Random: Each task is dispatched, uniformly at random,

to one of the K servers; in the particular case of a Poisson
(overall) arrival stream, the task arrivals at each server
follow a Poisson distribution with rate λ

K .
• Round-Robin: Tasks are deterministically dispatched in

a circular fashion to the K servers, i.e., task i is assigned
to server i mod K (with the convention that 0 stands for
K); in the case of a Poisson stream, the interarrival times
at some server follow an Erlang E(K,λ) distribution.

• G/G/K: Unlike the previous two schemes, which imme-
diately dispatch the incoming tasks, and whereby tasks
enqueue at the assigned servers, in G/G/K it is the
responsibility of each server to fetch a single task, from
a centralized queue at the dispatcher, once they become
idle.

• (Full-)Replication (K-replication factor): Each incoming
task i is replicated to all the K servers1; the correspond-
ing service times are denoted by xi,j for j = 1, . . . ,K.
Alike in Random and Round-Robin, each server maintains
a local (FIFO) queue.

• Partial-Replication (k-replication factor): Besides full
replication, a task may be replicated to only k ≤ K
servers; for simplicity, we will assume that both K and
k are powers of 2, and that consecutive blocks of k
replicas are allocated to the K servers in a round-robin
manner. We call the underlying strategy (strict) Partial-
Replication when 1 < k < K, and No-Replication when
k = 1.

In terms of analytical tractability, Random and Round-Robin
are significantly more amenable than G/G/K; in fact, exact
results are known for G/G/K only in the case of Poisson
arrivals and exponential service times (in which case the
model is denoted by M/M/K). However, G/G/K yields
significantly better performance (i.e., much smaller response
times of the tasks) than Random and Round-Robin, especially
in the case of high variability of the tasks’ service times;

1For the sake of clarification, the original task is called a replica as well.



in turn Round-Robin slightly outperforms Random (for an
excellent related discussion see [21], pp. 408–430).

It is to be noted however that the superiority of G/G/K
is (partly) due to the availability of additional system infor-
mation, i.e., each task is ‘informed’ about which server is
idle such that it can minimize its response time. Other similar
policies, in the sense of relying on additional information,
with superior performance include Join the Shortest Queue
(JSQ) [1] and its variants. In turn, amongst policies which
are oblivious to such information, Round-Robin was shown to
be optimal for exponential [13], [42] and increasing failure
rate distributions [32]; for a recent state-of-the-art queueing
analysis of Round-Robin see [24].

A more sophisticated replication strategy was proposed in
the context of massively parallel data processing systems in
which (large) jobs are split into (smaller) tasks, each assigned
to a server; once a fraction of the tasks finish their executions,
each of the remaining (straggling) tasks are further replicated.
This model appeared in the MapReduce specification [12], and
was formally studied in terms of the underlying response time /
resource usage tradeoff, albeit by disregarding queueing effects
in [43]. Another strategy used by Google is to defer the start of
executing the second replica for some suitable time, in order
to reduce resource usage [11].

In a variant of Replication whereby only the fastest l ≤ K
tasks are required to complete (whilst the residual tasks are
purged) general lower and upper bounds on average response
times appeared in [26] (the same model was qualitatively
studied in [37]). In particular, it was shown that Replication
outperforms the corresponding M/M/K model. Further upper
bounds were derived in the case of general service time
distributions, using existing bounds on the first two moments
of the lth order statistics.

Another set of qualitative results, on the superiority of Full-
Replication for a specific type of service time distributions
(including the exponential) is presented in [31]. Interestingly,
under a discrete time model with geometric service time
distributions, it is shown in [3] through quantitative results that
No-Replication is optimal (for an explanation of the apparent
contradiction between exponential and geometric service time
distributions, with respect to the optimality of the replication
model, see [31]). Related results, along with delay optimal
scheduling, are given in a fork-join queueing system in which
tasks can be replicated [40].

A generalized version of Partial-Replication considers the
situation when the fastest l ≤ k replicas finish their execution;
a practical use of this generalization is in coded distributed
storage systems [37]. The key result is that under arrivals
with independent increments and exponential (or ‘heavier’)
service times, Full-Replication minimizes average response
times. In turn, in the case of ‘lighter’ service times and 100%
utilization, a replication factor greater than one is detrimental.
The underlying proofs use an ingenious coupling argument,
but do not provide quantitative results.

