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Abstract: Convolutional Neural Networks (CNNs) have been broadly employed in dermoscopic image analysis, mainly as a
result of the large amount of data gathered by the International Skin Imaging Collaboration (ISIC). Like in many other medical
imaging domains, state-of-the-art methods take advantage of architectures developed for other tasks, frequently assuming full
transferability between enormous sets of natural images (e.g. ImageNet) and dermoscopic images, which is not always the case.
With this paper we provide a comprehensive analysis on the effectiveness of state-of-the-art deep learning techniques when
applied to dermoscopic image analysis. In order to achieve this goal, we consider several CNNs architectures and analyze how
their performance is affected by the size of the network, image resolution, data augmentation process, amount of available data,
and model calibration. Moreover, taking advantage of the analysis performed, we design a novel ensemble method to further
increase the classification accuracy. The proposed solution achieved the third best result in the 2019 official ISIC challenge, with
an accuracy of 0.593.

1 Introduction

Skin cancer is a major public health issue, being the most common
forms of human cancer worldwide [1]. Malignant melanoma is less
common than basal and squamous cell carcinoma (it accounts for
only about 3-4% of all skin cancers), but it is responsible for most of
the deaths [1]. Despite all the advances in skin cancer treatments, an
early detection remains a key factor in preventing their progression
to advanced stages and thus lowering the mortality rate [2].

To perform a fast diagnosis, many dermatologists rely on
dermoscopy, which is a form of in-vivo skin surface microscopy
performed using high quality magnifying lenses and a powerful
light source to mitigate the surface reflection of the skin, in order
to enhance the visibility of the pigmentation of the lesion (Fig. 1
and Fig. 2). This imaging technique has increased the diagnosis
accuracy, sensitivity, and specificity with respect to the naked eye
examination, mitigating the need of surgical intervention for the
unnecessary removal of benign lesions. However, to diagnose skin
cancer through this kind of non-invasive imaging approaches, a
thorough image analysis must be performed by expert clinicians.
This is why many efforts have been given in recent years towards the
creation of tools to assist physicians in the analysis of dermoscopic
images. Deep learning in particular, due to its outstanding results in
many areas such as speech recognition [3], image understanding [4]
and image classification [5, 6], has become the main option for
analyzing medical images.

A bigger neural network size has always been considered a
synonym for better accuracy, since a larger amount of parameters
and layers means a greater capability to learn important filters, and
therefore to capture meaningful features within an image as long
as its resolution is high enough. However, deeper networks are
more prone to overfitting and harder to regularize during training, in
addition to requiring a considerable amount of time to be trained [7].
This often produces inefficient architectures, which do not improve
results yielded by faster, shallower networks. Tan et al. [6] propose
an efficient way to scale up convolutional neural networks width,
depth, and image resolution by performing exhaustive experiments
on several datasets of natural images.

Fig. 1: Random samples of dermoscopic images (top), coupled
with the results of random data augmentation (bottom) performed
by flipping and rotating the images, applying Gaussian filters,
adding noise with a Poisson distribution, and manipulating hue, and
saturation.

However, medical images present several dissimilarities from
natural ones, and thus require an individual analysis [8]. As a matter
of fact, in dermoscopic images, the difference between background
(human skin) and foreground (skin lesion) can be less visible than
in most other scenarios. Indeed, sharpening filters are broadly used
in this field to enhance lesion borders. Moreover, dermoscopic
images present numerous artifacts such as black round borders, pen
drawings, rulers, and hair, which must be ignored when seeking
meaningful patterns within an image.
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Fig. 2: On the left, the original 512× 512 input image and an
enlarged detail. On the right, the same image after a blurring filter is
applied, with the same enlarged patch. The original image presents
a noisy checkerboard effect, introduced by a sharpening filter. This
effect is greatly reduced in the picture on the right.

This particular domain of medical imaging is characterized by a
very high resolution, which must be taken into account when aiming
for good classification accuracy. Additionally, a huge quantity of
data augmentation strategies can be performed without altering the
nature of the skin lesion, and this can be exploited during inference
by merging the outputs of models that are robust against different
combinations of simple transformations.

Finally, it is crucial to make use of calibrated models for a correct
behavior in critical decision scenarios, such as medical diagnosis, in
which the ultimate goal is not substituting an expert practitioner, but
providing a reliable measure of our degree of uncertainty in order to
assist the final decision.
The main contributions of this work can thus be summarized as
follows:

- We perform a thorough investigation about the performance of
state-of-the-art architectures for natural images classification when
applied to dermoscopic image analysis.
- A comprehensive discussion on how the major hyperparameters
(the size of the network, image resolution, data augmentation
process, amount of available data, and model calibration) affect
neural network capabilities is provided.
- We explore and motivate the use of model calibration in order to
improve the overall accuracy of a deep learning architecture in skin
lesion analysis.
- We design a novel ensemble method for dermoscopic image
classification, which yields a balanced accuracy of 0.593 on the
official 2019 ISIC challenge, achieving the third best result.
- The first classified algorithm of the official 2019 ISIC challenge is
compared with the proposed method. Experimental results show that
our approach outperforms the winners of the challenge when the two
algorithms are trained and tested using the same data.

