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A B S T R A C T

Previous exposure to influenza viruses confers cross-immunity against future infections with related strains.
However, this is not always accounted for explicitly in mathematical models used for forecasting during
influenza outbreaks. We show that, if an influenza outbreak is due to a strain that is similar to one that
has emerged previously, then accounting for cross-immunity explicitly can improve the accuracy of real-time
forecasts. To do this, we consider two infectious disease outbreak forecasting models. In the first (the ‘‘1-group
model’’), all individuals are assumed to be identical and cross-immunity is not accounted for. In the second
(the ‘‘2-group model’’), individuals who have previously been infected by a related strain are assumed to
be less likely to experience severe disease, and therefore recover more quickly, than immunologically naive
individuals. We fit both models to estimated case notification data (including symptomatic individuals as
well as laboratory-confirmed cases) from Japan from the 2009 H1N1 influenza pandemic, and then generate
synthetic data for a future outbreak by assuming that the 2-group model represents the epidemiology of
influenza infections more accurately. We use the 1-group model (as well as the 2-group model for comparison)
to generate forecasts that would be obtained in real-time as the future outbreak is ongoing, using parameter
values estimated from the 2009 epidemic as informative priors, motivated by the fact that without using prior
information from 2009, the forecasts are highly uncertain. In the scenario that we consider, the 1-group model
only produces accurate outbreak forecasts once the peak of the epidemic has passed, even when the values
of important epidemiological parameters such as the lengths of the mean incubation and infectious periods
are known exactly. As a result, it is necessary to use the more epidemiologically realistic 2-group model to
generate accurate forecasts. Accounting for cross-immunity driven by exposures in previous outbreaks explicitly
is expected to improve the accuracy of epidemiological modelling forecasts during influenza outbreaks.
1. Introduction

Three major influenza pandemics occurred in the 20th century, in
1918, 1957, and 1968 (Kilbourne, 2006). Each pandemic resulted in
over one million deaths, with the death toll of the 1918 Spanish Flu
pandemic estimated to be 50 million people (Johnson and Mueller,
2002). In 2009, reassortment of North American and Eurasian swine
viruses generated a new strain of H1N1, triggering the first influenza
pandemic of the 21st century (Trifonov et al., 2009; Christman et al.,
2011). The virus is believed to have originated in Mexico in April 2009,
and then spread rapidly across the globe, reaching 43 countries by May
that year (Fraser et al., 2009; Trifonov et al., 2009). The case fatality
rate due to the virus was lower than that of previous pandemics in
the 20th century (Kamigaki and Oshitani, 2009). However, the scale
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of the pandemic, with estimates that 11%–21% of the global popu-
lation contracted the virus, led to a significant burden on healthcare
systems (Kelly et al., 2011).

Influenza A viruses mutate over time, either due to antigenic drift,
where a small mutation in the genes of the virus leads to changes in the
surface proteins producing a closely related strain, or, antigenic shift,
an abrupt, major change in the virus due to recombination and reas-
sortment, resulting in new surface proteins (Bouvier and Palese, 2008;
Kim et al., 2018). A new form of the virus that has emerged due to drift
is likely to have similar antigenic properties to the original virus, and
thus individuals who were infected with the original virus may have
acquired some immunity to the altered virus. However, when antigenic
shift occurs, many individuals are likely to have little or no immunity
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to the new virus (depending on their lifetime history of infection). Due
to the random nature of the emergence of new influenza strains, it is
not currently possible to predict when future pandemics will occur,
and which strains will cause these pandemics (Neumann and Kawaoka,
2019). However, mathematical models have been used extensively for
forecasting and informing public health measures when outbreaks are
ongoing (Ferguson et al., 2006; Hall et al., 2007; Nishiura, 2011;
Ohkusa et al., 2011; Tizzoni et al., 2012; Biggerstaff et al., 2016;
Thompson and Brooks-Pollock, 2019).

The most basic infectious disease outbreak models assume that
individuals have similar characteristics (Chowell et al., 2006; Betten-
court and Ribeiro, 2008). More complex models account for differences
between individuals. For example, in many studies that aim to deter-
mine optimal vaccination strategies, populations are split into low-risk
and high-risk groups (Gani et al., 2005; Dushoff et al., 2007), and
spatial heterogeneity can be incorporated by partitioning individuals
according to their location (Longini Jr. et al., 2004; Ohkusa et al.,
2009). Commonly, due to different contact rates between individuals
of different ages, as well as varying case fatality rates between age
groups, age-structured models are used (Chowell et al., 2009; Medlock
and Galvani, 2009; Glasser et al., 2010; Klepac et al., 2018; Davies
et al., 2020; Thompson, 2020b). Models of influenza transmission
that incorporate evolutionary and multi-strain dynamics (He et al.,
2015; Yang et al., 2015; Du et al., 2017), as well as phylodynamics
(accounting for temporal changes in pathogen phylogenies), have also
been considered (Grenfell, 2004; Koelle et al., 2006; Frost et al., 2015).

