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Particle Filtering for Nonlinear/Non-Gaussian
Systems with Energy Harvesting Sensors Subject to

Randomly Occurring Sensor Saturations
Weihao Song, Zidong Wang, Jianan Wang, Fuad E. Alsaadi and Jiayuan Shan

Abstract—In this paper, the particle filtering problem is in-
vestigated for a class of nonlinear/non-Gaussian systems with
energy harvesting sensors subject to randomly occurring sensor
saturations (ROSSs). The random occurrences of the sensor
saturations are characterized by a series of Bernoulli distributed
stochastic variables with known probability distributions. The
energy harvesting sensor transmits its measurement output to
the remote filter only when the current energy level is suffi-
cient, where the transmission probability of the measurement
is recursively calculated by using the probability distribution
of the sensor energy level. The effects of the ROSSs and the
possible measurement losses induced by insufficient energies are
fully considered in the design of filtering scheme, and an explicit
expression of the likelihood function is derived. Finally, the
numerical simulation examples (including a benchmark example
for nonlinear filtering and the applications in moving target
tracking problem) are provided to demonstrate the feasibility
and effectiveness of the proposed particle filtering algorithm.

Index Terms—Particle filtering, nonlinear/non-Gaussian sys-
tems, randomly occurring sensor saturations, energy harvesting
sensor, multi-sensor systems

I. I NTRODUCTION

As one of the fundamental issues in signal processing
and control communities, the filtering problem has attracted
considerable research interest during the past few decades
[6], [17], [25], [32], [51]. As early as in [15], a general
filtering framework has been constructed from a Bayesian
point of view, where the probability density function (PDF)
of the state of interest conditioned on the measurements has
been computed in a recursive manner. For linear systems with
Gaussian noises, it is well known that the renowned Kalman
filter [33] offers the analytically optimal solution. For general
nonlinear and/or non-Gaussian systems, the corresponding
optimal solution existsonly in a conceptual sense because
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the recursive propagation demands the calculation of multi-
dimensional integrals that is numerically difficult. To solve
this problem, various filtering algorithms have been developed
by utilizing different numerical approximation methods with
examples including, but are not limited to, extended Kalman
filtering with first-order linearization [1], [31], unscented
Kalman filtering with unscented transform [20], [21], cubature
Kalman filtering with cubature rule [2], and particle filtering
with Monte Carlo approximation [3], [12], [28], [61].

Owing to the applicability to general systems with any type
of noises, the particle filtering algorithm has captured much
attention from both academy and industry, and a rich body of
results has been reported from various perspectives, such as
reduced communication burden [27], model uncertainty [55]
and packet dropouts [62]. Among others, the group importance
sampling algorithm has been proposed in [40], which aims
to compress the statistical information included in a set of
weighted samples into a single summary weighted particle.
In [42], a particle selection method has been proposed for
cost-reference particle filtering algorithm, which is capable of
overcoming the difficulty (incurred by resampling) of parallel
computation in conventional particle filters. In addition, the
particle filtering problem has been investigated in [45] consid-
ering the presence of out-of-sequence measurements.

In many real-world applications of networked systems, it is
ubiquitous that the physical sensor cannot produce measure-
ment signals with unlimited amplitude due mainly to the hard-
ware restrictions, and this is referred to as the sensor saturation
phenomenon. Such a phenomenon, if not properly considered
in the stage of filter design, is likely to result in performance
degradation or even algorithm divergence. Accordingly, a
large amount of research attention has been devoted to the
filtering problem with sensor saturations [11], [16], [37], [38],
[47]. For example, the distributed set-membership filters have
been designed for systems with sensor saturations, unknown
but bounded noises and sector-bounded nonlinearities under
the event-triggered communication scheme in [37]. The joint
state and fault estimation problem has been investigated with
variance constraints in [16] for the time-varying nonlinear
systems subject to sensor saturations, parameter uncertainties
and randomly occurring faults.

Recently, the phenomenon of randomly occurring sensor
saturations (ROSSs) has started to draw some research at-
tention, see e.g. [8], [58]. In a networked environment, due
to limited bandwidth and/or unpredictable disturbances, the
network itself might undergo data collisions leading to net-
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work congestions and subsequent network-induced behaviors
(e.g. communication delays and packet dropouts [24], [52],
[53]) which, in turn, give rise to the so-called ROSSs [63].
Note that the ROSSs can also result from abrupt environment
changes and random/intermittent sensor failures [58]. Up to
now, the filtering problem for systems suffering from ROSSs
has aroused an initial yet quickly increasing research interest,
see [26], [34], [56] and the references therein. Nevertheless, it
is worth mentioning that the corresponding filter design issue
for general non-Gaussian systems subject to ROSSs has not
been investigated adequately.

It is often the case in practice that the energy supply is rather
scarce and this inevitably imposes certain constraints on the
efficient/smooth usage of the wireless sensor networks since
more sensors are battery-operated. To prolong the sensors’
lifetime, two kinds of approaches have been put forward, one
is to reduce the energy consumption and the other is to increase
the energy supply. For the former approach, considering that
the wireless transmission of data streams constitutes the main
cause for energy consuming, a great deal of work (e.g. [27],
[35], [57], [59]) has been concerned with the event-triggered
schemes where the data transmission is activated only when
certain predefined event occurs. For the latter approach, there
has been a notably growing research interest towards the
so-called energy harvesting technology [14], [44], [54]. For
sensors equipped with energy harvesters, the energy can be
harnessed (and then replenished) from the surrounding envi-
ronment such as solar and mechanical vibrations [23].

