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Abstract 

We show, theoretically and empirically, that the effects of technological change associated with 

automation and offshoring on the labor market can substantially deviate from standard neoclassical 

conclusions when search frictions hinder efficient assortative matching between firms with 

heterogeneous tasks and workers with heterogeneous skills. Our key hypothesis is that better matches 

enjoy a comparative advantage in exploiting automation and a comparative disadvantage in exploiting 

offshoring. It implies that automation (offshoring) may reduce (raise) employment by lengthening 

(shortening) unemployment duration due to higher (lower) match selectivity. We find empirical 

support for this implication in a dataset covering 92 occupations and 16 sectors in 13 European 

countries from 1995 to 2010. 
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1 Introduction

Automation and offshoring are two of the most debated contemporary long-run trends. They

are perceived as having a disruptive effect on the labour market with worrying implications

for inequality in terms of both employment opportunities and wages across different groups of

workers. Understanding their effects, their relative importance and their possible interactions

is, therefore, of preeminent relevance and, as such, has attracted a lot of research.1

Conventional wisdom, based on neoclassical reasoning about technological progress, is

that both trends are not going to have different effects from those of previous industrial

revolutions as in the end both can be seen as two types of ‘technological change’. With

constant-return-to-scale technologies, competitive input markets and homothetic preferences,

the neoclassical paradigm predicts that any improvement in the state of technology leads

to an increase in labor productivity. In turn, higher labor productivity maps into higher

wages, which raise demand so as to compensate the investment that fosters technological

change in the first place. Labor demand, hence employment, cannot deviate from the long-

run path dictated by the evolution of labor productivity. This argument is very general

and stands also in the presence of skill-biased technological change (SBTC), whereby new

technology complements workers with high skills, or routine-biased technological change

(RBTC), whereby technology crowds out workers from repetitive tasks (see e.g. Acemoglu

and Restrepo, 2018b, for a detailed discussion). It highlights a win-win situation as the

efficiency gains in production eventually trickle down to both capital owners and workers.

If labor is the only factor of production and the relative price of investment goods declines,

then workers as a whole gain from new technology. Moreover, if the supply of labor to

different occupations is perfectly elastic, then all workers gain (Caselli and Manning, 2019).

People do observe, however, a number of facts (such as decreasing labor share, vanishing

jobs especially in manufacturing, and increasing inequality) that might challenge the rosy

neoclassical view. Concerns have been raised about the impact of automation on labor de-

mand from various angles.2 Similar concerns have also been raised with respect to offshoring

as this is seen to work just like a new production technology.3 More generally, some commen-

1See e.g. Autor and Dorn (2009), Ottaviano, Peri and Wright (2013), Goos, Manning and Salomons
(2014), Graetz and Michaels (2015), Acemoglu and Restrepo (2020), Dauth et al. (2017) on the empirical
side; Acemoglu and Autor (2011),Aghion, Jones and Jones (2017), Acemoglu and Restrepo (2018b) and
Acemoglu and Restrepo (2018a), Caselli and Manning (2019) on the theoretical one. Most of these studies
tend to focus more on the effects of either automation or globalization than on their interactions. Empirical
assessments of their simultaneous effects across US regions can be found e.g. in Autor, Dorn and Hanson
(2013, 2015) and with a global perspective, both theoretically and empirically, in e.g. Arkolakis et al. (2018).

2See for instance Bostrom (2014), Brynjolfsson and McAfee (2014), Goos, Manning and Salomons (2014),
Ford (2015), Susskind and Susskind (2015), White House (2016), Stone (2016), Frey and Osbourne (2013),
Caselli and Manning (2019).

3Grossman and Rossi-Hansberg (2008), Costinot and Vogel (2010), Goos, Manning and Salomons (2014),
Ottaviano, Peri and Wright (2013)
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tators fear that things are very different this time when compared with previous industrial

revolutions.4 All these concerns can be rationalized only if one departs from the neoclassical

paradigm in that, from a theoretical viewpoint, any threat to wages and employment may

be expected to come more from the impacts of new technology on the competitiveness of

markets in the presence of various types of frictions than from changes in the production

function in the presence of frictionless markets (Caselli and Manning, 2019).

Against this backdrop, the aim of the present paper is to show, theoretically and em-

pirically, that the effects of technological change associated with automation and offshoring

on the labor market can substantially deviate from the rosy neoclassical conclusions when

search frictions hinder the efficient assortative matching between firms that need hetero-

geneous tasks to be performed and workers who are endowed with heterogeneous skills to

perform those tasks. The type of heterogeneity we have in mind is ‘horizontal’ rather than

‘vertical’ as usually assumed in the literature on skill-biased or routine-biased technological

change. In models of skill-biased technological change some tasks are more ‘skill intensive’

than others and some skills are ‘higher’ in a vertical scale than others. In the dominant case

of positive assortative matching, high-skill workers end up performing more skill-intensive

tasks. Skill-biased technological change then increases the relative demand of high-skill

workers to the detriment of low-skill ones, boosting the skill premium. The same logic works

in models of routine-biased technological change, the only difference being that the skill

intensity of tasks is replaced by their ‘routine intensity’ and the high-low ranking of skills

is replaced by a ranking in terms of routineness. Analogously, routine-biased technological

change increases the relative demand of non-routine workers to the detriment of routine ones,

boosting the non-routine premium.

While SBTC and RBTC are very relevant concepts, here we want to highlight additional

effects of automation and offshoring that are at work independently from any vertical het-

erogeneity. From a theoretical point of view, our hypothesis is the following. With two-sided

heterogeneity, firms and workers have ‘ideal matches’, that is, matches that produce the

highest surplus. However, in the presence of search frictions, meetings do not necessarily

lead to ideal matches. Hence, whenever a firm and a worker meet with a less-than-ideal

counterpart, they both face a trade-off between accepting the current match and leaving in

search of a better match. A better match generates higher surplus but this gain has to be

discounted as time is lost in search. That is why in equilibrium firms (workers) settle for an

‘acceptance set’ of workers (firms) with skills (tasks) that are ‘good enough’ for them, in the

sense that they generate enough surplus. The intersection between the two acceptance sets

determines the ‘matching set’ of productive matches that are implemented. The larger the

acceptance sets and thus the matching set, the higher the inefficiency in production due to

4Bowen (1966), Akst (2013), Brynjolfsson and McAfee (2014), Autor (2015).
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more ‘mismatch’ between tasks and skills. Meetings that are not converted into productive

matches generate frictional unemployment.5

Our hypothesis is then that automation may increase the productivity of ideal matches

relative to less-than-ideal ones, above and beyond any consideration of skill or routine bias.

It may, therefore, make firms and workers more ‘selective’, reducing their acceptance sets

as they become more willing to forgo the surplus of a less-than-ideal match while waiting

for a better one. Increased selectivity is good for the productive efficiency of matches that

are eventually formed as ‘mismatch’ in the matching set diminishes. However, as firms and

workers are willing to sit longer on the fence waiting for better matches, unemployment rises.

Moreover, for matches that are actually formed, ideal matches end up commanding a higher

premium with respect to less-than-ideal matches. The result is that automation leads to

higher match productivity, but also lower employment and more wage inequality. Increased

match selectivity interferes with the standard neoclassical forces and materializes as long as

less-than-ideal skills and tasks become less substitutable with ideal ones. As ideal matches

are the ones that define firms’ and workers’ core competencies, we use ‘core-biased techno-

logical change’ (CBTC) to label the way technology evolves in our conceptual framework.

Differently, offshoring may increase the productivity of less-than-ideal matches relative to

ideal ones by allowing firms to unbundle tasks into subtasks to be allocated to home and

foreign workers depending on their comparative advantages. It may, therefore, make firms

and home workers less selective, enlarging their acceptance sets as they become less willing

to forgo the surplus of a less-than-ideal match while waiting for a better one. On the one

hand, decreased selectivity is bad for the productive efficiency of matches that are eventually

formed as ‘mismatch’ in the matching set increases. On the other hand, match surplus may

still increase thanks to specialization according to comparative advantage. As firms and

workers are less willing to sit on the fence waiting for better matches, unemployment falls.

Moreover, ideal matches end up commanding a lower premium with respect to less-than-

ideal matches. Hence, differently from automation, offshoring may lead not only to higher

match productivity, but also to higher employment and less wage inequality.

We formalize our hypothesis through a growth model that, beyond neoclassical forces,

features search frictions in the labor market and assortativity with two-sided heterogeneity of

horizontally differentiated skills and tasks. Workers and firms are risk-neutral and maximize

lifetime discounted utility in continuous time. The random part of the matching process,

based on a one-to-one relation, is governed by a canonical constant return to scale function

(see Mortensen and Pissarides, 1994). Workers’ skills and firms’ tasks are uniformly and

symmetrically distributed around a circle that describes the space of their heterogeneous

5For an analogous modeling of the labor market with vertically differentiated skills and tasks see Shimer
and Smith (2000) and, more recently, Hagedorn, Law and Manovskii (2017).
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characteristics. Due to search frictions, workers and firms do not match efficiently, but in-

stead search and accept matches in an interval around their ideal ones. The distance between

matched skill and task affects match surplus. This is log-submodular (log-supermodular) in

automation (offshoring) and matches at shorter (longer) distance have a comparative ad-

vantage in exploiting automation (offshoring). How automation and offshoring affect labor

market outcomes depends on the interactions among four effects. Automation increases

the productivity of any given match (‘productivity effect’), but also increases the relative

productivity of ideal matches relative to less-than-ideal ones (‘mismatch effect’). In parallel,

offshoring increases the productivity of any given match thanks to domestic workers’ subtask

specialization (‘specialization effect’), but also decreases the subset of subtasks assigned to

them (‘substitution effect’). Accordingly, while the productivity and specialization effects of

automation and offshoring increase the match surplus of domestic firms and workers, their

mismatch and substitution effects work in the opposite direction. Due to these opposite

effects, employment is an inverted U-shaped function of both automation and offshoring:

productivity and specialization effects dominate when automation and offshoring are limited

whereas mismatch and substitution effects dominate when automation and offshoring have

already reached an advanced stage.

Survey evidence suggests that selectivity due CBTC could be quite important. Having

difficulty ‘finding the right skills or talent’ or ‘filling jobs’ is often quoted by policy-makers as

one of the main issues raised by employers. For example, the 2018 Talent Shortage Survey

by Manpower Group (2018) highlights how talent shortage is increasing over time leaving a

growing number of jobs unfilled all around the world.6 In most cases in which applicants are

not talented enough for the job, only 40% of the firms report that it is a skill issue, while

60% of them stress a lack of experience or human strengths. The implied talent shortage

is strongly linked to technology, but does not necessarily depend on a dearth of workers

with higher education: “Most of the top ten in-demand roles today require post-secondary

training and not always a full university degree.[...] In the digital age, employment will not

always require a college degree, but will rely heavily on continual skills development as even

the most traditional roles are augmented with new technology” (Manpower Group, 2018,

p.6). A wide range of jobs with different education and routine contents are affected across

sectors. Higher than average recruitment bottlenecks tend to be reported in manufacturing,

ICT and health care for jobs such as skilled trades workers, machine operators, sales repre-

sentatives, engineers, technicians, ICT professionals, workers in marketing posts, drivers and

6The 2018 Talent Shortage Survey by ManpowerGroup covers 39,195 employers across six industry sec-
tors in 43 countries and territories: Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada,
China, Colombia, Costa Rica, Czech Republic, Finland, France, Germany, Greece, Guatemala, Hong Kong,
Hungary, India, Ireland, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Panama, Peru,
Poland, Portugal, Romania, Singapore, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Tai-
wan, Turkey, UK and USA.
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office support staff (Cedefop Eurofound, 2018).7 Take, for instance, the case of machine op-

erators. These are required to have machine-specific experience ranging from the knowledge

of production procedures to the ability to understand blueprints, schematics and manuals.

Due to technological change, they are also increasingly required to be familiar with Com-

puter Numerical Control (CNC), through which, starting with digitized data, a computer

and a Computer Aided Manufacturing (CAM) program is used to control, automate, and

monitor the movements of a given machine. The machine can be a milling machine, lathe,

router, welder, grinder, laser or waterjet cutter, sheet metal stamping machine, robot, or

many other types of machines, each with its own specific blueprints, schematics and manu-

als.8 A concern for both firms and workers is that retraining from a known to a new machine

can be a costly time-consuming process, making them cautious about potential mismatch.9

However, whether our theoretical mechanism indeed operates in practice, and the mis-

match effect is strong enough to reverse the neoclassical conclusions, is in the end an empirical

issue that goes beyond simple survey evidence. We tackle this issue by capturing firms’ and

workers’ match selectivity at the sector-occupation level. In the wake of Costinot and Vogel

(2010) the underlying idea is that, while a sector may cover a rich menu of occupations,

these include a submenu of ‘core’ occupations that are disproportionately concentrated in

the sector. In this respect, an increase in the concentration of occupations’ employment

across sectors can be interpreted as an increase in match selectivity.

