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ABSTRACT

Background The regulation of the chromatin state

by epigenetic mechanisms plays a central role in gene
expression, cell function, and maintenance of cell
identity. Hereditary disorders of chromatin regulation
are a group of conditions caused by abnormalities of the
various components of the epigenetic machinery, namely
writers, erasers, readers, and chromatin remodelers.
Although neurological dysfunction is almost ubiquitous
in these disorders, the constellation of additional features
characterizing many of these genes and the emerging
clinical overlap among them indicate the existence of

a community of syndromes. The introduction of high-
throughput next generation sequencing (NGS) methods
for testing multiple genes simultaneously is a logical step
for the implementation of diagnostics of these disorders.
Methods We screened a heterogeneous cohort of 263
index patients by an NGS-targeted panel, containing

68 genes associated with more than 40 OMIM entries
affecting chromatin function.

Results This strategy allowed us to identify clinically
relevant variants in 87 patients (32%), including 30 for
which an alternative clinical diagnosis was proposed
after sequencing analysis and clinical re-evaluation.
Conclusion Our findings indicate that this approach is
effective not only in disorders with locus heterogeneity,
but also in order to anticipate unexpected misdiagnoses
due to clinical overlap among cognate disorders. Finally,
this work highlights the utility of a prompt diagnosis in
such a clinically and genetically heterogeneous group of
disorders that we propose to group under the umbrella
term of chromatinopathies.

INTRODUCTION

In the last decade, research in Mendelian disorders
has witnessed an explosion in the discovery of genetic
variants in the various components of the epigenetic
machinery linked to a number of human genetic
disorders.'™ Clinically relevant variants may occur
in gene encoding for writers, erasers and readers of
epigenetic marks as well as in chromatin remodellers.
The writers place the appropriate modifications on

particular regions of the genome based on the cell
type, developmental stage and metabolic state. These
marks ‘highlight’ individual regions for use or disuse
depending on whether the mark favours a more open
or more closed chromatin state.® The erasers remove
these marks, thus favouring the opposite chromatin
states. The readers recognise post-translational
modifications within a single histone tail, within two
tails on the same nucleosome or within two histone
tails on different nucleosomes.” Finally, chromatin
remodellers are multiprotein assemblies containing
an ATPase subunit of the Snf2 subfamily that is
capable of mobilising the nucleosomes by using the
energy of ATP hydrolysis and thereby altering chro-
matin structure.®

To date, over 60 Mendelian disorders, such as
Kabuki, Kleefstra, Coffin-Lowry, Wiedemann-
Steiner, Rubinstein-Taybi, Floating-Harbor and
Cornelia de Lange syndromes, are associated with
genetic alterations of the various components of the
epigenetic machinery (online supplementary table
$1).>? Most of them are characterised by intellec-
tual and neurological dysfunctions, a fact demon-
strating the pivotal role of chromatin remodelling
in central nervous system development and func-
tion.® Although these conditions are often distin-
guished by the pattern of ancillary findings and/or
facial dysmorphic features, clinical and molecular
overlap is increasingly described among them, as an
expected result of convergent pathogenesis in these
disorders.

The recent introduction of high-throughput
next-generation sequencing (NGS) methods facili-
tated the reduction of reporting time, costs and the
rates of negative or inconsistent results of molec-
ular testing in the clinical context. Here, we report
our findings in a cohort of 263 index patients
analysed with a customised NGS diagnostic panel
of 68 selected genes associated with chromatin-
related disorder. As the primary role of these genes
concerns the structure and function of chromatin,
we propose to group these disorders under the
umbrella term of chromatinopathies.
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MATERIALS AND METHODS
Samples
We applied our customised NGS Chromatinopathy Panel
(ChrPan; online supplementary table S1) to analyse 263 individ-
uals with a suspected diagnosis of a chromatin-related disorder.
In some cases, the clinical diagnosis was sharply defined. In
others, considering the increasing awareness on the existence
of an overlapping phenotypic spectrum caused by mutations of
genes involved in the epigenetic machinery, samples were sent
with a suspected diagnosis of ‘Chromatinopathy’ with features
suggestive but not pathognomonic of a specific syndrome.
Genomic DNA (gDNA) was extracted from fresh and/or
frozen peripheral blood leucocytes of patients and their avail-
able family members using an automated DNA extractor and
commercial DNA extraction kits (EZ1 Advanced XL, Qiagen,
Germany).

