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Abstract 
The present work is concerned with the numerical modelling of large-amplitude 

interfacial waves produced by metal pad roll instability in the aluminium reduc-
tion cells. A semi-conservative two-layer shallow-water model containing a novel, 
fully non-linear equation for electric potential is developed and solved using an 

original �nite di�erence scheme. The latter is based on the two-dimensional Lax-
Wendro�-Richtmyer scheme, which is adopted and extended to the two-layer 
system containing interfacial pressure. Two-dimensional Poisson-type equations 

for pressure and electric potential are solved using an original highly-e�cient al-
gorithm based on the combination of the tridiagonal matrix factorisation (Thomas 

algorithm) and the fast discrete cosine transform. 

The development of the model and numerical schemes is started by considering 

purely hydrodynamic one-dimensional two-layer system and various conservative 

forms of shallow-water equations describing conservation of circulation or mo-
mentum in addition to that of mass. Using the method of characteristics, a novel 
analytical solution is found to the so-called lock-exchange problem. This exact 
solution is used to validate the ability of various numerical schemes to handle hy-
draulic shocks which are expected to develop in the shallow-water approximation. 
The one-dimensional solution is further used to validate two-dimensional numer-
ical code by considering one-dimensional initial interface perturbations along two 

perpendicular sides of the rectangular container. 

In addition, linear stability analysis of various basic models of aluminium re-
duction cells is revisited and extended to rectangular geometries. Linear stability 

analysis shows that in the case of negligible viscous friction, the cells with aspect 
ratios squared equal to the ratio of two odd numbers are inherently unstable and 

can be destabilised by arbitrary weak electromagnetic e�ect. The growth rates of 
small-amplitude electromagnetically destabilised interfacial waves produced by 

the numerical simulation agree very well with the linear stability results. Nu-
merical results show that the growth rate decreases as the amplitude of unstable 

rolling interfacial disturbance grows with the time. A large-amplitude quasi-
equilibrium state is reached without the interface touching the upper electrode. 
In this strongly nonlinear stage, the wave amplitude still keeps growing, however 
the growth rate is much slower than during the linear instability stage. At the 

same time, the nonlinear streaming e�ect produced by the large-amplitude rotat-
ing interfacial wave induces a global counter-circulation in the top and bottom 

layers. Numerical results indicate that the increase of the shear velocity above the 

critical value results in the Kelvin-Helmholtz type of instability which eventually 

causes the interface to break down. 
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Introduction 

The process of aluminium reduction consists of two superimposed layers of elec-
trically conducting �uids. Through these layers of aluminium and cryolite, an 

intense electric current is supplied from the anodes, dissolving the alumina in 

the bath of molten cryolite by means of Joule-heating, before exiting from the 

cathode. This method of reducing aluminium was discovered independently by 

Charles Hall and Paul L.T. Héroult in 1886 when they revolutionised commercial 
production of aluminium with the electrolytic process of reducing alumina which 

little has changed till today. Typical sizes for the cells of aluminium reduction 

are 4-5m by 10-16m each, while the thicknesses of aluminium and cryolite are 

approximately 20-30cm and 4-5cm (Davidson, 2000). A historical overview in 

the development of the aluminium reduction Hall-Héroult cells (HHCs) can be 

found in Davidson (2001) and Batchelor et al. (2000), while detailed discussion 

of the electrochemical and material processing is carried out in Grjotheim and 

Kvande (1993) . The time-e�ciency as well as monetary implications associated 

with improving the process are discussed in Davidson (2000) and Grjotheim and 

Kvande (1993), and it is highlighted that in this multi-billion industry, which con-
sumes 2% of the electricity generated worldwide, any improvement would lead to 

immense economic bene�ts. 

In order to reduce the electric energy consumption owing to Ohmic heating of 
the cryolite, which is of much poorer conductivity than aluminium, the reduction 

of its thickness is desired. The e�ciency of aluminium reduction relies upon 

the controlled Magneto-Hydro-Dynamic (MHD) interaction of interfacial waves 

with the electromagnetic �eld. The development of interface instabilities may 

disrupt the process if either the cryolite�s thickness or the supplied current are 

not carefully adjusted. 
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Figure 1: Schematic representation of Hall-Héroult cells. 

Linear stability analysis (Bojarevics and Romerio, 1994; Sneyd and Wang, 
1994; Lukyanov et al., 2001) is capable of detecting growth mechanisms and 

identifying dominant disturbances, however, investigation of nonlinear e�ects 

once a cell has become unstable may still provide insight of stabilising mechanisms 

and the manner by which the cell fails. Nonlinear models have been investigated 

by Zikanov et al. (2000), Sun et al. (2004) and Bojarevics and Pericleous (2008) 
which, owing to the shallow-water approximation, present a fast and e�cient 
method for modelling the underlying mechanisms. 

In recent years the ever increasing energy storage requirements, as a result of 
the rapidly developing renewable energy technologies, resprung and intensi�ed 

the study of liquid-metal-batteries (LMB) which consist of two stably strati�ed 

liquid metals separated by a layer of molten salt. The nonlinear evolution of the 

rotational interfacial motion which has been, in the context of HHCs, identi�ed as 

the primary source of instability is nevertheless, applicable in LMBs. Alas, due 

to the increased complexity of the system, large scale commercial applications 

are still not viable as further investigation is required. An extensive review of 
literature associated with LMBs is given in (Weier et al., 2017; Weber et al., 2017; 
Horstmann et al., 2018; Herreman et al., 2019). 

This dissertation aims to develop a strongly non-linear 2D MHD model for 
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3 Introduction 

the numerical investigation of interfacial instabilities that arise in two layer �ows, 
with a rigid lid, under the in�uence of an electromagnetic �eld. In order to tackle 

this problem a series of steps were required which are described in the succeeding 

paragraphs. 

In the shallow-water approximation the waves are known to develop sharp 

fronts over time. To this end, a benchmark was required in order to test the 

e�ectiveness of the numerical scheme as well as a suitable set of equations capable 

of accurately encapsulating strongly non-linear motion. The 1D two-layer shallow 

water model was analytically solved under the approximation of small density 

di�erence, for the lock-exchange problem, and thus, o�ering valuable insight into 

the interfacial motion in the presence of an initially discontinuous interface. The 

analytic results were in turn contrasted with the numerical results obtained using 

the 1D Lax-Wendro� scheme which proved adept in accurately simulating the 

dynamics of motion in the vicinity of a discontinuous interface. 

The numerical investigation of the 2D two-layer system bounded by a rigid lid 

compelled the construction of an e�cient Poisson solver for the electric potential 
and pressure equations. Employing a combination of discrete cosine transforms 

and tridiagonal matrix algorithms, a new fast and accurate solver was developed. 
For the numerical integration of the shallow-water equations, an e�cient 2D Lax-
Wendro� scheme was developed, chosen for its second order accuracy in space 

and time as well as its low dispersion. 

The Lorentz force arising as part of the MHD problem requires the solution 

of the Poisson equation for the electric potential. A novel fully non-linear 2D 

equation was derived for the electric potential. Furthermore, the linear stability 

analysis of the MHD problem elucidated the dependence of stability on the aspect 
ratios of rectangular cells. 

This dissertation is organised as follows. In 1 a literature review covering 

the three main topical areas is presented. Namely, the magnetohydrodynamics 

of liquid metals, the shallow-water theory and numerical methods. In 2 an 

overview of the basic theoretical concepts underlying this work are presented, 
with the main focus on the fundamental principles pertaining to hydrodynamics, 
shallow-water (SW) approximation and electromagnetics (EM). In 2.6 the single-
layer shallow-water equations are presented. These are extended to two layers, 
in 2.7, with a 2D nonlinear equation accounting for the interfacial pressure and 

electric potential. The relevant parameters used in the nondimensionalisation 

of these equations are also discussed therein. The simplifying assumptions for 
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aluminium reduction cells are presented in 2.5 where also a fully nonlinear 2D 

equation for the electric potential was derived. 

The linear stability analysis of electromagnetically modi�ed interfacial waves 

is carried out in 6, where models with increasing geometrical complexity are con-
sidered. Results of the half plane and the channel geometries are revisited before 

proceeding to the rectangular geometry where the stability threshold depending 

on the aspect ratio of rectangular cells is analysed. 

In 2.9 the 1D Lax-Wendro� scheme has been presented, while its 2D extension 

by Richtmyer is further described in 3.1. The latter is used to develop a new 

modi�ed scheme which utilises the �nite volume formulation on the staggered 

rhombic grids, thus eliminating the uncoupled part of the solution present in the 

original scheme. Furthermore, a new highly-e�cient Poisson solver is developed, 
combining the discrete cosine transforms and the tridiagonal matrix Thomas 

algorithm. 

A two-layer 1D model is considered in 4 with the use of a conservative set 
of equations. The lock-exchange problem with strong interfacial discontinuities 

is solved analytically in the Boussinesq approximation. The analytical solution 

is then used to validate the 1D Lax-Wendro� scheme which is found to be in 

excellent agreement with the former. 

In 7 the e�ciency of the two-layer hydrodynamic 1D Lax-Wendro� scheme is 

further examined for smooth initial states and compared with the results produced 

by the 2D scheme for the analogous cases. The chapter is concluded with the 

presentation of the two-layer magnetohydrodynamic results, obtained with the 

2D scheme, where a discussion of the instabilities leading to the break down of 
interface is presented. 
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Chapter 1 

Literature review 

In this chapter an overview of research developments on the three main topical 
areas of this thesis are presented, starting with a historical background devel-
opment of the liquid metal MHD in 1.1. This is followed by the discussion 

on research pertaining to the lock-exchange problem 1.2 before concluding to a 

review of schemes for hyperbolic problems in 1.3. 

1.1 MHD part of the problem 

The �eld of magnetohydrodynamics spans from thermonuclear fusion and plasma 

astrophysics to industrial applications. Extensive work has been carried out in 

the study of �uids under the in�uence of an electromagnetic �eld with particular 
interest in industrial applications; thus giving rise to the �eld of liquid-metal 
MHD where the theory pertaining hydrodynamics as well as electrodynamics is 

exploited with tangible ecological and economic bene�ts when the consumption 

of energy and consumable materials is reduced. The incipience of liquid-metal 
MHD sprang from the bene�ts found in controlling the liquid metal �ow by means 

of the Lorentz force, with major applications onto metallurgical industries and in 

speci�c liquid metal reduction cells. 

One of the earliest papers on the instability mechanism in aluminium reduction 

cells is by Sele (1977) where the transient waves are numerically explored with 

emphasis on the geometry of the cell and the strength of the electromagnetic 

interaction. The model is used to determine the stationary �ow and interface 

shape in the electrolytic cells subject to constant magnetic �eld. The general 
characteristics of aluminium reduction cells are analysed along with the rolling-
pad instability mechanism and the complications that this process is associated 

with. Additionally, a stability criterion resulting from scaling considerations is 



�

6 Chapter 1. Literature review 

veri�ed against the numerical results. This key nondimensional parameter, com-
monly referred to as the Sele parameter, is discussed further in 2.7.3 and it is 

widely used in the �eld. 

Moreau and Evans (1984) introduce simpli�cations based on physical criteria 

such as the permeability and the electrical conductivity, along with the shallow-
water approximation which is based on the assumption of small depth-to-length 

ratio. These considerations lead to the approximation of small magnetic Reynolds 

number which holds because the magnetic di�usion time through the cell is small 
compared to the characteristic hydrodynamic time scale. The electromagnetic 

force was examined to both �rst and second order of the shallowness parameter, 
where the latter was concluded to be insigni�cant. Although the two-layer �uid 

system concerns an ideal case, the analysis reveals dependence of the dynamics 

on the geometry of the anode channels and on the electric current distribution. 
The model of Moreau and Evans (1984) is extended by Moreau and Ziegler (1988) 
who model the e�ect of viscosity via a linear friction term using the same nu-
merical scheme as Lympany et al. (1982). Moreau and Ziegler (1988) analyse 

the in�uence of the small channels between the anode blocks but do not �nd any 

signi�cant e�ect. These papers are relevant to the present work mostly because 

of the shallow-water approximation, and the linear friction model introduced by 

Lympany et al. (1982). Lastly, based on the results of aforementioned papers, a 

�at rigid-lid is assumed on the top boundary where no spacing among the anode 

blocks is considered. 

Sneyd (1985) considers a very basic aluminium reduction cell model by making 

a range of simplifying assumptions such as the uniform normal current, no �uid 

�ow in the unperturbed state and no lateral boundaries. The magnetic �eld is 

assumed to be purely coplanar consisting of an induced and an external compon-
ent. The former is generated by the electric current passing through the system 

and is found to be always stabilising, contributing to the gravitational restoring 

force. The far �eld component may give rise to unstable interfacial disturbances 

that grow exponentially in time. Special attention is drawn to the external elec-
tric currents which can a�ect the stability of interface by altering the magnetic 

�eld in the reduction cell. The discussion of the instability dependance on the 

wavelength and cryolite layer depth leads to the conclusion that only longer waves 

can be destabilised by MHD e�ects. In the analysis conducted by Moreau and 

Evans (1984), Sneyd (1985) as well as Moreau and Ziegler (1988), the e�ects of 
lateral boundaries were neglected, the importance of which however is later shown 

to be pivotal for the system�s stability. The subsequent analysis of Sneyd (1992) 
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is extended to account for the horizontal current component, vertical magnetic 

�eld and vertical �eld gradients. The stabilising e�ect of gravity and surface 

tension on the Kelvin-Helmholtz instability are investigated. The contribution 

of the electromagnetic e�ects is found to be destabilising for wavelengths greater 
than one meter, with the main destabilising factors, dependent solely on the ver-
tical component of the background current, being the vertical gradients of the 

horizontal magnetic �eld. Although, the current is assumed uniform, in reality 

the disturbance current may change direction depending on the direction of the 

horizontal currents. The e�ects of this convention are thought detrimental, as the 

main contributor to the instability is known to be the vertical component of the 

electric �eld which is constant. Moreover, the linear variation of the magnetic 

�eld �imposing a linear variation on the wave-induced �ow� may have serious 

stability consequences as it a�ects the boundaries of the cell. 

Sneyd and Wang (1994) analyse the instabilities at the interface of two-layers 

in a rectangular tank under the in�uence of a vertical uniform current and a lin-
early varying magnetic �eld in the plane transverse to the current. Similarly to 

Sele (1977) a stability parameter and an estimate of the stability threshold are 

derived. The perturbations under consideration are combinations of the normal 
gravity-wave modes. Unlike analyses which consider a channel, it is shown that 
the cell becomes more unstable as the external �eld increases with the most dan-
gerous component being the vertical one. In the same train of thought, Bojarevics 

and Romerio (1994) provide a rigorously derived linearised system for the study 

of the interface instability of the �uid layers, through perturbation expansions 

in parameters of the depth aspect ratios, the maximum amplitude and the con-
ductivities of the respective layers. A generalisation of the Sele parameter under 
the shallow-water approximation is derived, which demonstrates the importance 

of the aspect ratio in addition to the vertical component of the magnetic �eld. 
Later, Bojarevics (1998) extends the analysis by considering nonlinear waves with 

linear dissipation terms. The e �ect of the aspect ratio, of a rectangular cell, on 

the stability is further studied in 6. 

Davidson and Lindsay (1998) point out the advantages of the explicit expres-
sion of the Lorentz forces versus the model developed by Urata (1985) where 

an implicit formulation is considered. In contrast to Sneyd (1985) and Moreau 

and Ziegler (1988), who considered travelling-wave instabilities in non-uniform 

magnetic �elds, Sneyd and Wang (1994) and Davidson and Lindsay (1998) study 

the instabilities which can occur in a uniform magnetic �eld. For standing waves 

in a �nite domain, an energy criterion is developed indicating that certain types 
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of motion such as a rotating, tilted interface, may gain energy. Their analysis 

shows that it is not necessarily the interaction of the closest gravitational modes 

which causes instability and that unstable modes can arise from merging of two 

stable eigenmodes. This is complemented by the fact that few modes interact but 
the uncoupled ones cannot become unstable. Lastly, for rectangular domains the 

results are con�rmed to agree with the ones of Sneyd and Wang (1994), while for 
a circular domain a simple form of instability is found. 

Lukyanov et al. (2001) investigate the basic mechanism of instability for the 

two-layer system under the in�uence of a uniform magnetic �eld. Linearised 

shallow-water equations are used as in the previous studies. The attention is 

focused at the e�ects of the wave re�ection from the walls on the stability of two 

models: a plane wall and a circular domain. It is shown that with an increase of 
the interaction parameter, which controls the ratio of the electromagnetic (EM) 
to gravity forces, the interfacial stability is dictated by the wave re�ection from 

the wall. The work of Lukyanov et al. (2001) is extended by Molokov et al. 
(2011) who consider the instability at high values of the electromagnetic interac-
tion parameters, for di�erent geometries. A distinction is made between unstable 

travelling waves localised at the wall modes and non-local Sele modes, which 

are gravity wave modes with the wavenumber spectrum modi�ed by the elec-
tromagnetic re�ection condition. The former are argued to be ampli�ed by the 

MHD-modi�ed re �ection of waves from the side walls. The latter are stable or 
slowly growing. 

Kurenkov et al. (2004) carry out a linear stability analysis of the interface in 

two-layer shallow water model in an in�nite channel. The instability mechan-
isms considered are those of the Kelvin-Helmholtz and Sele. These mechanisms 

are initially analysed separately and then compared to the general case. Little 

interaction exists between those two destabilising mechanisms, with practically 

no e�ect on the stability threshold. The stability investigation is focused on its 

dependence on the width of the channel and the Sele parameter. Concerning 

the stability, it is found that narrow channels are more stable. The linear sta-
bility analysis of semi-in�nite and channel geometries are reviewed in 6 before 

proceeding into the study of the rectangular geometry. 

The interfacial stability of two liquids is investigated numerically by Zikanov 

et al. (2000) using a nonlinear 2D shallow-water model in a rectangular geo-
metry. Assumptions used in this model are the same as those introduced by Sele 

(1977) and Urata (1985) and the reasoning for the electromagnetic force in the 

upper(cryolite) layer is based on the analysis of Davidson and Lindsay (1998). 
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It is found that the horizontal current perturbation plays a pivotal role in the 

stability. The background �ow driven by the Lorentz force can lead to strong dis-
tortion of the interface. The authors highlight that in linear stability analysis, the 

eigenvalues describing interfacial wave instabilities are calculated by ignoring the 

stationary background �ow which only afterwards is substituted into the analysis. 
Shortcomings of this approach lie on omitting nonlinear e�ects which may pro-
duce background �ows. This eigenvalue analysis may be, computationally, costly. 
Lastly, the assumption of a time invariant basic state is always true. The main 

advantage of this model over linear stability analysis is due to the combination 

of the background �ow and instability which permits nonlinear interface perturb-
ation of large amplitude. Sun et al. (2004) expand the shallow-water model of 
Zikanov et al. (2000) to investigate the impact of the nonlinear terms omitted 

in the MHD models used by Bojarevics and Romerio (1994), Sneyd and Wang 

(1994) and Davidson and Lindsay (1998). The e�ect of the horizontal compon-
ents of the magnetic �eld on the Lorentz force were found only signi�cant in the 

destabilisation of the system when the system obtains large interface deformation 

and strong nonlinearities are involved which are further ampli�ed by the Lorentz 

forces. 

1.2 Hydrodynamic part of the problem 

The development of a scheme for the simulation of a strongly nonlinear shallow-
water model for two layers necessitated the investigation of conservation laws 

which are required in the presence of strong discontinuities. This led to a compre-
hensive review of the known theory pertaining to one- and two-layer shallow-water 
models, with particular interest into the topic of the two-layer lock-exchange (LE) 
problem. Cardinal publications that formed the fundamental basis for the the-
oretical analysis of single layer �ows released from rest, when a wall is instant-
aneously released, can be found in Barré de Saint-Venant (1871) followed by the 

solution provided by Ritter (1892) which used the shallow-water approximation 

and the method of characteristics to study the gravity driven current over a hori-
zontal or sloped ground. This classic solution, commonly known as the dam-break 

problem, which can be found in more detail in Courant and Friedrichs (1948), 
Stoker (1957), Whitham (1975) (and references therein), is an important example 

in the study of nonlinear �ows reproduced in laboratory experiments and used as 

a benchmark in the development of schemes. 
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One of the inherent features of the shallow-water approximation is the unlim-
ited steepening of the wave fronts. The single layer formulation of the shallow-
water approximation and the analogous description in gas dynamics have been 

thoroughly discussed in Stoker (1957, Chapter 10). The evolution of steep fronts 

leads to breaking of the waves which are commonly referred to as hydraulic-
jumps, bores or shocks. From a mathematical perspective, this is the behaviour 
under which the system of PDEs produces a discontinuous solution, thus ceases 

to be directly applicable. As highlighted in Whitham (1975), Stoker (1957), and 

LeVeque (2002, Chapter 1.1.2) the relevant physics represented by the relevant 
conservation laws can still be applicable to discontinuous solutions. These conser-
vation laws are represented by the so-called Rankine-Hugoniot (RK) conditions 

which can describe the propagation of shocks. The direct relevance of this theory 

to a two-layer system as well as the necessity for appropriate conservation laws 

for its description will become evident in 4. 

In single-layer shallow-water �ows it has been shown by Benney (2006) and 

Miura (1974) that an in�nite number of locally conserved quantities exist. The 

more complex problem of superimposed �uids, where a heavier �uid in a hori-
zontal channel is initially separated by a vertical lock from a lighter �uid, has 

been extensively studied over the past century owing to its widespread use in 

oceanography, metereology and engineering applications (Yih, 1947; Long, 1954; 
Keulegan, 1957; Yih, 1965; Armi, 1986; Simpson and Britter, 1979; Klemp et al., 
1994; Shin et al., 2004). In two-layer �ows with an unbounded upper surface 

only six linearly independent local conservation laws exist (Ovsyannikov, 1979; 
Montgomery and Moodie, 2001; Barros, 2006). For two-layer system bounded by 

a rigid lid, the �rst rigorous derivation of shallow-water equations is due to Long 

(1956a) where a uni�ed system with the use of the mass and circulation (vor-
ticity) conservation is presented. The existence of an in�nite number of locally 

conserved quantities in this system has been �rst noted by Ovsyannikov (1979). 
However, only the aforementioned two are generally known. 