We focus on 92 occupations at the 3-digit ISCO-88 level and 16 (out of 21) sectors

according to the NACE Rev.2 classification.10 Our dataset covers 13 European countries

for the period 1995 - 2010. This allows us to test the mechanisms of our model in many

different countries with heterogeneous characteristics. The dataset includes information on

employment from the European Labour Force Survey (EU-LFS). It also includes occupational

indices of ‘automatability’ following Acemoglu and Autor (2011) and ‘offshorability’ following

Blinder and Krueger (2013). We use these indices to infer actual automation and offshoring in

the subsequent years, which we do not observe. The underlying idea here is that automation

and offshoring are two general long-run trends whose effects can be assessed in terms of the

7In spring 2014 the European Centre for the Development of Vocational Training of the European Union
(Cedefop) undertook the first European skills and jobs survey (ESJS), a large-scale primary data collection
of about 49,000 adult employees in 28 EU Member States. Cedefop Eurofound (2018) summarizes many of
the insights gained by closer empirical scrutiny of this new European data set.

8See https://wiki.mcneel.com/rhino/cncbasics.
9This is consistent with evidence collected by Bartel, Ichniowski and Shaw (2007) and Koren, Csillag and

Köllo (2020), according to which workers assigned to new machines or IT-enhanced capital equipment are
required to have ‘better’ technical and problem-solving skills. These are likely to be horizontally differentiated
and acquired mostly through experience as highlighted by Dauth et al. (2019). Koren, Csillag and Köllo
(2020) also find that the productivity of workers assigned to new machines rises and their wages increase
but become more unequal.

10We exclude occupations and sectors closely associated with public and agricultural activities.
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differential exposure of different occupations to them. To investigate the empirical relevance

of our specific mechanism linking automation and offshoring to labor market outcomes, we

construct an index of selectivity that can be computed with our data based on the notion

of employers’ and employees’ matching set. The index proxies the size of this set through

the ‘sectoral selectivity of occupations’ (SSO) defined as the concentration of occupations’

employment across sectors. This index is meant to inversely capture the willingness of firms

and workers to accept less-than-ideal matches: selectivity is considered to be higher (lower)

for larger (smaller) values of SSO.

In line with our model we find that over the period of observation sectors with higher

initial automatability experience a differential increase in selectivity. This effect is driven

by occupations with above-median automatability while there is no impact on selectivity for

occupations characterized by below-median automatability. We also find that, again in line

with our model’s mechanism, sectors with higher initial offshorability experience a differen-

tial decrease in selectivity. Using recent methods proposed by Berg and Streitz (2019), we

conclude that these differentials are not driven by spillover effects. Our results continue to

hold when we use more standard selectivity measures borrowed from the literature, such as

‘skill mismatch’ and ‘unemployment duration’. Next, we document a robust negative impact

of selectivity on employment at the occupation level. To control for potential endogeneity, we

employ an instrumental variable strategy close to the double-Bartik strategy implemented by

Chodorow-Reich and Wieland (forthcoming). The negative effect of selectivity on employ-

ment materializes especially in occupations with above-median automatability. Finally, by

putting together the results on the impacts of automatability and offshorability on selectivity

with those on the impact of selectivity on employment, we can conclude that automation

reduces (offshoring increases) employment through the selectivity channel described in the

our theoretical model.

The rest of the paper is structured as follows. Section 2 introduces and solves the model.

Section 3 presents the dataset, some descriptive statics and the regression results. Section 4

concludes.

2 A Model of ‘Core-Biased Technological Change’

We want to investigate how automation and offshoring affect employment and wage inequal-

ity when they change the matching and sorting patterns between firms’ heterogeneous tasks

and workers’ heterogeneous skills in the presence of search frictions.11 To this aim, we model

11Two-sided heterogeneity is featured in models of assortative matching à la Becker (1974) and their
applications to the labour market. Influential applications, including Shimer and Smith (2000) and Hagedorn,
Law and Manovskii (2017), insert two-sided vertical heterogeneity and general assortativity into models with
search and matching frictions. Differently from them, given the specific nature of our research question, we
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the steady state of a sector in a small open economy that freely trades goods and capital

with the rest of the world. The sector supplies a freely traded homogeneous final product

under perfect competition. The price of the final product is determined in the international

market and set to 1 without loss of generality. Domestic firms supply the final product by

employing a domestic worker each, and a variable amount of capital. This is homogeneous

and hired at given rental rate ρ in a perfectly competitive international capital market.

Domestic workers perform firm-specific horizontally differentiated tasks and are them-

selves horizontally differentiated in terms of task-specific skills. Two-sided heterogeneity of

domestic firms’ tasks and workers’ skills is associated with search frictions that give rise to

possible skill-task ‘mismatch’.12 We model such heterogeneity by placing firms’ tasks and

workers’ skills in a characteristics space. In particular, we place firms and workers at different

‘addresses’ continuously distributed along a unit circle (i.e. with radius 1/2π). Performing

each task requires a domestic worker with the appropriate skill. There is an ideal match of

each task with the most appropriate skill, which is the one with the same address as the

task along the circle. The ideal match delivers the maximum achievable productivity. Less-

than-ideal matches are also productive, but their productivity decreases with the distance

d ∈ [0, 1/2] between their matched task’s and skill’s addresses along the circle. Minimum

productivity thus corresponds to matches at distance 1/2. Matches between tasks and skills

are not necessarily ideal as search frictions make firms and workers willing to accept less-

than-ideal matches. This is how search frictions will induce ‘mismatch’ (measured by the

value of d) between tasks and skills, that is, divergence between the actual matches and the

ideal ones. To introduce offshoring we assume that each task consists of a continuum of

subtasks. These differ in terms of domestic workers’ ability to perform them relative to for-

eign workers and only a subset of them will be assigned to domestic workers in equilibrium.

When this subset shrinks, domestic workers specialize in subtasks which they are better at.

Within this framework, automation is modeled as an increase in the productivity of any

given match (‘productivity effect’), but also as an increase in the relative productivity of ideal

matches relative to less-than-ideal ones (‘mismatch effect’). In parallel, offshoring is modeled

as an increase in the productivity of any given match thanks to domestic workers’ subtask

specialization (‘specialization effect’), but also as a decrease in the subset of subtasks assigned

to them (‘substitution effect’). Accordingly, while the productivity and specialization effects

of automation and offshoring increase the match surplus of domestic firms and workers, their

mismatch and substitution effects work in the opposite direction.

focus on production functions with positive assortative matching and two-sided horizontal heterogeneity.
12Matches are one-worker-one-job relationships and therefore we do not consider the complementarities

between workers within the same firm as in Eeckhout and Kircher (2018). While complementarities within
the firms are certainly important, they are not immediately relevant for our purposes.
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Time is continuous and in each moment the timing of events is as follows. First, each

domestic firm decides how much capital to rent and randomly meets some domestic worker.

Next, upon observing their respective types (in terms of tasks or skills), the firm and the

worker decide whether to match or not. Finally, if they decide to match, they bargain on the

wage as a fraction of the match surplus according to the Nash protocol. The steady state

pure strategy of each type of domestic firm (worker) is to decide which types of domestic

workers (firms) to match with, taking the strategies of all other firms and domestic workers

as given.

2.1 Skills and Tasks

All agents are risk-neutral, infinitely lived and maximize the present value of their future

income streams, discounted by the common discount factor ρ. Along the unit circle, there

is an exogenous measure of domestic workers with skills indexed x ∈ [0, 1] clockwise from

noon (‘skill address’). The distribution of skills across addresses is determined by a uniform

p.d.f. gw(x). There is an exogenous measure L of domestic workers. Given unit support,

there are thus L workers at each address. Likewise, there is an endogenous measure of firms

with tasks indexed y ∈ [0, 1] clockwise from noon (‘task address’). The distribution of tasks

is also governed by a uniform p.d.f. gf (y) while the measure of domestic firms is determined

by free entry. Uniformity is assumed for simplicity as it will lead to the same equilibrium

outcome for all addresses.13

There is no asymmetric information in the model. All agents know their own type and

the types of all potential partners they meet. Nonetheless, as already discussed, search

frictions hamper the formation of ideal matches.14 This implies, first, that some meetings do

not result in an employment relation, hence unemployment arises. Second, domestic firms

(workers) do not consider only domestic workers (firms) with ideal skills (tasks), but they

are also willing to hire workers (be hired by firms) with skills (tasks) in a range centered

around their ideal skills (tasks). This is what induces mismatch between skills and tasks,

measured by their distance along the circle:

d(x, y) = min [x− y + 1, y − x] (1)

where the min function selects the shorter arc distance between clockwise and counterclock-

wise travels between x and y along the unit circle.

13In Appendix D we explicitly allow for asymmetry by additionally introducing vertical specialization.
14In the absence of search or information frictions all workers and firms would be matched to their optimal

partner as in Becker (1974).
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2.2 Production, Automation and Offshoring

For the production function of a match we keep neoclassical assumptions so as to preserve

the role of technological progress that increases total factor productivity, and thus workers’

and firms’ income. Specifically, we assume that a firm’s technology frontier exhibits constant

returns to scale with respect to both capital and labor. Capital is chosen endogenously, which

serves the purpose of covering all neoclassical adjustment margins. By reducing the price

of investment, an increase in productivity raises labor demand. In this respect, introducing

capital is a conservative choice. If the cost of mismatch reduces employment, it will do so

even in presence of a declining price of investment.

The functional form of a domestic firm’s production technology is Cobb-Douglas:

f(d) = AK(d)βL(d)1−β (2)

with β ∈ (0, 1), where K(d) is capital, L(d) refers to the efficiency units provided by the

domestic worker whom the firm matches with, d is ‘mismatch’ as measured by match dis-

tance (1), and A > 0 is total factor productivity, which we will simply call ‘automation’

henceforth.15 The fact that larger A raises output for given inputs captures the ‘productiv-

ity effect’ of automation. The surplus generated by the match is given by what is left of

the value of production f(d) after paying capital. As capital is hired in a perfectly compet-

itive market, profit maximization implies that its rental rate and the value of its marginal

productivity are equalized:

ρ = βAK(d)β−1L(d)1−β. (3)

Solving (3) for K(d) and substituting the result into (2) net of capital remuneration gives

match surplus:

s(d) = f(d)− ρK(d) = ΦA
1

1−βL(d) (4)

with bundling parameter Φ ≡ (1− β) (β/ρ)
β

1−β . The efficiency units provided by the domes-

tic worker depend on which subtasks the worker performs. Specifically, each task d consists

of a continuum of subtasks indexed i ∈ [0, 1] in increasing order of ability by the domestic

worker to perform them. When assigned subtask i of task d, the number of efficiency units

of labor the worker is able to provide is given by:

L(d, i) = Fi− γA

2
d. (5)

15A subsumes all sources of productivity gains. Let bK , bL and B capture capital-enhancing, labor-
enhancing and Hicks-neutral technological change. With Cobb-Douglas technology we have f(d) =

B (bKK(d))
β

(bLL(d))
1−β

, which can be rewritten as (2) after defining A ≡ B (bK)
β

(bL)
1−β

.

10



Effective labor rises as i increases. Moreover, effective labor equals Fi ≥ 0 for the ideal

match (d = 0) and declines as d increases until it reaches its minimum Fi − γA/4 for the

worst match (d = 1/2). The decline is steeper for better states of technology (larger A),

which captures the idea that automation increases the loss from less-than-ideal matching

(‘mismatch effect’).

Offshoring is introduced as follows. Let Ω ∈ [0, 1] denote the subtask the firm assigns to

the domestic worker which the worker is worst at, such that subtasks i ∈ (Ω, 1] are assigned

to this worker whereas subtasks i ∈ [0,Ω) are offshored. Accordingly, Ω is the measure of

offshored subtasks and we will refer to it as simply ‘offshoring’ henceforth. Given (5), the

efficiency units the domestic worker provides to the matched domestic firm then evaluate to:

L(d) =

∫ 1

Ω

L(d, i)di =
1

2
(1− Ω) [F (1 + Ω)− γAd] . (6)

This expression reveals the existence of two opposing effects of offshoring on effective labor.

