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ABSTRACT 

The increasing demand for energy and natural resources, along with global competitiveness 

and a shift towards mass customisation, represent important factors that have driven the 

fourth industrial revolution (Industry 4.0). Computer Numerical Control (CNC) machining 

processes represent one of the most deployed manufacturing processes for parts production 

worldwide and are well known for its resources and energy-intensive activities. Recently, 

companies are urgently seeking intelligent approaches to enhance the efficiency and 

sustainability of machining, to meet the global needs of more sustainability, enhanced 

competitiveness and, this way, cope with environmental, economic and political factors. 

In response to this scenario, this thesis presents two novel approaches of process planning 

optimisation and real-time supervisory control towards more intelligent, sustainable and 

efficient manufacturing. The process planning optimisation approach can achieve efficient and 

sustainable machining by addressing challenging trade-offs of the impacts of machining 

process parameters and several operational efficiency performance indicators, i.e., energy 

efficiency, productivity and cutting tool life. To support the trade-offs, an empirical analysis of 

the cutting tool wear phenomena and cutting tool life, and the influence of machining process 

parameters on several tool effectiveness indicators (i.e., total cutting time, total cutting length 

and total volume of material removed) has been carried out. This analysis further supported 

the investigation of predicting the cutting tool life using power consumption models. Such 

investigation supported the optimum selection of machining process parameters for the 

roughing stage. The real-time supervisory control can tackle quality assurance in CNC 

machining. This system provides in-process support to manual operations of engineers to 

ensure that the machined parts will meet the challenging precise requirements of surface 

quality. 

To conclude, this thesis contributes towards the development and implementation of more 

intelligent approaches focusing on both pre and in-process applications to improve the 

efficiency and sustainability of manufacturing processes. The results from the validation 

showed that the proposed optimisation approaches effectively supported improved decision-

making on input parameters’ selection to achieve highly-efficient processes and meet the 

manufacturing requirements. 
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Chapter 1: INTRODUCTION 

1.1 INTRODUCTION 

According to (Benardos and Vosniakos 2003), there are two main practical problems that 

engineers face in manufacturing. The first is to determine the values of the process 

parameters that will yield the desired product quality (meet the technical specifications or 

manufacturing requirements), and the second is to maximise manufacturing efficiency and 

sustainability (such as productivity, energy efficiency, and quality) using the available 

resources. 

In the past years, maximising manufacturing efficiency has increasingly become vital in the 

manufacturing sector not only to maintain business competitiveness but also to meet 

global requirements such as sustainable development (Jovane et al. 2008). These authors 

have introduced  sustainable development as a global strategic vision to meet the 

economic, social, environmental, and technological challenges currently faced by society 

and the industrial sector. Moreover, a sustainable society must live within its means and 

use energy and materials in such a way that will not compromise the living standards and 

health of future generations. Also,  (Smith and Ball 2012) stated that a sustainable society 
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could not be realised without the development of more efficient approaches and 

technologies, which must, in part, be provided by the manufacturing sector.  

Government leaders are increasingly aware of the urgent need to make better use of the 

world’s resources (Geller et al. 2006). A series of policies, commitments, and guidelines on 

reducing lifecycle energy costs and the associated carbon emissions have been launched, 

which have encouraged and supported efficiency improvements by industrial firms(Park 

et al. 2009). For instance, the Paris Protocol (Rayner and Jordan 2016) signed by many 

countries such as UK, France, Japan, Germany, and China in December 2015 has established 

key global environmental targets, which highly depend on the performance of daily 

activities to be achieved. That is, to meet those goals, more efficient and sustainable 

manufacturing processes must be achieved to minimise the impacts on major global 

problems such as climate change (Jovane et al. 2008). 

Moreover, the manufacturing sector is currently in the spotlight due to its high energy 

demand. In 2016, the USA Energy Information Administration (Outlook 2016) reported 

that the industrial sector used more energy than any other sector (approximately 54% of 

the world’s total delivered energy). Furthermore, 66% of such demand was used by 

manufacturing industries (e.g., food, pulp, and paper, iron and steel, etc.)(Conti et al. 2016). 

Also, in this International Energy Outlook 2016 report, an increase in the worldwide 

industrial sector energy consumption by an average of 1.2%/year until 2040 is expected. 

Hence, a reduction in the energy demanded by manufacturing activities is of prime 

importance. 

Since the third industrial revolution, beginning in the 1970s, manufacturing systems have 

been revolutionised by computer numerical control (CNC) machines, which became 

predominant in the industrial sector, mainly automotive and aerospace (CNC cookbook, 
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2015). CNC machining has enabled higher automation, productivity and capabilities to 

mass production with improved quality of the parts machined. According to 

(Chandrasekaran et al. 2010) machining is one of the four main manufacturing activities, 

the other three being forming, casting and joining. Furthermore, CNC machines, according 

to (Liu, Wang, and Liu 2013) are the principal energy-consuming devices in production 

systems. For this reason, CNC machines and machining processes have been the focus of 

research communities all over the world. There has been a substantial increase in research 

related to higher efficiency and energy consumption of CNC machining to make 

manufacturing activities more sustainable. In addition to, the concept of resources 

productivity has recently emerged as a sustainable engineering approach to promote the 

best use of resources to minimise production costs but, at the same time, increase 

sustainability (Racounter, 2019). 

In respect to CNC machining processes, there are critical efficiency operational criteria 

which must be considered in order to achieve the worldwide target of resources 

productivity (and sustainability) in manufacturing. Some of the key efficiency operational 

criteria in CNC machining are energy-efficiency, productivity, cutting tool life, and surface 

roughness. In the literature, improved process planning has been identified as a critical 

enabler to higher efficiency and sustainable machining ((Newman et al. 2012)(Peng and 

Xu 2014)(Zhou et al. 2016)(Sealy et al. 2016) and (Balogun and Mativenga 2013)). During 

process planning, the operation sequences, machine tools, cutting tools, and machining 

process parameters are selected, which will significantly affect the output performance of 

machining. 

Traditionally, engineers and machinists have a more direct and more urgent duty to ensure 

that the systems they work are as resource-efficient as possible. However, as the challenge 
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requires further understanding of the complex relationships between process parameters 

(such as spindle speed, feed rate, width of cut and depth of cut) and the crucial several 

efficiency operational criteria, such relationships overwhelm the capabilities of engineers 

to effectively (or do-right-first-time) select the best process parameters during decision-

making in manufacturing planning. As a result, selecting the machining process parameters 

that will promote the best machining performance represents a significant challenge in 

CNC machining process planning, even for highly experienced machinists (Avram and 

Xirouchakis 2011a)(Balogun and Mativenga 2013, Avram and Xirouchakis 2011b). 

As manufacturing companies have been under high pressure by economic, environmental, 

political as well as business competitiveness aspects, Industry and Academia are urgently 

seeking novel approaches to enhance performance and sustainability of machining. 

Consequently, novel solutions involving optimisation approaches for CNC machining 

processes are imperative and urgently required. 

Nevertheless, addressing several efficiency criteria at the same time to promote optimal 

and sustainable process planning and machining control is a primary challenge to achieve 

resources productivity due to the conflicting responses between key process parameters 

(e.g., spindle speed, feed rate and cutting depth) and the critical efficiency operational 

criteria (Yan and Li 2013)(Sushrut S. Pavanaskar 2014)(Wang et al. 2015)(Shin, Woo, and 

Rachuri 2017)(Giret, Trentesaux, and Prabhu 2015)(Camposeco-Negrete, de Dios 

Calderon Najera, and Miranda-Valenzuela 2016)(Ulsoy and Koren 1993). 

Since CNC machining processes are complex in terms of the various machining process 

parameters, tooling selection, machining strategies, and operations, knowledge gaps still 

exist. This indicates that the development of effective modelling and optimisation 
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approaches to address the challenges of more efficient and more sustainable machining 

are urgently demanded (Cuixia, Conghu, and Xi 2017)(Arriaza et al. 2017). 

Also, the fourth industrial revolution (also referred as Industry 4.0, or Intelligent 

Manufacturing or Smart Factory) is currently pushing towards the replacement of the 

traditional ways of decision-making through the development of more intelligent systems 

which can promote making right-first-time (Davis et al. 2012). Moreover, it supports 

ensuring resources productivity and, consequently, more sustainable manufacturing 

(Kibira, Morris, and Kumaraguru 2016)(Kusiak 2017)(Lee et al. 2013). Moreover, 

according to (Bleischwitz, Welfens, and Zhang 2017), innovation and technological 

progress that can trigger using resources more efficiently are still lacking. 

Thus, in response to the current scenario, this research work is motivated to address the 

significant concern of achieving resources productivity (i.e., enhancing the sustainability) 

in manufacturing activities using CNC machining as case studies. The research gap will be 

addressed by developing novel optimisation approaches to support decision making and 

doing-right-first-time for the roughing and finishing stages of CNC machining. 

The reasons for tackling the challenge considering the two machining stages are twofold:  

 Firstly, the manufacturing requirements and critical efficiency operational criteria 

differ depending on the machining stage. That is, at the roughing stage, the focus is 

on high material removal rates which impact significantly on the energy efficiency, 

productivity and cutting tool life resources, usually constrained by lead time and 

resources requirements. By contrast, at the finishing stage, the focus is on the 

surface quality of the machined workpiece, which has to meet the tight tolerances 

of quality control, usually the only constraint (or requirement).  
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 Secondly, the type of solution to each stage differs, which impacts on the approach 

used. That is, at the roughing stage, a process planning (or offline) approach is more 

suitable due to the multiple objectives’ decision-making implications, where 

engineers will have to be aware before the process. At the finishing stage, an in-

process approach is more suitable due to the more exceptional capabilities of 

control which intelligent systems can cooperate with, given the tight tolerances 

and requirements of quality control. Furthermore, as surface quality can only be 

physically tested post-process, poor surface quality also impacts on the waste of 

resources such as time and cutting tools; consequently, an in-process solution 

becomes more attractive to avoid such negative impacts. 

1.2 RESEARCH AIM AND OBJECTIVES 

The primary aim of this thesis is to enhance the sustainability and efficiency of 

manufacturing processes by the development of two intelligent approaches for the 

roughing and finishing stages of CNC machining. 

For that, the research design and contributions are based on the empirical approach to 

build in-depth analysis and knowledge of the relationships between crucial machining 

process parameters, e.g., spindle speed, feed rate, cutting depth, and the critical efficiency 

operational criteria, e.g., energy efficiency, productivity, cutting tool life and surface 

quality. Such knowledge is used to support the development of predictive models and to 

formulate the intelligent optimisation and control approaches to enhancing the efficiency 

and sustainability of CNC machining processes. The two novel approaches tackle critical 

challenges in process planning optimisation for the roughing stage and the quality 

assurance during the finishing stage of production. By combining the approaches, the 
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approaches promote more intelligent and sustainable manufacturing through more 

efficient and reliable processes. A framework of the research’s aim and contributions are 

illustrated in Figure 1-1. 

 

Figure 1-1: Smart workflow of CNC machining processes, which uses predictive models and 
optimisation algorithms to ensure best output performance and, therefore, resources productivity 

in manufacturing. 

The process planning optimisation (the approach I in Figure 1.1) is a novel efficient and 

reconfigurable optimisation approach to achieve efficient and sustainable machining by 

addressing the trade-offs of the impacts of machining process parameters and several 

operational efficiency performance indicators, i.e., energy efficiency, productivity and 

cutting tool life. To support such trade-offs decision-making, an empirical analysis of the 

cutting tool wear phenomena and cutting tool life, and the influence of machining process 

parameters on several tool effectiveness indicators (i.e., total cutting time, total cutting 
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length and total volume of material removed) has been carried out. This analysis further 

supported the investigation of predicting the cutting tool life using power consumption 

models. Such investigation supported the development of the efficient optimisation 

problem for the optimum selection of machining process parameters for the roughing 

stage. 

The real-time supervisory control (approach II in Figure 1.1) is a novel artificial 

intelligence supervisory control design has been developed to tackle the quality assurance 

in CNC machining. This system provides in-process support to manual operations of 

engineers to ensure that the machined parts will meet the challenging precise 

requirements of surface quality. 

Accordingly, the aim of this research will be achieved through the following objectives: 

i. Literature review to understand the relevance of machining process 

parameters on key efficiency operational criteria (i.e., energy efficiency, 

productivity, cutting tool life, and surface quality); covering qualitative and 

quantitative analysis, predictive modelling and multi-objective optimisation 

approaches, and identifying research gaps; 

ii. Design of experiments and experimental tests for data collection, followed by 

data analysis to identify the significance of each machining process parameters 

(input factors) on each key efficiency operational criteria and build up in-depth 

CNC machining knowledge with the use of analysis of variance and main effects 

analysis; 

iii. To develop empirical predictive models for the key efficiency operational 

criteria as a function of the machining process parameters (spindle speed, feed 

rate, and cutting width); 
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iv. To formulate a novel optimisation approach for the roughing stage of 

machining considering the energy efficiency, productivity and cutting tool life 

as key efficiency operational criteria to find the best choice of machining 

process parameters to enhance the productivity of the resources 

(sustainability) during process planning 

v. To formulate a novel optimisation approach for the finishing stage of 

machining considering the surface quality (surface roughness) as key efficiency 

operational criteria to adjust the spindle speed and feed rate in real-time to 

meet the technical requirements for quality control 

vi. Test and validate the proposed optimisation approaches using real case CNC 

machining. 

1.3 THESIS OUTLINE 

As a result, this research work will present three significant contributions which represent 

new solutions to tackle the challenge of improving resources productivity and, 

consequently, the sustainability of CNC machining. The contributions and highlights are 

also described below and illustrated in Figure 1-2. 

Chapter 2: This chapter provides the essential background and literature review of the 

research area of this thesis. Only the necessary background is provided here. Such 

background starts with a survey of key aspects that lead the research development trends 

related to the manufacturing sector and CNC machines in this sector. Then, a 

comprehensive survey of research development related to energy consumption and 

efficiency of machine tools is presented, followed by an overview of the need for modelling 

and optimisation of machining processes. The literature survey is finalised by presenting 
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the research approaches on energy consumption modelling of machining processes. Part 

of this chapter is presented in (Moreira et al. 2018). 

Chapter 3: Methodology of the study is presented, along with the principal methods used 

in the research; the experimental details and data collection procedures for each key 

efficiency operational criteria. 

Chapter 4: An in-depth assessment of the cutting tool life and tool wear phenomena is 

carried out using several tool effectiveness indicators to support decision-making during 

process planning. Besides, a novel model for the cutting tool life based on power 

consumption is proposed. 

 The tool wear phenomena and cutting tool life assessment based on several tool 

effectiveness indicators, such as total cutting time and total volume of material 

removed represent essential knowledge to both industry and academia to achieve 

more efficient production strategies and promote longer cutting tool life in CNC 

machining 

Chapter 5: A novel model for the energy efficiency analysis is proposed along with a 

reconfigurable multi-objective optimisation approach for the energy efficiency, 

productivity and tool life using an improved fruit-fly optimisation algorithm to support  

decision-making to achieve more efficient and sustainable machining through better 

selection of the selection of crucial process parameters, e.g., spindle speed, feed rate, 

cutting width and cutting depth. Part of this chapter is presented in (Moreira et al. 2019a). 

 The output performance (i.e., KEOC) of machining processes can be predicted and 

controlled at the early stages of machining (i.e., process planning) 
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 The approach supports engineers and machinists in selecting the best process 

parameters that will enhance process resources productivity and sustainability 

by also accounting for the manufacturing requirements for lead time and cutting 

tools 

Chapter 6: A novel system design for the surface quality assurance in CNC machining is 

proposed based on supervisory control and neuro-fuzzy models to adjust key process 

parameters such as spindle speed and feed rate to achieve the requirements of quality 

control based on the surface roughness. Part of this chapter is presented in (Moreira et al. 

2019b). 

 The system is designed and validated through in simulation environment to 

enable autonomous control of the surface quality during CNC machining 

processes to aid engineers and machinists in doing-right-first-time and achieve 

high-quality machined parts through optimal real-time adjustments of spindle 

speed and feed rate. 

Chapter 7: Conclusions and further work. The research is concluded, the research 

contributions are highlighted, and future research is outlined. 
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Figure 1-2: Schematic diagram of the logical flow of this thesis chapters. 

1.4 BOUNDARIES OF THE STUDY 

In this work, resources productivity and sustainability in manufacturing systems are 

enhanced by, a) at the process planning of roughing stage by implementing the energy 

consumption, productivity modelling, cutting tool life assessment and optimisation 

approaches hereby presented; and b) at the finishing stage by implementing surface 

roughness predictive modelling and the supervisory control system design hereby 

presented. Furthermore, case studies for the implementation of the modelling 

methodology and optimisation approach proposed are used to validate the research using 

hardened steel. CNC machining processes such as milling operations will be used as case 

studies to validate the research approaches. Regardless of the specific operation and 
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material type, the research contributions proposed can be replicated and extended to 

different cases and operations in the future. 
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Chapter 2: BACKGROUND AND 

LITERATURE REVIEW 

2.1 RESEARCH BACKGROUND 

2.1.1 THE ROLE OF INTELLIGENT SYSTEMS TO ACHIEVE HIGHLY-

EFFICIENT AND SUSTAINABLE MANUFACTURING 

As concern with the world's resources use increases due to rise in population and, with 

that the increasing demand for energy and goods and manufactured products, the need for 

highly efficient and sustainable manufacturing processes becomes crucial to meet global 

needs and the sustainable agenda  (World population prospects, 2017)(Conti et al. 2016). 

The World Commission on Environment and Development defined sustainability as the 

ability to meet the needs of the present without compromising the capacity of future 

generations to meet their own needs (Nations 1987). In regards to manufacturing systems, 

sustainability has become an increasingly crucial requirement for manufacturing 

companies due to several established and emerging aspects such as environmental 
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concerns and governmental targets, scarcity of non-renewable resources, stricter 

legislation and inflated energy costs, increasing greener consumer behaviour, e.g., 

preference for environmentally friendly products, and so on (Giret, Trentesaux, and 

Prabhu 2015). Moreover, as they are responsible for one-third of the total primary energy 

consumption in the world (Outlook 2016), manufacturing companies have been under 

increasing pressure to provide more sustainable production systems. From the economic 

perspective, rises in energy and raw materials price are two important factors that justify 

the urgent need for intelligent and more energy-efficient processes in manufacturing 

industries. At the same time, resources such as raw materials for metal machining 

companies are becoming scarce, which makes imperative the adoption of techniques to 

reduce waste of material. 

Ultimately, to remain competitive on a global manufacturing scale, manufacturing 

companies need to be aligned with legal and environmental regulations and comply with 

new customer and market requirements (Jovane et al. 2008). Such drivers have pushed the 

manufacturing sector to improve its competitiveness by employing cutting-edge 

Information and Communication Technologies (ICTs) in order to secure a new growth 

engine (IfM 2016). According to (IfM 2019), manufacturing companies face the recurrent 

challenge to enhance efficiency in their businesses. Further, it is stated in this report that 

embracing digital technologies to transform their operations will enable the 

manufacturing sector to operate more effectively and efficiently and, as a result, drive 

growth and profitability: 94% of UK manufacturers surveyed by the authors agreed with 

recognising that they must adopt digital technologies to remain competitive. 

In recent years, ICTs and related emerging technologies such as Internet of Things (IoT) 

(Tao et al. 2014)(Jing et al. 2014), wireless sensor networks (Qiu et al. 2006, Qiu and Sha 
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2007), big data (Chen, Mao, and Liu 2014), cloud computing (Xu 2012, Liu, Wan, and Zhou 

2014), embedded system (Wan et al. 2010), and mobile Internet (e.g., 5G) (Soliman and 

Youssef 2003) have been introduced into the manufacturing systems, which has driven the 

fourth industrial revolution. 

The fourth industrial revolution is considered as a new paradigm and represents the 

collection of cutting-edge technologies that support effective and accurate engineering 

decision-making in real-time through the introduction of various ICTs and the convergence 

with the existing manufacturing technologies (Kang et al. 2016). These have driven the so-

called concept of Intelligent (or Smart) Manufacturing which according to (Kibira, Morris, 

and Kumaraguru 2016) is defined in part by the introduction of new technologies that are 

promoting rapid and widespread information flow within the manufacturing system and 

its control. 

Nevertheless, in order to make effective and accurate decision making, ICT systems require 

manufacturing process knowledge embedded, such as the use of models for predicting the 

performance of machining and optimising they with the use of algorithms, machine 

learning or artificial intelligence systems  (Chandrasekaran et al. 2010). 

2.1.2 DEMAND FOR HIGHLY-EFFICIENT AND SUSTAINABLE MACHINING 

According to (Thornton 2010), the manufacturing sector is a source of stronger and more 

sustainable growth. Also, the energy yearbook published by the U.S. energy information 

administration pointed out that energy consumption in the industry accounted for 

approximately 1/3 of the total electricity consumption, where manufacturing was 

responsible for 90% of the industrial energy consumption, and CNC machines demanded 
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75% of the manufacturing energy consumption (Outlook 2010)(Zhou et al. 2016), as 

shown in Figure 2-1. 

 

Figure 2-1: Energy demanded by the manufacturing sector (Source: (Outlook 2010)). 

Energy consumption is a significant sustainability concern in the machining (or metal 

cutting) industry (Shin, Woo, and Rachuri 2017). Consequently, the demand for 

sustainable solutions in CNC machining is increasing (Uhlmann et al. 2017). 

Production systems can be divided into two primary energy-consuming sources: 

transportation and transformation of input raw material. As the third industrial revolution, 

in the early 1970s, landmarked the migration from manual production to automated 

systems, CNC machines controlled by computer hardware and software became 

predominant to enhance productivity and quality of machining processes.  Also, due to the 

rise of employment costs and the economic slowdown of most western countries in the 

same decade, CNC machines become predominant in manufacturing processes, displacing 

older technologies such as manual machining (CNC cookbook, 2015). 

From the era of conventional machine tools to the present era of CNC machines, the 

prediction of cutting behaviour of processes and optimisation of machining process 
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parameters have been critical areas of research. For this reason, modelling of machining 

processes has attracted the attention of several researchers as a way to improve CNC 

machining performance and sustainability (Peng and Xu 2014).  

(Chandrasekaran et al. 2010) have pointed out in a review that the prediction of surface 

roughness, cutting force and tool life in machining is a challenging task, but is necessary 

for proper optimisation of the process. Also, energy consumption and energy efficiency 

must be considered for prediction due to the high energy demanded by CNC machines. 

As computer technology and processing capabilities have evolved, the use of finite element 

and soft computing methods for modelling and optimisation of machining processes have 

become increasingly popular and shown significant achievements in improving machining 

efficiency (Zhang et al. 2006, Wang et al. 2005, Zarei et al. 2009, Deb and Dixit 2008, Dixit 

and Dixit 2008). 

Soft computing approaches, i.e., with the use of digital solutions to physical systems, 

emerged in the early 1980s and their appearance in manufacturing systems have since 

increased considerably due to their capabilities of dealing with highly nonlinear, 

multidimensional and complex engineering problems. Moreover, (Chandrasekaran et al. 

2010) has defined soft computing as an approach with remarkable ability to model human 

knowledge and learn in an environment of uncertainty and imprecision. Such an approach 

has been identified to be a reasonably useful solution to cope with CNC machining 

processes uncertainties and enhance the effectiveness and accuracy of decision making. 

Soft computing tools can be used to predict the critical efficiency operational criteria of 

machining as well as for the optimisation of the process. Two different uses of soft 

computing to develop intelligent optimisation of machining processes have been proposed 

in (Chandrasekaran et al. 2010), see Figure 2-2. 
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Figure 2-2: Two applications of soft computing in machining: (a) performance prediction and (b) 
optimisation (Adapted from (Chandrasekaran et al. 2010)). 

In this research, the design (a) in Figure 2-2 will be adapted to develop the optimisation 

approach for process planning (or offline) applications focused on the roughing phase of 

machining. In this approach, predictive models are used to estimate the critical efficiency 

operational criteria energy efficiency, productivity and cutting tool life, which will be used 

to find the best choice of machining process parameters (MPP) (i.e., spindle speed, feed 

rate, and engagement depth) based on several manufacturing requirements. The design 

(b) in Figure 2-2 will be adapted to develop the optimisation approach for real-time 

applications focused on the finishing phase of machining. In this approach, predictive 

models are used to estimate the KEOC surface quality in order to promote the optimal 

adjustment of spindle speed and feed rate parameters. As a result, the two optimisation 
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approaches will be combined to promote intelligent optimisation of CNC machining to 

promote resource productivity and enhance the sustainability of manufacturing.  

2.1.3 MACHINING PROCESS PLANNING AND MILLING OPERATIONS 

In CNC machining, milling is the second most common operation for metal cutting 

(Benardos and Vosniakos 2002). Milling operations are used for producing flat or curved 

surfaces and prismatic shapes and are widely used in producing parts for the automotive 

and aerospace sectors. 

Milling is a multipoint cutting tool process in which the cutting tool rotates at a given speed 

(i.e., the spindle speed) and moves in Z-axes direction while the feed table moves (i.e., feed 

rate) past the cutter in different directions (X, Y directions)(CNC cookbook, 2015), shown 

in Figure 2-3. The feeds (f), speeds (S) and directions – or cutting tool positioning, defined 

by the cutting width (or radial depth of cut, ae) and cutting depth (or axial depth of cut, ap) 

– are called machining process parameters (MPP) and are defined during the process 

planning by engineers and machinists. 

 

During the machining process, as the cutter rotates, each cutter tooth (or flute) removes a 

small amount of material from the advancing work for each spindle revolution. This way, 

the unwanted metal is removed to obtain the final shape desired. 
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Figure 2-3: (a) Illustration of milling operation and the machining process parameters (Source: 
Custompartnet), (b) Milling operations set up on a CNC machine. 

Research in machine technology, machining processes strategies and product designs have 

been conducted in recent years (Braungart, McDonough, and Bollinger 2007)(Sheng and 

Kok-Soo 2010)(Strano, Monno, and Rossi 2013)(Avram and Xirouchakis 2011)(Jia et al. 

2016, Lv et al. 2016). Nevertheless, the requirements that machining processes have to 

meet change according to new environmental, economic and energy efficiency aspects. 

Such requirements make the need for continuous improvements of machining equipment, 

process planning and machining strategies towards sustainability to be imperative. A 

correct selection of MPP is crucial to promote higher efficiency and sustainable machining 

(Newman et al. 2012, Rajemi 2010, Lasemi, Xue, and Gu 2010). 

Also, when selecting the MPP during process planning, the manufacturing requirements 

such as lead time and limitation of resources (e.g., cutting tools availability) must be 

considered. Moreover, such requirements and the best key efficiency operational criteria 

will vary depending on the characteristic of the process, i.e., roughing or finishing stages of 

production. Accordingly, the best choice of machining process parameters will depend on 
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the stage of production and those manufacturing requirements. Such dependency is well-

known as complicated and overwhelming to engineers trying to make correct decisions to 

achieve high-efficient and sustainable milling (Zhou, Liu, and Cai 2015). 

