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ON TOTAL VERTEX IRREGULARITY STRENGTH OF SOME

CLASSES OF TADPOLE CHAIN GRAPHS

I. ROSYIDA1 AND D. INDRIATI2, §

Abstract. A total k-labeling f that assigns V ∪ E into {1, 2, . . . , k} on graph G is
named vertex irregular if wtf (u) 6= wtf (v) for dissimilar vertices u, v in G with the
weights wtf (u) = f(u) +

∑
ux∈E(G) f(ux). We call the minimum number k utilized

in total labeling f as a total vertex irregularity strength of G, symbolized by tvs(G).
In this research, we focus on tadpole chain graphs that are chain graphs which con-
tain tadpole graphs in their blocks. We investigate tvs of some classes of tadpole chain
graphs,. i.e., Tr(4, n) and Tr(5, n) with length r. Some formulas are derived as follows:

tvs(Tr(4, n)) =

⌈
(n + 1)r + 3

3

⌉
and tvs(Tr(5, n)) =

⌈
(n + 2)r + 3

3

⌉
.
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1. Introduction

We assume that G(V,E) is a finite, undirected, and simple graph. A mapping f that
assigns V (G)∪E(G) into a set of integers is named a total labeling. Further, the integers
used in f are called as labels [14]. In addition, the total k-labeling f is called a total
vertex irregular if the vertex weights wtf (u) 6= wtf (v) for distinct vertices u 6= v in G
with wtf (u) = f(u) +

∑
ux∈E(G) f(ux). Baca et al. [5] initiated the notion of total vertex

irregularity strength of graph G, denoted by tvs(G), that is defined as the minimum
number k in such a way that G has a vertex irregular total k-labeling.

Bača et al. [5] proposed the lower bound in the following:
⌈

(p+δ)
(∆+1)

⌉
≤ tvs(G) ≤ p +

∆ − 2δ + 1 for any graph G(V,E) where p = |V (G)|, δ = min{d(v)|∀v ∈ V (G)}, and
∆ = max{d(v)|∀v ∈ V (G)}, respectively. Whereas, Anholcer, et al. provided another
bounds in [3]. Another way to get the lower bound of tvs for any connected graph G was
given by Nurdin et al. [11]. Let G be a connected graph where the number of vertices of
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degrees i is ni, for i = δ, δ + 1, δ + 2, . . . ,∆.

tvs(G) ≥ max

{⌈
δ(G) + nδ(G)

δ(G) + 1

⌉
,

⌈
δ(G) + nδ(G) + nδ(G)+1

δ(G) + 2

⌉
, . . . ,

⌈δ(G) +
∑∆(G)

i=δ(G) ni

∆(G) + 1

⌉}
.

(1)
Nowdays, Many scholars have found total vertex irregularity strength of some graph

classes such as in [5],[7], [10], [1], [2], [9], etc. Meanwhile, the results related to cactus
chain graphs has been invented in [4] and [12]. Recently, Rosyida et al. published a result
of tvs of Tr(4, 1) tadpole chain graph [13]. To continue the result in [13], we investigate
tvs of some tadpole chain graphs in this paper, i.e. tvs(Tr(4, n)) and tvs(Tr(5, n)).

2. Main Results

In this part, we present formulas of tvs of Tr(4, n) and Tr(5, n). Let us consider the
chain graph in Definition 2.1.

Definition 2.1. A graph which consists of a cycle graph Cm and a path graph Pn connected
with a bridge is called as a tadpole graph, denoted by T (m,n). Given a connected graph
G. A bipartite graph (B,C), where B is a set of blocks in graph G and C consists of
cut vertices on each block in B, is named a block cut vertex of G. The edges of G join
cut vertices with those blocks to which they belong. Further, G is called as a chain graph
of length r if it contains r-blocks such that each pair of two blocks Bi and Bi+1 has one
common cut vertex for which the block cut vertex is a path ([8], [6]). Furthermore, tadpole
chain graphs Tr(4, n) and Tr(5, n) are chain graphs which their blocks are T (4, n) and
T (5, n), respectively.

