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NEURAL NETWORK MODELING OF CONVECTION HEAT
TRANSFER COEFFICIENT FOR THE CASSON NANOflUID

M. SHANMUGAPRIYA1 AND P. SANGEETHA2, §

Abstract. This paper presents applications of Artificial Neural Network (ANN) to de-
velop a mathematical model of magnetohydrodynamic (MHD) flow and heat transfer in a
Casson nanofluid. The model equations are solved numerically by Runge-Kutta Fehlberg
method with shooting technique. In the developing ANN model, the performance of the
various configuration were compared with various types of errors such as Mean Square
Error (MSE), Mean Absolute Error (MAE) and Sum Square Error (SSE). The best
ANN configuration incorporated two hidden layers with twenty five neurons in each hid-
den layer was able to construct convective heat transfer coefficients with MSE, MAE and
SSE of 0.006346, 0.009813 and 1.015423%, respectively, and had R2 of 0.741516. A good
co-relation has been obtained between the predicted results and the numerical values.

Keywords: Artificial neural network (ANN), convective heat transfer coefficient, magne-
tohydrodynamic, Casson nanofluid
AMS Subject Classification: 68T05, 80A20, 76W05

1. Introduction

Researchers have developed a new class of fluid called Nanofluid, which is the disper-
sion of nano-sized particles in a base fluid. Nanofluids have been prepared by using many
types of materials such as metal, non-metal, metal oxide, carbide, carbon nanotube (CNT)
and hybrid. Nanofluids are proved to exhibit higher thermal performance compare to the
ordinary heat transfer fluids such as water, oil and ethylene glycol etc. (Choi [1] and
Eastman et al. [2]). Heat transfer fluids play a major role in industrial heat exchangers
and automobile cooling system. In the extreme cold condition, a huge amount of energy
is expended for heating industrial systems. The present of EG mixed with water in dif-
ferent proportions as a heat transfer fluid to freeze at normal temperature of liquid water
because the freezing point for EG is-13◦C. The boiling point of the EG is 198◦C, which
is much higher than the water. Therefore, for high temperature applications in industrial
heat exchangers, mixtures of EG and water are used to raise the aqueous boiling points.
With addition of nanoparticles with high thermal conductivity of the solution of EG, the
thermal conductivity of the fluid is enhanced. (Beck et al. [3])
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Beck et al [4] investigated that the Nanofluid consisting of metal oxide such as Alu-
minum oxide (Al2O3), Copper oxide (CuO) and Silicon oxide (SiO2) in water, ethylene
glycol and ethylene glycol+water mixtures have high thermal conductivity. Maiga et al.
[5] have undertaken numerical investigations of convective heat transfer of the forced con-
vective flows with the properties of (Al2O3) nanofluids using water and ethylene glycol as
a base fluid, and it was found that Al2O3/EG has better heat transfer enhancement than
Al2O3/water. Research undertaken by [6]-[9] has analyzed the viscosity and thermal con-
ductivity of ethylene glycol base nanofluids. They observed that dispersing various types
of metal oxide such as Copper oxide (CuO), Aluminum oxide (Al2O3) and Titanium oxide
(TiO2) lead to an anomalously increased thermal physical property of ethylene glycol-
based nanofluids. The focus of our study is to make observations about the boundary
layer flow and heat transfer in the Casson nanofluid taking into account the effect of
MHD with thermal radiation and heat generation over an unsteady stretching sheet.

2. Mathematical formulations

Consider the transient two-dimensional laminar MHD flow and heat transfer of an
incompressible Casson nanofluid past a stretching sheet with stretching velocity uw(x, t) =
ax

1−λt where a(> 0) being the stretching constant and the free stream velocity ue(x, t) =
bx

1−λt where b(> 0) being the strength of the stagnation point. The stream function ψ can
be defined as u = ∂ψ

∂y and v = −∂ψ
∂x . Similarly, the temperature at the surface and free

stream are denoted as Tw(x, t) = T∞+ ax2

(1−λt)2 and T∞ respectively. The uniform magnetic
field B0 is applied to the flow direction. The rheological equation of state for an isotropic
and incompressible flow of Casson fluid is as can be written as (Bhattacharyya [10])