Larger Ω reduces the measure of subtasks assigned to the domestic worker through (1− Ω)

(‘substitution effect’), but it also increases the worker’s average ability in the performed

tasks through (1 + Ω) (‘specialization effect’). By (4) and (6), match surplus for mismatch

d can be finally expressed as:

s(d) =
Φ

2
A

1
1−β (1− Ω) [F (1 + Ω)− γAd] (7)

for d ∈ [0, F (1 + Ω)/γA] and zero otherwise.

A few summary remarks are in order with reference to (7). First, for given A and Ω,

match surplus s(d) is a decreasing linear function of mismatch d with slope increasing in

A and decreasing in Ω. Second, for given d, more automation (larger A) has two opposite

effects on match surplus for d ∈ [0, F (1 + Ω)/γA]: a positive effect working through A
1

1−β

(‘productivity effect’) and a negative one working through A (‘mismatch effect’). The sign

of the net effect depends on mismatch d:

ds(d)

dA
=

Φ

2

1

1− β
A

β
1−β (1− Ω) [F (1 + Ω)− γAd]︸ ︷︷ ︸

productivity effect

− Φ

2
A

1
1−β (1− Ω)γd︸ ︷︷ ︸

mismatch effect

,

which shows that automation increases the surplus of good matches (small d) and decreases

the surplus of bad matches (large d). Third, for given d, more offshoring (larger Ω) also

has two opposite effects on match surplus for d ∈ [0, F (1 + Ω)/γA]: a positive effect work-

ing through (1 + Ω) (‘specialization effect’) and a negative one working through (1 − Ω)
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(‘substitution effect’). The sign of the net effect again depends on mismatch d:

ds(d)

dΩ
=

Φ

2
A

1
1−β (1− Ω)F︸ ︷︷ ︸

specialization effect

− Φ

2
A

1
1−β [F (1 + Ω)− γAd]︸ ︷︷ ︸

substitution effect

.

However, differently from automation, more offshoring increases the surplus of bad matches

(large d) and decreases the surplus of good matches (small d). Fourth, match surplus s(d)

is log-submodular in d and A as well as log-supermodular in d and Ω.16 In words, better

matches (i.e. matches with smaller d) have a comparative advantage in exploiting automa-

tion whereas worse matches (i.e. matches with larger d) have a comparative advantage in

exploiting offshoring.

The log-submodularity of s(d) in d and A derives from the fact that, as A grows, less-than-

ideal skills or tasks become less substitutable with the corresponding ideal ones that define

firms’ and workers’ ‘core competencies’. For this reason, we can use the term ‘core-biased

technological change’ (CBTC) to label the way in which the state of technology evolves in

our model. This is different from the concepts of ‘routine-biased technological change’ and

‘skill-biased technological change’ previously examined in the literature as discussed in the

Introduction.

2.3 Search and Match

Due to search frictions, domestic firms and workers are not necessarily all paired in a produc-

tive match. Firms can be either producing, labeled by P , or vacant, labelled by V . Workers

can be either employed, labelled by E, or unemployed, labelled by U . By definition, the sum

of employed and unemployed workers equals the labour force, E + U = L and we set L = 1

by choice of units. Hence, E + U = 1 holds both in the aggregate and for each address.

Only vacant firms and unemployed workers engage in search. Meeting rates are set

according to a standard random search setup featuring Poisson distributed meeting inter-

vals. We adopt a linear matching technology described by a homogeneous-of-degree-one

Cobb-Douglas matching function M(U, V ) = ϑU ξV 1−ξ, where ϑ is matching efficiency, U

is unemployment, V are vacancies and ξ ∈ (0, 1) is the elasticity of new matches to unem-

ployment.17 In this setup the Poisson arrival rate can be derived as a function of aggregate

16Making the dependence of match surplus on the relevant parameter explicit, s(d,A) is log-submodular
in d and A as, for all d′ > d and A′ > A, we have s(d′, A′)/s(d,A′) < s(d′, A)/s(d,A) or equivalently
(d′ − d) (A′ −A) < 0. Analogously, s(d,Ω) is log-supermodular in d and Ω as, for all d′ > d and Ω′ > Ω, we
have s(d′,Ω′)/s(d,Ω′) > s(Ω′, A)/s(Ω, A) or equivalently (d′ − d) (Ω′ − Ω) > 0.

17See Mortensen and Pissarides (1994). Our assumption departs from the non-linear matching function
employed in models with two-sided heterogeneity à la Shimer and Smith (2000). In particular, our matching
technology implies that congestion externalities arise for each task.
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labor market tightness V/U . We can then define qv = M(U, V )/V = ϑ (U/V )ξ as the rate

at which vacant firms meet unemployed workers and qu = M(U, V )/U = ϑ (V/U)1−ξ as the

rate at which unemployed workers meet vacancies.

Firms face a cost c > 0 of maintaining a job either filled or vacant paid in units of the

final good. Match surplus is shared according to the Nash bargaining solution with worker

bargaining weight α ∈ (0, 1).18 We impose zero outside options for both workers and firms

by normalizing the unemployed workers’ and vacant firms’ income to 0.19

Once matched, workers and firms decide whether to produce by comparing their shares

of the match surplus with their outside options. Given the Nash bargaining protocol, risk-

neutrality and zero outside option, workers of type x accept a job of type y if and only

if

Λ(x) = {y : S(x, y) ≥ 0} (8)

holds, where S(x, y) is the surplus of the match (x, y), while Λ(x) defines the workers’

acceptance set. Firms have a similarly defined acceptance set

Φ(y) = {x : S(x, y) ≥ 0} . (9)

Given the two acceptance sets, the joint matching set Λ(x) ∩ Φ(y) evaluates to

M(x, y) = {x, y : S(x, y) ≥ 0} . (10)

All sets are Borel measurable and depend also on automation A and offshoring Ω. Matches

can be destroyed by separation shocks, which we assume to happen with per-period proba-

bility δ ∈ (0, 1).

We restrict our attention to acceptance sets featuring positive assortative matching with

uniformly distributed workers x and thus also uniformly distributed firms y.20 This case

has the following appealing features from an analytical point of view. The values of unem-

ployment and vacancies are identical for all workers’ and firms’ addresses respectively. The

values of employment and production depend on distance d only. Also the Nash bargained

wage w(d) depends only on d. Workers and firms accept matches at some endogenously

determined common maximum distance d∗ from their address. This implies that we can

write the acceptance sets for workers as

Λ(x) = [y − d∗, y + d∗] (11)

18We could consider alternative wage protocols, such as sequential auctions à la Postel-Vinay and Robin
(2002) or Lise and Robin (2017), or also other competiitve wage protocols like in Moen (1997). However,
for the purpose of our study, a simple rent sharing rule is appropriate.

19If the outside option were positive workers would search for longer.
20See Lemma 1 in Marimon and Zilibotti (1999).
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and for firms as

Φ(y) = [x− d∗, x+ d∗] . (12)

2.4 Value Functions and Nash Bargaining

A worker’s discounted value of being employed ve(d) equals the current wage plus the option

value of the potential future loss from unemployment:

ρve(d) = w(d)− δ(ve(d)− vu). (13)

Analogously, given that unemployed workers’ income is normalized to 0, a worker’s dis-

counted value of being unemployed vu equals the option value of the potential future gain

from employment:

ρvu = 2qu

∫ d∗

0

(ve(z)− vu)dz, (14)

which takes into account that an unemployed worker meets a vacancy at endogenous rate qu

and converts the meeting into a job if the worker’s type falls in the matching set of measure

2d∗ centered at d = 0.

Next, the discounted value of a filled vacancy vp(d) equals what is left of the match

surplus after the wage w(d) and the maintenance cost c have been paid plus the option value

of the potential future loss from exogenous separation at rate δ:

ρvp(d) = (s(d)− w(d)− c)− δ (vp(d)− vv) . (15)

Finally, the value of an unfilled vacancy vv satisfies

ρvv = −c+ 2qv

∫ d∗

0

(vp(z)− vv)dz, (16)

where the right hand side corresponds to the option value of filling the vacancy at endogenous

rate qv in the future net of the maintenance cost c.

The set of equilibrium conditions is then completed by the Nash bargaining rule

(1− α) (ve(d)− vu) = α (vp(d)− vv) (17)

the free entry condition for the value of a vacancy

vv = 0, (18)
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the zero cutoff value condition for a filled vacancy associated with maximum mismatch d∗

vp(d
∗) = 0, (19)

and the steady state flow condition for employment

qu =
δE

2d∗ (1− E)
. (20)

Condition (20) requires job distruction δE to be exactly offset by job creation 2qud
∗ (1− E)

as an unemployed worker meets a vacancy at rate qu and matches with the corresponding

firm at a rate given by the ratio between the measures of the matching set (equal to 2d∗)

and of the characteristic space (equal to 1).

2.5 Employment, Wages and Selectivity

By substitution into (18) and (19) the set of equilibrium conditions can be reduced to a

system of the two equations

(1− α)
2ϑ

1
1−ξ (qu)

− ξ
1−ξ

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2αqu

∫ d∗

0

s(z)dz = c (21)

and

(1− α)
δ + ρ+ 2ϑ

1
1−ξ (qu)

− ξ
1−ξ

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2αqu
s(d∗) = c, (22)

in unknown employment E and maximum mismatch d∗ with match surplus s(d) and meeting

rate qu given by (7) and (20) respectively.21 Solving this system gives the equilibrium values

of E and d∗, which can then be used to evaluate the equilibrium wage of domestic workers

as follows:

w(d) =
α (δ + ρ+ 2qu)

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2αqu
s(d). (23)

While the equilibrium system is not amenable to closed-form solution, its comparative

statics with respect to automation and offshoring are intuitive and can be readily investi-

gated numerically. Figures 1 to 3 provide graphical representations for standard parameter

values drawn from the literature that deliver empirically relevant rates of employment and

unemployment.22

Figure 1 shows the effects of automation on employment (left panel) and ‘selectivity’

(right panel) for different degrees of offshoring. Analogously, Figure 2 shows the effects of

21See Appendix C for detailed derivations.
22See Appendix D for additional details.
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offshoring on employment (left panel) and ‘selectivity’ (right panel) for different degrees of

automation. ‘Selectivity’ is measured as 1/d∗: more (less) selectivity means that firms and

workers are willing to accept less (more) mismatch d∗ between their skills and tasks. This

notion will come handy in the empirical analysis. These figures show that, for the chosen

parameter values, equilibrium employment E is a non-monotone function of automation A

(Figure 1, left panel) or offshoring (Figure 2, left panel), increasing for small A or Ω and

decreasing for large A or Ω. This non-monotonicity of employment results from the changing

balance of the opposite productivity and mismatch or specialization and substitution effects

discussed above. However, whereas selectivity increases with automation (Figure 1, right

panel), it decreases with offshoring (Figure 2, right panel). As for interactions, the left

panel of Figure 1 shows that automation has a weaker positive (stronger negative) impact

on employment for small (large) A when there is more offshoring (i.e. for larger Ω). Vice

versa, the left panel of Figure 2 shows that offshoring has a stronger positive impact on

employment for small Ω but a weaker negative effect on employment for large Ω when there

is more automation (i.e. for larger A).

Figure 3 depicts the effects of automation and offshoring on wages corresponding to the

effects on employment and selectivity reported in Figure 1 and 2 respectively. Figure 3 shows

that automation increases wage inequality between the best and worst matches, especially

when offshoring is limited. Vice versa, offshoring reduces wage inequality between the best

and worst matches, especially when automation is pronounced. While these results on wages

are interesting as they speak to the debate on inequality, we do not emphasize them here as

our dataset does not allow to test their empirical relevance.

To summarize, for standard parameter values drawn from the literature, in our model

automation can have a detrimental impact on employment through a selectivity channel as

less-than-ideal ‘non-core’ tasks/skills become less substitutable with ideal ‘core’ ones. This is

due to the fact that better matches between firms and workers have a comparative advantage

in exploiting new technologies. In the case of offshoring, the selectivity channel can work

in the opposite direction as less-than-ideal ‘non-core’ tasks/skills become more substitutable

with ideal ‘core’ ones. This is due to the fact that worse matches between firms and workers

have a comparative advantage in exploiting the international decoupling of subtasks. It then

remains an empirical question whether this new channel has any practical relevance, and is

strong enough to alter the traditional neoclassical conclusions.