The primary conserved quantity that governs the dynamics of bores in single 

�uid layers is momentum. To our knowledge no analogue shallow-water conserva-
tion law is known for the case of a two-layer system. This has led to the consensus 

that such a system containing internal bores is inherently non-conservative (Ab-
grall and Karni, 2009), and external closure relations are required based upon 

dimensional arguments (Abbott, 1961) or derived using various semi-empirical 
and approximate integral models (Baines, 1995). 

One of the earliest mathematical models of hydraulic jumps in two-layer system 
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is due to Yih and Guha (1955). In their analysis they used the momentum and 

mass conservation principle to link the �ow states across the discontinuity. The 

system was reduced in to a set of ordinary di�erential equations that allowed the 

authors to identify the conjugate states connected by a discontinuity. 

Long (1956a) is the �rst to derive the two-layer shallow-water equations under 
a rigid-lid by elimination of the longitudinal pressure gradient. Long (1956a) also 

obtains explicit expressions for Riemann invariants which can be used to solve 

certain initial problems for strongly nonlinear interfacial waves analytically. Such 

exact analytical solutions are useful for validating numerical algorithms. The 

paper investigates, with the method of characteristics, how the advancement of 
an interface elevation leads to the steepening of the waves, but does not consider 
how to tackle discontinuous solutions. For the same system, Ovsyannikov (1979) 
examines three di�erent models: that of a free upper layer, the two-layer system 

bounded by a rigid-lid signi�cant density di�erence and the limiting case of the 

two-layer model where the density of the two layers is almost equal. Similarly to 

Long (1956a) the Riemann invariants and the characteristic speed were utilised 

to establish the domain of hyperbolicity. 

Benjamin (1968) applied hydraulic theory, based on the Bernoulli�s equation, 
in a channel where an air-cavity �ow displaces the heavier �uid at the bottom. 
The main result of this study on steady gravity currents is a front condition 

relating the velocity of propagation with the layer depth of the bottom which 

was compared with the experimental results of Keulegan (1957), Yih (1965). 
This is one of the classic hydraulic conditions which is widely used to describe 

gravity currents. 

Rottman and Simpson (1983) utilise a uni�ed two-layer model, similar to Long 

(1956a), where the front condition of Benjamin (1968) is incorporated in the 

region where the equations resulted in discontinuous solutions, which results in 

the current front being treated similarly to hydraulic jumps. This empirical front 
condition involved an adjustable parameter to be de�ned by experiments. This 

class of hydraulic-type models (Benjamin, 1968; Huppert and Simpson, 1980; 
Rottman and Simpson, 1983; Shin et al., 2004) and approximate ad-hoc solutions 

(Keller and Chyou, 1991; Lowe et al., 2005) have been commonly proposed for the 

lock-exchange problem where the thought absence of a momentum conservation 

law led to the chase of empirical or semi-empirical front conditions dependent on 

energy conservation considerations being preserved on the upper- (Klemp et al., 
1994; Klemp et al., 1997), or lower-layer (Wood and Simpson, 1984; Huppert 
and Simpson, 1980). So far only a numerical solution of this problem has been 
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carried out by Klemp et al. (1994) using a characteristics-type approach suggested 

by Rottman and Simpson (1983). A more direct numerical solution of the lock 

exchange problem has been attempted by Ungarish (2009, Sec. 2.4) using a non-
conservative form of two-layer shallow-water equations. 

Milewski and Tabak (2015) use two-layer shallow-water conservation laws for 
circulation and energy, and a rather advanced �nite-volume scheme for numerical 
modelling of the lock-exchange problem with entrainment. They also consider an 

analytical solution to the lock-exchange problem with the conservation of either 
mass or energy besides that of circulation. However, their approach di�ers from 

the standard simple-wave method (Whitham, 1975, Sec. 6.8) pursued in this 

study. Recently, the lock-exchange problem for Boussinesq �uids was solved nu-
merically by Esler and Pearce (2011) using a higher-order weakly non-hydrostatic 

shallow-water approximation in which dispersion prevents the formation of sharp 

wave fronts. 

1.3 Numerical schemes for hyperbolic problems 

The dam-break problem has been thoroughly analysed theoretically and serves 

as a benchmark in the development of numerical schemes to validate one- and 

two-dimensional numerical models. An analytic methodology originating in the 

a�liated topic of gas dynamics is the Riemann problem, that permits the re-
duction of PDEs into a system of ODEs which o�er similarity solutions. These 

consist of a �nite set of wave solutions that propagate from the origin, with con-
stant wave speeds (Godunov, 1959). The drawback of the numerical implement-
ation developed in Godunov (1959), lies in the piecewise linear reconstruction 

that leads to strong di�usion. Being an exact solver, Godunov�s scheme can be 

computationally expensive for nonlinear problems. Consequently, this lead to 

the development of numerical schemes which make use of approximate Riemann 

solvers. 

The property of monotonicity, introduced by Godunov (1959), provides the 

means for the systematic analysis of the stability conditions for non-oscillatory 

behaviour required by schemes. This was further complemented by the criterion of 
Total-Variation-Non-Increasing (TVNI) (or Total-Variation-Diminishing (TVD)), 
solutions introduced by Harten (1983) and Harten (1984). This concept ensures 

that in the numerical solution of nonlinear equations, unwanted oscillations are 

not generated. 
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A large number of schemes have been developed in order to tackle the dam-
break problem, aiming to encapsulate the rise of discontinuous solutions, whilst 
overcoming the strongly oscillatory behaviour that is encountered in the study 

of hyperbolic equations. Owing to the fact they are �rst-order accurate, the 

schemes detailed in Engquist and Osher (1981), where the direction of the �ux 

is de�ned by the eigenvalue�s sign, in Roe (1981), where an average from either 
side of the Riemann problem is used, or Harten (1983) which de�nes the max-
imum/minimum wave speeds arising in the Riemann solution, are usually not 
employed due to their inherent low accuracy. 

Despite the necessity of a monotone scheme where the solution is discontinu-
ous, higher order schemes can be used in regions where the solution is smooth, 
by means of controlling their gradients. This was the idea proposed by (Boris 

and Book, 1973; Boris and Book, 1976), (Van Leer, 1973; Van Leer, 1974). Con-
sequently, schemes such as the Monotonic Upwind Scheme for Conservation Laws 

(MUSCL) (Van Leer, 1979) which is a Godunov-type of scheme, or Essentially 

Non-Oscillatory (ENO) type of schemes (Harten and Osher, 1987), were de-
veloped permitting higher accuracy. Whereas the former relaxes its accuracy in 

the presence of a discontinuity, in the latter an nth-order polynomial is heur-
istically constructed ensuring the smoothness. In both examples, second-order 
accuracy in space and time is achieved for smooth solutions but lowered in the 

presence of shocks to ensure that oscillations are not produced. 

Extensive studies have been carried out on �ux-limiters analysing their sta-
bility properties. Typical examples found in LeVeque (2002), and Hirsch (2007) 
analyse the various possible, linear and nonlinear, limiters example of which are: 

The MinMod introduced by Roe (1986) is a special case of Chakravarthy 

and Osher (1983), where the upwind and downwind slopes are compared 

and the one with the smaller magnitude is chosen. 

The Superbee Roe (1985), where each one-sided gradient is compared with 

twice the opposite one-sided gradient and �nally the one with the larger 
modulus is chosen. 

The MC (Monotonised-Central di�erence limiter) Van Leer (1977), where 

the centered di�erence is compared against twice the upwind and downwind 

di�erences. 

This discussion goes alongside with the evaluation of schemes such as the Lax-
Wendro� (LW) (Lax and Wendro�, 1960) and MacCormack (MacCormack, 1969) 
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which are of second order accuracy. The LW scheme can straightforwardly be ob-
tained from a Taylor series expansion to second order terms. It is more practical 
though, to refer to the Richtmyer-Lax-Wendro� (RLW) two-step formulation, �rst 
introduced in Richtmyer (1962), which eliminated the necessity for the calculation 

of the Jacobian and consists of a �rst-order (Lax-Friedrich) spatial discretisation 

and a leapfrog central di�erence in time. The idea of the MacCormack scheme 

can be considered to fall from the RLW scheme and it equivalently consists of 
a predictor-corrector model coupled with using forward di�erencing initially, fol-
lowed by backward di�erencing to achieve the second order accuracy. It is worth 

noticing that for the constant coe�cient linear advection problem, both of those 

schemes are identical to each other. This is no longer the case in extending to 

nonlinear problems where they overlap in their second-order accuracy in space 

and time but their merits do not tip the scale in favour of either of them. 

Regardless of the numerical scheme used, the form the equations are expressed 

in, a�ects both the algorithm stability as well as correctness of the solution. 
Smooth solutions aside, nonconservative methods cannot be expected to converge 

to the correct solution. This can be better understood in considering the integral 
formulation, as opposed to the di�erential equation, which forms the mathem-
atical basis in deriving the Rankine-Hugoniot conditions that govern the correct 
description and propagation of shock waves. Lax (1954) as well as LeVeque (2002) 
and Hirsch (2007) emphasised and demonstrated the necessity of the conservative 

form of equations in order to obtain the correct jump relations in discontinuous 

solutions. 
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Chapter 2 

Theoretical background 

2.1 Overview 

In this chapter, an introduction is presented into �uid mechanics and the equa-
tions describing their macroscopic mechanics along with the coupling involved 

in the presence of an electromagnetic �eld acting on a conductive �uid. The 

assumptions leading to the shallow water approximation are explored, gradually 

building-up towards the mathematical description of the two-layer system which 

will be studied in both its magnetohydrodynamic as well as purely hydrodynamic 

description. 

2.2 Basic hydrodynamic equations 

Macroscopic �uid �ow is described by the velocity u = (�, �, �), density � and 

pressure �. These are functions of time � and the position r = (�, �, �). Consider∫ 
a �xed �uid volume V with mass � �V. The rate of variation of this mass is 

equal to the mass �ux through the enclosing surface S:∭ ∯ 
� 

� �V = − � u · n �S. 
�� V S 

Using the divergence theorem, we have:∭ � � 
� � + r · ( �u) �V = 0. 
�� V 

� � To be applicable to any �xed volume V, a zero integrand is required: +r·( �u) = 
�� 

0, which describes local mass conservation. In terms of the material derivative1 

it reads as: 
� � + �r · u = 0. 
�� 

� � ≡ + u · r 
�� �� 

1 
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For an incompressible �uid we have � � 
= 0, which yields: 

�� 

r · u = 0. (2.1) 

Newton�s second law de�nes the rate of change of the momentum which must 
equal to the total net force, comprised of short-ranged surface and long-ranged 

body force, acting on the �uid volume. Therefore, formulating Newton�s law for 
a �uid, Cauchy�s momentum equation is obtained in the following form 

� ( �u) 
= r · � + f , (2.2)

�� 

where � is the stress tensor and f is the density of body forces applied to the 

�uid. These body forces encompass forces per unit mass - external gravity force: 
f� = −� g - as well as forces per unit volume, such as electromagnetic forces, 
which will be later de�ned in 2.4. For an isotropic �uid the stress tensor equals 

� = −�I+T, where � is the pressure, I is the identity tensor and T is the deviatoric 

stress tensor. For an incompressible viscous �uid, the latter yields the viscosity � � 
term: T = � ru + (ru)� , where � is the dynamic viscosity coe�cient.This stress 

tensor describes the stresses acting on a surface due to pressure and viscosity. 
Hence, the no-stress conditions at the surface are given by: 

� = 0 on Γ, (2.3) 

At the solid boundary wall two alternative conditions can be considered. The 

�rst condition applied at the boundary of a solid surface writes as: 

u = 0 on Γ, (2.4) 

This condition, commonly referred to as the no-slip condition, means that the 

normal component as well as the tangential components assume zero velocity 

relative to the stationary boundary 

An alternative formulation permitting the velocity to be expressed in terms of 
the tangential component of the stress reads as 

u · � = 0, (T · �)� + �u = 0. (2.5) 

where (T · �)� = � × (T · �) ×� expresses the tangential to the bottom components 

and de�nes that the tangential stress is proportional to the tangential velocity 

of the �uid and � is the frictious parameter. This is the Navier wall law where 

the slip-with-friction boundary condition de�nes stagnant layer of �uid close to 

the wall allowing a �uid to slip. Additionally, it requires the tangential, to the 

boundary, component of the strain tensor to be proportional to the tangential 
component of the �uid velocity. 
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A crucial simpli�cation is imposed when in addition to the incompressibility 

condition, a homogeneous �uid is considered, which requires that � ≡ ��������. 
Consequently, using the material derivative1 onto Eq. (2.2), the equation is recast 
in to the incompressible Navier-Stokes equation: 

� � 
�u 

� + (u · r) u = −r� + �r2u + � g + f . (2.6)
�� 

If viscous e�ects are negligible then Euler�s equation is recovered: � � 
�u 

� + (u · r) u = −r� + � g + f . (2.7)
�� 

The no-penetration boundary condition supplements the equations of motion by 

requiring that u · � = 0. In the more general setting of a moving surface this 

de�nes that the velocity and pressure distribution across a surface must be equal. 

2.3 Maxwell�s equations 

The equations governing time-dependent electric and magnetic �elds were �rst 
found by (Maxwell, 1861; Maxwell, 1865). The Maxwell-Ampère equation, with 

Maxwell�s displacement current correction j + �� D, accounting for the induction 

of a magnetic �eld H generated by a varying electric �eld, is found in: 

��D + j = r × H, (2.8) 

where D is the electric induction and j the current density. This correction is 

crucial for the description of rapidly �uctuating �elds and complements the pre-
Maxwell equations which, Faraday�s law excluded, were derived based on steady-
state observations: 

Ampère�s law r × H = j, (2.9)
Coulomb�s law r · D = �, (2.10)
No monopoles r · B = 0, (2.11)
Faraday�s law r × E + ��B = 0, (2.12) 

where � is the charge density2, E is the electric �eld and B is the magnetic 

induction. 
2The notation � rather than � is used here to avoid confusion with the �uid density �. 
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The expressions relating D, E, H and B in the vacuum are: ⎧⎪⎪⎨ D = �0E, 
(2.13)⎪⎪⎩ H = �−1B,0 

where �0 and �0 de�ne the speed of light �2 = (�0 �0)−1. Maxwell�s equations for 
the vacuum then read as: ⎧

�� (�0E) = �−1r × B − j, (2.14a)0
⎪⎪⎪⎪⎪⎪⎪⎨r · E = �0 

−1�, (2.14b) 

�� B + r × E = 0, (2.14c)⎪⎪⎪⎪⎪⎪⎪⎩r · B = 0. (2.14d) 

Taking the divergence of Eq. (2.14a) and combining it with Eq. (2.14b) one ob-
tains the conservation of electric charges: 

��� + r · j = 0, (2.15) 

relating the temporal rate of charge variation � to its �ow across the surface of a 

volume. 

2.4 Governing MHD equations 

Similarly to Eq. (2.13) D, E, H and B in medium are related by: ⎧⎪⎪⎨ D = �E, 
(2.16)⎪⎪⎩ H = �−1B, 

where � is the magnetic permeability and � is the electric permittivity of the 

medium which are de�ned relative to the vacuum values by: ⎧⎪⎪⎨ � = ���0, (2.17) 
� = �� �0, ⎪⎪⎩ 

where the parameters �� and �� are respectively the relative permittivity and 

permeability of the material. For an isotropic electrically conducting liquid the 

permittivity and the permeability are usually equal to the vacuum values (Mor-
eau, 1990; Gerbeau, Le Bris et al., 2006). Consequently, following Eq. (2.14) for a 

perfect dielectric (i.e. no external current) medium Maxwell�s equations become: 
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⎧
�� (�E) = �−1r × B − j, (2.18a)⎪⎪⎪⎪⎪⎪⎪⎨r · E = �−1�, (2.18b) 

�� B + r × E = 0, (2.18c)⎪⎪⎪⎪⎪⎪⎪⎩r · B = 0. (2.18d) 

Furthermore, Ohm�s constitutive law provides the link connecting j and E, 
where in a conducting medium j is proportional to the local electric �eld experi-
enced by the moving particle: 

j = � (E + u × B) . (2.19) 

Here � is the electrical conductivity and the term u × B takes in to consideration 

the �eld induced by the motion. 

In the de�nition of Euler�s equation Eq. (2.7), in absence of any additional 
volumetric force f the purely hydrodynamic limit is recovered. Conversely, the 

in�uence of an electromagnetic �eld acting on a conducting �uid, gives rise to the 

MHD coupling. At macroscopic scale, passing through �uid in the presence of a 

current, the magnetic �eld generates a Lorentz force: 

f = j × B. (2.20) 

This stems from the coupling of Maxwell�s equations and �uid mechanics which 

enter the system via the Lorentz force. The magnetohydrodynamic set of equa-
tions in the more general form then reads as follows:� �⎧ �u 

� + (u · r) u = −r� + � g + j × B,
�� 

��B + r × E = 0, 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 
(2.21)

�� (�E) = �−1r × B − j, 

r · E = �−1�, 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩j = � (E + u × B) 

2.5 Basic assumptions for aluminium reduction 

cells 

Since its inception HHCs have been known to su�er from instabilities. Under 
certain circumstances the perturbation arising may grow to an extent which dis-
rupts the operation the cell. Implications resulting from this mechanism entail 
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increased cost and longer production times. 

The con�guration of aluminium reduction cells consists of a high intensity 

electric current passing sequentially through the carbon anodes, the electrolyte 

layer which reduces the alumina, the molten aluminium layer and the carbon 

cathode where the current is collected, while the boundary walls of the cell are 

assumed to be perfectly insulating (Grjotheim and Kvande, 1993). The respective 

electrical conductivities are: 

�− ≡ �electrolyte � �carbon � �aluminium ≡ �+, 

where �+ = 3.3 · 106 (Ω · m)−1 , �− = 2.5 · 102 (Ω · m)−1 (Gerbeau, Le Bris et al., 
2006) and �carbon = 2 · 104 (Ω · m)−1 (Molokov et al., 2011). 

An immediate consequence of the electrolyte layer�s poor conductivity is an in-
creased energy consumption owing to its conversion into Ohmic heating. Straight-
forwardly, thinner layer would result in an increased energy e�ciency. 

The physical set-up of a rectangular cell of size �� × �� consists of shallow but 
broad electrolyte-alumina layers (� � �). This framework renders the system 

an ideal candidate for the application of the shallow water approximation where 

the characteristic longitudinal length scale of the perturbation, �, is much larger 
than the layers depth, �. The two-layer system is subject to a downward gravity 

force with the free fall acceleration �. The velocity of each layer is considered 

uniform and vertically invariant; i.e the vertical velocity, �, has a relatively small 
magnitude ∼ �/� = � � 1, which means that the associated �uid �ow is pre-
dominantly horizontal with the velocity u = �e� + �e�. 

h+

h
-

η
η

( )σ , ϱ
− −

( )σ ,
+ +

ϱ

g

0

Η

Β

J0

Anode

Cathode

j : disturbed current →

f=J×B ×

σ
e

σ
e

Ly
Lx

Figure 2.1: Schematic representation of the aluminium smelting process, with 
a vertical component of the magnetic �eld and a perturbation at the interface. 
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The magnitude of di�erence in the layers� speci�c conductivities lays the 

premises for the interface between the aluminium and cryolite layers as well as 

the interface between the carbon anode and cryolite to be approximately con-
sidered as an equipotential surface. Furthermore, the low electric conductivity 

of cryolite, along with the shallow-layer layout, permits the assumption that, in 

the long-wavelength, the electric current within the layer take the shortest path 

between the anode block and aluminium, i.e. they are primarily vertical in the 

electrolyte (Davidson, 2001, p. 366). Any change in the position of the interface 

between the two �uids gives rise to a perturbation in the current distribution, 
as the electrical path in the electrolyte is either decreased or increased. This 

also means that the Lorentz force exerted on the layer of cryolite is negligible in 

comparison to that of aluminium. Consequently, the Lorentz force in the upper 
layer is insigni�cant and is only considered in the lower layer. 

For a material of uniform conductivity with steady current, Eq. (2.15) reduces 

to: 

r · j = 0. (2.22) 

On the basis, that charges are varying much slower than the speed of light, the 

pre-Maxwell formulation is recovered, and hence, it can be inferred that: 

r × B = �j, 

whereupon taking the divergence of Eq. (2.18a) and using Gauss� (electrostatic) 
law it can be shown that the contribution of �� (�E) is negligible, thus Ampere�s 

circuital law is recovered while omitting Maxwell�s correction term. Moreover the 

magnetic �eld must satisfy r · B = 0, which is the solenoidal constraint requiring 

the net magnetic �ux of any closed surface to be zero. 

At this stage, it is advantageous to separate the magnetic �eld, into two com-
ponents. The �rst is the externally imposed magnetic �eld B0 generated by the 

current supplying the cell, whereas the second part b is the induced magnetic 

�eld. Hence, for B = B0 + b Ampere�s law requires r× B0 = 0. In poorly conduct-
ing �uids, such the ones found in aluminium reduction cells, the induced magnetic 

�eld is much weaker than the externally imposed magnetic �eld, i.e. �0 �0 � � �0. 
Hence, a quasi-static approximation �� B ≈ 0 can be employed, where B ∼ B0, 
and thus: 

r × E ≈ 0, 
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Consequently, for a �xed and uniform magnetic �eld in the electrostatic approx-
imation the electric �eld writes as follows: 

E = −r�, 

where � is the perturbation of the electric potential. 

It has been established that the external current generate strong external, 
primarily vertical magnetic �eld B0 = �0��. Additionally, the velocity can be 

assumed to have no in�uence on the magnetic �eld (Moreau, 1990), thus u × B 

is of minor in�uence, leading to the Lorentz force being written as: 

f = j × B = −�r × (��0) . (2.23) 

The resulting expression has undergone several layers of simpli�cations based 

on the time variation of the �ow, and the intensity of the electromagnetic �elds. 
Particular attention should be drawn though, on ignoring the term u×B. As noted 

by Gerbeau, Le Bris et al. (2006) this term corresponds to a worst case scenario 

in the stability of the system because induced currents can have stabilising e�ects 

on the �ow. 

2.6 Single-layer shallow-water model 

Computationally, the three-dimensional system poses onerous di�culties in nu-
merical resolution and discretisation. The shallow-water approximation, when 

applicable, reduces the complexity of the computational problem from three to 

two dimensions. The shallow-water approximation is used in meteorology, ocean-
ography and engineering applications such as aluminium reduction cells and liquid 

metal batteries. The conventions enabling the shallow-water approximation are 

further detailed in this section. 

