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EDGE-VERTEX DOMINATION AND TOTAL EDGE DOMINATION IN

TREES

H. NARESH KUMAR1, Y. B. VENKATAKRISHNAN1, §

Abstract. An edge e ∈ E(G) dominates a vertex v ∈ V (G) if e is incident with v or e
is incident with a vertex adjacent to v. An edge-vertex dominating set of a graph G is
a set D of edges of G such that every vertex of G is edge-vertex dominated by an edge
of D. The edge-vertex domination number of a graph G is the minimum cardinality of
an edge-vertex dominating set of G. A subset D ⊆ E(G) is a total edge dominating set
of G if every edge of G has a neighbor in D. The total edge domination number of G is
the minimum cardinality of a total edge dominating set of G. We characterize all trees
with total edge domination number equal to edge-vertex domination number.
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1. Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean the
set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by dG(v), is
the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a
support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak,
respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The
edge incident with a leaf is called an end edge. The path on n vertices we denote by Pn.
Let T be a tree, and let v be a vertex of T . We say that v is adjacent to a path Pn if there
is a neighbor of v, say x, such that one of the components of T−vx is a path Pn containing
x as a leaf. By a star we mean a connected graph in which exactly one vertex has degree
greater than one called its center. Let uv be an edge of a graph G. By subdividing the
edge uv we mean removing it, and adding a new vertex, say x, along with two new edges
ux and xv. Subdivided star, SSk is a graph obtained from a star, K1,r by subdividing
each one of its edges.

A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G)\D has a neighbor
in D. The domination number of a graph G, denoted by γ(G), is the minimum cardinality
of a dominating set of G. A subset D ⊆ E(G) is a total edge dominating set, abbreviated
TEDS, of G if every edge of G has a neighbor in D. The total edge domination number of
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a graph G, denoted by γ
′
t(G), is the minimum cardinality of a total edge dominating set

of G. For a comprehensive survey of domination in graphs, see [1].
An edge e ∈ E(G) dominates a vertex v ∈ V (G) if e is incident with v or e is incident

with a vertex adjacent to v. A subset D ⊆ E(G) is an edge-vertex dominating set,
abbreviated EVDS, of a graph G if every vertex of G is edge-vertex dominated by an
edge of D. The edge-vertex domination number of a graph G, denoted by γev(G), is the
minimum cardinality of an edge-vertex dominating set of G. Edge-vertex domination in
graphs was introduced in [4], and further studied in [2, 3, 5].

Trees with equal total domination number equal to edge-vertex domination number plus
one were characterized in [2]. We characterize all trees with total edge domination number
equal to edge-vertex domination number.

2. Results

We begin this section by proving that for any graph G, edge-vertex domination number
is less than or equal to total edge domination number. Since the one-vertex graph does
not have a total edge dominating set or an edge-vertex dominating set, we consider graphs
with at least two vertices.

Proposition 2.1. For any graph G, γev(G) ≤ γ′
t(G).

Proof. Let D be a γ
′
t(G)-set. For every edge e ∈ E(G) there exist an edge f ∈ D such

that e and f are adjacent. Every vertex incident with every edge is dominated by an edge
in D. Hence, D is an EVDS of the graph G. Thus γev(G) ≤ γ′

t(G). �
We now characterize all trees with equal edge-vertex domination number and total edge

domination number. For the purpose we introduce a family T of trees T = Tk that can
be obtained as follows. Let T1 be a subdivided star SSk(k ≥ 2). If k is a positive integer,
then Tk+1 can be obtained recursively from Tk by one of the following operations.

• Operation O1: Attach a vertex by joining it to any support vertex of Tk.
• Operation O2: Attach a vertex to a vertex of Tk not a leaf and adjacent to a

support vertex.
• Operation O3: Attach a center of a subdivided star SSk(k ≥ 2) to a vertex not a

leaf of Tk.
• Operation O4: Attach a path P5 by joining its support vertex to a vertex of Tk

adjacent to P5 through its support vertex.
• Operation O5: Attach a path P5 by joining its support vertex to a vertex of Tk

adjacent to a path P2.