Given the practical importance of the energy harvesting
sensors, the corresponding filter design problem has recently
been gaining some initial attention. For example, in [22],
the optimal energy allocation problem has been studied for
multi-sensor estimation with energy harvesting and energy
sharing technologies. In [18], both the state and the sensor
energy level have been estimated for a linear Gaussian system
by incorporating the available set-valued and point-valued
event-triggered measurements. In [50], a recursion expression
for the probability distribution of the energy level has been
derived and an effective recursive filtering algorithm has been
proposed to address the phenomenon of sensor-energy-induced
missing measurements for a class of nonlinear time-delayed
systems. It should be noted that, so far, most reported results
have been focused on thelinear Gaussiansystems [18], [23]
or the nonlinear systems withspecial nonlinearities[50]. The
filter design issue for general nonlinear/non-Gaussian systems
with energy harvesting sensors subject to ROSSs has not
received adequate attention despite its practical significance.

Summarizing the above discussions, in this paper, we aim
to deal with the particle filtering problem for a class of
nonlinear/non-Gaussian systems involving both ROSSs and
probabilistic missing measurements caused by the energy
harvesting sensors. Through recursively calculating the prob-
ability distribution of the sensor energy level, the missing
probability of the measurement is derived. Accordingly, a
particle filtering algorithm is developed to restrain the effect
from both the ROSSs and the limited sensor energy on
the filtering performance by virtue of a modified likelihood
function. The main contributions of this paper are highlighted

as follows: 1) a unified framework for sequential Bayesian
estimation is proposed for a general class of nonlinear/non-
Gaussian systems under the energy-dependent transmission
protocol; 2) a modified particle filtering algorithm is de-
veloped to address the multi-sensor fusion problem subject
to partial measurement-information-loss induced by different
energy levels of each individual sensor; and 3) the recursion
for importance weight is derived to take into account the joint
effects from the ROSSs and the sensor energy constraints.

The remainder of this paper is organized as follows. In
Section II, the concerned filtering problem is formulated.
In Section III, the particle filtering algorithm is designed
by considering the phenomenon of ROSSs and the energy
harvesting sensors. In Section IV, two numerical examples
are presented to show the usefulness and effectiveness of the
proposed particle filtering scheme. Concluding remarks are
finally provided in Section V.
Notation. Throughout this paper, the notation used is

fairly standard.Rn represents then-dimensional Euclidean
vector space.‖ · ‖ stands for the Euclidean norm of a
vector. The superscriptT denotes the operation of trans-
pose. diag{a1, a2, . . . , an} denotes a diagonal matrix with
a1, a2, . . . , an being the diagonal elements.px(·) stands for
the PDF of a stochastic variablex, i.e.,x ∼ px(·), andpx|y(·)
denotes the conditional PDF of a stochastic variablex giveny.
Pr{A} denotes the occurrence probability of the discrete event
A. N(a, b) represents the Gaussian distribution with meana
and covarianceb. G(a, b) denotes the Gamma distribution with
shape parametera and scale parameterb. Exp(a) stands for
the exponential distribution with meana. xk:l represents the
trajectory ofx from time instantk to time instantl. Other
notations will be provided as the need arises.

II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system

xk+1 = fk(xk) + ωk (1)

and N energy harvesting sensors with randomly occurring
saturations

yik = γi
kSat(h

i
k(xk)) + (1− γi

k)h
i
k(xk) + νik (2)

where, for i = 1, 2, . . . , N , xk ∈ R
n and yik ∈ R are the

state of the target plant and the measurement output of theith
sensor at time instantk, respectively.fk(·) : Rn 7→ R

n and
hi
k(·) : Rn 7→ R denote the state transition function and the

measurement function of theith sensor, respectively.ωk ∈ R
n

represents the process noise satisfyingpωk
(·) and νik ∈ R

is the measurement noise on sensori satisfyingpνi

k

(·). The
saturation functionSat(·) : R 7→ R is modelled by

Sat(κ) = sign(κ)min{κmax, |κ|} (3)

wheresign(·) is the signum function andκmax represents the
saturation level. Moreover, a Bernoulli distributed stochastic
variableγi

k is defined to characterize the phenomenon of the
ROSSs on theith sensor [58], which takes a value of0 or 1
with {

Pr{γi
k = 1} = γ̄i

Pr{γi
k = 0} = 1− γ̄i (4)
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whereγ̄i ∈ [0, 1] is a known constant.
Next, the following assumptions are made to further clarify

the considered system.
Assumption 1:The initial statex0 satisfies the prior density

px0
(·), i.e., x0 ∼ px0

(·).
Assumption 2:The process noiseωk, the N measurement

noises{νik}
N
i=1 and the stochastic variables{γi

k}
N
i=1 are all

mutually independent and also independent of the initial state
x0.

Assumption 3:The nonlinear functionsfk(·) andhi
k(·) as

well as the PDFspωk
(·) andpνi

k

(·) are all known.
Let the ith energy harvesting sensor be powered by a

chargeable battery whose maximum energy storage capacity
is denoted byĒi and the energy level of theith sensor at
time instantk is defined byEi

k ∈ {0, 1, . . . , Ēi}. DenoteHi
k

as the number of the units of energy harvested by theith
sensor at time instantk, which is modelled as a first-order
Markov model. Assume thatHi

k takes a value in the finite
non-negative integer setH = {0, 1, . . . , H̄} with transition
probability matrix Π = [πuv]H̄×H̄ , where H̄ denotes the
maximum energy that can be harvested by the sensors.πuv =
Pr{Hi

k+1
= v|Hi

k = u} denotes the transition probability for

all u, v ∈ H and
∑H̄

v=0
πuv = 1.

Remark 1:As stated in [14], [23], the energy harvesting
process may be correlated among different time instants, e.g.
the amount of the harvested solar energy is contingent on
the weather and the period of a day. The rationality of the
first-order Markov energy harvesting model is justified by the
empirical measurements when the solar energy is the energy
harvesting source [13].