The perhaps most fundamental related result obtained so far
is a recent exact analysis [18]. While the analysis critically

relies on the Poisson/exponential models, a key analytical
contribution is capturing multi-class arrivals (i.e., different
arrival streams are served by different sets of (replicated)
servers). The elegance of the results lends itself to several
fundamental and contriving insights into the properties of
replication, especially accounting for the multi-class feature
of the model. A set of related exact results, for a partial-
replication strategy with random selection of the servers, is
presented in [19].

More general stochastic bounds in replication systems are
obtained in [15], including the very challenging multi-stage
case, by leveraging the analytical power of the stochastic
network calculus methodology. While the underlying arrival
and service models from [15] are more general than ours,
the crucial difference is in handling the underlying corre-
lation structures: concretely, while [15] deals with arbitrary
correlation structures yielding stochastic bounds holding in
great generality, we exploit the specific correlation structures
through the martingale methodology.

B. Purging/Non-Purging Strategies

One commonality of the previous works is using a purging
replication strategy to deal with residual resources:
• Purging: A task is considered to complete (and hence

its response time is determined) when the fastest replica
finishes its execution; at the same time, the residual
replicas are all purged/cancelled from the system (with
some negligible related cost).

The alternative is a non-purging strategy:
• Non-Purging: A task response time is determined as in

the Purging case, but the remaining replicas leave the
system no sooner than their execution end.

Purging is clearly more efficient from a purely task
response-time perspective, as it frees resources once the first
replica completes; this operation demands however synchro-
nization overhead amongst the servers. One basic reason for
this superiority is that in the Non-Purging model the utilization
increases k-fold for a k-replication factor, for any task service
time distribution; in particular, a 2-replication factor requires
the replica-free system to have a utilization under 50% (oth-
erwise the response times get unbounded). In turn, the growth
of the utilization is less pronounced in the Purging model,
depending on the type of distribution of the service times; in
fact, and perhaps counterintuitively, there is no increase in the
case of the exponential distribution regardless the replication
factor.

Besides the advantage of a better queueing performance, the
Purging model is much easier to analyze because the analysis
is simplified to the analysis of a single queue with service
times as first-order statistics. In turn, in the Non-Purging
model, the execution times of the replicas are not synchro-
nized, which poses significant technical complications. The
only analytical study of Non-Purging is considered in [41];
besides the classical and simplifying assumptions of Poisson
arrivals and exponential service times, the underlying queueing



analysis critically relies on an artificial statistical independence
assumption amongst the queues. Using this assumption, it
is shown that below a utilization threshold of 33%, a 2-
replication factor strategy does improve the response time
despite the inherent doubling of the utilization.

We finally mention an Early Purging model, in which resid-
ual replicas are purged once the first one starts its execution,
and which appeared in [11] and further analyzed in [27];
besides reducing the resource usage, it was shown that this
model can also significantly reduce response times despite the
apparent loss of diversity, at high utilizations.

C. Runtime Models

What most of the previous analytical works have in common
is the following model
• Independent Runtimes (IR) [17]: The service times of

the replicas are statistically independent.
As it was pointed out in [17], the IR model is unrealistic

from a practical point of view; in particular, while many
theoretical results under the IR model suggest that increasing
the number of replicas decreases the response times (for others
see [28]), the same does not hold in practice. Therefore, a more
realistic model is
• Correlated Runtimes (CR): The service times of the

replicas exhibit some form of correlation.
Such a model is introduced in [17], whereby the service

times of the replicas have in common a common (random)
multiplicative factor; under a Poisson arrival model and a
specific replication strategy, the response times are computed
in terms of approximations, which are however remarkably
accurate when the replication factor is much smaller than the
number of servers. In this paper we use instead an alternative
model from [26] (see § III-C) whose additive rather than
multiplicative structure is more convenient in our framework
(essentially by leveraging the simple fact that the exponential
of a sum is the product of exponentials).

III. A ROBUST ANALYSIS OF REPLICATION-BASED
SYSTEMS

Here we present the main (theoretical) results of this pa-
per for models with Partial-Replication, Purging, and both
Independent and Correlated Runtimes. The accuracy of the
proposed results will be evaluated numerically using both
simulations and state-of-the-art results. The cases of corre-
lated runtimes/replicas will be motivated through empirical
measurements (see § III-D).

We point out that the proofs of the main results are standard
and follow a martingale-based methodology (see, e.g., [7]).
The key contribution, from an analytical point of view, lies in
the construction of the underlying martingales in the Marko-
vian case (see Theorem 3), which is instrumental for getting
numerically accurate results2.