Now we prove that for every tree of the family T , the total edge domination number is
equal to the ev−domination number.

Theorem 2.1. If T ∈ T , then γev(T ) = γ
′
t(T ).

Proof. We use the induction on the number k of operations performed to construct tree
T . If T = SSk(k ≥ 2), then obviously γev(T ) = k = γ

′
t(T ). Let k ≥ 2 be an integer.

Assume that the result is true for every tree T ′ = Tk of the family T constructed by k− 1
operations. Let T = Tk+1 be a tree of the family T constructed by k operations.

First assume that T is obtained from T ′ by operation O1. Let y be the vertex joined
to a support vertex x. Let z be a leaf adjacent to x other than y. Let D be a γev(T )-
set. To dominate the leaves y and z, the edge incident with x which is not xz and xy
is in D. Obviously D is an EVDS of the tree T ′. Thus γev(T ′) ≤ γev(T ). Let D′ be
a γev(T ′)-set. It is obvious that D′ is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′).

This implies that γev(T ) = γev(T ′). Let S′ be a γ
′
t(T

′)-set. The edge which dominates z
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also dominates y. Hence S′ is a TEDS of the tree T . Thus γ
′
t(T ) ≤ γ

′
t(T

′). Let S be a

γ
′
t(T )-set. Obviously S is an TEDS of the tree T ′. This implies that γ

′
t(T ) = γ

′
t(T

′). We

now get γev(T ) = γev(T ′) = γ
′
t(T

′) = γ
′
t(T ).

Assume that T is obtained from T ′ by operation O2. The vertex to which a vertex
is attached we denote by x. Let y be the attached vertex. Let α be the support vertex
adjacent to x. Let β the leaf adjacent to α. Let D be a γev(T )-set. To dominate β, the edge
xα ∈ D. It is easy to observe that D is an EVDS of the tree T ′. Thus γev(T ′) ≤ γev(T ).
Let D′ be a γev(T ′)-set. To dominate β, the edge xα ∈ D. The edge xα dominates y
in the tree T . Thus γev(T ) ≤ γev(T ′). This implies that γev(T ) = γev(T ′). Let S be

a γ
′
t(T )-set. To dominate the edge xα, the edge incident with x other than xα and xy

belongs to S. It is easy to observe that S is a TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ′
t(T ).

Let S′ be a γ
′
t(T

′)-set. To dominate the edge αβ, the edge xα ∈ S′. To dominate xα,
the edge incident with x other than xα belongs to S′. This obvious that S′ is a TEDS
of the tree T . Thus γ

′
t(T ) ≤ γ

′
t(T

′). This implies that γ
′
t(T ) = γ

′
t(T

′). Now we get

γev(T ) = γev(T ′) = γ
′
t(T

′) = γ
′
t(T ).

Assume that tree T is obtained from T ′ by operation O3. The vertex to which a
subdivided star SSk(k ≥ 2) is attached we denote by x. Let α be the center of the star.
Let u11, u21, . . . , uk1 be the support vertices of the subdivided star. Let u12, u22, . . . , uk2
be the leaf adjacent to u11, u21, . . . , uk1 respectively. Let α be adjacent to x. Let D′

be a γev(T ′)-set. It is easy to see that D′ ∪ {u11α, u21α, . . . , uk1α} is an EVDS of the
tree T . Thus γev(T ) ≤ γev(T ′) + k. Let D be a γev(T )-set. To dominate the vertices
u12, u22, . . . , uk2, the edges u11α, u21α, . . . , uk1α belongs to D. It is easy to observe that D\
{u11α, u21α, . . . , uk1α} is an EVDS of the tree T ′. Thus γev(T ′) ≤ γev(T )−k. This implies

that γev(T ) = γev(T ′) + k. Let D′ be a γ
′
t(T

′)-set. The set D′ ∪ {u11α, u21α, · · · , uk1α} is

a TEDS of the tree T . Thus γ
′
t(T ) ≤ γ

′
t(T

′) + k. Let D be a γ
′
t(T )-set. To dominate the

edges u11u12, u21u22, . . . , uk1uk2 the edges u11α, u21α, . . . , uk1α belongs to D. It is obvious
that D \ {u11α, u21α, . . . , uk1α} is a TEDS of the tree T ′. Thus γ