The shallow-water approximation is based on the assumption that the typical 
vertical length scale (�) of the system is much smaller than the typical horizontal 

�length scale (�): � = � 1. Hence, the vertical acceleration of a �uid during the 
� 

passage of the wave remains small. The pressure in the �uid layer is considered 
� � hydrostatic i.e. = −���� + O(�2), thus enabling the calculation of the local 
�� 

pressure. 
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It is convenient to reformulate Eq. (2.7) such that the horizontal components 

are separated from the vertical one: ⎧r · u + �� = 0, (2.24a)⎪⎪⎪⎪⎨ 
� (u� + (u · r) u + �u�) + r� = 0, (2.24b)⎪⎪⎪⎪⎩� (�� + u · r� + ���) + �� = −��. (2.24c) 

Henceforth u = (�, �), subscripts of (�, �, �, �) de�ne partial derivatives in the� � 
respective variable and the operator r = ��, �� . 

In the case of a �uid of uniform density under the in�uence of a uniform 

body force due to gravity, the relation between pressure and height is given by 

integration of Eq. (2.24c) which results in the following linear equation: 

� = Π + �� (ℎ − �) (2.25) 

where Π is the constant of integration Π(x, �) = �(r, �) |�=ℎ and it depends on 

the boundary conditions or the in�uence of the overlying �uid. In the case of a 

free surface, pressure should be continuous, hence, the atmospheric pressure is 

assumed to be zero above the free surface ℎ: � = �� (ℎ − �). Then, the horizontal 
gradient operator with the �-component omitted, results in a depth-invariant 
expression for pressure: 

r� = ��rℎ. (2.26) 

The kinematic boundary condition of the vertical component of the momentum 

equations at a �at bottom topography requires no normal �ow at the rigid surface 

i.e. �(0) = 0. Upon integration of the continuity equation along the vertical axis, 
Eq. (2.1) yields: 

[�]ℎ = ℎr · u0 

At the free surface, � is equal by de�nition to the time derivative of the interface 

height: 
�ℎ 

�(ℎ) = . 
�� 

Combination of these two expression above, yield the mass conservation of the 

shallow-water equations: 
�ℎ + r · (ℎu) = 0. (2.27)
�� 

The �ow is assumed to be irrotational which in turn requires that in the leading 

order approximation u� = 0. Therefore, considering Eq. (2.24b), while multiplying 

with ℎ in order to recover the commonly found in textbooks expression, the 
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momentum conservation for the single-layer shallow-water model writes as: � � � 
�� (ℎu) + r · ℎu2� + ℎ2� = 0, (2.28)2 

r 

where presently, the density parameter, being constant, has been omitted from 

the momentum equation. Hereafter, u2 = uu denotes the tensorial product. 

Finally, the energy conservation for the single layer shallow-water model is 

derived in multiplying Eq. (2.28) with the velocity u, leading to � � �� 
� 1 � 1 1 

ℎkuk2 + �ℎ2� + r · �uℎ2 + 2 
ℎukuk2 = 0. (2.29)

�� 2 2 

A more detailed derivation can be found in Johnson (1997, Chapter 1.2.5) and 

Vallis (2017, Chapter 3.6.2). 

2.7 Two-Layer shallow-water model 

In contrast to the single-layer model, where interaction with the ambient environ-
ment is considered negligible; in strati�ed models there exists an interdependence. 
On account of this interaction, the intricacy of the analysis is augmented. Their 
span of applicability, ranging from atmospheric to oceanic dynamics, is portrayed 

in more detail in (Pedlosky, 1979; Vreugdenhil, 1994). 

A subset of strati�ed �uid theory is the two-layer model where two �uids of 
homogeneous but distinct densities �+ and �− are examined. An illustration of 
the two-layer problem is given in �gure 2.2. The case of two-layer �ows has 

been brie�y examined by various classic textbooks, such as (Tan, 1992; Salmon, 
1998; Gill, 1983), in the context of free upper surface or quasi-geostrophic �ows 

where quite frequently the reduced gravity (or one-and-a-half layer) approxima-
tion Salmon (1998, Chapter 2) is employed, where horizontal pressure gradients 

are replaced by the �uid interaction in their gravity terms. This approximation 

is based on the buoyancy e�ects of the upper layer altering the gravitational 
restoring force of the lower layer. This translates to a �uid adjustment, corres-
ponding to a reduced gravitational constant, owing to surface displacement being 

of smaller magnitude than the interior interface displacement. In oceanography 

this commonly used simpli�cation has been named rigid-lid approximation. 

Discarding any assumption for the scale of the upper surface elevation, the 

rigid-lid approximation introduces a pressure force acting on the �uids con�ned 

under it. The reference height at which pressure is de�ned depends on the ap-
plication and individual preference. In contrast to common approach, where 

the pressure at the top boundary is used as a reference pressure(Vallis, 2017, 
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Chapter 3.2.1), it is bene�cial to use the interfacial pressure for this purpose. On 

account of a continuous pressure distribution at the interface, this choice leads to 

a symmetric form of the momentum equations. Therefore, the horizontal gradient 
of pressure is given by: 

r� = ±�±rℎ± + rΠ (2.30) 

in the respective layers. 

Bearing in mind that the normal components of velocity at the interface must 
be the same for the two �uids the mass conservation for each layer writes as: 

�ℎ± + r · (ℎ±u±) = 0, (2.31)
�� 

where subscript ± indicates the lower or upper layer respectively; and as seen in 

�gure 2.2, each height component is split into an initial thickness and a perturbed 

part, i.e. ℎ± = ℎ± ± �. 

Figure 2.2: Sketch of the �uid domain. 

On account of the rigid-lid approximation, the total height of the system is 

ℎ+ + ℎ− = � = ��������. Therefore, the volume conservation across the layers is: 

r · (ℎ+u+ + ℎ−u−) = 0. (2.32) 

Starting from Eq. (2.24) while keeping note of the shallow-water approximation, 
the momentum equations for the two layers write as � � 

�± (u±)� + (u± · r) u± ± �rℎ± = −rΠ, (2.33) 

where a simpli�cation can be achieved by employing the expression ℎ± = ℎ± ± � 

which leads to: � � 
�± (u±)� + (u± · r) u± + �r� = −rΠ, (2.34) 
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and the gravity term is subtracted on either side of the equation such that: � � 
�± (u±)� + (u± · r) u± + �±�r (�) − ��r� = −rΠ − ��r�, 

( �−+�+) {�}where � = = is used, which expresses an average of the �uid densities 2 2 

and the {} denoted summation of the enclosed quantity. Likewise, it is convenient 
to introduce [ � ] B �+ − �−, in which the square brackets denote the di�erence of 
the enclosed quantities. 

The interfacial pressure can be rede�ned such that: 

Π = Π − ���, 

which permits a symmetric description of the two-layer equations and it is ad-
vantageous in eliminating the density in the gravity terms in the Boussinesq ap-
proximation as considered in 2.7.2. Subsequently, the hydrodynamic equations 

take the following form: � � � [�]
�± (u±)� + (u± · r) u± ± r� = −rΠ.2 

As a last step, the height term ℎ± is reinstated and the interfacial displacement 
� in the gravity term is replaced by: � � � [�]

�± (u±)� + (u± · r) u± + rℎ± = −rΠ. (2.35)2 

Similarly to Eq. (2.28), upon multiplication with the respective layer height, the 

two-layer momentum equation Eq. (2.35) writes as: 

� 
� 
(ℎu)� + r · 

� 
ℎu2� � 

+ 
� [�] r 

� 
ℎ2� = −ℎrΠ, (2.36)4 

where for the sake of clarity u ≡ u±, � ≡ �±. 

The energy equation is obtained by taking a scalar product of the velocity 

with Eq. (2.36). After few rearrangements this reads as: � �� � � 
uℎkuk2� � 

� ℎkuk2� + r · + uℎ � [�] r (ℎ) = −2uℎrΠ,
� 

where for both layers uℎ · rℎ = r · 
� 
uℎ2� − ℎr · (uℎ) and likewise for the pres-

sure term. Hence, employing the mass conservation Eq. (2.31) the total energy 

obtained by summation over the two layers, after few rearrangements, reads as 

follows:

ℎ2 
� 
�ℎkuk2 + 

� [�] 
� 
+ r · 

� 
u 

� 
�ℎkuk2 + � [�] ℎ2� = −2r · 

� 
uℎΠ , (2.37)2 � 

Laslty, the equation for pressure is given by taking the divergence of the sum 

of the two layers which upon recalling the incompressibility condition Eq. (2.32) 
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leads to an elliptic equation of the form:�� � � � � �� 
ℎ � � [ �] ℎ2 

r · rΠ = −r · r ℎu2 − r . (2.38)
� 4 � 

2.7.1 Nondimensionalisation 

The choice of scaling parameters used in this work deviates form the ones en-
countered in other studies (Bojarevics and Romerio, 1994) where height is scaledn o−1

ℎ+ℎ− �with and the wave propagation speed with the root of � [�] . The 
ℎ++ℎ− ℎ 

choice of these parameters is based on the argument of large amplitude waves 

where the aforementioned alternative expressions would become irrelevant. 

The characteristic scales used to nondimensionalise the equations are given in 

the following table. 

Description Quantity Scaling 

Horizontal dimensions: �� , �� 
√ 

� = �� �� 

Vertical dimension: ℎ±, � � 

Density � 
�+ + �−

� = 2√ 
Velocity: u 

[ �]
� = 2� � {�} 

Time: � 
� 
� 

Pressure: Π � [�] � 

Electric potential: � 
�0 

�+� 

Table 2.1: Characteristic scales for normalisation 

For the sake of brevity, the same symbols are subsequently used to denote 

dimensionless quantities. Therefore, the system of Eqs. (2.31), (2.36) and (2.37) 
in each layer expressed in the nondimensional form reads as: ⎧ (ℎ)� + r · (ℎu) = 0, (2.39a)�⎪⎪⎪⎪⎪⎪⎪⎨ � 

ℎu2� � {�} � 
ℎ2� � (ℎu)� + r · + r = −ℎrΠ, (2.39b)8� � � � �� 

{�} {�} � 
�ℎkuk2 + ℎ2 + r · u �ℎkuk2 + ℎ2 = −2r · uℎΠ . (2.39c) 

⎪⎪⎪⎪⎪⎪⎪⎩ 4 2� 



�

� 	 � 	

� 	 	

� �

� �

28 Chapter 2. Theoretical background 

2.7.2 The Boussinesq approximation 

A signi�cant simpli�cation is possible in gravity-driven �ows when density does 

not depart signi�cantly from a mean reference value �. Thus, on the premises 

that relative -spatial and temporal- variations of density are non-consequential 
compared with the velocity �eld, it can be postulated that �+ ' �−. Nonetheless, 
gravity is, comparatively, potent enough to make the speci�c weight considerably 

di�erent between the two �uids, and thus remains relevant only in the gravity 

terms of the momentum equations as seen in Eq. (2.39). Thus, Eqs. (2.39b) 
and (2.39c) simplify into: ⎧ 

(ℎu)� + r · ⎪⎪⎪⎪⎨ � � 
ℎu2� � r 

� 
ℎ2� = −ℎrΠ, (2.40a)+ 

1 
4 � � � 

u ℎkuk2 + ℎ2� = −2r · uℎΠ , (2.40b)⎪⎪⎪⎪⎩ ℎkuk2 + 
1 
2ℎ

2 + r · 
� 

Owing to the rigid-lid condition as well as the Boussinesq approximation, the 

non-dimensional form of Eq. (2.38) simpli�es into a Poisson equation which reads 

as: � �� 
ℎu2 − 

1 
4r 

� 
r2Π = −r · r ℎ2 . (2.41) 

2.7.3 The Sele parameter 

In the preceding chapter the model with uniform vertical magnetic �eld was intro-
duced while de�ning the stability of the system. The electromagnetically-driven 

rotating motion of the interface was �rst identi�ed by Sele (1977), who intro-
duced a parameter characterising this instability. This nondimensional parameter 
de�nes the relative magnitude of the electromagnetic and gravity forces. Follow-
ing Gerbeau, Le Bris et al. (2006), Davidson and Lindsay (1998) and Molokov 

et al. (2011), the Sele nondimensional parameter can be writen as: 
�0�0

� = . (2.42)
� ( �+ − �−) ℎ+ℎ− 

Depending on physical parameters and the geometry of the cell, there is a critical 
value of this parameter by exceeding which the system becomes unstable to a 

rotating interface tilt. 

With the normalisation described in Table (2.1), and the Boussinesq approx-
imation and recalling that the electromagnetic force is e�ective only in to the 

lower layer the equation for the bottom �uid is:� � 
��2� 
� 

(ℎu)� + r · 
� 
ℎu2� + 

1 
4r 

� 
ℎ2� ��0�0� + ℎrΠ = − 

� 
ℎ (�� × r�) . 
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Therefore, the ratio of electromagnetic forces to gravity forces, writes as 

�0�0�+ �0 �0 �0�0
� = = = (2.43)

��2 ��2� � [�] �2 . 

Due to the scaling used in this work the resulting key dimensionless parameter 
di�ers from that of Eq. (2.42) by a factor of �2/(ℎ+ℎ−). In using Eq. (2.43) the 

non-dimensional momentum equation in the Boussinesq approximation writes as: � 1 � � � 
(ℎu)� + r · ℎu2� + ℎ2� = −ℎ rΠ + � �� × r� . (2.44)4r 

2.7.4 Linear friction 

Although viscous e�ects have been thus far omitted from the shallow-water model 
description, oceanographic and engineering oriented approaches require the inclu-
sion of dissipative terms that permit a more realistic description of physical phe-
nomena. The resultant depth averaged viscous parameter coming from Eq. (2.6), 
has been meticulously derived and included in the description of shallow-water 
model in various classic textbooks such as (Tan, 1992; Pedlosky, 1979); however it 
is most often a friction parameter on the bottom corresponding to a wall-law sim-
ilar to Navier friction which is employed under the shallow-water approximation. 
A review of such friction laws can be found in Tan (1992) and Pedlosky (1979). 
Concerning the 1D case, models featuring a viscous shallow-water approximation 

are derived in Gerbeau and Perthame (2001) and Audusse (2005) to �rst and 

second order of the shallowness parameter, o�ering a rigorous derivation of the 

viscous parameters, which though do not distinguish between the bottom and 

lateral friction. Marche (2007) o�ers the analogous derivation in 2D wherein a 

distinction is made between the laminar (linear with respect to the mean velocity) 
and turbulent viscous parameters. 

In the context of MHD, an approximation �rst introduced by Lympany et 
al. (1982), and used thereafter in (Moreau and Evans, 1984; Bojarevics, 1998; 
Zikanov et al., 2000; Bojarevics and Pericleous, 2008), entails a simple linear 
friction term. As pointed out in Zikanov et al. (2000) ... all the e�ects of 
turbulent-energy dissipation near the rigid walls and within the layers are incor-
porated into the linear-friction terms with the empirical friction coe�cients... . 
This rudimental implementation is preferred over more elaborate expressions for 
its simplicity which does not obscure the instability mechanism of the two-layer 
MHD system and the contribution of each parameter. 

Therefore, the MHD two-layer system of equations including all friction e�ects, 
internal viscous and turbulent dissipation as well as the friction at rigid walls, 
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have been appended into a single expression in the following equations: � 1 � � � 
(ℎu)� + r · ℎu2� + 4r ℎ2� = −ℎ rΠ + � �� × r� − �u, (2.45) 

where � is the nondimensional linear friction coe�cient for the respective layer. 

2.8 Finite Volume Method 

In this section the concept of conservation laws is introduced, which serves as the 

foundation for the numerical methods employed. The continuous description of 
time-dependent hyperbolic system of PDEs is recast into a �nite set of discrete 

values which enable their spatio-temporal discretisation by a relevant algorithm. 
In anticipation of the discontinuities that inherently arise in the shallow-water 
approximation, the discretisation is performed on the basis of an integral for-
mulation representing a conservation law. Following the discussion of 2.2, the 

evolution of � in a control volume is determined by the balance of net �uxes∫ ∫ 
entering and leaving the volume, i.e. � �V = r · Q �V. Owing to the �� V V 

integral formulation of the governing equation, the conservation of the physical 
quantity is ensured also for discontinuous solutions. 

In its numerical approximation, the PDE is solved via the �nite-volume-
method (FVM) where the conserved quantity enclosed within a �nite volume-cell 
is calculated by taking the integral over the volume element. Following the path 

of the cell centre, it is assumed that the solution of �� is known on the control 
Ω 

cell Ω at timestep ��. Considering its evolution over a subsequent step Δ�, the � �
solution ��+1 at ��+1 = �� + Δ� is obtained by integrating over Ω × ��, ��+1 :

Ω ∫ ∫ ��+1 ∫ ∫ ��+1 

��� ���Ω = r · Q ���Ω , 
Ω �� Ω �� 

and the solution to �� is prescribed by the average of � over the control volume 
Ω 

Ω (Godlewski and Raviart, 2013):∫ ∫1 
�� = � �Ω , where |Ω| = �Ω . (2.46)Ω |Ω| Ω Ω 

In admission of this cell-average and using purely explicit �uxes, Eq. (2.8) writes 

as: ∫ 
��+1 = �� Δ� 
Ω Ω − r · Q �Ω. (2.47)|Ω| Ω 

In a rectangular computational domain Ω = [��, ��] × [��, ��] a structured 

static cell is depicted in �gure 2.3: 
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2 

Figure 2.3: Control-volume schematic. 

where the spatial increment Δ� is de�ned by Δ� = ��+ 1
2 
−��− 1

2
-equivalently for Δ�-

and the domain is considered equispaced throughout. The integral is approxim-
ated using a point located at the centre with the �uxes located at the interface 

of the cell, is interpreted as the average of the surrounding �ux node elements. 
By de�nition of Eq. (2.46) and Eq. (2.47) one obtains ∫ � � �1

2Δ� �+
��+1 = �� 
�, � �, � − � (��+ 1

2

�) − (, � , � � �1 � −�2
, � � , �

�) �� 
Δ�Δ� � 

�−∫ �

1
2 � � (2.48) 

�� � (��, � �+ 1
2
, ��) − � (��, � �− 1

2
, ��) �� 

1
2Δ� �+

− 
Δ�Δ� �

�− 1
2

where the divergence is r · Q = ��� + ���. Successively, the numerical �uxes are 

de�ned as: 
1 

∫ � 
�+ 1

2
�� 
�+ , � � , �

�) �� � (��+ 1
2

=1
2 , � Δ� � 

�−

1 
∫ �

1
2 (2.49)1

2�+
��

1
2
, ��) �� � (��, � �+=1

2�, �+ Δ� �
�− 1

2 

which rewrites Eq. (2.48) to express the 2D geometry as: � � � �Δ� Δ� 
��+1 
�, � = �� 

�, � − �� 
�− − �� �� − �� 

�, �− (2.50)−1
2

1
2

1
2 

1
2Δ� , � �+ , � �, �+Δ� 

In the case of a uniform Cartesian grid, the FVM may be related to the 

�nite-di�erences (FD) method. However, the advantage held over the former 
is that the element located at the centre is not a� ected by the the boundary 

conditions applied onto the �uxes. The advantages of the FVM method are 

more pronounced for non-uniform meshes as well as in two-or-higher- dimensions 

whence curvature is more naturally dealt with the FVM due to the integral nature 

of the equations used. Indeed, FD method uses a pointwise approximation at 
the node of the cell where the corresponding derivatives are approximated by 

�nite di�erences. In general such methods tend to be numerically unstable and 

break down near discontinuities. However, it is convenient to consider the �nite 

di�erence interpretation when computing the local truncation error via a Taylor 
series expansion at a point. 
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2.9 1D Lax-Wendro� scheme 

In this section the Lax-Wendro� scheme is presented in one-spatial dimension. 
Consider a system of conservation laws in one space dimension: 

�� U + ��F(U) = 0, (2.51) 

where U is a vector of the conserved quantities per unit volume and F is the �ux 

rate per unit area. 

The scheme introduced by (Lax and Wendro�, 1960) was constructed for solv-
ing 1D systems of conservation laws of the form Eq. (2.51) and falls from consid-
eration of a Taylor�s expansion 

U�+1 = U� + Δ� (�� U)� + (Δ�)
2 � 

�2U
�� + O((Δ�)3). (2.52)� � � � �2 

Subsequently, substituting Eq. (2.51) in Eq. (2.52), the spatial derivatives 

replace the temporal derivatives. For the second-order term in Taylor�s expansion, 
�Fthe Jacobian matrix � = �(U) = 
�U is considered, leading to the single-step Lax-

Wendro� scheme: 
(Δ�)2 

U�+1 = U� + Δ� (��F)� + (�� (���F))� + O((Δ�)3). (2.53)� � � �2 

The system is hyperbolic if the Jacobian � is diagonalizable and admits real 
eigenvalues and a complete set of independent eigenvalues, such that 

� = �Λ�−1 , (2.54) 

where R is the matrix of right eigenvectors and Λ the set of eigenvalues. 

The single-step Lax-Wendro� scheme can be discretised using a FD method 

with second order accuracy in time and space. However, for nonlinear problems 

the substitution carried out in the temporal derivatives is neither unique nor 
straightforward. Furthermore, the single-step Lax-Wendro� is not well suited for 
FVM methods. Solutions to systems described by Eq. (2.51) contain discontinu-
ities even if the initial data is smooth. On the theoretical analysis of hyperbolic 

conservation laws (Lax and Wendro �, 1960; Hou and LeFloch, 1994) comple-
ment each other. It is shown that numerical solutions of such systems, in the 

presence of shocks, if convergent they will converge to the weak solution, while 

non-conservative methods will converge to an unphysical solution. It thus be-
comes apparent that for problems where discontinuities can arise, conservation 

laws and schemes are decisive in obtaining a physically correct solution. 

In a technical report, Richtmyer (1962) presents the two-step Lax-Wendro� 
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method which, compared to its counterpart, eliminated the necessity of the ex-
plicit calculation of the Jacobian matrix. In a centred di�erence approach, illus-
trated in �gure 2.4, this takes the form: � � � � 

� (�
�
� 
+1) − � (�� 

1
2 

⎧ �+⎪⎪⎪⎨ 1
2 = 1

2 
Δ��

�
� 
+1 + �� � �−1 − 

�−1)� 2Δ� � ,1
2�+

(2.55)1
2�+ �+

��+1 = �� − Δ� � (�⎪⎪⎪⎩ � � Δ� �+ ) − � (�
�− ) .1

2
1
2

which represents the numerical approximation of Eq. (2.51) in one-space-dimension. 