2.1. Total vertex irregularity strength of Tr(5, n). The chain graph Tr(5, n) consists
of:

• {yn1 , yn2 , . . . , ynr }, i.e. a set of vertices with degrees 1

• {yn−1
1 , yn−1

2 , . . . , yn−1
r , yn−2

1 , yn−2
2 , . . . , yn−2

r , . . . , y2
1, y

2
2, . . . , y

2
r , y

1
1, y

1
2, . . . , y

1
r} ∪

{u1, u2, . . . , u2r, u2r+1, u2r+2}, i.e. a set of vertices of degrees 2;
• {x1, x2, . . . , xr} that is a set of vertices with degrees 3; and
• {v1, v2, . . . , vr−1} that is a set of vertices with degrees 4.

Theorem 2.1. If Tr(5, 1) is a tadpole chain graph of length r(r ≥ 2), then

tvs(Tr(5, 1)) = r + 1.

Proof. Let y1, y2, . . . , yr be vertices of Tr(5, 1) with degrees 1.

Table 1. Labels of vertices and edges of Tr(5, 1)

Labels of vertices Labels of edges
f(u1) = 1, f(u2i−1u2i) = i, 1 ≤ i ≤ r,
f(u2i−1) = i− 1, 2 ≤ i ≤ r, f(u1u2r+1) = r,
f(u2i) = r, 1 ≤ i ≤ r, f(u2ru2r+2) = r + 1,
f(u2r+1) = f(u2r+2) = r + 1, f(u2ivi) = r + 1, 1 ≤ i ≤ r − 1,
f(vi) = r − 1, 1 ≤ i ≤ r − 1, f(u2i+1vi) = r + 1, 1 ≤ i ≤ r − 1,
f(xi) = r + 1, 1 ≤ i ≤ r, f(vixi) = r + 1, 1 ≤ i ≤ r − 1,
f(yi) = 1, 1 ≤ i ≤ r. f(vixi+1) = r + 1, 1 ≤ i ≤ r − 1,

f(ur+1x1) = r + 1, f(ur+2xr) = r + 1,
f(xiyi) = i, 1 ≤ i ≤ r.



I. ROSYIDA, D. INDRIATI: ON TOTAL VERTEX IRREGULARITY STRENGTH..... 135

According to Inequality (1), we obtain

tvs(Tr(5, 1)) ≥ max

{⌈
r + 1

2

⌉
,

⌈
3r + 3

3

⌉
,

⌈
4r + 3

4

⌉
,

⌈
5r + 2

5

⌉}
=

⌈
3r + 3

3

⌉
= r + 1. (2)

To proof that tvs(Tr(5, 1)) ≤ r+1, we provide a total k-labeling f : V ∪E → {1, 2, . . . , k}
with k = r + 1 and define labels of vertices and edges as in Table 1.

Under labeling f , we obtain that each vertex has the weight below:

wtf (yi) = i+ 1, 1 ≤ i ≤ r,
wtf (u1) = r + 2,
wtf (ui) = i+ r + 1, 1 ≤ i ≤ 2r,

wtf (u2r+1) = 3r + 2,
wtf (ur+2) = 3(r + 1),
wtf (vi) = i+ 4r + 3, 1 ≤ i ≤ r − 1,
wtf (xi) = i+ 3(r + 1), 1 ≤ i ≤ r.

The minimum label of vertices and edges is 1 and the maximum label is r+1. Also, it is
shown that the vertex weights are all diverse. Hence, we get upper bound tvs(Tr(5, 1)) ≤
r + 1. Combining with Lower bound (2), it is proved that tvs(Tr(5, 1)) = r + 1. �

Theorem 2.2. If Tr(5, n) are tadpole chain graphs with length r(r ≥ 2), n = 4 mod 3,

and n ≥ 4, then tvs(Tr(5, n)) =

⌈
(n+ 2)r + 3

3

⌉
.