For this reason, in this research, the spindle speed (and cutting speed), feed rate (and feed 

per tooth) and engagement depth (cutting width and cutting depth) will be the core input 

variables for investigation of their effects on the KEOC energy consumption, surface finish, 

productivity and tool wear. The investigation will involve qualitative analysis, predictive 

modelling and the development of intelligent optimisation approaches. 

The following sections will highlight the current research scenario of investigations on the 

crucial efficiency operational criteria. 

2.2 LITERATURE REVIEW 

2.2.1 TOWARDS INTELLIGENT CNC MACHINING PROCESSES: MODELLING 

AND OPTIMISATION APPROACHES 

In the current manufacturing environment, many large industries use highly automated 

and computer numerically controlled machines as their strategy to adapt to the ever-

changing competitive market requirements (Venkata Rao, Murthy, and Mohan Rao 2014). 

Due to the high capital and manufacturing costs, besides the legal and environmental 

aspects, there is an urgent need to operate these machines as efficiently as possible. 

Besides, the manufacturing industry is continuously moving towards more customised 

products, driving the need for manufacturing systems to produce different parts with 
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minimum effort required for re-planning, re-programming, and re-optimising the process 

parameters (Bosetti, Leonesio, and Parenti 2013). 

In the case of CNC machining, this means that the procedures required to start the 

machining of a new part – which are costly, time-consuming, and demand the expertise of 

machinists and technicians – will have to be gradually automated, by enabling the CNC 

machine controller(s) to autonomously perform some of the operations more accurately, 

in a shorter time and without the need for human resources. According to (Hu et al. 2016), 

machining processes efficiency and quality of machined parts can be improved by 

monitoring, analysing, and diagnosing the process of product manufacturing.  

Furthermore, (Newman et al. 2012) states that the success of manufacturing processes 

depends on the selection of the optimal machining process parameters (MPP). This is 

because the selection of MPP has a significant impact on the energy consumed, quality of 

the machined part, shop floor productivity and production costs in CNC machining. Despite 

its essential role in the output of manufacturing processes, the selection of MPP is still 

made based on machinists’ experiences and machining handbooks. 

Consequently, considering the significance of such step together to the economic, legal, 

political and environmental aspects which the manufacturing sector must cope with, many 

researchers have been addressing this problem in order to provide more intelligent and 

sustainable solutions to improve decision-making and selection of MPP in CNC machining. 

(Shunmugam, Reddy, and Narendran 2000, Venkata Rao, Murthy, and Mohan Rao 2014) 

highlighted that modelling and optimisation of process parameters of any manufacturing 

process are not an easy task, and some aspects have to be considered, such as knowledge 

of manufacturing process, empirical equations to develop realistic constraints, 

development of valid optimisation criteria, as well as knowledge of mathematical and 



 

46 

 

numerical modelling and optimisation techniques. (Shea et al. 2010) have proposed 

different approaches for enhancing the level of automation of CNC machining processes by 

considering CAPP/CAM techniques (Davim 2015), and autonomous toolpath design (Ahn 

et al. 2001) (Bosetti, Leonesio, and Parenti 2013). However, these works do not consider 

the step of choosing an optimal set of machining process parameters, given a previous 

definition of machine tool, workpiece material, cutting tools, fixtures, and sequence of 

toolpaths. 

In this thesis, the focus is to employ modelling and optimisation algorithms to develop an 

intelligent optimisation system to select the best choice of MPP that generates the most 

sustainable performance for the roughing stage, and best quality performance for the 

finishing stage of CNC machining. Multiple critical efficiency operational criteria are 

considered for the optimisation, as follows: energy efficiency, cutting tool life, and 

productivity for the optimisation approach at the roughing stage; and the surface quality 

(or surface roughness) for the optimisation approach at the finishing stage of CNC 

machining processes. Thus, in the next section, a comprehensive survey of the research 

approaches on modelling of energy consumption, cutting tool life and surface quality (as a 

function of surface roughness) of CNC machining processes will be provided. 

2.2.2 APPROACHES TO ASSESSING AND MODELLING ENERGY 

CONSUMPTION 

The energy distribution within machining processes depends on the characteristics of the 

process (roughing or finishing) as well as the machine components. (Zhou et al. 2016) 

summarised the types of energy consumption for machine tools into five different 

components: composition, operation status, energy attribute main energy consumption 
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components and functional movement (in Figure 2-4). Such definitions are essential for 

the development of energy consumption models and energy efficiency evaluation of 

machine tools, which, according to (Zhou et al. 2016), are prerequisites for energy savings 

in manufacturing. 

 

Figure 2-4: Different ways of decomposing energy consumption for CNC machines (Source: (Zhou 
et al. 2016)). 

According to (Lv et al. 2016), accurate characterisation of the energy consumed by 

machining processes is a starting point to improve manufacturing energy efficiency and 

reduce the associated environmental impact. Therefore, it is of utmost importance to 

comprehend how energy consumption in machining processes has been addressed in 

order to enhance the energy efficiency in production systems. 

Moreover, necessary action was taken by the International Organization for 

Standardization (ISO) to develop the standard Environmental evaluation of machine tools 

(ISO 14955-1 2010). The standard includes three main parts: 1) eco-design methodology 

for machine tools; 2) methods for testing of energy consumption of machine tools and 

functional modules; and, 3) test pieces/test procedures and parameters for energy 
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consumption on metal cutting machine tools. This ISO shows that different approaches can 

be adopted to improve the performance of machine tools. Table 2-1 provides some 

approaches that have been developed in recent years and related research work. 

Table 2-1: Research topics on energy consumption of machining. 

Research topic Related work 

Eco-design of machine 

equipment/product. 

(Braungart, McDonough, and Bollinger 2007) (Sheng and Kok-

Soo 2010)(Strano, Monno, and Rossi 2013)  

Analysis of machining 

parameter/machining 

configuration. 

(Newman et al. 2012, RAJEMI 2010, Qiu et al. 2006)(Park and 

Kim 1998, Bhushan, Kumar, and Das 2010, Jeon, Lee, and Wang 

2019, Rizvi 2018) 

Machining operation 

sequence/tool path optimisation. 

(Abu Qudeiri, Yamamoto, and Ramli 2007, Ehmann et al. 1997) 

(Edem 2016, Balogun et al. 2013) 

Machining behaviour/motion 

evaluation. 

(Avram and Xirouchakis 2011, Seker, Kurt, and Ciftci 2004) 

Machining monitoring. (Liu, Wang, and Liu 2013, Simeone, Segreto, and Teti 2013, 

Segreto, Simeone, and Teti 2013, Behrendt, Zein, and Min 2012) 

Multi-objective optimisation of 

machining parameters. 

(Arriaza et al. 2017, Yan and Li 2013)(Nouari et al. 2003, Zhang, 

Owodunni, and Gao 2015) 

Cloud manufacturing. (Liu, Wan, and Zhou 2014, Tao et al. 2014)(Xu 2012) 

 

An exponential growth in research publications in the last two decades, published in 

(Moreira et al. 2018), which clearly shows the academic and practitioners’ strong interests 

on this topic (see Figure 2-5). 
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Figure 2-5: Research publications related to the energy of CNC machining. 

The electricity demanded by the servomotors of CNC machines on a factory shop floor 

produces energy consumption data that, when well-processed, are a valuable information 

source. Based on the data, energy consumption (EC) predictive models can be developed 

to enhance the sustainability of machining. Energy consumption models can be used to 

assess and improve the overall efficiency of shop floors, aid production engineers in 

scheduling optimisation, and support machining systems to be self-controlled and self-

optimised through embedded optimal control algorithms. Nevertheless, energy 

consumption has not often been considered in manufacturing strategies during the 

planning stage. However, this issue is becoming more prevalent and is a topic of concern 

in the board room in the last five years (O’Driscoll and O’Donnell 2013). By integrating 

energy consumption criteria into a process planning and operating structure, a reduction 

in process energy demand is expected. Thus, energy modelling of a machine tool for energy 

consumption prediction is of prime importance. 
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To develop effective energy consumption models, research work must be carried out for 

both qualitative and quantitative understanding. Accordingly, several energy consumption 

models for both the entire machine tool and for the specific energy consumption of cutting 

processes have been developed. The related work is summarised in Table 2-2. 

Table 2-2: Energy models for machining processes. 

Author Type* Machining Model 

(Wang 2013) DE 
𝐸(𝑀𝑖) = 𝐸(𝑀𝑖)𝑖𝑑𝑙𝑒 +  𝐸(𝑀𝑖).𝑤𝑜𝑟𝑘𝑖𝑛𝑔 + 𝐸(𝑀𝑖).𝑡𝑜𝑜𝑙𝑐ℎ𝑎𝑛𝑔𝑒 +  𝐸(𝑀𝑖).𝑠𝑒𝑡−𝑢𝑝 

(Nee et al. 

2013) 

DE 
𝐸 = ∑ 𝐸𝑠𝑡𝑎𝑡𝑒𝑖 =  ∑ ∑ 𝐸𝑠𝑡𝑎𝑡𝑒𝑖,𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑗 = ∑ ∑ 𝑃𝑠𝑡𝑎𝑡𝑒𝑖𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑗

 ∙𝑚
𝑗=1

𝑛
𝑖=1

𝑚
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑡𝑖   

(Balogun and 

Mativenga 

2013) 

DE 𝐸 = 𝑃𝑏 ∙ 𝑡𝑏 + (𝑃𝑏 + 𝑃𝑟) ∙ 𝑡𝑟 + 𝑃𝑎𝑖𝑟 ∙ 𝑡𝑎𝑖𝑟 + (𝑃𝑏 + 𝑃𝑟 + 𝑃𝑐𝑜𝑜𝑙 + 𝑘 ∙ 𝑣) ∙ 𝑡𝑐  

Where Pb, Pr, Pcool and Pair represent the basic and ready state powers, coolant 

pumping power and the average power for a non-cutting approach and retract 

moves over the component, respectively; tb, tr, and tc are the basic, ready and 

cutting times respectively; tair is the total time duration of the non-cutting moves; 

k (kJ/cm3) is the specific cutting energy; v (cm3/s) is the rate of material 

processing. 

(Newman et 

al. 2012) 

SE 

ℯ =  
𝑃

𝑓. ℎ. 𝐷
 

Where P is the power demanded; f and h are feed rate and 

dep9th of cut, respectively; and D is the total volume removed. 

(He et al. 

2011) 

DE 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑠𝑝𝑖𝑛𝑑𝑙𝑒 + 𝐸𝑓𝑒𝑒𝑑 + 𝐸𝑡𝑜𝑜𝑙 + 𝐸𝑐𝑜𝑜𝑙 + 𝐸𝑓𝑖𝑥  

This can be expanded to: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑃𝑚𝑑𝑡 + ∫ 𝑃𝑐

𝑡𝑐𝑠

𝑡𝑐𝑒

𝑡𝑚𝑠

𝑡𝑚𝑒

𝑑𝑡

+ ∑∫ 𝑃𝑖𝑑𝑡 + 𝑃𝑡𝑜𝑜𝑙𝑡𝑡𝑜𝑜𝑙 + 𝑃𝑐𝑜𝑜𝑙(𝑡𝑐𝑜𝑒 − 𝑡𝑐𝑜𝑠)
𝑡𝑓𝑒

𝑡𝑓𝑠

𝑚

𝑖=1

+ (𝑃𝑠𝑒𝑟𝑣𝑜 + 𝑃𝑓𝑎𝑛)(𝑡𝑒 − 𝑡𝑠) 

(Avram and 

Xirouchakis 

2011) 

SE 𝐸𝐷𝐸 = 𝐸𝑎𝑌 + 𝐸𝑆𝑌 + 𝐸𝑑𝑌 + 𝐸𝑟𝑢𝑛 + 𝐸𝑐𝑢𝑡 

This can be expanded to: 

𝐸𝐷𝐸 = ∫ 𝑃𝑎𝑌𝑑𝑡 +∫ 𝑃𝑆𝑌𝑑𝑡 + ∫ 𝑃𝑑𝑌𝑑𝑡 + ∫ 𝑃𝑟𝑢𝑛𝑑𝑡 + ∫ 𝑃𝑐𝑑𝑡
𝑡′2

𝑡′1

𝑡′3

𝑡′0

𝑡′3

𝑡′2

𝑡′2

𝑡′1

𝑡′1

𝑡′0

 

 

(Mori et al. 

2011) 

SE 
𝜂

=  −10 log
∑ 𝑦𝑖

2𝑛
𝑖−1

𝑛
 

Where yi (Wh/cc) is the power consumption per material 

removal unit, and n is the number of experiments per 

condition. 

(Kong et al. 

2011) 

DE 
𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 𝐸𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑟𝑢𝑛−𝑡𝑖𝑚𝑒−𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 + 𝐸𝑟𝑢𝑛−𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑎𝑑𝑦 + 𝐸𝑐𝑢𝑡 

The total energy consumption required by a machining process was divided into 

four types: constant, run-time-transient, run-time-ready and cut. 
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SE 
𝐸𝑐𝑢𝑡
= 𝐾𝑐𝑢𝑡 ∙ 𝑤 ∙ 𝑏

∙ 𝑧𝑝 ∙ 𝑣𝑓
1−𝑝

∙ 𝑛𝑝 

Where vf is the feed rate, n is the rotational speed of the 

spindle, w is the width of cut, b is the depth of cut, z is the 

number of flutes of a cutter, and p and Kcut are empirically 

determined fitting constants. 

(Diaz, 

Redelsheimer, 

and Dornfeld 

2011) 

DE 𝐸 = 𝑃𝑎𝑣𝑔 ∗ ∆𝑡

= (𝑃𝑐𝑢𝑡 + 𝑃𝑎𝑖𝑟)

∗ ∆𝑡 

 

Where Pavg is the average power demand and ∆𝑡  is the 

processing time. 𝑃𝑐𝑢𝑡  and 𝑃𝑎𝑖𝑟  are the cutting and air 

power, respectively. 

SE 
𝑒𝑐𝑢𝑡

= 𝑘 ∗
1

𝑀𝑅𝑅
+ 𝑏 

Where k is the machines constant, MRR is the material 

removal rate, and b represents the steady-state specific 

energy. 

(Li and Kara 

2011) 

SE 

𝑆𝐸𝐶 = 𝐶0 +
𝐶1
𝑀𝑅𝑅

 
Where C0 is the coefficient of the inverse model, C1 is the 

coefficient of the predictor, and MRR is the material 

removal rate. 

(Draganescu, 

Gheorghe, 

and Doicin 

2003) 

SE 

𝐸𝑐𝑠 =
𝑃𝑐

60𝜂𝑍
 

Where Pc is the necessary cutting power at the main spindle 

(kW), Z the material removal rate (cm3/min) and Ecs the specific 

consumed energy (kWh/cm3). 

(Li, Yan, and 

Xing 2013) 

SE 
𝑆𝐸𝐶

= 𝑘0 + 𝑘1
∙ 𝑛 𝑀𝑅𝑅⁄

+ 𝑘2 𝑀𝑅𝑅⁄  

Where k0 is the specific energy requirement in cutting 

operations, k1 is the specific coefficient of the spindle motor, k2 

is the constant coefficient of machine tools and equals the sum 

of standby power and the spindle motor's specific coefficient; n 

is the spindle speed in rounds/second. 

*DE: Direct Energy, refers to models considering the entire machine tool system; SE: Specific Energy, refers to 

models considering the machining cutting process specifically. 

The models in Table 2-2 have been developed based on selected applications (future use) 

to meet the research purpose, such as specific prediction of performance or optimisation 

problem formulation which must account for the independent variables used in the model. 

For example, some models consider the entire energy consumption of the machine tool 

(such as the models categorised as direct energy, DE), while others only account for the 

energy consumed during the cutting process (such as the models categorised as specific 

energy, SE). Moreover, models that include MRR as independent variable usually are used 

for analysis related to productivity. 

Also, it can be observed the use of different terminology for the same meaning of the type 

of energy consumption. Based on this literature review, a matrix with similarities in 
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terminology has been developed, to support researchers in better understanding the 

energy consumption models published (see Figure 2-6 ). 

 

Figure 2-6: Similarities in machining states terminology. 

Recently, methods such as analysis of variance (ANOVA), Response Surface Methodology 

(RSM), Taguchi signal-to-noise ratio, and Artificial Neural Networks (ANN) have been 

employed to analyse the relationships between cutting parameters and energy 

consumption, and establish energy predictive models (Camposeco-Negrete, de Dios 

Calderon Najera, and Miranda-Valenzuela 2016, Draganescu, Gheorghe, and Doicin 2003, 

Li and Kara 2011, Diaz, Redelsheimer, and Dornfeld 2011, Nancy Diaz1, Elena 

Redelsheimer1 2011, Newman et al. 2012, Peng and Xu 2014). 

(Camposeco-Negrete, de Dios Calderon Najera, and Miranda-Valenzuela 2016) carried out 

an experimental investigation on different machine tools using non-linear regression. The 

results show that the motion of the CNC machine tool is the primary source of energy 

consumption. 
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Many other researchers have used several approaches and techniques for understanding 

the energy consumption of CNC machining processes. A common way of energy and 

productivity assessment is through the Material Removal Rate (MRR) (Mori et al. 2011, 

Draganescu, Gheorghe, and Doicin 2003). That is because the MRR is estimated based on 

crucial cutting parameters: spindle speed (S), feed rate (f), depth of cut (ae) and width of 

cut (ap). Although this approach simplifies the modelling process, since it comprises two 

coefficients to be estimated and only one input is necessary, the MRR, by doing this, 

assumes that all cutting parameters have the same effect on the energy consumption. 

(Sealy et al. 2016) observed low predictive accuracy of such models when employed in 

estimating the net specific energy, or specific energy consumption for the state of 

engagement (SECSoE), which represents the amount of energy required to remove a unit 

volume of material during actual cutting (or state of engagement): the energy required to 

maintain the CNC machine ON (known as basic and idling energy), and the energy 

consumed during air cutting (also known as travelling energy) are not considered. This 

way, this indicator is mainly influenced by the cutting parameters, workpiece material, and 

tooling. 

To date, there has been little research focused on the net specific energy (Lv et al. 2016). 

Further, no effort has been made towards the implementation of machining net power and 

machining time estimation models to obtain optimum cutting parameters which can 

maximise the energy efficiency of milling operations. Other factors involved in the 

machining process, such as tool wear, mode of milling, types of cutter tool holder and 

workpiece holding systems, are still lacking analysis regarding their impact on energy 

consumption, so should be involved in the empirical modelling to develop more robust 

predictive models. 
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Based on that, this thesis develops a useful energy consumption model considering the 

machining cutting variables of spindle speed, feed rate, engagement depth (i.e., the cutting 

depth and cutting width. Also, the machining net power (power load) is introduced to 

assess the cutting tool life. 

2.2.3 APPROACHES TO ASSESSING AND MODELLING THE CUTTING TOOL 

WEAR AND TOOL LIFE 

In CNC machining processes, the cutting tools profoundly affect the production 

performance such as productivity, quality of the machined part and power consumption 

(Machining: Fundamentals and Recent Advances 2008). The health state of a cutting tool is 

defined by the amount of tool wear identified, since tool wear leads to tool failure. 

According to many authors, the failure of cutting tools occurs as premature tool failure (in 

this work called abrupt failure) and progressive tool wear (in this work called gradual 

failure). Generally, the wear of cutting tools depends upon the tool material, workpiece 

material, cutting fluids, machine tool and fixturing and machining process parameters 

(cutting speed, feed rate, cutting width and cutting depth).  

Flank and crater wear are the most critical measured forms of cutting tool wear, where 

flank wear is most commonly used to wear monitoring and prediction models. Tool wear 

curves show the relationship between the amount of flank wear (in mm) and the cutting 



Industry 4.0: Intelligent optimisation and control for efficient and sustainable manufacturing 

55 

 

time (CT) or overall length of the cutting path (L). Figure 2-7 shows the cutting tool wear 

profile. 

 

Figure 2-7: Progression of cutting tool wear for increasing cutting length. 

Region I in Figure 2-7 represents the initial wear region. The considerably high wear rate 

(i.e., the increase of tool wear per unit CT or L) in this region is explained by accelerated 

wear of the tool layers damaged during manufacturing. Region II is considered as steady-

state wear, which represents the typical operating region for the cutting tool. The region 

III is known as the accelerated wear region, accompanied by high cutting forces, 

temperatures, and severe tool vibrations, also leading to tool failure.  

Typically, the value of flank wear (VB) that will define tool failure is selected from the range 

0.15-1.00 mm depending on the type of machining operation, the condition of the machine 

tool and the quality requirements of the operation. This value is called maximum flank 

wear (VBmax) and is often called the criterion of tool life. When a cutting tool presents flank 

wear beyond the life criterion (i.e., established VBmax), it has to be replaced to avoid poor 

machining performance. 

Tool life is essential in machining since considerable time and resources are lost whenever 

a tool is replaced and reset. The short life of cutting tools represents one of the significant 
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concerns in manufacturing companies due to the cost and environmental aspects. Also, the 

worn tools will require reprocessing for re-use or become waste which then becomes a 

harm to the environment. 

Furthermore, cutting tool life is even more critical when machining hardened steel because 

the wear progresses fast and, therefore, decreases the tool life rapidly, regardless of the 

tool material used (Machado and Diniz 2017). The authors' further state that this is due to 

the high cutting forces and heat generated, which cause rapid tool wear and short tool life. 

Besides, such materials typically present low thermal conductivity, so resulting in higher 

temperatures closer to the cutting edge, causing strong adhesion between the tool and 

workpiece material (Zoya and Krishnamurthy 2000). 

Consequently, over the years numerous research efforts have been made to improve the 

cutting tool life by investigating tool wear phenomena and related issues to assist in 

choosing suitable machining conditions (Su et al. 2012). According to (Zhu, Zhang, and Ding 

2013), the resulting cutting heat coupled with the work hardening leads to a series of 

problems, such as excessive tool wear, short tool life, low productivity, and large amount 

of power consumption etc., in which the excessive tool wear has become one of the main 

bottlenecks that constraint the machinability of difficult-to-machine materials. 

The nature of tool wear is as yet unclear despite numerous investigations, and this is due 

to the complex physical, chemical, and thermomechanical phenomena that occur during 

the material removal process (Astakhov 2004, Machining: Fundamentals and Recent 

Advances 2008). Some of the mechanisms of wear have been defined as adhesion, abrasion, 

diffusion, and oxidation (Machining: Fundamentals and Recent Advances 2008), and act 

simultaneously with the predominant influence of one or more. Promoting a longer cutting 

tool life has been a significant challenge in Industry at any particular time. According to 
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(Park and Ulsoy 2012) estimating flank wear is of great concern since the amount of flank 

wear is often used in estimating the tool life. The wear phenomena (e.g., flank wear) will 

progress gradually or abruptly and cause the end of tool life (or tool failure). Such 

progression will highly depend on the cutting conditions (such as choice of MPP), whose 

relationships are known to be complex and, for this reason, tool wear assessment and tool 

life prediction remain significant challenges in the industry (Astakhov 2004, Halim, 

Ascroft, and Barnes 2017, Tai et al. 2014, Li et al. 2014). 

In Industry and Academia, the cutting tools are mainly assessed based on the total cutting 

time as a life indicator. That is, the amount of time that a cutting tool can be used before 

the progression of flank wear reaches its limit (or life criterion). One of the reasons for 

using such an indicator is because cutting time can be easily trackable through the CNC 

machine control unit. Also, process conditions are chosen to give maximum productivity, 

often resulting in tool life being measured in minutes (Astakhov 2007). However, other 

indicators (in this work called tool effectiveness indicators), such as total cutting length 

and total volume of material removed per tool, have not been well investigated yet, leaving 

gaps of research to support improved machining strategies. 

In recent decades, many researchers have employed an empirical approach to investigate 

wear phenomena and cutting tool life. In (Machado and Diniz 2017) the wear mechanisms 

have been investigated for different types of tool inserts’ material applied in turning and 

milling operations focusing on building knowledge to support the development of 

improved cutting tools, using different workpiece material including BS EN24T (AISI 

4340), the material used in this thesis. However, the effects of machining process 

parameters on tool life have not been considered in the investigation. 
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(Nouari et al. 2003) investigated improved machining strategies by considering tool 

geometry and cutting conditions to enhance cutting tool life for drilling of aluminium alloys 

under dry conditions. It was observed that diamond as a tool coating material would 

improve cutting life, and high cutting speed and low feed rate will provide better 

dimensional accuracy and surface quality, while the influence of MPP on the cutting tool 

life was not studied.  

In (Gowd et al. 2014), the effects of MPP spindle speed, feed rate and depth of cut have 

been studied on the tool wear in turning operations in AISI S2 workpiece material. (El-

Kady et al. 2015) investigated the effects of MPP cutting speed, feed rate and depth of cut 

on the cutting forces, surface roughness and tool wear using two different nanocomposite 

materials in turning operations under dry conditions. It revealed that tool flank wear 

increased by increasing the cutting speed. However, the investigations did not consider 

milling operations. (Li, Zeng, and Chen 2006) conducted an experimental study of the tool 

wear propagation and cutting force variations in the end milling of Inconel 718 with coated 

carbide inserts. The results showed that significant flank wear was the predominant failure 

mode affecting the tool life. In (Bhushan, Kumar, and Das 2010) the effects of MPP cutting 

speed, feed rate and depth of cut on the tool flank wear were investigated for different 

cutting tool inserts using Al alloy reinforced with Silicon Carbide (SiC) particulates as 

workpiece material. The results revealed that the flank wear increased by a factor of 2.4 

and 1.3 for the carbide and PCD inserts, respectively, with an increase in cutting speed from 

180 to 240 mm/min. In this direction, according to (Zhu, Zhang, and Ding 2013), reducing 

tool wear and prolonging tool life are crucial aspects to achieve maximum efficiency in 

manufacturing. 
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Investigations on the relationships of MPP (such as cutting speed, feed rate and cutting 

depth) on the cutting tool life are vital to develop understanding and knowledge to improve 

CNC machining strategies and, this way, achieve longer tool life. Recent studies have only 

considered the tool life in terms of cutting tool time, while the effects of machining process 

parameters on tool life indicators such as the total volume of material removed per tool 

have not been investigated yet. Such investigations will promote in-depth understanding 

and knowledge to improve decision making in process planning. Further, it will support 

achieving resources productivity, that is, minimise the cost of production and promote 

sustainability. Therefore, the relationship between several machining process parameters 

and three tool effectiveness indicators will be addressed in this thesis. 

Therefore, cutting tool wear and life prediction (in the field of tool condition monitoring) 

play a crucial role in finding improved machining strategies to enable effective production. 

Moreover, an accurate prediction of tool life can not only improve the efficiency in the 

usage of the tool to achieve the reduced cost but also can avoid the workpiece scrapping 

phenomenon caused by tool damage in the material removal process. Therefore, the tool 

life prediction is an essential part of the cutting process, where high-speed cutting tool 

failure and tool life have been the attention of several researchers, whose main goals are: 

 Improving the design of cutting tools geometries and coating materials 

 Determination of optimum cutting conditions 

In the field of tool condition and monitoring two main research streams have been 

identified: using direct measurements such as touch probe, optical sensors and computer 

vision (Wang et al. 2007, Kurada and Bradley 1997); and indirect measurements such as 

cutting force (Bandyopadhyay et al. 1986, Elbestawi, Papazafiriou, and Du 1991, Martinho, 

Silva, and Baptista 2008, Sarhan et al. 2001), acoustic emission (Mathew, Pai, and Rocha 
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2008), vibration (Orhan et al. 2007), power (Shao, Wang, and Zhao 2004). The direct 

measurements have the advantage of providing high accuracy; however, they cannot 

provide real-time (or continuous) data; while the advantages of the indirect measurements 

are that they can provide real-time estimations of the cutting tool conditions, this way, 

allowing online monitoring and further enabling in-process control. Table 2-3 summarises 

some related research works and the details related to cutting tool life predictive models. 