2Using different martingales for the same problem can yield fundamentally
(numerically) different results, see, e.g., [6] and [4].

We assume a queueing system with K servers and inter-
arrival times between jobs i and i + 1 denoted by ti. Upon
its arrival, job i is replicated to k ≤ K servers where they
are processed with service times xi,1, . . . , xi,k, respectively.
For simplicity, we throughout assume that K is an integral
multiple of k. Further, the jobs are assigned to the K

k batches
in a round robin scheme, i.e., the interarrival times for one
batch can be described as:

t̃i :=

K/k−1∑
j=0

t(i−1)Kk +j .

While other analytical works on replication-based systems
chose a Random assignment policy (e.g., [17]), we choose the
Round-Robin policy as it is best suitable in our framework
from an analytical point of view, in particular to deal with
the challenging Markovian case; we note that [17], as well
as other works using the Random policy, are restricted to
Poisson arrivals. Moreover, Round-Robin is in fact superior to
Random in a system without replication (recall the discussion
from § II-A), an advantage which is expected to hold in a
system with replication as well.

The following recursion describes the response time ri+1

of job i + 1, i.e., the time between the job’s arrival and its
service being complete:

r1 := min
j≤k

x1,j , ri+1 := min
j≤k
{xi+1,j}+ max{0, ri − t̃i} ,

resulting in a representation of the steady-state response time
r as:

r =D max
n≥0

{
n+1∑
i=1

min
j≤k
{xi,j} −

n∑
i=1

t̃i

}
, (1)

where =D stands for equality in distribution, and the empty
sum is by convention equal to 0.

Depending on the correlation between either the interarrival
times and the service times, respectively, we consider four
different scenarios: In § III-A, all random variables ti, xi,j are
assumed to be independent. In § III-B, the interarrival times
are driven by a certain Markov chain, whereas in § III-C the
service times are correlated through a common additive factor.
Finally, in § III-E, a combination of both correlation models
is considered; for the main proofs see Appendix §A.

A. Independent Arrivals, Independent Replication
As stated above, we consider the scenario of independent

replication, i.e., {ti, xi,j | i ≥ 1, j ≤ k} is an independent
family of random variables.

The next Theorem provides an upper bound on the CCDF
of r as defined in Eq (1):

Theorem 1. Let θind be defined by

θind := sup

{
θ ≥ 0

∣∣∣∣ E [eθminj≤k{xi,j}
]
E
[
e−θti

]K
k ≤ 1

}
.

(2)
Then the following bound on the response time holds for all
σ ≥ 0:

P(r ≥ σ) ≤ E
[
eθind minj≤k{x1,j}

]
e−θindσ .
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Fig. 2. Two-state Markov chain Z(n)

The key assumptions which considerably simplify the proof
are the Purging model along with the batch allocation of
replication in a round-robin manner. In this way the analysis
simplifies to the analysis to a single queue with service times
as first-order statistics, which is amenable to the bounding
technique for GI/GI/1 queues from [30]; one technical com-
plication is that the MGF of the first-order statistic may not
be available in explicit form. The more sophisticated analysis
in the non-renewal case will be addressed next.

B. Markovian Arrivals, Independent Replication

Motivated by the empirical observations from [29], on the
inappropriateness of the Poisson model to fit real production
traces, we now turn to the more realistic scenario where the
interarrival times are correlated: A two-state Markov chain
Z(n) alternates between active and inactive periods; while in
the active state, exponentially distributed interarrival times are
generated with parameter λact, and the chain turns inactive with
probability p > 0. In the inactive state, one interarrival time
(exponentially distributed, parameter λiact < λact) is generated,
and the chain jumps back to the active state (see Figure 2)3.
Formally, let

ti,act ∼ Exp(λact) , ti,iact ∼ Exp(λiact)

be i.i.d. random variables and define the sequence of interar-
rival times ti by

ti := ti,Z(i) .

The steady state distribution π of the Markov chain is given
by

πact =
1

1 + p
, and πiact =

p

1 + p
,

such that for the average of the interarrival times holds

E[ti] =
(
λ−1

act + pλ−1
iact

) /
(1 + p) (3)

Note that the transition matrix of Z(n) is given by:

T :=

(
0 1
p 1− p

)
.

In order to state the main result of this section, we need the
following transform of matrix T :

3The underlying theory extends to more complex Markovian structures, see,
e.g., [7], at the expense of notational complexity; the chosen 2-state Markov
model is arguably sufficient for the paper’s purposes.