Other types of heterogeneity also play an important role in the dy-
namics of influenza outbreaks. Previous exposure to an influenza virus
confers homosubtypic cross-immunity to antigenically related strains of
the original virus due to cross-reactive neutralising antibodies (Grebe
et al., 2008; Kreijtz et al., 2011; Krammer, 2019; Padilla-Quirarte et al.,
2019). These neutralising antibodies, predominantly against haemag-
glutinin (HA) proteins on the surface of the virus, block viral entry
to the host cell (Sym et al., 2009; Huang et al., 2013). It has also
been suggested that cross-protective non-HA antibody immunity may
lead to reduced disease severity (Fang et al., 2011). Neuraminidase
(NA) specific antibodies have also been shown to reduce influenza viral
titres, morbidity, and virus shedding (Schulman et al., 1968; Murphy
et al., 1972; Couch et al., 1974; Webster et al., 1988; Epstein et al.,
1993; Mozdzanowska et al., 1999). As well as homosubtypic immunity,
there is evidence of heterosubtypic immunity, namely cross-protection
generated by prior exposure to a different but related influenza sub-
type (Nguyen et al., 2007; Grebe et al., 2008; Fox et al., 2017).
Cross-immunity – homosubtypic and/or heterosubtypic – may explain
why there has not been an influenza pandemic as severe as the 1918
pandemic in the last century (Thompson et al., 2019).

A significant proportion of elderly individuals carried pre-existing
immunity (due to cross-reactive anti-HA antibodies) to the influenza
strain that was responsible for the 2009 pandemic (Hancock et al.,
2009; Xing and Cardona, 2009; Bandaranayake et al., 2010; Hardelid
et al., 2010; Gostic et al., 2019). This may be due to the similarities
between the 2009 H1N1 virus and the 1918 Spanish Flu virus, as viral
descendants of the 1918 Spanish Flu virus continued to circulate until
the 1957 pandemic (Skountzou et al., 2010; Xu et al., 2010). The
suggestion that immunity was due to previous infections that occurred
decades earlier implies that this form of cross-immunity is likely to be
lifelong (Yu et al., 2008). The consequences of pre-existing immunity
can be seen in the age distribution of infected individuals in Japan in
the 2009 pandemic, where only a small proportion of the individuals
who sought medical attention were elderly (Mizumoto et al., 2013). A
number of studies in animals have also shown that prior infection with
seasonal H1N1 strains have been able to provide substantial protection
against infection with the 2009 H1N1 pandemic virus (Ellebedy et al.,
2010; Kash et al., 2010; Laurie et al., 2010; Ellebedy et al., 2011).
2

As well as the heterogeneity between hosts in infection risk and age
mentioned previously, models in which populations are structured ac-
cording to whether or not individuals carry pre-existing immunity can
also be formulated (Andreasen et al., 1997; Martcheva and Pilyugin,
2006; Reluga et al., 2008; Penman et al., 2016; Thompson et al., 2019).

In this paper, our attention is directed towards how cross-immunity
(either homosubtypic or heterosubtypic) affects the predictability of
epidemics. We use mathematical models to investigate whether or not
it is necessary to account for cross-immune individuals in the popu-
lation when forecasting the dynamics of future influenza epidemics.
We consider two epidemiological models. In the first, cross-immunity is
ignored (the ‘‘1-group model’’). In the second, more epidemiologically
realistic model (the ‘‘2-group model’’), individuals with and without
cross-immunity are accounted for explicitly.

First, we estimate the values of the parameters of each model
(specifically, the transmission rate and the effective population size)
using data from the 2009 H1N1 influenza epidemic in Japan. We
then consider a synthetic future influenza epidemic of an antigenically
similar strain, simulated using the more epidemiologically realistic 2-
group model. We explore whether or not accurate forecasts of this
epidemic can be obtained in real-time. If uninformative priors are used
and parameters are estimated in real-time, even the more realistic 2-
group model is unable to generate accurate forecasts of the remainder
of the epidemic before the peak occurs. This motivates us to incorporate
information from the 2009 epidemic to set informative priors. We show
that forecasts made using the 1-group model in advance or at the
start of a future epidemic are inaccurate, even if informative priors
are used, because that model does not account for differing levels
of cross-immunity between the starts of the 2009 epidemic and the
future epidemic. We then use both information from the 2009 epidemic
and data obtained as the future outbreak is ongoing to generate real-
time forecasts using the 1-group and 2-group models. Early in the
outbreak, only the 2-group model can provide accurate forecasts of
the remainder of the epidemic. For that reason, cross-immunity should
be included in epidemiological forecasting models whenever a large
influenza outbreak is related to an antigenically similar strain that has
previously caused a major epidemic.

2. Methods

2.1. Data

Our analysis involves case notification data from the 2009 H1N1 in-
fluenza epidemic in Japan comprising the estimated numbers of weekly
cases seeking medical attention in that country. These nationwide
data were based on sentinel data from 4800 hospitals, extrapolated
to the total number of medical facilities in Japan (Nishiura, 2011;
Omori and Nishiura, 2011). The data were acquired from Fig. 1 of
the analysis by Nishiura (2011) using the data extraction tool https:
//automeris.io/WebPlotDigitizer/ and the extracted data are available
in Supplementary Data S1. The data represent the numbers of patients
per week who sought medical attention and met one or more of the
following criteria: (i) acute course of illness, (ii) fever higher than 38◦C,
(iii) cough, sputum or breathlessness (symptoms of upper respiratory
infection), (iv) general fatigue, and (v) positive laboratory diagnosis.