The intermediate time step �+ 1
2 evaluated at the grid points � + 1

2 , is calculated 

by a Lax-Friedrich spatial discretisation which is �rst-order accurate. A leapfrog 

central-di�erence-in-time is applied in the second step, with which second-order 
accuracy is achieved by updating the value using data from the �th and the � + 1

2 

steps. Therefore, a time- and space-centred integration formula is obtained in the 

full step of the calculation. 

� + 1 

� − 1 
2 � + 1 

2 

� − 1 � � + 1 

� +

� 

1
2 

Figure 2.4: One-dimensional spatio-temporal mesh for the Lax-Wendro� 
scheme. 

2.9.1 Stability 

The measure of stability established therein is given in terms of the Courant-
Friedrich-Lewy (CFL) condition which imposes a physical restriction on the propaga-
tion of information advected with the �uid. 

���� 
Δ� ≤ 1 (2.56)
Δ� 

where the ���� = max( |�� |) de�nes the maximum wave propagation speed (eigen-
� 

value). This falls from consideration of the von-Neumann stability analysis where 

for a Fourier mode exp (��Δ�) the ampli�cation matrix de�ned by Eq. (2.55) is 

(Richtmyer and Morton, 1967): � �2
Δ� Δ� G = � − � � sin (�Δ�) − � (1 − cos (�Δ�)) . 
Δ� Δ� 
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Then, with � being an eigenvalue of �, the corresponding eigenvalue of G is 

� = 1 − �� sin (�Δ�) − �2 (1 − cos (�Δ�)) , 

where � = � Δ� . Hence, the magnitude of the ampli�cation factor in the complex 
Δ� 

plain is given by 

|� |2 = 1 − �2 (1 − �2) (1 − cos (�Δ�)) . 

It is now clearly seen that for the two-step Lax-Wendro method the von-Neumann 

condition will be satis�ed for all wavenumbers � when �2 ≤ 1. In relation to the 

FVM the CFL number ensures that the information propagated through in one 

time step does not exceed one grid cell, which otherwise would correspond to un-
physical speeds and the rise of numerical instabilities. As highlighted by LeVeque 

(2002, p. 69) and Durran (2010, pp. 98�100) the CFL condition dictates the in-
terdependence of the numerical domain with the associated PDE. Although CFL 

is a necessary condition for stability the su�cient conditions for stability may be 

more restrictive and one should refer back to the von Neumann stability analysis. 

2.9.2 TVD schemes and the oscillatory behaviour near 

shocks 

The two-step Lax-Wendro� method developed by Richtmyer (1962) and Richt-
myer and Morton (1967) and further demonstrated by Potter (1973) and Vesely 

(2001), is tested in terms of its stability and compared against various schemes 

for hyperbolic problems by Toro (2001), LeVeque (2002) and Durran (2010). In 

speci�c, the discussion is focused around discontinuous solutions. First, an over-
view of �rst-order accuracy schemes is carried out where it is shown that schemes 

such as Godunov�s or Lax-Friedrich�s introduce numerical di�usion, resulting in 

poor accuracy. For smooth solutions good accuracy can be achieved with the 

use of second-order schemes such as the Lax-Wendro�, the Beam-Warming or 
Fromm�s method which though, being dispersive, produce spurious oscillations 

to discontinuities. Techniques introduced to improve these oscillations are �ux-
and slope-limiters or MUSCL (Monotone Upstream-centred Scheme for Conser-
vation Laws) -type of schemes. The class of �ux-limiter schemes aims to combine 

features of the �rst- and second-order accuracy schemes by means of lowering the 

numerical accuracy in regions where shocks develop but retaining second-order 
in smooth parts of the solution. The MUSCL schemes aim to mimic the exact 
solutions of conservation laws by reconstructing the data in the shock vicinity 

so as to avoid spurious oscillations. Convergence of both methods is analysed 

examining their TVD (or TVNI) properties (Harten, 1983), which ensures that 
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independently of the data reconstruction technique employed, the scheme pre-
serves monotonicity. 

Utilising �ux-limiter or polynomial-reconstruction-limiter can be advantage-
ous for the numerical approximations of problems ensuring convergence even in 

the presence of shocks or discontinuous solutions. Nevertheless, use of these 

techniques can signi�cantly hinder solutions to smooth extrema introducing er-
rors to the computation as they degenerate to �rst-order accuracy at extremal 
points. Moreover, all limiter approaches impair the computational e�ciency. 
Consequently, it stands to reason that whence limiters are not essential for the 

correct simulation of the underlying physics, to be avoided. A synopsis of such 

methods has been given in 2.9, and can be found in more detail in (Zhang et 
al., 2015; Toro, 2001; LeVeque, 2002) but are generally beyond the scope of this 

thesis. 

As mentioned above, although the Lax-Wendro� method exhibits oscillations 

near shocks, it still captures accurately their steepness. Adjusting the CFL condi-
tion (i.e. the temporal- and/or the spatial-step) one can regulate the oscillations 

minimising the dispersion e�ects displayed (Potter, 1973, p. 269). Such an ex-
ample can be seen in Hesthaven (2017, p. 119) where the CFL is adjusted in 

terms of its temporal discretisation. In fact, it is indicated in LeVeque (2002) 
that it owes to work best when the CFL equals unity. 
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Chapter 3 

Numerical schemes and solvers 

This chapter reviews the 2D Lax-Wendro�-Richtmyer scheme before proceeding 

to present a new and improved spatiotemporal integration scheme used for the 

evolution of the system of equations. The latter is coupled with a highly-e�cient 
Poisson solver employing the tridiagonal matrix algorithm and fast discrete cosine 

transform used in solving the interfacial pressure and electric potential equations. 

3.1 2D Lax-Wendro� scheme 

The Richtmyer-Lax-Wendro� scheme is presented in two-spatial dimensions be-
fore developing the new two-dimensional scheme utilising the rhombic structure 

of the grids. In the latter parts of this chapter, an e�cient fast Poisson solver 
for the 2D �nite-di�erence elliptic equations is developed, which is applied in the 

numerical resolution of the 2D two-layer pressure, as well as the electric potential 
equation. 

In two-spatial dimensions, a conservative hyperbolic equation can be written 

as: 

�� U + ��F(U) + ��G(U) = 0. (3.1) 

where F(U) and G(U) are the �uxes of the quantity U in the � and � direction 

respectively. In presenting the numerical scheme, in two-dimensional spatial-
variables, the index notation will be temporarily altered from that of 2.9 to 

accommodate the needs for the description of the scheme as per Richtmyer (1962) 
and Richtmyer and Morton (1967). As such, the fractional indices are replaced 

by integer indices; � = (� + 1)Δ� refers to the predictor step whereas � = (� + 2)Δ� 
to the corrector step and the following scheme is applied on all (�, �) : �, � ∈ Z 

nodes. 
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h i h i⎧ Δ� Δ� 
��+1 = �� � (�� − � (�� , (3.2a)�, � �, � − �−1, � ) �, �−1)�+1, � ) − � (�� 

�, � +1) − � (�� 

2Δ� 2Δ� 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ � �1where �� = �� 

�−1, � + �� 
�, �−1�, � �+1, � + �� 

�, � +1 + �� 

4h i h iΔ� Δ� 
��+2 = �� − � (��+1 ) − � (��+1 ) − � (��+1 . (3.2b)�, � �, � �+1, � �−1, � �, �−1)�, �+1) − � (��+1 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ Δ� Δ� 

In the implementation of the Richtmyer two-step Lax-Wendro� scheme, the 

nine-point-stencil used is portrayed in �gure 3.1a whereas the spatial grid con-
sidered is presented in �gure 3.1b. 

� 

� + 2 � + 2 

� + 1 � + 1 

� � 

� − 1 � − 1 

� − 2 � − 2 

� 
� − 2 � − 1 � � + 1 � + 2 � − 2 � − 1 � � + 1 � + 2 

(a) 2D Lax-Wendro� stencil. (b) Spatial grid points. 

Figure 3.1: The nine-point stencil 3.1a and the grid 3.1b for the Lax-Wendro� 
scheme 

As mentioned by Richtmyer and Morton (1967), in application of Eq. (3.2) 
on �gure 3.1b the set of points with � + � + � being even and the set having 

odd values are decoupled which induces a �drift� in the solution, between the 

two stencils, over time as mentioned by Vesely (2001). It has been suggested by 

Vesely (2001) and Potter (1973) that a di�usion term in the equations or one 

arti�cially implemented would mutually couple the grids. 

The decoupling in Richtmyer�s implementation can be better understood in 

application of the nine-point stencil on the grid for two neighbouring points. At 
this stage, it is also advantageous to return to the fractional notation, in both 

Eq. (3.2) and �gure 3.1, for comparison with the scheme naturally following from 

Richtmyer�s scheme. Hence, the grid, illustrated in �gure 3.1b, with the nine-
point stencils applied takes the following form: 
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Figure 3.2: Grid with two neighbouring points� stencil. 

In this thesis, no di�usion term is considered and since the solutions on the 

two grids are decoupled they thus are mutually independent. Therefore, it is 

possible to de�ne two conjugate grids as shown in �gure 3.3. 
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(a) Staggered grid (b) Conjugate staggered grid 

Figure 3.3: Two con�gurations of the rhombic staggered grid 

In these two con�gurations, let V1 be the graph indicated in �gure 3.3a whereas 

V2 the graph of �gure 3.3b, where the vertices of the corresponding graphs write 

as: �� � �⎧ � �0 V1 := � + 2 
, � + : (∀ �, � ∈ Z) ∧ (∀ �, �0 ∈ {0, 1}) : � + �0 ∈ {0, 2} , (3.3a)

⎪⎪⎪⎪⎪⎨ 2�� � � 
� 1 − � V2 := � + 2 
, � + : (∀ �, � ∈ Z) ∧ � {0, 1} . (3.3b)

⎪⎪⎪⎪⎪⎩ 2 

As it can be seen in the computational domain under consideration, the result-
ing uniformly spaced quadrangle elements form rhombic (�diamond�-shaped) ele-
ments. This particular choice of representation lies in the accurate interpretation 
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of the control-volumes. The orientation of the quadrangles allow no overlapping 

spaces which otherwise would arise as a result of rectangular quadrangles i.e. the 

rhombic-shaped elements rotated by 45◦. 

For the numerical integration of the cell-vertex quadratures, the Newton-CotesÐ4
formulas are used. The whole volume is described as Ω = Ω� where each 

�=1 Ñ
quadrature is |Ω� | = |Ω4 

| for � = 1 . . . 4 and they are not overlapping i.e. Ω� Ω � = 
x1+x2+x3+x4∅, ∀� ≠ � . The centre position � is � = and an approximation of the4 

integral over the domain Ω is obtained via the Newton-Cotes formula as: ∫ 4∑ 
� (x)�Ω ≈ Ω� � (��) ≈ |Ω| � 

Ω �=1 

�1 �1 

�4 �2 �4 �2� 
Ω

0 
1 

00 
Ω24Ω

�3 

� 
Ω1 

Ω4 Ω2 

Ω3 

(a) Volume (b) Volume at the boundary 

Figure 3.4: Cell-vertex FV 

0 
0 0 |Ω1 | |Ω2,4 |At the boundary: |Ω1 | = |Ω1 | and |Ω2,4 | = = . Therefore, Newton-Cotes2 2 

formula reads as:∫ 
0 0 0 0 2|Ω1 |x1 + |Ω2 |x2 + |Ω4 |x4 |Ω| 2x1 + x2 + x4

� (x)�Ω ≈ |Ω1 |x1+|Ω2 |x2+|Ω4 |x4 = = 
Ω
0 2 4 2 

Hence, in relation to the inner volume it can be seen that |Ω0 | = |Ω2 
| , thus the 

2x1+x2+x4point � is de�ned as � = on Γ. In review of Eqs. (2.46) and (2.50)4 

and retrieving the fractional notation, Richtmyer�s two-step scheme, applied on 

�gure 3.3a with vertices de�ned by Eq. (3.3a), can be represented as: 

1 h i h i⎧ �+ Δ� Δ� 
� 2

1 = �� 
1 − � (�� 

�−1, � ) − � (�� 
�, �−1) , (3.4a)

�, � + 2 �, � + 2 2Δ� �+1, � ) − � (�� 

2Δ� �, �+1) − � (��⎪⎪⎪⎪⎪⎪⎪⎪⎨ 1 � � 
where �� 

1 = ��
� 
+1, � + �� 

�, � +1 + �� 
�−1, � + �� 

�, � −1�, �+ 2 4h i h iΔ� Δ� 
��+1 = �� � (��+1 ) − � (��+1 ) − � (��+1 ) − � (��+1 ) . (3.4b) 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ �, � �, � − 
Δ� �+ 12 , � �− 2

1 , � Δ� �, � + 2
1 �, � − 2

1 
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where the corrector step Eq. (3.4b) applies to the nodes represented by the blue 

dots and the predictor step Eq. (3.4a) to the red crosses which are the nodes of 
V2 on the conjugate grid. The grids formed by circles and crosses in �gure 3.5, 
indicate the spatial con�guration of the time-discretisation of the half time step 

Eq. (3.4a) and the full time step Eq. (3.4b) points, respectively. The new com-
putational grid encompasses two staggered subgrids, which comprise a numerical 
analogue of the �nite volume scheme where every element (conserved quantity) 
is being enclosed at the centre of the computational cell, and requires four grids 

(two for each step) to be computed. 

� 

� + 1 

� � +

1
2� +

� 

1
2� −

� − 1 

�1
2 

1
2� − 1 � + 1� −

Figure 3.5: Dual-rhombic computational grid. Half-step: ( ). Full-step: ( ) 

According to the stability analysis carried out by Richtmyer and Morton (1967) 
the stability conditions of this scheme is: 

Δ� 1 
���� ≤ √ ,

Δ� 2
where ���� is the norm of the maximum eigenvalues in both directions where 

equal discretisation (Δ� = Δ�) has been considered. A thorough stability analysis 

of both the two- and three-dimensional Richtmyer-type schemes is also carried 

out by Wilson (1972). Detailed discussions of alternative discretisations can be 

found also in Burstein (1967), Zwas (1972) and Eilon et al. (1972) from which 

it is understood that arrangement of nodes in space and time may signi�cantly 

a�ect the computational accuracy and the stability conditions. 

3.2 Development of a highly-e �cient Poisson solver 

For two-layer systems with electromagnetic e�ects, additional terms arise on the 

RHS of the governing equation. Numerical evaluation of these terms requires the 
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computation of elliptic equations which are not present when solving incompress-
ible hydrodynamic single-�uid �ows for which the aforementioned Lax-Wendro� 

scheme is su�cient for the study of the problem. Numerical modelling of the two-
layer shallow-water MHD system of equations necessitates at every time step the 

resolution of elliptic equations describing the pressure at the interface between the 

�uid layers as well as the electric potential distributions. In both cases the solu-
tion of diagonally dominant tridiagonal linear systems of equations is required. 
The challenge is then to acquire a solver which is computationally e�cient and 

second-order accurate. 

As shown in 2.7, the rigid-lid condition gives rise to an elliptic pressure equa-
tion, Eq. (2.41), for interfacial pressure which in the Boussinesq approximation 

reduces to a Poisson equation. In the case of a second-order �nite di�erence ap-
proximation of the Laplacian, this results in a system of linear equations with a 

constant-coe�cient matrix of coe�cients, within which the boundary conditions 

are incorporated. 

However, Eq. (5.7) associated with the electromagnetic part of the problem, 
as seen in 5, is essentially nonlinear and requires particular attention as a time 

varying height term is involved on the LHS. Aiming towards a memory e�cient 
and computationally-fast direct solver, a methodology similar to Chorin�s projec-
tion scheme (Chorin, 1968) was employed where at each time step an e�ectively 

linear constant-coe�cient problem is formulated. The method is described in the 

succeeding section. 

3.2.1 Time-splitting projection method 

As mentioned in the introduction, similarly to the Navier-Stokes equation, for 
which Chorin�s projection method was originally developed, several Poisson equa-
tions must be solved numerically at each time step which is computationally 

expensive. Consequently, considerable research has been devoted to the develop-
ment of direct fast Poisson solvers, based on the Fast Fourier Transforms (FFT) 
in combination with the Gaussian elimination. 

Notwithstanding the e�ciency brought by fast Poisson solvers the solution 

from time �� to ��+1 of Eq. (5.7) involves time dependent coe�cients which pre-
clude the direct use of fast Poisson solvers. In order to solve a variable coe�cient 
equation as in Eq. (5.7), iterative multigrid methods are commonly used. The 

main disadvantage of iterative methods is their high computational ine�ciency, 
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especially in comparison to the fast Poisson solvers which though, are limited to 

constant-coe�cient equations. 

Dong and Shen (2012), have developed a projection method that reduces the 

elliptic equation into a constant-coe �cient equation. Whereas their implement-
ation is applied on a variable-coe�cient pressure-gradient with variable density; 
adopting this approach it is possible to split the variable-coe �cient potential-
gradient term into a constant term and a variable term, and then treat the con-
stant term implicitly and the variable term explicitly. The �ux in Eq. (5.7) can 

be split approximately as: � � 
ℎ�+1 − ℎℎr��+1 + r� , 

where � de�nes an extrapolation of the potential to the time-step � + 1. Dong 

and Shen (2012) de�ne this term as: ( 
��. (3.5a) 

� = 
2�� − ��−1 . (3.5b) 

where Eq. (3.5a) and Eq. (3.5b) de�ne a constant and linear extrapolation result-
ing in a �rst and second order accurate approximations. For the Lax-Wendro� 

scheme, �ux can be split as: 

Half-step: O(�) � � �� � �
1
2

1
2

1
2

1
2

1
2

1
2ℎ�+ r��+ = ℎ + ℎ�+ − ℎ r��+ = ℎr��+ ℎ�+ − ℎ r��. (3.6)+ 

Full-step: O(�2) �� � � 
− �� . (3.7)

1
2ℎ�+1r��+1 = ℎr��+1 ℎ�+1 − ℎ 2��++ r 

Since after the splitting all nonlinear terms are de�ned on the previous time 

steps and thus moved to the RHS of the equation, the �nite-di�erence potential 
equation e�ectively reduces to a Poisson equation which is solvable by a fast 
algorithm. 

3.2.2 The DCT and TDMA algorithms 

Approximating the Poisson equation in one-dimension with the second order �nite 

di�erence: 
�2� ��+1 − 2�� + ��−1≈ ,
��2 Δ�2 
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results in a set of linear algebraic equations of the form 

�� = � , (3.8) 

with the matrix � de�ned by: 
. .−�� �� +� ��+1 . � = 0, ⎡⎢⎢⎢⎢⎢⎣ ��−1 −���� +��+1 

⎤⎥⎥⎥⎥⎥⎦ = 

⎡⎢⎢⎢⎢⎢⎢⎣ �� 
⎤⎥⎥⎥⎥⎥⎥⎦ � = 1, � − 1, (3.9) 

.
� ��−1 −� �� . � = �. . 

where �rst and last equations approximate Neumann boundary conditions which 

in general are de�ned by the coe�cients [�, �]. These coe�cients depend on the 

grid as de�ned in the following �gures. 

(a) Grid 0. (b) Grid 1. 

Figure 3.6: Two di�erent 1D grids with midpoints: ( ) and nodes: ( ) 

The two natural choices falling from the second order FD approximation of 
the Neumann boundary condition 

��� |Γ = 0, 

de�ne symmetry around a meshpoint �g. 3.6a, or around a midpoint �g. 3.6b� � � �
and formulate the coe�cients of Eq. (3.9) as �1,� = 2, � = 2 or �1,� = 1, � = 1 , 
respectively. 

The Discrete Cosine Transform 

The discrete cosine transform (DCT) is a form of the discrete Fourier transform, 
�rst de�ned by Ahmed et al. (1974). It transforms the matrix from the spatial 
domain to the frequency domain into spectral sub-bands of di�ering importance. 

Equation (3.9) can be solved using a DCT the type of which depends on the 

location of the boundary. Let � � denote the DCT whereas �� is the inverse � �
DCT. Then, for the case which �1,� = 2, � = 2 corresponding to �gure 3.6a, the 

one-dimensional DCT commonly referred to as DCT-I is: � � � �
2 �∑ (1 + ��0 + ��� )−� �1

2
1
2 

1
2 

� �� 
��, for 0 ≤ �, � ≤ �, (3.10)� � = cos 

� � 
�=0 1 + � �0 + � � � 
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Application of the DCT onto the discrete Poisson system Eq. (3.9) results to 

eigenvalues, the form of which depends on the boundary conditions. The corres-
ponding eigenvalues in application of DCT-I are: � � � � � � 

� � � � 
� � = 2 cos − 1 = −4 sin2 . (3.11)

� 2� 

The associated inverse DCT �� is de�ned by a similar expression, replacing �� 
with � � and summing over the index � . � �

The analogous Fourier transform for �gure 3.6b with coe�cients �1,� = 1, � = 1
is DCT-II which reads as: � � ! 

� � = 

� �
2

1
2 �∑ 

� 
�=0 

1�� � +√ 1 cos
1 + � �0 

2 
��, for 0 ≤ �, � ≤ �, (3.12)

� + 1 

with the corresponding eigenvalues being given by: � � � � � � 
� � � � 

� � = 2 cos − 1 = −4 sin2 . (3.13)
� + 1 2 (� + 1) 

The respective inverse of DCT-II (IDCT-II) is equivalent to DCT-III. That is: � ! 
�

� 1∑ 1 �� � + 
� �

2
1
2 2 

� � , for 0 ≤ �, � ≤ �. (3.14)�� = √ cos 
� + 11 + ��0� 

�=0 

Tridiagonal Matrix Algorithm (Thomas Algorithm) 

The Tridiagonal Matrix Algorithm (TDMA), �rst described by Thomas (1949), 
is commonly referred to as the Thomas algorithm. Thomas algorithm is a simple 

and e�cient form of Gaussian elimination which makes use of the tridiagonal 
banded structure of matrix systems to solve � equations using O(�) operations. 
In this tridiagonal structure, all matrix elements other than the central-, the 

super- and the sub-diagonal, are zero. The Thomas algorithm reduces the system 

of equations to upper triangular form, by eliminating recursively terms in each of 
the equations, followed by backward substitution starting with the last equation 

as follows: (
��+1 = ���� + �� , (3.15a) 

�� = �−1 (��+1 − ��) . (3.15b)� 

For Eq. (3.9), the forward sweep for � = 0 yields: 
�0 �0

�0 = and �0 = . 
�0 �0 
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Accordingly, for � = 1, . . . , � − 1 the recurrence relations falling from the use of 
Eq. (3.15) are 

�� = �� − ��
−
−
1
1 and �� = ��

−
−
1
1��−1 + �� . 