Definition 2. For 0 ≤ θ < λiact, let Tθ denote the following
matrix:

Tθ :=

(
0 λact

λact+θ

p λiact
λiact+θ

(1− p) λact
λact+θ

)
.

Further, let ξ(θ) denote the spectral radius of Tθ, and h =
(hact, hiact) be a corresponding eigenvector.

Note that Tθ is an exponential transform of T which has
the Laplacians of the respective arrival times as an additional
factor in each column. In particular, with θ = 0 we recover
the transition matrix itself, i.e., T0 = T .

The following Theorem is the analogous result to Theorem 1
(note that the service times xi,j are still assumed to be i.i.d.):

Theorem 3. Let 1 ≤ k ≤ K and θmkv be defined by

θmkv := sup
{
θ ≥ 0

∣∣∣ E [eθminj≤k x1,j
]
ξ
K
k (θ) ≤ 1

}
.

Then, for the system with replication to k out of K servers,
the following bound on the response time holds for all σ > 0:

P(r ≥ σ) ≤ E
[
eθmkv minj≤k x1,j

]
e−θmkvσ .

C. Independent Arrivals, Correlated Replication

We now address the more realistic scenario when the
replicas xi,j are no longer independent; we consider the fol-
lowing correlation model from [26] (for additional numerical
justification see § III-D):

xi,j = δyi + (1− δ) yi,j , (4)

where the random variables yi and yi,j are i.i.d. Here, the
parameter δ describes the degree of correlation amongst the
replicas: δ = 0 corresponds to the i.i.d. case from § III-A,
whereas for δ = 1 the K servers are entirely synchronized in
which case no replication gain could be achieved.

For simplicity, the interarrival times ti are first assumed to
be i.i.d. as in § III-A.

Theorem 4. Let θcor be defined by

θcor := sup

{
θ ≥ 0

∣∣∣∣ E [eθδyi]E [eθ(1−δ) minj≤k y1,j
]

E
[
e−θt1

]K
k ≤ 1

}
.

Then the following bound on the response time holds for all
σ ≥ 0:

P(r ≥ σ) ≤ E
[
eδθcory1

]
E
[
e(1−δ)θcor minj≤k y1,j

]
e−θcorσ .

Proof. Entirely analogous to the proof of Theorem 1.

To illustrate the impact of the correlation parameter δ, we
consider the special case when yi and yi,j are exponentially
distributed with parameter µ. Clearly,

min
j≤k

y1,j ∼ Exp(kµ) ,

so that θcor > 0 is the solution of
µ

µ− δθ
kµ

kµ− (1− δ) θ
λ

λ+ θ
= 1 .
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Fig. 3. Delay for the 99%-percentile, from Theorem 4, as a function of the
degree of correlation δ (λ = 4 ∗ 0.75, µ = 1, K = 4, k = 1, 2, 4)

Further, Figure 3 illustrates the 99%-percentile of the delay
as a function of the degree of correlation δ for several numbers
of replicas k. Strictly from the point of view of the stability
region replication (both k = 2 and k = 4) is detrimental as the
corresponding systems quickly become unstable. In contrast,
from the point of view of delays, replication can be beneficial
within a subset of the corresponding stability region (e.g., to
the left of where the ‘k = 1’ and ‘k = 4’ curves intersect)
notwithstanding its strict inclusion in the stability region of
the non-replicated system. This fundamental observation can
be intuitively explained in that for larger values of the degree
of correlation δ, the servers become more synchronized and
consequently no significant replication gain can be achieved;
alternatively, as 1−δ gets smaller, the potential replication gain
stemming from minj≤k yi,j diminishes. As a side remark, the
symmetry in the delay for k = 1 is due to the underlying
Erlang distribution, which minimizes its variance at δ = .5.

D. An Empirical Justification for the Correlated Service
Model

Before presenting the results for correlations in both arrivals
and replicas, we validate the earlier correlated service time
model from Eq. (4).

We use a trace of service times collected from a large
web service system that adopts replication to improve la-
tency: Users’ original and replicated requests are first sent
to the front-end Apache servers and then pages are retrieved
either from the memcache servers or the back-end database,
depending on whether the content is cached at the memcache
servers. We measured the time from a request’s arrival at the
Apache server until the request being returned, either from the
memcache or the database servers. As the trace is collected at
a low arrival rate, the measured times are exactly the service
times and do not include a queueing delay.