Proof. Based on (1), we acquire the lower bound

tvs(Tr(5, n)) ≥ max

{⌈
r + 1

2

⌉
,

⌈
(n+ 2)r + 3)

3

⌉
,

⌈
(n+ 3)r + 3

4

⌉
,

⌈
(n+ 4)r + 2

5

⌉}
=

⌈
(n+ 2)r + 3

3

⌉
.

(3)

We prove the upper bound through 3 cases.
Case 1. For n = 4.

Table 2. Labels of vertices and edges of Tr(5, 4)

Labels of vertices Labels of edges
f(u2i−1) = i+ r − 2, 1 ≤ i ≤ r, f(u2i−1u2i) = i+ r + 1, 1 ≤ i ≤ r,
f(u2i) = (2r + 1)− 2 = 2r − 1, 1 ≤ i ≤ r, f(u1u2r+1) = 2r + 1,
f(u2r+1) = 2r + 1− 1 = 2r, f(u2ru2r+2) = 2r + 1,
f(u2r+2) = 2r + 1,
f(vi) = 1, 1 ≤ i ≤ r − 1, f(u2ivi) = i+ r + 1, 1 ≤ i ≤ r − 1,
f(xi) = 2r + 1, 1 ≤ i ≤ r, f(u2i+1vi) = 2r + 1, 1 ≤ i ≤ r − 1,
f(y1

i ) = 2r − 1, 1 ≤ i ≤ r − 1, f(vixi) = 2r − 1, 1 ≤ i ≤ r − 1,
f(y1

r ) = 2r + 1, f(vixi+1) = 2r + 1, 1 ≤ i ≤ r − 1,
f(y2

i ) = r + 1, 1 ≤ i ≤ r, f(u2r+1x1) = 2r + 1, f(u2r+2xr) = 2r + 1,
f(y3

i ) = r, 1 ≤ i ≤ r, f(xiy
1
i ) = i+ 2, 1 ≤ i ≤ r − 1,

f(y4
i ) = i, 1 ≤ i ≤ r. f(xry

1
r ) = r

f(y1
i y

2
i ) = r, 1 ≤ i ≤ r,

f(y2
i y

3
i ) = i; f(y3

i y
4
i ) = 1, 1 ≤ i ≤ r,
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We assume that f : V ∪ E → {1, 2, . . . , k} is a total k-labeling with k =

⌈
6r + 3

3

⌉
=

2r + 1. Vertex and edge labels are defined in Table 2.

Under labeling f , we derive the weights of vertices below:

wtf (y4
i ) = i+ 1, 1 ≤ i ≤ r,

wtf (y3
i ) = i+ r + 1, 1 ≤ i ≤ r,

wtf (y2
i ) = i+ 2r + 1, 1 ≤ i ≤ r,

wtf (y1
i ) = i+ 3r + 1, 1 ≤ i ≤ r,

wtf (ui) = i+ 4r + 1, 1 ≤ i ≤ 2r,
wtf (u2r+1) = 3(2r + 1)− 1 = 6r + 2,
wtf (ur+2) = 3(2r + 1),
wtf (vi) = i+ 2(2r + 1) + 3r + 1 = i+ 7r + 3, 1 ≤ i ≤ r − 1,
wtf (xi) = i+ 2(2r + 1) + 2r + 1 = i+ 6r + 3, 1 ≤ i ≤ r.

We observe that each vertex has a distinct weight. Also, vertex and edge labels used

are less than or equal to 2r+ 1. Hence, tvs(Tr(5, 4)) ≤
⌈

6r+3
3

⌉
= 2r+ 1. Combining with

the lower bound, we have tvs(Tr(5, 4)) = 2r + 1.

Case 2. For n = 7.