Table 2-3: Research work on tool life modelling. 

Reference Factors (inputs) Output Methods 

(Taylor 1908) vc, f and ap Tool life (in 

min) 

Regression 

(Park and Ulsoy 2012) vc, f, ap Cutting force, 

flank wear 

Empirical approach; use of state 

space and least squares 

algorithm for parameter 

estimation.  

(Kaye et al. 1995) vc, f, ap and material 

hardness 

Flank wear RSM 

(Mandal, Doloi, and 

Mondal 2011) 

vc, f, ap Flank wear RSM 

(Palanisamy, Rajendran, 

and 

Shanmugasundaram 

2008) 

vc, f, ap Flank wear Regression and ANN 

(Kaya, Oysu, and Ertunc 

2011) 

Cutting force (F) and 

torque (T), cutting time 

(t), vc, f and  ap 

Flank wear ANN 

(Arsecularatne 2003) Cutting tool temperature Cutting force - 

(Huang and Dawson 

2005) 

Ratios of friction, cut and 

F 

Flank wear - 

 

As shown in Table 2-3, the rational choice of combinations of cutting parameters is 

essential for reducing tool wear to prolong tool life (Zhu, Zhang, and Ding 2013). Also, 
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cutting force signals have been widely employed as inputs for the cutting tool life 

prediction to improve machining efficiency. However, to acquire cutting force signals, it is 

required to have an in-situ dynamometer in each CNC machine, but such equipment is very 

costly. Moreover, considering the costs involved (such as cutting tools, workpiece material, 

time for experimental set up and data collection procedures) in obtaining the empirical 

relations between inputs (e.g., cutting force) and output (e.g., flank wear and tool life), a 

more fundamental approach that can reduce the experiments will be of great value 

(Arsecularatne 2003). 

On the other hand, power consumption signals have been shown to present a strong 

correlation with cutting force and (Drouillet et al. 2016) has developed a cutting tool life 

condition monitoring using power signals and reported good results. To date, using power 

consumption signals as input to the cutting tool life prediction has not been well 

investigated, which leaves gaps in research to produce more accessible (and affordable) 

alternatives to tool condition monitoring, especially to small and medium enterprises 

(SMEs), since such equipment are considerably cheaper compared to cutting force 

systems. For this reason, in this paper, a correlation study involving cutting tool life and 

the power consumption is carried out. Such analysis supports the development of a semi-

empirical predictive model for the cutting tool life based on power consumption.  

2.2.4 APPROACHES TO ASSESSING AND MODELLING THE SURFACE 

QUALITY 

The surface quality of a machined part is one of the essential product quality 

characteristics and in most cases a technical requirement for mechanical products (Lu 
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2008). Surface quality is commonly referred to as to through surface roughness, defined as 

the deviation from the normal surface. 

In industry, there are various simple surface roughness amplitude parameters such as 

root-mean-square roughness (Rq), maximum peak-to-valley roughness (Rmax) and the 

roughness average (Ra). The latter is the most common parameter used in practical 

applications and, therefore, will be used in this research. The average roughness (Ra) is the 

area between the roughness and the line describing its mean value (see Equation (2-1) and 

Figure 2-8). Ra can be obtained by calculating the integral of the absolute value of the 

roughness profile height over the evaluation length, as shown below: 

𝑅𝑎 =
1

𝐿
∫ |𝑌(𝑥)|𝑑𝑥
𝐿

0
         (2-1) 

Recently, several researchers have conducted investigations on new approaches for CNC 

machining control in achieving a better surface quality of machined workpieces (Ezugwu 

et al. 2005, Mia et al. 2018, Pimenov, Bustillo, and Mikolajczyk 2017, Simunovic et al. 

2016)(Yang and Chen 2001). Some prediction models based on empirical approaches have 

been developed to analyse the relationships between machining process parameters and 

the surface roughness. 
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Figure 2-8: Representation of a surface roughness profile, where the dotted line represents the 
average surface roughness (Ra) (Source: (Yang and Chen 2001)). 

Empirical findings have been identified for further development of optimised control, and 

the majority of them have been built based on Artificial Intelligence (AI) algorithms (Abidin 

et al. 2012). For instance, based on empirical approaches and AI, a prediction model for 

surface roughness has been developed (Abidin et al. 2012). This research is aimed to 

provide optimised machining conditions by minimising cutting forces to improve surface 

roughness. Combined neural-fuzzy approaches have been developed in (Chen et al. 2015) 

and (Abidin et al. 2012), which have been validated through turning case studies. The 

authors have stated and justified that the methods are ideally suited for surface roughness 

prediction owing to open model structures, which can incorporate human expertise and 

process uncertainties. By using neural networks and the harmony search algorithm, an 

approach has been presented by defining optimum machining parameters in order to 

achieve minimum surface roughness (Chen et al. 2015). 

A neural-networks based research on predicting surface roughness of machined 

workpieces after face milling at various cutting speeds, feeds, and depths have been 

presented in (Volpe Lovato et al. 2018). A genetically optimised neural network system has 

been proposed for the prediction of constrained optimal machining conditions in 
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minimising surface roughness (Abidin et al. 2012). In summary, these approaches can 

assist engineers in selecting machining parameters to minimise the surface roughness 

during process planning. However, research of real-time control of machining parameters 

to improve surface roughness based on manufacturing requirements still lacks 

investigation.  

To support real-time monitoring during machining execution, an investigation based on 

digital images for predicting surface roughness has been presented in (Chen et al. 2015). 

In the approach, an adaptive neuro-fuzzy inference system has been developed by 

considering spindle speed, feed per tooth, and cutting depth. Furthermore, this work is 

presented as an investigative study for developing a real-time monitoring system for 

machining processes. However, in the research, real-time correction of machining 

parameters to ensure surface roughness has not been considered yet. An evolutionary 

neuro-fuzzy system has been proposed in (Volpe Lovato et al. 2018), through which 

optimal machining parameters for controlling surface roughness during real-time 

execution have been identified. Also, the use of image processing to assess the quality of 

free-form profiles for quality control after machining processes has been proposed in 

(Abidin et al. 2012) and (Chen et al. 2015). Although these reviewed approaches have 

offered good results for monitoring surface quality, real-time control on surface quality is 

still required. 

Approaches to real-time monitoring and control in CNC machining have become more 

evident in recent years. Online optimisation through adaptive control can provide 

significant advances in improving manufacturing efficiency, surface quality and tool-life 

saving (Volpe Lovato et al. 2018). Furthermore, this work highlights that Adaptive Control 

(AC) has been introduced as an effective method of optimising machining parameters 
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online. In recent years, the implementation of fuzzy logic models for predicting and 

controlling surface roughness has raised as this technique gains popularity from its 

abilities to model process uncertainties (Abidin et al. 2012). Moreover, Fuzzy Logic 

Controllers (FLC) have been increasingly applied owing to their strong capabilities in 

processing linear and highly non-linear systems (Chen et al. 2015). An FLC uses a flexible 

set of if-then rules, dealing with process complexity by creating heuristics to be aligned 

with human knowledge and experiences more closely (Volpe Lovato et al. 2018)(Abidin et 

al. 2012). FLC has been proved to be superior to conventional non-fuzzy controllers. Some 

critical contributions of fuzzy systems for modelling and control have been highlighted in 

(Chen et al. 2015). In summary, these research works have been great incentives for using 

neuro-fuzzy and FLC for assisting in improving the surface quality problem during real-

time machining execution. 

2.2.5 OPTIMISATION APPROACHES FOR CNC MACHINING 

The use of optimisation algorithms is a crucial step towards increasing machining 

efficiency, cost reduction, and manufacturing sustainability. Significant efforts have been 

made by the research community to address complex manufacturing scenarios, involving 

environmental, legal, economic and quality requirements. 

Process planning (or off-Line) multi-objective optimisation represents a real-time 

property category called off-line machining process control. That is, machining process 

information is acquired and saved during or at a particular stage of the machining process 

(i.e., data collection). Then the collected data is saved and analysed externally by, for 

example, machining process controllers, which then adjust (or find the optimum) 
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machining process parameters during process planning for later implementation into the 

next machining processes. 

Additionally, according to (Volpe Lovato et al. 2018), the essential steps to develop 

optimisation approaches are: 

 Knowledge of the machining processes under analysis. 

 Empirical equations of the objective(s) and constraint(s) to define the optimisation 

problem. 

 Specifications for the CNC machine capabilities. 

 Draw optimisation criteria and the problem formulation. 

 Knowledge of mathematical and numerical optimisation techniques.  

Table 2-4 shows related work to single and multi-objective approaches to improve the 

decision making of CNC machining process parameters. The table also summarises the 

optimisation methods and objectives that have been used in recent years. 

Table 2-4: Related work on the use of optimisation methods for machining processes. 

Related Work Methods Objectives Cutting parameters 

(Wang et al. 2015) 

Pattern search (PS), Genetic 

algorithm (GA) and Simulated 

annealing (SA) 

Energy consumption 

and Productivity 

Cutting speed (vc),  

ap and ae 

(Sonomez et al. 

1999) 

Dynamic programming and 

Geometric programming 
Production rate 

vc and feed per tooth 

(sz) 

(Ozcelik, Oktem, and 

Kurtaran 2005) 
GA Surface roughness vc, f, ap and ae 

(Sreeram et al. 

2006) 
GA Tool life ap 

(Li et al. 2014) GA 
SEC and machining 

time 
S, f, ap and ae 

(Nee et al. 2013, 

Baskar et al. 2006) 

GA, Hill climbing algorithm and 

Memetic algorithm 
Maximum profit S and f 

 

As shown in Table 2-4, genetic algorithms are amongst the most popular algorithms for 

solving machining optimisation problems. Also, a considerable number of optimisation 
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objectives have been considered. However, an efficient and reconfigurable optimisation 

strategy, especially considering both the specific energy and the manufacturing 

requirements for cutting tool life and productivity, has not yet been accomplished. The 

trade-offs involved between these criteria are the core motivations of this work. 

Also, recently, newer algorithms have been developed to cope with emerging engineering 

problems as well as the newer requirements of Industry 4.0, such as accuracy of decision-

making systems and computational time and ease of applicability. In this work, a new 

improved nature-inspired optimisation algorithm will be introduced based on the Fruit Fly 

Optimisation Algorithm (FFOA). 

FFOA has been successfully applied to several optimisation problems such as autonomous 

surface vessels’ control (Chen et al. 2015), data mining (Volpe Lovato et al. 2018) and 

traffic flow control (Volpe Lovato et al. 2018). However, its ability to solve trade-offs of 

machining parameters has not yet been thoroughly investigated. In this research work, an 

improved version of the FFOA will be proposed to cope with the problem formulated of 

intelligent optimisation of machining processes. 
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Chapter 3: METHODOLOGY – 

EXPERIMENTAL APPROACH AND 

IMPLEMENTATION 

 

3.1 INTRODUCTION 

CNC machining key performance criteria include energy efficiency, productivity, surface 

quality, and cutting tool life. Modelling those performance criteria is necessary to develop 

intelligent systems and implement sustainable optimisation of processes and parameters. 

This is required for developing recommendations and support more intelligent decisions 

for energy and resources demand management. 

To develop such systems, the experimental research approach has been adopted and 

carried out where milling operations were performed, and the performance criteria of the 

operations were measured accordingly. The information obtained from the measured data 

formed the basis of the analysis, modelling and optimisation processes of this study. 
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This chapter presents the details of the research methods, experiments and data collection 

procedures. The methodology adopted has been designed based on the two intelligent 

systems (or approaches) proposed: i) the multi-objective optimisation approach for the 

roughing stage of machining, and ii) the surface quality assurance approach for the 

finishing stage of machining. For the development of both approaches, quantitative 

analysis, modelling and optimisation problem formulation have been developed. 

Figure 3-1 shows a detailed flowchart of the methodology of this study, considering the 

critical research outcomes. 
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Figure 3-1: Schematic of research methodology. 

3.2 EXPERIMENTAL RESEARCH APPROACH 
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The empirical (or experimental) approach is commonly adopted for tackling engineering 

issues (Saeema 2007). In this work, the empirical approach will follow the framework 

presented in Figure 3-2. 

 

Figure 3-2: Empirical modelling process (Source: (Moreira 2016)). 

Several methods and techniques will be used at each step of the empirical modelling 

framework. The selection of the methods will highly depend on the modelling objectives. 

Some methods found in the literature are shown in Table 3-1. 

Table 3-1: Methods and techniques of empirical modelling. 

Stage Method/Technique Related Work 

Design of experiment Taguchi DoE (Peng and Xu 2013), (Camposeco-
Negrete 2013), (Nalbant et al. 2007) 
and (Yan and Li 2013) 

Data analysis & 
treatment 

ANOVA, Main effect analysis, 
Interaction plots, CoMoS, Canonical 
Analysis, Taguchi Signal-to-Noise 
ratio, Grey relational analysis 

(Morri et al. 2011), (Li and Kara 2011), 
(Bhattacharya et al. 2009), (Nalbant et 
al. 2007) and (Camposeco-Negrete 
2013) 

Model development Regression analysis, Curve fitting, 
Response Surface Methodology, 
Artificial Neural Network, Taguchi 
Signal-to-Noise, Fuzzy sets, Least 
Squares Method 

(Li and Kara 2011), (Diaz et al. 2011), 
(Wang S. et al. 2014) and (Calvanese et 
al. 2013) 

Model analysis ANOVA, Sensitivity analysis (Winter et al. 2013) and (Lee et al. 
1998) 

 

1. Modelling objective and 
future application 

2. Design of Experiments  Selection of design variables 
 Selection of output(s) 

3. Experimental tests and 
Data collection 

4. Data Analysis  Variables significance 
 Variables multicollinearity 

5. Model development 
 Function structure 
 Parameters estimation 
 Analysis of variance 

6. Model validation 

7. Model future 
application (if any) 
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As shown in Table 3-1, the empirical approach has been widely employed for modelling 

machining process performance criteria and has been proved to deliver accurate models. 

A key advantage of using such an approach is the reliability of the knowledge construction 

process, which is based on evidence collected from actual experiments (i.e., measured 

data). Also, data collection is essential for predictive modelling processes.  This way, the 

experimental approach is suitable for the objectives and primary goal of this research. 

Consequently, it will be employed to develop the knowledge and data collection to model 

the relationship between crucial machining process parameters (such as spindle speed, 

feed rate, cutting width and cutting depth) and key efficiency operational criteria (such as 

energy efficiency, productivity, cutting tool life, and surface quality). The future application 

of the models will be the intelligent systems for the roughing and finishing stages of 

machining. 

The selected methods used for the design of experiments, analysis, modelling and 

optimisation process will be further described in the following sections. 

3.3 RESEARCH METHODS AND EXPERIMENTS 

In this section, the methods used to achieve the aim of this research are presented. Figure 

3-3 shows a summary of the methods.  
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Figure 3-3: Research methodology steps and methods. 

As shown in Figure 3-3, the empirical approach was employed onto a structured set of 

steps to design and collect the data used to draw the observations and understanding of 

the modelling and optimisation processes. 

Also, a series of statistical methods are employed throughout the methodology, from 

designing the experiments to analysing the models’ performance. Key aims of the statistical 

analysis, according to (Shevlyakov 2016), are given as follows:  

 To provide a compact representation of data 

 To estimate the model parameters 

 To allow prediction 

The methods used will be explained in more details in the following sections. 

3.3.1 DESIGN OF EXPERIMENTS USING TAGUCHI DOE 

Design of experiments (DoE) (or experimental planning) is the key to a successful 

empirical study (Gacula 2008). DoE is a statistical technique that provides a structured 

1
Design of Experiments 

for CNC Machining

2
Data Analysis of MPP 

and KEOC

3
Predictive Modelling for 

KEOC

 Taguchi DoE

 Main Effects and Covariance Analysis
 Correlation Analysis

 Response Surface Methodology
 Fuzzy Logic Controller and Neuro-

Fuzzy

4
Novel Optimisation 

Approaches

 Optimisation Problem Formulation
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approach to data design and collection, by considering the trade-offs between the number 

of resources required for experimental trials and the statistical requirements for the data 

analysis. Moreover, good experimental planning results in the reduction of 

experimentation costs, ease of interpretation of results, and the collection of good data to 

result in a useful and meaningful outcome (Seltmann 2012). 

The design of experiments of this research was performed using the Taguchi method, 

which optimised the number of resources required (such as tooling, workpiece material 

and time) and, at the same time, guaranteed the reliability of the observations through the 

experimental trials. The objective of the experimental trials is to investigate the effects of 

crucial machining process parameters (i.e., spindle speed, feed rate, cutting width and 

cutting depth) on the key efficiency operational criteria (i.e., energy efficiency, 

productivity, cutting tool life, and surface quality) of machining. For that, five levels of the 

selected machining process parameters are defined for investigation. This number of levels 

provides sufficient coverage of the machining process parameters ranges while meeting 

the statistical data analysis requirements. 

The number of factors and levels impacts on the total number of experimental trials and, 

consequently, on the resources required. Several resources are required for running the 

CNC machining experimental trials such as BS EN24T (or AISI 4340) steel alloy workpiece 

materials, lubricant, including cutting tools, metrology equipment, machinists, engineers 

and experts’ time for the data collection procedures for each key efficiency operational 

criteria. Consequently, optimising the number of experimental trials is of paramount 

importance. 
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Taguchi DoE was crucial to maximise the use of resources required for the data collection 

process of this research. Furthermore, it ensured all factors are evenly present and, this 

way, guaranteeing that satisfactory data is collected. 

There are two sets of experimental trials that Taguchi DoE was mainly employed to design 

the experimental trials for data collection: i) experimental design for the data collection of 

cutting tool wear and tool life, presented in Chapter 4, where Taguchi L25 array was used 

(please see appendix A); and, ii) experimental design for the energy consumption and 

surface quality data collection, presented in Chapters 5 and 6, respectively, where Taguchi 

L24 was used (please see appendix B). 

The Taguchi arrays provide the number of levels that covers well the range for each input 

machining process parameters and supports the reliable observation of the relationship 

between inputs and output factors. 

3.3.2 EXPERIMENTAL DESIGN, SETUP, AND DATA COLLECTION 

PROCEDURES 

This section presents the experimental setup and data collection procedures for the milling 

experimental trials. Experimental trials were performed using a vertical milling CNC 

machine where the experimental design was used to set the trials for the data collection 

on the process performance considering the key efficiency operational criteria. A summary 

of the key efficiency operational criteria and measurement procedures are as follows: 

 for the energy efficiency and productivity, the power consumption of the cutting 

process of each trial was monitored in the time domain using a sensors network 

system; 
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 for the cutting tool life, a digital microscope was used to capture the cutting tool 

wear and the end of the useful life of the cutting tools of each trial; 

 for the surface quality, a surface profilometer equipment was used to test the 

average roughness of the surface of the machined workpiece of each trial. 

For the above, experimental planning, sensor systems, and metrology equipment are used 

to acquire the data for analysis, modelling and optimisation purposes. 

The details of the experimental setup, including CNC machine, workpiece material, cutting 

conditions and tooling are provided in Section 3.3.3. The details of the design of 

experiments for the machining process parameters of each milling trial will be presented 

in Section 3.3.4. Section 3.3.5,  followed by the data collection procedures for each of the 

critical efficiency operational criteria, will be provided in detail. 

3.3.3 EXPERIMENTAL SET-UP 

The experimental trials were carried out on a 3-axis vertical milling machine, which 

comprises a 30HP (22.4 kW) 415 V vector drive, with a maximum spindle speed of 8100 

rpm. The relevant CNC machine and set-up are shown in Figure 3-4. 

 

Figure 3-4: (a) Haas VF-3 vertical milling machine, (b) machined workpiece and cutting tool. 
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Machining hardened steel parts have become more prevalent in manufacturing processes, 

particularly in the mould and die industries and subsequently in making automotive and 

aerospace components (Hafiz 2008). In this research, the workpiece material is the 

hardened steel BS EN24T (AISI 4340), a high-strength steel alloy (HB 250-300). The grade 

is a nickel-chromium-molybdenum combination, offering high tensile steel strength, with 

good ductility and wear resistance characteristics. The composition and properties are 

shown in Table 3-2. 

There are two reasons for selecting this material: 1) the material is widely used for several 

engineering applications in automotive and aerospace industry such as gear shafts, 

propellers, and so on (Steel Express 2018); 2) BS EN24T alloy steel is a hard material, and 

the energy consumption for machining hard materials is higher than that of soft materials 

owing to the greater torque (therefore, power) required to remove a unit of volume of 

material out of the workpiece stock (Sealy et al. 2016). 

The cutter tool used is a solid tungsten carbide (shown in Table 3-3), held by a side-lock 

tool holder. The machining processes were carried out in up milling mode (i.e., the cutting 

tool rotates clockwise, and the feed table travels from left to right, this is the commonly 

used model used for rough cutting operations), under minimum quantity lubrication 

(MQL) conditions. 

According to (Tai et al. 2014), the elimination of lubricant coolant systems creates 

significant saving from energy and equipment reduction of the waste stream and shop floor 

space, cleaner and healthier work environment and supports the achievement of more 

sustainable machining. 

Table 3-2: The material properties of the machined workpiece. 

Material type: BS EN24T alloy steel (AISI 4340) 
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Composition: C 0.36-0.44 / Si 0.10-0.35 / Mn 0.45-0.70 / S<0.040 / P<0.035 / Cr 1.00-1.40 / Mo 0.20-0.35 

/ Ni 1.30-1.70 

Property Value Unit 

Density 7850 kg/m3 

Young’s modulus 210 GPa 

Hardness - Brinell 248-302 HB 

 

The part selected is a jaw-type geometry for which the CNC machining process requires 

side milling operations on both sides (Figure 3-5). Side milling is a typical CNC machining 

operation. Consequently, the experimental results can apply to a wide range of machining 

processes, for either roughing or finishing stages.  The toolpath strategy is a unidirectional 

route with the cutting tool always engaged onto the workpiece, as shown in Figure 3-5. 

 

 

 

Table 3-3: Cutting tool specifications. 

Tool property Specifications 

Tool ID End mill 

Tool diameter (D)  16 mm 

No. of teeth 4 

Feed per tooth (sz) 0.025 – 0.1 mm/tooth 

Cutting speed (vc)  150 – 250 mm/min 

Corner radius 0.16 mm 

Cutter material Solid tungsten carbide 
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Figure 3-5: CAD design of the machined metal component and dimensions with side milling 
operations. 

For the toolpath, a safe clearance distance of 8 mm is set in the X direction for the cutting 

tool on the start and end of the machining process, and 1 mm clearance in Z. That is, the 

cutting tool travels 8 mm with the supplied feed rate before and after engaging onto the 

workpiece. 

The jaw-part is CNC machined under several computer-aided process planning (CAPP) 

configurations of spindle speed, cutting width and cutting depth and feed rate, as provided 

on the design of experiments, presented in the following section. 

3.3.4 DESIGN OF EXPERIMENTS OF MILLING TRIALS 
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Taguchi DoE experimental trials were designed considering several levels of the MPP to 

investigate the relationships between machining process parameters and key efficiency 

operational criteria energy efficiency, productivity, cutting tool life, and surface quality, for 

the roughing and finishing stages of milling. Furthermore, five levels of MPPs spindle 

speed, cutting speed, feed rate, feed per tooth, cutting width and cutting depth are selected 

to analyse the significance and the interaction effects for the roughing stage of milling.  

To select the levels of the machining process parameters, firstly, the highest and lowest 

levels of cutting speed (vc) and feed per tooth (sz) were defined heuristically based on the 

machinists' knowledge. After that, the intermediate levels middle-low (M-L), middle (M) 

and middle-high (M-H) were calculated through Equations (3-1) to (3-4): 

𝐼𝑣𝑐 = (𝑣𝑐𝐻𝑖 − 𝑣𝑐𝐿𝑜) (𝑛𝑙𝑒𝑣𝑒𝑙 − 1)⁄        (3-1) 

𝑣𝑐𝑖 = 𝑣𝑐𝑖−1 + 𝐼𝑣𝑐                       (3-2) 

𝐼𝑠𝑧 = (𝑠𝑧𝐻𝑖 − 𝑠𝑧𝐿𝑜) (𝑛𝑙𝑒𝑣𝑒𝑙 − 1)⁄                    (3-3) 

𝑠𝑧𝑖 = 𝑠𝑧𝑖−1 + 𝐼𝑠𝑧                          (3-4) 

where I is the interval between each level of vc and sz; i stands for the intermediate levels; 

nlevel is the number of levels desired, where nlevel = 5. 

Then, the calculated values of vc and sz for the five levels and the cutting tool diameter (D) 

were further used to calculate the spindle speed (S), feed rate (f) and width of cut (ae) using 

the following Equations (3-5) to (3-7): 

𝑆𝑖 = 𝑣𝑐𝑖 ∙ 1000 𝜋 ∙ 𝐷⁄          (3-5) 

𝑓𝑖 = 𝑁 ∙ 𝑠𝑧𝑖 ∙ 𝑆𝑖          (3-6) 

𝑎𝑒𝑖 = 𝑎𝑒𝑓 𝑛𝑝𝑎𝑠𝑠𝑖⁄          (3-7) 
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where D is the diameter of the cutting tool; N is the number of tool teeth; i stands for the 

different levels (such as Lo, M-L and Hi); 𝑎𝑒𝑓 is the final width from the part design; 𝑛𝑝𝑎𝑠𝑠𝑖
 

is the i-th number of cutting passes, which must be an integer for the CNC code. The highest 

ae value is 4 mm, which has been tested by pre-experimental trials considering the 

machining holding and fixtures capabilities. 

Table 3-4 shows the levels of the cutting parameters obtained according to the above 

Equations. 

Table 3-4: Machining process parameters used in the DoE, where D = 16 and N = 4. 

Levels vc / mm min–1 sz / mm tooth-1 S / rpm f / mm min-1 ae / mm 

1.  Lo 150.0 0.025 3000 300 1.60 

2.  M-L 184.5 0.059 3670 870 2.00 

3.  Re 200.0 0.070 4000 1115 4.00 

4.  M-H 218.7 0.082 4350 1430 2.67 

5.  Hi 250.0 0.100 5000 2000 4.00 

 

The machining process parameters shown in Table 3-4 are used to calculate the material 

removal rate (MRR) with the use of Equation (3-8). MRR is a significant evaluation 

parameter for both energy efficiency and productivity criteria (Sealy et al. 2016). Thus, this 

parameter is included in several levels in the experimental design. To calculate the levels, 

the minimum and maximum calculated values of MRR using the designed MPP are used to 

define the lowest (Lo) and Highest (Hi) productivity levels. Then, the intermediate levels 

are defined heuristically considering the distribution of MRR values within the range. 