3 Empirical Evidence from Occupational Data.

To investigate whether our selectivity channel operates in practice, we capture firms’ and

workers’ match selectivity in terms of the concentration of occupations’ employment across
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sectors. In the wake of Costinot and Vogel (2010) the underlying idea is that, while a sector

may cover a rich menu of occupations, these include a submenu of ‘core’ occupations that

are disproportionately concentrated in the sector. In this respect, an increase in the con-

centration of occupations’ employment across sectors can be interpreted as an increase in

match selectivity. We then study the effects of automation and offshoring on employment

channeled through the sectoral concentration of occupations’ employment. While for sim-

plicity our theoretical model assumes perfect symmetry across skills and tasks, our empirical

set-up will allow for more flexibility in exploiting the heterogeneity of observed patterns

across countries, sectors and occupations.

We will proceed as follows. After introducing our dataset (Section 3.1) and reporting

some descriptive statistics (Section 3.2), we will estimate the effects of automation and

offshoring on occupational employment channeled through selectivity (Section 3.3). We will

then offer a simple assessment of the contribution of the selectivity channel to the total

effect of automation on employment (Section 3.4). Finally, we will draw conclusions about

aggregate employment effects with an emphasis on automation as this has attracted much

attention in recent years (Section 3.5).

3.1 Data and Variables

We use sectoral and occupational level data on European countries extracted from the

European Labour Force Survey (hereafter EULFS). We restrict our analysis to the years

1995 − 2010 in order to include the maximum number of available countries and keep a

consistent classification of occupations. We aggregate worker-level observations into country

× sector × occupation × year cells to analyze country, sectoral and occupational hetero-

geneities. We exploit long-differences between 1995 and 2010 assuming that automation and

offshoring shocks materialize between these two dates as documented in other studies.23 For

the remainder of the paper, the long-difference of any variable Y between 1995 and 2010

will be simply denoted ∆Y . We focus on 92 occupations at the 3-digits ISCO-88 level and

16 sectors according to the NACE Rev.2 classification. To ensure the stability of the sec-

tor definition across years, we group these 16 sectors into 11 sectors.24 We analyse data

from 13 countries, both Anglo-Saxon and continental European, in order to make results

23For instance, Chiacchio, Petropoulos and Pichler (2018) shows that robot penetration in the EU28 has
tripled over this period and particularly between 1995-2007 relative to the years 2007-2015. A similar pattern
can be observed for offshoring as measured by foreign direct investment and intermediates trade in the WTO
and UNCTAD statistics.

24Following Goos, Manning and Salomons (2014), occupations and sectors closely associated with public
and agricultural activities are dropped. We also drop 3-digit ISCO occupations that are not precisely
reported. These occupations are dropped from the final sample. This corresponds to 1.1% of total hours
worked in the sample and this only affects 6 countries in the sample.
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robust to local institutions or cultural trends.25 For each country, sector and occupation we

have information on employment, number of employees, number of hours worked, number

of unemployed workers (see Appendix A for more details on the data).

We merge these data with indices capturing occupations’ exposure to automation (‘au-

tomatability’) and to offshoring (‘offshorability’). We use these indices to infer actual au-

tomation and offshoring in the subsequent years, which we do not observe. The underlying

idea here is that automation and offshoring are two general long-run trends whose effects

can be assessed in terms of the differential exposure of different occupations to them.

To measure the ‘automatability’ of an occupation we use the Routine Task Intensity

index (RTI) as computed by Acemoglu and Autor (2011), which has been widely used

in previous studies (see among many others Autor, Levy and Murnane, 2003; Autor and

Dorn, 2013; Goos, Manning and Salomons, 2014).26 The RTI builds on information about

the task content of occupations available from the U.S. Dictionary of Occupational Titles

(DOT). We use a crosswalk to go from the SOC 2000 classification used in DOT to the

4-digits ISCO-88 classification before aggregating to the 3-digit ISCO-88 classification (see

Appendix A for additional details). Comparing our RTI measure with an alternative measure

of automatibility constructed by Frey and Osbourne (2013) reveals a large positive correlation

between them with only few exceptions for specific occupations.27 As for ‘offshorability’, we

adopt the index developed by Blinder and Krueger (2013) (hereafter BK). The index builds

on questionnaires as well as qualitative observations and is constructed by professional coders

based on an occupational classification of workers. Offshorabilty is then reported on a 4-step

qualitative scale from Highly Non Offshorable (1) to Highly Offshorable (4).28 A different

measure is provided by Acemoglu and Autor (2011), who instead build a quantitative index

based on aggregating several ONET indicators.While correlations between these different

measures are mostly positive (see Appendix A for additional details), we use the BK index

as our benchmark measure of offshorability as Goos, Manning and Salomons (2014) find that

this index is more reliable when compared with actual offshoring measures.29

25These countries are Austria, Belgium, Germany, Denmark, Spain, France, United Kingdom, Greece,
Ireland, Italy, Luxembourg, Netherlands, Portugal. For these countries full time coverage is available.

26We adopt the definition of Lewandowski et al. (2017): RTIo = ln(Routine Cognitiveo +
Routine Manualo)− ln(Non-Routine Analyticalo+Non-Routine Interpersonnalo). Throughout we standard-
ize RTI to have a mean equal to zero and a standard deviation of one.

27The measure used by Frey and Osbourne (2013) builds on the selection of solutions that engineers need
to devise for specific occupations to be automated and is given by the probability of computerization based
on a Gaussian process classifier.

28The index of Blinder (2009) is constructed in the same way, but it reports a qualitative ranking of
occupations according to their degree of offshorability.

29We obtain data from the Princeton Data Improvement Initiative (https://krueger.princeton.edu/
pages/princeton-data-improvement-initiative-pdii). The matching procedure of occupations with
our automatability and offshorability indices is detailed in Appendix A.
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While both automation and offshoring may displace workers, it is important to note that

they are conceptually quite different as stressed in our theory section. The likelihood of

automation is linked to the routineness of a task, hence to the possibility that it can be

solved algorithmically by a computer or a robot. Differently offshorability à la BK refers to

the ability to perform one’s work duties, for the same employer and customers, in a foreign

country, even though the supply of the good or the service is still based in the home market.

Accordingly, while the correlation between our measures of automatability and offshorability

is positive, there are important exceptions across occupations (see column 4 and 5 in Table 1

and Appendix A for a full picture).

We operationalize match selectivity as the concentration of occupations’ employment

across sectors as follows. Let O = {o1, . . . , o92} be the set of occupations, K = {k1, . . . , k11}
be the set of sectors and I = {i1, . . . , i13} be the set of countries in our sample. Consider

occupation o ∈ O in sector k ∈ K of country i ∈ I with employment denoted by Loki. Our

measure of occupation o’s employment concentration across sectors k ∈ K in country i is

given by the Herfindhal index

SSOoi =
∑
k∈K

(
Loki∑
k∈K Loki

)2

, (24)

where ‘SSO’ is a mnemonic for ‘sectoral selectivity of occupation’. Two remarks on (24)

are in order. First, as each occupation is not present in every sector, a key feature of our

selectivity index is that it is not standardized to account for the number of sectors used

in the estimation. To understand this point, assume, for instance, that an occupation is

equally observed in 5 different sectors in 1995, but disappears from one of the sectors in 2010

with previous employment from this sector evenly reallocated to the other four sectors. The

distribution of the occupation’s employment across sectors is, therefore, uniform both in 1995

and in 2010. A standardized Herfindahl index would be equal to zero in both cases, implying

that no change in selectivity is detected between 1995 and 2010 for this occupation. It is,

however, key to our identification strategy that a positive change in selectivity is detected

in this case as the occupation’s employment is actually more concentrated across sectors in

2010 than in 1995. Second, high (low) SSO implies that few (many) sectors account for a

large share of the occupation’s employment. As SSO is thus inversely related to the size of

the theoretical matching set (‘mismatch’), we will investigate the robustness of our findings

based on SSO exploiting two traditional measures of mismatch: unemployment duration and

education-based metrics of skill mismatch.
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3.2 Descriptive Statistics

Table 1 presents descriptive statistics on the occupational characteristics aggregated at the

2-digit level for clarity. Occupations are ranked from the least to the most routine-intensive.

Column 1 displays the percentage point change in the share of hours worked between 1995

and 2010. Overall the change is smaller (or negative) for occupations that are more ‘au-

tomatable’ (i.e. routine-intensive). Among the ten most routine-intensive occupations only

Customer Service Clerks (42) and Sales and Services Elementary (91) do not exhibit a fall in

the share of hours. Column 2 reports the change in unemployment. For eight out of the ten

least routine-intensive occupations the unemployment rate between 1995 and 2010 drops.

It is, however, worth noting that for half of the ten most routine-intensive occupations we

observe falling or relatively stable unemployment rates.

Figure 4 presents further preliminary evidence — similar to Figure 1 — on the direct

effects of automatability on employment and its interplay with offshorability. We collapse

observations to the occupation level and divide the 92 occupations into two groups according

to median offshorability.30 Overall (dashed line) occupations that had a low (high) share

of routine-intensive tasks in 1995 experience an increase (decrease) in total hours worked in

the subsequent years as employment shifts from routine to non-routine occupations. When

considering the interaction with offshorability, a more nuanced pattern emerges: while the

negative relationship between routine-intensity and employment is confirmed for highly off-

shorable occupations (solid black line), the observed change in hours worked in occupations

with low offshorability (solid grey line) is unrelated to the routine-intensity of tasks per-

formed in this occupation.

3.3 Selectivity and Employment

We assess the effects of automation and offshoring on employment channeled through se-

lectivity in two steps. First, considering automation and offshoring as two general long-run

trends to which different occupations are differentially exposed, we regress SSO on automata-

bility and offshorabilty while including country-specific time trends. We find that selectivity

increases more in occupations with high automatability while it falls in occupations with

high offshorability. Second, we regress employment on SSO, finding a negative relation be-

tween employment and selectivity. Using a double-Bartik instrument (see Chodorow-Reich

and Wieland, forthcoming), we show that this relation is associated with a causal negative

impact of selectivity on employment.

30We aggregate our data at the cell level (country × sector × occupation × year) into occupation × year
cells and compute the log change in hours worked across the countries in our sample for each occupation:
∆ln (Hourso) = ln

(
Hours2010

o

)
− ln

(
Hours1995

o

)
.
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3.3.1 From Technology to Selectivity

In the first step we verify whether more automatable and offshorable occupations experience

a change in selectivity over the period 1995− 2010 in line with the predictions of our model.

To this end we estimate the following equation:

∆ln(SSOoi) = β1RTIo + β2Offshoro + Z ′oiC + µi + εoi, (25)

where ∆ln(SSOoi) is occupation o’s change in SSO between 1995 and 2010 in country i,

RTIo and Offshoro are our indices of automatability and offshorability, and C is a vector

of coefficients associated with a set of control variables Zoi. Additionally we include country

fixed effects (µi) that account for country-level aggregate trends. The corresponding esti-

mates are reported in Table 2 with country fixed effects displayed in Figure 5. These are

positive for all countries (min=0.24; max=0.85; mean=0.59) and positively related to the

change in TFP, which supports the interpretation of country fixed effects as manifestations

of country-specific aggregate technology trends.

Turning to the other results in Table 2, column 1 shows that, as predicted by the model,

occupations with higher initial automatability become more selective. The coefficient is,

however, imprecisely estimated. One reason might be that the sample includes a selection

of occupations that are hard to automate or not automatable at all, which leads to under-

estimating the effect of technological change. The effect of offshoring is instead precisely

estimated and negative as predicted by the model.

Next we estimate a less restrictive model than the linear specification (Equation (25)),

in which we explicitly allow for asymmetric effects between high and low automatability

occupations. We do so by defining a dummy variable IHoi for occupation o in country i that

takes value one if the occupation’s RTIo is above the median RTIo across all occupations in

country i and zero otherwise. We then estimate the following specification:

∆ln(SSOoi) = β1RTIo × IHoi + β2RTIo × ILoi + β3Offshoro + Z ′oiC + µi + εoi (26)

with ILoi = 1 − IHoi . Column 2 in Table 2 reports the corresponding results. It shows that

occupations at higher risk of automation experience a large significant increase in selectiv-

ity between 1995 and 2010, whereas occupations that are harder to automate exhibit no

statistically significant change in selectivity. The effect of offshoring is again negative and

precisely estimated. As predicted by the model, automation and offshoring have opposite

effects on match selectivity. These results remain robust also when we include an interaction

term between automatibility and offshorability in column 3. Furthermore the interaction’s

positive sign is in line with our model though not significant.
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Having established that the main channels of the model are operative in the data, we

further refine our empirical analysis. First, we check whether other sources of occupational

heterogeneity affect the strength of the selectivity channel by adding an occupation’s share

of employment in 1995 and its interaction with automatability. In doing so, to maintain

the number of estimated parameters at a reasonable level, we return to specification (25).