It was estimated that 23.5% of the Japanese population were in-
fected during the epidemic, and that 16.1% were infected and sought
medical attention (Mizumoto et al., 2013). Therefore (23.5−16.1)∕23.5 =
31.5% of infected individuals did not seek medical attention. We assume
that those infected individuals who did not seek medical attention
suffered mild symptoms of influenza because they were cross-immune
to the virus (see Discussion). Hence, extrapolating to the rest of the
population and assuming that the susceptibility of hosts is unaffected
by cross-immunity, we assume when fitting the 2-group model that
31.5% of the population were cross-immune to the virus and that
68.5% were immunologically naive (i.e. had not previously acquired

cross-immunity to the 2009 H1N1 pandemic strain, as they had not
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been infected by a previous antigenically similar strain of the virus).
However, we also test the robustness of our results to this assumption
by conducting analyses for different proportions of the population that
are cross-immune (Supplementary Information Section S.1).

2.2. Models

We consider two models characterising influenza outbreaks. In the
first (the 1-group model), which is the commonly used SEIR model
(Anderson and May, 1991; Mills et al., 2004; Chowell et al., 2006; Chen
and Liao, 2008; Thompson et al., 2016), cross-immunity is neglected.
In the second (the 2-group model), individuals who have been infected
previously by a related strain are assumed to recover from infec-
tion more quickly than individuals who are immunologically naive.
Schematics illustrating the compartmental structures of both models
are shown in Fig. 1.

2.2.1. 1-group model
The 1-group SEIR model is described by the following differential

equations, in which individuals are either (𝑆)usceptible and avail-
able for infection, (𝐸)xposed (i.e. infected but not yet infectious or
symptomatic), (𝐼)nfectious or (𝑅)emoved:
𝑑𝑆
𝑑𝑡

= −
𝛽
𝑁

𝑆𝐼, (1)

𝑑𝐸
𝑑𝑡

=
𝛽
𝑁

𝑆𝐼 − 𝜅𝐸, (2)
𝑑𝐼
𝑑𝑡

= 𝜅𝐸 − 𝜇𝐼, (3)
𝑑𝑅
𝑑𝑡

= 𝜇𝐼. (4)

In this model, the infection rate is governed by the parameter 𝛽, the
ean latent period is 1∕𝜅 weeks and the mean infectious period is
∕𝜇 weeks. The basic reproduction number under the 1-group model
s given by

0 =
𝛽
𝜇
. (5)

Following Cintrón-Arias et al. (2009), the number of recorded cases
in week 𝑗 (recorded at the end of that week), where 𝑗 is the integer
number of weeks since the epidemic began, is given by

𝐶(𝑗) = ∫

𝑗

𝑗−1
𝜅𝐸 𝑑𝑡. (6)

he constant value 𝑆 + 𝐸 + 𝐼 + 𝑅 = 𝑁 represents the effective
opulation size. Since pathogens are most likely to be transmitted
ocally, individuals in distant locations are not available for infection
nd so 𝑁 is expected to be smaller than the true population size (Gart,
968; Pouillot et al., 2008). In Table 1(a), we list the parameters that
ppear in Eqs. (1)–(4) and estimates of their values for the Japanese
009 H1N1 epidemic (see also Sections 2.3 and 3.1).

.2.2. 2-group model
The 2-group model is an extension of the standard SEIR model

n which immunologically naive and cross-immune individuals are
istinguished between. The 2-group model is given by the following
ystem of differential equations:
𝑑𝑆𝐼
𝑑𝑡

= −
𝛽
𝑁

𝑆𝐼 (𝐼𝐼 + 𝐼𝑁 ), (7)
𝑑𝐸𝐼
𝑑𝑡

=
𝛽
𝑁

𝑆𝐼 (𝐼𝐼 + 𝐼𝑁 ) − 𝜅𝐸𝐼 , (8)
𝑑𝐼𝐼
𝑑𝑡

= 𝜅𝐸𝐼 − 𝜇𝐼𝐼𝐼 , (9)
𝑑𝑅𝐼
𝑑𝑡

= 𝜇𝐼𝐼𝐼 , (10)
𝑑𝑆𝑁
𝑑𝑡

= −
𝛽
𝑁

𝑆𝑁 (𝐼𝐼 + 𝐼𝑁 ), (11)
𝑑𝐸𝑁 =

𝛽
𝑆 (𝐼 + 𝐼 ) − 𝜅𝐸 , (12)
3

𝑑𝑡 𝑁 𝑁 𝐼 𝑁 𝑁 w
𝑑𝐼𝑁
𝑑𝑡

= 𝜅𝐸𝑁 − 𝜇𝑁𝐼𝑁 , (13)
𝑑𝑅𝑁
𝑑𝑡

= 𝜇𝑁𝐼𝑁 . (14)

The basic reproduction number under the 2-group model is given by

0 =
𝛽𝜈
𝜇𝐼

+
𝛽(1 − 𝜈)

𝜇𝑁
, (15)

where the two terms represent the relative contributions from the cross-
immune and immunologically naive groups respectively. The first term
represents the expected number of infections generated by a single
infected individual with previously acquired cross-immunity (assum-
ing that no other individuals are infected at the time of introduc-
tion), scaled by the proportion of individuals who previously acquired
cross-immunity. The second term represents the expected number of
infections generated by a single infected individual who was previ-
ously immunologically naive, scaled by the proportion of individu-
als who were previously immunologically naive. See Supplementary
Information Section S.2 for details of the calculation.

There is evidence that cross-immunity in the elderly population
reduced the disease severity of the 2009 H1N1 pandemic virus (Miller
et al., 2010; Chen, 2010). We assume that cross-immune individuals
experience less severe disease and therefore typically recover more
quickly than immunologically naive individuals (i.e. 1∕𝜇𝐼 < 1∕𝜇𝑁 ).

ross-immunity is therefore partial: it does not reduce disease com-
letely. To isolate this effect alone on the predictability of epidemics,
n this model it is assumed that cross-immune and naive individuals
re otherwise identical. In particular, we assume that susceptible cross-
mmune individuals and susceptible naive individuals are equally likely
o be infected.