𝑀𝑅𝑅 = 𝑓 ∙ 𝑎𝑒 ∙ 𝑎𝑝 = (𝑣𝑐 ∙ 1000 ∙ 𝑁 ∙ 𝑠𝑧 𝜋 ∙ 𝐷⁄ ) ∙ 𝑎𝑒 ∙ 𝑎𝑝     (3-8) 

where 𝑎𝑝  is the depth of the cut (in this research, it was chosen as 32 mm, which 

corresponds to the full depth of the geometry of the part); and MRR is the material removal 

rate in cm3/min. 
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The levels of MRR are used for data analysis and optimisation purposes. The machining 

process parameters shown in Table 3-4 are used as input for the CAPP of the milling trials, 

while the critical efficiency operational criteria (or output factors) are measured 

accordingly based on the measurement procedures during or after the trials. 

The data collection details for each of the key efficiency operational criteria are provided 

in the following section.  

3.3.5 DATA COLLECTION EQUIPMENT AND PROCEDURES FOR THE 

PERFORMANCE OF MILLING TRIALS 

According to (Oshima 1988), measuring performance is fundamental to assuring 

performance. That is, data collection through measurements of the process responses (or 

output factors) is of paramount importance to build up the understanding on the 

relationships between input and output factors, to form the predictive models. 

Moreover, these will be essential to develop the optimisation approaches for the CNC 

machining roughing and finishing stages of this research. Therefore, the output factors (or 

critical efficiency operational criteria) will be measured for each experimental trial carried. 

The key efficiency operational criteria are energy efficiency, productivity, cutting tool life 

and surface quality, which specifics and measurement procedures are provided as follows. 

1. Power, Energy consumption and Energy Efficiency Measurement Procedures 

Energy consumption and energy efficiency have increasingly become a critical efficiency 

operational criterion of CNC machining processes due to costs, environmental and political 

aspects (Bai and Wang 2006). According to (Larsen 1980), measuring the energy 
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consumption of such processes is a crucial step to achieve more energy-efficient CNC 

machining. 

In this research, a sensor network system is used to monitor the power consumption of the 

milling trials. To obtain the power consumption, a Hall-effect current sensor system is 

clamped on the power source for feed axis and spindle servo motors, and the general 

power servo of the CNC machine. The power readings are stored in the SQL database, 

which is accessed for the data analysis at the end of each trial. The sensors system was 

calibrated before running the trials, and the sampling of sensor readings was set to 10 Hz. 

Such sampling frequency is sufficient for the application; that is, coping with the dynamics 

of the system and acquiring appropriate power consumption profiles and at the same time 

does not use substantial system memory space. Further system specifications are provided 

in (Zadeh 1965).  

The power consumption readings of all experimental trials are treated using 

MATLAB/Simulink software. The power data (P) is then converted to energy consumption 

(EC) and energy efficiency (SEC) using Equations (3-9) and (3-10), respectively, which 

considers the machining time (t) of each trial. The data was also used to determine the CNC 

machining time, used for the productivity criterion. 

The energy consumption is analysed under two distinct machining states: 

 State of engagement (SoE) represents the process of material removal (actual 

cutting) 

 State of non-engagement travelling (SoT) represents non-cutting movements (air 

cutting). 

Also, the power load (�̅�𝑆𝑜𝐸), which is the average of the power during the SoE, is introduced 

to assess the energy consumption performance during a machining process. Similarly, �̅�𝑆𝑜𝑇 
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is the average of the power during the SoT. 𝐸𝐶𝑆𝑜𝐸  and 𝐸𝐶𝑆𝑜𝑇  stand for the total energy 

consumption during the SoE and SoT, respectively. Also, the specific energy consumption 

(SEC) during the SoE is used to indicate the machining process’s energy efficiency when 

removing materials. The relevant computations are in the following Equations (3-9) to (3-

10). 

𝐸𝐶𝑖 = ∫ 𝑃𝑑𝑡
𝑡𝑖
0

          (3-9) 

𝑆𝐸𝐶𝑖 = ∫ 𝑃𝑑𝑡
𝑡𝑖
0

/𝑉                    (3-10) 

�̅�𝑆𝑜𝐸 = ∫ 𝑃𝑆𝑜𝐸𝑑𝑡
𝑡𝑆𝑜𝐸
𝑡1

∑ 𝑡𝑆𝑜𝐸
𝑛𝑝𝑎𝑠𝑠𝑛
𝑛𝑝𝑎𝑠𝑠1

⁄                   (3-11) 

𝐸𝐶𝑆𝑜𝐸 = ∫ 𝑃𝑆𝑜𝐸𝑑𝑡
𝑡𝑆𝑜𝐸
𝑡1

                                  (3-12) 

�̅�𝑆𝑜𝑇 = ∫ 𝑃𝑆𝑜𝑇𝑑𝑡
𝑡𝑆𝑜𝑇
𝑡1

𝑡𝑆𝑜𝑇⁄                    (3-13) 

𝐸𝐶𝑆𝑜𝑇 = ∫ 𝑃𝑆𝑜𝑇𝑑𝑡
𝑡𝑆𝑜𝑇
𝑡1

                    (3-14) 

where EC, P and t stand for energy consumption, power and machining time, respectively, 

of each ith trial. V is the volume removed during machining, tSoE is the machining time during 

the SoE for each cutting pass n. 

The final data are analysed using statistical methods, main effects and covariance analysis. 

The outcomes of the analysis represent an in-depth investigation of the relationships 

between spindle speed, feed rate, cutting width and cutting depth on the power load, 

energy efficiency and productivity. 

2. Cutting Tool Wear and Tool Life Measurement Procedures 

Cutting tools represent a significant cost in CNC machining processes (Benkedjouh et al. 

2015). Extending the life of cutting tools is urgently demanded due to cost and 
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sustainability aspects (Oshima 1988). Furthermore, machining process parameters play a 

significant effect on cutting tool life; consequently, a correct selection of MPP can increase 

the life of cutting tools (Bai and Wang 2006). Therefore, in this research, cutting tool life 

measurements are carried out for several experimental trials. For that, the tool wear width 

of the cutting tools is assessed throughout the cutting processes of each milling trial. 

In more details, the cutting process to produce the jaw-part design was replicated for a 

large quantity of material removal using side milling operations until the cutting tools 

reached the end of life, for each experimental trial. It is important to note that for each trial, 

a new (or sharp) cutting tool was used. The conditions of each cutting tool were assessed 

using a microscope before each cutting process. The machining process characteristics are 

illustrated in Figure 3-6. 

 

Figure 3-6: Illustration of the side milling operations. 

During the trials, the machining process is stopped at several cutting lengths (such as 10 

meters from the beginning, considering the increase of tool wear is higher at the start of 
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life, and then at every 20 meters of cutting length). Then, at each cutting length interval, 

the cutting tool is taken to the metrology lab, and the wear width condition is assessed 

using a KEYENCE VHX-5000 digital microscope. The values of wear width are then 

measured and recorded in MS Excel 2016. Such measurement process occurs until the 

wear width of the cutting tools reached the criterion of total tool life, which in this research 

is maximum flank wear (VBmax) equal to 0.4 mm – which is the recommended cutting tool 

life criterion in CNC machining for roughing processes. 

Such tool life criteria and measurement procedures of the tool wear width follows the 

standards presented in (ISO 8688-2). ISO 8688-2 has been developed on the initiative of 

the International Institution for Production Engineering Research (CIRP) and applies to 

end milling operations, which represent a significant manufacturing activity. This ISO 

specifies recommended procedures for tool-life testing for end milling operations. 

Based on that, experimental analysis of several deterioration phenomena (such as flank 

wear, chipping, and flaking) is taken at the several steps of the machining process using 

digital optical images. So, once the measured wear width is more significant than 0.4 mm, 

the cutting tool reaches the end of its useful life. 

The cutting tool reached the end of its useful life in two types of failure: gradual and 

catastrophic. Therefore, the deterioration phenomena and end of useful life assessment 

are classified accordingly, see details in Table 3-5. 

A gradual failure stands for the progressive increase of wear width during the machining 

process; while catastrophic wear stands for the sudden end of useful life due loss of tool 

fragments when the measured wear width is higher than the tool life criteria. The 

measurements of wear width are taken in three regions of the cutting tool: cutting tooltip, 
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lower cutting edge and upper cutting edge (illustrated in Figure 3-7(a)), as recommended 

by the ISO 8688-2. 

Table 3-5: Deterioration phenomena for the cutting tool. 

Failure type Deterioration phenomena End of useful life criteria 

(VBmax) 

Gradual Flank wear (VB) 

VB1 uniform flank wear 

VB2 non-uniform flank wear 

VB3 localised flank wear 

VBmax ≥ 0.4 mm 

Catastrophic Chipping (CH) or Flaking (FL) 

CH1 uniform chipping 

CH2 non-uniform chipping 

CHmax or FLmax ≥ 0.4 mm 

 

It is important to note that the cutting tool life assessment is carried at each position 

independently. More details on how the measurements of flank wear were taken can be 

seen in Figure 3-7(b). The tool deterioration phenomena and the measured wear width at 

each cutting length and each region were recorded for each experimental trial. 

 
 

Figure 3-7: (a) Positions of tool deterioration. (b) Wear on end mill cutters (Source: ISO-8688). 

The data collected on tool wear width and cutting tool life are analysed using statistical 

method main effects analysis which investigates the relationships between cutting speed, 

Tool tip

Lower cutting edge

Upper cutting edge

Tool Wear Regions
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feed per tooth and width of cut on the cutting tool life. Besides, the knowledge acquired 

from such analysis is further employed to carry out a correlational analysis between the 

cutting tool life (such as cutting length, cutting time and volume of material removed) and 

the power consumption. 

3. Surface Roughness Measurement Procedures 

Surface quality (or surface finish measured by the surface roughness) represents one of 

the main problems that engineers face in CNC machining. Two of the reasons include the 

significant impacts of the surface roughness on the technical requirements and the 

functionality of the part (De Caluwe 1997). Also, the increase of consumer needs for quality 

metal cutting of products with more precise tolerances and better product surface 

roughness has driven the industry to continuously improve quality control of machining 

processes (Zadeh 1965). Moreover, poor surface roughness profile impacts negatively on 

production lead time, costs and environment. 

The roughness profile is the basis for evaluation of the surface profile parameters (Oshima 

et al. 1988). The global evaluation of the surface roughness on a profile used for quality 

purposes in CNC milling operations is the arithmetic mean deviation (or average surface 

roughness) of the assessed profile (Ra). Consequently, this parameter is considered for the 

surface roughness and, thus, the quality criterion in this research work. 

Metrology equipment Mitutoyo FormTracer 3100 was selected to measure the surface 

roughness (Ra) of the machined workpieces from the experimental trials. This equipment 

is comprised of a stylus profilometer for taking the measurements. Then, the measured Ra 

profile was recorded and extracted for data analysis. Ra can be obtained by calculating the 

integral of the absolute value of the roughness profile height over the evaluation length, as 

shown below: 
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𝑅𝑎 =
1

𝐿
∫ |𝑌(𝑥)|𝑑𝑥
𝐿

0
        

 (3-15) 

The set-up of the experiments and data collection are presented in Figure 3-8. 

 

Figure 3-8: Experimental set up for the surface roughness measurements of machined parts. 

The data collected from all experimental trials are analysed using statistical method main 

effects analysis to evaluate the significance of input factors spindle speed and feed rate, 

which are critical in-process adjustable machining process parameters, on the surface 

roughness. The results are further implemented to develop a predictive model for this key 

efficiency operational criteria. 

3.4 DATA ANALYSIS USING MAIN EFFECTS AND 

COVARIANCE ANALYSIS 

The data analysis is a crucial step to define the significance of relationships between input 

and output factors, which is of paramount importance to build essential machining 

knowledge to aid engineers and machinists in decision making. In addition, such 

knowledge will be further used to help to select the most suitable model structure for the 

development of the predictive models. This latter is essential due to the requirements of 
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the models’ future applications such as the trade-offs between model complexity and 

computational time.  

Main effects and covariance analysis are statistical methods commonly used to analyse the 

variance of responses (or output factors) given specific changes in the input factors (Bai 

and Wang 2006). Such methods are used to assess the statistical significance of the 

relationships between the input and output factors. In this research, the main effects and 

covariance analysis will be used to investigate the relationships between the several 

machining process parameters and the key efficiency operational criteria. 

Furthermore, main effects analysis, also known as one-way analysis of variance (ANOVA), 

allows the investigation of the magnitude of change on the outputs based on the mean 

value due to the changes on the input factors. A significant main effect occurs when several 

levels of specific input factors cause a considerable deviation of the response from its mean 

value (Larsen 1980). Covariance analysis, also known as two-way ANOVA, allows the 

investigation of the multicollinearity between two inputs and a specific output factor. A 

significant covariance occurs when multiple factors are correlated not just to the output 

factor, but also to each other. 

Such results lead to essential knowledge for improving CNC machining performance based 

on the quantitative analysis and are further used to support the development of the 

predictive models for the key efficiency operational criteria as a function of the machining 

process parameters. That is, the relationships between these will be identified; therefore, 

such findings support the selection of the appropriate modelling structure and methods. 

3.4.1 PREDICTIVE MODELLING METHODS 



 

92 

 

Predictive modelling is used to establish the relationships between given input factors and 

the desired output factors. For that, classical mathematical or artificial intelligence (AI) 

techniques can be employed to establish such relationships. The key outcome is a 

predictive model of the output factor as a function of the input factors, commonly applied 

to improve decision-making processes, especially for engineering applications (De Caluwe 

1997). 

In this work, predictive models are developed and used to support decision-making CNC 

machining planning. Furthermore, such models are employed to test and validate the 

proposed optimisation solutions for the roughing and finishing stages of machining. 

Consequently, several modelling techniques, such as classical mathematical and AI, are 

tested to form the models. The model’s inputs (or predictors) stand for the MPP (i.e., 

spindle speed, feed rate, cutting width and cutting depth), while the outputs (or 

predictands) are the key efficiency operational criteria: energy efficiency, productivity, 

cutting tool life, and surface roughness. 

The decision upon the method used was made based on the relationships between 

machining process parameters and key efficiency operational criteria, identified using 

main effects analysis. Since such relationships will have their requirements and 

specifications of future applications (such as process planning or real-time systems). The 

methods used for the modelling processes are briefly explained in the following sections. 

3.4.2 MODELLING USING RESPONSE SURFACE METHODOLOGY 

Response surface methodology (RSM) is an extensively used technique for modelling and 

optimisation problems in engineering (Tengeleng and Armand 2014). It is a collection of 
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statistical and mathematical methods that describe response(s) (or output factors) as a 

function of input factors. In manufacturing, RSM is used to model and optimise processes 

from data collected through experimental tests (Zadeh 1965). 

In this methodology, it is assumed that the input factors are continuous and controllable 

by experiments with minor errors. An RSM quadratic model is a second-order regression 

model and is given as: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
𝑗>1

𝑘−1
𝑖=1                 (3-16) 

where y is the response and xi and xj are the coded levels of k independent variables; and

0 i , ii  and ij  are the regression coefficients for constant, linear, quadratic and 

interaction terms, respectively. 

In RSM, there are three other types of model structure: linear, interaction and pure 

quadratic. The selection of the model structure depends upon the order and significance of 

the relationships between input and output factors, which can be revealed through the 

main effects and correlation analysis.  

Also, the statistical significance can be tested using the p-value of each model term. The 

number of terms impact on the complexity of the model and may have a significant impact 

on the computational time when implementing that model, for example, at optimisation 

applications (Mamdani 1974). 

Moreover, in the RSM model, shown in Equation (3-16), the β coefficients are estimated 

using experimental data and the standard linear least squares method (LSM) 

3.4.3 MODELLING USING FUZZY LOGIC 
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Initially outlined by and further developed by (Mamdani and Assilian 1975) in the early 

1970s, fuzzy logic (FL) models’ applications exhibited their first industrial and commercial 

growth in Japan in the 1980s. Since then, Japanese companies have adopted such methods 

for several applications such as automobile automatic transmission, thermal control, 

washing machines, and so on (Bai and Wang 2006). Moreover, US and European companies 

have widely deployed a fuzzy logic model and controllers for several applications (Larsen 

1980). 

One of the critical strengths of FL is its ability to handle uncertainties between predictors 

and response variables (De Caluwe 1997). That is, unlike a classical control strategy, which 

is a point-to-point control, fuzzy logic control is a range-to-point or range-to-range control. 

Furthermore, FL models are knowledge-based models usually derived from a knowledge 

acquisition process (such as observations, tacit knowledge, and experimental data). 

There are two types of FL models: Mamdani (Mamdani 1975) and Sugeno (Sugeno 1985). 

Both types consist of the same four core parts: the fuzzification interface, the fuzzy 

inference engine, the fuzzy rule base and the defuzzification interface (as shown in Figure 

3-9). 

 

Figure 3-9: Fuzzy Logic Controller schematic. 
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The fuzzification interface converts classical data (or crisp input) into fuzzy data with the 

use of membership functions (fuzzy sets). The membership functions can have different 

shapes such as triangular, rectangular and trapezoidal. The selection of the best shape 

configuration depends on the relationship being modelled. In practical terms, several 

configurations of membership functions shapes of input and output factors are tested, and 

the predictive accuracy of the final model is assessed using the mean squared error 

(MSE)(Tengeleng and Armand 2014). Therefore, the minimum achieved MSE represents 

the best shape configuration. 

The fuzzy inference process combines the membership functions with the fuzzy rules to 

depict the fuzzy output. The fuzzy rules have the following form: 

IF (a set of conditions are satisfied) THEN (a set of consequences can be inferred) 

Since the antecedents and the consequents of the IF-THEN rules are associated with fuzzy 

concepts (linguistic terms), they are also called fuzzy conditional statements. The fuzzy 

sets should give the inputs for the fuzzy rule-based systems, and therefore, the crisp inputs 

will have to be fuzzified. Also, the output of a fuzzy system is always a fuzzy set, and 

therefore, the fuzzy value will have to be defuzzified. Finally, the defuzzification interface 

converts the fuzzy output into a crisp output (Bai and Wang 2006). The difference between 

Mamdani and Sugeno is seen at the defuzzification interface, wherein a Mamdani FL model 

the crisp output value is calculated through output membership functions. Whereas in the 

Sugeno FL model, the crisp output value is calculated through output mathematical 

equations (Bai and Wang 2006). 

In this work, FL is used to develop the models in the control loop for the adjustments of 

spindle speed and feed rate, which are an essential part of the supervisory control system 
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for the finishing phase of machining. Such a system is designed to promote autonomous 

control of the surface quality during the cutting process. 

3.4.4 MODELLING USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

The combination of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) 

have been attracting the interest of researchers in various scientific and engineering fields 

due to the increasing demand for adaptive intelligent systems to develop solutions for real-

world problems (Abraham 2001). 

Adaptive neuro-fuzzy inference system (ANFIS) or neuro-fuzzy is a modelling technique 

where artificial neural networks (ANN) and FL are combined to form predictive models. In 

this technique, ANN algorithms are employed to define the membership functions, fuzzy 

rules and output equations using experimental data. The critical advantage of neuro-fuzzy 

models lies in the minimisation of human error during the modelling process, given the 

nonlinearities between input and output factors. This advantage, aligned with the learning 

capabilities of the technique, defines the selection of this method for the development of 

the surface roughness predictive model – presented later in Chapter 6. 

Therefore, the neuro-fuzzy model represents a Sugeno type of FL model. The Sugeno 

method is computationally effective and works well with optimisation and adaptive 

techniques, which makes it suitable for the application. More information on this type of 

fuzzy logic model can be found in (Sugeno and Michio 1985). The general architecture of 

the two-input single-output neuro-fuzzy model is shown in Figure 3-10. 
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Figure 3-10: General architecture of the ANFIS model. 

This method is a programmed procedure for defining all the FIS coefficients (also called 

parameters) by using experimental data for training the FIS. The FIS defines the model’s 

engine, which is comprised of the fuzzification layer, rule strength layer, consequent layer, 

and the output layer. Also, the layers of the neuro-fuzzy model consist of several nodes 

described by node functions, such as layers 1 and 2 include adaptive nodes, and the node 

functions can be described as shown below:𝑄1,𝑖 = 𝜇𝐴𝑗(𝑥) {𝑗
𝑗 = 1, 𝑓𝑜𝑟𝑖 = 1,⋯ ,9
= 2, 𝑓𝑜𝑟𝑖 = 10,⋯ ,18

⋮

 

     (3-17) 

𝑄1,𝑖 = 𝜇𝐵𝑗(𝑥) {
𝑗 = 1, 𝑓𝑜𝑟𝑖 = 1,2,3,10,11,12,19,20,21
𝑗 = 2, 𝑓𝑜𝑟𝑖 = 4,5,6,13,14,15,22,23,24

⋮

     

where x and y are nodes input; Aj and Bj are linguistic labels, and µAj and µBj are 

membership functions. Membership functions define the degree of significance in which 

an input variable satisfies the defined rule premise. The fuzzy rules are written, as shown 

in Equation (3-22), as shown below: 

𝑅𝑢𝑙𝑒1: 𝐼𝐹 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛 𝑧 𝑖𝑠 𝑓1(𝑥, 𝑦)

𝑅𝑢𝑙𝑒2: 𝐼𝐹 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑧 𝑖𝑠 𝑓2(𝑥, 𝑦)
⋮

     (3-18) 

𝑅𝑢𝑙𝑒 𝑛  
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In the present case, the triangular input membership functions are applied, which 

generally form is shown in Figure 3-11. 
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Figure 3-11: Triangular membership functions crisp to fuzzy conversion equations. 

Moreover, the defuzzification process is done by using the weighted method to obtain the 

crisp output, which formula is shown in Equation (3-23).  

𝐹𝑖𝑛𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑤𝑖𝑓𝑖
𝑁
𝑖=1 ∑ 𝑤𝑖

𝑁
𝑖=1⁄       (3-19) 

where w and f represent the weight for the ith output function, respectively. 

Thus, the data collected from the experimental trials will be used to train the neuro-fuzzy 

model using backpropagation and the least squares algorithms, to obtain the predictive 

model for the surface roughness as a function of the spindle speed and feed rate. 

3.4.5 INTELLIGENT APPROACHES TO CNC MACHINING 

The two systems to enhance CNC machining sustainability developed in this research are 

within the areas of optimisation. Since optimisation algorithms have been increasingly 

applied to engineering problems to improve performance, reduce costs and improve 

processes quality. A wide range of optimisation algorithms is available, which the nature-

inspired algorithms have been proven to provide an excellent performance such as genetic 
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algorithms (Yang 2014). Nevertheless, as new problems and manufacturing requirements 

change over time, the algorithms must continue evolving to cope with such changes. 

Also, novel strategies to multi-objective optimisation in manufacturing are urgently in 

demand to effectively improve production and the use of resources. 

3.4.6 FRUIT FLY OPTIMISATION ALGORITHM 

FFOA is a novel nature-inspired optimisation algorithm which is inspired by the behaviour 

of fruit flies (Xing and Gao 2014a). This algorithm has been recently developed by (Pan 

2012), inspired by the foraging behaviour of the fruit flies, based on their sensing and 

perception characteristics to find food, especially in osphresis and vision (Xing and Gao 

2014b). Recently, this algorithm has been used for solving optimisation problems by 

mimicking the highly-advanced sense of smell of insects to detect food locations. This 

modern algorithm has presented an outstanding performance on solving optimisation 

problems, especially in business and finance areas which require highly reliable 

predictions (Pan 2012). The basic principles of fruit flies’ food search are as follows: 

i. Fruit fly will smell the food source by osphresis organ and fly towards that location 

ii. After getting close to the food location (when the smell concentration is higher), 

the sensitive vision is also used for finding food and other fruit flies’ flocking 

location 

iii. It then flies towards such location. 

Therefore, the optimisation algorithm will follow the procedures of such behaviour. 

Further details of the optimisation algorithm steps are presented in (Xing and Gao 2014a). 

Additionally, the core advantages of FFOA are a simple computational process, ease of 
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understanding and easy implementation with satisfactory performance. In this research, 

an improved version of the FFOA will be proposed to cope with the problem formulated of 

intelligent optimisation of machining processes. 

The improved algorithm of the FFOA, called iMFOA, will be further discussed in Chapter 5. 

Moreover, such an algorithm will be used to find the optimal cutting conditions for the 

multi-objective optimisation problem of energy efficiency, productivity and cutting tool 

life. The results will be further compared to the results obtained using the genetic 

algorithms, a widely used algorithm to solve engineering problems. More details on the 

genetic algorithms can be found in (Yang 2014). 
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Chapter 4: EMPIRICAL ANALYSIS AND 

ESTIMATION OF CUTTING TOOL LIFE 

BASED ON BS EN24T ALLOY STEEL 

4.1 INTRODUCTION 

In CNC machining processes, production costs and quality are significantly affected by 

cutting tool life (Liew and Ding 2008, Jantunen 2002). According to (Malekian, Park, and 

Jun 2009), cutting tool failures (i.e., wear and breakage) represent approximately 20% of 

the downtime of a CNC machine. Furthermore, these authors discovered that the cost of 

cutting tools and their replacement account from 3% to 12% of total production costs. 

Meanwhile, cutting tool wear presents a direct impact on the quality of surface finish, 

dimensional precision and ultimately cost of the finished product. 

In order to achieve the maximum potential of production efficiency, an important aspect is 

to reduce tool wear and prolong tool life (Zhu, Zhang, and Ding 2013). Therefore, the 

prediction of tool failures and enhancing cutting tool life are crucial to improve resources 
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productivity in manufacturing, i.e., reduce cost, improve quality, enhance sustainability 

and increase productivity. 

Cutting tool life is determined by tool wear, which is defined as the progressive loss during 

material removal from a machining surface (Kalpakjian 2001). Tool wear occurs due to the 

contact between the chip and the machining surface of a workpiece (Machado and Diniz 

2017). In machining, the tool wear will have a maximum value which defines the cutting 

tool life, such as maximum flank wear (VB) (ISO 8688-2 1989). This criterion of tool life is 

essential to indicate when a tool is severely worn for replacement, to avoid a poor accuracy 

and surface finish of the workpiece being machined (Benkedjouh et al. 2015). 

The nature of cutting tool wear is complicated, and further research is still necessary for 

spite of numerous investigations (Astakhov 2004). Tool wear is affected by various factors, 

such as type of material, cooling and lubrication conditions, machining process parameters 

(MPP) including cutting speed (vc), cutting depth (ap) and feed per tooth (sz) (Sağlam and 

Kaçar 2003, Senthil Kumar, Raja Durai, and Sornakumar 2006).  

Amongst the factors, MPP has been identified as a significant factor affecting tool wear 

(Bhushan, Kumar, and Das 2010, Gowd et al. 2014, Liew and Ding 2008). However, it is 

challenging for machinists/engineers to heuristically find the best selection of MPP solely 

based on their experience and tooling handbooks. The relationship between tool wear 

progression and MPP is complicated, which overwhelms operators’ capabilities.  It is 

crucial to carry out research to identify suitable MPP in order to promote longer cutting 

tool life and also meet other production requirements such as productivity or surface 

quality.  