The corresponding results are reported in column 4, which shows that the positive effect of

automation on selectivity is largely driven by occupations with larger employment shares.

Second, we assess the relevance of possible general equilibrium or spillover effects. Re-

allocation, following a potential shock in one occupation, may bias the estimated change in

selectivity in other occupations. For example, labor supply in less automatable occupations

may be affected by the response of more automatable occupations. In a case like this, the

observed change in the selectivity of the former occupations may not be necessarily due to

their own automatability, but rather to what is happening to the latter occupations. In

this respect, Berg and Streitz (2019) propose a parsimonious way of estimating treatment,

spillover and aggregate effects. The method consists of adding an interaction between the

variable of interest and its average over the group that may be affected by spillovers. The

method is effectively a linear-in-means estimator where spillovers are assumed to vary within

the most likely ‘spillover dimension’ and vary linearly with the average treatment intensity.

We adapt their approach, designed for binary treatments, to our continuous measure of au-

tomatability. As mobility is typically stronger across occupations than across countries, we

take the country as our spillover-sensitive group. We then introduce again our dummy IHoi

(which takes value one for occupations above median RTIo and zero otherwise) interacting

it with its group-mean RTI−oi obtained excluding occupation o. Finally, we estimate the

following equation:

∆ln(SSOoi) = β1RTIo×IHoi +β2RTIo×ILoi+β3RTI−oi×IHoi +β4RTI−oi×IHoi +Z ′C+εoi, (27)

where, given mean-linearity, we omit group-level fixed effects as this would bias the esti-

mation. The positive and significant estimate in column 5 confirms the positive effect of

automation on selectivity even when controlling for potential spillovers. In fact, it is esti-

mated to be almost twice as large indicating that unmodeled spillovers or general equilibrium

effects strengthen the impact of automation on selectivity. On the other hand, the impact

of offshoring maintains its significantly negative sign with little change in its absolute value.

Finally, all columns of Table 2 feature initial selectivity in 1995 as an additional control.

Its negative and significant coefficient reveals an overall process of convergence towards

higher selectivity across all occupations.
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3.3.2 From Selectivity to Employment

In the second step we investigate the effects of selectivity on employment through the fol-

lowing specification:

∆ln(Hoursoi) = γ + δ1∆ln(SSOoi) +K ′C2 + ηi + υoi, (28)

where ∆ln(Hoursoi) is the long difference in total hours worked in occupation o in country

i, ∆ln(SSOoi) is the change in selectivity, K ′ a matrix of control variables and C2 the vector

of their coefficients.

An important concern underlying Equation (28) is the potential endogeneity between the

changes in our measure of selectivity constructed using employment shares and the changes

in hours worked. The sign of the bias is not obvious as it depends on the distribution of

occupational employment shares across sectors. We address this concern by using a classical

Bartik instrument similar to the ‘double-Bartik’ instrument proposed by Chodorow-Reich

and Wieland (forthcoming). To construct this instrument, we first compute the Bartik-

predicted change in employment in an occupation×industry×country cell as the employment

growth that would prevail if that cell grew at exactly the same rate as in all other countries

in our sample. Then, we re-compute our measure of selectivity using the Bartik-predicted

employment shares instead of the actual ones. Formally, the predicted employment in 2010 is

L̂boik,2010 = gbo,−i,k,2010× so,i,k,1995 where gbo−ik,2010 is the average growth rate of an occupation-

industry pair in all other countries of the sample (denoted by the index −i) and soik,1995 is

the employment of occupation o in sector k in country i in 1995. The Bartik-predicted SSO

in 2010 is given by ̂SSOb
oi,2010 =

∑
k∈K(ŝboik,2010)2 with ŝboik,2010 being the share of predicted

employment of occupation o in sector k and country i in 2010. Our instrument is then the

log change in predicted SSO:

̂∆ln(SSOb
oi) = ln

 ̂SSOb
oi,2010

SSOoi,1995

 .

Following the arguments outlined in Chodorow-Reich and Wieland (forthcoming), we in-

clude the predicted occupation-industry employment growth ∆ln(Lb) = ln

(
̂Lboik,2010
Loi,1995

)
as an

additional control. This serves the purpose of controlling for unobserved variation due to

potential secular trends in occupation-industry employment shares across countries.

Table 3 displays the results for both OLS and IV regressions. For the latter it also reports

the first-stage results. The first-stage F-statistic suggests that our instrument is not weak
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and associated first-stage estimates are, as expected, positive and significant.31 In column

1, the OLS regression features a negative and significant coefficient on selectivity. Column

2, which implements our double-Bartik strategy, exhibits a similar negative and significant

estimate. Columns 3 and 4 introduce additional controls with OLS and IV respectively.

Column 4 shows that further controlling for the direct effects of automatibility and off-

shorability on employment increases the estimated coefficient on selectivity. The estimated

coefficient is still negative, significant and larger than the corresponding OLS estimate in

column 3 as well as larger than the corresponding IV estimate in column 2. Controlling for

occupation×country fixed effects with IV in column 5 yields a similar highly significant, neg-

ative effect of increased selectivity on employment. After controlling for any occupation-level

and country-level shocks, the coefficient of selectivity is almost three times as large in abso-

lute value as the corresponding estimate in column 2. We can thus conclude that selectivity

has a significant negative causal effect on employment: increased concentration of an occu-

pation’s employment across sectors has caused an employment reduction in that occupation.

We test the robustness of our findings in Table 4. First, in column 1 we restrict the sample

only to occupations that experience an increase in selectivity. According to the model, we

should expect the effect on employment to materialize especially in these occupations. We

find indeed that the estimated coefficient on selectivity in column 1 is negative, statistically

significant and larger than the corresponding coefficient estimated on the full sample (column

4 in Table 3). Column 2 shows that the negative impact of selectivity is confirmed when

we include occupation-level fixed effects. Next, we allow as before for asymmetric effects by

distinguishing between more or less automatable occupations according to country medians

and interact this dummy with selectivity.32 In Column 3 the inclusion of these interaction

terms reveals that the impact of selectivity is mainly driven by highly automatable occupa-

tions. Column 4 repeats this exercise for occupations that experience a positive change in

selectivity, yielding stronger effects as expected. The inclusion of occupation fixed effects in

columns 5 and 6 does not alter the main results.

3.3.3 Selectivity and Mismatch

To further investigate the empirical validity of our theoretical mechanism linking automation

and offshoring to selectivity, we look at two measures of ‘mismatch’ from the literature:

‘unemployment duration’ and ‘educational mismatch’.

31The Kleinberger-Paap F-statistic is large and largely above the Montiel-Pflueger robust weak instrument
test critical values (Montiel and Pflueger, 2013; Pflueger and Wang, 2015, for Stata implementation).

32In this case the Kleinberger-Paap F statistic falls since we have included a second variable potentially
susceptible to endogeneity problems. Nevertheless the first stage F-statistic, shown for columns (3) to (6),
is always above the threshold proposed by Stock and Yogo (2002). In our context, this threshold for a
maximum bias of 10% is 7.03.
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Unemployment Duration A key implication of our model is that an increase in the

value of ideal matches makes workers and firms search for longer before agreeing to match,

which increases unemployment duration. Accordingly, automation raises unemployment

duration whereas offshoring should reduces it. Then, unless in the data (differently from

the model) all search happens on-the-job, we should be able to observe a positive relation

between automation and unemployment duration and a positive relation between offshoring

and automation.

To test whether this is indeed the case, we compute unemployment duration based on the

occupation and industry of the last job.33 Column 1 in Table 5 reports the results obtained

by regressing unemployment duration on automation and offshoring. As predicted, the

coefficient on automatability is positive and significant. Unemployment duration increases in

sectors with higher initial automatability. Though imprecisely estimated, also the coefficients

on offshorability and its interaction with automatability have the predicted sign.

Educational Mismatch Our model emphasizes horizontal mismatch as this is its key

novelty. Nonetheless, as highlighted in the model’s extension in Appendix D, horizon-

tal mismatch should not be seen as alternative but rather as complementary to vertical

mismatch. This leads us to use educational mismatch to proxy for the extent to which

workers’ skills in given occupations are aligned with those occupations’ task content. We

measure over-education, under-education and educational mismatch (the sum of over- and

under-education) by comparing each worker’s years of education with those of their peers

in a given occupation, sector and country at the time of observation. The worker is over-

educated (under-educated) when their educational level is above (below) the average of

their 10-year cohort by more than 2 standard deviations (see e.g. Hartog, 2000, for a sim-

ilar definition).34 We then obtain the share of over- and under- educated workers in each

occupation×industry×country cell.

According to the logic of our model, as automation makes firms more selective while

offshoring makes them less selective, we should observe a fall in under-education among

matched workers. Results in column 3 of Table 5 confirm this hypothesis: under educa-

tion falls in more automatable occupations and increases in more offshorable occupations.

Consistently with the model the interaction between automation and offshoring is negative.

The effect on educational mismatch (column 2) is, instead, ambiguous due to the fact that

over-education (column 3) reacts in the opposite direction of under-education. This may be

33To improve precision given the small number of observations in any cell, we use occupations defined
by the 2-digit ISCO classification. Due to data availability constraints, we have to exclude France and
Netherlands from this sample.

34Again, to improve precision, we aggregate occupations at the 2-digits ISCO level. Due to poor data
availability for educational variables before 1998, we start our sample from 1998.
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explained by vertical specialization, which biases firms in favor of workers with higher skills

along the lines of the model’s extension in Appendix D.

3.4 Core-Biased Technological Change

The previous section has provided evidence consistent with the existence of what we have

called ‘core-biased technological change’ (CBTC): automation increases match selectivity by

making less-than-ideal skills and tasks less substitutable with the ideal ones defining firms’

and workers’ core competencies. In this section we propose a simple quantification of the

contribution of CBTC to the total effect of automation on employment. The contribution

is computed by dividing the effect of RTI-based selectivity on hours worked (CBTC) by the

total effect of RTI on hours worked.

First, from Equation (26) we obtain the contribution of automation to the change

in selectivity as ∆RTI on SSO = β̂1RTIoi × IHoi . We focus on high-automatability occu-

pations as we have found no significant effect for low-automatability ones. From Equa-

tion (28) we obtain the impact of the change in selectivity on the change in hours worked as

δ̂1∆ln(SSOoi). We then compute the contribution of automation to the change in employ-

ment as ∆RTI-based SSO = δ̂1∆RTI on SSO = δ̂1β̂1RTIoi × IHoi . Next, we estimate the following

equation to extract the direct (local) effect of automation on hours worked:

∆ln(Hoursoi) = ζ1RTIo × IHoi + ζ2RTIo × ILoi + ζ3Offshoro + ξi + ξo + Υoi,

where ξi and ξo are country and occupation fixed effects respectively. The total effect of

automation is given by ∆tot = ζ̂1RTIoi × IHoi with estimated ζ̂1 = −0.443 (p < 0.01).

The estimated contribution of CBTC to the total change in employment due to automa-

tion is then given by:

∆RTI-based SSO

∆tot
=
δ̂1 × β̂1

(
RTIo × IHoi

)
ζ̂1RTI × IHoi

=
δ̂1 × β̂1

ζ̂1

=
0.207× (−0.343)

(−0.445)
= 0.160,

which implies that, for high automatability occupations, the change in employment due to

CBTC corresponds to 16% of the total direct change in employment from 1995 to 2010.

3.5 Aggregate effects

We conclude our empirical analysis by giving an indication of the relevance of the selectivity

channel for the impact of automation on aggregate employment. Estimating this impact is

difficult as it requires accounting for general equilibrium effects that are often ignored in the

literature (Chodorow-Reich, Forthcoming). A way to deal with them is through structural
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approaches such as those in Acemoglu and Restrepo (2018b), Chiacchio, Petropoulos and

Pichler (2018), Autor and Salomons (2018) and Gregory, Salomons and Zierahn (2018).

Structural approaches, however, although conditioned by micro-econometric estimates, rely

heavily on the model structure. Another way to deal with general equilibrium effects is

through reduced form estimates of aggregate effects. These usually estimate treatment effects

at the disaggregated level, then rely on regressions at the aggregate level and their differences

from disaggregated results to gain insight into general equilibrium ‘spillovers’. We follow the

methodology proposed by Berg and Streitz (2019), which allows us to directly estimate the

general equilibrium effects based on a simple aggregation of our econometric estimates at

the occupation-level.