Assumption 4:The energy harvesting sensor can transmit its
measurement to the remote filter only when it stores nonzero
units of energy and each measurement transmission consumes
one unit of energy.

Define an indicator variable1{Ei

k
>0} for the energy con-

sumption as

1{Ei

k
>0} =

{
1, if Ei

k > 0
0, otherwise

, (5)

then the energy level of theith sensor at each time instant is
recursively calculated as [50]

Ei
k+1 = min

{

Ei
k − 1{Ei

k
>0} +Hi

k+1, Ē
i
}

(6)

with the initial energy level0 < Ei
0 ≤ Ēi. Note that the

energy level is unknown at each time instantk ≥ 1 due to the
unpredictable characteristic of the amount of harvested energy,
and the probability distribution of the energy level will be
discussed in the subsequent section.

As illustrated in Fig. 1, theith energy harvesting sensor
transmits the new measurement to the remote filter only when
the sensor’s current energy is sufficient, i.e.,Ei

k > 0. Due
to the above-mentioned property of the energy harvesting
sensors, at the remote filter side, the available measurement
contributed by theith sensor at time instantk is described as

zik = 1{Ei

k
>0}y

i
k + ni

k, (7)

whereni
k ∈ R denotes the channel noise in the reception of

the ith sensor’s information, which satisfiespni

k

(·).

Plant

Sensor 1 Sensor 2 Sensor N

Solar Energy

1 0
k
E >

2 0
k
E = 0N

k
E >

Remote Filter (Fusion Center)

Fig. 1: Block diagram of the networked system with energy
harvesting sensors and ROSSs.

Remark 2:Compared with the existing results concerning
particle filtering with packet dropout [62] andH∞ filtering
with missing measurements [49], two distinguishing features
of the considered model are identified as follows. 1) A novel
indicator variable1{Ei

k
>0}, whose probability distribution is

dependent on the evolution dynamics of the energy level (6),
is introduced to characterize whether or not the measurement
yik is successfully transmitted to the remote filter. Note that
1{Ei

k
>0} is a time-correlated variable (rather than a Bernoulli

distributed stochastic variable with known probability distri-
bution). 2) Both the measurement noise and the channel noise
are taken into consideration to better cater for the real-world
scenario. In addition, there is no specific requirement on the
type of the noise, and therefore the application potential is
further increased. In summary, it is these distinguishing fea-
tures that render some additional difficulties in the subsequent
design of filtering scheme.

At time instantk, the available measurements at the remote
filter are denoted asz1:Nk =

[
z1k z2k · · · zNk

]T
. In addition,

let us denoteZ1:N
1:k =

[
(z1:N1 )T (z1:N2 )T · · · (z1:Nk )T

]T

as the vector of all available measurements up to time instant
k.

The purpose of this paper is to develop a particle filtering
algorithm for the general nonlinear/non-Gaussian systems sub-
ject to the sensor energy constraints and the ROSSs such that
the estimate of statexk can be obtained at the remote filter in
the sense of minimum mean-square error (MMSE) based on
the available actual measurement informationZ1:N

1:k .

III. A LGORITHM DESIGN AND DISCUSSION

As is well known, the MMSE estimate of the unknown state
vectorxk is defined by

x̂k =

∫

xkp(xk|Z
1:N
1:k )dxk. (8)

Unfortunately, it is difficult to obtain an analytical solution
to the problem addressed in this paper due to the fact that the
marginal posterior PDFp(xk|Z

1:N
1:k ) is non-Gaussian. As an

alternative method, the particle filtering algorithm [3] can be
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utilized to obtain an approximate expression ofp(x0:k|Z
1:N
1:k )

with a set of weighted particle trajectories as

p(x0:k|Z
1:N
1:k ) =

M∑

m=1

Wm
k δ(x0:k − xm

0:k) (9)

whereM denotes the number of the particles andδ(·) rep-
resents the multi-dimensional Dirac delta function. In ad-
dition, the particles{xm

0:k}
M
m=1 are drawn from a proposal

density functionq(x0:k|Z
1:N
1:k ) and the corresponding weight-

s {Wm
k }Mm=1 are calculated via the importance sampling

method. To be more specific, the importance weightWm
k

associated withxm
0:k is defined by

Wm
k =

p(xm
0:k, Z

1:N
1:k )

q(xm
0:k|Z

1:N
1:k )

. (10)

If the proposal density function is selected such that we can
factorize it as

q(xm
0:k|Z

1:N
1:k ) = q(xm

k |xm
0:k−1, Z

1:N
1:k )q(xm

0:k−1|Z
1:N
1:k−1), (11)

then we have

Wm
k =

p(xm
0:k, Z

1:N
1:k )

q(xm
0:k|Z

1:N
1:k )

=
p(z1:Nk |xm

k )p(xm
k |xm

k−1
)p(xm

0:k−1
, Z1:N

1:k−1
)

q(xm
k |xm

0:k−1
, Z1:N

1:k )q(xm
0:k−1

|Z1:N
1:k−1

)
. (12)

According to Assumption 2, it is straightforward to see that

p(z1:Nk |xm
k ) =

N∏

i=1

p(zik|x
m
k ). (13)

Substituting (13) into (12) yields

Wm
k = Wm

k−1

(∏N

i=1
p(zik|x

m
k )
)
p(xm

k |xm
k−1)

q(xm
k |xm

0:k−1
, Z1:N

1:k )
. (14)

It is evident from (2) and (7) that the actual measurement
zik (contributed by theith energy harvesting sensor at the
remote filter) is dependent on 1) the energy level and 2)
whether the sensor saturation occurs or not. Therefore, the
update equation of the importance weights, which is related
to the indicator variable1{Ei

k
>0} and the Bernoulli distributed

stochastic variableγi
k, is distinct from that in the standard

sequential importance sampling method. In the sequel, we aim
to derive an explicit expression of the likelihood function with
the purpose of compensating for the effects resulting from the
ROSSs and the probabilistic missing measurements.