The empirical analysis which investigates those relationships, as well as predictive 

modelling for the cutting tool life, are two binding resources to support machinists' 
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decision-making during process planning. Furthermore, when machining hardened steel, 

the wear is even more critical because the wear progresses fast and, therefore, decreases 

the tool life rapidly (Machado and Diniz 2017). The authors further stated that this is due 

to the high cutting forces and heat generated, which cause rapid tool wear and short tool 

life. In addition to, such materials usually present low thermal conductivity, this way, 

resulting in higher temperatures closer to the cutting edge, causing strong adhesion 

between the tool and workpiece material (Zoya and Krishnamurthy 2000). 

In process planning of CNC machining for hard materials, there are two main challenges to 

achieve more sustainable processes (Tao and Xun 2012, Li et al. 2014, Tai et al. 2014): 

(1) There are various machining conditions and configurations (e.g., material type, 

tooling, cooling conditions), and machining operations (e.g., turning, milling). For 

this reason, empirical studies are needed to cover such a wide range of machining 

conditions and, this way, construct the knowledge of discovering their relationship 

with the cutting tool life. 

(2) It is an expensive and time-consuming process to establish predictive models for 

cutting tool life, due to the number of resources and procedures required. For this 

reason, studies on the development of more effective ways to predict the cutting tool 

life are of paramount importance.  

Hence, in this research, the challenges above are thereby addressed by the following work: 

(1) An empirical analysis is carried out to provide an in-depth investigation of the 

relationships between MPP (including cutting speed, feed per tooth and cutting 

depth) and the cutting tool life in milling of the BS EN24T hardened steel. For that, 

several experimental trials are designed using the Taguchi L25 array for data 
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collection, where the deterioration phenomena (such as flank wear, chipping and 

flaking) of the worn cutting tools are investigated throughout the process using 

optical images. The collected data is analysed based on three different Tool 

Effectiveness (TE) indicators: total cutting time, total cutting length and total 

material removed. Then, the main effects analysis is used to identify the significance 

of MPP on each tool life indicator. The results are then discussed, and essential 

machining knowledge is built to support better decision making and promote 

improved machining strategies to prolong the cutting tool life. 

(2) The empirical results are used to do a correlation analysis between the cutting tool 

life and the mean power consumption during the state of engagement. This analysis 

is further used to investigate the feasibility of using power consumption as a 

mediator to predict the cutting tool life. Such analysis is used to support the 

development of a novel predictive model for the cutting tool life based on power 

consumption models.  

4.2 ANALYSIS OF TOOL EFFECTIVENESS INDICATORS AND 

MACHINING PROCESS PARAMETERS 

According to (Astakhov 2004), the proper assessment of tool wear requires some 

quantitative characteristics, which will be referred to as tool effectiveness indicators (tool 

life) in this work. The most common tool effectiveness used in the industry are: 

(1) the time during which the tool works continuously called total cutting time (Tmax);  

(2) the length of the tool path called total cutting length (Lmax);  
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(3) the amount of volume of removed material which the tool removes called total volume 

of material removed (Vmax). 

The value of the tool life will depend on the tool life criterion, which is typically defined as 

the maximum tool wear value (such as maximum flank wear, VBmax).  In particular, among 

the tool life indicators, the total volume of removed material has a great potential to 

enhance the performance of roughing machining, as it can be easily aligned with the 

material removal rate (MRR), an essential measure of productivity. 

In this research, investigations on the effects of MPP on the tool life indicators (i.e., Tmax, in 

min; Lmax, in m; and, Vmax, in cm3) will be carried out to support machinists and engineers 

on the appropriate selection of tool life. This process will be aligned with the optimal 

selection of machining process parameters, to enhance the life of cutting tools and, 

consequently, minimise the impacts of tool failure on cost, quality, and productivity.  

The design of experiments, experimental setup and measurement procedures presented 

in Chapter 3, Section 3.3, were performed to run the 25 experimental trials where tool wear 

data was collected for the determination of cutting tool life. This data is further used to 

calculate the tool effectiveness indicators. 

To calculate the tool effectiveness, the value of flank wear width (VB) (please refer to 

Chapter 3 Section 3.3.5 for the measurement procedures details), of each trial, was 

recorded for several cutting lengths (L) until the measured wear width was greater than 

0.4 mm, when the cutting tool failure was identified (ISO 8688-2 1989). At the point, the 

experimental trial finishes and the values of the final cutting length (Lf) and final wear 

width (VBf) were recorded. However, since the value of Lf will usually be beyond the tool 

wear criterion (VBmax = 0.4 mm), the curve fitting technique is used here to develop 

regression models in order to identify the tool life (e.g., Lmax) for the given VBmax for each 
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experimental trial. Figure 4-1 shows the example of one experimental trial where the 

several values of tool wear were measured (in Y-axis) along the cutting process for several 

cutting lengths (in X-axis). It can be noted that the moment where the failure is 

experimentally observed will be used to define Lf. However, as this point has to be avoided 

to prevent the tool failure, the point of interest (when VB = 0.4 mm) will be located between 

the failure point and the last measured cutting length (highlighted by the circle in Figure 

4-1). 

 

Figure 4-1: Flank wear measurements for several cutting lengths and curve fitting using first and 
second order. 

For the curve fitting, several model structures (such as first, second and third-order 

models) were tested to fit the data. The least square algorithm (presented in Chapter 3) 

was used to estimate the models’ coefficients, and root mean squared error (RMSE) was 

employed to assess the models’ predictive accuracy. The test showed that the third-order 

models are not suitable to represent the data due to the high residuals observed (i.e., the 

error between predicted and actual responses); therefore, poor predictive accuracy. While 

the first and second-order models represented good fit the trials based on the good 

VBmax = 0.4

Lmax = ?

VBj

Lj

Failure
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predictive accuracy observed for the trials. The models’ structure for the first and second-

order models are given in Equations (4-1) and (4-2). 

 𝑉𝐵𝑖 = 𝑎𝐿𝑖 + 𝑏 + 𝜀         (4-1) 

𝑉𝐵𝑖 = 𝑎𝐿𝑖
2 + 𝑏𝐿𝑖 + 𝑐 + 𝜀        (4-2) 

where y and x stand for the VB and L of the ith experimental trial, respectively; and a, b and 

c are the coefficients of the model. 

After that, the models were used to calculate Lmax by using the value of VB = 0.4 mm. After 

that, the values of Lmax were converted to the other tool effectiveness using the MPP and 

MRR of each trial (Equations (4-3) to (4-5)). As shown in Equation (4-4), Tmax is calculated 

by dividing Lmax by the feed rate, while Vmax is calculated by multiplying Tmax by MRR, as 

shown in (4-5). 

𝑀𝑅𝑅 = 𝑓 ∙ 𝑎𝑝 ∙ 𝑎𝑒           (4-3) 

𝑇𝑚𝑎𝑥 = 𝐿𝑚𝑎𝑥/𝑓           (4-4) 

𝑉𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥  ∙ 𝑀𝑅𝑅         (4-5) 

where f, ap, ae stand for feed rate, cutting depth and cutting width, respectively. 

The resulting Lmax, Vmax and Tmax, for each trial will be used to evaluate the impacts of the 

cutting parameters (i.e., cutting speed, feed rate, and engagement) on the tool life. Such an 

assessment is essential to: 

 Identify improved strategies and recommendations for machining processes 

 Guide the correct selection of the tool effectiveness indicator 

Also, the tool life indicators are ranked based on a priority order of cutting tool life for the 

roughing stage of machining. That is, the most desired performance will refer to the highest 
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amount of volume of material that a cutting tool can remove during its useful life. The tool 

life indicators will be ranked considering its association with such desired performance, as 

follows: first priority Vmax, second priority Lmax and third priority Tmax. 

4.3  ANALYSIS OF TOOL EFFECTIVENESS AND MACHINING 

PROCESS PARAMETERS ON TOOL WEAR 

The images and wear width data collected through the experimental trials, and 

measurement procedures (presented in Chapter 3) are used to study the tool wear 

progression and cutting tool life. The worn cutting tools were assessed based on the 

definitions of three wear phenomena according to the (ISO 8688-2 1989), as follows: 

 Flank Wear (VB) represents a loss of tool material from the tool flanks during 

cutting, which results in the progressive development of a wear land. Furthermore, 

VB has the following three types: 

o Uniform flank wear (VB1): wear land which is usually of constant width and 

extends over those portions of the tool flanks adjoining the entire length of 

the active cutting edge; 

o Non-uniform flank wear (VB2): wear land which has an irregular width and 

for which the profile generated by the intersection of the wear and the 

original flank varies at each position of measurement; 

o Localised flank wear (VB3): an exaggerated and localised form of flank 

wear, which is developed at a specific part of the flank. 

 Flaking (FL) loss of tool fragments in the form of flakes from the tool surfaces. 
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 Chipping (CH) represents an edge deterioration where parts of the edge in a cutter 

break away. Furthermore, CH has the following types: 

 Uniform chipping (CH1): loss of tool fragments of approximately equal size along 

the cutting edges. 

 Non-uniform chipping (CH2): occurs mostly in connection with cracks at a small 

number of positions. 

 Localised chipping (CH3): occurs consistently at a particular position along the 

active cutting edge. 

Experimental results in this research revealed that the above three wear phenomena affect 

the end of useful lives of cutting tools. Among them, flank wear was the most predominant 

phenomenon (80% of all the trials), followed by chipping (12%) and flaking (8%).  The 

wear phenomena of worn cutting tools, identified through the experimental trials, are 

shown in Figure 4-2. 
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Figure 4-2: Positioning of tool deterioration phenomena. 
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Also, it was noticed that when deterioration starts with uniform flank wear (VB1), the wear 

will tend to progress towards non-uniform (VB2) and localised flank wear (VB3). Then, it 

could lead to catastrophic failure led by non-uniform chipping (CH2) and flaking (FL). For 

instance, the deterioration of Experimental trial 21 began with VB1 = 0.021 mm at the 

tooltip after 10 meters of cut. At 20 meters of cut, the wear width progressed to VB2 = 0.055 

mm at the lower cutting edge. After that, the cutting tool reached the end of life abruptly at 

cutting length 40 m due to FL = 0.717 mm, which was observed at the upper cutting edge 

of the tool (shown in Figure 4-3). 
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Figure 4-3: Deterioration of cutting tool based on MPP of experimental trial #21. 

Therefore, each experimental trial was carefully assessed at each cutting length (L) until 

the worn tool reached its end of useful life. After such assessment, the trials in which worn 

cutting tools presented catastrophic failure (i.e., due to chipping or flaking) were separated 

from the gradual failure (i.e., due to flank wear). This is recommended by the ISO 8688, to 
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ensure that the assessment of the impacts of factors (such as the MPP) will be based on 

each specified wear phenomenon. 

The data set which presented catastrophic failure comprises of Experimental trials 5, 9, 10, 

12 and 21, which details are presented in Table 4-1. 

Table 4-1: Details of catastrophic failure of worn cutting tools. 

Experimental 

trial # 

Machining cutting parameters  

Deterioration 

phenomena Cutting speed 

(mm/min-1) | 

Level 

Feed rate 

(mm/min-1) 

| Level 

Cutting 

width 

(mm) | 

Level 

MRR (cm3/min-

1) | Level 

5 151 | Lo 2000 | Hi 
4 (25% of 

D) | Hi 
64 | Hi 

Non-uniform 

chipping (CH2) 

9 185 | M-Lo 1430 | M-Hi 
4 (25% of 

D) | Hi 
37 | M 

Non-uniform 

chipping (CH2) 

10 185 | M-Lo 2000 | Hi 
1.6 (10% 

of D) | Lo 
20 | M-Lo 

Non-uniform 

chipping (CH2) 

12 200 | Rec 870 | M-Lo 

3.3 (20% 

of D) | M-

Hi 

17 | M-Lo 

Flaking (FL) 

21 250 | Hi 300 | Lo 

3.3 (20% 

of D) | M-

Hi 

6 | Lo 

Flaking (FL) 

 

The results presented in Table 4-1 show that the combination of low and high levels of 

machining cutting parameters will lead to catastrophic wear, which causes short tool life 

and severe damages to the machined parts. Meanwhile, catastrophic failure occurrence is 

difficult to be predicted (M.A. Lajis, A.N. Mustafizul Karim and Amin, A.M.K. Hafiz 2008, 

Zhu, Zhang, and Ding 2013). The experimental results for the tool life of the catastrophic 

failure data set are presented in Figure 4-4. 
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Figure 4-4: Results for the tool effectiveness of the experimental trials with catastrophic failure 
occurrence. 

Figure 4-4 shows that the choice of tool life indicator impacts on the selection of the 

optimal machining process parameters. For instance, such observation is evident when 

comparing the cutting tool life of trials 10 and 21.  In trial 10 Tmax = 24 min while in trial 21 

Tmax = 101. Therefore, based on Tmax, the tool life and MPP in trial 21 are more effective than 

those of trial 10. However, if Lmax is selected as TE, then in trial 10 Lmax =47 m, while in trial 

21 Lmax = 30 m. Thus, trial 10 presents better effectiveness in the tool life and MPP. For this 

reason, the effects of each MPP (cutting speed, feed rate, and cutting width) on each tool 

life (total cutting time, cutting length and volume of material removed) will be investigated 

in order to select the maximum cutting tool life. 
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4.4 ANALYSIS OF MACHINING PROCESS PARAMETERS 

INFLUENCES ON TOOL EFFECTIVENESS INDICATORS 

In this section, the effects of MPP (i.e., cutting speed, feed rate and cutting depth) on TE: 

total cutting length Lmax, total cutting time Tmax and total volume of material removed Vmax, 

will be investigated. The main focuses of this investigation are: (1) to identify the optimal 

selection of MPP condition for each TE; (2) to identify the significance of the effect of each 

machining process parameters on each tool life using main effects analysis; (3) to identify 

optimal strategies (or rules) to support engineers on the selection of the most appropriate 

tool life indicator based on the selection of MPP, so as to achieve best machining 

performance. 

Furthermore, the overall CNC machining performance, such as productivity (described by 

the material removal rate), will also be considered during the discussions for the impacts 

of machining process parameters. The alignment between MPP planning and productivity 

is crucial for the correct selection of the tool life due to the manufacturing requirements 

(Liew and Ding 2008). As a result, the findings discussed below will support a more 

accurate decision-making process during MPP planning. The knowledge shall be used for 

either process planning phase (offline approaches) and the development of smart systems 

(online approaches). 

The results of the cutting tool life for the three tool life of the gradual wear data set are 

displayed in Figure 4-5. Similarly, to the catastrophic wear data set in the previous section, 

the results shown in Figure 4-5 indicate that there are conflicts between tool life and MPP 

selection. That is, the selection of machining process parameters may present the better 

effectiveness based on one the tool life (e.g., Tmax), but it is worse for another tool life 



 

114 

 

indicator (e.g., Vmax). For example, trial 16 (MPP: vc = 219 mm/min, f = 300 mm/min, ae = 

3.3 mm) presented better total cutting tool life (Tmax = 113 min) than trial 17 (MPP: vc = 

219 mm/min, f = 870 mm/min, ae = 4 mm), but trial presented better tool life based on the 

total volume of material removed (Vmax = 1233), also illustrated in Figure 4-5. 

Thus, the optimal choice of MPP (i.e., vc, f, ae) that will promote the best cutting tool life will 

highly depend on the selection of the most appropriate TE. Hence, further investigations 

will be carried out to identify optimal strategies (or rules) to support engineers on the 

selection of the TE, to lead to the most optimum selection of MPP and, consequently, best 

machining performance (most extended cutting tool life with considering the 

manufacturing constraints). 

 

Figure 4-5: Results for the tool effectiveness of the experimental trials with gradual failure 
occurrence. 

The longest cutting tool life for the tool life indicators Lmax, Tmax and Vmax were trials 14, 6 

and 13, respectively, which details are given in Table 4-2. 
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Table 4-2: Experimental trials that presented optimum cutting tool life for each TE. 

 

Tool Life  

Indicator 

Best 

Trial 

# 

Tool life 

Machining cutting parameters  

Deterioration 

phenomena 

Cutting 

speed 

(mm/min-

1) | Level 

Feed rate 

(mm/min-

1) | Level 

Cutting 

width 

(mm) | 

Level 

MRR 

(cm3/min-

1) | Level 

Lmax 
14 

239 m 

200 | Rec 
1430 | M-

Hi 

1.6 

(10% of 

D) | Lo 

14 | M-Lo 

Flank wear 

(VB2) 

Tmax 

6 

540 min 

185 | M-

Lo 
300 | Lo 

2 

(12.5% 

of D) | 

M-Lo 

  4 | Lo 

Flank wear 

(VB3) 

Vmax 
13 

3206 cm3 

200 | Rec 
1115 | 

Rec 

4 (25% 

of D) | 

Lo 

27 | M 

Flank wear 

(VB2) 

 

Also, the experimental results revealed that despite the choice of TE, the selection of MPP 

plays a significant effect on the cutting tool life. Since the priority for the tool life in this 

research is Vmax, due to its close relationship with the productivity (and material removal 

rate), several recommendations focusing on such tool life will be provided below. The 

recommendations will support high performance for applications in process planning for 

the roughing stage. Such a stage is more crucial to cutting tool life due to the high material 

removal rates involved during cutting 

4.5 MAIN EFFECTS OF MACHINING PROCESS PARAMETERS 

ON TOOL LIFE 

According to (Roy 2010), the knowledge of the contribution of individual factors is a key 

to deciding the nature of the control to be established on a production process. Hence, the 

primary effect analysis will be used to identify the significance of each machining cutting 

parameter on each of the tool life indicators. Figure 4-6, Figure 4-7 and Figure 4-8 show 

the main effect plots based on the experimental results collected for Lmax, Tmax and Vmax, 

respectively. Minitab v17 software was used to conduct the analysis. 
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Figure 4-6: Main effects of machining process parameters cutting speed, feed rate, and cutting 
depth on cutting tool life based on total cutting length in meters. 

 

Figure 4-7: Main effects of machining process parameters cutting speed, feed rate, and cutting 
depth on cutting tool life based on total cutting time in minutes. 
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Figure 4-8: Main effects of machining process parameters cutting speed, feed rate, and cutting 
depth on cutting tool life based on the total volume of material removed in cubic centimetres. 

Nonlinear effects of machining process parameters on the several tool life indicators have 

been identified based on the main effect plots shown in Figure 4-6, Figure 4-7 and Figure 

4-8. Furthermore, it shows that machining cutting parameters will present different main 

effect directions, depending on the tool life indicator selected. For instance, the main effects 

of feed rate on total cutting length (Lmax) and total cutting time (Tmax) diverged from Lo to 

M-Hi levels, where Lmax is better with the increase in f, but Tmax will be negatively affected.  

Also, the impacts of each machining cutting parameter on the tool life indicators, obtained 

from the above principal effect analysis, are shown in Table 4-3. 

Table 4-3: Main effects of MPP on tool effectiveness. 

Parameter Lmax Tmax Vmax 

vc 2 (0.00462) 2 (0.00091) 2 (-0.0023) 

f 3 (0.000063) 3 (-0.000583) 3 (0.000092) 

ap*ae 1 (-0.05414) 1 (-0.02906) 1 (0.00629) 

 

From Table 4-3, it can see that ap*ae is observed as the most significant MPP for Lmax and 

Vmax, followed by vc and f; f has the highest significance on Tmax. Furthermore, it shows the 

conflicting relationships between the tool life indicators and MPP combinations; this way, 



 

118 

 

emphasising how crucial the selected tool life indicator affects the choice of the optimal 

MPP. 

. Thus, the recommendations on selecting appropriate cutting parameters to improve the 

tool effectiveness in CNC machining of BS EN24T (AISI 4340), when considering high 

material removal rates (i.e., high productivity), based on the experimental results are: 

 Selecting the width of cut (ae): 

o High ae (i.e., 4 mm or 25% of tool diameter D) is best combined with Middle level 

of vc (i.e., 200 m/min) and Middle level of sz (i.e., 0.069 mm/tooth), which 

correspond to the recommended values from the tooling handbook. Such cutting 

parameters generated the highest tool effectiveness, Vr = 3,205.9 cm3/tool, and 

gradual flank wear progression (VB) until it reached the end of life, validated in 

trial 13. 

o However, High ae must not be combined with Low or High vc (i.e., below 150 above 

or 250 m/min) along with Low or High sz (i.e., below 0.015 or above 0.125 

mm/tooth). Such cutting parameters promoted the worst tool effectiveness, Vr = 

897.4, 495.1 and 583.8 cm3/tool, validated in Trials 5, 10 and 21, respectively, due 

to catastrophic failure chipping and flaking wear phenomena. 

 Selecting the feed per tooth (sz): 

o High sz (i.e., above 0.125 mm/tooth or 178% of sz recommended) is best combined 

with Middle vc (i.e., 200 m/min) and M-Low ae (i.e., 2 mm). Such cutting 

parameters promoted the best tool effectiveness amongst the trials using Hi 

cutting feed, with V = 1305 cm3/tool and flank wear progression (VB), validated 

in Trial 15. 

o However, in general, a Hi sz is not recommended since it will lead to poor tool 

effectiveness compared to the other levels of sz; for instance, the tool life would 

be twice better if the level M-Hi sz (i.e., 0.089 mm/tooth) was selected instead of 

Hi, along with M or M-Hi vc and M-Lo ae, as validated through trials 14 and 19, 

which results were Vr = 2285 and 2356 cm3/tool, respectively. Also, High sz must 

not be combined with M-Low vc (i.e., equal or below 185 m/min) and Low or Hi ae 

(i.e., below 1.6 mm or above 4 mm). Such cutting parameters promoted the worst 
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tool effectiveness, Vr = 897.4 and 495.1 cm3/tool, validated in trials 5 and 10, due 

to chipping wear phenomenon (CH2). 

 Selecting the cutting speed (vc): 

o High vc (i.e., above 250 m/min or 125% of vc recommended) is best combined with 

Middle sz (i.e., 0.071 mm/tooth) and Middle ae (i.e., 2 mm). Such cutting 

parameters promoted the best tool effectiveness amongst the trials using Hi 

cutting speed, with V = 1997 cm3/tool, validated in trial 24, and flank wear width 

progression (VB). 

o However, High vc must not be combined with Low sz (i.e., below 0.015 mm/tooth) 

and High ae (i.e., above 4 mm or 25% of D). Such cutting parameters promoted the 

worst tool effectiveness, V = 584 cm3/tool, validated in trial 21, due to flaking 

wear phenomenon (FL).  

Based on the results, the best combination of machining cutting parameters will depend 

on the tool life indicator selected. Such finding emphasises the importance of selecting the 

correct indicator for tool effectiveness during the process planning for the most 

appropriate choice of MPP. Consequently, an investigation on the impacts of each 

machining cutting parameter on each tool life is of paramount importance. 

 

4.6 CORRELATIONAL ANALYSIS BETWEEN TOOL 

EFFECTIVENESS AND THE POWER LOAD 

This section aims to provide a correlation analysis between the tool effectiveness 

indicators and the energy consumption of machined parts. Such analysis involves the 

feasibility of developing a new predictive model for the cutting tool life based on the power 

load (average power during engagement) to improve the sustainability of process 

planning. A schematic of the goal of the section is provided in Figure 4-9. 
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Figure 4-9: Schematic of the correlational analysis to develop cutting tool life model based on 
mean power consumption. 

Firstly, it is important to explain the concept of the power load (PSoE). The power load has 

been introduced in Chapter 5 as a response to the average power consumption during the 

state of engagement of side milled machined parts and can be seen in Equation (4-6). 

Furthermore, it has been theoretically studied as a mediator for the cutting tool life 

assessment, supported by the physical principles of power, force, and cutting speed. 

        (4-6) 

where PSoE and tSoE stand for the power load and cutting time during the state of 

engagement, respectively, for cutting pass n. 

It is also important to note that a validation of the correlation between the power load and 

the cutting tool life supports overcoming research barriers in CNC machining optimisation 

such as: 

 Cutting tool life assessment for the development of predictive models are very 

costly, which makes it challenging to cover the broad machining conditions 

provided the various workpiece materials type, cutting tools and cutting 

conditions. 

 Real-time prediction of cutting tool life is urgently demanded; therefore, 

investigations on feasible solutions using affordable technologies (such as energy 

monitoring systems) for online applications are of paramount importance. 

In addition to that, the energy assessment and development of predictive models are less 

costly and have received increased attention due to environmental awareness in the 
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industry sector.  Therefore, using power consumption to predict cutting tool life will allow 

the use of existent real-time power monitoring systems to support smart systems (e.g., 

cloud platforms) making cutting tool life predictions. 

The experimental results for each tool life indicator will be analysed against the power load 

estimated during the trials. Then, in order to develop the correlational analysis, the values 

of PSoE and tool life (i.e., Lmax, Tmax and Vmax) were normalised using Equation (4-7) and (4-

8). 

�̅�𝑆𝑜𝐸 = 𝛽0 + 𝛽1 ∙ 𝑆 + 𝛽2 ∙ 𝑓 + 𝛽3 ∙ 𝑎𝑒𝑎𝑝 + 𝛽11 ∙ 𝑆
2 + 𝛽22 ∙ 𝑓

2 + 𝛽12𝑆 ∙ 𝑓   (4-7) 

𝑦𝑛𝑜𝑟𝑚𝑖
= (𝑦𝑖 −min (𝑦𝑖)) (max (𝑦𝑖) −⁄ min (𝑦𝑖))     (4-8) 

where β0,1,2,3, 11,12,22 are the model coefficients, provided in Table 4-4; ynorm is the normalised 

result of each response, i.e., Lmax, Tmax, Vmax and PSoE of experimental trial i. 

Table 4-4: Power load model coefficients. 

Coefficient Value Significance (P value: α < 0.05) * 

β0 –16.1700 0.000 

 β1 0.00577 0.036 

 β2 0.01225 0.000 

 β3 0.1751 0.000 

 β11 –1e-6 0.001 

 β22 –2e-6 0.000 

 β12 2e-6 0.005 

* Interval of confidence is 95%, i.e., α=0.05. 

The normalised results of Lmax, Tmax, Vmax have been plotted against PSoE, which has been 

sorted in a descendant order to facilitate visualising the existence of correlation (see in 

Figure 4-10). 
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Figure 4-10: Plots of normalised cutting tool life Lmax, Tmax and Vmax versus the normalised mean 
power during the engagement (PSoE) of experimental trials. A strong correlation is observed in the 

graph (b), between the Tmax and PSoE. 

From Figure 4-10(b) it can be seen that Tmax presents a negative correlation with PSoE, i.e., 

the cutting tool life will decrease as PSoE increases; while based on Figure 4-10(a) and (c), 

Lmax and Vmax do not present a correlation with PSoE. The correlation between the tool life 

and PSoE were quantified using Pearson correlation method using Minitab 2017 software. 

The results are presented in Table 4-5. 

Table 4-5: Quantified correlation between power load and tool effectiveness indicators. 

Variables Correlation coefficient (rs) P-value 

PSoE vs Lmax 0.055 0.819 

PSoE vs Tmax -0.718 0.000 

PSoE vs Vmax 0.114 0.632 

 

The results in Table 4-5 validated the existence of a strong correlation between PSoE and 

Tmax, furthermore, represented by a negative linear relationship. The results further 

support the theoretical approach of employing the power load as a mediator for 

https://statistics.laerd.com/minitab-tutorials/pearsons-correlation-using-minitab.php
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predictions of the cutting tool life. It is important to note that such mediation should only 

be done using Tmax as TE, while Lmax and Vmax should not be adopted due to its weak 

correlations with the PSoE. 