The underlying logic can be explained through a simple example. Consider two countries,

each with two potentially different occupations. Workers are mobile between occupations in

the same country, but not between countries. Suppose first that in one of the two countries

an occupation is hit by an automation shock such that some jobs in that occupation vanish.

As workers are released from the occupation, labor supply increases and wages fall for the

other occupation. This way the shock to the former occupation has spillover effects on

the latter occupation. The strength of the spillover effects depend on the share of treated

occupations, which in this case is 0.5. Now suppose instead that, rather than having half

of the occupations in a country hit by an automation shock, all occupations in that country

(i.e. in half of the countries) are affected. In this case the fraction of treated occupations

is 1 in the affected country and 0 in the other, and thus for both countries spillovers are

immaterial when it comes to estimating the shock’s general equilibrium effects.

To leverage the type of difference exemplified by this example’s two cases, we follow

Berg and Streitz (2019) in introducing an interaction between the variable of interest and

its average over the group that may be affected by spillovers. In particular, we estimate the

following equation at the occupation×country level:

∆ln(Hours)oi = β0 + β1I
H
o + βTRTI−oiI

H
o + βCRTI−oiI

L
o + εoi.

This corresponds effectively to (27) directly estimated on the change in employment, where

as before we adapt our continuous RTI index to the setting of binary treatment. We then

compute the aggregate country-specific effect of automation as:

E
[
∆ln(Hours)i|RTI i

]
= β0 + (β1 + βC)RTIi + (βT − βC)RTIi

2
, (29)

where RTI i is computed averaging RTI−oi across occupations.

The cross-country results for (29) are reported along the vertical axis of Figure 6 with

around a third of countries exhibiting negative aggregate employment effects and two thirds
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exhibiting positive effects. The interpretation of these results is complicated by the fact that

the RTI index captures the probability of an occupation to be automated while it is actual

automation that matters for the computation of aggregate effects. Hence it is helpful to put

the estimated aggregate effects in context by comparing them with the observed changes in

TFP from 1995 to 2010.35 Our model implies that productivity gains due to automation

should be accompanied by changes in selectivity and employment also at the aggregate level

controlling for general equilibrium effects. The signs of these changes depend on parameter

values that affect the balance between the ‘productivity effect’ and the ‘mismatch effect’ of

automation. Figure 6 therefore plots (29) against the change in TFP across countries. This

reveals an overall negative relation between the estimated aggregate employment effects of

automatability and TFP growth, which is consistent with the relevance of the selectivity

channel also at the aggregate level despite the fact that the majority of countries experience

increased employment during the period of observation.

4 Conclusion

There are growing concerns about the negative impacts of automation and offshoring on em-

ployment and wage inequality. As long as both phenomena are to be interpreted as techno-

logical changes, traditional neoclassical arguments imply that those concerns are unfounded.

They also imply that both phenomena have ultimately the same effects on employment and

wage inequality. We have shown, theoretically and empirically, that the effects of tech-

nological change on the labor market can substantially deviate from standard neoclassical

conclusions when search frictions hinder efficient assortative matching between firms with

heterogeneous tasks and workers with heterogeneous skills.

We have modeled automation as an increase in the productivity of any given match

(‘productivity effect’), but also as an increase in the productivity of ideal matches relative to

less-than-ideal ones (‘mismatch effect’). In parallel, we have modeled offshoring as an increase

in the productivity of any given match thanks to domestic workers’ subtask specialization

(‘specialization effect’), but also as a decrease in the subset of subtasks assigned to them

(‘substitution effect’). While the productivity and specialization effects of automation and

offshoring increase the match surplus of domestic firms and workers, their mismatch and

substitution effects work in the opposite direction.

Our key hypothesis is that better matches enjoy a comparative advantage in exploit-

ing automation and a comparative disadvantage in exploiting offshoring. It implies that

35This follows in spirit Autor and Salomons (2018) who consider TFP as an “omnibus measure of tech-
nological change”. Of course TFP is only an imperfect measure for the realized productivity gains due to
automation.
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automation (offshoring) may reduce (raises) employment by lengthening (shortening) unem-

ployment duration due to higher (lower) match selectivity. We find empirical support to this

implication in a dataset covering 92 occupations and 16 sectors in 13 European countries

from 1995 to 2010. This evidence is consistent with the existence of what we have called

‘core-biased technological change’ (CBTC): automation increases match selectivity by mak-

ing less-than-ideal skills and tasks less substitutable with the ideal ones defining firms’ and

workers’ core competencies.
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Figures

Figure 1
Employment and Selectivity as A changes (different levels of Ω)
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Figure 1 plots simulated employment (left panel) and selectivity (right panel) on the y-axis over

a range of automation A on the x-axis for Ω=0.05 (dashed red) and Ω=0.3 (solid black). Values

on the x-axis are displayed on a log-scale with basis 2. Simulations are based on the system of

equations (21) - (22) and parameters as specified in Table C1.

Figure 2
Employment and Selectivity as Ω changes (different levels of A)
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Figure 2 plots simulated employment (left panel) and selectivity (right panel) on the y-axis over a

range of offshoring Ω on the x-axis for A=1 (dashed red) and A=3 (solid black). Simulations are

based on the system of equations (21) - (22) and parameters as specified in Table C1.
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Figure 3
Relative Wages of Best vs. Worst Match
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Figure 3 plots wages of the best possible match (d = 0) relative to the worst possible match (d = d∗)

over a range of automation A on the x-axis for Ω=0.05 (dashed red) and Ω=0.3 (solid black) in

the left panel and over a range of offshoring Ω on the x-axis for A=1 (dashed red) and A=3 (solid

black) in the right panel. In the left panel values on the x-axis are displayed on a log-scale with

basis 2. Simulations are based on the system of equations (21) - (22) with wages computed as in

(23) and parameters as specified in Table C1.

Figure 4
The impact of Routineness and Offshorability on Labour Hours
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Figure 4 plots the change in hours worked from 1995 to 2010 against the occupational rank of

routineness. Data on employment is aggregated at the occupation level. Routineness of the occu-

pation is taken from Acemoglu and Autor (2011) and data on offshorability comes from Blinder

and Krueger (2013). Occupations belong to the low or high offshorability sample if they are below

or above the median offshorability. Occupations with below- (above-) median offshorability are

displayed in grey dots (black dots) with the corresponding linear sample fit plotted as the solid

grey (black) line. The overall sample fit is plotted as a dashed line.
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Figure 5
Country fixed effects and TFP change.
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Figure 5 plots country fixed-effects µi from estimating (25) with corresponding coefficient in Table

2 column 1 against price-adjusted country-level total factor productivity. Total factor productivity

comes from Penn World Tables (Feenstra, Inklaar and Timmer, 2015). The overall sample fit is

plotted as a dashed grey line.

Figure 6
Estimated Aggregate Effects and TFP
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Figure 6 plots estimated aggregate effects of RTI on the change in employment from 1995 to 2010

as defined in (29) against the observed change in Total Factor Productivity. TFP comes from Penn

World Tables (Feenstra, Inklaar and Timmer, 2015) and reported at constant purchasing power

parity (PPP) rates relative to the US in terms of current prices.
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Table 2
Selectivity, Automation and Offshoring

Dep. Var.: ∆ln(SSO)

(1) (2) (3) (4) (5)

RTI 0.0755 0.0312
(0.0522) (0.0552)

RTI × IH 0.207** 0.168* 0.301**
(0.100) (0.0994) (0.150)

RTI × IL -0.0151 0.00885 0.00952
(0.0792) (0.0781) (0.0972)

Offshor. -0.0765* -0.0923** -0.123** -0.0691 -0.0943**
(0.0414) (0.0432) (0.0525) (0.0427) (0.0440)

RTI ×Offshor. 0.0667
(0.0470)

Share95 0.0727
(2.117)

Share95 ×RTI 4.874***
(1.596)

SSO95 -1.146*** -1.231*** -1.328*** -1.156*** -1.268***
(0.184) (0.189) (0.203) (0.183) (0.195)

Observations 1,063 1,063 1,063 1,063 1,063
R-squared 0.139 0.143 0.149 0.146 0.115
Fixed effects Country Country Country Country Country
Spillover Controls Yes

The table reports coefficients of estimating (25) in column 1 and 4 and (26) in column 2,3 and 5.

The dependent variable is the change of the Sectoral Selectivity of an Occupation (SSO) calculated

as the Herfindahl index of occupational employment shares across industries in a country. RTI is

routine-task intensity as in Acemoglu and Autor (2011). IH is a dummy variable that takes value

one if the occupation’s RTI is above the median RTI across all occupations in a country and zero

otherwise; IL is defined as 1 − IH . Offshor. measures the offshorability of an occupation as in

Blinder and Krueger (2013). Share95 is the employment share of a given occupation and SSO95 is

the sectoral selectivity, both measured in 1995. Column 5 includes the interaction of IH with its

respective average at the country-level, excluding the occupation considered, to control for spillovers

as suggested by Berg and Streitz (2019). Data is aggregated at the country × occupation level.

Robust standard errors clustered at the occupation level in parentheses.*** p<0.01, ** p<0.05, *

p<0.1.
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Table 3
Selectivity and Employment I

Dep. Var.: ∆ln(Hours)

(1) (2) (3) (4) (5)

∆ln(SSO) -0.160*** -0.161* -0.169*** -0.267*** -0.446***
(0.0417) (0.0852) (0.0349) (0.0658) (0.0809)

∆ln(Lb) 0.266*** 0.266*** 0.297*** 0.302*** 0.0697
(0.0640) (0.0647) (0.0629) (0.0650) (0.0883)

RTI -0.226*** -0.225***
(0.0425) (0.0427)

Offshor. 0.0719 0.0668
(0.0562) (0.0578)

RTI ×Offshor. -0.178*** -0.181***
(0.0447) (0.0453)

First Stage 1.780*** 1.789*** 1.925***
(0.127) (0.139) (0.204)

FE Country Country Country Country Country × Occup.

Instrument No Bartik No Bartik Bartik

Observations 1,073 1,073 1,062 1,062 1,073
K-P F-Test 1st 196.6 165.1 88.71

The table reports coefficients of estimating (28). The dependent variable is the log change in hours

worked between 1995 and 2010. ∆ln(SSO) is the log change of the Sectoral Selectivity of an

Occupation calculated as the Herfindahl index of occupational employment shares across industries

in a country. ∆ln(Lb) is the predicted employment growth rate calculated from the growth rate in all

other countries. In Column 2,4 and 5 we instrument ∆ln(SSO) using the double-Bartik instrument

constructed from Bartik-predicted employment shares. Corresponding first-stage estimates on the

included instruments are displayed below the second-stage coefficients. RTI is routine-task intensity

as in Acemoglu and Autor (2011) and Offshor. measures the offshorability of an occupation as

in Blinder and Krueger (2013). Data is aggregated at the country × occupation level. Standard

errors in parentheses are clustered at the occupation level in parentheses.*** p<0.01, ** p<0.05, *

p<0.1.
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Table 4
Selectivity and Employment II

Dep. Var.: ∆ln(Hours)

(1) (2) (3) (4) (5) (6)

∆ln(SSO) -0.339*** -0.694***
(0.101) (0.151)

∆ln(SSO)× IH -0.343*** -0.507*** -0.357*** -0.714**
(0.119) (0.159) (0.126) (0.288)

∆ln(SSO)× IL 0.105 0.0594 0.244** 0.241**
(0.107) (0.112) (0.0973) (0.109)

∆ln(Lb) 0.223*** -0.145 0.326*** 0.248*** 0.113 -0.0954
(0.0845) (0.109) (0.0700) (0.0764) (0.0846) (0.116)

RTI -0.194***
(0.0511)

Offshor. 0.0445 0.00564 0.0340
(0.0644) (0.0521) (0.0606)

RTI ×Offshor. -0.182*** -0.205*** -0.147***
(0.0507) (0.0394) (0.0485)

FE Occup. Occup. Occup.
Instrument Bartik Bartik Bartik Bartik Bartik Bartik
∆ln(SSO) > 0 Yes Yes Yes Yes

Observations 558 563 1,062 558 1,073 563
K-P F-Test 1st 90.11 63.88 24.31 17.93 9.593 11

The table reports coefficients of estimating (28). The dependent variable is the change in hours

worked between 1995 and 2010. ∆ln(SSO) is the log change of the Sectoral Selectivity of an

Occupation calculated as the Herfindahl index of occupational employment shares across industries

in a country. ∆ln(Lb) is the predicted employment growth rate calculated from the growth rate

in all other countries. In Column 2,4 and 5 we instrument ∆ln(SSO) using the double-Bartik

instrument constructed from predicted employment shares. Corresponding first-stage estimates

on the included instruments are displayed below second-stage coefficients. RTI is routine-task

intensity as in Acemoglu and Autor (2011). IH is a dummy variable that takes value one if the

occupation’s RTI is above the median RTI across all occupations in a country and zero otherwise;

IL is defined as 1 − IH . Offshor. measures the offshorability of an occupation as in Blinder

and Krueger (2013). Data is aggregated at the country × occupation level. Standard errors in

parentheses are clustered at the occupation level in parentheses.*** p<0.01, ** p<0.05, * p<0.1.
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Table 5
Impact of Technology on Educational Mismatch and Unemployment Duration

∆Unemployment
Duration

∆Mismatch
∆Under

Education
∆Over

Education

(1) (2) (3) (4)

RTI 0.0409* -0.0347 -0.00340*** 0.00305***
(0.0243) (0.0984) (0.000742) (0.000778)

Offshor. -0.0183 0.0532 0.00220** -0.00167**
(0.0319) (0.114) (0.000858) (0.000795)

RTI × Offshor. 0.0454 -0.290*** -0.00177** -0.00113
(0.0328) (0.111) (0.000814) (0.000805)

Observations 905 1,915 1,915 1,915
R-squared 0.183 0.236 0.143 0.235
Fixed effects Country-Industry

∆Over- (Under-) Education is defined as the change from 1995 to 2010 in the proportion of workers

having more (less) years of education exceeding the 10-year occupation×industry×country average

by more than 2 standard deviations. ∆Mismatch is the change from 1995 to 2010 in the proportion

of workers either under- or over-educated. Occupations are aggregated to the 2-digit ISCO88 level.