We assume that only cases of severe disease (i.e. infected individuals
ho were previously immunologically naive) report infection, so that

he number of recorded cases in week 𝑗 is given by

(𝑗) = ∫

𝑗

𝑗−1
𝜅𝐸𝑁 𝑑𝑡. (16)

ince we assume that only immunologically naive individuals report
nfection, the infectious period of immunologically naive individuals in
he 2-group model is assumed to be identical to the infectious period
n the 1-group model (i.e. 1∕𝜇𝑁 = 1∕𝜇).

Denoting the proportion of individuals in the population who are
ross-immune by 𝜈, we have that 𝑆𝐼 +𝐸𝐼 +𝐼𝐼 +𝑅𝐼 = 𝜈𝑁 and 𝑆𝑁 +𝐸𝑁 +
𝑁+𝑅𝑁 = (1−𝜈)𝑁 , where 𝑆𝐼+𝐸𝐼+𝐼𝐼+𝑅𝐼+𝑆𝑁+𝐸𝑁+𝐼𝑁+𝑅𝑁 = 𝑁 is the
otal effective population size. In Table 1(b), we list the parameters that
ppear in Eqs. (7)–(14) and estimates of their values for the Japanese
009 H1N1 epidemic (see also Sections 2.3 and 3.1).

.3. Parameter estimation and forecasting

When fitting the models to each dataset in this study (either the data
rom the 2009 H1N1 epidemic in Japan or simulated future outbreak
ata), the transmission rate parameter, 𝛽, and effective population size,
, are estimated using Markov chain Monte Carlo (MCMC) with the
etropolis–Hastings algorithm (Hastings, 1970). All other parameters

re assumed to be known. A likelihood function is used in which it
s assumed that the differences between the data and model forecasts
where the differences are due to noise not accounted for in the
odels) are normally distributed, and that this noise scales with the

quare root of the size of the data (i.e. the number of cases). We
stimate the noise scaling parameter, 𝜎, in the likelihood function, by
itting each model to data from the 2009 Japan epidemic using a least
quares approach (Cintrón-Arias et al., 2009). The value of 𝜎 is then
ixed throughout this study. An analysis of the residuals (the scaled
ifferences between each data point and the corresponding model
alues) is given in Supplementary Information Section S.3, justifying
he square root noise scaling assumption. In each MCMC simulation,

5 4
e perform 2 × 10 sampling iterations, discard the first 10 iterations
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Fig. 1. Schematics illustrating the structures of the 1-group and 2-group models. In both cases, the population is compartmentalised into susceptible 𝑆, exposed (infected but
not yet infectious) 𝐸, infectious 𝐼 , and recovered 𝑅 classes. In the 2-group model, cross-immune and immunologically naive individuals are distinguished between, and it is
assumed that only infected naive individuals are recorded in case notification data (with perfect reporting). In the 1-group model, there is no distinction between cross-immune
and immunologically naive individuals, and it is assumed that all infected individuals are recorded in case notification data (again with perfect reporting).
Table 1
Descriptions of parameters of the 1-group and 2-group models and estimates of their values for the Japanese 2009 H1N1
epidemic.
Parameter Description Values Source

𝛽 Transmission rate 1.644 Weeks-1 Estimated from data (Fig. 3)
𝑁 Effective population size 3.072 × 107 Estimated from data (Fig. 3)
1∕𝜅 Latent period 4/7 Weeks Tuite et al. (2009)
1∕𝜇 Infectious period 1 Week Tuite et al. (2009)
𝐶(0) Initial number of recorded cases 24073 Nishiura (2011)

(a): 1-group model

Parameter Description Values Source

𝛽 Transmission rate 1.947 Weeks-1 Estimated from data (Fig. 3)
𝑁 Total effective population size 4.660 × 107 Estimated from data (Fig. 3)
𝜈 Cross-immune fraction 0.3149 Estimate based on Mizumoto et al. (2013)
1∕𝜅 Latent period 4/7 Weeks Tuite et al. (2009)
1∕𝜇𝐼 Infectious period (cross-immune individuals) 3/7 Weeks Estimate based on Fielding et al. (2013)
1∕𝜇𝑁 Infectious period (naive individuals) 1 Week Tuite et al. (2009)
𝐶(0) Initial number of recorded cases 24073 Nishiura (2011)

(b): 2-group model
as the ‘burn-in’ period and record every 100 iterations thereafter to
reduce autocorrelation. Further details are given in Supplementary
Information Section S.4.

When making forecasts in real-time after 𝑡 = 𝑚 weeks of the
epidemic, we calibrate our model forecasts with the observed data
for weeks 0, 1,… , 𝑚 of the epidemic, estimating model parameters
using the method described above. To generate forecasts, we use these
estimated model parameters and project the models forwards, starting
in week 𝑚 with initial conditions estimated based on the number
of cases observed in weeks 0, 1,… , 𝑚 (for details, see Supplementary
Information Section S.5).

To compare different model forecasts throughout this study, we use
the deviance information criterion (DIC) (Spiegelhalter et al., 2002).
Details and DIC values are given in Supplementary Information Section
S.6.