We construct a function f : V ∪ E → {1, 2, . . . , k} which is a total k-labeling with

k =

⌈
9r + 3

3

⌉
= 3r + 1. We establish labels of vertices and edges as in Table 3.

Table 3. Labels of vertices and edges of Tr(5, 7)

Labels of vertices Labels of edges
f(u2i−1) = i+ 2r − 2, 1 ≤ i ≤ r, f(u2i−1u2i) = i+ 2r + 1, 1 ≤ i ≤ r,
f(u2i) = (3r + 1)− 2 = 3r − 1, 1 ≤ i ≤ r, f(u1u2r+1) = 3r + 1,
f(u2r+1) = 3r + 1− 1 = 3r, f(u2ru2r+2) = 3r + 1,
f(u2r+2) = 3r + 1, f(u2ivi) = i+ 2r + 1, 1 ≤ i ≤ r − 1,
f(vi) = 1, 1 ≤ i ≤ r − 1, f(u2i+1vi) = 3r + 1, 1 ≤ i ≤ r − 1,
f(xi) = 3r + 1, 1 ≤ i ≤ r, f(vixi) = 2r − 1, 1 ≤ i ≤ r − 1,
f(y1

i ) = 2r − 1, 1 ≤ i ≤ r − 1, f(vixi+1) = 3r + 1, 1 ≤ i ≤ r − 1,
f(y1

r ) = 3r + 1,
f(y2

i ) = 2r + 1, 1 ≤ i ≤ r, f(u2r+1x1) = 3r + 1,
f(y3

i ) = 3r + 1, 1 ≤ i ≤ r, f(u2r+2xr) = 3r + 1,
f(y4

i ) = 2r + 1, 1 ≤ i ≤ r, f(xiy
1
i ) = i+ r + 2, 1 ≤ i ≤ r − 1,

f(y5
i ) = 2r, 1 ≤ i ≤ r, f(xry

1
r ) = r; f(y1

i y
2
i ) = 3r, 1 ≤ i ≤ r,

f(y6
i ) = r, 1 ≤ i ≤ r, f(y2

i y
3
i ) = i,

f(y7
i ) = 1, 1 ≤ i ≤ r. f(y3

i y
4
i ) = r,

f(y4
i y

5
i ) = i, f(y5

i y
6
i ) = 1,

f(y6
i y

7
i ) = i, 1 ≤ i ≤ r
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By means of labeling f , we have the weights of vertices as follows:

wtf (ui) = i+ 7r + 1, 1 ≤ i ≤ 2r,
wtf (u2r+1) = 3(3r + 1)− 1,
wtf (ur+2) = 3(3r + 1),
wtf (vi) = i+ 2(3r + 1) + 4r + 1 = i+ 10r + 3, 1 ≤ i ≤ r − 1,
wtf (xi) = i+ 2(3r + 1) + 3r + 1 = i+ 9r + 3, 1 ≤ i ≤ r,
wtf (yli) = i+ (7− l)r + 1, 1 ≤ i ≤ r; 1 ≤ l ≤ 7.

The vertex weights are all distinct and the labels used are at most

⌈
9r+3

3

⌉
= 3r + 1.

Thus, tvs(Tr(5, 7)) = 3r + 1.

Case 3. For n = 3j + 10 with j ≥ 0.