Unemployment duration is computed based on the cell of the worker’s last job. Regressions are

weighted by initial employment shares and all right-hand side variables are standardized so their

mean equals zero and their standard deviation equals one. Standards errors in parentheses are

clustered at the occupation × country level. *** p<0.01, ** p<0.05, * p<0.1.
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A Data Description

We use the annual files of the European Labour Force Survey (EULFS) made available

by Eurostat. This survey combines labour force surveys conducted at the national level in

European countries. It has the advantage to provide harmonized information on basic labour

markets variables. Our final database corresponds to country×industry×occupation×year
cells. The information on the sector is based on the broad NACE sectors (21 sectors in

the NACE Rev.2 classification) and the information on the occupation is based on the 3-

digits ISCO-88 classification. The EULFS is used to derive the number of employed and

unemployed workers in each cell by collapsing individuals observations using the provided

weighting coefficients. We also use the EULFS to compute the unemployment duration in

each cell.

Construction of the variables We keep the employed people as defined by the ILO

criteria and derived by Eurostat. It is less common to compute unemployment at the sector×
occupation level since workers can be mobile across sectors and occupations. We define

unemployment in a given sector and a given occupation as the number of unemployed people

who had this precise occupation in this precise sector. This measure corresponds to the true

and unobservable unemployment rate at the sector×occupation level if workers do not move

across sectors and occupations.

Dataset selection We restrict our dataset to the 13 following countries: Austria, Belgium,

Germany, Denmark, Spain, France, United Kingdom, Greece, Ireland, Italy, Luxembourg,

Netherlands and Portugal. This group of countries corresponds to all countries that provided

data at least from 1995. It is important to note that France and the Netherlands do not

provide enough information to compute the unemployment rate at the cell level. Following

Goos, Manning and Salomons (2014), we also drop the following industries: Agriculture,

Forestry, Fishing (A); Mining and Quarrying (B), Public Administration and Defence and

Compulsory Social security (O); Education (P) and Extra-territorial organizations and bod-

ies (U). These sectors corresponds to public sectors and agricultural sectors. They account

for 26% of all jobs in our sample. The following occupations, closely associated to the sec-

tors deleted are also dropped from the sample: Legislators and senior officials (ISCO-88:

11); teaching professionals (ISCO-88: 23); teaching associate professionals (ISCO-88: 33);

market-oriented skilled agricultural and fishery workers (ISCO-88: 61); agricultural, fishery

and related labourers (ISCO-88: 92).36 Finally, our data contains information, virtually

complete, at the cell level for 92 occupations, in 16 sectors.

36These occupations respectively account for 0.12%, 0.27%, 0.53%, 0.39% and 0.07% observations in the
sectors kept.
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Table A1 sums up the coverage of our database relative to official statistics. According to

official Eurostat statistics, we cover around 70% of the employment in each country, except

for Luxembourg for which we only cover 58.5% of the employment. This is due to the fact

that Luxembourg is a small country with a large institutional sector driven by the presence of

some European institutions. Our coverage of unemployment is a bit less precise, going from

36.2% of official unemployment numbers in Italy to 69.6% in Denmark. This is principally

due to the lack of precise reporting of the last job for unemployed people and to dropped

industries. Especially the coverage is very low for Portugal in 1995 (around 10%).

Table A1
Database Coverage (in % of official Eurostat figures)

Country # of employees # of unem-
ployed workers

Austria 70,9% 56,1%
Belgium 70,5% 51,5%
Germany 75,4% 62,3%
Denmark 73,3% 69,6%

Spain 70,5% 61,1%
France 69,1% -

United Kingdom 74,2% 59,8%
Greece 61,1% 42,3%
Ireland 66,5% 51,1%
Italy 71,8% 36,2%

Luxembourg 58,5% 44,0%
Netherlands 68,0% -

Portugal 69,8% 38,6%

The time frame of our analysis corresponds to 1995-2010 in order to include the maximum

number of countries. Our analysis stops in 2010 because after this date, a change in the

occupation classification (ISCO-88 to ISCO-08) prevents us from accurately representing

changes in the time series.

A.1 Offshorability

Three different measures of offshorability are proposed in the literature: by Blinder (2009),

by Blinder and Krueger (2013, hereafter BK) and by Acemoglu and Autor (2011, hereafter

AA). In the first two cases, the authors propose a qualitative scale of offshorability, rank-

ing occupations from ”Highly Non Offshorable” (1) to ”Highly Offshorable” (4) (Blinder,

2009). Blinder then proposes a qualitative ranking of occupations according to their de-

44



Table A2
Correlation table between offshorability measures

AA (2011) Blinder (2009) BK (2013)

Acemoglu-Autor (2011) 1 –
Blinder (2009) 0.34 1 –
Blinder-Krueger (2013) 0.25 0.94 1

gree of offshorability. BK only provide 4 categories. AA propose a quantitative index of

offshorability based on ONET. 37 Their measure aggregates several ONET indicators: Face

to face discussions, Assisting and Caring for Others, Performing for or Working Directly

with the Public, Inspecting Equipment, Structures, or Material, Handling and Moving Ob-

jects, 0.5*Repairing and Maintaining Mechanical Equipment, 0.5*Repairing and Maintaining

Electronic Equipment.

While Blinder and BK measures are based on questionnaires and qualitative observations

about offshorability, the AA measure is not. The two types of measures are likely to diverge

for some occupations. In Table A2, we compute the correlation coefficient between these

measures. The correlation between Blinder and BK indexes is large while for both indices

the correlation with the AA measure is quite low.

For instance, Models, Salespersons and Demonstrators (code 52) is an occupation clas-

sified among the five most offshorable occupations according to the AA index while it is

ranked as Highly Non-Offshorable by Blinder (2009). Teaching professionals (code 23) are

also in the same situation. On the contrary, Machine operators and assemblers (code 82) are

ranked as offshorable in Blinder (2009) while being ranked as a low offshorability activity by

the AA index.

In their data appendix Goos, Manning and Salomons (2014) compare different offshora-

bility index with actual offshorability measures. Blinder/BK types of measures seem more

reliable. We consider these two measures as our preferred ones, using the BK index in our

baseline regressions.

A.2 Automation

We proxy the probability of future automation of an occupation using the RTI measure

constructed by Autor and Dorn (2009). This measure correlates with the one provided

by Frey and Osbourne (2013). Using the files by Acemoglu and Autor (2011) and the

definition of the RTI by Lewandowski et al. (2017) we compute the RTI index based on

37This index is inspired by Firpo, Fortin and Lemieux (2011)
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Figure A1
Correlation between automation probability and routineness
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DOT data.38 The measure of the RTI is standardized in order to have a mean of zero and

a standard error of one. We use a crosswalk to go from SOC 2000 classification to 4-digits

ISCO88 classification and then aggregate it to the three-digits ISCO88 classification. At

this level the correlation between the RTI (‘routineness’) and measure by Frey and Osborne

(‘probability of automation’) is 0.77 (see figure A1). However, the two variables diverge for

some occupations.

To assess the evolution of routine jobs across countries and industries, Dao et al. (2017)

also use an index of ‘routineness’ fixed for the nine 1-digit ISCO-88 occupations. They then

assume that the partition of jobs within 1-digit ISCO occupations is fixed among countries,

industries and time. We relax this assumption by only assuming that the RTI of a 3-digits

ISCO occupation is fixed. This way we are able to observe the evolution in the automatability

by country, industry and occupation.

A.3 Link between automation probability and offshorability

In this subsection we document that automatability and offshorability are not trivially cor-

related. First, conceptually the two concepts are different. Offshorability is defined as “the

ability to perform one’s work duties (for the same employer and customers) in a foreign

38Lewandowski et al. (2017) slightly modify the RTI definition compared to Autor and Dorn (2009) in order
to adapt it to the use of ONET data instead of DOT data: RTI = ln(RoutineCognitive+RoutineManual)−
ln(Nonroutineanalytical + nonroutineinterpersonnal).
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Figure A2
Automation probability and Offshorability (BK, 09)
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country but still supply the good or service to the home market” (Blinder and Krueger,

2009) while the automatability is more strictly linked to the routineness of a task, its pos-

sibility to be solved algorithmically, etc. Figure A2 documents the correlation between the

two variables. There is a global positive correlation but the figure also highlights the diver-

sity of RTI/offshorability combinations. Especially some occupations are both offshorable

and routine-intensive (73: Precision, handicraft, printing and related trades workers; 81:

Stationary-plant and related operators; 82: machine operators and assemblers), other are not

routine intensive but offshorable (21: Physical, mathematical and engineering science profes-

sional) while some are protected from offshorability but at risk of automation (83: Drivers

and mobile-plant operators; 91: sales and services elementary occupations; 93: labourers

in mining, construction, manufacturing and transport). Finally, some occupations are both

protected from automation and from offshorability (12: corporate managers; 13: general

managers; 22: life science and health professionals). Note, however, that the scope of occu-

pations that are not routine intensive but offshorable is very limited.

A.4 Merging procedure

Our matching strategy could be decomposed as follows: i) We only keep the observations

before 2011, ii) we compute the RTI for each 4-digit ISCO-88 using official crosswalks, iii)

we average the probabilities of automation when many SOC occupations are matched into
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a single ISCO occupation, iv) we take the unweighted average probability of automation to

aggregate our measure at the 3-digits ISCO-88 levels, v) we match each occupation with its

RTI, vi) we proceed in the same way to assign RTI and offshorability indexes to occupation

reported at the 2-digits ISCO level. Finally, when necessary, we obtain the measure of routine

task intensity and offshorability at the 2-digits ISCO level by collapsing (with appropriate

weights) all observations at the 3-digits level in their corresponding 2-digits ISCO occupation.