The rest of this paper is organized as follows. In Section 2 a
detailed description about relevant literature is presented. Section 3
introduces the 2019 ISIC dataset and the proposed preprocessing
pipeline. The designed ensemble architecture is presented and
motivated in Section 4, and evaluated in Section 5 through and
in-depth analysis. Finally, in Section 6 conclusions are drawn.

2 Related Work

Dermoscopic Diagnosis. Skin cancer is the most common cancer all
around the globe, with melanoma being the most deadly form [1].
Dermoscopy is a skin imaging modality that allows for a better
skin cancer diagnosis, w.r.t. unaided visual inspection. However,
clinicians must receive adequate training for these improvements
to be achieved. To address this, multiple organizations such as
the International Skin Imaging Collaboration (ISIC) [9, 10], have
released dermoscopic images datasets specifically designed for deep
learning, labeled with different skin lesions categories.

Since 2016, ISIC started hosting challenges and workshops,
gathering new images and annotations every year and focusing on
different tasks, ranging from lesion segmentation and lesion attribute
detection to disease classification. An in-depth description of the
2019 version of the dataset, which is employed to perform the
experiments described in this paper, is provided in Section 3.

Classification CNNs. CNNs have become the dominant machine
learning approach, and the scaling up strategy has been widely used
to achieve better accuracy results. As an example, ResNet [11] can
be scaled up from ResNet-18 to ResNet-200 just by adding more
layers. However, this technique leads to the notorious problem of
vanishing/exploding gradients [12], which hampers the convergence
of the architectures. This problem has been managed with different
approaches such as intermediate normalization layers [13] or
normalized initialization [14, 15], resulting in great accuracy
improvements over the years. In 2016, Xie et al. proposed
ResNeXt [16], which introduces the concept of cardinality, slightly
changing the residual block structure proposed with ResNet. In
the same year, DenseNet [17] proposed a new architecture which
increases the number of connections of each layer, alleviating
the vanishing-gradient problem. SEResNeXt [18], introduced in
2017, provides significant performance improvements w.r.t. existing
state-of-the-art CNNs, by means of “Squeeze-and-Excitation” (SE)
blocks, that adaptively recalibrate channel-wise feature responses.
Finally, in 2019 EfficientNet [6] provided a new scaling up method
that uniformly increases the dimensions of depth, width, and
resolution, achieving state-of-the-art accuracy on ImageNet [19].

High Accuracy. Transfer Learning has become a de-facto method to
enhance the training process of deep learning models. It is a vital tool
to be exploited when the data in the target domain is not abundant.
Natural image datasets such as ImageNet are usually chosen to
pre-train neural networks, due to the vast amount of labeled data.
However, the performance can worsen when the source and target
domains present several differences [20, 21]. Fortunately, it is
frequently possible to take advantage of these pre-trained features
and increase the network accuracy thanks to the transferability of
simpler filters, such as those that address color, size, or edges [2].

Furthermore, the performance of a CNN can be boosted through
an extensive investigation of the hyperparameterization and using
ensembles of several models [22, 23]. The latter approach is
stated to produce the best accuracy results [24], despite a heavy
computational cost in terms of resources, training time, and
inference time. However, in the skin lesion analysis domain, reliable
results must be preferred to low inference time.

Deep Learning in Medical Imaging. Deep learning methods have
been employed in several medical fields, such as renal biopsy [25],
image retrieval [26], and the detection of multiple forms of
cancer [27].

As a matter of fact, deep learning-based methods have also
been proposed to tackle dermoscopic image analysis [28, 29].
In 2019, Wang et al. introduced an enhanced high-level parsing
(EHP) module to generate meaningful feature representation for skin
lesion [30]. The following year, the same main author investigated
the complex correlation between skin lesions and their informative
context by placing a bi-directional dermoscopic feature learning
module on the top of a CNN network [31]. Furthermore, skin
lesion boundaries segmentation CNNs can be adopted to improve
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(a) MEL (b) NV (c) BCC (d) AK

(e) BKL (f) DF (g) VASC (h) SCC

Fig. 3: Samples of the 2019 ISIC dataset. (a) Melanoma - MEL, (b) Melanocytic Nevus - NV, (c) Basal Cell Carcinoma - BCC, (d) Actinic
Keratosis - AK, (e) Benign Keratosis - BKL, (f) Dermatofibroma - DF, (g) Vascular Lesion - VASC, (h) Squamous Cell Carcinoma - SCC.

classification accuracy, by removing non-prominent features from
dermoscopic images [23]. This technique allows multiple lesions
within a single image to be correctly extracted and classified.