τij(x) =

2
(
µB +

py√
2π

)
eij if π > πc

2
(
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(1)

The basic governing equation of continuity, boundary layer flow and heat transfer for such
type of flow are as follows:
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The dimensional boundary conditions are:

∂ψ

∂y
= uw(x, t),

∂ψ

∂x
= 0, T = Tw(x, t) at y = 0

∂ψ

∂y
→ ue(x, t), T → T∞ as y → ∞ (5)

The relation between the physical quantities of Casson nanofluid, Ethylene Glycol,
Aluminum oxide and Copper oxide are written as follows:
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Table 1. Thermophysical properties of base fluid and nanoparticles

ρ(kg/m3) cp(J/kgK) k(W/mK)

Ethylene Glycol 1114 2415 0.252
Aluminum oxide (Al2O3) 3970 765 40
Copper oxide (CuO) 6510 540 18

µnf =
µf

(1− ϕ)2.5
, (ρcp)nf = (1−ϕ)(ρcp)f+ϕ(ρcp)s,

knf
kf

=
(ks + 2kf )− 2ϕ(kf − ks)

(ks + 2kf ) + 2ϕ(kf − ks)
(6)

Here ρnf , µnf , knf , (ρcp)nf are the density, dynamic viscosity, thermal conductivity, heat
capacitance of the nanofluid, kf and ks are the thermal conductivity of fluid and solid
fraction.

The following similarity transformations are invoked:

ψ =

√
aνf

(1− λt)
xf(η), η =

√
a

νf (1− λt)
y, T =

ax2

(1− λt)2
θ(η) + T∞ (7)

where f(η) and θ(η) are non-dimensional velocity and temperature respectively. Using
these variables in Eqs.(3) and (4), we get the following nonlinear ordinary differential
equations:
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with boundary conditions:

f(0) = 0, f ′(0) = 1, θ(0) = 1 at y = 0

f ′(∞) = C, θ(∞) = 0 as y → ∞ (10)

where ϕ volume fraction of nanoparticles in the nanofluid, A = λ
a is the unsteadiness

parameter, C = b
a is the stretching parameter, M =

σB2
0(1−λt)
ρnfa

is the magnetic parameter,

NR = 16σ∗T 3
∞

3k∗kf
is the radiation parameter, Pr =

νf
αf

is the Prandtl number, Ec = a
(cp)f

is
the Eckert number, He = Q0

(ρcp)f

(
1−λt
a

)
is the heat generation parameter, σ is the electrical

conductivity of fluid, νf and αf are the kinematic viscosity and thermal diffusivity of fluid
and Q0 is the heat generation constant.
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3. Methodology

3.1. Numerical approach. The system of coupled nonlinear ordinary differential equa-
tions and their corresponding boundary conditions (8)-(10) is solved numerically by Runge-
Kutta Fehlberg method with shooting technique. In order to check the accuracy and vali-
dation of our MATLAB code, the values of friction factor are compared with the previous
published work and are found to be good agreement (Table 2).

Table 2. Comparison of the presently computed values of f ′′(0) with those
of existing literature for different values of C when β → ∞.

C Present Oyelakin et al. [11] Mustafa et al. [12] Ishak et al. [13]
0.01 -0.9981 -0.9978 -0.9980 -0.9980
0.10 -0.9694 -0.9694 -0.9694 -0.9694
0.20 -0.9181 -0.9181 -0.9181 -0.9181
0.50 -0.6673 -0.6673 -0.6674 -0.6673
2.00 2.0175 2.0175 2.0176 2.0175
3.00 4.7293 4.7293 4.7296 4.7294

3.2. Artificial Neural Network (ANN) approach. ANN architecture consists of five
major elements such as inputs, weights, sum function, activation function and outputs.
The input layer gets information from outside environment and passes it on to the hidden
layer where the information is processed by summing up together with bias term as given
in Eq. (11)

y = f

(
n∑
i=0

xiwi − b

)
(11)

where f is the activation function, xi and wi are the ith input neuron and the corre-
sponding weight, n is the number of neurons, b is the bias term and y is the output. The
most common activation function is the sigmoid function, and is expressed as in Eq. (12)

f(t) =
1

1 + e−αt
where t =

(
n∑
i=0

xiwi − b

)
(12)

where α is a constant to manage the gradient of the semi-linear region. The network for-
ward the input signals to the next layers until desired outputs are achieved. The calculated
outputs are compared with the actual values, if the errors are more than the calculated
numerical values than these weights are readjusted until the errors are minimized.