The resulting upper bidiagonal matrix is now solved starting from the last element 
� = � for which 

�� ��
�� = ��−1 − ,

�� �� 

where using Eq. (3.15b) it rewrites into 

�� 
�� �� �−

�
1 
−1��−1 + 

�� ��
�� = �−�

1 
−1 (�� − ��−1) − = − = − . 

�� �� �� − �−1 ��
�� �−1 

Implementation of the Neumann boundary conditions in the tridiagonal system 

results into a singular matrix which in turn a�ects the solution with the use of the 

Thomas algorithm. This problem is overcome by setting �� = 1 which embodies 

the solvability condition. 

� In this work, the Thomas algorithm is used with two sets of coe�cients � � � 
�1,� = 1, � = 1 and �1,� = 2, � = 2 and will be referred to as TDMA-I and 

TDMA-II respectively. 

3.2.3 The DCT-TDMA algorithm 

The proposed scheme is akin to the idea of the Fourier-analysis-cyclic-reduction 

(FACR) algorithm described by Swarztrauber (1977) and Press et al. (2007), 
which uses the 1D discrete Fourier transform to separate the original system of 
linear equations into tridiagonal systems for each Fourier mode. Furthermore, 
Wilhelmson and Ericksen (1977), Swarztrauber (1977) and Swarztrauber (1986) 
studied the FACR algorithm for staggered and nonstaggered grids with the re-
spective Neumann as well as Dirichlet boundary conditions. 

The DCT-TDMA method consists of a combination of the Discrete Cosine 

Transform and the Tridiagonal Matrix (Thomas) Algorithm, where the two-
dimensional Poisson equation is transformed into the Fourier space along the 

�-direction, resulting in a tridiagonal system for each �-Fourier mode along the 

�-direction. Although the implementation of the scheme is much simpler than 

that of other Poisson solvers, the only instance in literature where such a scheme 

is mentioned is Hasbestan and Senocak (2018) and Hasbestan and Senocak (2019) 
in which the study pertains numerical solution to the three-dimensional Poisson 

equation as well as comparisons with the cyclic-reduction algorithm. Counter to 
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the proposed scheme in this thesis, only one grid con�guration is considered for 
the Neumann boundary condition. 

The computational e�ciency of the Thomas versus cyclic-reduction algorithm 

is shown to be comparable by (Hasbestan and Senocak, 2019). Assuming a 

constant-coe�cient problem, the overall e �ciency could further be improved, 
reducing the necessary operations per time step by calculating the Thomas al-
gorithm coe�cients once at the beginning. The resulting algorithm requires 

4(� − 1) + 1 operations per time-step as opposed to 6(� − 1) + 4 (see pseudo-
algorithms in A). 

The Poisson equation is solved by application of the eigenfunction expansion 

method on the 2D system �� = � . Let � denote the matrix consisting of eigen-
vectors of � and thus the diagonal matrix comprised of eigenvalues being given 

by �−1 �� = diag(��) where �� depend on the boundary conditions which are sat-
is�ed in each basis function. Then, de�ning the Fourier transform � = �−1� and 

computing � = �−1 � the eigendecomposition of the discrete Laplacian operator 
yields: 

��−1, � − �−1 ����, � + ��+1, � = ��, � . 

where �, � indicate the � th component of the �th eigenvector. Bearing in mind 

that the eigenfunctions ��, � applied to the system 

�

�, � = (�, � )� ��, � 

� � ∑ 
� 

�=0 

are composed of sine and cosine functions the system is then recast as: 

(��I − �) ��, � = ��, � , 

which is a tridiagonal system of linear equations solved with the use of the Thomas 

algorithm. Lastly the solution of � is obtained by the inverse Fourier transform 

as follows: 
� � �∑ 

(�, � )� = �, � ��, � 
� 

�=0 

In application of the DCT the coe�cients (��I − �) of the tridiagonal system 

now take the form: 
�0 � · · · 01

⎡⎢⎢⎢⎢⎢⎣ 1 �0 1 

⎤⎥⎥⎥⎥⎥⎦ .� 

0 · · ·� �0 
� 
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These coe�cients, which depend on the boundary conditions, are given by �0 =� � � 
Δ�2 − �� + � � , where �� is de�ned as
Δ�2 ( 

� for � = 0 and � = �, (3.16a) 
�� = 

−2 for � = 1, . . . , � − 1, (3.16b) 

and � is de�ned by the use of the analogous staggered or collocated grid. The 

corresponding eigenvalues read as: 

� � = −4 sin2 � � for � = 0, . . . , �, (3.17) 

where ⎧ � � 
, collocated grid, (3.18a)⎪⎪⎪⎪⎨ 2�

� � = 
� � 

, staggered grid. (3.18b)⎪⎪⎪⎪⎩ 2 (� + 1) 

The solution of the Poisson equation on the staggered grids presented in 3.1 

decouples into four independent solutions on four di�erent sub-grids which require 

a di�erent combination of the DCTs and TDMAs previously presented. 

(a) Grid 00. (b) Grid 11. 

(c) Grid 01. (d) Grid 10. 
Figure 3.7: Visual representation of the 2D matrices domain of reference 

decomposed into di�erent grids. 

In the case of the grid presented in �gure 3.7a the DCT-II/TDMA-I is required, 
while the grid presented in �gure 3.7b requires application of DCT-I/TDMA-II. 
In both cases the same type of staggered/collocated conditions are applied in both 

directions. The other two cases illustrated in �gure 3.7c and �gure 3.7d require 
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the use of DCT-II/TDMA-II and DCT-I/TDMA-I, respectively. The subsequent 
time-cost e�ciency in function of the grid size is given in �gure 3.8: 
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Figure 3.8: Illustration of the combined performance of the four types of 
Poisson solvers against the matrix size. 
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Chapter 4 

1D two-layer SW system 

bounded by a rigid lid 

In this chapter the analysis and numerical modelling of interfacial waves with 

hydraulic jumps is carried through with the use of a new theoretical frame-
work which was proposed by (Priede, 2018). Bound by a rigid lid, the two-layer 
shallow-water system is formulated with the use of a completely self-contained 

conservative form of momentum equation that does not require external closure 

conditions. 

In 4.1 the constituent theory of the two-layer model is reviewed. The Boussinesq 

lock-exchange problem is closed analytically in 4.2 and validated numerically in 

4.2.5 where the new analytic results as well as numerical aspects of the problem 

are discussed and results are illustrated. 

4.1 Conservative shallow-water equations for the 

1D system 

The objective of 4.1.1 and 4.1.2 is to present a new set of conservative equations 

for the two-layer system as proposed by Priede (2018). The apparent absence of 
equations, in the case of a bilayer system, capable of encapsulating discontinuities 

that inevitably arise under the admission of the shallow-water approximation 

has lead to the belief that the system is inherently non-conservative and thus 

unable to describe such solutions without external closure relations. Counter 
to common belief, Priede (2018) shows that the two-layered system admits to a 

conservative and self-contained form of the momentum equation which does not 
require external energy considerations for closure. 
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4.1.1 Basic equations 

As noted in 2.6 and 2.7 the �uid �ow is assumed to be predominantly hori-
zontal and has a negligible e�ect on the vertical pressure distribution. Hence, in 

the �rst-order shallow-water approximation, the pressure distribution is purely 

hydrostatic, i.e. 
�±(�, �, �) = (�, �) − �±�(� − ℎ(�, �)). 

Congruous to 2.7, the plus and minus subscripts refer to the bottom and top 

layer. In contrast to Baines (1984) and Milewski (2004), and similarly to Long 

(1956b), Wood and Simpson (1984) and Sandstrom and Quon (1993) the pressure 

distribution (�, �) = �±(�, �, �) |�=ℎ is de�ned at the interface. Substituting this 

pressure distribution into the inviscid �uid �ow (Euler) equation for the horizontal 
velocity component in each layer yields the �rst shallow-water equation, while 

the second equation follows from the conservation of mass in each layer Pedlosky 

(1979) 

�(�� + ��� ± �ℎ�) = − �, (4.1) 

ℎ� − (�ℎ)� = 0, (4.2) 

where � is the density, � the velocity and ℎ the height of the respective layers. 
Hereafter, subscripts � and � denote the respective temporal and spatial partial 
derivatives while the plus and minus indices have been dropped for the sake of 
brevity. 

In terms of the �ux � = ℎ�, Eq. (4.1) is written as: � � � � 
� � �2 

� + ± ��(ℎ)� = − � . (4.3)
ℎ 2 ℎ2 

�� 

Lastly, the integral/weak formulation of Eq. (4.1) is obtained by integrating over 
the depth of the respective layers: � � � � 

�2 � � 
ℎ2� � �� + ± = −ℎ � . (4.4)

ℎ � 2 � 

The system of four shallow-water Eqs. (4.2) and (4.4) contains �ve unknowns: 
�±, ℎ± and . It is closed by the rigid-lid approximation (�xed total height 
ℎ+ + ℎ− = �) condition, which can be used to eliminate the top layer depth. 

4.1.2 Circulation and Momentum conservation laws 

Two more unknowns can be eliminated from Eqs. (4.1) and (4.4) by virtue of the 

mass conservation and the laterally closed domain which permit their algebraic 
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manipulation in order to obtain a set of locally conservative equations. The 

pressure gradient � can be eliminated by subtracting Eq. (4.3) for the top layer 
from that for the bottom layer. This leaves only two unknowns, � ≡ �+ℎ+ and 

ℎ = ℎ+, and two equations, which can be written in a locally conservative form aso � i ��n � 1 � h � 
� + �2 + � [�] [ℎ]� = 0. (4.5)

ℎ � 2 ℎ2 
� 

As discussed by Priede (2018), the locally conservative Eq. (4.5) may not �n � o � 
be applicable to strong bores. The locally conserved quantity � which ∫ ℎ 
can be written as [��] = �� ( ��) ��, is closely related with the vorticity � = 

� 

���. As explained by Batchelor (2000, p. 508), vorticity is conserved in two-
dimensional �ows where vorticity is advected, but in three-dimensional �ows �.r� 

can modify the vorticity balance, turning and extending the vortex. As such, 
jump conditions owing to Eq. (4.5) may not be applicable in hydraulic jumps 

as the relevant quantities should not only be conserved in one-dimensional �ows 

de�ned by Eqs. (4.2) and (4.5) but also in the more complex three-dimensional 
turbulent �ows taking place in strong bores. 

The mass conservation for both layers leads to {�ℎ} = (�), where (�) is the 

total �ow rate. In a laterally closed channel ≡ 0 and thus �−ℎ− = −�+ℎ+. A 

conservation law that will be conserved across hydraulic jumps is derived through 

a linear combination of the sum of the two layers of Eq. (4.3) and the respective 

di�erence, as seen in Eq. (4.5). Due to Eq. (4.5) being zero one obtains: i � o �� h � 1 �n � 
� + �2 + �{�}(ℎ+)� = −2 � . (4.6)

ℎ � 2 ℎ2 
� 

The summation of the two layers of Eq. (4.4) for both layers results in: o ��n � � � � 
[ �] �� + �2 + �ℎ2 = −� � . (4.7)

�ℎ � 2 

Substituting the pressure gradient from Eq. (4.6) into Eq. (4.7) the momentum 

conservation equation is obtained as:� � � 
� h � i �n � o � n � o � � � � � 

[�] � − � + �2 − �2 + �ℎ2 − �{�}ℎ+ = 0.
�2 ℎ ℎ 4 ℎ2 2� � 

The last term of this equation can be further simpli�ed using 
� 
ℎ2� = � (2ℎ+ − �), 

which leads to:� � �i o o 
[�] � − 

� h � 
� + 

�n � 
�2 − 

� n � 
�2 + � 

[
4 
�] {ℎ2}� = 0. (4.8)2 ℎ ℎ 4 ℎ2 

� � 

which is the sought locally conservative the momentum equation. This equa-
tion can straightforwardly be integrated across hydraulic jumps to obtain jump 

conditions analogous to the Rankine-Hugoniot relations. 
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4.1.3 Energy conservation equation 

The local energy equation can be obtained using Eqs. (4.2) and (4.4). Hence, to 

obtain the kinetic energy we multiply throughout by the velocity �, leading to: � �� � � 
�� (�ℎ)� + �2ℎ ± 2 

ℎ2 
� = −�ℎ �,� 

which writes as � � � � � � 
� �2ℎ − �ℎ�� + �3ℎ − �2ℎ (�)� ± ��ℎℎ� = −�ℎ �,� � 

rewriting it so as to make use of Eq. (4.4) � � � � � � � � � � 
� �2ℎ + �3ℎ − �ℎ (�ℎ)� + �2ℎ   �ℎ� = −�ℎ �,� � � 

leads to � � � � � � 
� �2ℎ + �3ℎ − �ℎ (− �   2��ℎ�) = −�ℎ �,� � 

which simpli�es to: � � � � � � 
� �2ℎ + �3ℎ ± 2���ℎℎ� = −2�ℎ � .� � � � � �

For the next step, �rst note that: �ℎℎ� = �ℎ2
� − ℎ (�ℎ)� = 

1 
�ℎ2

� − ℎ (ℎ)� due� � � �
to the mass conservation equation, moreover, �ℎℎ� = �ℎ2 − ℎ2 . Therefore, 

� �2� � � � � � � � � � 
� �2ℎ + �3ℎ ± �� 2 �ℎ2� − ℎ2� = −2�ℎ � .� � � � 

Rearranging and using � = ℎ� for the respective layers gives: �� � � � � 
�2 � 

ℎ2� �3 

� ± � + ± 2� (ℎ�)� = −2�ℎ � . (4.9)
�ℎ ℎ2 

� � 

By taking the average of Eq. (4.9) we obtain: �n � o � � � � h � i � 
�2 + � �ℎ2 + �3 + 2� {�ℎ} � = 0. (4.10)

ℎ � ℎ2 
� 

The terms of Eq. (4.10) are individually handled and simpli�ed, the purpose 

of which will become apparent in the following section where the Boussinesq 

approximation is applied. Hence, the �rst term writes as: � � �� o ��n � �2 {�} [�]
�2 = 2 

{ℎ} + [ℎ] ,
ℎ � hℎi 2 � 

whereas the second term reads as: � � �� i �� h � �3 {�} � � [�]
�3 = − ℎ2 + 2 

{ℎ2} . 
ℎ2 

� hℎi2 2 � 
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Lastly, the third term after few rearrangements simpli�es to: �� � �� � {�} � � [�] {�} [�]
�ℎ2 + (2{�ℎ}�)� = ℎ2 + 2 

{ℎ2}� + 2 2 
{ℎ} + [ℎ] � = 

� �2 2 � 

[ �]
= [ℎ]2 + [�] ( [ℎ] �)� .4 � 

Hence, the local energy conservation law Eq. (4.10) can be rewritten as: � � � � 
�2 {�} [�] [�]

2 
{ℎ} + [ℎ] + � [ℎ]2 + hℎi 2 4 �� � � � (4.11)

�3 {�} � � [�]+ − ℎ2 + 2 
{ℎ2} + � [�] ( [ℎ] �) = 0,hℎi2 2 � 

where the angular brackets hi denote multiplication of the enclosed quantities. 
Similarly to Eq. (4.8), it can be integrated across hydraulic jumps to obtain the 

jump conditions. 

4.1.4 Nondimensionalisation 

The equations are nondimensionalised using 
� as the time scale where � is the 
� 

horizontal length scale and � is the characteristic wave speed de�ned by �2 = 
[ �]2�� and used as the velocity scale. Heights are scaled with respect to the {�}

total height � and the �ux � is respectively scaled with ��. Moreover, densities 

are scaled with � and the layers� densities can be expressed as 

�± = 1 ± � (4.12) 

where � is a measure of the density di�erence and favours the elegant description 

of the equations. 

A shift in the vertical direction can be performed centring the interface height 
about � = 0 leads to: 

1 
ℎ± = 2 

(1 ± �) . (4.13) 

Therefore, the nondimensional mass conservation reads as: 
1 � �

�� + � 1 − �2� � = 0, (4.14)2 � 

where � = [ℎ] and � = [�] are the di�erentials of depth and velocity between the 

layers. In turn, the nondimensionalised momentum equation: 
1 � (�� (1 − ��))� + �2 + �2 − 3�2�2 + 2��3�2� = 0. (4.15)4 � 
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Similarly, the shear velocity Eq. (4.5) in nondimensional form is given by: 
1 � � �

(� (1 − ��))� + �2� 1 + �2� + 2� 1 − �2� � = 0. (4.16)4 � 

Lastly, the dimensionless energy conservation law corresponding to Eq. (4.11) 
writes as: � � 

�2 � � � � � 
�2hℎi (1 + ��) + + �3hℎi � ℎ2 − � + ��hℎi = 0. (4.17)

�4 � 

Equations (4.14)�(4.17) delineate the constitutive 1D two-layer system set of 
equations for arbitrary densities. 

4.2 The Boussinesq lock-exchange problem 

Under the Boussinesq approximation it is assumed that the densities di�er only 

slightly from each other i.e.: � → 0. This approximation permits the simpli-
�cation of the equations as well as the analytic study of the problem at hand. 
As shown by (Milewski and Tabak, 2015), Eqs. (4.14) and (4.16) reduces to a 

remarkably symmetric form in the Boussinesq approximation. Whereas the mass 

conservation Eq. (4.14) remains virtually unchanged, the circulation conservation 

Eq. (4.16) reduces to: 
1 � �

�� + � 1 − �2� � = 0. (4.18)2 � 

Accordingly, the momentum conservation equation Eq. (4.15) reads 

1 � (��)� + �2 �1 − 3�2� + �2� = 0, (4.19a) 4 � 

where, equivalently, substitution �� = � leads to: � �2 � ! 
1 � (�)� + 1 − 3�2� + �2 = 0. (4.19b)4 � 

� 

Finally, the energy conservation Eq. (4.17) under the Boussinesq approximation 

takes the form: � � �
1 − �2� �

1 − �2� � �2 �1 − �2� + �2� + �� = 0. (4.20)
� � 

4.2.1 Characteristic speeds and Riemann invariants 

Solutions of a homogeneous system of the form: 

�� + �� (�) = �� + ��� = 0, (4.21) 
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�� corresponding to � = [�, �]T, where � = is the Jacobian of Eqs. (4.14)
�� 

and (4.18) which reads as: 
1 � � 

−�� 1 − �2
2 

⎡⎢⎢⎢⎢⎣ 
⎤⎥⎥⎥⎥⎦ ,1 � �

1 − �2 −�� 2 

are examined with the simple wave method. The simple-wave method enables 

the analysis of piecewise solutions to the initial value problem for the propagation 

of disturbances in the subsequent motion. Simple wave solutions are of the form: 

�(�, �) = � (�(�, �)). 

Substitution of the above expression in to Eq. (4.21) yields: 

(I �� + ���) �0(�) = 0, 

where I is the 2 × 2 identity matrix and �0(�) is an eigenvector of �. Non-trivial 
solutions exist provided that 

|� − �I | = 0, 

where � is the corresponding set of eigenvalues of �. The eigenvalues de�ne the 

slope 
�� �� 
= − = �± 

�� �� 

of the families of characteristic curves �± to which there exist two associated lin-
early independent eigenvectors R = (�+, �−)T that are solutions of the equations: 

(� − �I ) · R = 0. 

Hence, premultiplication of the system Eq. (4.21) with R yields: 
�� · R = 0,
�� 

that cast in the canonical form reads as 

��± + �± ��
± 

= 0, (4.22)
�� �� 

integration of which yields the Riemann invariants �(�, �) that remain constant 
along their corresponding simple wave solution. 

For the two-layer system of equations Eqs. (4.14) and (4.18) as shown by (Long, 
1956b; Cavanie, 1969; Ovsyannikov, 1979; Sandstrom and Quon, 1993; Baines, 
1995; Milewski and Tabak, 2015; Esler and Pearce, 2011) this corresponds to the 

characteristic velocities: 
√3 1 1√ 

�± = 4�
± + 4�

  = −�� ± 1 − �2 1 − �2 (4.23)2 
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and the Riemann invariants √ 
�± = −�� ± (1 − �2) (1 − �2), (4.24) 

where the substitutions �± = ± arccos(�±) has been used for the Riemann invari-
ants which are the constants of integration of the characteristic form of Eqs. (4.14) 
and (4.18): √ 

�� 1 − �2 
=   (4.25)

�� 1 − �2 . 

It is worth highlighting that due to the hyperbolicity condition, it is required 

that the shear velocity cannot exceed �2 ≤ 1; which otherwise would result in a 

Kelvin-Helmoltz type of instability. Equivalently, it is required that the interface 

height is constrained between the top and bottom boundaries i.e. �2 ≤ 1. 

4.2.2 Jump conditions 

In the context of the shallow-water approximation, shocks are the discontinuities 

in the wave amplitude, to which the partial di�erential equations describing the 

wave propagation cease to apply. However, the relevant physics may still hold, 
for a hyperbolic system in conservative form, where the integral relationships 

known as the Rankine-Hugoniot conditions are still capable of encapturing the 

behaviour across discontinuities Whitham (1975, p. 26). 