In order to validate such an approach, a predictive model for the Tmax based on PSoE will be 

developed and tested accordingly. 

4.7 MODELLING AND VALIDATION OF TOOL LIFE BASED ON 

POWER CONSUMPTION 

In the literature, several models for the cutting tool life in terms of cutting time can be 

found. Taylor Equation (Taylor 1908) (see in Equation (5-9)) is amongst the most common 

models adopted for tool life predictions, which correlates the cutting tool as a function of 

cutting speed and material and tooling properties. At the same time, cutting speed is used 

in the physical principles of linear cutting as an independent variable to describe the power 

consumption along with force. 

Therefore, in this work, Equations (4-9) and (4-10) will be combined which resulting 

model correlates the Tmax and PSoE, as presented in Equation (4-11). Such a model will be 

adopted for the modelling process to test and validate the proposed correlation.  

𝑣𝑐 ∙ 𝑇
𝑛 = 𝐶          (4-9) 

𝑃𝑆𝑜𝐸(𝛽,𝑀𝑃𝑃) = 𝑣𝑐 ∙ 𝐹                                  (4-10) 

𝑇𝑛 = 𝐶 ∙ 𝐹 𝑃𝑆𝑜𝐸(𝛽,𝑀𝑃𝑃)⁄                    (4-11) 
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where vc is the cutting speed, T is the cutting tool life in minutes; n and C are the coefficients 

for tool geometry and workpiece material properties, respectively; PSoE is the power 

consumption during the state of engagement, which is a function of the coefficients β and 

the input MPP (i.e., S, f and ap*ae), and F is the cutting force acting at the cutting tool. 

In Equation (4-11), the F factor, which varies with the choice of MPP, plays a significant 

effect on the cutting tool life (M.A. Lajis, A.N. Mustafizul Karim and Amin, A.M.K. Hafiz 2008) 

(Caldeirani Filho and Diniz 2002). Consequently, the coefficients of the PSoE model, i.e., β, 

need to be adjusted to reflect the effects of such a factor. The solution is then to estimate 

the new coefficient α using the experimental results based on the data collected, this way, 

obtaining the adjusted PSoE model. Such a model will then be used on the final equation that 

correlates tool life and power load, Equation (4-12).  

𝑇𝑛 = 𝐶 𝑃𝑆𝑜𝐸𝑎𝑑𝑗(𝛼,𝑀𝑃𝑃)⁄                    (4-12) 

Equation (4-12) will be solved using the experimental results to obtain the new coefficients 

α for the 𝑃𝑆𝑜𝐸𝑎𝑑𝑗  model. For that nonlinear regression using least squares method will be 

employed for using MATLAB/Simulink 2017b. Additionally, coefficients n and C were 

obtained from the literature based on the properties of tooling and workpiece material, 

where n = 0.6 and C = 250. Also, beta coefficients from the PSoE model were used as initial 

values for the initialisation of the coefficient estimation process.  

The alpha coefficients estimated are presented in Table 4-6, in addition to, these were 

divided by beta coefficients to calculate the adjusting factors. Such factors were calculated 

for the several power model terms and will support the adjustment of other power models 

without the need for tool wear experiments. That is, the factors are employed to adjust 

power models to enhance the accuracy of tool life predictions. 
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Table 4-6: Results of coefficient estimates. 

i Constant S f apae  S2 f2 S•f 

αi 55.64 -0.031 0.02 0.44 4.24 2.61 -4.32 

βi -16.17 0.006 0.01 0.18 1e-05 2e-05 2e-05 

Adjusting factor 3.44 5.45 1.68 2.49 0.42 0.13 0.22 

 

The new model for cutting tool life prediction based on the adjusted power load presented 

a coefficient of determination R-sq = 0.92, this way, validating the excellent performance of 

employing PSoE to estimate the tool life for the Tmax. 

4.8 CONCLUSIONS 

In this chapter, cutting tool wear progression and cutting tool life were investigated using 

the empirical approach. For that, 25 experimental trials were carried out for data collection 

on side milling CNC machining operations using hardened steel BS EN24T (AISI 4340). 

The tool wear assessment revealed that flank wear was the most predominant 

deterioration phenomenon that defined the maximum life of the cutting tools, representing 

80% of the experimental trials, followed by chipping (12%) and flaking (8%). Further, the 

wear of the cutting tools initialised with uniform flank wear (VB1) and reached the failure 

gradually due to non-uniform flank wear (VB2) or localised flank wear (VB3). After that, 

20% of the cutting tools reached the failure catastrophically due to non-uniform chipping 

(CH2) or flaking (FL). Based on the experimental trials, low and high levels of machining 

process parameters (MPP) cutting speed (vc), feed rate (f) and cutting width (ae) together 

must be avoided to prevent catastrophic (or catastrophic) failure of the cutting tool. 
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Also, the results pointed out that the best selection of machining process parameters that 

will enhance the cutting tool life highly depends on the cutting tool life indicator (i.e., total 

time, cutting length or volume of material removed). Furthermore, the empirical analysis 

revealed that: 

 To achieve long cutting tool  life in terms of cutting time (in min), the best selection 

of MPP is a middle-low level of cutting speed, low level of feed rate and middle-low 

level of cutting width;  

 To achieve long cutting tool  life in terms of cutting length (in m), the best selection 

of MPP is the tooling handbook recommended level of cutting speed, middle-high 

level of feed rate and middle-low level of cutting width;  

 To achieve long cutting tool life in terms of volume of material removed (in cm3), 

the best selection MPP are: the tooling handbook recommended levels of cutting 

speed and feed rate, and the middle level of cutting width. 

Then, the effects of each machining process parameters (i.e., cutting speed, feed rate, and 

cutting width) on the tool life (i.e., Tmax, Lmax and Vmax) were further investigated using main 

effects’ analysis. The key outcomes are several recommendations on selecting appropriate 

cutting parameters to improve the in CNC machining of BS EN24T (AISI 4340), when 

considering high material removal rates (i.e., high productivity) have been provided based 

on the experimental results, in Section 4.5. The recommendations are to support engineers 

and machinists in enhancing machining performance, i.e., improving cutting tool life for 

high productivity process planning. 

Also, the empirical analysis of tool wear and tool life assessment were used to study the 

correlation between the cutting tool life and the power consumption of the machining 

trials to develop a novel predictive model. The results of the correlational study showed 

that total cutting time presented a strong correlation with the mean power consumption, 

while total cutting length and volume of material removed did not present a strong 
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correlation. Consequently, a novel cutting tool life model was developed using the power 

consumption as a mediator to predict the total cutting time using machining process 

parameters as input variables. This model was tested, and the validation results presented 

satisfactory predictive accuracy, R-sq adjusted equal to 0.92. 

The novel model is a significant step to validate the use of power consumption models to 

mediate the prediction of cutting tool life in machining operations. Such a finding has a 

significant impact on cutting tool life prediction approaches. The traditional approach to 

develop empirical models for cutting tool life requires several experimental trials which 

are expensive and time-consuming, while the power consumption measurements would 

be a more cost-effective way. 
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Chapter 5: ENERGY-EFFICIENT 

MACHINING PROCESS: QUANTITATIVE 

ANALYSIS AND OPTIMISATION 

5.1 INTRODUCTION 

It is vital to develop effective and innovative manufacturing strategies to meet the targets 

of energy savings for global sustainable societies. To develop innovative process planning 

strategies for machining, it is crucial to develop effective energy consumption modelling 

and optimisation methodologies. Energy information from machining processes is the key 

to assist in process planning or lifecycle analysis and improve CNC machining energy 

efficiency (Arriaza et al. 2017, Yingjie 2014). 

As CNC machining processes are complex in terms of the various cutting parameters, 

machining strategies, and operations, the decision-making for process planning 

overwhelms human capabilities. It is essential to develop an effective optimisation solution 

by creating knowledge-embedded soft computing methods, to assist humans in planning 

more efficient processes. To date, some energy consumption optimisation approaches for 
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process planning for CNC machining have been developed (Tao and Xun 2012, O’Driscoll 

and O’Donnell 2013). To address the current research gaps, this chapter presents 

qualitative analysis and optimisation considering key machining parameters for CNC 

processes to achieve energy-efficient processes. 

In this chapter, an experimental investigation on the relationship between crucial 

machining parameters and energy consumption has been conducted. This facilitates 

machining process planners to choose suitable production strategies to minimise energy 

consumption during machining. A multi-objective optimisation model has been 

formulated, considering the energy efficiency, productivity and cutting tool life to fine-tune 

machining parameters. An improved multi-swarm fruit fly optimisation algorithm 

(iMFOA) has been developed for solving the optimisation problem. Case studies and 

algorithm benchmarking have been conducted to validate the effectiveness of the 

algorithm. 

5.2 EXPERIMENTAL DETAILS AND RESULTS 

Taguchi fractional factorial was used to define the design of experiments, and several 

experiments were carried out based on the orthogonal principle using the machining 

process parameters shown in Table 5-1 – calculated as provided in Chapter 3. Material 

Removal Rate (MRR) is a significant evaluation factor on energy consumption and 

productivity (Diaz, Redelsheimer, and Dornfeld 2011, Kara and Li 2011, Nee et al. 2013).  

Thus, to evaluate the results considering this factor, the MRR of each trial was calculated 

using the machining process parameters in Table 5-1 and Equation (5-1): 

𝑀𝑅𝑅 = 𝑓 ∙ 𝑎𝑒 ∙ 𝑎𝑝 = (𝑣𝑐 ∙ 1000 ∙ 𝑁 ∙ 𝑠𝑧/𝜋 ∙ 𝐷) ∙ 𝑎𝑒 ∙ 𝑎𝑝     (5-1) 
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where 𝑎𝑝 is the depth of the cut (in this research, it was chosen as 32 mm, the full depth of 

the designed part); and MRR is the material removal rate in cm3/min. 

The levels of spindle speed (S), feed rate (f) and width of cut (ae) are obtained based on the 

defined levels of vc and sz, the tool diameter (D) and number of tool teeth (N) using the 

Equations (3-5) to (3-7), provided in Section 3.3.4. 

Table 5-1: Machining process parameters of experimental trials. 

Levels vc / mm 

min–1 

D / 

mm 

N / 

tooth 

sz / mm 

tooth-1 

S / 

rpm 

f / mm 

min-1 

ae / 

mm 

 

1.  Re 200.0 16 4 0.070 4000 1115 4.00  

2.  Lo 150.0 16 4 0.025 3000 300 1.60  

3.  M-L 184.5 16 4 0.059 3670 870 2.00  

4.  M-H 218.7 16 4 0.082 4350 1430 2.67  

5.  Hi 250.0 16 4 0.100 5000 2000 4.00  

 

To correlate the MRR as an indicator for the productivity and to facilitate decision-making, 

the minimum and maximum calculated values of MRR have been used to define the lowest 

(Lo) and Highest (Hi) productivity levels. The intermediate levels were defined 

heuristically considering the distribution of MRR values within the range. Table 5-2 shows 

the experimental design, including the machining process parameters and productivity 

levels. 

The experimental trials were replicated twice; the results between trials showed 

variations lower than 3%, therefore, presenting satisfactory replicability. During the 

experimental trials, the power data monitored as a function of time shows that different 

sets of machining parameters generated different power profiles. Figure 5-1 shows the 

power profiles of the milling trials, which demonstrate the impacts of machining 

parameters sets on machining time and power loads. 
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Table 5-2: Experimental design based on Taguchi DoE. 

Trial S / rpm f / mm min–1 ae / mm ap / mm MRR 

/ mm3 min–1 

1 3000 1115 4.00 32 142720 

2 3670 1115 4.00 32 142720 

3 4350 1115 4.00 32 142720 

4 5000 1115 4.00 32 142720 

5 4000 300 4.00 32 38400 

6 4000 870 4.00 32 111360 

7 4000 1430 4.00 32 183040 

8 4000 2000 4.00 32 256000 

9 3000 870 4.00 32 111360 

10 3000 1430 4.00 32 183040 

11 3000 2000 4.00 32 256000 

12 3670 870 4.00 32 111360 

13 3670 1430 4.00 32 183040 

14 3670 2000 4.00 32 256000 

15 4350 870 4.00 32 111360 

16 4350 1430 4.00 32 183040 

17 4350 2000 4.00 32 256000 

18 5000 870 4.00 32 111360 

19 5000 1430 4.00 32 183040 

20 5000 2000 4.00 32 256000 

21 4000 1115 1.60 32 57088 

22 4000 1115 2.00 32 71360 

23 4000 1115 2.67 32 95266 

24 4000 1115 4.00 32 142720 

 

The data collected for power consumption and time of all experimental trials were treated 

using data analysis software.  The values of the power load (𝑃𝑆𝑜𝐸) have been correlated to 

the cutting tool’s life based on the physical principles and machining parameters influences 

(see Equation (5-2). Based on the literature, it is well-known that high cutting speeds and 

high cutting forces will decrease the tool life, therefore, by employing �̅�𝑆𝑜𝐸  as a mediator 

based on Equation (5-2), high values of power load will imply short tool life. Accordingly, 

the values of the power load were normalised and used to define the several degrees of 

tool life. 



 

132 

 

 

Figure 5-1: Power profile of machining experiments on BS EN24T Alloy workpiece (a) Spindle 
speed analysis: power load in ‘C’ is not significantly affected from Low to High levels of S (b) Feed 

rate analysis: power load increases, while machining time t decreases, from Low to High levels of f. 

The results are summarised in Table 5-3. 

𝑃𝑆𝑜𝐸 = 𝐹 ∙ 𝑣𝑐          (5-2) 

where F and vc represent the combined axial and radial cutting forces and the cutting 

speed, respectively. 

 

 

 

 

Power Consumption

Power Consumption

Legend: A) Spike of 
Spindle ON 

B) Spindle ON + 
Standby Power 

C) Power Load (SoE):
Net Cutting Power 

D) Power SoT:
Air Cutting Power

E) Standby 
Power 
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Table 5-3: Experimental results for milling on BS EN24T alloy steel. 

Trial 

EC / kJ 

% SoT 

t / s 

�̅�𝑺𝒐𝑬 

/ kW 

Cutting 

Tool 

Life 

Level 

SECSoE  

/ kJ cm–3 

Energy 

Efficiency 

Level 
SoE SoT SoE SoT 

1 580 92 14 20 10 29 M 11 M-H 

2 595 94 14 20 10 30 M 12 M-H 

3 608 97 14 20 10 30 M 12 M-H 

4 603 100 14 20 10 30 M 12 M-H 

5 1297 128 9 78 21 17 Hi 25 Lo 

6 694 94 12 26 11 27 M-H 14 M-H 

7 544 79 13 16 8 34 M-Lo 11 M-H 

8 497 63 11 12 6 41 Lo 10 Hi 

9 1519 185 21 80 23 19 Hi 20 M-L 

10 1222 146 19 63 17 21 M-H 16 M 

11 1199 103 8 48 13 25 M-H 16 M 

12 1011 61 6 32 9 32 M-L 13 M-H 

13 1066 86 7 40 10 27 M-H 14 M-H 

14 878 88 9 24 8 37 M-Lo 11 M-H 

15 650 143 18 16 9 41 Lo 8 Hi 

16 1105 97 8 40 10 28 M-H 14 M 

17 828 107 11 24 8 35 M-L 11 M-H 

18 675 142 17 16 9 42 Lo 9 Hi 

19 1118 97 8 40 10 28 M-H 15 M 

20 848 106 11 24 8 35 M-L 11 M-H 

21 686 146 18 16 9 43 Lo 9 Hi 

22 1158 107 8 40 10 29 M 15 M-H 

23 902 113 11 24 8 38 Lo 12 M-H 

24 688 159 19 16 9 43 Lo 9 Hi 

5.3 EXPERIMENTAL RESULTS AND ANALYSIS 

Qualitative analysis is an efficient means for obtaining knowledge from a complex 

environment, and thus this method is used in this section to understand the relationships 

of crucial cutting parameters in machining processes and the energy consumption to 

produce BS EN24T (AISI 4340) parts. 

The analysis of the significance of the critical parameters on the energy consumption 

reveals the order of relationships between each input and this response and supports the 
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selection of the correct mathematical model for the optimisation. Also, this section will 

contribute, mainly, as follows: 

 Machining strategies for the selected workpiece material, BS EN24T (AISI 4340), 

where the assessment of cutting parameters on key performance criteria when 

machining such a material, widely used in the industry, will support machinists and 

engineers in improving manufacturing processes. 

 The introduction of power load as a critical evaluation criterion and the validation 

of its significance when considering the effects of cutting parameters through the 

qualitative analysis. 

The results of �̅�𝑆𝑜𝐸  and SEC in Table 5-3 reveal that the machining performance (analysed 

through the power, energy and time) is significantly affected by the selection of machining 

parameters and key trade-offs have been identified. For instance, Trial 24 requires the 

highest power load, 43 kW, while Trial 5 presents the lowest, 16.53 kW. Nevertheless, the 

energy efficiency of Trial 24 (SEC=9 kJ/cm3) is better than that of Trial 5 (SEC=25 kJ/cm3), 

that is due to the higher machining time spent for Trial 5. 

Furthermore, there are two main observations based on the results for the energy 

consumed during the state of engagement (SoE) and the state of travelling (SoT): 

 The energy required during the SoT is between 6% to 21% of the overall EC (𝐸𝐶𝑆𝑜𝐸  

+ 𝐸𝐶𝑆𝑜𝑇 ) for all trials. The results reveal that the amount of energy consumed 

during the SoE is the most significant over the SoT. Moreover, SoE varies from 79% 

to 94% of the overall energy consumed. Consequently, the investigation finds that 

the machining parameters play an even more critical role in the energy efficiency 

of the production. 

 Based on the energy results for SoT, it is observed that the amount of energy varies 

significantly between the experimental trials. This was caused by the different safe 

clearance distance set in the numerical control code (NC code), in which the cutting 

tool moves with the supplied feed rate and spindle speed (i.e., the experimental 

values) to approach the workpiece. These observations are machine-dependent 
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(e.g., vector drive horsepower and drive technology). Moreover, are out of the 

scope of this research work, but will be considered for future work. 

The effects of machining parameters, spindle speed (S), feed rate (f) and width of cut (𝑎𝑒) 

on the power, energy and time required during SoE are investigated as follows.  

5.3.1 SPINDLE SPEED EFFECTS 

The main effects of spindle speed on the power load and energy are analysed. The results 

of the experiments are presented in Figure 5-2. 

 

 

Figure 5-2: Experimental results on BS EN24T alloy (a) Relationship between S and (PSoE ), mean 
power oscillation is ± 5% (b) Relationship between S and SEC. 

The main results from the experimental trials show that: 

 Changes in the spindle speed do not generate substantial effects on �̅�𝑆𝑜𝐸 , as shown 

in Figure 5-2(b). S does not affect the machining time as previously known. 



 

136 

 

 During the travelling time, more energy is wasted at higher levels of spindle speed, 

since the spindle motor requires more power at higher speeds. Furthermore, the 

results revealed an increase in energy demand of approximately 3% during the SoT 

caused by the increase in approximately 20% in the spindle speed. 

 The power load �̅�𝑆𝑜𝐸  increases slightly from the lowest level of S until the 

recommended level of S. Then, beyond the recommended level, a slight drop of �̅�𝑆𝑜𝐸  

is identified (as shown in Figure 5-2(a)). This way, the middle-high level of S 

represents the maximum point at which by increasing S the amount of material 

removed per cutting tool revolution has a positive effect on the energy 

consumption, considered that all other machining process parameters are kept 

unchanged. This reveals that the cutting load per unit time is smaller. Therefore, 

high levels of S promote a slight decrease in the power load. 

 S does not have substantial effects on energy efficiency, as shown in Figure 5-2 (b). 

The results show that a selection of low or high levels of S is more appropriate to achieve 

energy efficiency in machining processes. The low level due to the savings on the state of 

travelling, and the high level due to the savings due to the smaller cutting load per unit 

time. However, it is essential to notice that high cutting speeds are known to decrease the 

cutting tool life (Caldeirani Filho and Diniz 2002). 

5.3.2 FEED RATE EFFECTS 

Feed rate (f) is one of the significant factors that determine the material removal rate 

(MRR) and, hence, productivity, as shown in Equation (5-1). That is, an increase in f while 

maintaining other parameters unchanged will lead to a greater MRR. Figure 5-3 shows the 

results of the experimental trials for the feed rate analysis. 

The main findings of this experimental investigation are: 
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 Substantial effects of the f on the power load and machining time 𝑡𝑆𝑜𝐸  are observed. 

Through the standard deviations of the power load (𝜎𝑓𝑃𝑆𝑜𝐸
= 8, and mean �̅�𝑓𝑃𝑆𝑜𝐸

=

30 kW), and machining time (𝜎𝑓𝑡 = 25, and mean �̅�𝑓𝑡 = 33 s), these values show 

that f generates a more significant impact on the machining time compared to the 

power load, approximately three times. This could be a conflict when considering 

a sustainable process, since the increase in the feed rate would increase the 

productivity rate but, at the same time, increase the power load. 

 Increasing the feed rate reduces the machining time, as shown in Figure 5-3(a). The 

machining time is reduced by approximately 85% at the maximum level of feed 

rate when compared to the lowest level of f.  

 Increasing the feed rate increases the machining power load, as shown in Figure 

5-3(b). The power load at the high level of f is approximately three times greater 

than at the low level. 

 A high level of f promotes better energy efficiency owing to savings in machining 

time. The process at the low level required 2.6 times more specific energy (kJ/cm3) 

compared to the high level, shown in Figure 5-3(c). However, the drawback is that 

it produces higher cutting forces and higher temperatures at the cutting tool, 

consequently, shortening the tool life. 

The results suggest that the selection of Middle-low or Middle-high feed rate levels are 

more appropriate to make a balance between energy, time and cutting tool life. 
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Figure 5-3: Experimental results on BS EN24T alloy (a) Relationship between tSoE and f (b) 
Relationship between f and PSoE, mean power oscillation is ± 5% (c) Relationship between SEC and 

f. 

5.3.3 CUTTING WIDTH EFFECTS 

Width of cut influences material removal rate in a machining process, as shown in Equation 

(4-1). The experimental results of ae on machining processes are presented in Figure 5-4. 
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Figure 5-4: Experimental results on BS EN24T alloy (a) Relationship between tSoE and ae (b) 
Relationship between ae and PSoE, mean power oscillation is ± 5% (c) Relationship between SEC 

and ae. 

Significant effects of ae on the power load, machining time and energy efficiency are 

revealed. A summary of the observations is provided below: 

 To clarify the significant effects of ae on the power load and machining time, the 

standard deviations and means are provided as follows. For the power load 

𝜎𝑎𝑒𝑃𝑆𝑜𝐸
= 7, and mean �̅�𝑎𝑒𝑃𝑆𝑜𝐸

= 24 kW. For the machining time,  𝜎𝑎𝑒𝑡 = 24 , and 
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mean �̅�𝑎𝑒𝑡 = 56 s. These values show that changes in the cutting width will have a 

more significant effect on the machining time than on the power load, which 

supports positively a trade-off when considering productivity and cutting tool life. 

 Increasing the cutting width will decrease significantly in machining time, as 

shown in Figure 5-4(a). The machining time at the Hi level was 60% shorter 

compared to the time at the Lo level. 

 Increasing the cutting width will also increase the radial contact between the cutter 

tool and the workpiece. It causes high stress and power load during the material 

removal process. Consequently, it increases the workload at the tooltip, which can 

be seen through the power load response shown in Figure 5-4(b). The results 

reveal that the power load at Hi level (4 mm) is 38% greater than at the Lo level 

(1.67 mm), and a nonlinear relationship describes it. 

 A High width of cut will give a more energy-efficient process owing to the 

reductions in machining time. However, the drawback is the high power load, 

which means greater cutting forces and chip load on the cutter tool, consequently, 

shortening the tool life. For instance, at Hi level of ae, the operation was 33% more 

energy-efficient compared to the Lo level shown in Figure 5-4(c). 

The results suggest that the selection of Middle-low or Middle-high levels are more 

appropriate when considering energy, time and tool life for a sustainable process. 

Nevertheless, the trade-offs revealed by the qualitative analysis emphasise that the 

selection criteria of optimal cutting parameters should also consider production 

constraints such as lead time or cutting tool availability; otherwise, the process is not 
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productive, energy-efficient, nor improves the cutting tool life. This observation is 

considered further in the optimisation problem. 

5.4 OPTIMISATION OF ENERGY CONSUMPTION 

In this section, an optimisation problem is presented considering the experimental results 

collected. Also, the fitness functions for the optimisation, i.e., energy efficiency, cutting tool 

life and productivity are defined. 

5.4.1 OPTIMISATION MODELLING 

The energy required during the state of engagement (SoE) for the milling on BS EN24T 

alloy (AISI 4340) accounted for 79% to 94% of the overall energy consumption. Therefore, 

significant energy saving in machining processes is possible if the energy during SoE 

(ECSoE) could be minimised. The following formulas represent ECSoE and the related 

parameters: 

𝑡𝑆𝑜𝐸 = 𝑉 𝑀𝑅𝑅⁄           (5-3) 

𝐸𝐶𝑆𝑜𝐸 = �̅�𝑆𝑜𝐸 ∙ 𝑡𝑆𝑜𝐸 = �̅�𝑆𝑜𝐸 ∙ 𝑉 𝑀𝑅𝑅⁄        (5-4) 

�̅�𝑆𝑜𝐸 = 𝑓1(𝑆, 𝑓, 𝑎𝑒 ∙ 𝑎𝑝)         (5-5) 

𝑀𝑅𝑅 = 𝑓2(𝑓, 𝑎𝑒 ∙ 𝑎𝑝) = 𝑓 ∙ 𝑎𝑒 ∙ 𝑎𝑝       (5-6) 

where 𝑃𝑆𝑜𝐸  is the average power used during SoE, 𝑉 is the removed volume of material, 

MRR is the material removal rate, S, f, ae, ap are the cutting parameters spindle speed, feed 

rate, cutting width and cutting depth, respectively.  



 

142 

 

In order to establish the function of �̅�𝑆𝑜𝐸 , a Responsive Surface Regression Model was 

developed. The model structure is presented below: 

�̅�𝑆𝑜𝐸 = 𝛽0 + 𝛽1 ∙ 𝑆 + 𝛽2 ∙ 𝑓 + 𝛽3 ∙ 𝑎𝑒𝑎𝑝 + 𝛽11 ∙ 𝑆
2 + 𝛽22 ∙ 𝑓

2 + 𝛽12𝑆 ∙ 𝑓   (5-7) 

where β0,1,2,11,12,22 are coefficients to be determined. 

The experimental results were used to calculate the coefficients of the PSoE regression 

model. The output data was filtered using a single exponential smoothing technique. This 

is an additional step before the coefficient estimation process to reduce the random 

fluctuations in the time series for the collected data, thus providing a more accurate pattern 

of the power load of each experimental trial. By taking this step, the accuracy of the final 

predictive model is increased by 3%. Subsequently, non-linear regression and the least 

squares methods are employed to estimate the model's coefficients. The estimated 

coefficients are given in Table 5-4. The accuracy of the smoothed model is R2-adjusted 

equal to 0.94, which shows the achievement of satisfactory predictive accuracy. 