Concretely, the trace is collected from a web system consist-
ing of 16 homogeneous virtual servers and uses a replication
factor of 5, i.e., a single request is processed at 5 different
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Fig. 4. Empirical and fitted distributions of service times

servers in parallel. The trace contains a total number of 1000
requests, and each request has 5 different service times, one
from each of the replicas.

We use the following fitting procedure to obtain both the
value of δ and the (empirical) distributions of yi and yi,j
corresponding to Eq. (4): For each δ within an exhaustive
set of values, we first let yi be a scaled median of all its 5
service times, reflecting the identical content of the replicated
page requests. We then generate a set of yi,j according to the
selected values of δ and yi. Secondly, we fit the yi and yi,j
to one of the following statistical distributions: Exponential,
Normal, Beta, Inverse Gaussian, Log-normal, Weibull, and
Log-logistic. Using the Kolmogorov-Smirnov and Chi-squared
tests, we compute the p-values for each fitting, and determine
the goodness of fit at the significance level of 5%, against
the hypothesis that the yi, yi,j are from the fitted distribution.
We repeat those two steps for every δ and choose the one
that maximizes the p-value of the optimal fitting among all
δ-values considered. To ease the analysis, we only considered
δ such that the difference between E[yi] and E[yi,j ] is within
a 10% margin.

In Figure 4, the empirical distributions and the correspond-
ing fitted distributions are depicted for yi and yi,j , respectively.
The degree of correlation δ with the best fitting for yi and
yij is δ = 0.8; the resulting means are E[yi] = 87.13 and
E[yi,j ] = 82.05, respectively. In terms of the distributions,
the best fitting for yi is the Weibull distribution with scale
parameter λ = 85.02 and shape parameter k = 0.94.
Although the exponential distribution can also pass both the
Kolmogorov-Smirnov and Chi-square tests, the resulting p-
value is lower than for the Weibull distribution. The best fitting
for yi,j is the Log-logistic distribution with scale parameter
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Fig. 5. Delay bounds from the four main Theorems (in (a): λ = 4 ∗ 0.75,
µ = 1, in (b): λ = 4 ∗ 0.75, δ = 0.5, µ′ := δk + (1 − δ), in (c): p = 0.1,
λiact = 0.3, λact = 30, µ = 1, in (d): p = 0.1, λiact = 0.3, λact = 30,
µ = 1, δ = 0.5, µ′ := δk+ (1 − δ)); some simulation points are above the
bounds in the tail due to the insufficient length of the simulation.

α = 3.79 and shape parameter β = 0.61. Both Weibull and
Log-logistic distributions are, with the obtained parameters,
heavy-tailed; fitting these models within our framework would
require approximations of heavy-tailed distributions with hy-
perexponential distributions, which are subject to finite MGFs
(see, e.g., [14]). Overall, our results show that service times
of replicated requests from real systems are dependent (with
δ = 0.8) and have long tails (thus further confirming existing
measurements [2]), strongly arguing for the correlated service
model.

E. Markovian Arrivals, Correlated Replication

We briefly state the results for the combination of the
scenario from § III-B and § III-C:

Theorem 5. With the same notation as in § III-B and § III-C,
let θmkv,cor be defined by

θmkv,cor := sup

{
θ ≥ 0

∣∣∣ E [eθδy1]E [eθ(1−δ) minj≤k y1,j
]

ξ
K
k (θ) ≤ 1

}
.

Then the following bound on the response time holds for all
σ ≥ 0:

P(r ≥ σ) ≤ E
[
eδθmkv,cory1

]
E
[
e(1−δ)θmkv,cor minj≤k y1,j

]
e−θmkv,corσ .

Proof. Entirely analoguous to the proofs of Theorems 3-4.

To check the numerical accuracy of the stochastic bounds
from Theorems 1, 3, 4 and 5 we refer to Figure 5. In all
scenarios, addressing combinations of correlated arrivals and
replications, exponential jobs with parameter µ are replicated
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Fig. 6. Delay bounds (Theorem 3 vs. Theorem 1 from [15], [16]) (p = 0.1,
λiact = 0.3, µ = 1, λact is determined from ρ)

to k = 1, 2, 4 out of a total number of K = 4 servers. The
parameters of the respective models are chosen such that the
(server) utilization remains constant, i.e., ρ = 0.75. We remark
that in all scenarios the stochastic bounds are remarkably
accurate.