′
t(T

′) ≤ γ′
t(T )− k. This

implies that γ
′
t(T ) = γ

′
t(T

′) + k. We now get γev(T ) = γev(T ′) + k = γ
′
t(T

′) + k = γ
′
t(T ).

Assume that tree T is obtained from T ′ by operation O4. The vertex to which a support
vertex of a path P5 is attached we denote by x. Let u1u2u3u4u5 be the attached path. Let
u2 be adjacent to x. Let v1v2v3v4v5 be a path different from u1u2u3u4u5 adjacent to x. Let
x and v2 be adjacent. Let D′ be a γev(T ′)-set. It is easy to observe that D′ ∪{u2u3, u3u4}
is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′) + 2. Let S be a γev(T )-set. To
dominate the vertices u5, u1, v5 and v1 the edges u3u4, xu2, v3v4, xv2 ∈ S. It is obvious
that S \ {u3u4, xu2} is an EVDS of the tree T ′. Thus γev(T ′) ≤ γev(T )− 2. This implies

that γev(T ) = γev(T ′) + 2. Let S be a γ
′
t(T )-set. To dominate edges u4u5, u1u2, v4v5

and v1v2 the edges u2u3, u3u4, v2v3, v3v4 ∈ S. It is obvious that S \ {u2u3, u3u4} is a

TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ
′
t(T )− 2. Let S′ be a γ

′
t(T

′)-set. It is obvious that

S ∪ {u2u3, u3u4} is a TEDS of the tree T . Thus γ
′
t(T ) ≤ γ

′
t(T

′) + 2. This implies that

γ
′
t(T ) = γ

′
t(T

′) + 2. We now get γev(T ) = γev(T ′) + 2 = γ
′
t(T

′) + 2 = γ
′
t(T ).

Assume that tree T is obtained from T ′ by operation O5. The vertex to which a support
vertex of P5 is attached we denote by x. Let u1u2u3u4u5 be the attached path. Let u2
be adjacent to x. Let v1v2 be a path adjacent to x. Let x and v1 be adjacent. Let D be
a γev(T )-set. To dominate u5, u1 and v2 the edges xu2, u3u4 and xv1 belongs to D. It is
easy to observe that D\{xu2, u3u4} is an EVDS of the tree T ′. Thus γev(T ′) ≤ γev(T )−2.
Let D′ be a γev(T ′)-set. It is easy to see that D′ ∪ {xu2, u3u4} is an EVDS of the tree T .

Thus γev(T ) ≤ γev(T ′) + 2. This implies that γev(T ) = γev(T ′) + 2. Let S be a γ
′
t(T )-set.

To dominate the edges v1v2, u1u2 and u4u5 the edges xv1, u2u3, u3u4 ∈ S. To dominate
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the edge xv1, the edge incident with x other than xu2 is in the set S. It is obvious that
S \ {u2u3, u3u4} is a TEDS of the set T ′. Thus γ

′
t(T

′) ≤ γ′
t(T )− 2. Let S′ be a γ

′
t(T

′)-set.

It is clear that S′ ∪ {u2u3, u3u4} is a TEDS of the tree T . Thus γ
′
t(T ) ≤ γ′

t(T
′) + 2. This

imples that γ
′
t(T ) = γ

′
t(T

′) + 2. We now get γev(T ) = γev(T ′) + 2 = γ
′
t(T

′) + 2 = γ
′
t(T ). �

Now we prove that if the total edge domination number of a tree is equal to edge-vertex
domination number, then the tree belongs to the family T .