Targeted resequencing and NGS
A customised HaloPlex Target Enrichment NGS panel (Agilent
Technologies, Santa Clara, California) was designed using
Agilent’s SureDesign tool available at www.agilent.com/
genomics/suredesign (online supplementary table S1 and figure
S1). Total genome target that spanned 384 kb was theoretically
estimated to be completely covered (99.82%). A total of 17470
amplicons were generated. The full design is available as a .bed
file on request. The NGS panel was preliminarily validated using
a cohort of 30 DNA samples with known variants in chromat-
inopathies genes or resulted negative to sequence analysis. !>
Libraries were prepared according to the manufacturer’s
protocol using the human reference genome GRCh37/hg19.
Fluorometry-based Qubit dsDNA BR Assay (Thermo Fisher
Scientific) was used to determine the precise DNA concentra-
tion. DNA was fragmented using eight double-digests. Library
of gDNA was hybridised to the probe set in the presence of
indexing primer allowing for pooling, and the probe-fragment
hybrids were captured on magnetic beads. The library was
then amplified by PCR to produce a sequencing-ready, target-
enriched sample. Fragmented gDNA and final libraries were
evaluated using High Sensitivity D1000 ScreenTape System on
TapeStation 2200 (Agilent Technologies) and Qubit dsDNA HS
Assay Kits on Qubit 4 Fluorometer (Thermo Fisher Scientific)
for quantification, according to the manufacturer’s instructions.
Sequencing was performed on Illumina MiSeq System, using the
MiSeq Reagent Kit V2-500 cycles (Illumina, San Diego, Cali-
fornia), yielding 151 bp-long, paired-end reads and achieving an
average read depth of at least 400X and at least 20X per-base
coverage in more than 98% of the targeted regions for 11-22
samples.

Data analysis and variants validation

The quality of sequences was preliminary checked with FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and
trimmed using Trimmomatic’® if the quality of at least half-
read was lower than 10 (phred quality score). Residual adapter
sequences were removed by cutadapt (https://cutadapt.readthe-
docs.io/en/stable/). Preprocessed reads were aligned against the
GRCh37/hg19 reference genome sequence by the BWA-0.7.17
software. The depth of coverage statistics for the target regions
was calculated by means of TEQC (https://bioconductor.org/
packages/release/bioc/html/TEQC.html) and other custom
scripts. Variants were identified by means of the Haplotype-
Caller tool of GATK V.3.8, discarded if their calling quality did
not exceed a phred threshold value of 20 or were not covered by

at least 30 reads, otherwise annotated with ANNOVAR, using
RefSeq gene and transcript annotations (updated December
2016). Variants were sought in the most important public collec-
tions, including dbSNP V.150,"* ExAC V.0.3, Exome Variant
Server (http://evs.gs.washington.edu/EVS, accessed in December
2016) and gnomAD." Allelic frequencies were annotated using
Haplotype Reference Consortium, Kaviar and ClinVar data-
bases'® (accessed in June 2018). Sequencing artefacts were
controlled by matching individual-specific variants against
an internal database of variants. Missense variants were fully
annotated using dbNSFP V.3.5, from which we have retrieved
precomputed pathogenicity predictions and evolutionary conser-
vation predictions and measures. Potentially pathogenic variants
were confirmed with PCR amplification and Sanger sequencing,
as reported in refs.'” '* When available, DNA from parents was
analysed for variant inheritance.