We construct a total k-labeling f : V ∪ E → {1, 2, . . . , k} with k =

⌈
(n+ 2)r + 3

3

⌉
. We

create vertex labels in the following:
f(u2i−1) = i+ (n−1

3 )r − 2, 1 ≤ i ≤ r,

f(u2i) =

⌈
(n+2)r+3

3

⌉
− 2, 1 ≤ i ≤ r,

f(u2r+1) =

⌈
(n+2)r+3

3

⌉
− 1,

f(u2r+2) =

⌈
(n+2)r+3

3

⌉
,

f(vi) = 1, 1 ≤ i ≤ r − 1,

f(xi) =

⌈
(n+2)r+3

3

⌉
, 1 ≤ i ≤ r − 1,

f(xr) =

⌈
(n+2)r+3

3

⌉
−
(
(n−7

3 )r − 1
)
,

f(y1
i ) =

(
n−1

3

)
r − 2, 1 ≤ i ≤ r − 1,

f(y1
r ) =

(
n+2

3

)
r + 1,

f(y2
i ) = f(y3

i ) = . . . = f(y2+2j−1
i ) =

(
n+2

3

)
r + 1, 1 ≤ i ≤ r; j ≥ 1,

f(y2+2j
i ) =

(
n+2

3

)
r, 1 ≤ i ≤ r; j ≥ 0,

f(y2+2j+1
i ) =

(
n+2

3

)
r + 1, 1 ≤ i ≤ r; j ≥ 0,

f(y2+2j+2
i ) =

(
n−1

3

)
r + 1, 1 ≤ i ≤ r; j ≥ 0,

f(y2+2j+3
i ) =

(
n+2

3

)
r + 1, 1 ≤ i ≤ r; j ≥ 0,

f(y2+2j+4
i ) =

(
n−1

3

)
r + 1, 1 ≤ i ≤ r; j ≥ 0,

f(y2+2j+5
i ) =

(
n−1

3

)
r, 1 ≤ i ≤ r; j ≥ 0,

f(y2+2j+l
i ) =

(
n−1

3 − (l − 5)
)
r, 1 ≤ i ≤ r; 6 ≤ l ≤ (n+2

3 + 2); j ≥ 0,

f(y2+2j+l
i ) = r, 1 ≤ i ≤ r; l = n+2

3 + 3; j ≥ 0,
f(yni ) = i, 1 ≤ i ≤ r; n is even,
f(yni ) = 1, 1 ≤ i ≤ r; n is odd.

Meanwhile, each edge label is constructed below:
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f(u2i−1u2i) = i+
(
n−1

3

)
r + 1, 1 ≤ i ≤ r,

f(u1u2r+1) =

⌈
(n+2)r+3

3

⌉
, f(u2ru2r+2) =

⌈
(n+2)r+3

3

⌉
,

f(u2ivi) = i+
(
n−1

3

)
r + 1, 1 ≤ i ≤ r − 1,

f(u2i+1vi) =

⌈
(n+2)r+3

3

⌉
, 1 ≤ i ≤ r − 1,

f(vixi) = 2r − 1, 1 ≤ i ≤ r − 1,

f(vixi+1) =

⌈
(n+2)r+3

3

⌉
, 1 ≤ i ≤ r − 1,

f(u2r+1x1) =

⌈
(n+2)r+3

3

⌉
;

f(u2r+2xr) =

⌈
(n+2)r+3

3

⌉
,

f(xiy
1
i ) = i+

(
n−4

3

)
r + 2, 1 ≤ i ≤ r − 1,

f(xry
1
r ) =

(
n−4

3

)
r − 1,

f(y2l−1
i y2l

i ) =
(
n+2

3 − (l − 1)
)
r + 1, 1 ≤ i ≤ r; 1 ≤ l ≤ j + 1; j ≥ 0,

f(y2l
i y

2l+1
i ) = i+

(
n−4

3 − (l + 1)
)
r − 1, 1 ≤ i ≤ r; 1 ≤ l ≤ j; j ≥ 1,

f(y2j+2
i y2j+3

i ) = i; f(y2j+3
i y2j+4

i ) = 3r, 1 ≤ i ≤ r; j ≥ 0,

f(y2j+4
i y2j+5

i ) = i; f(y2j+5
i y2j+6

i ) = r, 1 ≤ i ≤ r; j ≥ 0,

f(y2j+6
i y2j+7

i ) = i; f(y2j+7
i y2j+8

i ) = 1, 1 ≤ i ≤ r; j ≥ 0,

f(y2j+8
i y2j+9

i ) = i; f(y2j+9
i y2j+10

i ) = 1, 1 ≤ i ≤ r; j ≥ 0,
. . . ,
f(yn−1

i yni ) = 1, 1 ≤ i ≤ r; n is even,
f(yn−1

i yni ) = i, 1 ≤ i ≤ r; n is odd.