Theorem 2.2. Let T be a tree. If γev(T ) = γ
′
t(T ), then T ∈ T .

Proof. Let diam(T)=2, then T is a star. We get γev(T ) = 1 < 2 = γ
′
t(T ). Now assume

diam(T) ≥ 3. Thus the order of the tree T is at least four. We prove the result by
induction on n. Assume that the theorem is true for every tree T ′ of order n′ < n.

First assume that some support vertex of T , say x, is strong. Let y be a leaf adjacent to
x. Let T ′ = T − y. Let D be any γev(T ′)-set. It is obvious that D is an EVDS of the tree

T . Thus γev(T ) ≤ γev(T ′). Let D be a γ
′
t(T )-set. It is clear that D is a TEDS of the tree

T ′. Thus γ
′
t(T

′) ≤ γ
′
t(T ). This implies that γ

′
t(T

′) ≤ γ
′
t(T ) = γev(T ) ≤ γev(T ′). On the

other hand γ
′
t(T

′) ≥ γev(T ′). Thus we get γ
′
t(T

′) = γev(T ′). By the inductive hypothesis
T ′ ∈ T . The tree T is obtained from T ′ by operation O1. Thus T ∈ T . Henceforth, we
can assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf at
maximum distance from r, v be the parent of t, and u be the parent of v in the rooted
tree. If diam(T ) ≥ 4, then let w be the parent of u. If diam(T ) ≥ 5, then let d be the
parent of w. If diam(T ) ≥ 6, then let e be the parent of d. By Tx we denote the subtree
induced by a vertex x and its descendants in the rooted tree T .

Assume that some child of u, say x, is a leaf. Let T ′ = T − x. Let D′ be a γev(T ′)-set.
It is obvious that D′ is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′). Let D be a

γ
′
t(T )-set. To dominate the edge vt, the edge uv ∈ D. To dominate the edge uv, the edge

uw ∈ D. It is clear that D is a TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ
′
t(T ). We now get

γ
′
t(T

′) ≤ γ
′
t(T ) = γev(T ) ≤ γev(T ′). This implies that γev(T ′) = γ

′
t(T

′). By the inductive
hypothesis T ′ ∈ T . The tree T can be obtained from T ′ by operation O2. Thus T ∈ T .

Assume that some child of u, other than v, say x, is at a distance two from a vertex
of Tk. Let y be the leaf adjacent to x. If u = r and then T = SSk(k ≥ 2). Thus

γev(T ) = k = γ
′
t(T ), we have T ∈ T . Assume that u 6= r. Let T ′ = T − Tu. Let D′ be a

γev(T ′)-set. It is easy to see that D′ ∪A where A is the set of edges incident with u other

than uw is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′)+ |A|. Let D be a γ
′
t(T )-set. To

dominate the edges incident with the leaves, the support edges belongs to D. Obviously
A ⊆ D. It is clear that D \ A is a TEDS of the tree T ′. Thus γ

′
t(T

′) ≤ γ
′
t(T ) − |A|. We

now get γ
′
t(T

′) ≤ γ′
t(T )−|A| = γev(T )−|A| ≤ γev(T ′). This implies that γ

′
t(T

′) = γev(T ′).
By the inductive hypothesis T ′ ∈ T . The tree T is obtained by T ′ by operation O3. Thus
T ∈ T .