F. Comparison against state-of-the-art

Here we compare our bounds against the state-of-the-art
bounds from [15], [16]. We only consider the case of inde-
pendent replication, considered in [15]. We also consider the
case when k = K (i.e., all servers process all replicas) and
exponential service times for the replicas with parameter µ.

In the case of independent arrivals, our results from Theo-
rem 1 exactly match those from [15], [16] (see Theorem 1
therein).

In the Markovian case, consider the Markov chain model
from § III-B. The bound from [15], [16] (Theorem 1), which
is used in [15] for the replication scenario, can be stated as

P(r ≥ σ) ≤ inf
θ

1

1− ξ(θ) Kµ
Kµ+θ

e−θσ ,

where ξ(θ) is the spectral radius from § III-B and the infimum
is taken for all values θ > 0 such that ξ(θ) Kµ

Kµ+θ < 1.
In Fig. 6 we numerically compare our bound from The-

orem 3 against the bound from Theorem 1 from [15], [16],
for K = 1, 4, 10, 25; our bound for K = 4 and ρ = 0.75
is the same one depicted in Fig. 5.(c). While the two sets of
bounds are reasonably similar in the case of a single server
K = 1, we observe that our bounds improve by at least three
orders of magnitude when K = 25 at utilization ρ = 0.75.
Such improvements can become more pronounced for larger
numbers of servers (e.g., at least four orders of magnitude
when K = 100)4. Moreover, the bounds from [15], [16] are

4The corresponding figure is omitted for brevity.



trivial at high utilization ρ = 0.9 as the corresponding values
(probabilities) are larger than 1. The numerical looseness of
the results from [15], [16] is symptomatic of the underlying
stochastic network calculus approach which does not properly
capture the statistical correlations within arrival or service
processes; for related discussions see [9], [7].

IV. APPLICATION: RESOURCE USAGE VS. RESPONSE
TIMES

We investigate the analytical tradeoff between resource
usage and response times under replication. This application
is motivated by empirical observations from Google [11] and
Bing [25] traces that a slight increase in the resource budget
may yield substantial reductions of the upper quantiles of re-
sponse times. For example, [25] reports that the 99th percentile
of the delay improves by as much as 40% under a 5% increase
of the resource budget. To compensate for the inherent increase
of resource usage under replication, the schemes from [11],
[25] defer the execution time of the replicas until the original
request has been outstanding for a given replication offset ∆.
These schemes were recently substantially improved through a
sophisticated algorithm which permits replication under some
conditions [34].

∆ y

x

Server 2:

Server 1:

. . .

. . .

Fig. 7. Replication with deferred execution times: a replica (at Server 2) may
start no sooner than (∆ ≥ 0) after the starting time of the original (at Server
1).

Consider a scenario with two servers. Jobs arrive with rate
λ at the first server with interarrival times ti and service times
xi =D x; if the processing time of a job is larger than some
fixed ∆, then the job is replicated at the second server with
service times yi =D y (see Figure 7 for a time-line illustration
of a generic job with execution time x and its replica, should
x > ∆). Whenever either of the original job or its replica
finishes execution, the residual service time of the other is
cancelled (i.e., the purging replication model).

The utilization at the first server is thus given by

ρ1 = λE [min{x,∆ + y}] , (5)

whereas the utilization at the second is

ρ2 = λE [min {|x−∆|, y}] . (6)

We note that unlike previous models, where the utilization is
server independent, the current model is subject to different
server utilizations due to the lack of symmetry in dispatching
the load.

The measure for resource usage is the total utilization at
the two servers and is denoted by u to avoid confusion

u := ρ1 + ρ2 .
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Fig. 8. Quantiles of the response time vs. the replication offset ∆ (λ = 0.75,
µ = 1); ε is the tail probability of the delay

Aiming for explicit results, we assume for convenience the
exponential service model, i.e., x ∼ exp(µ) and y ∼ exp(µ),
with µ = 1. Moreover, we consider both the independent and
correlated replication models.

1) Independent Replication: Given the statistical indepen-
dence of xi’s and yi’s, straightforward computations of inte-
grals yield

ρ1 =
λ

µ
− λ

2µ
e−µ∆ and

ρ2 =
λ

2µ
e−µ∆ ,

which means that the resource usage u = λ
µ is invariant to the

choice of ∆.
In turn, ∆ can have a major impact on the response times:

for instance, if µ < λ < 2µ then the response times can be
either unbounded for sufficiently large values of ∆, and in
particular when ∆ =∞ (i.e., no replicas are executed and the
system running on a single server is unstable), or finite for
some values of ∆ (i.e., replication stabilizes the system).