2.4. Modelling the size of the cross-immune population between epidemics

For the 2-group model, we assume that all immunologically naive
individuals infected during an earlier epidemic acquired cross-immunity
to antigenically related strains of the virus. Individuals who were cross-
immune at the beginning of the 2009 epidemic, as well as individuals
who were infected during the 2009 epidemic, are therefore assumed
to be cross-immune. Furthermore, we assume that cross-immunity to
related strains is lifelong (Yu et al., 2008). Using these assumptions, we
can model the cross-immune fraction of the population over the years
between the end of a first epidemic and the start of a future epidemic of
a related strain of influenza accounting for population turnover (births
and natural deaths). This is important, since the period between major
influenza epidemics (or pandemics) is typically many years (Kilbourne,
2006). Further details are given in Supplementary Information Section
4

S.7. We seed the future epidemics by assuming that there are 10,000
recorded cases in the first week from which we generate forecasts (three
orders of magnitude smaller than the estimated effective population
sizes). When using the 2-group model to forecast future epidemics,
we assume that the cross-immune fraction of the population is known
exactly.

2.5. Approaches to forecasting a future epidemic

We use the 1-group and 2-group models (Fig. 1) to explore the
accuracies of three different potential forecasting approaches (see Fig. 2
for a schematic illustrating these approaches). Specifically, we consider:
generating a forecast using case notification data collected in real-time
but without incorporating prior information from an earlier epidemic
(Strategy 1); generating a forecast in advance of the epidemic, but
using the previous epidemic as prior information (Strategy 2), and;
generating a forecast using case notification data collected in real-time
and also using the previous epidemic as prior information (Strategy 3).

3. Results

3.1. Fitting models to the 2009 H1N1 influenza epidemic in Japan

We fit the 1-group and 2-group models to data from the 2009
H1N1 influenza epidemic (Fig. 3(a), (b)). The shaded regions represent
the 95% prediction credible intervals (CrIs) of epidemic trajectories
based on the posterior distributions of fitting parameters 𝛽 and 𝑁 .
Since the 1-group model does not account for infected but unrecorded
individuals, the estimated parameters for the model represent a lower
effective population size 𝑁 than the for the 2-group model, while
the estimated basic reproduction numbers 𝑅 are similar (Fig. 3(c),
0
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Fig. 2. Schematic illustrating the modelling approaches considered for forecasting the dynamics of a future epidemic. The shaded regions indicate the 95% CrIs of epidemic
trajectories and forecasts. (a) Strategy 1: Forecast in real-time, using data from the ongoing epidemic and assuming no prior information about the fitting parameters. Cyan and
green forecasts calibrated using data up to week 10 and 20 of the epidemic, respectively. (b)–(c) Strategy 2: Forecast in advance of a future epidemic using prior parameter
distributions estimated by fitting the model to data from a previous epidemic (priors are shown as subfigures in (b)). (d)–(e) Strategy 3: Forecast in real-time, using data from
the ongoing epidemic as well as prior parameter distributions estimated by fitting the model to data from a previous epidemic (priors are shown as subfigures in (d)). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(d)). The mean estimated values of 𝑅0 for the 1-group and 2-group
models are 1.644 (95% CrI [1.627, 1.662]) and 1.597 (95% CrI [1.580,
1.612]) respectively, comparable with the interquartile range of 1.30
to 1.70 based on fifty-seven studies of the 2009 H1N1 pandemic strain
(Biggerstaff et al., 2014). The values of the estimated parameters and
their corresponding 95% CrIs are stated in Table 2. The numbers of
recorded, unrecorded, and combined total weekly cases estimated using
the 2-group model are shown in Supplementary Information Section
S.8.

We used the mean estimated transmission rate and effective pop-
ulation size from the 2-group model to generate synthetic data for
future epidemics. We assumed that, if the simulated epidemic takes
place further into the future, then the cross-immune fraction of the
population is lower due to deaths of cross-immune hosts and births of
immunologically naive hosts (see Supplementary Information Section
S.7).
5

Table 2
Mean values and CrIs of the fitting parameter posterior distributions, for the 1-group
and 2-group models fitted to data from the 2009 H1N1 influenza epidemic in Japan.

Parameter Mean 95% CrI

𝛽 1.644 [1.627, 1.662]
𝑁 3.072 × 107 [2.905, 3.246]×107

(a): 1-group model

Parameter Mean 95% CrI

𝛽 1.947 [1.927, 1.966]
𝑁 4.660 × 107 [4.388, 4.938]×107

(b): 2-group model

3.2. Forecasting an epidemic in real-time without prior information

If a major influenza epidemic were to occur, real-time forecasts
could be made using live data describing the numbers of cases each
week to update predictions. We considered a future epidemic due to a
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Fig. 3. (a)–(b): The 1-group and 2-group models fitted to data describing the numbers of new recorded cases each week from the 2009 H1N1 influenza epidemic in Japan, using
he transmission rate 𝛽 and effective population size 𝑁 as fitting parameters. Solid coloured lines and shaded regions indicate the mean and 95% CrIs of epidemic trajectories
ased on the posterior distributions of the fitted parameters. DIC values are given in Supplementary Information Section S.6. (c)–(d): Scatter plots of the posterior distributions of
0 (which is directly proportional to 𝛽) and 𝑁 . Red dots represent the mean parameter estimates. Estimated parameters along with their CrIs are given in Table 2.
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train that is antigenically similar to the 2009 H1N1 virus occurring
5 years after the 2009 outbreak. We generated forecasts using the
-group and 2-group models, at 10, 20, and 30 weeks after the first
ecorded cases. The results presented in Fig. 4 show how the model
orecasts change as case notification data become available during the
pidemic. The uncertainty in the forecasts of both models is large
hen predictions are generated early in the epidemic. By contrast, if

orecasts are instead generated later, the remainder of the epidemic
s predicted accurately. However, for the more accurate predictions
btained in week 30, the peak of the epidemic has already passed,
nd so accurate forecasting may be less practically useful. We conclude
hat it is challenging to generate practically useful forecasts of the
emainder of an epidemic in real-time without prior information about
he parameters governing pathogen transmission. This result motivates
s to use information from previous epidemics when forecasting the
ynamics of a future one; we investigate this further below.