Finally, Gessert et al. provide a description of the best performing
approach for the 2019 ISIC challenge [32]. The authors employ
several versions of EfficientNet, and make use of an ensemble
method to obtain the final prediction. Moreover, a preprocessing
technique is applied to remove black corners from dermoscopic
images, and two different input strategies are used: same-sized
cropping and random-resize cropping. Unfortunately, an additional
private dataset is exploited during the training process, making it
impossible to reproduce the experiments reported in the paper.

3 Dermoscopic Images

Since 2016, the International Skin Imaging Collaboration (ISIC)
has begun to aggregate a large-scale, publicly available dataset
of dermoscopic skin lesions images (Fig. 3) and hosting multiple
challenges and workshops [9]. The availability of this substantial

Fig. 4: Approximation of the real pixel values distribution
through Gaussian distributions. Dashed, lighter lines represent the
distribution of channels R, G, and B of the ImageNet Dataset,
whereas solid, darker lines represent the ISIC dataset. The grey
dotted line is the Gaussian distribution with mean 0 and standard
deviation 1, which we aim to obtain after input normalization.

amount of dermoscopic images allowed to significantly improve
the performance of machine learning algorithms. This dataset, also
known as the ISIC archive, is designed both for clinical training and
to support research toward automated skin cancer analysis.

The 2019 version of the ISIC archive contains a total amount
of 25 331 dermoscopy labeled images, belonging to eight different
classes (i.e. types of skin lesion) [33]. Images have been collected
in several years, from different centers, and using multiple devices.
For this reasons, their resolution ranges from 450× 600 to 1 024×
1 024 pixels.

The available data is heavily imbalanced, as samples are
distributed among classes as follows:

1. Melanoma (MEL) - 17.8%
2. Melanocytic Nevus (NV) - 50.8%
3. Basal Cell Carcinoma (BCC) - 13%
4. Actinic Keratosis (AK) - 3%
5. Benign Keratosis (BKL) - 10%
6. Dermatofibroma (DF) - 0.9%
7. Vascular Lesion (VASC) - 1%
8. Squamous Cell Carcinoma (SCC) - 2.4%

However, the official 2019 test dataset counts an additional class,
which is not available in the training partition of the data. This class,
named none of the others, contains dermoscopic images of different
natures that do not belong to any of the other eight classes. In order to
correctly evaluate such a heavily imbalanced task, the 2019 official
challenge judges the participants by means of the Balanced Accuracy
metric, which is computed as the average sensitivity among classes.
This metric gives the same importance to each class, regardless of
how much it is represented in the test set. Additional metrics such as
the Area Under the ROC Curve (AUC) are presented in the official
leaderboard, but not employed in the final scoring.

3.1 Preprocessing

Dermoscopic images present several dissimilarities from natural
images such as a very high resolution, low color variability within
an image, and many unnatural artifacts like pen marks or black
corners introduced by acquisition devices. This is mainly because
the subject of these images is human skin, and because of the
particular acquisition technique that aims to manipulate how the
light hits the epidermis. The discrepancy can be noticed by just
computing the dataset statistics and using Gaussian distributions
as an approximation of the real pixels values distribution (Fig. 4).
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Table 1 Different data augmentation configurations. When not specified, configuration 0 is employed.

Configuration Flips Rotating Gaussian filter Cutout Add Noise Hue & Saturation Contrast

0 3 3 3 3 3 3 7
1 3 7 7 7 7 7 7
2 3 3 3 3 7 7 7
3 3 3 3 3 3 3 3

Table 2 Training times (expressed in minutes), balanced accuracy, and area under the roc curve (AUC) of several neural
networks architectures with different image sizes.