Under labeling f , we derive the vertex weights in the following:

wtf (ui) = i+ nr + 1, 1 ≤ i ≤ 2r,

wtf (u2r+1) = 3

⌈
(n+2)r+3

3

⌉
− 1,

wtf (ur+2) = 3

⌈
(n+2)r+3

3

⌉
,

wtf (vi) = i+ 2

⌈
(n+2)r+3

3

⌉
+ (n+5

3 )r + 1, 1 ≤ i ≤ r − 1,

wtf (xi) = i+ 2

⌈
(n+2)r+3

3

⌉
+ (n+2

3 )r + 1, 1 ≤ i ≤ r,

wtf (yli) = i+ (n− l)r + 1, 1 ≤ i ≤ r; 1 ≤ l ≤ n.
It is obvious that each vertex has a different weight and the labels used are not more

than

⌈
(n+2)r+3

3

⌉
. Therefore, tvs(Tr(5, n)) ≤

⌈
(n+2)r+3

3

⌉
. Combining with Lower bound

(3), we get tvs(Tr(5, n)) =

⌈
(n+2)r+3

3

⌉
.

�

Figure 1 describes the pattern of vertex and edge labels to get tvs(T5(5, 4)) = 11.
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Figure 1. The pattern of vertex irregular total 11-labeling of T5(5, 4)

2.2. Total vertex irregularity strength of Tr(4, n). The graph Tr(4, n) contains:

• a set of vertices with degrees 1, i.e. {yn1 , yn2 , . . . , ynr };
• a set of vertices with degrees 2, i.e. {yn−1

1 , yn−1
2 , . . . , yn−1

r , yn−2
1 , yn−2

2 , . . . , yn−2
r , . . . ,

y2
1, y

2
2, . . . , y

2
r , y

1
1, y

1
2, . . . , y

1
r} ∪ {u1, u2, . . . , ur, ur+1, ur+2};

• a set of vertices with degrees 3, i.e. {x1, x2, . . . , xr}; and
• a set of vertices with degrees 14, i.e. {v1, v2, . . . , vr−1}.

Lemma 2.1. If Tr(4, 2) is a tadpole chain graph with length r (r ≥ 2), then

tvs(Tr(4, 2)) = r + 1.

Proof. Based on (1), we get the lower bound as follows:

tvs(Tr(4, 2)) ≥ max

{⌈
r + 1

2

⌉
,

⌈
3r + 3

3

⌉
,

⌈
4r + 3

4

⌉
,

⌈
5r + 2

5

⌉}
=

⌈
3r + 3

3

⌉
= r + 1. (4)

To establish that tvs(Tr(4, 2)) ≤ r + 1, we define a function f from V ∪E into a set of

integers {1, 2, . . . , k} which is a total k-labeling with k =

⌈
3r + 3

3

⌉
= r + 1.

We construct labels of vertices and edges as in Table 4.

We have the weights of vertices under the labeling f as follows:

wtf (y2
i ) = i+ 1, 1 ≤ i ≤ r,

wtf (y1
i ) = i+ r + 1, 1 ≤ i ≤ r,

wtf (ui) = i+ 2r + 1, 1 ≤ i ≤ r + 2,
wtf (vi) = i+ 3(r + 1) + r, 1 ≤ i ≤ r − 1,
wtf (xi) = i+ 3(r + 1), 1 ≤ i ≤ r.
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Table 4. Labels of vertices and edges on Tr(4, 2)