.3. Forecasting epidemics in advance

We considered informing forecasts of a future epidemic using
amma distributed estimates of the fitting parameters (𝛽 and 𝑁). The
ean values of these gamma distributions, which were determined
6

n

rom the fit to the 2009 epidemic data, are given in Supplementary
nformation Section S.9.

We used our models to generate forecasts of the dynamics of future
nfluenza epidemics in Japan due to a related strain and occurring 25,
0, or 75 years after the 2009 epidemic (with no major epidemics
ccurring in each intervening period). The forecasts in Fig. 5 show that,
f the 1-group model is used, the dynamics of a future epidemic are
redicted to be identical to those of the 2009 epidemic, regardless of
hen it occurs. By contrast, for the 2-group model, a large proportion
f the population would be cross-immune after the 2009 epidemic,
esulting in a lower basic reproduction number. Consequently, if an
ntigenically related strain were to emerge 25 years later, the epidemic
ould be smaller than in 2009 (Fig. 5(a)–(b)). If the next major
pidemic instead occurred 75 years later, a large proportion of the
opulation would be immunologically naive to a related strain of the
009 virus (because of population turnover due to births and deaths),
esulting in a greater basic reproduction number. Hence, if all other
actors were similar to those in 2009, the future epidemic would be
arger than in 2009 (Fig. 5(e)–(f)).

Assuming that the 2-group model reflects the underlying epidemi-
logy more accurately than the 1-group model, we conclude that
orecasts generated using the 1-group model may not predict the dy-
amics of a future epidemic in which cross-immunity is present closely.
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Fig. 4. Forecast Strategy 1: Real-time forecasts obtained from the 1-group and 2-group models for a future epidemic occurring 25 years after the 2009 epidemic, calibrated by
fitting the model parameters 𝛽 and 𝑁 to data describing the weekly numbers of new cases, using uninformative uniform priors. Forecasts were made in weeks 10, 20, and 30 of
the epidemic, using the observed data up until those times to estimate model parameters. Dashed vertical lines separate the calibration and forecasting periods. Other dashed lines
indicate the mean of the epidemic trajectories in the model calibration period. Solid coloured lines and shaded regions indicate the mean and 95% CrIs of the forecasts, based on
the posterior distributions of the parameters. The synthetic data were generated using the mean parameters of the 2-group model fitted to data from the 2009 epidemic. Uniform
priors 𝑁 ∈ [10 × 106 , 128 × 106] and 𝛽 ∈ [1, 3] were used in the estimation. DIC values are given in Table S1.
Forecasts using larger and smaller variances of the distributions of 𝛽
and 𝑁 are presented in Supplementary Information Section S.10. The
dependence of a range of quantities obtained using the 2-group model
(the cross-immune fraction at the start of the future epidemic, 𝑅 , total
7

0

number of recorded cases, duration, and size and timing of the epidemic
peak) on the time period between the 2009 epidemic and the future
epidemic is shown in Supplementary Information Section S.11. As seen

in Fig. 5, the further into the future the next epidemic of a related
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strain occurs then, all else being equal, the greater the total and peak
number of cases and the shorter the duration of the epidemic. This is
due to the smaller proportion of cross-immune individuals leading to a
higher value of 𝑅0. We note that the impact of 𝑅0 on the peak, final size
and duration of an epidemic has been explored previously for simple
epidemiological models (Weiss, 2013; Thompson et al., 2020a).

3.4. Forecasting an epidemic in real-time with prior information

As shown above, real-time forecasts generated during a future in-
fluenza epidemic, without informative priors for the fitting parameters,
can be very uncertain (e.g. Fig. 4(a)–(b)). We therefore also considered
using priors to inform the fitted parameter values, so that real-time
forecasts are based on both historical data (from the 2009 epidemic)
and live data from the ongoing outbreak. Gamma distributed priors
were set for 𝛽 and 𝑁 , with mean values based on the parameter
estimates obtained using the data from the 2009 epidemic.

As before, we considered a scenario in which an epidemic occurs
25 years after the 2009 epidemic. In turn, predictions were made 0, 10,
20, and 30 weeks after the start of the future epidemic (Fig. 6(a)–(b),
(c)–(e), (f)–(h) and (i)–(k), respectively).

We considered using priors of different widths to inform the epi-
demic forecasts (Fig. 6 and Supplementary Information Section S.12).
Under the baseline variance considered, when the 1-group model was
used, there was sometimes a discrepancy between the calibrated model
trajectory and the observed epidemic data (e.g. left part of Fig. 6(f)).
For that reason, we also show epidemic forecasts obtained using a
wider prior (Fig. 6(d), (g) and (j)), so that the fitted model reflects
the observed data more accurately. When the 1-group model was used,
forecasts were either inaccurate (when a prior with low variance was
used; e.g. Fig. 6(c)) or imprecise (when a prior with higher vari-
ance was used; e.g. Fig. 6(d)). In either case, as shown quantitatively
by the DIC values in Table S1, our main conclusion is unchanged:
predictions improved when forecasts were generated using the more
epidemiologically realistic 2-group model.