Now assume dT (u) = 2. Assume that some child of w, other than u, say x is at a
distance three from a vertex of Tk. Let y be adjacent to x and z be adjacent to y. Let
T ′ = T − Tu. Let D′ be a γev(T ′)-set. It is easy to see that D′ ∪ {uv} is an EVDS of

the tree T . Thus γev(T ) ≤ γev(T ′) + 1. Let D be a γ
′
t(T )-set. To dominate the edge vt

and yz the edges uv, xy ∈ D. To dominate uv, xy, the edge wu,wx ∈ D. It is easy to
see that D \ {wu, vu} is a TEDS of the tree T ′. Thus γ

′
t(T

′) ≤ γ
′
t(T ) − 2. We now get

γ
′
t(T

′) ≤ γ′
t(T )− 2 = γev(T )− 2 ≤ γev(T ′)− 2 + 1 < γev(T ′).

Assume that some child of w, other than u, say x is at a distance two from a vertex of
Tk. It suffices to consider the case that w is adjacent to path P2 = xy. Let T ′ = T − Tw.
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Let D′ be a γev(T ′)-set. It is easy to see that D′ ∪ {wx, uv} is an EVDS of the tree T .

Thus γev(T ) ≤ γev(T ′) + 2. Let D be a γ
′
t(T )-set. To dominate the edges vt, xy, the edges

uv,wx ∈ D. To dominate the above two edges uw ∈ D. It is clear that D\{uv, uw,wx} is

a TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ′
t(T )− 3 = γev(T )− 3 ≤ γev(T ′) + 2− 3 < γev(T ′).

Assume that some child of w, other than u, say x, is a leaf. Now fix dT (w) = 3. Now
assume that some child of d, other than w, say x is at a distance four from a vertex of
Tk. It suffices to consider the case Tk is isomorphic to Tw or Tk is P4 = abcd. First
assume that Tk is P4 = abcd. Let T ′ = T − Ta. Let D′ be a γev(T ′)-set. It is easy to
observe that D′ ∪ {bc} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′) + 1. Let D be a

γ
′
t(T )-set. To dominate the edges vt and cd the edges uv, bc ∈ D. To dominate uv and bc,

the edges wu, ab ∈ D. It is easy to see that D \ {ab, bc} is a TEDS of the tree T ′. Thus

γ
′
t(T

′) ≤ γ′
t(T )−2. We now get γ

′
t(T

′) ≤ γ′
t(T )−2 = γev(T )−2 ≤ γev(T ′)−2+1 < γev(T ′).

Now assume that Tk is isomorphic to Tw. Let T ′ = T − Tw. Let D′ be a γev(T ′)-set. It
is easy to see that D′ ∪ {wu, uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′) + 2.

Let D be a γ
′
t(T )-set. To dominate the edges vt and wx, the edges uv,wu ∈ D. It is easy

to observe that D \ {uv,wu} is a TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ
′
t(T ) − 2. We

now get γ
′
t(T

′) ≤ γ
′
t(T ) − 2 = γev(T ) − 2 ≤ γev(T ′) − 2 + 2 = γev(T ′). This implies that

γev(T ′) = γ
′
t(T

′). By the inductive hypothesis T ′ ∈ T . The tree T is obtained from T ′ by
operation O4. Thus T ∈ T .

Assume that some child of d, other than w, say x is at a distance three from a vertex
of Tk. Let d be adjacent to more than one P3 paths. Let u1u2u3 and v1v2v3 be two paths
adjacent to d. Let T ′ = T −Tu1 . Let D′ be a γev(T ′)-set. It is clear that D′∪{u1u2} is an

EVDS of the tree T . Thus γev(T ) ≤ γev(T ′) + 1. Let D be a γ
′
t(T )-set. To dominate the

edges u2u3 and v2v3 the edges u1u2, v1v2 ∈ D. To dominate the edges u2u3 and v2v3, the
edges u1d, v1d ∈ D. It is easy to observe thatD\{u1d, u2u3} is a TEDS of the tree T ′. Thus