512 × 512 256 × 256 128 × 128

Net Training
Time

Balanced
Accuracy AUC Training

Time
Balanced
Accuracy AUC Training

Time
Balanced
Accuracy AUC

DenseNet-201 5700 0.862 0.980 1870 0.820 0.975 1550 0.752 0.950
DenseNet-121 3420 0.834 0.972 1619 0.809 0.966 1505 0.739 0.942

SEResNeXt-101 9804 0.857 0.981 2782 0.831 0.978 1687 0.745 0.960
SEResNeXt-50 5928 0.867 0.982 2006 0.818 0.975 1642 0.761 0.958

ResNet-18 2052 0.806 0.975 1573 0.789 0.968 1482 0.708 0.937
ResNet-50 3192 0.841 0.977 1641 0.796 0.965 1550 0.692 0.930
ResNet-152 7752 0.861 0.978 2280 0.802 0.972 1687 0.723 0.946

It is thus crucial to carefully choose preprocessing steps and data
augmentation strategies, instead of reusing procedures developed
for natural images. Hence, a specific dataset mean and standard
deviation must be computed and exploited for input normalization,
which is an essential step to obtain an efficient training process. In
order to ensure good results, the same values must be used to perform
input normalization during inference.

Four main characteristics are widely recognized as primary
attributes for the detection of melanocytic lesions, which are
asymmetry, border irregularity, color variegation, and a diameter
greater than 6 millimeters [34]. The analysis of these four features is
also known as the ABCD rule, and it represents the basic guideline
to preserve semantic information within dermoscopic images. Since
image sizes are not constant, the first step is to obtain a dataset
of squared images by replicating the border of rectangular pictures
along the shorter side, in order to not change the shape nor the
size of skin lesions, which are key factors for the diagnosis. The
next step concerns Data Augmentation (DA), an important and
well-known operation that can be performed during training to
improve the effectiveness of neural networks [35]. This process
consists in generating new data items by applying very simple
transformations to existing training samples, without changing their
semantic content. This technique aims to improve the robustness
of an algorithm against used transformations and thus boost the
final accuracy [36, 37]. With respect to natural images, dermoscopic
ones can benefit from a larger amount of data augmentation steps,
considering that transformations like vertical flips or rotations do
not alter their semantic content. Furthermore, dermoscopic images
are often refined by means of sharpening filters to emphasize lesion
borders and make images easier to inspect for expert dermatologists.
This processing technique can however lead neural networks to
erroneously focus on low-level features that are trivial. To avoid
this drawback, images can be randomly blurred through gaussian
kernels, teaching CNNs to ignore differences caused by the use
of diverse sharpening filters. Fig. 2 shows an example image
before and after the employment of the blurring filter; the enlarged
version of the images exposes that low-level artifacts introduced
by the sharpening filters get mitigated thanks to the Gaussian
filters. Blurring images with random values allows trained CNNs
to increase their steadiness against a wide spectrum of sharpening
filters that are used during acquisition.

As previously mentioned, randomly flipping and rotating images
during training never change the semantic content, and always
yields good results. Moreover, the manipulation of contrast, hue, and
saturation are very common techniques for augmenting this kind of
images. This is because of the assumption that different acquisition
devices can alter the representation of similar colors, in addition
to the effect that different light settings and natural skin tones can

have on images captured with the same camera. Even though we
find accuracy gains yielded by these data augmentation strategies to
often be minor, they can all be exploited to increase the robustness
of the inference method described in the following Section.

Finally, the network training regularization can be improved
through the CutOut strategy [38], and by adding Poisson distributed
random noise to the input image. Fig. 1 presents two samples of
dermoscopic images, and their appearance after applying the random
data augmentation described in the first row of Table 1, the effects
of the cutout method are not displayed as it is applied after pixel
normalization.

4 High Accuracy Through Growth

In order to improve classification accuracy, convolutional neural
networks can be scaled up in multiple ways. The most common
approaches can be summarized as increasing either the number or
the size of convolutional filters within a model. In addition to the
growth of time required to complete the training process, scaled up
networks necessitate a more careful regularization, and are more
prone to overfitting [7]. Both of these problems are especially
relevant when the volume of available training data is not large
enough. On the other hand, increasing the input image resolution
also boosts CNN performance regardless of the network architecture
employed, at the cost of incrementing the required training time.
Adopting a larger input size makes it possible to fully exploit the
high resolution that characterizes dermoscopic images. As a matter
of fact, convolutional neural networks can be effectively fine-tuned
by using images of a different resolution than the one used during
the pre-training process, Table 2 and Table 3 show how increasing
resolution is the most effective way to boost the skin lesion
classification accuracy for every tested architecture (EfficientNet [6],
ResNet [11], DenseNet [17], and SEResNeXt [18]). As depicted in

Table 3 Scaled EfficientNet performance results. Training
times are expressed in minutes.