4. Discussion

Influenza epidemics and pandemics place a significant burden on
healthcare systems throughout the world (Monto, 2004). Exposure
to an influenza virus confers cross-immunity to antigenically related
strains (Kreijtz et al., 2011), however cross-immunity is not frequently
included explicitly in influenza forecasting models (Baguelin et al.,
2013; Rajaram et al., 2017). In this study, we have investigated whether
or not it is necessary to account for cross-immunity when generating
forecasts during influenza epidemics and, moreover, whether data from
previous epidemics can be used to improve forecast accuracy.

We have considered two different mathematical models that de-
scribe pathogen transmission: a 2-group model in which immunolog-
ically naive and cross-immune individuals are differentiated between
and a 1-group model in which all individuals are assumed to have
similar characteristics. We parameterised each model using data de-
scribing the estimated numbers of infected individuals seeking medical
attention per week in Japan during the 2009 H1N1 influenza pan-
demic (Nishiura, 2011; Omori and Nishiura, 2011). We then considered
a scenario in which we predict the dynamics of an epidemic of an
antigenically related strain occurring 25 years after the 2009 pandemic.
When no prior knowledge about the values of the transmission rate
and effective population size is assumed, neither model can predict
future epidemiological dynamics in real-time early in the epidemic
with any certainty. Previous research has also indicated that significant
uncertainty exists when ordinary differential equation models are used
to generate real-time forecasts early in influenza epidemics (Hall et al.,
2007).

We then considered the effect of the time period between epidemics
on the accuracy of epidemic forecasts made in advance of the future
8

epidemic. Immediately after the 2009 epidemic, a large fraction of the
population will have been cross-immune to strains that are related to
the 2009 H1N1 virus. This fraction reduces as the time since the 2009
epidemic increases, as individuals (a large proportion of whom may
have acquired cross-immunity) die and immunologically naive individ-
uals are born. Consequently, the expected size of a future epidemic of
a related strain increases the further into the future at which it occurs.
If we neglect cross-immunity by using the 1-group model, we predict
the same epidemic dynamics as in 2009, regardless of when the future
epidemic occurs. This is because changing numbers of cross-immune
individuals are not accounted for in that model. This could result in
overestimation of the size of a future epidemic, if the cross-immune
fraction was greater than the baseline cross-immunity in 2009 (i.e. if
the future epidemic occurred soon after 2009), or underestimation of
the epidemic size if the cross-immune fraction was lower than in 2009
(i.e. if the future epidemic occurred long after 2009).

Finally, we considered incorporating knowledge of parameters from
the 2009 epidemic, in combination with case notification data obtained
in real-time during the future epidemic, to update forecasts as the
future epidemic is ongoing. When the 1-group model was used to make
forecasts, we found that priors with significant uncertainty had to be
used to calibrate the model trajectories to the data. Although these
priors, set based on the model fits to the 2009 epidemic data, led to
improved forecasts compared to when no prior information was used,
the forecasts were still inaccurate or uncertain when made before the
peak of the epidemic. By contrast, the 2-group model was able to
generate more accurate forecasts. This is because cross-immunity is
accounted for in the 2-group model, and the priors reflect the values of
the true underlying parameters more accurately. We conclude that, to
forecast the long-term dynamics of major influenza epidemics caused
by strains that are antigenically related to those responsible for pre-
vious epidemics, a model that accounts for cross-immunity should be
used, and data obtained during previous epidemics should be taken into
account. Additionally, we note that short-term forecasts on the order of
one to four weeks – a time horizon used by the US Centers for Disease
Control when constructing seasonal influenza forecasts (Biggerstaff
et al., 2016, 2018; Centers for Disease Control and Prevention (CDC),
2020) – are also more accurate when generated using the 2-group
model (see Fig. 6).

We note that there may be instances in which the underlying epi-
demiology of an outbreak is not well-known, or where a complex model
cannot be parameterised due to ineffective surveillance or limited data
availability (Gibbons et al., 2014; Thompson et al., 2020d). In such
cases, using a simple model akin to the 1-group model used in this
study may be the only possible option for making predictions. Although
forecasts made using a simple model may lack precision, they could
still be useful to policy makers during an epidemic. For example, the 1-
group model was able to predict the duration of the epidemic accurately
when using data from the first 10 weeks of the outbreak, even if
it could not predict the trajectory of the entire epidemic perfectly.
Simple models may be particularly useful for short-term forecasts (Funk
et al., 2019). By constantly updating model predictions using newly
acquired data, and refining the modelling framework when it is unable
to replicate observed data, simple models that do not describe the
underlying epidemiology of an epidemic fully may still provide useful
insights.