Considering a conservation law of the form Eq. (4.21), the function �(�, �)
satisfying the integral relationship ∫ �2� 

�(�, �)�� = � (�(�1, �)) − � (�(�2, �)) , (4.26)
�� �1 

is called a weak solution and �1 ≤ � ≤ �2 de�ne an interval in which the discon-
tinuity is contained. Suppose that � and � (�(�, �)) as well as their respective 

�rst derivatives are continuous in the ranges �1 ≤ � < � (�) and � (�) < � ≤ �2 

where � (�) denotes the location of the discontinuity. According to the Leibniz 

integral law, Eq. (4.26) reads as: �∫ � (�) ∫ �2 
� 

� 
� (�(�1, �)) − � (�(�2, �)) = + �(�, �)�� 

�� �1 � (�)∫ � (�) ∫ �2 

= ���(�, �)�� + �� �(�, �)�� + �¤(�) (�� − �� )
�1 � (�) 

�� (�)where �¤(�) = , �� = lim �(�, �) and accordingly for �� . Since the derivatives 
�� 

�→�−(�)
of � are bounded in each interval, the integrals tend to zero in the limits when 
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arbitrarily close to the shock. Subsequently, the expression above reads as 

¤È� (�)É = � (�)È�É, (4.27) 

where ÈÉ denotes the di�erential of the enclosed quantity across the discontinuity. 
Then, using Eqs. (4.14), (4.18) and (4.19a) we obtain the Rankine-Hugoniot 
conditions: ⎧ 1 � �

È 1 − �2 �É2¤� = , (4.28a)È�É 
1 � � 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 
2È 1 − �2 �É 

�¤ = , (4.28b)È�É 
1 � �
È�2 1 − 3�2 + �2É 

¤� = , (4.28c) 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 4
È��É 

across the discontinuous state. These relationships are bridged by the jump 
¤propagation speed �, reducing the number of unknowns to the resulting states of 

� and � after the jump. In the shallow water framework only one conservation 

law in addition to the mass conservation can be applied Whitham (1975, p. 458). 
As discussed by Priede (2018) the more appropriate conservation law is the mo-
mentum conservation equation which is known to govern continuous as well as 

discontinuous solutions. Therefore, using Eqs. (4.28a) and (4.28c) these lead to: 
1 � � 1 � �
È 1 − �2 �É È�2 1 − 3�2 + �2É2 4

�¤ = = (4.29)È�É È��É 

An appeal to physical considerations for physically meaningful shocks can be 

made via examining the Lax entropy condition, Sharma (2010) and Debnath 

(2011). The Rankine-Hugoniot condition yielded by the energy conservation law 

Eq. (4.20), de�nes the energy balance across the discontinuity, and reads as: �
1 − �2� �

−�¤È�2 �1 − �2� + �2É + È�� 1 − �2�É ≡ �.¤ (4.30) 

This imposes an additional constraint on the feasible hydraulic jumps where en-
ergy can not be generated and thus �¤ ≤ 0. 

4.2.3 Lock-Exchange problem 

The lock-exchange problem is a two-layer analogue of the dam-break problem in 

single-layer shallow water �ows, which can be widely found in literature (Whitham, 
1975; Stoker, 1957), has been extensively studied as it provides insight into the 

motion of shallow water �ows and a useful benchmark for the validation of nu-
merical schemes. The general case of two �uids of di�erent (or slightly di�erent) 
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densities in a closed container that are initially separated by a vertical separat-
ing plate(lock) is considered. The separating plate is instantaneously removed 

and thus initiates the �ow. Then the slightly denser �uid penetrates into the 

lower-density �uid. Figure 4.1 illustrates the lock-exchange problem where the 

densities are considered to be �+ ' �−. 

Figure 4.1: Partial lock-exchange. 

The simple-wave method is applicable to disturbances propagating into an 

initially homogeneous state and enables the analytic solution of the lock-exchange 

problem. For the solution of this system we will consider sections of the domain 

separately with � = 0 separating the upstream(� < 0) and downstream (� > 0) 
direction of the �ow. The �rst step in understanding the behaviour of the lock-
exchange problem is to �nd the slope of characteristics which signify the maximum 

propagation speed of information in their respective regions. 

Upstream �ow, x<0 

The study of the lock-exchange problem is greatly simpli�ed with the use of the 

following substitutions: � = sin(�) and � = sin(�) which will be interchangeably 

used with the original variables. These substitutions are permitted on the ground 

that the corresponding range of validity is the same with the associated physical 
variables. 

Upstream (� < 0), the initial state is de�ned at �− = �0 and �− = 0. Substi-
tuting � = sin(�) and � = sin(�) for the aforementioned states, corresponds to 

� 
� = 2 

− �0 and � = 0, where �0 ∈ [0, �]. The Riemann invariant associated with 

this state, can be written as: 
� 

�+ = � + � = 2 
− �0. (4.31a) 

�which yields � = 2 
− �0 − �. Then the Riemann invariant associated with the �− 

characteristics extending upstream from the lock reads as: 
� 

�− = � − � = 2 
− (�0 + 2�), (4.31b) 



61 4.2. The Boussinesq lock-exchange problem ���Using Eq. (4.31), the upstream velocity can be written as �− = sin 2 
− � − �0 = ��� cos(� + �0) where with the use of �0 = sin 2 

− �0 = cos(�0), � is expressed as: √ √ 
�− = cos(� + �0) = �0 1 − �2 − � 1 − �0

2 . (4.32) 

Further, using Eq. (4.23) and Eq. (4.31) the characteristic speed can be written 

as: 
3 1 3 1 

�− = −4 
cos(�−) + 4 

cos(�+) = − sin(�0 + 2�) + sin(�0), (4.33)4 4 
�which is constant along �−, thus de�ning straight lines with slope �− = . Simil-
� 

arly, for the �+ characteristics, we have: 
3 1 3 1 

�+ = 4 
cos(�−) − 4 

cos(�+) = sin(�0) − sin(�0 + 2�). (4.34)4 4 

This enables the investigation for the validity of these solutions. Hence, the family 

of �+ characteristics in terms of the �− yield the characteristic speed: 
1 2 

�+ = 3�
− + sin(�0), (4.35)3 

which is equivalent to: 
�� 1 � 2 
= + sin �0,

�� 3 � 3 

and has the general solution �(�) = ��1/3 + � sin �0, where the unknown constant � 

is determined by matching with the solution for the undisturbed upstream state 
1�(�) = �0 + 2 � sin �0, which holds below the leftmost �− characteristic de�ned by 

� 1 ≤ min �− = 4 
(sin �0 − 3). 

� 

It can be seen that both families of characteristics become parallel to each other 
when: 

3 1 3 1 − sin(�0 + 2�) + sin(�0) = sin(�0) − sin(�0 + 2�),4 4 4 4 

at � = −�0, where �+ = �− = sin(�0) and the solution spreads down from the 

lock until � 
= sin(�0). This de�nes the range of validity of the characteristics in h �

� i 
� ∈ −�0, 2 

− �0 . Both families of characteristics are shown in �gure 4.2a. 

Downstream �ow x>0 

For the downstream region (� > 0), which is �lled with the lighter �uid, the 

interfacial height is initially located at �+ = −1 and the �uid is at rest �+ = 0. 
�Utilising � = sin(�) and � = sin(�), it can be deduced that � = − and � = 0.2

Then the Riemann invariant along the �− characteristics which originate from 
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this state is 

�− = � − � = 
� 
2 
, (4.36a) 

while the Riemann invariant propagating along �+ is 

� 
�+ = � + � = 2 

+ 2�, (4.36b) 

both of which are invariant along the respective characteristics. Using Eq. (4.36),���velocity can be written as �+ = sin 2 
− � = cos(�) or in terms of � as: √ 

� = 1 − �2 . (4.37) 

Further, by Eq. (4.23) and using Eq. (4.36) the negative characteristic speed �− 

writes as: �3 1 3 �� 3 
�− = −4 

cos(�−) + 4 
cos(�+) = −4 

cos 2 
+ 2� = − sin (2�) . (4.38)4 

Respectively, using Eq. (4.23) and relation Eq. (4.36b) one obtains: �3 1 1 �� 1 
�+ = 4 

cos(�−) − 4 
cos(�+) = −4 

cos 2 
− 2� = − sin (2�) . (4.39)4 

The slope of the �− characteristics in terms of �+ is expressed as: 

�− = 
1
3�

+ , (4.40) 

which de �nes the slope of the �− characteristics as they cross the �+ character-
istics. This relation, when written in terms of � and � takes the form of an ODE 
�� 1 �= and de�nes the �− characteristics above the rightmost �+ characteristic, 
�� 3 � 

i.e. for � ≥ 3
4 �. In this region, we have �(�) = ��1/3 , where the unknown constant 

� is determined by matching with �(�) = const for 0 ≤ � ≤ 3
4 � which corresponds 

to �± = 0 for the undisturbed downstream state. It is important to note that the 

solutions de�ned in the preceding section by Eq. (4.32)� Eq. (4.34) for the up-
�stream �ow overlap with the downstream solutions in the region 0 ≤ ≤ sin(�0). 

Both families of characteristics are shown in �gure 4.2a. 
� 

Downstream from the lock (� > 0), the characteristics obtain equal slope for 
�+ = �− at � = 0 with �0 ∈ [0, �]. This de�nes the range of validity of the h � i 
characteristics in � ∈ − 2 

, 0 , where both families of characteristics intersect. 
Note that for �0 > 0, solution Eq. (4.33) extends downstream from the lock up 

�to = sin �0, which corresponds to � = −�0. Thus, this solution overlaps with 
� 

�Eq. (4.38) in the sector 0 ≤ ≤ sin �0 where both solutions are expected to be 
� 

connected by a jump. 
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Figure 4.2: Family of characteristics �− and �+ for the partial lock-exchange 
problem in the upstream and downstream regions and di�erent initial interface 

heights �0. 

4.2.4 Jumps forming in the multivalued parts of the ana-
lytical solution 

First, consider the jump in the upstream direction (� < 0), for which the state is 

de�ned as: 
�+ = 0 & �+ = �0 

�− = � & �− = � 

where the subscripts "+" and "−" indicate the state of the �ow right and left of 
the jump respectively; and �0 is the initial interfacial height. Then, Eq. (4.29) 
yields: � 

�2 − �2� (� − �0)0
�2 = . (4.41)

�3 + � + �0 (1 − 3�2)
which relates the shear velocity � with the initial interfacial height �0 and the 

jump height �. As seen in 4.2.3, applicability of the upstream solution is re-h � i 
stricted to � ∈ −�0, 2 

− �0 , above which it needs to be connected with the back 

jump velocity of propagation. As such, connecting Eq. (4.32) with Eq. (4.41) one 

obtains the following relation: � √ �2� 
�2 − �2� (� − �0) √0 

= �0 1 − �2 − � 1 − �2 . (4.42)0�3 + � + �0 (1 − 3�2)
This equation has two possible roots, � = 0 and � = �0. At this stage it will 
be assumed that � = �0 > 0, corresponding to �0 ≤ 

� Using the �rst root, it 2 . 
is possible to describe the jump from the mid-height (� = 0) up to the initial 
interfacial height (� = �0). Further, at � = 0 by Eq. (4.41) the shear velocity is 

� = �0. Using this information into the jump propagation speed Eq. (4.28a) yield 
1¤the maximum propagation speed of the jump � = − independently of the initial 2 



64 Chapter 4. 1D two-layer SW system bounded by a rigid lid 

height �0. More interestingly, for � = �0 ≤ 0, corresponding to �0 > 
� , the jump 2

in the upstream direction vanishes because the solution of Eq. (4.33) ceases to be 

double valued which is con�rmed by �gure 4.3d. 
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Figure 4.3: Interface height versus the similarity variable �/� for the lock-
exchange problem. 

In the downstream region (� > 0), the states of the height and velocity on 

either side of the discontinuity are described as follows: 

�+ = 0 �+ = −1, 
�− = � �− = �, 

where �+ and �+ are the known variables due to the jump propagating into a 

homogeneous state. Hence, from Eq. (4.29), we obtain a relation which describes 

the shear velocity depending on the interface height: 

1 − �2 

�2 = (4.43)−�2 − 2� + 1 
. 
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In this case the shear velocity de�ned by Eq. (4.43), has to match at the jump 

with shear velocity Eq. (4.37) de�ned by the Riemann invariant: 

1 − �2 

= 1 − �2 . −�2 − 2� + 1 

The possible interface heights at the jump are de �ned by � (2 + �) 
�
1 − �2� = 0. 

Out of the four possible solutions, only two are physically relevant and satisfy the 

energy dissipation condition Eq. (4.30). These are � = 0 and � = −1. The latter is 

just the original double-valued solution. The solution � = 0 admits a downstream 
1shear velocity of � = 1 and corresponds to a jump propagation velocity of �¤ = 2 (1− 

1 
�)� = ± , where only the positive solution , which describes a jump propagating 2
downstream, satis�es the energy dissipation constraint Eq. (4.30). 

This gives rise to a secondary -trailing- jump with downstream interface height 
� = 0. The front and back states of this jump are: 

�+ = 1 �+ = 0, 
�− = �1 �− = �1. 

Then, Eq. (4.29) yields the shear velocity behind the jump: 

1 − �2 

�1 = 1 
. (4.44)

1 + �1
2 

Matching with the upstream shear velocity de�ned by Eq. (4.32) enables us to 

link the �nal height preceding the trailing jump with the initial interfacial height 
as follows: √ √1 − �2

1 
= �0 1 − �1

2 − �1 1 − �2 

1 + �1
2 0 

which is equivalent to: 

1 − sin2 �1
�1 = cos(�1 + �0) = , (4.45)

1 + sin2 �1 

which relates �1 behind the jump with �0 = arccos �0 de�ned by the state up-
stream of the lock. Analytical solutions for the interface height behind the jump, 
�1 = sin �1, and its velocity of propagation � � 

�1 �
2
1 − 3¤�1 = � � , (4.46)

2 �1
2 + 1

are plotted in �gure 4.4b along the characteristic velocity �−(�1) against �0. 

¤Upon decreasing �0 the trailing jump velocity of propagation �1 attains the 

velocity of the leading edge which as seen in �gure 4.4a can never propagate 
1 1¤ ¤faster than � = . Solving Eq. (4.46) with �1 = the only physically meaningful 2 2 
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√
solution is �1 = 1 − 2. At this critical height, both edges merge, destroying 

the head-block. Using Eq. (4.45) it is found that this critical upstream interface 

height is �� = 0.351, as illustrated in �gure 4.3c. 

Consequently, for �0 ≤ ��, the solution Eq. (4.33) has to connect directly to the 

downstream state �+ = −1 and �+ = 0 which is at rest. Combining the downstream 

shear velocity obtained in Eq. (4.43) with the upstream state �− = cos(� + �0)
and �0 = sin(�) yields: 

cos �1
�1 = cos(�1 + �0) = √ , (4.47) 

cos2 �1 − 2 sin �1 

which is analogous to Eq. (4.44). The parameters of the downstream jump res-
ulting from the solution of Eq. (4.47) are plotted in �gure 4.4a. Figure 4.3c 

and �gure 4.3d, illustrating the interface height versus the similarity variable 

�/�, correspond to two interface con�gurations in the case where �0 ≤ ��. The 

�rst con�guration for an initial interface height 0 ≤ �0 ≤ �� is illustrated in �g-
ure 4.3c, where an upstream jump from �0 is connected to the mid-height � = 0 

analogously to the head-block in the downstream state. Figure 4.3d delineates 

the second con�guration �0 ≤ 0 where there is no more an upstream jump and 

the solution connects directly to the upstream initial interface height at � = �0 

as speci�ed by the second root of Eq. (4.42). In this case, similarly to the single-
layer dam-break problem, the upstream state can connect directly with � = −1 at 
� = − � 

2 without a leading jump. However, as seen in �gure 4.4a, an in�nitesimal 
perturbation would result in a non-zero front height, which in turn would halt the 

propagation of the heavier �uid along the bottom, thus, leading to an increasing 

perturbation where the upstream state propagates faster than the front. There-
fore, this alternative solution is inherently unstable with respect to the height 
perturbation of the leading edge. 
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¤Figure 4.4: Jump propagation speed � along with the associated energy �¤, the 
characteristics �¤ and the the interface height �1, for all possible initial interfacial 

heights �0. 
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4.2.5 Numerical solution of conservative SW equations 

In the present section the analytical solutions previously obtained for the Boussinesq 

lock-exchange problem are veri�ed by solving the lock-exchange problem numer-
ically using the 1D Lax-Wendro� method. For comparison, in addition to the 

momentum and mass conservation equations de�ned by Eqs. (4.14) and (4.19b), 
the alternative system in which Eq. (4.19b) is replaced by the circulation conser-
vation law Eq. (4.18) is also solved. 
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Figure 4.5: Interface height at the time instant � = 1 after opening the lock 
with upstream heights �0 = 1 (a), 0.7 (b), 0.1(c) and −0.1(d) obtained using 
momentum and circulation conservation laws with the Lax-Wendro� method. 
The time step is �� = 10−3 and the spatial step is �� = 5 × 10−4 (a,b) and 

�� = 10−2 (c,d). 

In contrast to the circulation equation Eq. (4.5), numerical integration of the 

momentum equation Eq. (4.19b) su�ers from large numerical errors when � is 

close to zero. In an attempt to eliminate this numerical uncertainty in the �ux 

term of the momentum equation L�Hopital�s rule was used. However this did 

not resolve this numerical uncertainty. Bringing in mind the product � = ��, 
which connects the momentum equation with the circulation equation, a hybrid 



68 Chapter 4. 1D two-layer SW system bounded by a rigid lid 

approach was employed. Whenever � happens to be close to zero, the momentum 

conservation equation is replaced with the vorticity one. This approach was found 

to produce numerical results in good agreement with the analytical solution for 
a range of lock heights, as illustrated in �gure 4.5. 

The exact solution for the full lock-exchange, illustrated in �gure 4.5a, is repro-
duced using equal time and space steps. This is an optimal choice which renders 

the scheme marginally stable and ensures that the front advances one full grid 

step in one time step. In general, such marginally stable schemes are known to 

reduce spurious oscillations at the jumps Lerat and Peyret (1974). The scheme 

becomes unstable at larger time steps, which violate the CFL condition, whereas 

spurious oscillations arise at smaller time steps. In both cases, the solution for 
the full lock-exchange breaks down. 

Using the same time step and grid size as for the full lock-exchange, the exact 
solution for a range of partial lock-exchange �ows was able to be reproduced. 
The numerical solutions for the lock height �0 = 0.7 is shown in �gure �gure 4.5b. 
In this case, spurious oscillations appear behind the head block because the re-
spective jump advances less than a grid step per time step. As the head block 

becomes progressively thinner with lowering �0, there is a range of lock heights 

0.1 . �0 . 0.7 for which it was not possible to �nd a numerically stable solution. 
The stable numerical solution that re-emerges at �0 ≈ 0.1 has no elevated head 

block but just the downstream and upstream jumps and can be seen in �gure 4.5c. 
This upstream jump vanishes when the lock is lower than the channel mid-height 
(�0 ≤ 0), as seen in �gure 4.5d. In this case, the numerical solution produces a 

�nite front height as predicted by the analytical solution. A smooth analytical 
solution akin to the single-layer dam-break solution is in principle possible. How-
ever, as argued above, such a smooth solution is unstable and thus unobservable 

in the two-layer system. 

It is worth noting that the qualitative behaviour of the numerical solution of 
our system is similar, with respect to the appearance of the headblock, to the one 

studied by Esler and Pearce (2011), where the next order weakly non-hydrostatic 

approximation is investigated. 

For reasons that are still not fully understood, there exists a range of initial 
height values (�0) for which numerical solutions require extremely careful selec-
tion of the spatial and temporal discretisation. A number of Total-Variation-
Diminishing, Flux-Limiting and higher order schemes were employed in an at-
tempt to overcome this issue. For the most part the investigation proved un-
successful as the considered algorithms partly or completely suppressed the front 
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headblock and modi�ed the speed of the jump. On the contrary, the LWLF4 

composite scheme in which three steps of Lax-Wendro� scheme are followed by a 

step of Lax-Friedrichs scheme, Liska and Wendro� (1998) provides a good approx-
imation to the exact analytical solution. This composition signi�cantly reduces 

spurious oscillations around the jumps, which are typical to the Lax-Wendro� 

scheme, without introducing excessive numerical di� usion which is typical to the 

Lax-Friedrichs scheme. 
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Chapter 5 

Derivation of fully-nonlinear SW 

electric potential equation 

In this chapter a fully nonlinear electric potential equation, based on the long-
wave approximation, is derived. This di�ers form these presented in Bojarevics 

(1998) and Zikanov et al. (2000) and is applicable in modelling of large amplitude 

shallow-water waves. 

5.1 Derivation 

The perturbation of the cryolite-aluminium interface results in a spatial vari-
ation in the interfacial potential and the magnitude of the current �ow across 

the interface. Consequently, this gives rise to a loop of perturbation current in 

the cell, which nevertheless, will not penetrate the cathode-block. The current 
loops will close in the aluminium, where the conductivity is much higher, and be 

uniformly distributed across the layer. Assumptions regarding the di�erence of 
conductivities between the layers enable the derivation of boundary conditions at 
the interface of each layer. 