The significance of candidate variants was classified according
to the American College of Medical Genetics and Genomics
criteria using InterVar (http://wintervar.wglab.org/)," Varsome
(https://varsome.com/),”" CAVA*' and PMut prediction (http:/
mmb.pcb.ub.es/PMut/)* tools. Sequence variants were described
according to the Human Genome Variation Society nomencla-
ture guidelines (https://varnomen.hgvs.org/).>

RESULTS

Mutational screening of chromatinopathies cohort

We found variants of clinical relevance in 87 index patients
(32%). The distribution of these variants is reported in tables 1
and 2, with 61 (70%) pathogenic or likely pathogenic variants
and the remaining 26 (30%) of unknown significance (VOUS).
Twenty-nine individuals (29 of 263; 10%) presented with features
suggestive but not pathognomonic of a specific syndrome,
referred to us as ‘Chromatinopathy-affected’ (table 1). Among
them we found patient GDB1326 exhibited the ¢.5128T>C; p.
(Cys1710Arg) pathogenic variant (table 1) located in a region
between bp 5128 and 5614, which includes nine distinct codons
of exon 30 of CREBBP. This exonic region has been associated
with the recently described Menke-Hennekam syndrome-2
(MIM #618333), thus expanding the number of individuals
affected by this newly described syndrome.?*2°

Cases with an alternative clinical diagnosis after NGS analysis
In nine index patients molecular findings resulted in a patho-
genic or likely pathogenic variant in a gene not associated with
the original clinical suspicion. In four of them we have confirmed
the clinical diagnosis after a clinical re-evaluation of the individu-
al’s phenotype (table 2). In 21 additional cases a VOUS was iden-
tified in a gene not associated with the referred clinical suspicion
(table 2), a result that needs further and accurate investigations.

The following sections describe in detail the four patients with
a confirmed clinical diagnosis after medical re-evaluation.

Case GDB1200

This patient, referred to us with a clinical suspicion of KS, is a
7-year-old boy born at term by caesarean section from consan-
guineous (first cousins) parents, by natural conception and with
uneventful pregnancy. At birth he presented a weight of 3.420¢
(50th centile), height 50 cm (50th centile) and head circum-
ference of 36.5cm (75th centile). Family history was mute.
Transcranial ultrasound was normal at birth. On physical exam-
ination at the age of 7, his weight was 23 kg (25th-50th centile),
height was 127 cm (50th-75th centile) and head circumference
was 49.5 cm (<3rd centile). Hypertelorism, thick eyebrows, long
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palpebral fissures, epicanthic folds, large and prominent ears,
short philtrum, and thin lips were also noted. In addition to the
global developmental delay, the parents also reported repetitive
and compulsive-like behaviours. Kidney/abdominal ultrasound,
ECG and echocardiography were normal. ChrPan revealed the
likely pathogenic de novo variant ¢.1033C>T; p.(His345Tyr)
in CTCF, which causes the autosomal dominant intellectual
disability type 21 (MIM #615502)%; this variant was never
reported in gnomAD, dbSNP, ExAC and ClinVar.

Case GDB1054

The proband is the only child of an unaffected mother; the father
was not available for genetic analysis. Antenatal ultrasound
showed hydroureteronephrosis (third grade), tricuspid valve
insufficiency and mild pericardial effusion. Birth parameters
were in the normal range. At birth, patent foramen ovale, mitral
insufficiency, pyelectasis of the right kidney and a choroid plexus
cyst were diagnosed. He underwent surgery for pyloric stenosis
and vesicoureteral reflux at 1 and 9 months of age, respectively.
At the age of 2, the patient had osteomyelitis of the right femur.
Other medical problems include astigmatism, advanced bone
age and overweight. Psychomotor development was delayed,
and he received the diagnosis of borderline intellectual disability
(IQ=70). The mother described him as very insecure and some-
times aggressive. He tends to isolate himself from peers. At the
age of 10, his weight was 41.5 kg (90th-97th centile), height was
135 cm (25th centile) and head circumference was 52.5 cm (25th—
50th centile). He showed overweight, hypertrichosis, high and
narrow palate, a flat profile, synophrys, hypertelorism, epican-
thus of the right eye, upslanting palpebral fissures, broad nose
with bulbous tip and tapering fingers. A provisional diagnosis
of KS was proposed by the referring clinician. ChrPan revealed
the pathogenic de novo variant ¢.4727dupA; p.(Tyr1576%) in the
KMT?2A, which is causative of the Wiedemann-Steiner syndrome
(MIM #605130)%; this variant was never reported in gnomAD,
dbSNP, ExAC and ClinVar.