B Model Solution

This Appendix provides a detailed derivation of (21), (22) and (23) in the main text. The

steady state equilibrium is characterized by the following equations:

• Surplus function:

s(d) =
Φ

2
A

1
1−β (1− Ω) [F (1 + Ω)− γAd] . (30)

• Matching function:

M(U, V ) = ϑU ξV 1−ξ. (31)

• Resource constraint:

E + U = L = 1. (32)

• Flow condition:

2d∗M(U, V ) = δE. (33)

• Meeting probabilities:

qv = M(U, V )/V = ϑ (U/V )ξ . (34)

qu = M(U, V )/U = ϑ (V/U)1−ξ . (35)

• Optimality conditions:

ρvE(d) = w(d)− δ (vE(d)− vU) , (36)

ρvP (d) = (s(d)− w(d)− c)− δ (vP (d)− vv) , (37)

ρvU = 2qu

∫ d∗

0

(vE(z)− vU) dz, (38)

ρvV = −c+ 2qv

∫ d∗

0

(vP (z)− vV ) dz. (39)
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• Bargaining outcome:

(1− α) (vE(d)− vU) = α (vP (d)− vV ) . (40)

• Free entry condition:

vV = 0. (41)

• Zero cutoff value condition:

vP (d∗) = 0. (42)

From this system of 13 equations in 13 unknowns (E, U , V , M , qv, qu, w, vE, vp, vU , vV ,

s, d∗), (21) and (22) can be obtained as follows. Subtract (38) from (36) to obtain:

∫ d∗

0

(vE(z)− vu) dz =

∫ d∗
0
w(z)dz

ρ+ δ + 2qu(θ)
. (43)

Subtract (39) from (37) to obtain:

∫ d∗

0

(vP (z)− vV ) dz =

∫ d∗
0

(s(z)− w(z)) dz

ρ+ δ + 2qv(θ)
. (44)

Substitute into the integral of (40)

(1− α)

∫ d∗

0

(vE(z)− vU) dz = α

∫ d∗

0

(vP (z)− vV ) dz (45)

to obtain:

w(z) =
α (δ + ρ+ 2qu(θ)) s(z)

δ + ρ+ (1− α) 2qv(θ) + α2qu(θ)
. (46)

Substitute (40) into (39) to obtain:

ρvV == −c+ 2qv(θ)
1− α
α

∫ d∗

0

(vE(z)− vU) dz. (47)

Substitute (46) into (43) to obtain:

∫ d∗

0

(vE(z)− vu) dz ==
α
∫ d∗

0
s(z)dz

δ + ρ+ (1− α) 2qv (θ) + α2qu (θ)
. (48)

Hence (47) and (48) imply:

ρvV = −c+
(1− α) 2qv(θ)

∫ d∗
0
s(z)dz

δ + ρ+ (1− α) 2qv (θ) + α2qu (θ)
(49)
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Using (33) and (32) in (35) gives:

qu =
M(U, V )

U
=

δE

2d∗ (L− E)
. (50)

Using (33) and (32) gives

V =

(
δE

2d∗ϑU ξ

) 1
1−ξ

,

which, once substituted into (34), gives:

qv = ϑ
1

1−ξ (δE)−
ξ

1−ξ (L− E)
ξ

1−ξ (2d∗)
ξ

1−ξ , (51)

or equivalently

qv = ϑ
1

1−ξ (qu)
− ξ

1−ξ . (52)

Substituting (52) into (46) gives (23) in the main text:

w(d) =
α (δ + ρ+ 2qu)

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2αqu
s(d).

Now substitute (52) into (49) to obtain:

ρvV = −c+
2 (1− α)ϑ

1
1−ξ (qu)

− ξ
1−ξ
∫ d∗

0
s(z)dz

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2αqu
. (53)

Hence, by (18), (53) becomes:

2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ
∫ d∗

0
s(z)dz

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2αqu
= c, (54)

which is (21) in the main text where (30) implies:∫ d∗

0

s(z)dz =
Φ

4
A

1
1−β (1− Ω)d∗ [2F (1 + Ω)− γAd∗] .

Finally, substitute (18) and (42) into (37) to obtain

w(d∗) = s(d∗)− c,
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which, together with (B) evaluated at d∗

w(d∗) =
α (δ + ρ+ 2qu) s(d

∗)

δ + ρ+ 2 (1− α) qv + 2αqu
,

gives:

(1− α)
δ + ρ+ 2qv

δ + ρ+ 2 (1− α) qv + 2αqu
s(d∗) = c.

Substituting (52) gives:

(1− α)
δ + ρ+ 2ϑ

1
1−ξ (qu)

− ξ
1−ξ

δ + ρ+ 2 (1− α)ϑ
1

1−ξ (qu)
− ξ

1−ξ + 2αqu
s(d∗) = c, (55)

which is (22) in the main text where (30) and (50) imply

s(d∗) =
Φ

2
A

1
1−β (1− Ω) [F (1 + Ω)− γAd∗]

and

qu =
δE

2d∗ (1− E)
.

given L = 1.

C Parameter Values

Table C1 reports the parameter values used in Section 2.5

Table C1
Parameters

Parameter Description Value

α Bargaining Weight 0.5
ρ Patience 0.04
δ Per-period Seperation Shock 0.05
ξ Matching Function Elasticity 0.5
ϑ Matching Function Constant 0.4
β Capital share in CB 0.33
F Max. Productivity 20
γ Mismatch Cost Parameter 25
c Vacancy Cost 1

51



D Adding Vertical Specialization

Throughout the main analysis we have assumed full symmetry within skills and within

tasks. This assumption has allowed us to highlight the key mismatch mechanism at work

in our model through the quantitative discussion of a closed-form equilibrium solution. In

reality, however, such symmetry does not necessarily hold as skills and tasks are not only

horizontally but also vertically differentiated. In other words, some skills are higher than

others and some tasks are more productive than others. In this section we extend our model

to check the robustness of our mechanism to asymmetry. While the extended model will not

be amenable to closed-form solution, the numerical investigation of its equilibrium properties

shows that our mechanism is still at work and may be even reinforced in the presence of

vertical differentiation.

To facilitate comparison with the original model, the simplest way to introduce vertical

differentiation is to keep the distributions of workers and thus firms uniform along the circle

while changing the production possibilities. In particular, we make two new assumptions.

First, larger x and larger y are associated with higher workers’ skills and more productive

firms’ tasks respectively. Second, the mismatch between a firm with task y and a worker

with lower-than-ideal skill x < y is more costly in terms of foregone productivity than an

equally distant mismatch with larger-than-ideal skill x > y by a factor τ ≥ 1 (with τ = 1

corresponding to the original symmetric case). In other words, for a given task and a given

skill-task distance, employing an underskilled worker is more penalizing in terms of lost

match surplus than hiring an overskilled one. This way the extended model also embeds a

‘skill premium’ in addition to the mismatch cost.39

The introduction of this asymmetry implies that the probability of forming a match now

depends not only on the skill-task distance but also on the distribution of skills x and tasks

y in the pools of unemployed workers and vacant firms respectively. Accordingly, the value

vu(x) of being unemployed for a worker with skill x now satisfies:

ρvu(x) = qu(θ)

∫
ỹ∈Φ(y)

dv(ỹ) (ve(x, ỹ)− vu(x)) dỹ. (56)

39Changing the production possibilities as we do and changing the distribution of either side of the labor
market are anyway equivalent. This is due to the fact that one can think of workers’ skills and firms’
tasks as ranks in their respective productivity distributions. Since workers’ and firms’ types as well as the
production function are unobserved, it is not possible to separately identify each of them. See Hagedorn,
Law and Manovskii (2017) and Kantenga and Law (2016) for a discussion of this point. Specifically, if
the original distributions for skills and tasks are H(x) and G(y) respectively and the original production
function is f̃(x̃, ỹ), then we are simply performing the following transformation of the production function:
f(x, y) = f(F−1(x), G−1(y). The simplest example is in the 1-dimensional case, where x ∼ [0, 1] with
f(x) = 3x and x ∼ [0, 3] with f(x) = x are observationally identical.
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Analogously, the value of an unfilled vacancy vv(y) for a firm with task y is given by:

ρvv(y) = −c+ qv(θ)

∫
x̃∈Λ(x)

du(x̃) (vp(x̃, y)− vv(y)) dx̃. (57)

Figures D1 and D2 report the equilibrium outcomes of the extended model for different

degrees of asymmetry τ while holding the state of technology constant at A = 2.5. These

outcomes are obtained numerically through value function iteration on a grid of workers’

skills x and firms’ tasks y.40 We then iterate over the surplus and matching density until

they converge.

The three panels of Figure D1 depict the matching densities for different levels of τ =

(0.9, 1, 1.1) while fixing A = 3 and τ = 0.15. Firms’ tasks y are displayed on the horizontal

axis while workers’ skills x are displayed on the vertical axis. For all tasks and skills pairs,

the panels show the simulated steady-state probabilities of being observed in a match. Blue

areas are outside the matching sets of firms and workers so that the matching density of the

corresponding pairs is zero. Color coding for the other areas goes from deep red to bright

yellow in increasing order of matching density.

To interpret these color patterns recall that both tasks and skills are arranged along a

circle [0, 1]. For τ = 1 corresponds to the original model, in which all addresses on the

circle are symmetric and their ordering from noon is inconsequential. The circle is turned

into segments along the panel’s axes and we can see that each task y on the horizontal axis

has a symmetric matching interval centered around the ideal skill x = y along the vertical

axis. Vice versa, each skill x on the vertical axis has a symmetric matching interval centered

around the ideal task y = x along the horizontal axis. Moreover, all feasible matches have

equal density as shown by the uniformly red areas.

The other two panels correspond to scenarios in which the mismatch cost is asymmetric.

For τ = 1.1 mismatch at a given distance is more costly relative to the case of τ = 1 for

underskilled workers (those with x < y), which is our case of interest. For comparison, in

the reverse case with τ = 0.9 mismatch at given distance is more costly relative to the case

of τ = 1 for overskilled workers (those with x > y). The density patterns in these two panels

are perturbed by the fact that our distance metric d(x, y) = min [x− y + 1, y − x] implies

that very productive tasks at address y just below 1 are very close along the circle to very

low skills with address x just above 0, which creates a strong incentive to match despite

40Our numerical solution follows Hagedorn, Law and Manovskii (2017), who accommodate non-uniform
distributions. They assume that the cost of posting vacancies adjusts so that the mass of vacancies equals
the mass of unemployed workers. Differently from them we solve for the number of vacancies using equation:

ρVv = −c+
(1− α)2qv(θ)

∫
y∈Φ(y)

f(z)dz

δ + ρ+ (1− α)2qb(θ) + α2qu(θ)
.
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Figure D1
Matching Set and Matching Density
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Figure D1 plots the matching densities for heterogeneous worker and firm types on the y and x-

axis respectively for different degrees of vertical specialization τ . Matching density increases from

deep red to bright yellow. For τ = 1 vertical specialization is switched off and matching sets are

independent of worker or firm types. For τ = 1.1 (τ = 0.9) overskilled (underskilled) matching is

less costly and matching sets shrink for underskilled (overskilled) matches.

Figure D2
Employment and Selectivity with Vertical Specialization
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Figure D2 plots the employment levels and selectivity for different degrees of vertical specialization

τ fixing A = 3 and Ω = 0.15. As the vertical specialization increases, employment levels fall (left)

as firms and workers become more selective. It confirms that the mismatch effect can dominate

the productivity effect (if the state of technology is good enough) even in presence of vertical

specialization. In the asymmetric case (higher τ) the negative impact on employment is even

stronger.

high matching cost per unit distance. Hence, to minimize the resulting distortions in the

equilibrium density patterns, it is useful to focus on tasks and skills that are matched on the

same round of the circle. This are the ones inside the inner dashed rectangles.

Comparing the panels we see that going from τ = 1 to τ = 1.1, the lower blue band

becomes thicker whereas the upper blue band is unchanged. This means that the matching
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set shrinks from below as the most underskilled matches are not feasible anymore. In addition

to this adjustment at the extensive margin, we also observe an adjustment at the intensive

margin due to the relative change in density for pairs that are still matched in favor of those

between high skills and high productivity tasks (those in brighter yellow). Analogously, we

observe the opposite evolution going from τ = 1 to τ = 0.9 as in this case underskilled

matching becomes less costly.

Figure D2 shows how the degree of vertical specialization τ on the horizontal axis affects

employment and selectivity on the vertical axes. Throughout we fix the A = 3 and Ω = 0.15.

The figure shows that, when the state of technology is good enough, increasing vertical spe-

cialization (larger τ) amplifies the dominance of the mismatch effect cover the productivity

effect of technological change. In the asymmetric case of interest (τ > 1), the negative im-

pact on employment is even stronger relative to the case of no vertical specialization (τ > 1)

discussed in the main text.

What we refer to as the additional vertical specialization channel is nothing but a general

catch word encompassing all types of mechanisms like skill-biased as well as routine-biased

technological change that imply some type of skewness in the distribution of workers’ produc-

tivity. While work on skill-biased TC like Griliches (1969); Krusell et al. (2000) or Acemoglu

and Zilibotti (2001) stress skill-complementarities in the context of wage inequality, our

focus lies on explaining an observed fall in employment. Related Acemoglu and Restrepo

(2018b) argue that under routine-biased technological change for certain degrees of substi-

tution between capital-labor a negative effect on employment can arise, while in our setting

with horizontal mismatch in the background the negative employment effect under vertical

specialization arises naturally as long as the mismatch effect dominates the productivity

effect.

Overall, the economic mechanism highlighted in the original symmetric model is con-

firmed, and the associated results are even amplified for employment in the extended asym-

metric model as an additional vertical specialization effect reinforces the original horizontal

specialization one. This is the way SBTC and CBTC interact in our framework.
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