Net Image
Size

Training
Time

Balanced
Accuracy AUC

EfficientNet-b0 224 1573 0.758 0.961
EfficientNet-b1 240 1642 0.796 0.967
EfficientNet-b2 260 1824 0.818 0.971
EfficientNet-b3 300 2280 0.830 0.974
EfficientNet-b4 380 4332 0.836 0.978
EfficientNet-b5 456 9348 0.831 0.975
EfficientNet-b6 528 17328 0.829 0.968
EfficientNet-b7 600 29640 0.827 0.967
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Fig. 5: Correlation between balanced accuracy (y axis) and training times in minutes (x axis) for different network architectures. Within
charts, each point represent one trained model, characterized by the network architecture and the input image size. EfficientNet CNNs are
trained with their conventional input image resolution, whereas every other network is trained with three different image sizes: 512× 512,
256× 256 and 128× 128. Lower training times are required for the smallest resolution, and viceversa.

Fig. 5, growing the input size from 256 to 512 yields improvements
showcased by balanced accuracy boosts that range from 1.7% to
5.9%, whereas growing the network size by increasing the number
of parameters produce smaller boosts and, in some cases, even drops
in accuracy.

4.1 Probabilistic Model

In medical contexts, it is crucial to provide both good discriminative
power and reliable confidence. Therefore, in this Section we
describe our probabilistic model, which is divided in how we assign
probabilities, and how we combine them.

Given a set of independent and identically distributed (i.i.d.)
labeled pairs of samples O = {xi, ti}Ni=1 made up from images xi
with their corresponding categorical class labels ti, we estimate the
joint distribution of a set of M models, also known as the model
ensemble, parameterized by Θ = {θm}Mm=1.

Given the model parameters θ, assuming independence between
the models and a non-informative prior over θ, the joint distribution
factorizes as:

p(t1, t2, ..., tM ,Θ|O) =
∏
m

p(tm|O, θm) · p(θm) (1)

Learning involves maximizing this joint model, which under
our assumptions is the same as learning each of the conditional
distributions p(tm|O, θm) separately, by optimizing the cross
entropy loss without any form of regularization. The proposed
method maps each of these conditional distributions with different
network architectures and data augmentation techniques. The

optimal number of networks and preferred model architectures
are chosen using a validation set, because using the evidence
framework [39] for automatic Occam’s razor is intractable, and
approximations are a computational burden. The final probabilistic
vector assigned to a given test sample x∗ is obtained by
computing the posterior distribution of the label, given the models
p(t∗|t1, t2, ...tM , x∗). This posterior can be computed in several
ways: with standard model average [40], with a learned combination,
with boosting techniques [41] or Bayesian classifiers [42], i.e.,
substituting the weights by the posterior distribution of the models
given the data.

Considering standard model average, for a test sample x∗ we
assign the label t∗ with confidence p∗ as follows:

p(t∗|x∗, t1, t2, ...tM ) =
1

M

∑
m

p(tm|x∗, θ̂m)

t̂i = argmax p(t∗|x∗, t1, t2, ...tM )

p̂i = p(t∗ = t̂i|x∗, t1, t2, ...tM )

(2)

Moreover, we augment this posterior probability with a small set
of models for which we perform data augmentation at inference
time, i.e. we combine the predictions of modified versions of a
given test sample x∗ through image transformations, as described
in Section 4.2.

However, one of the consequences of doing Maximum A posterior
Probability (MAP) estimation is that, when dealing with unbalanced
datasets, many local optima tend to ignore the unrepresented classes.
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Fig. 6: Illustration of the proposed ensemble method. Given an input image (a) at inference time, multiple versions of it are obtained by means
of random data augmentation. Augmented images (b) are then fed to a CNN (c) and calibrated outputs (d) are obtained. This process is repeated
over multiple CNNs and, finally, all of the network outputs are averaged together in the last step in order to obtain the final prediction (e).

A possible solution is to compute the predictive distribution under a
Bayesian paradigm, but this is again impractical for our purposes.
The solution we adopt is to turn the discriminative classifier into a
generative one, and subtract the prior information over the classes:

p(t1|x, θ) ∝ p(x|t1, θ) · p(t1|θ) (3)

Then, scaling the posterior probability by the inverse of the prior
information 1/p(t1|θ) we force our network to learn p(x|t1, θ). This
can be viewed as learning the posterior probability p(t|x) assuming
equal prior distributions p(t), thus, training the model to not discard
the unrepresented class. The model evidence p(x) plays no role in
this re-scaling as it is common to all the classes, thus it can be
absorbed in the learning rate. In practice, this can be efficiently done
by a weighted cross entropy loss [43].

Model Calibration. In the medical diagnosis field the goal should
not be to take an action on behalf of an expert practitioner, but
rather to assist his/her choice [44]. We thus end up discussing model
calibration, mandatory for optimal decision. In such scenario, the
decision made by an expert practitioner is differently influenced if
we provide a confidence of 0.9 over a confidence of 0.4. This means
that the provided information will only be useful if it is reliable, and
this is achieved by a proper calibration of the probabilistic model.
For a wider description of model calibration in a classification
scenario see [45] and references therein.