Labels of vertices Labels of edges
f(ui) = r − 1, 1 ≤ i ≤ r, f(ur+1u1) = r + 1,
f(ur+1) = r, f(ur+2ur) = r + 1,
f(ur+2) = r + 1, f(uivi) = i+ 1, 1 ≤ i ≤ r − 1,
T f(vi) = r − 1, 1 ≤ i ≤ r − 1, f(ui+1vi) = r + 1, 1 ≤ i ≤ r − 1,
f(xi) = r + 1, 1 ≤ i ≤ r, f(vixi) = r + 1; f(vixi+1) = r + 1, 1 ≤ i ≤ r − 1
f(y1

i ) = r, 1 ≤ i ≤ r, f(ur+1x1) = r + 1; f(ur+2xr) = r + 1,
f(y2

i ) = i, 1 ≤ i ≤ r, f(xiy
1
i ) = i; f(y1

i y
2
i ) = 1, 1 ≤ i ≤ r.

We observe that each vertex has distinct label. Also, vertex and edge labels are less

than or equal to

⌈
3r+3

3

⌉
= r+ 1. Hence, we get upper bound tvs(Tr(4, 2)) ≤ r+ 1. Thus,

tvs(Tr(4, 2)) = r + 1. �

Theorem 2.3. If Tr(4, n) are tadpole chain graphs of length r where r ≥ 2, n = 5 mod 3,

and n ≥ 5, then tvs (Tr(4, n)) =

⌈
(n+ 1)r + 3

3

⌉
.

Proof. According to (1), we obtain the lower bound as follows:

tvs(Tr(4, n)) ≥ max

{⌈
r + 1

2

⌉
,

⌈
(n+ 1)r + 3)

3

⌉
,

⌈
(n+ 2)r + 3

4

⌉
,

⌈
(n+ 3)r + 2

5

⌉}
=

⌈
(n+ 1)r + 3

3

⌉
.

(5)

We create a total k-labeling f from V ∪ E into {1, 2, . . . , k} with k =

⌈
(n+ 1)r + 3

3

⌉
.

Further, we prove the upper bound by means of 2 cases.

Case 1. For n = 5 and n = 8.

Firstly, we define Labels of vertices as follows:

f(ui) =

{
2r − 1, 1 ≤ i ≤ r, n = 5,
3r − 1, 1 ≤ i ≤ r, n = 8.

f(ur+1) =

⌈
(n+1)r+3

3

⌉
− 1, n = 5, 8

f(ur+2) =

⌈
3r+3

3

⌉
, n = 5, 8

f(vi) = 1, 1 ≤ i ≤ r − 1, n = 5, 8

f(xi) =

⌈
(n+1)r+3

3

⌉
, 1 ≤ i ≤ r, n = 5, 8,

f(y1
i ) =

{
2r − 1, 1 ≤ i ≤ r − 1, n = 5,
2r − 2, 1 ≤ i ≤ r − 1, n = 8.

f(y1
r ) =

{
2r, n = 5,
3r, n = 8.

f(y2
i ) =

{
r, 1 ≤ i ≤ r, n = 5,
3r, 1 ≤ i ≤ r, n = 8.
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f(y3
i ) =

{
2r, 1 ≤ i ≤ r, n = 5,
3r + 1, 1 ≤ i ≤ r, n = 8.

f(y4
i ) =

{
r, 1 ≤ i ≤ r, n = 5,
2r + 1, 1 ≤ i ≤ r, n = 8.

f(y5
i ) =

{
1, 1 ≤ i ≤ r, n = 5,
3r, 1 ≤ i ≤ r, n = 8.

f(y6
i ) = 2r; f(y7

i ) = r; f(y8
i ) = i, 1 ≤ i ≤ r, n = 8.