Case 4075-17

This 7-year-old girl was the second child of healthy non-
consanguineous parents. Pregnancy and delivery were uneventful.
At birth hypotonia and mild dysmorphic features were noted.
She had a history of global developmental delay, moderate/severe
intellectual disability (according to the Vineland Scale), bilateral
neurosensorial deafness, recurrent otitis media and unilateral
myopia. At the age of 7, her weight was 23 kg (25th-50th centile),
height was 120.3 cm (25th-50th centile) and head circumference
was 50cm (10th centile). Dysmorphic features included sparse
hair, long face, bushy eyebrows, upslanting palpebral fissures,
flat nasal root, anteverted nares, macrostomia and thick lower
lip. For this case, the referring clinician proposed a provisional
diagnosis of KS. ChrPan detected the pathogenic de novo variant
c.4536G>A; p.(Trp1512*) in the ARID1B, which is one of the
gene causative of the Coffin-Siris syndrome (MIM #135900);
this variant was absent in gnomAD, dbSNP and ExAC.

Case GDB1401

This patient is a 29-year-old man, the second child of healthy
and unrelated parents. Family history was negative. He was born
at term after an uneventful pregnancy. Delivery was dystocic
with perinatal respiratory distress. His birth weight was 3700 g
(50th centile), length was 51 cm (-50th centile) and head circum-
ference was 36cm (50th centile). At birth, perianal fistula,
cryptorchidism and epigastric hernia were noted and surgically
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treated. Psychomotor development was delayed: he walked with
a gait on tiptoe and spoke his first words at 2 years. Growth
parameters were in the normal range. In childhood, he reported
sleep disorder, which has gradually resolved. No critical events
were observed and EEG was always normal. A brain MRI
performed at 6 years of age which showed areas of non-specific
parietal leucoencephalopathy was reported, while at 20 years
a single focal area of 12mm in diameter with a gliotic aspect
on a repeated brain MRI was reported. On examination, facial
features included long face, bushy eyebrows, hypertelorism,
anteverted nares, broad nose with bulbous tip, macrostomia,
thick lower lip and agenesis of two lower incisors. No haema-
tological alterations or alpha-thalassaemic trait is present. A
diagnostic hypothesis of Coffin-Lowry syndrome was proposed.
Constitutional karyotype, array-comparative genomic hybridisa-
tion, sequence analysis for Coffin-Lowry syndrome and FRAXA
were all negative. ChrPan revealed the pathogenic, maternally
inherited variant ¢.109C>Tp.(Arg37*) in ATR-X, associated
with the X linked recessive disorder ‘alpha thalassemia-mental
retardation/intellectual disability syndrome’ (MIM #301040)%;
this variant has been reported as pathogenic in ClinVar (https://
www.ncbi.nlm.nih.gov/clinvar/variation/11742/).

DISCUSSION
In this work, we presented our experience of molecular
screening of a cohort of 263 index patients with an initial suspi-
cion of various hereditary disorders of chromatin regulation by
application of a custom-made NGS panel of 68 causative and/
or candidate genes (online supplementary table S1). We found
variants of potential clinical relevance in 32% (87 patients) of
them, with a predominance of pathogenic and likely pathogenic
variants (tables 1 and 2). In families with positive results, our
findings impacted the establishment of a final diagnosis, partic-
ularly in those with pathogenic and likely pathogenic variants,
and contributed to reallocating the diagnosis within a wider
nosology of partially overlapping disorders in a proportion of
them. In the cohort of patients analysed, we were able to detect
potentially clinically relevant variants in 329 of the cases. These
data are somehow surprising as we expected a higher number
of positive patients according to known rates of positive genetic
testing available for at least the most common conditions
included in the panel, such as Kabuki syndrome and Rubinstein-
Taybi syndrome.?® *' This may be due to the involvement of
other causative genes, not included in the ChrPan, epigenetic
mechanisms, or yet unrecognised promoter or deep intronic
variants affecting normal splicing. Moreover, although we did
not explore in detail the positive rates by referring centres or
professionals, it is possible that the overall rate on positive labo-
ratory results is not representative of all involved centres due to
heterogeneity in patient selection. Finally, our current bioinfor-
matics pipeline did not include a diagnostically valid algorithm
for the identification of CNVs, which is a known mechanism
causing disease in some chromatinopathies.'® 3>

Our study revealed that in a number of patients, the molec-
ular findings were not in line with the original clinical diagnosis,
and for some of them the clinical reassessment after molec-
ular testing allowed the attribution of the alternate diagnoses
(table 2). Specifically, we found (1) heterozygous pathogenic
variants in CTCF, KMT2A, SRCAP, ARID1B and CHD?7 in
five patients with a clinical suspicion of KS, respectively; (2) a
heterozygous ARID1A pathogenic variant in a case of Cornelia
de Lange syndrome; and (3) an ATR-X null variant in a man with
a previous diagnosis of Coffin-Lowry syndrome.