The intuitive motivation of having a calibrated model can be seen
from a more theoretical perspective. Taking into account that our
aim is to combine expert knowledge and probabilistic information
in an optimal way, we can formalize the problem using the Bayes
decision rule, where the selected action αi is the one that minimizes
Bayes risk:

R(αi|x) =
∑
j

λij p(tj |x)

αi = argmax
i

R(αi|x)
(4)

R(αi|x) denotes the Bayes risk and λij is the loss incurred in
deciding class i when the true value is j. Note that for the particular
case in which λii = 1 and λij = 0 this rule ends up being the
maximum a posterior decision rule. Furthermore, expert knowledge
can be incorporated in these coefficients.

It is well known that this rule guarantees optimal decision if
the data reflects the distribution p(t|x) [41]. In practice, these
distributions are substituted with our model p(t|x, θ). This means
that the lower the gap between the model and the data distribution,
the closer we are to an optimal decision. In general, this is achieved
by models both able to separate between classes (a property known
as discrimination or refinement [46]), and able to assign correct
probabilities based on how the data is distributed (calibration).

Motivated by the properties of calibrated models, we propose
to ensemble neural networks that have been previously calibrated.
Considering that ensembles aim to combine probabilistic information,
one should expect that the combination of more reliable classifiers,
as those with a proper calibration, should provide more reliable
final posterior probability (Equation 4). In fact, merging multiple
classifiers usually boosts the accuracy, as the combination of
different local minima is a better representation of the data
distribution [47, 48]. Following this observation, it has been proved
in [40] that the average combination of classifiers tends to also
calibrate the final predictions. We extend this consideration using
an ensemble of calibrated models.

4.2 Averaging Calibrated Probabilities

We observe that data augmentation can be employed also during
inference to provide calibrated probabilities. As a matter of
fact, a multitude of data augmentation strategies can be applied
to dermoscopic images without altering their semantic content
(Table 1). Although not all augmentation steps induce a performance
boost, they can all be exploited during inference by feeding each
test image multiple times to each network, and by subjecting each
image to the same random data augmentation process performed
during training. By averaging the predictions of a single network,
we employ an ensemble technique that increases both the overall
accuracy and calibration without the need of training additional
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Table 4 Results obtained through a calibrated ensemble
using different Data Augmentation configurations (DA) and
fixed 512 × 512 image size over the training partition.

Net Data
Augmentation

Balanced
Accuracy AUC

DenseNet-201 2 0.861 0.980
SEResNeXt-50 0 0.867 0.982

ResNet-152 3 0.863 0.979

ensemble - 0.888 0.988

Table 5 Results obtained through an ensemble of the
three top performing architectures described in [32]. The
two input strategies employed in the paper are Random-
Resize cropping (RR) and Same-Size cropping (SS).

Net Input
Strategy

Balanced
Accuracy AUC

EfficientNet-b4 RR 0.800 0.965
EfficientNet-b5 SS 0.777 0.957
EfficientNet-b6 SS 0.773 0.957

ensemble - 0.871 0.983

networks. The only drawback is an inference time overhead. This
method can be especially beneficial when multiple networks are
trained with diverse data augmentation strategies and then merged
together. In these cases, DA increases the ability of the framework to
be robust to small transformation that are irrelevant towards the final
diagnosis.

To take this one step further, we calibrate single models by
means of Temperature Scaling [45], an easy to integrate calibration
technique with good performance in image classification. Empirical
results show that the Data Augmentation Ensemble (DAE) improves
both the accuracy and the calibration of the final ensemble of CNNs,
whereas the usage of Temperature Scaling, despite successfully
lowering the Expected Calibration Error (ECE) of a single model,
degrades the overall ensemble calibration while having a small
impact on the accuracy. However, this results can not yet be
generalized for more sophisticated calibration techniques given in
[40, 45, 49, 50]. We illustrate the whole proposed pipeline in Fig. 6.

5 Experimental results

This section presents the impact that different architectures, image
resolutions, augmentation strategies, and dataset sizes have on the
classification capabilities of several neural networks. Each network
is trained using stochastic gradient descent (SGD) with momentum
and a plateau learning rate scheduler. A validation set of 1 000
images is used to monitor the accuracy of the model at each epoch
and to apply the early stopping technique. Each network is tested on
5 000 images and trained on a set of 19 331 images, using a cross
entropy loss function which is weighted according to the inverse
prior probability of each class. Ratios between classes are preserved
in the training set as well as in both the validation and the test set. In
order to avoid trivial comparisons, training times are computed on
the same machine, equipped with one NVIDIA GTX 1080 Ti with
11 GB of memory.