Proposition 1:With the measurement model described by
(2) and (7), the likelihood function of the system state asso-
ciated with theith energy harvesting sensor at time instantk
is given by

p(zik|x
m
k )

= Pr{1{Ei

k
>0} = 1}

[
(1 − γ̄i)pνi

k
+ni

k

(zik − hi
k(x

m
k ))

+ γ̄ipνi

k
+ni

k

(zik − Sat(hi
k(x

m
k )))

]

+ Pr{1{Ei

k
>0} = 0}pni

k

(zik) (15)

wherepνi

k
+ni

k

(·) is the PDF of the sum of the measurement
noiseνik and the channel noiseni

k.

Proof: To prove the result, we will discuss the form of
the likelihood function in the following three cases.

Case 1:If the energy of sensor nodei is sufficient and the
phenomenon of sensor saturation does not occur at time instant
k, i.e., 1{Ei

k
>0} = 1 andγi

k = 0, it is immediate to see from
(2) and (7) that

zik = hi
k(xk) + νik + ni

k. (16)

Then, the likelihood function is evaluated as

p(zik|x
m
k , 1{Ei

k
>0} = 1, γi

k = 0) = pνi

k
+ni

k

(zik − hi
k(x

m
k )).

(17)
Case 2:If the energy of sensor nodei is sufficient and the

phenomenon of sensor saturation occurs at time instantk, i.e.,
1{Ei

k
>0} = 1 andγi

k = 1, we obtain from (2) and (7) that

zik = Sat(hi
k(xk)) + νik + ni

k. (18)

Then, we can denote the likelihood function as

p(zik|x
m
k , 1{Ei

k
>0} = 1, γi

k = 1) = pνi

k
+ni

k

(zik−Sat(hi
k(x

m
k ))).
(19)

Summarizing the above two cases, it is obtained from (17)
and (19) that

p(zik|x
m
k , 1{Ei

k
>0} = 1)

=
1∑

j=0

p(zik, γ
i
k = j|xm

k , 1{Ei

k
>0} = 1)

=
1∑

j=0

p(zik|x
m
k , 1{Ei

k
>0} = 1, γi

k = j)Pr{γi
k = j}

=(1 − γ̄i)p(zik|x
m
k , 1{Ei

k
>0} = 1, γi

k = 0)

+ γ̄ip(zik|x
m
k , 1{Ei

k
>0} = 1, γi

k = 1)

=(1 − γ̄i)pνi

k
+ni

k

(zik − hi
k(x

m
k ))

+ γ̄ipνi

k
+ni

k

(zik − Sat(hi
k(x

m
k ))). (20)

Case 3:If the energy of sensor nodei is insufficient and
the current measurement is not transmitted at time instantk,
i.e., 1{Ei

k
>0} = 0, then only the channel noise is received at

the remote filter and we have

zik = ni
k. (21)

Similarly, the likelihood function is rewritten as

p(zik|x
m
k , 1{Ei

k
>0} = 0) = pni

k

(zik). (22)

By noting (20) and (22) together with the law of total
probability, the likelihood functionp(zik|x

m
k ) with regard to

the ith sensor at time instantk is expressed by

p(zik|x
m
k )

=

1∑

j=0

p(zik, 1{Ei

k
>0} = j|xm

k )

=

1∑

j=0

p(zik|x
m
k , 1{Ei

k
>0} = j)Pr{1{Ei

k
>0} = j}

=Pr{1{Ei

k
>0} = 1}p(zik|x

m
k , 1{Ei

k
>0} = 1)

+ Pr{1{Ei

k
>0} = 0}p(zik|x

m
k , 1{Ei

k
>0} = 0)
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=Pr{1{Ei

k
>0} = 1}

[
(1− γ̄i)pνi

k
+ni

k

(zik − hi
k(x

m
k ))

+ γ̄ipνi

k
+ni

k

(zik − Sat(hi
k(x

m
k )))

]

+ Pr{1{Ei

k
>0} = 0}pni

k

(zik), (23)

which completes the proof.
According to Proposition 1, the explicit expression of the

likelihood function corresponding to theith energy harvesting
sensor is now written as (15), which cannot be directly applied
in the weight update due to the fact that the transmission
probability Pr{1{Ei

k
>0} = 1} is by far unknown. Before

proceeding further, the following lemma is introduced to deal
with such an issue.

Lemma 1:Given the dynamics of the energy level{Ei
k}

described by (6) with initial energy levelEi
0 and the first-

order Markov energy harvesting process{Hi
k} with the initial

distribution ofHi
0, the recursion of the probability distribution

τ ik of the energy level for theith energy harvesting sensor can
be calculated by







pik,v =
∑H̄

u=0
πuvp

i
k−1,u

τ ik = χ+ Si
kτ

i
k−1

τ i0 = [0 · · · 0
︸ ︷︷ ︸

Ei

0

1 0 · · · 0
︸ ︷︷ ︸

Ēi−Ei

0

]T
(24)

where

τ ik =
[
Pr{Ei

k = 0} · · · Pr{Ei
k = Ēi}

]T
,

χ = [0 · · · 0
︸ ︷︷ ︸

Ēi

1]T ,

Si
k =















pik,0 pik,0 0 · · · 0

pik,1 pik,1 pik,0 · · · 0

pik,2 pik,2 pik,1 · · · 0
...

...
...