Table 5-4: Power load model coefficients. 

Coefficient Value Significance (P value: α < 0.05) * 

β0 –16.1700 0.000 

 β1 0.00577 0.036 

 β2 0.01225 0.000 

 β3 0.1751 0.000 

 β11 –1e-6 0.001 

 β22 –2e-6 0.000 

 β12 2e-6 0.005 

* Interval of confidence is 95%, i.e., α=0.05. 

This model was validated using experimental validation data. The results of the estimated 

�̅�𝑆𝑜𝐸  presents a predictive accuracy R2 of 0.98, which shows excellent performance. 

From Equation (5-8), it can be observed that to minimise 𝐸𝐶𝑆𝑜𝐸 , �̅�𝑆𝑜𝐸  should be minimised 

and MRR should be increased. Based on this, an optimisation objective (fitness function) to 
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minimise 𝑆𝐸𝐶𝑆𝑜𝐸  has been formulated, and the indicator for energy efficiency, is set up 

below: 

{
 
 

 
 
𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑆𝐸𝐶𝑆𝑜𝐸 = 𝑉 ∗ (𝜌1 ∙ �̅�𝑆𝑜𝐸 + 𝜌2 ∙ 1 𝑀𝑅𝑅⁄ )

Subject to:
3000 ≤ 𝑆 ≤ 5000
300 ≤ 𝑓 ≤ 2000
51.2 ≤ 𝑎𝑒𝑎𝑝 ≤ 128

     (5-8) 

where 𝑥1, 𝑥2 and 𝑥3 are spindle speed, feed rate and cutting depth, respectively; and, ρ1 and 

ρ2 are weightings, where ρ1 + ρ2 = 1, and V is the volume of material removed. 

�̅�𝑆𝑜𝐸  is also related to the cutting tool’s life. Increases in �̅�𝑆𝑜𝐸  will generate increases in 

cutting forces and temperature on the cutting tool so that the life of the tool will be reduced. 

MRR represents the process' productivity. Regarding the setting of the two weights, a 

strategy has been designed heuristically based on the relevance of the power load and 

material removal rate to the cutting tool life and productivity, respectively. Besides, 

machinists experts were contacted to assist in defining the weights based on their 

experience and tooling handbook. The results of the strategy for the settings are presented 

in Table 5-5. 

Table 5-5: Weighting strategy for optimisation algorithm based on the manufacturing 
requirements. 

Description Weighting Selection* 

Cutting tools are the major constraint.  0.8 ≤ ρ1 ≤ 0.9  

Cutting tools are more constrained than lead time. 0.5 < ρ1< 0.8 

Both resources are constrained.  ρ1 = ρ2 = 0.5 

Lead time is more constrained than cutting tools. 0.5 <  ρ2 < 0.8 

Lead time is the major constraint. 0.8 ≤  ρ2 ≤ 0.9 

*Weights law: ρ1 + ρ2 = 1 

The appropriate strategy is chosen by the engineer or process planner based on the 

immediate availability of the resources, cutting tools, and lead time – or which has the 

greatest immediate priority. After that, the appropriate weights, ρ1 and ρ2, are selected 
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from the weighting strategy table and included into with the objective. This way, the 

objective function within the optimisation process is reconfigured to align the machining 

process parameters with the factory’s immediate requirements. As a result, the optimal 

solution achieved by the optimisation process for the machining operation is also the best 

solution for the factory. 

5.4.2 OPTIMISATION ALGORITHM: IMPROVED MULTI-SWARM FRUIT-FLY 

OPTIMISATION ALGORITHM 

An improved optimisation algorithm, based on the recent fruit fly optimisation algorithm 

(FFOA), was initially considered to solve the optimisation problem formulated. FFOA is a 

nature-inspired algorithm for solving optimisation problems by mimicking the highly-

advanced sense of smell of insects to detect food locations (Xing and Gao 2014, Chen et al. 

2013) However, its ability to solve trade-offs of machining parameters has not yet been 

thoroughly investigated. 

To address this gap, a multi-swarm fruit fly optimisation algorithm (MFOA) developed by 

(Pan 2012, Yuan et al. 2014) was improved to cope with the machining optimisation. The 

optimisation problem formulated (in Equation (5-8) comprises three input variables (i.e., 

machining parameters vc, sz and aeap) which are constrained by the safe boundaries. 

However, the MFOA algorithm is designed to solve problems with two non-constrained 

input variables. Consequently, further improvements were made to the original MFOA 

algorithm. Significant changes to achieve improved MFOA (iMFOA) can be found below: 

 A third axis is included to specify the fruit fly coordinates (i.e., positions), so the 

algorithm can cope with the three input variables. 
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 A penalty function is included to constrain the power load fitness function, which 

cannot be above a certain level to guarantee energy sustainability. 

Figure 5-5 shows the algorithm schematic and illustration of the iMFOA. 

 

Figure 5-5: Flowchart of the improved MFOA (iMFOA) algorithm. 

Firstly, an engineer or process planner defines the production weights (i.e., 1 and 2), to 

align the optimisation engine with the immediate production priorities (cutting tool life 

and lead time), so the algorithm can be initialised (STEP I). Then, based on the process' safe 

boundaries (calculated in STEP II) the fruit flies' populations (i.e., sub swarms) are 

generated in STEP III. Each fruit fly position, i.e., (x, y, z)i, represents a combination of the 

cutting parameters S,  f and ap ae. This process can be represented as follows: 
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𝑋𝑛𝑒𝑤(𝑖, 𝑗) = 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖, 𝑗) + 𝑟𝑎𝑛𝑑𝑖(𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝑆𝑝𝑖𝑛𝑑𝑙𝑒𝑆𝑝𝑒𝑒𝑑)    (5-9) 

𝑌𝑛𝑒𝑤(𝑖, 𝑗) = 𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖, 𝑗) + 𝑟𝑎𝑛𝑑𝑖(𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝐹𝑒𝑒𝑑𝑅𝑎𝑡𝑒)               (5-10) 

𝑍𝑛𝑒𝑤(𝑖, 𝑗) = 𝑧𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖, 𝑗) + 𝑟𝑎𝑛𝑑𝑖(𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐷𝑒𝑝𝑡ℎ)              (5-11) 

where X, Y and Znew are the fruit flies’ positions of the new populations; i is the fruit fly, and 

j is the sub swarm; x, y and zinitial are the initial positions which are set to be zero at the 

start; randi is a computational function to select the respective values within the cutting 

parameters minimum and maximum boundaries. 

To calculate the smell concentration (fitness) of each fruit fly, in STEP IV, the new 

populations for fruit flies are called into each of the fitness functions, i.e., SEC, �̅�𝑆𝑜𝐸  and 

MRR. In the optimisation problem, these fitness functions are combined to save 

computational time as follows: 

𝑆𝑚𝑒𝑙𝑙𝑆𝐸𝐶(𝑖, 𝑗) = 𝜌𝑖 ∙ �̅�𝑆𝑜𝐸(𝑖, 𝑗) + 𝜌2 ∙ 1 𝑀𝑅𝑅(𝑖, 𝑗)⁄                 (5-12) 

The output values of �̅�𝑆𝑜𝐸  and smell concentration are evaluated by a penalty function 

which judges the energy efficiency and cutting tool life based on the knowledge embedded 

into the system. If the power load is above the thresholds defined empirically, it reduces 

the smell concentration considerably. This supervisory loop ensures that inefficient 

cutting conditions are not identified as local or global best, in STEP V and, consequently, 

not retained in STEP VI. 

Fruit flies (i) with the highest smell concentration within a sub swarm (j) are identified as 

local bests, while the fruit fly represents the global best with highest smell concentration 

among all sub swarms. Further, the local bests are used to substitute the initial positions 

and generate the new populations for the next iteration. This process occurs recursively 
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until the maximum number of iterations is reached, so the global best fruit fly, which holds 

the optimal cutting parameters and smells concentration path, is achieved. 

5.5 CASE STUDY FOR VALIDATION OF THE OPTIMISATION 

APPROACH 

A case study, including three real-case manufacturing scenarios, is presented in this 

section. This way, the proposed optimisation problem, and iMFOA algorithm can be 

assessed. This will be done by evaluating the optimisation outputs considering some 

essential rules to achieve sustainable machining. The details of the manufacturing 

scenarios are given in Table 5-6. 

Table 5-6: Manufacturing scenarios for the optimisation problem. 

Real-case scenarios of immediate factory requirements Immediate Production Priority 

a) The production batch requires highly expensive cutting 

tools; however, the lead time is also a priority since there is 

a fine for not meeting the deadline. 

If both resources are a priority, then 

the same weight is given to both resources:  

1 = 2 = 0.5 

b) The deadline for delivering the production order has 

been extended; the manager asks to reconfigure the 

machining operations to prolong cutting tool life. 

If prolonging cutting tools’ life is the 

priority, then higher weight is given to tool 

life:  

1 = 0.8, 2 = 0.2  

c) The deadline for delivering the production order has 

been shortened; the manager asks to reconfigure the 

machining operations to boost productivity. 

If shortening lead time is the priority, then 

higher weight is given to productivity:  

1 = 0.2, 2 = 0.8 

 

Specific energy consumption (SEC), power load (PSoE) and material removal rate (MRR) are 

used as key efficiency operational criteria for the energy efficiency, cutting tool life and 

productivity, respectively. Furthermore, the optimal performances are analysed 

considering the rules for sustainable machining, as below:  
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 The smaller the SEC, the better the energy efficiency. 

 The higher the MRR, the better the productivity. 

 The smaller the PSoE, the better the cutting tool life. 

Accordingly, the optimisation results for each manufacturing scenario will be discussed 

based on the above rules. This further supports the selection of the best result amongst the 

three optimisation algorithms employed for benchmarking analysis: GA (Yang 2014), 

FFOA (Xing and Gao 2014) and the iMFOA. 

The details for the algorithm initialisation are: the production constraints' weights are 

defined heuristically based on each scenario characteristics. Then, the initial set up for the 

algorithm engine is defined as the number of subswarms equal to 10, size of the population 

of fruit flies per subswarm equal to 25, and the maximum number of iterations equal to 

1000. 

The optimisation algorithm was run under the initial set-up. Figure 5-6 shows the smell 

concentration path containing the globally best values during the convergence to the 

optimal solution from the iMFOA algorithm. This figure shows that there have not been 

significant improvements in the smell concentration beyond 375 iterations. That is, the 

globally best values of the machining process parameters at 375 iterations, found by the 

algorithm, are close enough to the best MPP. Further, as the computation time is a critical 

factor to indicate the system performance of an optimisation process, 400 iterations have, 

therefore, been selected in this work as the best trade-off between computation time and 

output performance. 

Table 5-7 shows the optimisation results, i.e., optimal cutting parameters and estimated 

SEC, MRR and 𝑃𝑆𝑜𝐸 , obtained from the algorithms used to solve the three manufacturing 

scenarios. 
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Figure 5-6: Smell concentration path during optimisation using the iMFOA algorithm. 

Table 5-7: Optimisation results and calculated key efficiency operational criteria. 

Scenario 

Constraint 

Optimisation 

Algorithm 

Optimal Cutting Parameters Key Sustainable Indicators 

Cutting 

Speed / 

mm min–

1 

Feed per 

tooth / 

mm 

tooth-1 

Engagement 

depth / mm 

SEC / 

kJ cm–

3 

MRR / 

cm3 

min–1 

Power 

Load / 

kW 

a) 

Lead time 

and 

Cutting 

tools 

iMFOA 250.3 0.0336 80.10 17.6* 53.7 15.8 

FFOA 167.8 0.0444 103.30 20.1 61.3 20.6 

GA 250.4 0.0338 77.59 17.7 52.2 15.4 

b) 
Cutting 

tools 

iMFOA 151.1 0.0188 55.00 15.8 20.6 5.4* 

FFOA 175.2 0.0259 58.80 24.8 21.2 8.8 

GA 237.8 0.0212 52.00 17.9 20.9 6.3 

c) Lead time 

iMFOA 250.2 0.1236 105.70 12.7 157.2* 33.4 

FFOA 152.5 0.0611 90.60 18.3 67.1 20.5 

GA 163.4 0.1096 107.12 13.1 152.8 33.5 

*Optimal value based on rules and manufacturing requirements. 

The results from the optimisation process highlighted in Table 5-7 are summarised below: 

 From case a), since both technical requirements lead time and cutting tools are 

constrained, the best solution will be decided considering the most energy-efficient 

process. That is, the set of machining parameters that provides the lowest specific 

energy consumption represents the optimal solution for this scenario. From Table 

5-7, the results of the iMFOA algorithm provide the most energy-efficient process, 

indicating this is the optimal solution. Although the genetic algorithm achieved 

similar performance, when comparing iMFOA with FFOA, the iMFOA provides 

approximately 12% more energy savings per cm3 of material removed. 
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 From case b), cutting tools are the production constraint, and as stated previously, 

the lifetime of the cutting tools is proportionally correlated with the power load. 

Consequently, the best solution will be decided considering the lowest power load 

value. From, the iMFOA can predict conditions that have 13% lower power load in 

comparison with the popular GA algorithm, or 38% improvement compared to the 

FFOA algorithm. 

 From case c), the lead time is the production constraint. The best solution will be 

decided considering the highest material removal rate value. From Table 5-7, MRR 

obtained from the results obtained by iMFOA presents 3% better productivity rate 

compared to GA; and 2.3 times better productivity rate while still being more 

energy-efficient (5.6 fewer kJ per cm3 of material removed) compared to FFOA. 

 The results from the iMFOA algorithm showed better performance, especially when 

compared to the FFOA algorithm. This validates the improvements made to the previous 

MFOA and the advantages of using this swarm algorithm in machining optimisation. Also, 

in this case, iMFOA presented a slightly better performance than GA. In this case, iMFOA 

was able to find a better solution with the same search space and the number of iterations. 

This case study uses real-case manufacturing requirements to validate the optimisation 

approach proposed in this research. Furthermore, it proves that the weighting strategy is 

an easy and effective method to align the manufacturing requirements, this way, bridging 

the gaps between ideal academic solutions and best solutions for the industry sector. 

5.6 CONCLUSIONS 

To achieve energy-efficient CNC machining processes, it is essential to develop an effective 

analysis and optimisation approaches to evaluate the impact of machining parameters on 

energy consumption and identify optimal parameters. In this work, via experiments and 

qualitative analysis, key machining parameters affecting energy efficiency have been 

analysed in detail. The findings facilitate machining process planners in choosing suitable 
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machining parameters to minimise energy consumption during machining. Based on the 

analysis, an improved multi-swarm fruit fly optimisation algorithm has been developed to 

optimise machining parameters. Case studies and benchmarking have been conducted to 

test the algorithm. The main conclusions are: 

1)  The feed per tooth has the most significant effect on the machining time, specific 

energy and power load. For energy-efficient CNC machining, high feed rates are suggested 

due to the savings in machining time (and lead time); however, if cutting tools limit 

production, the optimal machining conditions should be reconfigured to low levels of feed 

per tooth and cutting speed, while the tooling handbook should recommend the 

engagement depth.  

2)  The developed optimisation approach is a useful tool to fine-tune the critical 

machining parameters to guarantee energy efficiency during machining processes and 

meet the requirements for shorter lead time and longer cutting tool life. The improved 

multi-swarm fruit fly optimisation algorithm provided better performance compared to a 

traditional fruit fly optimisation algorithm and the commonly used genetic algorithm. 
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Chapter 6: SUPERVISORY CONTROLLER 

FOR REAL-TIME SURFACE QUALITY 

ASSURANCE IN CNC MACHINING 

WITH THE USE OF ARTIFICIAL 

INTELLIGENCE 

 

6.1 INTRODUCTION 

For Computer Numerical Control (CNC) machining, the surface quality of machined parts 

is an important criterion to evaluate the performance of production processes. Poor 

surface quality generates high waste and mal-functionality of products, as well as customer 

dissatisfaction (Benardos and Vosniakos 2003). Surface quality (measured by the surface 

roughness, Ra) is difficult to predict solely based on machinists’ experiences, as machining 

process parameters (e.g., feed rate, spindle speed) generate complex effects on such 
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criteria (Lu 2008). Consequently, it is challenging to select the correct machining 

parameters that will precisely achieve the desired surface roughness when machining a 

part. Nevertheless, a majority of companies have been still using machinists’ experiences 

to control the surface quality of machined parts, which can lead to low efficiency in decision 

making and poor surface quality in machining control.  Hence, new optimisation and 

control approaches, which can efficiently guide machining processes to meet the technical 

requirements of surface roughness are urgently required. 

To further improve real-time control on surface quality, in this work, a novel systematic 

approach using a fuzzy logic based supervision controller has been developed. Based on 

intelligent real-time control of machining parameters (feed rate and spindle speed), it is 

aimed to support process planning decision making as well as manual adjustments made 

by the operations to ensure the surface quality requirements are achieved. In this approach, 

neuro-fuzzy, FLC and classical control theory are integrated to develop the novel 

supervision controller. 

A neuro-fuzzy prediction model is used to estimate the surface roughness based on real-

time input of machining parameters monitored via smart sensors mounted on CNC 

machines. In order to provide a training set for the prediction model, and the relationships 

between feed rate and spindle speed with surface roughness are investigated through 

Taguchi design of experiments and empirical analysis. During machining processes, real-

time feed rates and spindle speeds are used as input to analyse surface roughness. The new 

surface quality control is innovatively designed by employing the knowledge gained from 

experiments, and fuzzy logic controllers were innovatively combined with proportional-

integral sub-controllers, to enhance the performance of the proposed system. A milling 

case study based on milling processes for the BS EN24T steel alloy has been used to 
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validate the system performance through a simulation environment. Through the case 

study, it is demonstrated that the approach is adequate to support high-quality machining 

processes, which is evidenced by the significant improvements promoted by the controller 

when correcting the planned parameters by machinists to achieve several technical 

requirements for the surface quality. 

6.2 BACKGROUND AND SYSTEM DESIGN 

Conventionally, process planning for CNC machine tools depends on a machinist’s 

knowledge and experience for selecting machining parameters (e.g., feed rate and spindle 

speed). To prevent poor surface quality, the most common strategy is to select 

conservative machining parameters. However, this strategy is unable to achieve desired 

surface quality and high metal removal rate (Lu 2008). The research idea in this chapter is 

to develop a multi-variable intelligent supervisory controller, which will enable surface 

quality assurance during CNC machining. The proposed idea is illustrated in Error! 

Reference source not found.. 
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Figure 6-1: CNC machining enabled by the supervisory controller for surface quality assurance. 

Smart sensors are mounted in the CNC machine to acquire real-time data of machining 

parameters (e.g., feed rate and spindle speed). These will be pre-processed in a data 

processor and used as inputs to the supervisory controller. This controller comprises a 

surface roughness predictor based on the acquired inputs so that the quality of the 

workpiece will be assessed in real-time by comparing the predicted and the desired surface 

roughness (i.e., technical requirements). 

The results from the surface roughness comparison will be used to trigger the commands 

of the controller for adjusting the feed rate and spindle speed. Such commands are defined 

by fuzzy-rule-based proportional-integral loops for the control adjustment, which will be 

designed to correct those machining parameters until the technical requirements and 

tolerances of quality control are met. Thus, the goal of the quality control approach 

presented in this work is to assist the operation and ensure the technical requirements are 

achieved. That is, it supports machinists in doing-right-first-time, and avoiding all the 

drawbacks above of poor surface quality during execution. 
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Neuro-fuzzy and FLC are the selected methods for designing the supervisory controller in 

this research. The controller will be tested and validated using a case study involving side 

milling on BS EN24T under the MATLAB/Simulink simulation environment.  

The methodology for the development of the supervisory controller for the surface quality 

assurance is shown in Figure 6-2. 

1
Experimental 

Design

2
Main Effect Analysis

3
Surface Roughness 

Modelling

4
Fuzzy Logic 
Controllers

5
Design of 

Supervisory Control 
Algorithm

6
Simulation & 

Validation

 

Figure 6-2: Procedures for the supervisory controller design. 

This section presents the development of a systematic methodology to achieve the aim of 

this Chapter. The control design procedure is divided into four steps, described as follows: 

I. Experimental design and analysis of machining parameters’ effects on the surface 

roughness: experimental data are collected to support building knowledge on the 

effects of machining parameters (i.e., feed rate and spindle speed) on the surface 

roughness. For that, surface roughness measurements are taken by using a surface 

quality testing equipment. Taguchi design of experiments (DoE) is performed by 

including different levels of feed rates and spindle speeds, to carry experimental 

trials of CNC machining of producing machined workpieces. 
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II. Surface roughness modelling and fuzzy logic controllers: the data collected is used 

to train a neuro-fuzzy model of the surface roughness as a function of machining 

process parameters. The feed rate and spindle speed represent the model input 

while the output generates the surface roughness. This stage is to develop a 

quantitative model to predict the surface roughness in real-time. 

III. Design of supervisory control algorithm: the surface roughness prediction model 

and fuzzy logic controllers are employed to build the decision-making system 

which triggers a closed-loop control algorithm. The supervision controller is 

comprised of two fuzzy-rule-based and two Proportional Integral (PI) sub-

controllers. The two fuzzy rule-based sub-controllers will determine the feed rate 

and spindle speed scaling factors based on the error, and the cascaded PI sub-

controllers will use the scaling factors to correct the feed rate or spindle speed. 

IV. Simulation and validation: The supervisory controller design is implemented in a 

simulation environment using MATLAB/Simulink and tested using a milling case 

study. Testing the system in a simulation environment will evaluate the 

effectiveness of the prediction and control subsystems, as well as provide 

traceability of the surface roughness profile based on the adjustments of feed rate 

and spindle speed. Such a profile represents a binding outcome for the learning 

process in research and development and will help to identify opportunities for 

improvements in the controller design. Moreover, the simulation assessment is one 

crucial step before constructing and implementing the physical system in the 

future. A comparison between traditional process planning and the supervision 

controller results will be carried out. In the former, the feed rate and spindle speeds 

were heuristically defined by experienced machinists to achieve several technical 

requirements of surface roughness. Each scenario will be run three times, and each 
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simulation run was set to 2000 s, based on pre-tests, which showed that this value 

would be more than enough for the controller to operate and find the optimal 

cutting conditions. Consequently, the surface roughness profile will be generated 

and analysed, so as the abilities of the controller design in correcting the machining 

parameters to achieve the technical requirements. 

6.3 EXPERIMENTAL DETAILS AND RESULTS 

The experimental details and results of the data acquired will be used for the knowledge 

construction and are hereby presented. 

The results obtained from the CNC machining trials and measurements of the surface 

roughness are presented in Table 6-1. Main effects analysis were carried out to quantify 

the effects of inputs feed rate (f) and spindle speed (S) on the outputs MRR and surface 

roughness. This will provide the essential knowledge required to develop a deep 

understanding of their relationships, essential to the development of the controller 

architecture. The main effects plots obtained from the experimental results are presented 

in Figure 6-3. 

Table 6-1: Experimental results for the surface roughness measurements. 

Trial Spindle Speed (S) 

/ rpm 

Feed Rate (f) / mm 

min-1 

Material Removal Rate 

(MRR) 

 / mm3 min-1 

Surface Roughness (Ra) / 

µm 

1 3000 1115 142720 6.7 

2 3670 1115 142720 4.4 

3 4350 1115 142720 5 

4 5000 1115 142720 3.2 

5 4000 300 38400 0.7 
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6 4000 870 111360 5.1 

7 4000 1430 183040 6.9 

8 4000 2000 256000 8 

(a)   

(b)           

Figure 6-3: The main effects of S and f on MRR and surface roughness, (a) S (rpm) and f (mm/min) 
vs MRR (cm3/min), (b) S and f vs surface roughness (Ra). 

The results from the experimental results and main effect plots (Figure 6-3) are 

summarised as follows: 

 By changing the levels of spindle speed (S), variations of up to 3.5 µm were 

observed on the surface roughness. By changing the levels of feed rates (f), 

variations of up to 7.4 µm were observed on the surface roughness. These values 
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will be used to define the fuzzy logic models and control strategies for multiple-

variable control in the controller design, in Figure 6-3. 

 Spindle speed and feed rate have significant effects on the surface roughness, and 

only the feed rate has a significant effect on material removal rate. These have been 

evidenced by the plots of spindle speed and feed rate for MRR and surface 

roughness, respectively, shown in Figure 6-3. 

 Feed rate presents more significant effects on the surface roughness compared to 

the spindle speed, as revealed by the steeper curve of the f plot, in Figure 6-3. 

 Higher spindle speeds could improve the surface quality, but these are nonlinearly 

correlated, as shown in Figure 6-4(a). Significant changes in Ra were observed 

from 3000 to 3670 rpm, and from 4350 to 5000 rpm, while a lower impact on Ra 

was observed from 3670 to 4350 rpm. 

 Lower feed rates will tend to improve the surface quality, but these are nonlinearly 

correlated, i.e., the response acts differently for the changes in f, as shown in Figure 

6-4(b). Furthermore, significant changes in Ra were observed from 300 to 670 

mm/min, and from 1430 to 2000 mm/min, while a smaller impact was observed 

from 670 to 1430 levels. 

 

Figure 6-4: Surface roughness as a function of Spindle speed and Feed rate for machining BS 
EN24T (AISI 4340), (a) S vs surface roughness, for f = 1115 mm/min, (b) f vs surface roughness, 

for S = 4000 rpm. 

The significant impacts of spindle speed and feed rate on the surface roughness validate 

the selection of these machining parameters to be the controllable variables of the 

supervision controller. Consequently, the selection of such variables is also advantageous 
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to refine the manual adjustments on those, performed by machinists, and meet the quality 

requirements precisely. 

6.4 SUPERVISORY CONTROLLER: PREDICTION MODEL, 

CONTROL DESIGN AND SCHEMATIC 

In this section, the control strategies of the supervision controller are described in detail. 

The supervision controller is a closed-loop system, consisting of a surface roughness 

prediction model, a multi-variable supervisor controller, and unit feedback (in Figure 6-5). 

 

Figure 6-5: Block diagram of the supervision controller, where the subscripts f, S, D, and P refer to 
feed rate, spindle speed, desired and predicted, respectively. 

The supervision controller for surface quality assurance will require a surface roughness 

prediction model, as shown in Figure 6-5. Such a model will monitor the conditions of CNC 

machining processes and provide the measurements in real-time for the controller system. 

The prediction model is based on the readings of the feed rate (f) and spindle speed (S). f 

and S are then adjusted in-process to achieve the required surface roughness. Coping with 

multiple machining parameters in real-time control is more challenging due to the trade-

offs between manufacturing requirements such as the surface quality and productivity (i.e., 
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given by MRR), and the nonlinearity between the inputs and the surface roughness (Lu 

2008). Thus, the prediction model has been developed using the Adaptive Neuro-fuzzy 

Inference System (ANFIS) (also called neuro-fuzzy) modelling method. The general 

architecture of a two-input single-output neuro-fuzzy model is shown in Chapter 3, Figure 

3-10. 