So far only seven patients have been reported with de novo
CTCF mutations (MIM #615502).” 337 Consistent clinical
features among these patients included developmental delay/
intellectual disability, hypotonia, early feeding difficulty and
microcephaly. Moreover a unique facial dysmorphism has been
reported, which includes upslanting palpebral fissures, microg-
nathia, flat malar bone, long eyelashes and unique eyebrows
(wider on the medial sides and thinner on the lateral sides).*
We were, thus, able to identify the eighth patient with a de
novo CTCF missense variant with matching clinical phenotype,
expanding the mutation spectrum of CTCF gene and reinforcing
the set of clinical signs that define this emerging syndrome. This
patient supports the need of a pathway approach in patient
selection and laboratory study design for optimising diagnostic
resources.

Advances in genome high-throughput NGS techniques have
significantly accelerated the research into the genetic basis of
rare monogenic diseases. Also diseases’ nosology is changing
and patients’ classification reflecting commonalities in pathway
perturbations based on laboratory evidence is overwhelming
classification according recognisable patterns on physical exam-
ination. Over recent years, a growing number of genes encoding
different regulators of gene transcription and chromatin organ-
isation have been linked to a spectrum of neurodevelopmental
disorders often with overlapping clinical features, including
growth retardation, intellectual disability, developmental delay
and a combination of similar facial features. As the primary role
of this overall group of genes concerns the structure and func-
tion of chromatin, we think that the widest term of ‘Chromati-
nopathies’ may be suitable for grouping together most, if not all,
hereditary disorders of chromatin regulation due to variants in
writers, erasers, readers and chromatin remodellers.? 3

Recently a number of studies strongly supported the notion
that causative variants within these genes generate unique DNA
methylation episignatures with, however, some overlaps across
the different conditions in terms of shared molecular targets and
biological pathways.*”* It has been postulated, indeed, that the
clinical overlapping observed in a large number of studies*’ 40~
is thought to be caused by the downstream events orchestrated
by the primary functional defect in genes encoding the epigen-
etic protein machinery.” ¢

Our data support the indication that seldom a clear correla-
tion of the genetic variant with the clinical manifestation of the
phenotype is possible, likely due to the broad variability of clin-
ical features seen in patients with chromatinopathies. Our results
highlight how diagnosing the aetiology of this group of genetic
diseases can be a challenge; the presenting conditions may have
a plethora of differential diagnoses with subtle or absent pheno-
types that may exclude a condition within the initial clinical
assessment, and false-negative molecular results may have been
previously reported leading the referring clinician to consider
other causes. This study highlights the importance of simultane-
ously screening genes associated with the suspected condition as
well as the differential diagnoses. Therefore, we strongly recom-
mend the application of NGS technologies, exome sequencing
and/or gene panel sequencing to allow the most efficient molec-
ular analysis of patients with a clinical diagnosis of chromati-
nopathy. Moreover, since our understanding of this group of
Mendelian disorders evolves over time, any panel should be
regularly updated to capture the most clinically and molecularly
relevant alterations in order to stay constantly up-to-date.

This work demonstrates that a pathway-based NGS approach
may offer a unique opportunity to learn about the role of
epigenetics in health and disease in humans and to provide
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additional evidence of common molecular gene network(s) for
this group of diseases. Our findings suggest that variants in
different and functionally related chromatin-associated factors
might result in strongly overlapping clinical pictures. Also, these
findings emphasise the necessity to further identify and molec-
ularly characterise the disease-relevant mechanisms involved in
the regulation of function and structure of chromatin. This is of
paramount importance for making accurate diagnoses, under-
standing the pathogenesis and developing therapies.
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