. . .
...

pi
k,Ēi−1

pi
k,Ēi−1

pi
k,Ēi−2

· · · pik,0

−
Ēi−1∑

s=0

pik,s −
Ēi−1∑

s=0

pik,s −
Ēi−2∑

s=0

pik,s · · · −pik,0















and
pik,v = Pr{Hi

k = v}.

Proof: For v ∈ H, according to the law of total probabil-
ity, we have

pik,v = Pr{Hi
k = v}

=

H̄∑

u=0

Pr{Hi
k = v,Hi

k−1 = u}

=

H̄∑

u=0

Pr{Hi
k = v|Hi

k−1 = u}Pr{Hi
k−1 = u}

=

H̄∑

u=0

πuvp
i
k−1,u, (25)

by which the probability distribution of the harvested energy
quantity can be calculated at each time instant. The remaining
part of this proof is similar to that of Lemma 1 in [50] and is
omitted here.

From Lemma 1, we immediately obtain the transmission
probability of theith sensor’s measurement at time instantk,
that is,

λi
k = Pr{1{Ei

k
>0} = 1} = [0 1 · · · 1

︸ ︷︷ ︸

Ēi

]τ ik. (26)

Remark 3:It should be noted that the structure of Lemma 1
is similar to that in [50], but the distinction lies in that the
probability distribution of the harvested energy in Lemma 1
is time-varying and dependent on the previous time instant,
which can be calculated recursively with a time-varying matrix
Si
k. In fact, Lemma 1 can be reduced to that in [50] if we

simply set the probability transition matrix as an identity
matrix. In addition, due to the limited hardware level of the
energy harvesting modules, the maximum amount of energy
that can be harvested by theith sensor might be less than the
maximum amount that it can store, i.e.,H̄ ≤ Ēi − 1. In this
case, some elements in the matrixSi

k will be always equal to
zeros, i.e.,pik,v = 0 for v > H̄ . Meanwhile, the first̄Ei−H̄+1
elements of the last row in the matrixSi

k are equal to−1 by
noting

∑H̄

u=0
pik,u = 1. Consequently, the computational cost

of the matrixSi
k will be reduced.

Now, substituting (15) and (26) into (13), we can evaluate
the likelihood functionp(z1:Nk |xm

k ) as

p(z1:Nk |xm
k )

=
N∏

i=1

{

λi
k

[
(1− γ̄i)pνi

k
+ni

k

(zik − hi
k(x

m
k ))

+ γ̄ipνi

k
+ni

k

(zik − Sat(hi
k(x

m
k )))

]
+ (1− λi

k)pni

k

(zik)
}

.

(27)
Remark 4:Due to the simultaneous presence of the measure-

ment noise and the channel noise, when the energy harvesting
sensori has sufficient energy to send the current measurement
to the remote filter, the calculation of the likelihood function
depends on the PDF of random variable(νik + ni

k). Noting
that νik and ni

k are two independent random variables, the
PDF of random variable(νik+ni

k) is the convolution ofpνi

k

(·)
andpni

k

(·). To be more specific, if the sensor saturation phe-
nomenon does not occur at time instantk, then the likelihood
function for themth particlexm

k is calculated by

pνi

k
+ni

k

(zik − hi
k(x

m
k )) =

∫

pνi

k

(ν̄)pni

k

(zik − hi
k(x

m
k )− ν̄)dν̄.

(28)
In fact, some distributions (e.g. normal distribution and

exponential distribution) possess simple convolutions. When
the accurate convolution is difficult to obtain in some cases,
an alternative approximation of (28) is given by a simulation
approach. That is,

pνi

k
+ni

k

(zik − hi
k(x

m
k )) ≈

1

C

C∑

c=1

pni

k

(zik − hi
k(x

m
k )− ν̄c)

where pνi

k

(ν̄) is approximated by its particle representation
1

C

∑C

c=1
δ(ν̄ − ν̄c) andC is the number of the particles.

The implementation of the modified particle filtering algo-
rithm for systems with energy harvesting sensors subject to
ROSSs is provided in Algorithm 1.
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Algorithm 1 Modified particle filtering with energy harvesting
sensors subject to ROSSs

Step 1.Particle initialization
SampleM particles from the prior density, i.e.,
xm
0 ∼ px0

(x0),m = 1, 2, . . . ,M and the corre-
sponding importance weightsWm

0 are all set to be
1

M
. In addition, set the maximum recursive time

instantK.
Step 2.Importance sampling

For eachm = 1, . . . ,M , sample particlexm
k from

the transition PDFp(xm
k |xm

k−1
).

Step 3.Weight update
Calculate the unnormalized weights{W̃m

k }Mm=1

based on (27) as

W̃m
k

= Wm
k−1

N∏

i=1

{

λi
k

[
(1− γ̄i)pνi

k
+ni

k

(zik − hi
k(x

m
k ))

+ γ̄ipνi

k
+ni

k

(zik − Sat(hi
k(x

m
k )))

]

+ (1− λi
k)pni

k

(zik)
}

.

Step 4.Normalization
Normalize the importance weights as

Wm
k =

W̃m
k

∑M

m=1
W̃m

k

.

Step 5.State estimate update
Calculate the state estimatex̂k and estimation error
covariancePk as

x̂k =

M∑

m=1

Wm
k xm

k ,

Pk =

M∑

m=1

Wm
k (xm

k − x̂k)(x
m
k − x̂k)

T .