The neuro-fuzzy model is a Sugeno type of fuzzy logic model. The Sugeno method is 

computationally effective and works well with optimisation and adaptive techniques, 

which makes it suitable for this application. More information on this type of fuzzy logic 

model can be found in (Sugeno and Michio 1985). The model’s engine is defined by the 

fuzzy inference system (FIS), which is comprised of the input membership functions, the 

fuzzy rules, and the output equations. This method is a programmed procedure for defining 

all the FIS coefficients (also called parameters) by using experimental data for training the 

FIS. 

Thus, the data collected through the experimental trials will be used to train the neuro-

fuzzy model using backpropagation and the least squares algorithms to obtain the FIS of 

the model – the further details of calculations are presented in Chapter 3, Section 3.4.5. 

This way, the predictive model to estimate the surface roughness as a function of the 

machining parameters (i.e., feed rate and spindle speed) will be formed. The input ranges 

of spindle speed and feed rate are defined considering the safe cutting zone of machining. 

The cutting zones were defined in the DoE, where for the spindle speed the range is 

between 3000 and 5000 rpm, and for the feed rate, the range is between 300 and 2000 

mm/min, respectively. 

Several attempts of fuzzy sets (i.e., number and shape of the membership functions) were 

made to achieve the model with the maximum predictive accuracy. As a result, the best 
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model is represented by the inputs modelled by six triangular-shaped membership 

functions and 36 inference rules. The fuzzy sets are illustrated in Figure 6-6. The final mean 

squared error of the prediction model based on the validation data is 0.1 µm, which 

provides a minimum predictive accuracy of 83.3%. 

 

Figure 6-6: Neuro-fuzzy surface roughness predictive model based on Spindle Speed and Feed 
rate. 

Accordingly, the prediction model will provide the predicted surface roughness (RaP) 

based on the machining parameters, feed rate and spindle speed. The RaP values will be 

used to assess the quality of the current machining conditions based on the technical 

requirements or the desired surface roughness (RaD). The next step will be the control 

strategies using the multi-variable fuzzy logic controllers. 

6.5  CONTROLLER DESIGN AND STRATEGIES 

As shown in Figure 6-6, the supervision controller has two sub-controllers, called Fuzzy 

Logic Controllers (FLC), and classical proportional-integral sub-controllers (PI) for the 

feed rate and spindle speed adjustments. Therefore, it is necessary to develop the sub-
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controllers for feed rate (FLCf) and spindle speed (FLCS) which are cascaded by the PI loop, 

to promote the multi-variable control. 

FLCf and FLCS are rule-based models that output the scaling factors to augment the PI 

control of feed rate and spindle speed, respectively. The FLCf and FLCS have been developed 

using the Mamdani fuzzy logic method  (Mamdani and Assilian 1975). In this method, the 

fuzzy implication is modelled by Mamdani’s minimum operator. The conjunction operator 

is min, the t-norm from the compositional rule is a min, and for the aggregation of the rules, 

the max operator is used. A more comprehensive explanation of this method can be found 

in (Dadios Elmer 2012). The fuzzy sets and inference rules of the FLCf and FLCS were 

defined heuristically based on the findings of the experimental results and CNC machining 

process knowledge gained through the experimental analysis in Section 6.3, respectively. 

The design procedure of the FLCf and FLCS depends on the value of the surface roughness 

error (Rae), i.e., the difference between the desired and the predicted surface roughness, as 

shown in Equation (6-1). 

𝑅𝑎𝑒 = 𝑅𝑎𝐷 − 𝑅𝑎𝑃         (6-1) 

where Rae, 𝑅𝑎𝐷, 𝑅𝑎𝑃 are the error, desired and predicted surface roughness, in µm. 

This multi-variable decoupling is needed so the control loop of f will only be triggered by 

surface roughness errors that are above a certain threshold, this way reducing the negative 

impact of parameters control on the process productivity (measured by the material 

removal rate, MRR). Such a threshold will be defined considering the maximum change that 

S can promote to minimise Rae, which will be defined considered the data analysis in 

Section 6.3. The data analysis revealed that changes up to 3.5 μm could be achieved by 

correcting only the spindle speed. Thus, a threshold of two-thirds of this value is selected 
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for the activation of f corrections, provided the high significance of this parameter on the 

Ra and MRR. 

The range of Rae was defined considering the minimum and maximum values of surface 

roughness from the measured results shown in Table 6-1. This further supports defining 

the membership functions, responsible for transforming the crisp input into the fuzzy 

input. The output of FLCS and FLCf are the scaling factors λs and λf, respectively, which crisp 

values are obtained using the centroid defuzzification method (Equation (6-2)). The 

decision of the number and shape of the output membership functions lies on the 

significance of each machining parameter on the surface roughness. 

z z

FinalOutput ( z )zdz ( z )dz           (6-2) 

As a result, the structure of the FLCS is determined by six triangular input MFs, six 

triangular output MFs, and six IF-THEN inference rules (as presented in Figure 6-7). 

Besides, the structure of the FLCf is determined by six triangular input MFs, six trapezoidal 

output MFs, and six IF-THEN inference rules (as presented in Figure 6-8). 

 

Figure 6-7: Fuzzy logic model for the spindle speed scaling factor (FLCS). 
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Figure 6-8: Mamdani fuzzy logic model for the feed rate scaling factor (FLCf). 

Furthermore, the fuzzy inference rules for the FLCS can be described as if the surface 

roughness error (Rae) is negative (e.g., between −3.5 and 0), it means that the predicted 

surface roughness (RaP) is higher than the desired (RaD) (based on Equation (6-1)). 

Consequently, in order to minimise Rae, i.e., to obtain RaP equal the RaD, the spindle speed 

should be increased, according to the relationship between S and Ra, revealed by the 

empirical analysis. 

For the FLCf, the range of input to activate the control action follows the multi-variable 

control strategy defined previously, where the feed rate control should be only triggered 

when Rae is higher than 2 μm or smaller than −2 μm. This can be seen in the input model 

of Figure 6-8 (left side). Also, if Rae is negative (i.e., between −7.4 and −2), the fuzzy rules 

have been defined to decrease the feed rate, according to the relationship between f and 

Ra, revealed by the empirical analysis. 

A correction combination of fuzzy sets and fuzzy rules should address the nonlinearities 

between S and f with the Ra. Moreover, the significances of spindle speed and feed rate on 

the surface roughness have been considered in the design of both FLC input membership 

functions. That is, due to the feed rate effects on the productivity, values of Rae between −2 

m and 0, and 0 and 2 m, will not activate control commands on this parameter and will 

trigger the correction of spindle speed only. In this case, the fuzzy logic open model 

structure played a crucial role in addressing the multi-variable control strategy and 
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supported making a balanced trade-off between surface roughness and productivity rate 

on this challenging problem. 

Thus, the controller system covers the entire safe cutting zones of S and f to promote the 

supervision and correction of these machining parameters. As a result, the final surface 

quality of the machined workpiece will be as desired by the process engineers. 

6.6 SCHEMATIC AND FUNCTIONING OF THE SUPERVISORY 

CONTROLLER 

The schematic of the supervision controller, targeting to ensure the required surface 

quality of machined workpiece is met, is presented in Figure 6-9. It is designed to supervise 

and proposed the most appropriate feed rate and spindle speed to achieve the desired 

quality technical requirements. 
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Figure 6-9: Supervisory controller schematic for the surface quality assurance in milling. 

The following steps can describe the supervision controller functioning: 

 Step 1: the engineer provides the initial set up using the planned machining 

parameters and the technical requirements for the surface roughness for the 

controller initialisation 

 Step 2: CNC machining will start and the readings from the smart sensors employed 

in the CNC machine for monitoring the feed rate and spindle speed at time sample 

k will be used in the decision system in Step 4. 

 Step 3: the neuro-fuzzy prediction model will use the sensor signals to estimate the 

surface roughness in real-time.  
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 Step 4: the predicted surface roughness (RaP) at time k will be compared to the 

desired surface roughness (RaD), i.e., the technical requirements, and the surface 

roughness error (Rae) will be calculated using Equation 6, this way, assessing if the 

surface quality meets the requirements. 

 Step 5: if Rae indicates that the technical requirements will not be achieved, i.e., Rae 

is higher than the tolerance of quality control (± 5% of RaD), then Rae will be used 

to trigger the multiple-variable control loop to adjust the f and S. Otherwise, the 

values of f and S are kept the same and no command control is activated. 

 Step 6: the value of Rae is used to activate the adjustment of f and S. Accordingly, 

the fuzzy logic controllers for f and S receive the value Rae and calculate the scaling 

factors f and S, respectively, to provide the appropriate proportional and integral 

gains to correct these machining parameters. The experimental results will be used 

to define the FLC models, employed to augment the S and f gains. 

 Steps 7 and 8: comprise the proportional and integral gains that will augment the 

factors f and S to correctly adjust f and S, respectively. Such design self-tunes the 

controller performance based on the previous Rae, at time k-1. Furthermore, in Step 

7, the FLCS will be activated for Rae values smaller than 3.5 m or greater than −3.5 

m. This strategy will force the activation of FLCf only (Step 8) in order to achieve 

Rae smaller this threshold (since Ra is more sensitive to f than to S). Also, it will 

avoid the drawbacks of correlation effects caused by the changes in S and f at the 

same time. Consequently, when the Rae is smaller than the set threshold, S only 

should able to deal with the error minimisation. Therefore, the FLCf is only 

activated for Rae values greater than 2 m or smaller than −2 m. This way, the 

impact on the material removal rate is also minimised, since such Rae can be dealt 

with by correcting the S only – which will not affect the MRR. 
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 Step 9: the corrected values of f and S, i.e., f(k+1) and S(k+1) will be calculated using 

Equations (6-3) and (6-4), respectively, and will be provided to the CNC machine 

control. 

1 ( k )( k ) ( k ) ff f PI            (6-3) 

1 ( k )( k ) ( k ) SS S PI            (6-4) 

where Sk and PIs are the spindle speed, the proportional, and the integral 

augmented gains for the spindle speed, at time k, respectively; and fk and PIf are the 

feed rate, the proportional, and the integral augmented gains for the feed rate, at 

time k, respectively. After that, the next supervised loop starts based on the 

corrected machining conditions, and the loop restarts in Step 3. 

 Step 10: the control commands are terminated when the Rae is zero or within the 

tolerance of quality control. 

6.7 CASE STUDY: SIDE MILLING ON BS EN24T STEEL 

ALLOY 

In this section, a case study of milling operations is presented to validate the approach for 

surface quality assurance. The experimental data discussed earlier have been used to 

develop the surface roughness prediction model and the fuzzy logic controllers for the feed 

rate and spindle speed. Also, several technical requirements will be used to compare the 

performance between a traditional machining process (i.e., based on the expertise of 

machinists for defining the f and S values heuristically) and the supervised machining 

process (i.e., based on the supervision and multivariable control of the supervisory 

controller). 
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The prediction model, the controllers and the schematic provided in Figure 6-9, have been 

implemented to develop the simulation model of the supervisory controller for the quality 

assurance in a MATLAB/Simulink environment. The flow of the supervisory controller is 

presented in Figure 6-10. 

 

Figure 6-10: AI supervision controller for quality assurance in milling. 

To evaluate the capabilities and robustness of the multiple-variable control design and 

strategies, several application scenarios have been defined by considering different 

technical requirements for surface roughness. 

The scenarios have been presented to two experienced machinists, who have been asked 

to define the initial conditions of feed rate and spindle speed. Six values of technical 

requirements for the surface roughness of the machined parts have been selected, ranging 

from 0.5 μm to 7 μm. Also, two initial conditions for each of the machining parameters have 

been selected by considering their extreme values, i.e., their minimum and maximum 

values based on the safe machining boundaries. Since the machining parameters have 

conflicting effects on the surface roughness, the test should exhaust the abilities of the 
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controller in selecting the appropriate machining parameters to achieve the technical 

requirements. The results of the tests are presented in Table 6-2 and Figure 6-11. 

Table 6-2: Results from performance tests on multivariable AI supervisory controller. 

Technical 

Requirement 

(RaD) / μm 

Planned Parameters (Machinists’ 

decision) 

Adjusted Parameters (AI Supervisory 

Controller Adjustments) 

S / 

rpm 

f / 

mm 

min-1 

Absolute 

Error (Rae) 

/ μm 

Rae / 

% 

Adjusted 

S / rpm 

Adjusted f 

/ mm min-

1 

Absolute 

Error (Rae) 

/ μm 

Rae 

/ % 

a 0.5 5000 300 0.1 20 4128 300 0.002 0.43 

b 1 5000 600 0.99 98.7 5000 600 0.99 98.7 

c 3 4000 1200 3.6 118.8 4969 1053 0.12 4 

d 4.5 3500 1680 0.88 19.6 4818 1579 0.001 0.02 

e 6 3000 1800 2 33.6 4177 1801 0.095 1.6 

f 7 3000 2000 2.9 40.7 4172 1947 0.006 0.1 

 

The results achieved by the AI supervision controller in all tests, except for Test (b), have 

shown that the proposed approach can make significant improvements through the 

adjustment of S and f. For instance, in Test (c), the controller has corrected the machinist’s 

pre-planned f and S, such that improvement the Rae was reduced from 3.6 μm to 0.12 μm, 

which corresponds to 0.02% of the technical requirement; this way, guaranteeing that the 

final quality is within the tolerance of quality control (± 5% of RaD). Furthermore, the best 

machining parameters revealed are f = 1053 mm/min and S = 4969 rpm. 

In Test (b), when the technical requirement is 1 μm and the chosen values of feed rate and 

spindle speed are 5000 rpm and 600 mm/min, respectively, the controller could not refine 

the process conditions, and the error is not minimised. The reason is that the condition 

established in the system design for the feed rate control loop, i.e., control commands, will 
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only be activated for Rae > 2 μm. As shown in Figure 6-11(b), the value of Rae is always 

smaller than 2 μm. As thus, the feed rate controller has not been activated. Since the spindle 

speed has been already in its best condition, further improvements on the surface 

roughness could not be promoted. One way of overcoming this limitation is by reducing 

the threshold for feed control. Another way is to include an extra loop for the feed rate 

control which would take action in case the Rae is higher than the tolerance, and the spindle 

is at its maximum speed. This will be the future research for improvement. 

 

Figure 6-11: Correction of spindle speed and feed rate to achieve technical requirements. 

0
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The overall results from the performance test, presented in Table 6-2, show that the 

supervision controller can improve the quality of the machined part significantly through 

correct adjustments of S and f. Hence, the results achieved by the supervisory controller 

show that this is a useful tool for supporting high-quality CNC machining processes. 

Also, a vital advantage of the multi-variable AI supervision controller is that it can cover a 

wide range of technical requirements by providing accurate control of f and S accordingly. 

This way, the system supports avoiding the waste of time and money by considering the 

manufacturing specification. 

6.8 CONCLUSIONS 

In many mechanical applications, a high surface roughness value is often undesirable, but 

a low surface roughness can be time-consuming and costly to achieve. This chapter 

presents a novel supervisory control approach to ensure the desired surface quality is 

achieved in Computer Numerical Controlled (CNC) machining processes and ensure 

optimal process performance. For that, the development of an artificial intelligent (AI) 

supervisory controller design and strategies have been presented in detail. The proposed 

AI supervisory controller is designed to ensure that the technical requirements for the 

surface quality will be achieved through in-process optimal adjustments of the key 

machining parameters of feed rate and spindle speed. The system is comprised of a neuro-

fuzzy surface roughness predictive model and fuzzy-rule-based proportional-integral 

controllers, which are innovatively combined for monitoring and closing the loop to adjust 

the machining parameters, respectively.  
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The simulation results from the case study using side milling operations on BS EN24T (AISI 

4340) steel alloy show that the proposed system is effective in adjusting the CNC 

machining parameters (i.e., feed rate and spindle speed) for high-quality machining 

processes. Furthermore, the system has been analysed through several scenarios, where 

comparisons with the traditional process planning (where machinists heuristically select 

the machining parameters) and the supervisory controller were carried out. The results 

show that the system significantly improved the quality of the machining process 

compared to the initial conditions given by the experienced machinists. In one of the 

scenarios, the system minimised the surface roughness error from 3.6 µm to 0.12 µm. This 

guaranteed that the surface quality was within the tolerances of quality control by a margin 

between 0.02% and 4%. 

Furthermore, the results show research innovations clearly by disclosing that: 

 a vital advantage of the multi-variable AI supervisor controller is its ability to 

effectively adjust feed rate and spindle speed during real-time machining 

processes; 

 the system can be easily adaptable and reconfigured to other machining operations 

(e.g., turning) by adopting predictive models from the literature and following the 

proposed design procedures of this work to develop the supervisory control 

strategies of the new system.  

To conclude, the proposed approach overcomes the limitations of the current solutions in 

the literature and represents a significant step towards smart manufacturing and 

autonomous machining. Also, it has shown to be an effective tool to enable autonomous 

surface quality assurance in CNC machining. 



 

176 

 

Chapter 7: CONCLUSIONS AND FUTURE 

WORK 

7.1 OVERALL CONCLUSIONS 

Manufacturing processes such as CNC machining are in the spotlight for the high energy 

they consume, and their low overall efficiency, due to costs, legislation and environmental 

concerns. In this research, novel intelligent optimisation and control approaches (digital 

solutions) have been developed to promote more intelligent CNC machining and have been 

successfully proven to achieve more efficient and sustainable manufacturing. 

By splitting the challenge for more efficient and sustainable machining into two stages 

(roughing and finishing), the overall gain in the machining process workflow was 

augmented by the gains achieved at each stage. This is because after analysing the 

machining workflow, it was observed that each stage has its process particularities (such 

as planning, manufacturing requirements) and their key efficiency operational criteria. 

This way requires a more focused solution to address the current challenge identified in 

the industry (as explained in Figure 1.1). 
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Consequently, a combination of the proposed approaches I and II, i.e., multi-objective 

optimisation for sustainable roughing and real-time supervisory control for quality 

assurance in finishing, respectively, were essential to achieve the aim of this research 

effectively: production of more sustainable outputs (or parts machined) through high-

efficient and reliable production processes. 

Furthermore, the findings of this research validate the use of digital solutions to promote 

optimal decision-making at the early stages (process planning) and in-process of 

machining. Also, such solutions (through approaches I and II) enhanced the 

reconfigurability of production processes and promoted greater alignment between 

optimal input parameters (machining process parameters) and the immediate 

requirements of manufacturing (such as cutting tools availability and lead time) yet 

achieving more sustainable processes. 

Using the empirical methodology was crucial to address the critical trade-offs between 

machining process parameters and the key efficiency operational criteria. Besides, 

essential machining knowledge was developed based on an in-depth data analysis of the 

relationships between spindle speed, feed rate and cutting depth and the energy efficiency, 

productivity, cutting tool life, and surface quality. 

The knowledge and data acquired were vital to achieve accurate and fit for purpose 

intelligent optimisation approaches. The experimental data set for the cutting tool life were 

determinant to cope with the challenges of multi-objective optimisation using machining 

process parameters and key efficiency operational criteria. Furthermore, the findings 

reveal a strong correlation between power consumption and the cutting tool life. By 

revealing this correlation, a novel efficient, reconfigurable and multi-objective 

optimisation problem could be formulated accounting for the energy efficiency, cutting 
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tool life and productivity, and the development of machining strategies considering the 

immediate manufacturing requirements for cutting tools availability and lead time. The 

results from several testing and validation scenarios showed that the developed 

optimisation approach is an effective tool to fine-tune the critical machining parameters to 

guarantee energy efficiency during machining processes and meet the requirements for 

shorter lead time and longer cutting tool life. The improved multi-swarm fruit fly 

optimisation algorithm provided better performance compared to a traditional fruit fly 

optimisation algorithm and the commonly used genetic algorithm. The conclusions of this 

research work have been summarised into contributions to knowledge, a summary of 

optimisation approaches and validation results and, finally, recommendations for future 

work.  

7.1.1 CONTRIBUTION TO KNOWLEDGE 

The critical experimental findings from the analysis of the effects of machining process 

parameters and the energy efficiency, presented in Chapter 5, revealed that: 

 For side milling, 79% to 94% of the overall energy consumed during the process 

was used during the state of engagement (the actual cutting). Consequently, the 

results revealed that the machining process parameters play a highly critical role 

in the energy efficiency of the production for such milling operations. 

 A useful energy efficiency model has been developed based on the concept of the 

power load, which represents the average amount of energy consumed during the 

state of engagement. The model unleashes an effective way to address the 

challenging trade-offs of multi-objective optimisation involving three key 

efficiency operational criteria: energy-efficiency, productivity and cutting tool life. 
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 Changes in the levels of spindle speed do not have substantial effects on energy 

efficiency, power load or machining time. However, during the state of travelling, 

more energy is wasted at higher levels of spindle speed, since the spindle motor 

requires more power at higher speeds. An increase in energy demand by 3% during 

the state of travelling was caused for every 20% increase in the spindle speed. 

 The feed rate has the most significant effect on the machining time, energy 

efficiency and power load. A high level of feed rate (2000 mm/min) promotes 

better energy efficiency owing to savings in machining time: a consumption of 

approximately 70% less energy per cm3 of material removed compared to a low 

level (300 mm/min) was observed. However, the drawback is that a higher feed 

rate will increase the cutting forces and temperatures at the cutting tools tip, 

consequently shortening their tool life. The experiments revealed that the life of 

cutting tools using low levels of feed rate achieved a life of 540 min, compared to 

14 min when using the highest feed rate. 

 The cutting width has significant effects on energy efficiency, machining time and 

power load. A high cutting width will promote a more energy-efficient process 

owing to savings in machining time. However, the drawback is the higher power 

load, which means greater cutting forces and chip load on the cutter tool, 

consequently shortening the tool life. For instance, at a high level of the cutting 

width (4 mm), the operation was 33% more energy-efficient compared to a lower 

level (1.67 mm). 

 Besides, the empirical analysis of tool wear and tool life were used to study the 

correlation between the cutting tool life and the power consumption of the 

machining trials to develop a novel predictive model. The results of the 

correlational analysis showed that the tool life indicator total cutting time 
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presented a strong correlation with the mean power consumption, while the total 

cutting length and total volume of removed material indicators did not present a 

strong correlation. Therefore, a novel cutting tool life model was developed 

considering the prediction of the total cutting time based on the mean power 

consumption, and machining process parameters as input variables. This model 

was tested and validated; the validation results presented satisfactory predictive 

accuracy, R-sq adjusted equal to 0.92. 

 

7.1.2 SUMMARY OF INTELLIGENT OPTIMISATION APPROACHES AND 

VALIDATION RESULTS 

The multi-objective optimisation approach for the roughing stage of CNC machining has 

successfully addressed the challenging trade-offs between machining process parameters 

and the key efficiency operational criteria (energy efficiency, cutting tool life, and 

productivity). To address such challenges, a novel strategy that takes into account the 

manufacturing requirements for lead time and cutting tools availability was combined 

with the optimisation problem formulated to improve the effectiveness of the decision-

making. That is, the results obtained from the optimisation approach are also aligned with 

the current constraints in the manufacturing resources. 

A novel improved multi-swarm fruit-fly optimisation algorithm was used to obtain the 

optimal results. The optimisation algorithm and strategies were validated using several 

manufacturing scenarios. The results from the validation study showed that: 
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 For energy-efficient CNC machining, high feed rates are suggested due to the 

savings in machining time (and lead time constraints); however, if cutting tools 

limit production, the optimal machining conditions should be reconfigured to low 

levels of feed per tooth and cutting speed, while the cutting depth should be as 

recommended by the tooling handbook. 

 The weighting strategy to align the optimal solution with the manufacturing 

requirements for lead time and cutting tools availability enabled a more realistic 

optimisation approach for industrial applications. The validation results from the 

manufacturing scenarios showed that the optimal machining process parameters 

obtained through the optimisation algorithm helped in meeting such requirements. 

 The developed optimisation approach is a useful tool to fine-tune the critical 

machining parameters to guarantee energy efficiency during machining processes 

and meet the requirements for shorter lead time and longer cutting tool life. 

 The improved multi-swarm fruit fly optimisation algorithm provided better 

performance compared to a traditional fruit fly optimisation algorithm and the 

commonly used genetic algorithm. 

The cutting tool wear assessment and the correlational study results between the tool life 

and the power consumption validated the existence of a high correlation between the tool 

life and power consumption. Moreover, such results revealed that the power load 

represents a suitable means to address cutting tool life improvements. Based on the 

results, the novel model of the cutting tool life based on power consumption and machining 

process parameters presented satisfactory performance (coefficient of determination = 

0.92). 
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The optimisation approach for the control of surface quality during the finishing stage of 

CNC machining has successfully addressed the challenging adjustments of spindle speed 

and feed rate to accurately achieve the desired surface roughness. As a result, by 

considering the manufacturing requirements (or desired surface roughness), the approach 

supports reducing re-work processing and generation of waste due to low-quality parts. 

Also, the decision-making process using a neuro-fuzzy predictive model for the prediction 

of the surface roughness and fuzzy logic controllers for the fine adjustments of the spindle 

speed and feed rate successfully achieved the core goal of the system. 

 In summary, the validation results for the intelligent optimisation approaches proposed 

in this research ensured the achievement of more efficient and sustainable machining 

processes with the use of soft computing. This further ensures that the primary aim of this 

thesis has been successfully achieved. Nevertheless, there are recommendations for future 

work in order to enhance the applicability and impact of the proposed optimisation 

approaches. 

7.1.3 RECOMMENDATIONS FOR FUTURE WORK 

The recommendations for future work include as follows: 

 To expand the multi-objective optimisation approach to facilitate energy-efficient 

CNC machining for other types of operations such as turning, boring, and electro-

discharge machining. Also, including other requirements to use this approach for 

online decision and optimisation. 

 To validate the cutting tool life model as a function of power models for different 

material types. An implementation of the model for real-time applications on the 

prediction of cutting tool life should also be studied. 
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 To consider dynamics factors of CNC machining such as cutting tool vibration into 

the model and control loop of the surface quality assurance controller to achieve 

higher decision-making accuracy. 
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APPENDIX A 

Trial Number 
Factor 

Cutting Speed (vc) Feed Rate (f) Cutting Width (ae) 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 1 4 4 

5 1 5 5 

6 2 1 2 

7 2 2 3 

8 2 3 4 

9 2 4 5 

10 2 5 1 

11 3 1 3 

12 3 2 4 

13 3 3 5 

14 3 4 1 

15 3 5 2 

16 4 1 4 

17 4 2 5 

18 4 3 1 

19 4 4 2 

20 4 5 3 

21 5 1 5 

22 5 2 1 

23 5 3 2 

24 5 4 3 

25 5 5 4 
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APPENDIX B 

Trial Number 
Factor 

Cutting Speed (vc) Feed Rate (f) Cutting Width (ae) 

1 1 3 4 

2 2 3 4 

3 4 3 4 

4 5 3 4 

5 3 1 4 

6 3 2 4 

7 3 4 4 

8 3 5 4 

9 1 2 4 

10 1 4 4 

11 1 5 4 

12 2 2 4 

13 2 4 4 

14 2 5 4 

15 4 2 4 

16 4 4 4 

17 4 5 4 

18 5 2 4 

19 5 4 4 

20 5 5 4 

21 3 3 1 

22 3 3 2 

23 3 3 3 

24 3 3 4 
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