The side walls of the cell as well as the upper cryolite surface around the anode 

are considered to be electrical insulators. However, the anode block, where the 

current enters the electrolyte, is assumed to be perfectly conducting relative to 

the electrolyte, which means that it is e�ectively equipotential. Since the electric 

potential is de�ned up to an additive constant, the boundary condition is given 

by: 

�−|�=� = 0. (5.1) 
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The boundary conditions of the electric potential at the interface fall from the 

continuity of the normal component of the current as follows: 

j+ = −�+ = �+ (5.2a)⎧ 
� |�=ℎ+ ���

+|�=ℎ+ � ,⎪⎪⎪⎪⎨ 
where �+ ���

+|�=ℎ+ ≡ �− ���
−|�=ℎ+⎪⎪⎪⎪⎩j− 

� |�=ℎ+ = −�− ���
−|�=ℎ+ = �� 

− , (5.2b) 

In contrast, the cathode-block is e�ectively insulating with respect to the current 
perturbations, which means that the current density at the bottom is �xed 

�+ ���
+|�=0 = �0 = constant, (5.3) 

In the above the subscript n denotes the unit normal to the interface: 
e� − rℎ n = ≈ e� − rℎ + O(�2) and �� = e� , ℎ = 1 + O(�2), (5.4) 

2(1 + |rℎ|2) 
1 

Since �/� ∼ �/� = � � 1, the potential distribution in the bottom layer can 

be approximated by a power series expansion about a small quantity of vertical 
surface height � (Bojarevics and Romerio, 1994) as follows: 

�+(r) = �+(x) + � ���
+(x) + 

�2 

�� 
2�+(x) + O(�3), (5.5)2 

where ��
� �+ = ��

� �+|�=0 and the vector x de�nes x = r − �e� = �e� + �e�. Therefore, 
with the expansion applied to the boundary condition at the interface, the normal 
current Eq. (5.2a) writes as: 

���
+|�=ℎ+ = n r�+|�=0 = (e� − rℎ) r�+|�=ℎ+ = ���

+ + ℎ+ �� 
2�+ − rℎ+ r�+ + O(�2) 

Hence, 
���

+ + ℎ+ �� 
2�+ − rℎ+ r�+ = −�−1 �+ 

+ � , 

where by using Eq. (5.3) after a few rearrangements it writes as: � � 
ℎ+ �� 

2�+ − rℎ+ r�+ = −�−1 �� 
+ + �0 .+ 

In consideration of the conservation of charge Eq. (2.22) and Ohm�s law the 

Laplacian of the electric potential leads to 

r2� = −�� 2�, (5.6) 

where r2 horizontal component of the Laplacian. Consequently, this lead to the 

governing equation for the two-dimensional potential perturbation in the bottom 
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layer being read as: � � 
−ℎ+ r2�+ − rℎ+ r�+ = −�+−1 �� 

+ + �0 ⇒� � � � 
r ℎ+ r�+ = �−1 �� 

+ + �0 . (5.7)+ 

In turn, to determine the normal current �+ of Eq. (5.7), the potential distri-� 

bution in the top layer has been considered. This is sought similarly to that in 

the bottom layer. The expansion for the potential in upper layer writes as: 

(� − �)2 

�−(r) = �−(x) + (� − �) ���−(x) + �� 
2�−(x) + O(�3), (5.8)2 

��where ��
� �− = � �

−|�=� . By virtue of Eq. (5.6) and the boundary condition 

Eq. (5.1) the �rst and last term of Eq. (5.8) are eliminated due to: 

�(0) = �−
(2) = 0. (5.9)− 

Owing to the large di�erence in conductivities between the top and bottom layer, 
an equipotential surface is formed and the potential of the upper layer Eq. (5.2b) 
is expressed as: 

�−|�=ℎ+ = (ℎ+ − �) ���− + O(�3) = −ℎ− ���
− + O(�3) ≡ �0, 

where ℎ− = � − ℎ+ is the top layer depth. Therefore, 
�� �0

�� |�=ℎ+ = ≡ �� + O(�2) ≈ −�−���|�=� = �− . (5.10)
�� ℎ− 

Finally, substituting Eq. (5.10) into Eq. (5.7), we obtain up to � (�2) terms: 
�0

�+r · (ℎ+r�+) = �0 + �− . (5.11)
ℎ− 

The unknown potential of the bottom layer, �0, is determined by the solvability 

condition of this equation, which is due to the Neumann boundary condition at 
the insulating side walls, where we have: 

���+ = ���+
(0) + � (�2) = 0. (5.12) 

Integrating Eq. (5.11) over the horizontal cross-sectional area � and using this 

boundary condition, we obtain:∫ 
( �0 + �−�0ℎ

−1) d2x = 0,− 
� 

which is the solvability condition of Eq. (5.11). This condition, which requires 

the constancy of the total current �0� = �0, de�nes the potential of the bottom 

layer as: ∫ 
�0 = −�−1�0/ ℎ−1d2x.− − 

� 
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Substituting this expression into Eq. (5.11), we obtain: � ∫ � 
(0) 

ℎ−1�+r · (ℎ+r� ) = �0 1 − �ℎ−1/ d2x , (5.13)+ − − 
� 

which is the �nal form of electric potential equation. Note that this equation is 

fully non-linear and thus it is valid not only for small-amplitude perturbations 

but also for arbitrary large long-wave interface perturbations. 

The distribution of the electric potential in the bottom layer Eq. (5.5) indicates 

that the respective electromagnetic force 

(0)j+ × B0 = �+B0 × r� (x) + O(�2)+ 

is depth-invariant up to O(�2). Thus, the curl of this force has zero hori-
zontal components which means that it preserves zero horizontal vorticity of the 

�ow. Therefore, the electromagnetic force is compatible with the conservation of 
the depth-invariance similarly to the depth-invariance of the horizontal velocity, 
��u ≡ 0, in the shallow-water approximation. Additionally, as shown in Eqs. 
(5.8,5.9), the horizontal component of the current perturbation in the top layer 
is O(�). Thus, the associated electromagnetic force is negligible in the leading-
order approximation and the conservation of the depth-invariance holds also for 
the top layer. 
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Chapter 6 

Linear stability analysis 

In this chapter the linear stability of the shallow-water magnetohydrodynamic 

system is investigated. It is assumed that the perturbation has a characteristic 

longitudinal length scale � which is much larger than the layer depth � and focus 

on the interfacial waves of small amplitude: 

�(x, �) = ℎ(x, �) − ℎ+ � �. (6.1) 

This means that the non-linear terms in the governing equations are higher-
order small relative to the linear terms. After the linearisation, Eqs. (2.39a) 
and (2.39b) take the form: 

��� =  ℎ±r · u±, (6.2a)⎧⎪⎪⎨ � �⎪⎪⎩�± (u±)� + �r� = −rΠ + j × B. (6.2b) 

The di�erence of the momentum equations for the respective layers reads as: 

[�u]� + � [�] r� = [j] × B. (6.3) 

Taking the divergence while bearing in mind that r · (j × B) = 0 yields: 

[ �r · u]� + � [�] r2� = 0, 

where applying Eq. (6.2a) rewrites as:� � 
� −�� 2� + � [�] r2� = 0. 
ℎ 

Therefore, a pure interfacial gravity wave equation is obtained in the form: 

�� 
2� = �2r2�. 
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n o−1
�where �2 = � [�] is the wave propagation speed. Likewise, linearisation of 
ℎ 

Eq. (2.45), where friction is considered, results in: 

�� 
2� + ���� − �2r2� = 0 n o n o−1

�� �where � = . 
ℎ ℎ 

The impermeability condition requires that the normal component of velocity 

on Γ is u� = 0, which for Eq. (6.3) translates into the following condition for the 

interfacial height �: 
n · (� [�] r� = j × B) on Γ, 

which rewrites as 

��� = ��� �, 

where �� is the derivative in the direction tangential to the boundary and � is 

the Sele parameter de�ned in Eq. (2.42). 

After linearisation, that is applying 

ℎ+ = ℎ+ + � ≈ ℎ+, 

ℎ−1 = (ℎ − �)−1 ≈ ℎ−1 + �ℎ−2 ,− − −∫ 
and taking into account that � d2�® = 0 due to the mass conservation, the 

� 

potential equation (5.13), reduces to 

(0) �0� r2� = − , (6.4)+ 
�+ℎ+ℎ− 

which satis�es the solvability condition automatically owing to the mass conser-
vation. Changing to dimensionless variables by using � = 

√ 
���� = �1/2, �0 = �/� 

and �0 = �0/(�+ℎ+) as the length, time and electric potential scales, respectively, 
yields the following nondimensional set of equations. The equation (5.13) of the 

electric potential reads as: 
r2� = −�, 

with the insulating boundary walls of the cell requiring that: 

��� = 0 on Γ, 

(0)where � is the dimensionless counterpart of � . Accordingly, the dimensionless + 

governing equations for a uniform and purely vertical magnetic �eld are: (
�� 

2� = r2� − ����, ��� = ����|Γ, (6.5a) 

r2� = −�, ���|Γ = 0. (6.5b) 
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The linear system of Eq. (6.5) can be treated as an eigenvalue problem. Solu-
tions to the eigenvalue problem are sought in the form of travelling waves. Owing 

to the stationarity of the base state, small-amplitude disturbances of the inter-
face height � and the associated electric potential � can be sought as the normal 
modes: 

{�, �} (x, �) = 
� 
�, � (�)��(��−��) , (6.6) 

with a real wave number �, a generally complex frequency �, and the �-dependent 
amplitude distributions �(�) and �(�). Applying the equation Eq. (6.6) onto 

Eq. (6.5) while omitting the friction term � = 0 results into a system of ODEs: ( 
− �2� = � 

00 − �2�, � 
0 
= �� �� on Γ, (6.7a) 

− � = � 
00 − �2�, � 

0 
= 0 on Γ. (6.7b) 

6.1 Semi-in�nite domain 

Following Lukyanov et al. (2001) the simplest geometry considered is that of a 

single wall, i.e. [0 ≤ � < ∞] × [−∞ < � < ∞]. The general solution of Eq. (6.7) 
can be written as: (

�(�) = �−�
−��� + �+�

��� , (6.8a) 

�(�) = �0�
−� � + �−2�(�), (6.8b) 

where the corresponding boundary conditions write as: (
�0(0) = 0 on Γ, (6.9a) 

� 
0 (0) = �� ��(0) on Γ. (6.9b) 

√ 
The �± and �0 are unknown constants and � = �2 − �2 . 

There are two types of solution possible. The �rst is de�ned by real � and 

describes pure gravity waves with real frequency �. The genuinely unstable mode, 
missed by Lukyanov et al. (2001) and considered �rst by Morris and Davidson 

(2003), is de�ned by complex frequencies �. These are in turn examined in the 

ensuing subsections. 

6.1.1 Pure gravity waves 

The �rst solution describing pure gravity waves with real frequency � = ±
√ 
�2 + �2, 

is obtained by substituting Eqs. (6.8) and (6.9) in Eq. (6.7) and reads as: 
� �+ − �−

�0 = −� . (6.10)
� �2 
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For this solution, the boundary conditions Eq. (6.9) yield: 

� 
0 (0) = �� ��(0), 

where utilising the information obtained in Eq. (6.10) yields: 
�+ − �− � � 

= − . (6.11)
�+ + �− � (�2 − ��)

It can be deduced, that if no electromagnetic interaction exists, i.e. � = 0, 
then �+ = �−. This results in a broken symmetry between the incident and the 

re�ected gravity waves, such that no instability arise. Morris and Davidson (2003) 
question this claim by Lukyanov et al. (2001) and Molokov et al. (2011) that wave 

re�ections from the wall lead to instability. The stability of the system is de�ned 

by the frequency of eigenmode which consists of a superposition of incident and 

re�ected gravity waves. These are coupled by the re�ection condition Eq. (6.11) 
and can be swapped owing to the time inversion symmetry for this problem. The 

respective frequency is purely real, which means that the eigenmode is neutrally 

stable, i.e. neither growing nor decaying. 

6.1.2 Edge waves 

For a complex � := �� the exponential functions Eq. (6.8) descibe either a growing 

or a decaying disturbance. The resulting dispersion relation takes the form: 

�2 = �2 − �2 . (6.12) 

Consequently, the general solution of Eq. (6.7) is: 

�(�) = �0�
−�� , (6.13a)⎧⎪⎪⎨ 

�(�) = �0�
−� � + 

�(�) 
. (6.13b)⎪⎪⎩ �2 

Similarly to Eq. (6.10) the boundary condition on the electric potential yields: 
� �0

�0 = − (6.14)
� �2 , 

while, in using Eq. (6.9) the respective boundary condition on the interface elev-
ation is: 

� 
0 (0) = �� ��(0). (6.15) 

This relates the wavenumbers as follows:√ 
� 1 1 � 
= −2 

± 4 
− � (6.16)

� �2 . 



79 6.2. Finite-width channel 

Accordingly, the dispersion relation Eq. (6.12) takes the form: √ 
�2 1 1 � 

= 2 
+ �� ± 4 

− � (6.17)
�2 �2 , 

where complexity of frequency for � ≠ 0 implies instability. For � � �2, the last 
term can be expanded as:√ 

1 � 1 �� �2 2��3 

4 
− � 2 

− + . . . (6.18)
�2 ≈ 

�2 + 
�4 + 

�6 

For a real positive-part of the wavenumber <(�) > 0, which is required for the 

perturbation to be bounded far away from the wall, the expression Eq. (6.18) 
simpli�es to: 

� �� �2 2��3 

≈ − , (6.19)
� �2 + 

�4 + 
�6 

while the expression for the frequency becomes: � �2 � �3
� 1 � � ± ≈ 1 + + � . (6.20)
� 2 �2 �2 

Therefore, Eq. (6.20) describes weakly-destabilised waves with =(�) ∝ �
�5

3 
, shown 

in �gure 6.1, which according to Eq. (6.19) are nearly transverse =(�) ∝ − � and
� 

slowly decaying from the edge at the rate <(�) ∝ �
2 

�3 . 
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Figure 6.1: Edge-wave growth rate in function of the electromagnetic inter-
action parameter. 

6.2 Finite-width channel 

Suppose the �uids occupy the domain [−1 ≤ � ≤ 1] × [−∞ < � < ∞], which cor-
responds to the case of a �nite-width channel �rst considered by Davidson and 

Lindsay (1998) and further studied in the context of hydromagnetic edge waves 

by Morris and Davidson (2003) and Molokov et al. (2011). 
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Then Eq. (6.7a), with the use of the dispersion relation, writes as � 
00 − �2� = 0. 

Hence, the solution to this ODE is of the form: 

� = �1�
��� + �2�

−��� . 

Replacing the complex exponential terms with their respective trigonometric 

functions �±�� = cos � ± � sin �, yields: 

� = �+ cos(��) + �− sin(��), (6.21) 

where �+ and �− are �+ = �1 + �2 and �− = � (�2 − �1). Accordingly, the general 
solution of Eq. (6.7b) can be written as: 

� 
� = �+ cosh(��) + �− sinh(��) + (6.22)

�2 . 

The boundary conditions for the channel are: (
�0(±1) = 0 and (6.23a) 

� 
0 (±1) = �� ��(±1) on Γ. (6.23b) 

The coe�cients of Eq. (6.22) are de�ned by Eq. (6.23) as: 
�+� sin(�) �−� cos(�)

�+ = and �− = − . (6.24)
�2� sinh(�) �2 � cosh(�)

Consequently, substituted in Eq. (6.21) and Eq. (6.22) for the boundary condi-
tions described in Eq. (6.23) leads to the dispersion relation: � � 

� �4 � − = tan(�) coth(�) − cot(�) tanh(�). (6.25)
� �2 + 1 

� 

Rearranging Eq. (6.25), yields: 

�2 

� = √ , (6.26)� � 
� � + tan(�) coth(�) − cot(�) tanh(�) − 1
� � 

which implicitly de�nes the spectrum of admitted � values for given � and �. 

For � = 0, Eq. (6.25) reduces to sin 2� = 0, which de�nes the standard discrete 

eigenvalue spectrum of wave modes �tting in across the channel width: �� = 

��/2, � = 0, 1, 2, . . . As seen in �gure 6.2, where � de�ned by Eq. (6.25) is plotted 

against � for various �,the increase of � just modi�es the spectrum of the wave 

modes admitted by the electromagnetic re�ection condition Eq. (6.23). 
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Figure 6.2: The electromagnetic interaction parameter � versus the admiss-
ible transverse wavenumber � for various longitudinal wavenumbers �. 

The modes remain pure gravity waves de�ned by the dispersion relation with 

real wavenumbers up to the point where two branches of � merge together. At this 

point, a complex conjugate pair of wavenumbers emerges and thus the instability 

sets in as the frequency becomes complex (see �gure 6.3). 
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As shown by Morris and Davidson (2003), who use the reciprocal of � as the 

control parameter, this happens �rst in the limit � → 0, yielding: 

�2 

� = √ , (6.27)
tan (�)

� − 1 

which attains a maximum �� ≈ 1.365 when two purely longitudinal gravity wave 

modes with �� = 1.113 merge. It is of note that, counter to the gravity wave 

modes predicted by the semi-in�nite model which are transverse and emerging 

at �� = 0, this critical mode is longitudinal and emerges at a �nite ��. In the 

channel geometry, the mode corresponding to the semi-in�nite model, is recovered 

in the short-wave limit � � 1, which is of little practical signi�cance as the most 
unstable are the long-wave modes. 

6.2.1 Short-wave limit 

The short-wave limit is in turn considered, with respect to the length scale but 
su�ciently long with respect to the height, maintaining consistency in terms of 
the shallow water approximation. For a complex � := �� following the analogous 

procedure as in Eq. (6.25) results into: � � 
� �4 � + = tanh(�) coth(�) + coth(�) tanh(�). (6.28)
� �2 + 1 

� 

The RHS of Eq. (6.28) for � � 1 simpli�es into tanh(�) + coth(�) = 2 coth(2�)
� �where for <(�) � 1 the coth(2�) = 1. Substituting = � and � = the
� �2 

dispersion relation simpli�es to: � �2 ! 1 − �2
�2 1 + + 1 = 2�, (6.29)

�2 

the solution of which is: √ 
� = −2

1 ± 4
1 ± �� (6.30) 

Ensuring a decaying spatial growth rate, i.e. < ( �) > 0, Eq. (6.30) reads as: √ 
� = −2

1 + 4
1 ± �� (6.31) 

The frequency writes as: √ ! 
1 1 

�2 = �2 − �2 = �2 1 − 2 
  �� + 4 

± �� 
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Using the Taylor expansion Eq. (6.18) for small values of |� | � 1 while retaining 

imaginary leading order terms, the frequency � is: √ � � 
� = ±� 1 + �2   2��3 ≈ ±� 1 + 

�

2 

2 

  ��3 + O(�4) . (6.32) 

analogously to Eq. (6.20). 

For short waves, the marginal interaction parameter and the respective trans-
verse wavenumber can be seen in �gure 6.3c to scale as � ∼ � and � ∼ 1. The 

interaction parameter based on the wave length, which is the relevant horizontal 
length scale in this limit, then scales as � ∼ �−1 → 0. 

6.2.2 Long-wave limit 

Considering the long-wave limit for a purely complex � the RHS Eq. (6.28) hy-
perbolic trigonometric terms are approximated using a Taylor expansion: � � � � 

�3 1 �tanh(�) = � − + O(�5) and coth(�) = + + O(�3).3 � 3 

Consequently, Eq. (6.28) is approximated by 

�4 �4 � 
−2 

�2 �4 � 
�2 ≈ − .3�2 �2 + 

�4 + 1 

� �Using � = and � = 
�2 , the expression above rewrites into: 

� 

1 − �2 1 �� �2 

= −3 
�2 �−2 � −2�2 + �4 + 1 , 

�2 

the solution of which is: 
� 

� = ±� √
3 

Therefore, for � ∼ � � 1, the frequency becomes: 

�2 

�2 = �2 − �2 = �2 + (6.33)3 
. 

6.3 Linear stability analysis of a rectangular cell 

A more realistic model of a rectangular cell laterally bounded by four side walls 

and of aspect ratio � = ��/�� is now considered. Using the eigenvalue perturba-
tion method, it is shown that, in the inviscid limit, rectangular cells whose aspect 
ratio squared equals the ratio of any two odd numbers can be destabilised by an 

in�nitesimally weak electromagnetic interaction, while cells of other aspect ratios 
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have �nite instability thresholds. The unstable aspect ratios form a discontinuous 

dense set of points which intersperse aspect ratios with �nite stability thresholds. 

6.3.1 Eigenvalue perturbation solution for � � 1 

In this case, the problem does not appear to be solvable exactly but it can be 

approximately solved using the classical eigenvalue perturbation method (Hinch, 
1991, Sec. 1.6) for small �. Namely, the eigenmode of the form: 

{�, �}(x, �) = {�, �}(x)�−��� + c.c. (6.34) 

is sought by expanding the eigenvalue, which in this case is �2, and the amplitude 

distribution in the power series of � as follows: 

�2 = �(0) + ��(1) + . . . , 

{�, �}(x) = {�, �}(0) (x) + �{�, �}(1) (x) + . . . 

At the leading order, which corresponds to � = 0, Eq. (6.5) reduces to ��
�(0)�(0) + r2�(0) = 0, ���(0) � = 0,��

�(0) + r2�(0) = 0, ���(0) � = 0. 

The solution of this problem is: 
(0)

� = k2 , (6.35)k 
(0){�, �}(0) (x) = {k2 , 1}� Ψk (x), (6.36)k 

where 

Ψk (x) = cos(���) cos(���) (6.37) 

is the gravity wave mode for the wave vector 
√ √

k = (��, ��) = �(�/ �, � �), �, � = 0, 1, 2, . . . (6.38) 

The �rst-order correction {�, �}(1) to the leading-order solution with the eigen-
value Eq. (6.35), is sought as an expansion in the leading-order eigenmodes. These 

may be a superposition of several eigenmodes Eq. (6.36) with the wave vectors 

satisfying k02 = k2 : 

{�, �}(0) (x) = 
∑ 

{�, �}(0)Ψk0 (x),k0 
k02=k2
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when the frequency happens to be degenerate. Consequently, the �rst-order cor-
rection is sought as an expansion in the leading-order eigenmodes: 

{�, �}(1) (x) = 
∑ 

{�, �}(1)Ψk (x).k 
k 

Substituting this expansion into Eq. (6.5a) and applying the solvability condition 

by projecting it onto Ψk, after a few rearrangements one obtains: � ∑ 
(1) (0) (0)

� Ψ2 �2� = �k,k0 � . (6.39)k k k k0 
k02=k2 ∫�

The angle brackets denote the integral over � = �� × ��: Ψ2 = Ψk 
2 d2x = k 

� 
�−1�−1 , where �0 = 1 and �� = 2 for � ≠ 0. The RHS of Eq. (6.39) results from 
�� �� 

Green�s �rst identity:D E ∮ 
Ψkr2�(1) + rΨk · r�(1) = Ψk���

(1)d , 

where the boundary integral can be transformed using Eq. (6.5b) and Green�s 

theorem as follows: ∮ D E 
Ψk���

(0)d = − e� · rΨk × r�(0) . 

This results in the electromagnetic interaction matrix 

�k,k0 = he� · rΨk × rΨk0i = �k,k0 − �k0 ,k, (6.40) 

where �k,k0 = �� � ,� 0 ��� 
0 ,�� and

� 

���,�� = �� hsin(���) cos(���)i = 
�

2
2 

�

− 

2 

�2 mod(� + �, 2). (6.41) 

The anti-symmetric nature of Eq. (6.40) means that there is no electromagnetic 

back-reaction on separate gravity wave modes, i.e., �k,k = 0. Thus, for a single 

(non-degenerate) mode, this is construed as: 
(1) � 

�k Ψ2 
k �2�k = �k,k�k = 0, 

which means no electromagnetic e�ect of order �. For a degenerate mode consist-
ing of a superposition of two eigenmodes with the same frequency: 

(0)
�k = k1

2 = k2
2 , (6.42) 
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Equation (6.39) takes the form: D E ! ! 
Ψ2 

(1) D k1 E �k1 ª 0 �k1,k2 �k1
�k �

2 ©
Ψ2 

® = . (6.43) 
�k2 

−�k1,k2 0 �k2« k2 ¬ 
The solution of this matrix eigenvalue problem yields: √D E D E 

(1) 
Ψ2 Ψ2� �2 = ±��k1,k2 , (6.44)k k1 k2 

(1)signifying an imaginary �k and thus, an instability in the system if �k1,k2 ≠ 0. 
According to Eq. (6.41), this is the case only if both components of wave vectors 

√ √ √ √
k1 = �(�1/ �, �1 �) and k2 = �(�2/ �, �2 �) have opposite parities; namely, 
�1 ± �2 and �1 ± �2 are odd numbers. Then the degeneracy condition from 

Eq. (6.42) yields: 
(�1 − �2) (�1 + �2) � 

�2 = − = ,� (�1 − �2) (�1 + �2) � 

where � and � are odd numbers. It means that all cells with aspect ratios squared 

equal to the ratio of two odd numbers are inherently unstable, i.e., they become 

unstable at in�nitesimal � > �� = 0. 