Step 6.Resampling
Resample the particles based on the normalized
importance weights{Wm

k }Mm=1.
Step 7.If k < K, then go to Step 2; otherwise go to Step

8.
Step 8.Stop.

As can be seen from Algorithm 1, the proposed recursive
algorithm is mainly constructed by: 1) sampling new particles
from the proposal density functionq(xk|x0:k−1, Z

1:N
1:k ) by

using previous particles (Steps 1and 2); and 2) collecting
the measurements from all the energy harvesting sensors and
updating the importance weights according to the available
measurementsz1:Nk , which are dependent on the energy level
of each individual sensor and the ROSSs (Steps 3and 4).
For the convenience of implementation, the state transition
PDF p(xk|xk−1) determined by (1) is chosen as the proposal
density function in Algorithm 1. Nevertheless, after a few
iterations, the particle degeneracy phenomenon may occur,
which means that all but one particle will have insignificant

weights. Therefore, a resampling procedure [3] is introduced to
reduce the effect of the degeneracy phenomenon (Step 6). Note
that the proposed algorithm can be straightforwardly extended
to the adaptive resampling case, i.e., the resampling procedure
is executed only when the effective sample size [41] is less
than a predefined threshold.

Remark 5: Up to now, the filtering problem has been
addressed for a class of nonlinear/non-Gaussian systems sub-
ject to the ROSSs and the sensor energy constraints in the
framework of sequential Bayesian estimation. By recursively
calculating the probability distribution of each sensor’s energy
level, the probability of measurement transmission is obtained
at each time instant. Accordingly, we have derived a mod-
ified likelihood function to update the importance weights.
It is worth figuring out that our proposed algorithm is also
applicable to the case without sensor energy constraints, i.e.,
λi
k = 1, and the case where the missing measurement is

governed by a Bernoulli distributed stochastic variable with
known probability distribution [58]. Meanwhile, if we set
γ̄i = 0, then our proposed algorithm degenerates to the case
with only sensor energy constraints.

Remark 6:It should be pointed out that, in recent years,
many particle filtering methods have been proposed to address
the model uncertainty by adopting multiple candidate state-
space models. A common approach available in the literature is
to utilize a batch of particle filters, each of which corresponds
to one of the candidate models (see e.g. [5], [9], [29], [30],
[42], [55]), and another kind of strategy is to jointly make
inferences on the states and model index [10]. Actually, due to
the random nature of the sensor saturations and measurement
information loss, the measurement process of each sensor can
also be described by a system with three candidate models
(i.e., 1{Ei

k
>0} = 1 andγi

k = 0, 1{Ei

k
>0} = 1 andγi

k = 1, and
1{Ei

k
>0} = 0) by following the line of [29], [30]. However, it

is worth noting that, in this paper, the missing probability of
the measurement has been derived in a recursive manner and
we are able to directly derive the likelihood function based on
the statistical characteristics of the ROSSs and measurement
information loss, avoiding the use of multiple particle filters
and the inference on the model index.

Remark 7:The particle filtering problem for nonlinear/non-
Gaussian systems has become a hot topic for a few decades
with successful applications in many areas. Comparing to the
rich body of existing results in the literature, the main results
established in this paper own the following specific merits:
1) the problem addressed is new in the sense that both the
energy-dependent transmission protocol and the phenomena of
ROSS are taken into account; 2) the particle filtering algorithm
proposed is new that tackles the multi-sensor fusion issue
subject to partial measurement-information-loss induced by
different energy levels of each individual sensor; and 3) the
recursion derived for importance weight is new as the joint
effects from the ROSSs and the sensor energy constraints are
explicitly reflected.

IV. SIMULATION RESULTS

In this section, some illustrative examples are presented
to verify the effectiveness of our modified particle filtering
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Fig. 2: Estimation results of PF-ROSS-EH and SPF.

algorithm.

A. Numerical example

In this subsection, a simple non-stationary model (modified
from [64], [65]) is employed to show the feasibility of the
proposed algorithm (abbreviated as PF-ROSS-EH).

Consider a nonlinear and non-Gaussian system described by
(1)-(2) with the following nonlinear functions







fk(xk) = 0.5xk + 25
xk

1 + x2
k

+ 8 cos(1.2k)

hi
k(xk) =

(xk − si)
2

20
, i = 1, 2

(29)

wheres1 = 0.1 ands2 = −0.1. The process noiseωk satisfies
the Gamma distribution, i.e.,ωk ∼ G(2, 2). The measurement
noisesνik and channel noisesni

k obey the exponential distri-
butions, i.e.,νik ∼ Exp(2) and ni

k ∼ Exp(2) for i = 1, 2.
The occurring probability of the sensor saturation is set to be
γ̄i = 0.5 and the saturation level isκmax = 10. The maximum
number of the storable energy for both sensors isĒi = 3 and
the initial energy isEi

0 = 1. The state space of the energy
harvesting process is defined asH = {0, 1, 2, 3}, and the
transition probability matrix is given by






π00 π01 π02 π03

π10 π11 π12 π13

π20 π21 π22 π23

π30 π31 π32 π33






=







0.5 0.2 0.2 0.1
0.4 0.4 0.1 0.1
0.3 0.3 0.2 0.2
0.3 0.1 0.2 0.4






.

In addition, the initial state isx0 = 1 and the initial 200
particles are drawn from a Gaussian prior distributionN(1, 4).

For comparison, the standard particle filtering algorithm
(abbreviated as SPF) is utilized without considering the ROSSs
and the possibly failed measurement transmission. The estima-
tion results are shown in Fig. 2. It can be seen that our PF-
ROSS-EH provides a more accurate estimate than the SPF,
which demonstrates the feasibility and effectiveness of our
proposed filtering algorithm.