In order to provide a qualitative visualization of the experimental
results, we make use of the Grad-CAM method [51] to show the
attention heatmaps associated to one of our models. Fig. 7 shows
the specific part of the image on which the trained model focuses
to make its prediction. On the other hand, quantitative results are
expressed by means of two different metrics: Balanced Accuracy and
Area Under the ROC Curve (AUC).

In Table 2, Table 3, and Fig. 5 we analyze the performance
of different networks when image resolution, network depth, and
network width are scaled up. The results of this investigation reveal
that image resolution is the most relevant hyperparameter for this
task. As a matter of fact, the accuracy obtained by EfficientNet-b5

Table 6 Confusion Matrix to show results of the calibrated ensemble
detailed in Table 4, i.e. using different Data Augmentation configurations
(DA) and fixed 512 × 512 image size over the training partition. Each cell
contains the percentage of images of a specific class defined by the column,
that were assigned to the class specified by the row. Accordingly, the main
diagonal (green squares) display the architecture sensitivity for each class.

ground truth
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MEL 85 4 1 3 3 0 1 1

NV 11 94 1 0 6 1 3 0

BCC 1 1 95 6 1 1 1 9

AK 1 0 1 84 3 1 0 7

BKL 2 1 1 6 85 0 0 3

DF 0 0 0 0 0 96 0 0

VASC 0 0 0 0 0 0 95 0

SCC 0 0 1 3 2 0 0 79

can be achieved by smaller networks like ResNet-50, by virtue of
merely increasing the size of input images. Indeed, deeper versions
of EfficientNet are unable to take advantage of their width, depth,
and image resolution without any supplementary data, yielding worst
accuracy results than EfficientNet-b4.

Table 4 and Table 6 show the results obtained by merging three
different networks, employing the ensemble technique described
in the previous Sections and pictured in Fig. 6. For the sake of
providing a fair evaluation of the proposed method, we make use
of the guidelines and the code provided by the winners of the
2019 ISIC challenge (DAISYLabs [32]), and build an ensemble
using the three top performing architectures described in the paper.
We implement the preprocessing strategy detailed by the authors
using the European Computer Vision Library (ECVL) [52]. Each
model is trained and tested using the same data partition described
at the beginning of this Section, and the results are displayed in
Table 5. The first three rows of Table 4 and Table 5 display the
performance of neural networks when tested individually, through
a single forward pass, and with no ensemble techniques applied
at inference time. On the other hand, the last row of Table 5
(ensemble) presents the results obtained by merging the output of
three CNNs after applying the two prediction strategies described

Fig. 7: Samples from the 2019 ISIC dataset and attention heatmaps
obtained by means of the Grad-CAM method. Besides always
locating the skin lesion, the network can aim its attention at specific
sections such as lesion borders (leftmost image) or darker patches
(rightmost image).
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Table 7 Balanced Accuracy (BA) and Area Under the ROC Curve (AUC)
obtained by ResNet architectures with different Training Partition Sizes (TPS)
and image resolutions.

512 × 512 256 × 256 128 × 128

Network TPS BA AUC BA AUC BA AUC

ResNet-18 10 000 0.699 0.952 0.690 0.945 0.625 0.918
ResNet-18 5 000 0.610 0.907 0.617 0.913 0.560 0.893
ResNet-18 1 000 0.431 0.856 0.450 0.863 0.416 0.826

ResNet-50 10 000 0.750 0.959 0.722 0.943 0.614 0.914
ResNet-50 5 000 0.663 0.930 0.637 0.909 0.511 0.883
ResNet-50 1 000 0.456 0.865 0.464 0.842 0.413 0.806

ResNet-152 10 000 0.773 0.964 0.739 0.951 0.648 0.918
ResNet-152 5 000 0.689 0.936 0.633 0.925 0.572 0.889
ResNet-152 1 000 0.522 0.891 0.495 0.863 0.433 0.831

in [32], both of which involve multiple forward passes for each
network. The comparison between Table 4 and Table 5 clearly shows
that the proposed method outperforms the winners of the ISIC 2019
challenge, when the two algorithms are trained and tested using the
exact same data.

In order to investigate how our framework performance is affected
by the amount of available data, we randomly build three smaller
version of the ISIC dataset with respectively 10 000, 5 000, and
1 000 images, always preserving the ratio between different classes.
Table 7 underlines that dataset size is a key factor for obtaining
good performance, as reducing the amount of available data always
worsen the final accuracy. Moreover, the impact of high resolution is
only reduced for drastic configuration, with very shallow networks
and extremely little data available. In Table 8 we also present
the effects obtained by increasing the number of performed data
augmentation steps during the training process, with datasets of
various sizes. Results of Table 7 and Table 8 are summed up in Fig. 8.