γ
′
t(T

′) ≤ γ′
t(T )−2. We now get γ

′
t(T

′) ≤ γ′
t(T )−2 = γev(T )−2 ≤ γev(T ′)+1−2 < γev(T ′),

a contradiction. Hence the vertex d is adjacent to exactly one path P3, say v1v2v3. Let
T ′ = T −Td. Let D′ be a γev(T ′)-set. It is clear that D′∪{v1v2, wu, uv} is an EVDS of the

tree T . Thus γev(T ) ≤ γev(T ′)+3. Let D be an γ
′
t(T )-set. To dominate the edges u2u3, vt

and wx, the edges u1u2, vu, uw ∈ D. To dominate the edge u1u2, the edge du1 ∈ D. It is

obvious that D \ {u1u2, vu, vw, du1} is a TEDS of the tree T ′. Thus γ
(
tT

′) ≤ γ
′
t(T ) − 4.

We now get γ
′
t(T

′) ≤ γ′
t(T )− 4 = γev(T )− 4 ≤ γev(T ′) + 3− 4 < γev(T ′).

Assume that some child of d, other than w, say a, is at a distance two from a vertex
of Tk. Let b be the vertex adjacent to a. Let T ′ = T − Tw. Let D′ be a γev(T ′)-set. It is
easy to see that D′ ∪ {uv,wd} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′) + 2. Let

D be a γ
′
t(T )-set. To dominate the edges vt and wx, the edges uv, uw ∈ D. It is easy to

observe that D \ {uv, uw} is a TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ
′
t(T ) − 2. We now

get γ
′
t(T

′) ≤ γ′
t(T )− 2 = γev(T )− 2 ≤ γev(T ′). This implies that γev(T ′) = γ

′
t(T

′). By the
inductive hypothesis T ′ ∈ T . The tree is obtained from T ′ by operation O5. Thus T ∈ T .

Assume that some child of d, other than w, say a, is a leaf. Let T ′ = T − Td. Let D′

be a γev(T ′)-set. It is easy to observe that D′ ∪ {dw, uv} is an EVDS of the tree T . Thus

γev(T ) ≤ γev(T ′)+2. Let D be a γ
′
t(T )-set. To dominate the edges vt, wx and da, the edges

uv, uw,wd ∈ D. It is easy to see that D \ {uv, uw,wd} is a TEDS of the tree T ′. Thus

γ
′
t(T

′) ≤ γ′
t(T )−3. We now get γ

′
t(T

′) ≤ γ′
t(T )−3 = γev(T )−3 ≤ γev(T ′)−3+2 < γev(T ′).

Now assume that dT (d) = 2. Let T ′ = T − Td. Let D′ be a γev(T ′)-set. It is obvious to
see that D′ ∪ {wu, uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′) + 2. Let D be

an γ
′
t(T )-set. To dominate the edges vt, wx and ed, the edges dw,wu, uv ∈ D. It is clear
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that D \ {dw, uw, uv} is a TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ
′
t(T ) − 3. We now get

γ
′
t(T

′) ≤ γ′
t(T )− 3 = γev(T )− 3 ≤ γev(T ′) + 2− 3 < γev(T ′).

Now assume that dT (w) = 2. Let dT (d) ≥ 2. Let T ′ = T − Tw. Let D′ be a γev(T ′)-set.
It is easy to see that D′ ∪ {uv} is an EVDS of the tree T . Thus γev(T ) ≤ γev(T ′) + 1. Let

D be a γ
′
t(T )-set. To dominate vt, the edge uv ∈ D. To dominate uv, the edge wu ∈ D.

It is easy to see that D \ {wu, uv} is a TEDS of the tree T ′. Thus γ
′
t(T

′) ≤ γ′
t(T )− 2. We

now get γ
′
t(T

′) ≤ γ′
t(T )− 2 = γev(T )− 2 ≤ γev(T ′) + 1− 2 < γev(T ′). �

As an immediate consequence of Theorems 2.1 and 2.2, we have the following charac-
terization of trees with total edge domination number equal to edge-vertex domination
number.

Theorem 2.3. Let T be a tree. Then γev(T ) = γ
′
t(T ) if and only if T ∈ T .
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