B. Application to 2-D and 3-D target tracking problems

In this subsection, the proposed algorithm is firstly used to
track a target that moves in a two-dimensional plane. The state
of the target at time instantk is denoted as

xk = [stx,k, v
t
x,k, s

t
y,k, v

t
y,k]

T ,

where(stx,k, s
t
y,k) and(vtx,k, v

t
y,k) are the position and velocity

of the target’s centroid, respectively.
Following [7], the dynamics of the target is represented by

the white noise acceleration model described by

xk+1 =







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1






xk + ωk (30)

whereT denotes the sampling period andωk denotes the zero-
mean Gaussian white noise sequences with covariance matrix
Qk determined by

Qk = ∆








T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3

T 2

2

0 0 T 2

2
T








(31)

and∆ denotes the acceleration variance.
Let the moving target emit a radio or acoustic signal. TheN

passive received-signal-strength (RSS) sensors are deployed in
the reconnaissance region to measure the emitted signal energy
of the target. To be specific, the measurement model of theith
RSS sensor located at(ss,ix,k, s

s,i
y,k) is represented by [7], [46]

hi
k(xk) = P0−10nr log10

(

‖[stx,k, s
t
y,k]

T − [ss,ix,k, s
s,i
y,k]

T ‖

d0

)

,

(32)
i = 1, 2, . . . , N , whereP0 is the received signal energy at the
reference distanced0 andnr is the path loss exponent.

Due to the effect of the ROSSs, the actual measurement
output of theith sensor is given by

yik = γi
kSat(h

i
k(xk)) + (1− γi

k)h
i
k(xk) + νik (33)

where νik denotes the zero-mean Gaussian white noise se-
quence with varianceσ2

ν,i. Afterwards, if the sensor energy
is sufficient, the measurement output is transmitted to the
remote filter via a noisy communication channel (see (7)). The
communication noiseni

k is modelled by a zero-mean Gaussian
white noise sequence with varianceσ2

n,i.
To evaluate the performance of the proposed algorithm, the

root mean-square error (RMSE) on the position and velocity
are respectively defined as follows:

RMSEPos,k =

√
√
√
√

1

MC

MC∑

j=1

[

(st,jx,k − ŝt,jx,k)
2 + (st,jy,k − ŝt,jy,k)

2

]

,

RMSEVel,k =

√
√
√
√

1

MC

MC∑

j=1

[

(vt,jx,k − v̂t,jx,k)
2 + (vt,jy,k − v̂t,jy,k)

2

]
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where MC denotes the total number of the Monte Carlo
trials, [st,jx,k, s

t,j
y,k]

T and [vt,jx,k, v
t,j
y,k]

T stand for the realiza-
tion of [stx,k, s

t
y,k]

T and [vtx,k, v
t
y,k]

T , whose estimates in
the jth Monte Carlo trial are denoted by[ŝt,jx,k, ŝ

t,j
y,k]

T and
[v̂t,jx,k, v̂

t,j
y,k]

T . For the convenience of readers, a summary of the
notation involved in this application is provided in TABLE I.

TABLE I: Summary of the involved notation.

Variables Descriptions

st
x,k

/st
y,k

the target position in the X/Y coordinate direction
vt
x,k

/vt
y,k

the target velocity in the X/Y coordinate direction

st,j
x,k

/st,j
y,k

the realization ofst
x,k

/st
y,k

in the jth Monte Carlo trial

vt,j
x,k

/vt,j
y,k

the realization ofvt
x,k

/vt
y,k

in the jth Monte Carlo trial

ŝt,j
x,k

/ŝt,j
y,k

the estimate ofst,j
x,k

/st,j
y,k

in the jth Monte Carlo trial

v̂t,j
x,k

/v̂t,j
y,k

the estimate ofvt,j
x,k

/vt,j
y,k

in the jth Monte Carlo trial

ss,i
x,k

/ss,i
y,k

the ith sensor’s position in the X/Y coordinate direction
T the sampling period
∆ the acceleration variance
N the number of sensors

κmax the saturation level
P0 the received signal energy at the reference distanced0
nr the path loss exponent
σ2

ν,i the measurement noise variance
σ2

n,i the channel noise variance
γ̄i the occurrence probability of sensor saturations
Ei

0
the initial energy level of theith sensor

Ēi the maximum energy that theith sensor can store
H̄ the harvestable maximum energy at each time

Π1/Π2 the transition probability matrix
MC the total number of the Monte Carlo trials
M the number of the particles

In the simulation, the number of particles is set to be
M = 500 and 100 times of independent Monte Carlo
trials are conducted (i.e.,MC = 100). In each trial, the
true trajectory is generated independently with initial state
x0 =

[
25m 0.3m/s 10m 0.4m/s

]T
. Similar to [7], the

position components of the initial particles are drawn from a
Gaussian prior distribution with mean[25, 10]T and covariance
matrix diag{252, 252}, while the velocity components are
calculated by the resultant velocity and the azimuth which
are drawn from a Gaussian prior distribution with mean
[
√

(0.3)2 + (0.4)2, arctan(0.4/0.3)]T and covariance matrix
diag{0.22, (π/30)2}. In addition, the state space of the energy
harvesting process and the corresponding transition probability
matrix are the same as that in Section IV-A. For the sake
of clarity, the values of other parameters involved in the
simulation are displayed in TABLE II.

The simulation results obtained in one Monte Carlo trial are
shown in Figs. 3-5. Fig. 3 sketches the true target trajectory
and its corresponding estimate, which shows that our proposed
PF-ROSS-EH is able to well track the moving target. Fig. 4 de-
picts the measurement output of Sensor4 and the phenomenon
of ROSSs while Fig. 5 displays the energy level of Sensor4
and the transmission instants of measurement output.

For the purpose of comparison, five scenarios, including
tracking with our PF-ROSS-EH, tracking with SPF, tracking
with standard particle filter using the ideal measurements
(unaffected by the ROSSs and the sensor energy constraints,
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Fig. 3: The true target trajectory and its estimate in one trial.
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TABLE II: Parameter settings.