3.2.1. Construction of ANN model. In this work, an ANN model is developed through
numerical study of various physical parameters to predict the skin friction and Nusselt
number coefficients. Nine different parameters were considered as input, and they are
A,ϕ, β, C,M,NR, P r, Ec and He, the skin friction and the Nusselt numbers of the MHD
Flow of Ethylene Glycol-Based Casson Type Nanofluid over an Unsteady Stretching Sheet
were the target output. Levenberg - Marquardt training algorithm was used in the present
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study. The range of input and output variables considered are given in Table 3. The
architecture of the proposed ANN model is shown in Figure 1.

Table 3. ANN’s input and output attributes

SI.No Input and output attributes Range Remarks
1 Unsteadiness parameter (A) 0.7-1.7 Input
2 Volume fraction parameter (ϕ) 0.01-0.2
3 Non-Newtonian Casson parameter (β) 0.1-1.5
4 Stretching parameter (C) 0.1
5 Magnetic parameter (M) 0.1-2.5
6 Radiation parameter (NR) 1.0-5.0
7 Prandtl number (Pr) 0.1-1.0
8 Eckert number (Ec) 0.1-0.5
9 Heat generation parameter (He) 0.1-0.5
10 Skin friction (Al2O3) Output
11 Nusselt number (Al2O3)
12 Skin friction (CuO)
13 Nusselt number (CuO)

Figure 1. A simplified outline of the suggested ANN model

The ANN configuration was trained using the input data in order to accomplish reliable
prediction of the targeted output. Normally, the data would be divided in to three subsets:
70% for training, 15% for testing and 15% for validating. The performance of the various
ANN configuration were compared with various types of errors such as Mean Square Error
(MSE), Mean Absolute Error (MAE) and Sum Square Error (SSE) given by Eqs. (13)
- (15). The coefficient of determination R2, of the linear regression line between the
predicted values from the ANN model and the desired output was also used as a measure
of performance.



M. SHANMUGAPRIYA, P. SANGEETHA: NEURAL NETWORK MODELING OF ... 253

MSE =
√
(Mcal −Mpred)/Mcal (13)

MAE =
∑

(Mcal −Mpred) (14)

SSE =
√∑

(Mcal −Mpred)
2/N − 1 (15)

where Mcal=calculated output by numerical method, Mpred=predicted value by ANN
model and N=number of data point.

Table 4. Error parameter in the prediction of skin friction and Nusselt
number coefficients

No. of neurons in each hidden layer MSE(%) MAE(%) SSE(%) R2

1 0.013175 0.061289 2.107993 5.833268
5 0.007196 0.034333 1.151396 0.706903
10 0.006638 0.017831 1.062145 0.729622
15 0.008106 0.037508 1.297000 0.669838
20 0.011216 0.052882 1.794607 0.543168
23 0.006346 0.009813 1.015423 0.741516∗
25 0.036458 0.124575 1.833268 -0.48491

The ANN model with one hidden layer and different neuron in each layer predicted skin
friction and Nusselt number coefficients with MSE, MAE, SSE and R2, as shown in Table
4. From this table, the best ANN configuration included one hidden layer with twenty-
three neurons in each layer. The MSE, MAE and SSE for this optimal configuration with
different neural networks were 0.006346, 0.009813 and 1.015423%, respectively, and had
R2 of 0.741516.