In fact, an immediate application of Theorem 1 yields
that the response time is non-decreasing in ∆. Thus, the
optimal choice of ∆, which minimizes both the resource
usage and the response times, is ∆ = 0. The explanation for
the seemingly sharp contrast between this theoretical result
and the empirical results from [11], [25] is the underlying
independence assumption of the replication model.

2) Correlated Replication: A non-trivial tradeoff between
resource usage and response times manifests itself under the
more realistic correlated replication model from § III-C. The
original and replica response times are modelled by

(1− δ)x+ δz and (1− δ)y + δz ,

where x, y, and z are exponential with rate µ = 1. The
parameter δ sets the degree of correlation; in particular, small
values of δ indicate a small degree of correlation.

Rather tedious computations of integrals, due to several
conditions stemming from the absolute value operator in ρ2,
yield the individual utilizations

ρ1 =
λ

µ

(
1− 1− δ

2
e−

µ
1−δ∆

)
and

ρ2 =
λ

µ

(
δ2

2δ − 1
e−

µ
δ ∆ − 1− δ

2(2δ − 1)
e−

µ
1−δ∆

)
,
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Fig. 9. Resource usage u from Eq. (7) (λ = 0.75, µ = 1)

and further the resource usage

u =
λ

µ

(
1 +

δ2

2δ − 1
e−

µ
δ ∆ − δ(1− δ)

2δ − 1
e−

µ
1−δ∆

)
(7)

under the assumptions that δ ∈ (0, 1) and δ 6= .5.
To illustrate a quantitative tradeoff between resource usage

(Eq. (7)) and response times (Theorem 4), we refer to Figure 8
which shows the increase of the top percentiles of the response
times (90th, 95th, and 99th) as a function of the replication
offset ∆. Both small (δ = 0.25) and high (δ = 0.75)
correlation degrees are considered; in Figure 9, the resource
usage u corresponding to Eq. (7) is shown. We observe that
under the small correlation degree, a 20% decrease of resource
usage from u = λ

µ (1 + δ) ≈ 0.94 (when ∆ = 0) to
u = λ

µ = 0.75 (when ∆ = ∞) yields a dramatic increase
of the 99th percentile of the response times of roughly 230%.
In turn, under the high correlation degree, the same 20%
decrease of resource usage from u ≈ 1.31 (when ∆ = 0)
to u ≈ 1.05 (when ∆ = 0.8) yields an increase of the
same response time percentile of only roughly 37%. These
numerical results, which are clearly dependent on the model’s
assumptions and numerical values, indicate nevertheless that
a drastic reduction of the top percentiles of response times at
the expense of a small increase of resource usage [11], [25] is
likely due to a low correlation (or almost independence) of the
service times. Conversely, if the service times of the replicas
are sufficiently correlated, increasing the resource usage only
yields a marginal gain in response time reductions.

V. CONCLUSIONS

In this paper we have developed an analytical framework
to compute stochastic bounds on response time distributions
in quite general queueing systems with replication. Unlike
existing models, we accounted for three main practical char-
acteristics: non-Poisson inter-arrivals, general service time
distributions, and correlated service times for the replicas.
By employing a powerful methodology based on martingales,
we obtained numerically accurate bounds by exploiting the

specific correlation structures of the underlying processes. By
further considering a practical case study of systems with
replication, we highlighted that the benefits or drawbacks of
replication are highly sensitive to the three features altogether.

APPENDIX

Proof of Theorem 1. Define the process M(n) by

M(n+ 1) := eθind(
∑n+1
i=1 minj≤k{xi,j}−

∑n
i=1 t̃i) .

M(n) is a martingale:

E[M(n+ 1)M(n)−1 |M(1), . . . ,M(n)]

= E
[
eθind(minj≤k xn+1,j−t̃n)

]
= E

[
eθind minj≤k xn+1,j

]
E
[
e−θindtn

]K
k

= 1 .

Now define the stopping time N as

N := min

{
n ≥ 0

∣∣∣∣∣
n∑
i=1

min
j≤k
{xi,j} −

n−1∑
i=1

t̃i ≥ σ

}
,

and note that {N < ∞} = {r ≥ σ}. With the optional
stopping theorem for some l ∈ N:

E
[
eθind minj≤k x1,j

]
= E [M(1)] = E [M(N ∧ l]

≥ E [M(N ∧ l)1N≤l] ≥ eθindσP(N ≤ l)

Now let l→∞.