Parameters Values Parameters Values

T 1 s P0 1 dBm

N 4 κmax 30 dBm

d0 1 m σ2

ν,1 0.1 dBm2

nr 2 σ2

ν,2 0.049dBm2

γ̄i 0.2 σ2

ν,3 0.064dBm2

Ei
0

1 σ2

ν,4 0.144dBm2

Ēi 3 σ2

n,i 0.001dBm2

H̄ 3 ∆ 0.0016m2/s4
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Fig. 6: Position RMSEs of PF-ROSS-EH, PF-ROSS, PF-EH,
SPF and SPF-IM.

and abbreviated as SPF-IM), tracking with the particle filter
only compensating for the effect of ROSSs (abbreviated as PF-
ROSS), and tracking with the particle filter only compensating
for the effect of possibly failed measurement transmission
(denoted as PF-EH), will be considered to show the tracking
performance. Naturally, we expect that using the unaffected
measurements will obtain the best tracking performance a-
mong the three scenarios, while neglecting the effect of the
above-mentioned phenomena will lead to the worst tracking
performance.

The evolutions of the RMSEs on the position estimate and
velocity estimate are respectively given in Figs. 6-7. It can
be observed from Figs. 6-7 that the tracking performance of
our proposed PF-ROSS-EH approaches to that of the SPF-
IM and is much better than that of the SPF, PF-ROSS, and
PF-EH. This is reasonable since we have made much effort
to compensate for the effect of the ROSSs and the possible
missing measurements.

Next, we will conduct further simulations with different
occurrence probabilities of the sensor saturations, different
numbers of sensors and different transition probability matri-
ces in the energy harvesting process to analyze their respective
effect on the tracking performance. The simulation results
with regard to different occurrence probabilities of the sensor
saturations (i.e.,̄γi = 0.2, 0.5, 0.8) and different numbers
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SPF and SPF-IM.
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Fig. 8: Position and velocity RMSEs of PF-ROSS-EH with
different occurrence probabilities of the sensor saturations.

of sensors (i.e.,N = 2, 4, 6) are, respectively, displayed in
Figs. 8-9, which show that the occurrence probability of the
random sensor saturations and the number of sensors both
have notable effects on the tracking performance. Specifically,
the tracking performance degrades with the increase of the
occurrence probability of sensor saturations, and improves as
the number of sensors increases. On the other hand, we denote
the transition probability matrix used before asΠ1 and choose
another transition probability matrixΠ2 as

Π2 =







0.8 0.1 0.05 0.05
0.7 0.1 0.1 0.1
0.6 0.2 0.1 0.1
0.5 0.2 0.2 0.1






.

The corresponding simulation results are illustrated in Fig. 10.
From Fig. 10, we can see that the tracking performance of
the proposed algorithm with transition probability matrixΠ1

is superior to that withΠ2, which implies that the energy
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different energy harvesting processes.

harvesting process has a non-negligible effect on the filtering
accuracy. In fact, the results are intuitively reasonable because
the energy harvesting process with transition probability ma-
trix Π2 is more likely to harvest zero energy and is easier to
incur missing measurement.

In what follows, the 3-D moving target tracking scenario
is considered to further demonstrate the effectiveness of the
proposed algorithm. Similarly, the dynamics of the target is
represented by the white noise acceleration model [4] and the
state of the target at time instantk is represented by

xk = [stx,k, v
t
x,k, s

t
y,k, v

t
y,k, s

t
z,k, v

t
z,k]

T ,

where (stx,k, s
t
y,k, s

t
z,k) and (vtx,k, v

t
y,k, v

t
z,k) are the posi-

tion and velocity of the target’s centroid, respectively. The
measurement model of theith RSS sensor is based on
the distance between the moving target and theith sen-
sor in the 3-D scenario. The RMSEs on the position and

Fig. 11: The true target trajectory and its estimate in the 3-D
scenario.
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Fig. 12: Position RMSEs of PF-ROSS-EH, PF-ROSS,
PF-EH, SPF and SPF-IM in the 3-D scenario.

velocity are similarly defined. The initial state is chosen
as x0 =

[
25m 0.3m/s 10m 0.4m/s 20m 0.3m/s

]T
,

and the initial particles are sampled from a Gaus-
sian prior distribution with meanx0 and covariance
diag{102, 0.32, 102, 0.32, 102, 0.12}. In the simulation, the
number of sensors is set asN = 6 and the number of particles
is M = 1000. Other parameters are the same as those in the
2-D scenario.

The simulation results in the 3-D scenario are displayed in
Figs. 11-13, which again verify the effectiveness of the pro-
posed particle filtering algorithm in the simultaneous presence
of the ROSSs and possibly failed measurement transmission.

V. CONCLUSIONS

In this paper, a particle filtering algorithm has been devel-
oped to solve the filtering problem for a class of nonlinear/non-
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Fig. 13: Velocity RMSEs of PF-ROSS-EH, PF-ROSS,
PF-EH, SPF and SPF-IM in the 3-D scenario.

Gaussian systems with energy harvesting sensors subject to the
ROSSs. According to the established first-order Markov model
of the energy harvesting process, the occurrence probability
of the missing measurement has been calculated at each
time instant. A modified likelihood function, which takes
the occurrence probability of the ROSSs and the missing
probability of the measurements induced by insufficient energy
into consideration, has been derived to attenuate the effects
from both ROSSs and sensor energy constraints on the filtering
quality. Finally, the usefulness of the proposed filtering scheme
has been demonstrated by the illustrative examples. Future
research topics would be the extensions of the present results
to more sophisticated energy harvesting models (e.g. non-
Markovian model), and to distributed state estimation problem
with large datasets [36], [48], [60], in which the herding algo-
rithms [19], the compressed Monte Carlo schemes [39] and the
group importance sampling schemes [40] might be considered
to reduce the computational burden and the communication
cost.
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