4. Discussion of results
Table 5. Numerical and predicted skin friction

ϕ A C M β NR Pr Ec He NM ANN
Al2O3 CuO Al2O3 CuO

0.01 1.2 0.1 0.5 0.5 1 0.72 0.1 0.1 -0.8703 -0.8783 -0.8697 -0.8784
0.05 -0.8600 -0.8958 -0.8599 -0.8959
0.1 -0.8413 -0.9042 -0.8411 -0.9043
0.15 -0.8166 -0.8998 -0.8169 -0.8996
0.2 -0.7868 -0.8846 -0.7871 -0.8847
0.05 1 -0.8294 -0.8635 -0.8288 -0.8630

1.2 0.1 0.5 -0.8600 -0.8958 -0.8599 -0.8959
0.3 -0.7153 -0.7451 -0.7146 -0.7453
0.5 3 -0.8600 -0.8958 -0.8596 -0.8958

1 1 -0.8600 -0.8958 -0.8202 -0.8705
0.72 0.5 -0.8600 -0.8958 -0.8599 -0.8957

0.1 0.3 -0.8600 -0.8958 -0.8623 -0.9010

In this study the governing equations were solved using Runge-Kutta Fehlberg method
with shooting technique. Extensive numerical simulations have been performed to obtain
the velocity and temperature profiles as well as skin friction and Nusselt number for
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Figure 2. Optimum ANN predicted values verses numerical values of skin
friction coefficient

various physical parameters. The total 80 numerical results were used to train, validate
and test the ANN model for the friction coefficient. Table 5 and 6 show the comparison
sample of friction factor and Nusselt number of Aluminum oxide (Al2O3)/Ethylene Glycol
(EG) and Copper oxide (CuO)/Ethylene Glycol (EG) nanofluids that calculated by ANN
model and numerical method. It is observed that the enhancement of skin friction and
Nusselt number coefficient appears clearly more pronounced for CuO/EG nanofluids than
for Al2O3/(EG) nanofluids. Also the nanofluid volume fraction parameter (ϕ) increases,
skin friction and Nusselt number coefficient increases.

The 48 data set were used for the training set, 12 data sets were used for validation and
the rest of the data were used for testing the results of the ANN model. The performances
of skin friction and Nusselt number for training, validation and test sets of the proposed
ANN model is shown in Figs. 2, 3 respectively. It is observed that there are good agreement
between ANN model and numerical analysis for both friction factor and Nusselt number
data with R square value 92%.
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Figure 3. Optimum ANN predicted values verses numerical values of Nus-
selt number coefficient

Table 6. Numerical and predicted Nusselt number

ϕ A C M β NR Pr Ec He NM ANN
Al2O3 CuO Al2O3 CuO

0.01 1.2 0.1 0.5 0.5 1 0.72 0.1 0.1 -1.1374 -1.1377 -1.0938 -1.0544
0.05 -1.1039 -1.1056 -1.0873 -0.9588
0.1 -1.0628 -1.0667 -1.0289 -0.9855
0.15 -1.0223 -1.0288 -0.9829 -1.0225
0.2 -0.9824 -0.9916 -0.9918 -0.9964
0.05 1 -1.0497 -1.0510 -1.0248 -0.9319

1.2 0.1 0.5 -1.1039 -1.1056 -1.0873 -0.9588
0.3 -1.1144 -1.1162 -1.0931 -1.0327
0.5 3 -0.7795 -0.7802 -0.7797 -0.7917

1 1 -1.3119 -1.3140 -1.1206 -1.1811
0.72 0.5 -0.9913 -0.9865 -0.9633 -1.0332

0.1 0.3 -1.0712 -1.0729 -1.0646 -1.0914

5. Conclusions

The convective heat transfer characteristic of Aluminum oxide (Al2O3)/Ethylene Glycol
(EG) and Copper oxide (CuO)/Ethylene Glycol (EG) nanofluids have been investigated.
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The velocity and temperature profiles as well as friction factor and heat transfer coefficient
were measured. The following conclusions are drawn from this study (i) the velocity and
temperature profiles increases with the increasing values of the volume fraction of nanopar-
ticles in the nanofluid (ii) increasing the unsteadiness parameter reduces the velocity and
temperature profiles. (iii) Casson parameter and magnetic field parameter have similar
impact on velocity profile but they do have opposite effects on temperature profile (iv)
radiation and heat generation parameter have improves the effect of dimensionless temper-
ature (v) results have clearly revealed that heat transfer argumentation of Ethylene Glycol
as a base fluid appears to be more pronounced than water. Also the increment of heat
transfer coefficient is higher in CuO/EG nanofluids compared to Al2O3/EG nanofluids.
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