Proof of Theorem 3. Proceeding similarly as in the proof of
Theorem 1, define the process M(n) by

M(n) := hZ(nKk −1)e
θmkv(

∑n
i=1 minj≤k{xi,j}−

∑n−1
i=1 t̃i) .

M(n) is a martingale: By induction over K
k − 1 one shows

that:

E
[
e−θmkv t̃n+1

∣∣∣∣ Z (nKk − 1

)]
=
(
T
K
k

θmkv

)
Z(nKk −1),iact

+
(
T
n
k

θmkv

)
Z(nKk −1),act

.

Now:

E
[
hZ((n+1)Kk −1)e

θmkv(minj≤k{xn+1,j}−t̃n)
∣∣∣ S = act

]
= E

[
eθmkv minj≤k{xn,j}

] (
T
K
k

θmkv
h
)

act

= E
[
eθmkv minj≤k{xn+1,j}

]
ξ
K
k (θmkv)hact

= hact ,

where S := Z
(
nKk − 1

)
, and similarly one obtains:

E
[
hZ((n+1)Kk −1)e

θmkv(minj≤k{xn+1,j}−t̃n)
∣∣∣ S = iact

]
= hiact ,

so that:

E
[
hZ((n+1)Kk −1)e

θmkv(minj≤k{xn+1,j}−t̃n)
∣∣∣ S] = hZ(n) .

Now multiply both sides by eθmkv(
∑n
i=1 minj≤k x1,j−

∑n−1
i=1 ti).

The proof completes along the same kind of lines as in the
proof of Theorem 1.



REFERENCES

[1] I. J. B. F. Adan, G. J. van Houtum, and J. van der Wal. Upper and
Lower Bounds for the Waiting Time in the Symmetric Shortest Queue
System. Annals of Operations Research, 48(2):197–217, Apr. 1994.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective
straggler mitigation: Attack of the clones. In 10th USENIX Conference
on Networked Systems Design and Implementation (NSDI), pages 185–
198, 2013.

[3] S. Borst, O. Boxma, J. F. Groote, and S. Mauw. Task allocation in a
multi-server system. Journal of Scheduling, 6(5):423–436, Sept. 2003.

[4] E. Buffet and N. G. Duffield. Exponential upper bounds via martingales
for multiplexers with Markovian arrivals. Journal of Applied Probability,
31(4):1049–1060, Dec. 1994.

[5] M. C. Calzarossa, L. Massari, and D. Tessera. Workload characteriza-
tion: A survey revisited. ACM Comput. Surv., 48(3):48:1–48:43, Feb.
2016.

[6] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer Verlag, 2000.

[7] F. Ciucu and F. Poloczek. Two extensions of Kingman’s GI/G/1 bound.
Proc. of the ACM on Measurement and Analysis of Computing Systems
- ACM Sigmetrics / IFIP Performance, 2(3):43:1–43:33, Dec. 2018.

[8] F. Ciucu, F. Poloczek, and A. Rizk. Queue and loss distributions in
finite-buffer queues. Proc. of the ACM on Measurement and Analysis of
Computing Systems - ACM Sigmetrics / IFIP Performance, 3(2):31:1–
31:29, June 2019.

[9] F. Ciucu and J. Schmitt. Perspectives on network calculus - No free
lunch but still good value. In ACM Sigcomm, 2012.

[10] J. Dean. [Online] Achieving rapid response times in large online
services. Mar. 2012. Berkeley AMPLab Cloud Seminar, http://research.
google.com/people/jeff/latency.html.

[11] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, Feb. 2013.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, Jan. 2008.

[13] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing
problem. IEEE Transactions on Automatic Control, 25(4):690–693, Aug.
1980.

[14] A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long-
tail distributions to analyze network performance models. Performance
Evaluation, 31(3-4):245–279, Jan. 1998.

[15] M. Fidler and Y. Jiang. Non-asymptotic delay bounds for (k, l) fork-
join systems and multi-stage fork-join networks. CoRR, abs/1512.08354,
2015.

[16] M. Fidler and Y. Jiang. Non-asymptotic delay bounds for (k, l) fork-join
systems and multi-stage fork-join networks. In IEEE INFOCOM, 2016.

[17] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, undefined, undefined,
undefined, and undefined. A better model for job redundancy: Decou-
pling server slowdown and job size. IEEE MASCOTS, 2016.

[18] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytiä.
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