Finally, Table 9 displays the results obtained on the official 2019
ISIC challenge by following the guidelines defined in this paper. The
official metric of the challenge is the balanced accuracy, AUC values
are added for completeness. Metrics are computed over 9 classes as
described in Section 3, the none of the others class is not considered
by our approach because no labeled data is provided.

The proposed ensemble strategy is the best performing method
when compared to algorithms that do not employ an out of
distribution detection technique to handle the ninth class, and take
advantage of no additional data.
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Fig. 8: The effects that different dataset sizes have on ResNet-50.
As more labeled data is available, the overall accuracy is always
increased. For each dataset size, three different CNNs are trained
using a different data augmentation strategy (Table 1), showing how
adding data augmentation steps during training time usually boosts
the accuracy.

Table 8 Balanced Accuracy (BA) and Area Under the ROC
Curve (AUC) obtained by ResNet-50 with different Training Partition
Sizes (TPS), Data Augmentation configurations (DA), and image
resolutions. Indexes of DA are the same introduced in Table 1.

512 × 512 256 × 256 128 × 128

TPS DA BA AUC BA AUC BA AUC

19 000 1 0.804 0.973 0.754 0.958 0.626 0.923
19 000 2 0.837 0.976 0.781 0.963 0.704 0.939
19 000 3 0.846 0.977 0.770 0.960 0.660 0.921

10 000 1 0.725 0.956 0.664 0.931 0.557 0.900
10 000 2 0.730 0.959 0.705 0.938 0.589 0.905
10 000 3 0.743 0.964 0.708 0.935 0.617 0.909

5 000 1 0.642 0.927 0.586 0.902 0.482 0.872
5 000 2 0.667 0.926 0.635 0.911 0.516 0.872
5 000 3 0.656 0.928 0.639 0.910 0.549 0.871

1 000 1 0.432 0.845 0.413 0.837 0.337 0.767
1 000 2 0.453 0.855 0.450 0.842 0.377 0.800
1 000 3 0.459 0.869 0.457 0.847 0.406 0.800

6 Conclusion

With this paper we addressed the impact of image resolution,
data augmentation, and different state-of-the-art architectures on
dermoscopic images analysis. Furthermore, an ensemble strategy
that considers augmented samples at test time is presented. Our
method successfully deals with the absence of balance between
classes, by means of a large use of data augmentation strategies
(both at training and testing time), and a weighted cross entropy loss.
The proposed solution takes advantage of multiple networks trained
using different augmentation methods. A probabilistic approach is
employed to perform the ensemble over calibrated network decisions
thus ensuring better results.

Carrying out experiments in a systematic way, we proved
that dermoscopic image analysis highly depends on input image
resolution, and that the amount of performed data augmentation
strategies and available labeled data play a major role in this task. We
empirically demonstrated that due to the deficiency of dermoscopic
labeled data with respect to natural images, extremely deep
architectures (e.g. SEResNeXt-101, EfficientNet-b7) fail to provide
better results than shallower ones, highlighting that conclusions on
natural images can not be directly extended to dermoscopic ones.

The ISIC dataset is expected to consistently keep growing in the
approaching years, we therefore plan to extend our studies using
larger amounts of data, in order to assess how dermoscopic images
analysis is altered if more data is available, if the class imbalance
issue is stretched, or if the number of classes is increased. Moreover,
state-of-the-art results are obtained by means of extremely expensive
inference procedures (both in terms of time and hardware resources).
Future research directions will hence include an investigation
to find cheaper ways to obtain class predictions from neural
networks without excessively lowering the achieved discrimination
capabilities. Finally, we plan to explore the effects of new state-of-
the-art calibration techniques on an ensemble of neural networks.

Table 9 Results obtained on the official 2019 ISIC Challenge [53],
with a description of data used for every method. The last column
indicates methods that employ OOD strategy.

Method Balanced
Accuracy AUC Employed

Images OOD

DAISYLabs [32] 0.636 0.923 ISIC 2019 +
additional data 7

DysionAI 0.607 0.780 ISIC 2019 3

Proposed Method 0.593 0.886 ISIC 2019 7

DermaCode 0.578 0.892 ISIC 2019 7

Nurithm Labs 0.569 0.870 ISIC 2019 +
additional data 7
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The proposed ensemble yielded a balanced accuracy of 0.593
on the official 2019 ISIC challenge, achieving the third best result.
It is the best performing method when compared with challenge
participants that do not exploit additional data and do not take
advantage of an Out of Distribution Data detector. In order to ensure
reproducibility, the source-code is provided in [54].
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