We investigated whether or not it is necessary to include a partic-
ular source of heterogeneity (i.e. cross-immunity) when constructing
influenza epidemic forecasts. Our analysis used case notification data
from Japan collected during the 2009 influenza pandemic. Although
the exact dataset underlying our analysis was not central to our main
conclusion, it would be possible to replicate our study using any num-
ber of other influenza datasets (Donaldson et al., 2009; Pourbohloul
et al., 2009; Earn, 2012; National Institute of Infectious Diseases, 2020).
Going forwards, we could also consider how accounting for cross-

immunity would affect forecasts of seasonal epidemics, in which case



Epidemics 34 (2021) 100432

9

R. Sachak-Patwa et al.

Fig. 5. Forecast Strategy 2: Forecasts obtained at the start of future epidemics using the 1-group and 2-group models, for epidemics occurring 25, 50, and 75 years after the 2009
epidemic. Forecasts were generated by assuming that the parameters 𝛽 and 𝑁 follow a gamma distribution, the parameters of which were determined by fitting the models to
data from the previous 2009 epidemic (Supplementary Information Section S.9). Solid coloured lines and shaded regions indicate the mean and 95% CrIs of the forecasts. The
synthetic data were generated using the mean parameters of the 2-group model fitted to data from the 2009 epidemic. DIC values are given in Table S1.
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Fig. 6. Forecast Strategy 3: Forecasts obtained using the 1-group and 2-group models during a future epidemic occurring 25 years after the 2009 epidemic, at the start of the
epidemic ((a)–(b)), and using case notification data obtained in real-time during the epidemic ((c)–(k)). Gamma distributed priors are prescribed for the fitting parameters 𝛽 and
𝑁 , the parameters of which were determined by fitting the models to data from the previous 2009 epidemic (Supplementary Information Section S.9). Forecasts are generated in
weeks 10, 20, and 30 of the epidemic, using the observed data up until those times to estimate model parameters. Dashed vertical lines separate the calibration and forecasting
periods. Other dashed lines indicate the mean of the epidemic trajectories in the model calibration period. Solid coloured lines and shaded regions indicate the mean and 95%
CrIs of the forecasts, based on the posterior distributions of the parameters. The synthetic data were generated using the mean parameters of the 2-group model fitted to data
from the 2009 epidemic. DIC values are given in Table S1.
the particular strains driving dynamics in different seasons would need
to be considered (Petrova and Russell, 2017). Consideration of whether
and how forecasts of epidemics of pandemic influenza may be influ-
enced by circulating seasonal strains (Fox et al., 2017) is a target for
future work. We could extend our models to investigate whether or not
other sources of heterogeneity should be accounted for. For instance,
age-structure could be incorporated, taking into account the effects
10
of immune imprinting (Gostic et al., 2016, 2019). Additionally, we
could include spatial heterogeneity by partitioning the population into
distinct geographical regions or introducing a contact network struc-
ture (Meyers et al., 2006; Volz and Meyers, 2007; Ohkusa et al., 2009;
Volz et al., 2011; Miller and Kiss, 2014). Another potential avenue
for further investigation may be to incorporate transmission models
that account for cross-immunity into a phylodynamic framework to
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predict which strains of influenza may emerge and the dynamics of
their respective epidemics (Grenfell, 2004).

In this study, we have considered the simple example of binary
immunity (i.e. a class of cross-immune individuals and a class of
immunologically naive individuals were included). In reality, the land-
scape of immunity within a population is much more complex, with
individuals exhibiting varying levels of immunity based on their life-
time history of exposure to influenza viruses (Laurie et al., 2010; Gostic
et al., 2016, 2019) and their age (Lambert et al., 2012; Haq and McEl-
haney, 2014). Underlying health conditions such as obesity and heart
disease may also impact individuals’ immune responses (Hui et al.,
2006; Honce and Schultz-Cherry, 2019). Nonetheless, even the simple
framework that we considered allowed us to show that cross-immunity
should be accounted for when making influenza epidemic forecasts.
Future work could involve models containing numerous classes to
account for population heterogeneities or detailed infection dynam-
ics (Thompson and Hart, 2018; Hart et al., 2020), or even a continuum
level of immunity within the population based on the above-mentioned
factors (Andreasen et al., 1997; Martcheva and Pilyugin, 2006).

In the 2-group model considered here, we assumed, as in Reichert
et al. (2012), that immunoprotection does not prevent infection, but
instead alters its consequences. Different types of cross-immunity to re-
lated strains of a virus can be considered. For example, cross-immunity
could instead be assumed to reduce an individual’s susceptibility to
infection (Hill et al., 2019; Thompson et al., 2019). Future work could
consider whether or not the results of this study hold when different
assumptions are made about the precise effects of cross-immunity. In
the 2-group model, in order to study the effects of cross-immunity in as
simple a setting as possible, we assumed that infected individuals who
did not seek medical attention had cross-immune protection against
the virus. However, a range of factors (including age and behaviour)
affect whether or not, and how quickly, an individual seeks medical
attention (Thompson, 2020c). This could be built into the underlying
modelling framework considered here, although additional data would
be needed to parameterise the resulting model. Other additions to the
1- and 2-group models could also be considered. For example, the wide
range of interventions that are implemented during outbreaks could be
included in the models explicitly (Gani et al., 2005; Longini Jr. et al.,
2005; Backer et al., 2019).

Despite its simplicity, our approach has enabled us to demonstrate
that including cross-immunity in influenza epidemic forecasting models
can lead to more accurate forecasts. Cross-immunity due to previous
infections has been shown to play a major role in the dynamics of
influenza epidemics, with clear evidence emerging from analyses of
data from the 1918 Spanish Flu pandemic (Taubenberger and Morens,
2006) and the 2009 H1N1 influenza pandemic (Hancock et al., 2009).
Cross-immunity will contribute to shaping the dynamics of future in-
fluenza epidemics. Consideration of cross-immunity by epidemiological
modellers is therefore of obvious public health importance.
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