Secondly, we construct labels of edges as follows:

f(ur+1u1) =

⌈
(n+1)r+3

3

⌉
; f(ur+2ur) =

⌈
(n+1)r+3

3

⌉
, n = 5, 8

f(ui+1vi) =

⌈
(n+1)r+3

3

⌉
, 1 ≤ i ≤ r − 1, n = 5, 8,

f(vixi) = 2r − 1, 1 ≤ i ≤ r − 1, n = 5, 8

f(vixi+1) =

⌈
(n+1)r+3

3

⌉
, 1 ≤ i ≤ r − 1, n = 5, 8,

f(ur+1x1) =

⌈
(n+1)r+3

3

⌉
; f(ur+2xr) =

⌈
(n+1)r+3

3

⌉
,

f(uivi) =

{
i+ r + 1, 1 ≤ i ≤ r − 1, n = 5,
i+ 2r + 1, 1 ≤ i ≤ r − 1, n = 8.

f(xiy
1
i ) =

{
i+ 2, 1 ≤ i ≤ r − 1, n = 5,
i+ 2r + 2, 1 ≤ i ≤ r − 1, n = 8.

f(xry
1
r ) =

{
r, n = 5,
2r, n = 8.

f(y1
i y

2
i ) =

{
2r + 1, 1 ≤ i ≤ r, n = 5,
3r + 2, 1 ≤ i ≤ r, n = 8.

f(y2
i y

3
i ) = i; f(y4

i y
5
i ) = i, 1 ≤ i ≤ r, n = 5, 8,

f(y3
i y

4
i ) =

{
1, 1 ≤ i ≤ r, n = 5,
2r, 1 ≤ i ≤ r, n = 8.

f(y5
i y

6
i ) = 1; f(y6

i y
7
i ) = i; f(y7

i y
8
i ) = 1, 1 ≤ i ≤ r, n = 8.

We have the vertex weights below:

wtf (ui) =

{ i+ 2

⌈
(n+1)r+3

3

⌉
+ (r − 1), 1 ≤ i ≤ r + 2, n = 5,

i+ 2

⌈
(n+1)r+3

3

⌉
+ (2r − 1), 1 ≤ i ≤ r + 2, n = 8.

wtf (vi) =

{ i+ 2

⌈
(n+1)r+3

3

⌉
+ (3r + 1), 1 ≤ i ≤ r − 1, n = 5,

i+ 2

⌈
(n+1)r+3

3

⌉
+ (4r + 1), 1 ≤ i ≤ r − 1, n = 8.

wtf (xi) =

{ i+ 2

⌈
(n+1)r+3

3

⌉
+ (2r + 1), 1 ≤ i ≤ r, n = 5,

i+ 2

⌈
(n+1)r+3

3

⌉
+ (3r + 1), 1 ≤ i ≤ r, n = 8.
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wtf (yli) = i+ (n− l)r + 1, 1 ≤ i ≤ r, 1 ≤ l ≤ n, n = 5, 8.

It is obvious that each vertex has a different weight. Also, the labels are not more than⌈
(n+1)r+3

3

⌉
. Hence, we establish the upper bound tvs(Tr(4, n)) ≤

⌈
(n+1)r+3

3

⌉
. According

to Lower bound (5), we have tvs(Tr(4, n)) =

⌈
(n+1)r+3

3

⌉
.

Case 2. For n ≥ 11.

Analog to the proof of Theorem 2.2 in Case 3, wet tvs(Tr(4, n)) =

⌈
(n+1)r+3

3

⌉
. �

Figure 2 shows the pattern of vertex and edge labels to obtain tvs(T5(4, 5)) = 11.

Figure 2. The pattern of vertex irregular total 11-labeling of T5(4, 5)

3. Conclusions

We have verified tvs of Tr(4, n) and Tr(5, n) in this paper. The patterns to get tvs of
the graphs were presented in the theorems. We have proved the upper bounds and got

tvs(Tr(4, n)) =

⌈
(n+1)r+3

3

⌉
and tvs(Tr(5, n)) =

⌈
(n+2)r+3

3

⌉
. In further research, we are

going to investigate tvs of general tadpole chain graph Tr(m,n) for m ≥ 6. Also, we will
verify the formulas using algorithmic approaches.
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