For a square cell, which corresponds to �2 = 1, the unstable wave numbers 

are �1 = �, �1 = 0 and �2 = 0, �2 = �, where � is an odd number. In this case, 
(1)Eq. (6.44) yields � = ±�8/(��)2 and thus 
� 

(1) 4 =[� ] = ± (6.45)� (��)3 , 

which means that the most unstable is the mode with � = 1. For general �2 = �/� 

with odd � and �, the lowest unstable wavenumbers are: 

� (3 1)/2 = (� ± 1)/2, (6.46) 

�(3±1)/2 = (� ± 1)/2. (6.47) 
(1) 1/2 1/2In this case, Eq. (6.44) yields ��,� = ±�8�

�−1��−1/(�2√ 
��) which respectively 

designates: � �1/2 
(1) 8 ��−1��−1=[��,�] = ± √ , (6.48)

�3 (� + �) (1 + ��) �� 

which reduces to Eq. (6.45) with � = 1 when � = � = 1. √
For an aspect ratio � su�ciently close to the critical value �� = �/�, the 

stability of system can be expected to be determined by the interaction of two 

modes with the wave numbers Eqs. (6.46) and (6.47) which correspond to the 
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wavenumbers 
� � √ √ �

k(3 1)/2 = (� ± 1)/ �, (�   1) � .2 

Then �2 is de�ned by the following second-order matrix eigenvalue problem: ! ! 
(�2 − k1

2)k2 ��k1,k2 ��−1 �k11 = 0, (6.49)
−��k1,k2 ��−1 (�2 − k2

2)k2 �k22 

2(�+�) (��+1)where �k1,k2 = . Note that Eq. (6.49) reduces to Eq. (6.43) when 
�� 

� → �� and � → 0. As before, for the system to be stable, the eigenvalue �2 has 

to be real, which is the case if � ≤ ��,�, where � ��4 
�
�� 

2/�2 − 1
�
��2 

��,� = 16 (� + �) (�� + 1)� �1/2(�2 − 1)2 + �4 (�2 − 1)2 + 2�2 ((� + �)2 + (�� + 1)2)× . (6.50)
��−1��−1 

As shown in the next section, this approximate analytical solution agrees very 

well with the numerical solution of the full eigenvalue problem. 

6.3.2 Numerical solution of the matrix eigenvalue prob-
lem 

For general �, Eq. (6.34) leads to �
�� + r2� = 0, ��� | = � ���� , (6.51)�
� + r2� = 0, ���� = 0, (6.52) 

which is an eigenvalue problem for � = �2 + i�, where � is the friction coe�cient. 
The problem can be discretised using Galerkin method with the gravity wave 

modes Eq. (6.37) as basis functions (Sneyd and Wang, 1994), which leads to the 

generalisation of Eq. (6.39): � ∑ 
(� − k2)k2 Ψ2 �k = � �k,k0 �k0 ,k 

k0 

with the electromagnetic interaction matrix on the RHS de�ned by Eq. (6.40). 
This is a matrix eigenvalue problem of size (� + 1)2 × (� + 1)2, where � and � 

are the cut-o� limits of the � and � components of the wave vectors Eq. (6.38). 
Alternatively, Eq. (6.51) and Eq. (6.52) can be discretised using the Chebyshev 

collocation method. For more information on the Chebyshev collocation method 

refer to (Boyd, 2013). 
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Figure 6.4: The relative variation of the complex frequency with the largest 
imaginary part (� = 3.14455 + i0.12889) versus the number of modes and nodes 

used in the Galerkin and Chebyshev approximations for � = � = 1. 

As seen in �gure 6.4, the Chebyshev collocation method has a signi�cantly 

faster convergence rate than ∼ �−4 achieved by the Galerkin approximation with 

� modes in each direction. As the relative accuracy of Chebyshev collocation ap-
proximation saturates at ≈ 10−11 · · · 10−12 when � & 24, in the following analysis 

16 · · · 24 collocation points have been used in each direction. 
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merical results are compared with the approximate analytical solution Eq. (6.48). 

The largest growth rate �� = =[�], which is computed using Chebyshev col-
location method with �� = �� = 16 points and plotted in �gure 6.5 against the 

interaction parameter � for various aspect ratios �, con�rms the eigenvalue per-
turbation solution obtained in the previous section. Namely, for �2 equal to the 

ratio of two odd numbers, the growth rate becomes positive at � > �� = 0 whereas 

for other aspect ratios this happens at �nite ��. The dependence of the instability 

threshold �� on the aspect ratio squared is shown in �gure 6.6 for various viscous 

friction coe�cients �. Without friction (� = 0), which for numerical reasons is 

modelled by setting � = 10−5, the stability diagram is very rugged containing 
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both small and large scale regular patterns. The key feature are the dips in �� 

which can be seen to occur at �2 equal to ratio of odd numbers as predicted by � 

the eigenvalue perturbation analysis in the previous section. 
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Figure 6.6: Instability threshold �� depending on the aspect ratio squared (�2)
computed for various viscous friction coe�cients � using Chebyshev collocation 
method with �� = �� = 16 · · · 24 points. Analytical solution Eq. (6.50) is plotted 

for the dominant critical points �2 equal to odd numbers and their thirds. � 

The increase of the friction coe�cient gradually smooths out the dependence 

of �� on �, especially at small scales and larger aspect ratios. However, the main 

feature of the stability diagram, which is the location of minima and maxima of �� 

in the vicinity of odd and even values of �2, respectively, persists with the increase 

of �. It is remarkable that the approximate solution Eq. (6.50) for the dominant 
critical points closely reproduces numerical results obtained with �� = �� = 24 

collocation points up to �2 ≈ 5. The slight deviation of the numerical results from 

the theoretical predictions, which emerges at �2 & 5, especially in the vicinity 

of higher order critical points, is due to the reduced numerical resolution as the 

collation grid becomes stretched out at large aspect ratios. 
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Chapter 7 

Simulation of the nonlinear 

interfacial-wave instability 

In this chapter the numerical results of the two-layer system of equations are 

presented, the analysis of which is carried out in three stages. First, notwith-
standing the excellent agreement of the numerical and the theoretical results, 
presented in 4.2.3 for discontinuous initial states, the stability properties of the 

1D hydrodynamic scheme, presented in 2.9 are further examined with particular 
attention to the long term evolution and the dependence of dissipation on the 

relevant control parameters. In turn, these results are contrasted with the ones 

obtained by the corresponding non-conservative 2D scheme, presented in 3.1, 
for which the interface has been cosinusoidally excited with a single 1D gravity 

wave-mode along either of the horizontal directions as well as an analogous 2D 

perturbance. Lastly, the behaviour of the 2D bilayer MHD system is explored 

for various parameters and a discussion is made in regards to cause and manner 
upon which the break-down of the solution occurs. 

7.1 1D code veri�cation for smooth initial data 

In the presence of discontinuous/sharp interface heights, such as the ones invest-
igated in 4.2.3, the two-layer system was studied with the use of the conservative 

equations Eq. (4.14) and Eq. (4.18) Eq. (4.20). As it has been discussed though 

in 4.2.3, that set of equations is equivalent to Eq. (4.7) as long as the solution 

is continuous. Nevertheless, aiming towards providing a benchmark to the 2D 

system which is in non-conservative form, the analogous 1D frictionless set of 
equations is used. 

Provided a smooth initial interface perturbation, the 1D bilayer system has 

been numerically investigated using the non-conservative momentum Eq. (4.7) 
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and the 1D Lax-Wendro� scheme. In the 1D system, the pressure gradient 
which was previously eliminated in Eq. (4.18) Eq. (4.20), is now replaced in 

the momentum conservation equation for each layer with an explicit but non-
conservative expression resulting from the sum of momentum conservation equa-
tions. This provides an explicit solution for the pressure gradient which is equi-
valent to that produced by the respective Poisson solver. This approach is used 

to validate the Poisson solver. The latter is subsequently used to solve the re-
spective 2D problem for which the pressure gradient cannot be eliminated as in 

the 1D case. 

7.1.1 Two layers with equal thicknesses 

In this section the thicknesses of the respective layers are set to be equal, which 

means that the interface oscillates about the mid-plane � = 0. 
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(b) Evolution of the interface height. (c) Relative energy dissipation. 

Figure 7.1: Relative energy and interface height for an initial perturbation 
of amplitude � = 0.01 using �� = 100 grid points. 
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The numerical simulation run with two temporal discretisations �� = 10−3 and 

�� = 2 · 10−3, which allows an investigation of the energy conservation and its 

dependence on the scheme�s time-stepping parameter. Figure 7.1 illustrates the 

long-time evolution of the interface height at the grid�s �xed position � = 0 as 

well as the relative energy variation � (�)/� (0) − 1, for an initial gravity wave 

� cos(��) of amplitude � = 0.01. The results indicate that for a smooth and 

small initial perturbation the system manifests a non-increasing modulating wave 

amplitude. The evolution of the amplitude is practically indistinguishable for the 

two di�erent temporal discretisations, the e�ect of which though on the energy 

dissipation can be seen in �gure 7.1c whereupon decreasing the time step results 

in a lower energy dissipation. 

The aforementioned observations are more profound in �gure 7.2 where the 

amplitude is set at � = 0.1. In this case, owing to the increased amplitude the 

e�ect of the non-linear terms on the evolution becomes relevant in �gure 7.2b. 
However, the �ow still exhibits a stable behaviour with a gradual decay of the 

total amplitude due to the scheme�s intrinsic numerical dissipation. 
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(b) Evolution of the interface height. (c) Relative energy dissipation. 

Figure 7.2: The evolution for an initial perturbation of amplitude � = 0.1 
using �� = 100 spatial grid-points. 
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The e�ects on the energy dissipation become clear for a large initial amplitude 

of � = 0.5. In this case the wave steepens quickly resulting in huge energy losses 

as illustrated in �gure 7.3. 
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(b) Evolution of the interface height. (c) Relative energy dissipation. 

Figure 7.3: The evolution for an initial perturbation of amplitude � = 0.5 
using �� = 100 spatial grid-points. 

For layers of equal thickness �gures 7.1 and 7.2 show no wave breaking for 
small amplitudes is expected to take long time to develop, if at all. On the other 
hand, increasing the initial wave amplitude, as shown in �gure 7.3, demonstrates 

clearly the energy dissipation setting in rather abruptly as expected for the wave 

breaking. 

7.1.2 Two layers with unequal thicknesses 

The system exhibits a signi�cantly di�erent behaviour when the liquid layers have 

di�erent average thicknesses. For comparison, the Lax-Wendro� scheme is used 

to solve the semi-conservative momentum equation involving pressure Eq. (4.7) 
as well as the conservative equations of circulation Eq. (4.18) and momentum 

Eq. (4.19b). 
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In �gure 7.4, where the thicknesses of the layers are di�erent, even for a small 
amplitude of � = 0.01 the system exhibits to steepened waves almost straight 
away with considerable energy dissipation. The evolution of waves in �gure 7.4b, 
where the lower layer occupies 1/4 of the total height, are vertically mirrored in 

�gure 7.4c, where the lower layer occupies 3/4 of the height, while both cases 

have the same energy dissipation. 
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Figure 7.4: The time evolution of unequal thickness for an initial perturbation 
of amplitude � = 0.01 using a spatial resolution �� = 100. 

In �gure 7.5, illustrating an initial amplitude of � = 0.1, the steepened waves 

become even more radical, introducing spurius oscillations from the onset of the 

simulation, and thus resulting in to noticeable energy dissipation. 

Nevertheless, it should be noted that all three numerical solutions produce al-
most identical results for smooth small-amplitude initial perturbations. However, 
for larger ones, as seen in �gure 7.5a, although the results are still comparable, 
there is a small but noticeable di�erence. This di�erence is likely due to the 

fact that the equation referred to as semi-conservative momentum/pressure is 

not fully conservative and hence cannot adequately model steep waves. 
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(b) Interface location � = −0.5. (c) Interface location � = +0.5. 

0 200 400 600 800 1000

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

0 200 400 600 800 1000

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 7.5: The evolution for layers unequal thicknesses with an initial per-
turbation amplitude � = 0.1 using �� = 100 equally-spaced grid-points. 

On the other hand, as discussed in 4.2.3, the circulation conservation law is not 
likely to produce physical solutions for such waves because of not satisfying the 

momentum balance. Moreover, it is not currently obvious how to formulate fully 

conservative 2D circulation and momentum conservation laws. 

7.2 Validation of the 2D codes using 1D solu-
tions 

In this section, a comparison is made between the 1D and the 2D codes, for the 

gravity waves � cos(���) cos(���) of mode (0, 1), (1, 0) and (1, 1). In contrast to 

the 1D problem, in the 2D case the pressure gradient cannot be found directly 

without solving the respective Poisson equation. This is because, in 2D the mass 

�ux in each layer has one more degree of freedom, the direction, which precludes 

explicit relation between these �uxes resulting from the mass conservation as 

in 1D. Namely, zero divergence of the sum of two 2D mass �uxes just means 

that this sum is a solenoidal �eld which is not necessarily a constant �eld as in 
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1D. Such an assumption is too constrictive and in general incompatible with the 

irrotationality of the 2D pressure gradient. This is the principal di�erence from 

the 1D case which makes the solution of the Poisson equation in 2D necessary. 
The 2D Poisson equation requires an explicit solution using the DCT-TDMA 

algorithm, presented in 3.2.3, on Eq. (2.41). 

The numerical results of the interface motion presented in �gure 7.6 are com-
puted for �� × �� = 48 × 48 points (�� = 48 in 1D) and a temporal discretisation 

of �� = 10−2 for an initial amplitude of � = 0.1. 
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Figure 7.6: The 2D numerical solution of gravity waves obtained with �� × 
�� = 48 × 48; �� = 10−2 for the wave modes (0, 1), (1, 0) and (1, 1) cosinusoidally 

with initial amplitude � = 0.1 . 

The energy dissipation shown in �gure 7.6b for the modes (0, 1), (1, 0) and 

(1, 1) for the 2D scheme is contrasted with the dissipation exhibited by the 1D 

scheme. It is evident that the mode (0, 1) yields identical results to (1, 0). 
Moreover, the (1, 1) wave mode, presented for comparison purposes, follows 

closely. More importantly, the energy dissipated both by the 2D scheme as well 
as the 1D scheme is comparable while all remain within the bounds of their initial 
amplitude. This modulation of the wave amplitude is not as profound for small 
amplitude waves. However, for larger amplitude waves there exists an energy 

exchange between the wave modes which is gradually transferred onto the higher 
frequency modes. 
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7.3 2D simulation of the MHD interfacial-wave 

instability 

In this section, numerical results, obtained using the 2D nonlinear two-layer 
shallow-water model are presented to demonstrate the evolution of electromag-
netically driven interfacial wave instability. In �gure 7.7, results concerning a 

square cell of aspect ratio ��/�� = 1 are plotted. 

0 50 100 150 200 250 300

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

dt=10
-2

 (48 48)

dt=10
-2

 (64 64)

dt=10
-2

 (80 80)

dt=10
-3

 (48 48)

dt=10
-3

 (64 64)

dt=10
-3

 (80 80)

0 50 100 150 200 250 300

10
-2

10
-1

10
0

dt=10
-2

 (48 48)

dt=10
-2

 (64 64)

dt=10
-2

 (80 80)

dt=10
-3

 (48 48)

dt=10
-3

 (64 64)

dt=10
-3

 (80 80)

(a) Interface height (b) The extrema of height 

0 50 100 150 200 250 300

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

dt=10
-2

 (48 48)

dt=10
-2

 (64 64)

dt=10
-2

 (80 80)

dt=10
-3

 (48 48)

dt=10
-3

 (64 64)

dt=10
-3

 (80 80)

Top layer Total

Bottom layer

0 50 100 150 200 250 300

10
-2

10
-1

10
0

dt=10
-2

 (48 48)

dt=10
-2

 (64 64)

dt=10
-2

 (80 80)

dt=10
-3

 (48 48)

dt=10
-3

 (64 64)

dt=10
-3

 (80 80)

(c) Angular momentum (d) Shear velocity 

0 200 400 600 800

10
-4

10
-3

10
-2

10
-1

10
0

=0,dt=10
-2

 (48 48)

=0,dt=10
-2

 (64 64)

=0,dt=10
-2

 (80 80)

=0,dt=10
-3

 (48 48)

=0,dt=10
-3

 (64 64)

=0,dt=10
-3

 (80 80)

=1 10
-2

, dt=10
-3

 (48 48)

=1 10
-2

, dt=10
-3

 (64 64)

=1 10
-2

, dt=10
-3

 (80 80)

=2 10
-2

, dt=10
-3

 (48 48)

=2 10
-2

, dt=10
-3

 (64 64)

=2 10
-2

, dt=10
-3

 (80 80)

(e) Energy variation 

Figure 7.7: The MHD problem with � = 0.075, the interface centred at � = 0 
and an initial amplitude of � = 0.01. 
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As shown in 6.3, the square geometry is unstable for nonzero �. In the following, 
the EM parameter is set to � = 0.075, and numerical solutions for three di�erent 
grid sizes as well as two temporal discretisations are compared. This allows us 

to assess the e�ect of numerical parameters on the solution. Figure 7.7e shows 

the energy of an unstable perturbation against the time for an interface initially 

located at the midplane and perturbed by a gravity wave mode (0, 1) with the 

dimensionless amplitude � = 0.01. The variation of the interface height at the 

corner point (�, �) = (0, 0) is shown in �gure 7.7a. Without viscous friction, 
the instability, which initially grows exponentially, appears to saturate as the 

interfacial waves approaches the top and bottom boundaries. 

The simulation breaks down when the interface reaches either the top or bot-
tom boundary. The breakdown is related to the intensifying shear velocity, ∫ 
(u+ − u−)2 ��, which develops between the two �uids as seen in �gure 7.7d.

� 

The rotating interfacial-wave that is generated due to to the Lorentz force drives 

the �uids into a counter-rotating motion between the top and bottom layers, 
as seen in �gure 7.7c, where there is a separation of the angular momentum, ∫ 
· r × u ��, of the two layers. This spinning motion leads to the develop-�� � 

ment of an overcritical shear velocity that escalates towards the critical value of 1 

which marks the limit of hyperbolicity in 1D systems (Stewart and Dellar, 2013), 
at which a Kelvin-Helmoltz-type of instability develops. In �gure 7.7e in addition 

to the frictionless case, the solutions shown are for non-zero, and equal, linear 
friction coe�cients . The results for the linear friction �± = 0.01 and �± = 0.02 

are plotted in �gure 7.7e where, as anticipated, an increase of the frictional forces 

dissipate energy. Additionally, a coarser discretisation (either temporal or spa-
tial) results in an increase of the numerical dissipation which in turn dampens 

the motion allowing the system to run longer before breaking down. Within the 

same grid sizes the solution for smaller timestep always breaks down sooner. This 

is shown in �gure 7.7a, where for �� × �� = 80 × 80 the run of the simulation with 

time-step �� = 10−3 breaks down sooner than the other case for �� = 10−2. 

When the interface located at � = 0.5 as shown in �gure 7.8 is perturbed 

with a gravity wave mode (0, 1) with amplitude of � = 0.01, the motion changes 

drastically and at a faster rate compared to the midplane case shown in �gure 7.7. 
Compared to �gure 7.7a, the interfacial amplitude in �gure 7.8a is signi�cantly 

dampened due to the sharp interface motion which augments the energy dissip-
ation as seen in �gure 7.8e. Additionally, �gure 7.8c shows the total angular 
momenta of both layers emerge earlier but of lower magnitude than in the sym-
metric case shown in �gure 7.7c. 
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Figure 7.8: The MHD problem with � = 0.075, the interface centred at � = 0.5 
and an initial amplitude of � = 0.01. 

Along with the results of the symmetric and asymmetric thicknesses, shown 

in �gures 7.7 and 7.8, the corresponding linear stability growth rates for energy 

are plotted in �gures 7.7e and 7.8e. Due to the di� erent scalings used in the 

nondimensionalisation of the linear and nonlinear parts in this study the imagin-
ary part of frequency, given by Eq. (6.45), must be scaled with � = �/� where√
� = 2�� [�] /{�}. Thus, a simple expression can be obtained for the growth � � �1/2� rate curves proportional to 8�/ �3 ℎ+ℎ− − �. This is illustrated in �gures 

7.7e and 7.8e by the dashed black lines. The results of the numerical simulation, 
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Figure 7.9: Interface snapshots for � = 0.075 and the interface centred at 
� = 0.0 for an initial amplitude of � = 0.01 for the gravity wave mode (0, 1). 
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for electromagnetically destabilised small-amplitude interfacial waves, can be seen 

to be in good agreement with the growth rates produced by the linear stability. 

The rotating interfacial motion of a (0, 1) gravity wave mode is illustrated 

in �gure 7.9, where the sequence of frames shown correspond to the grid size 

�� × �� = 80 × 80 with the time-step �� = 10−3. The evolution of the interface is 

shown to develop short-wave instabilities when exceeding a certain critical value 

of the the shear velocity, which is plotted in �gure 7.7d. This leads to a Kelvin-
Helmholtz-type instability which eventually causes the interface to break down, 
prior to the interface reaching the upper or lower boundaries. 

Figure 7.10 shows the energy evolution of a square cell initially perturbed with 

a gravity wave mode (1, 1) for the same range of parameters seen in �gure 7.7. As 

mentioned in 6, the cancellation of separate gravity modes up to �rst order of � 

suppress the electromagnetic e�ects. Thus, as seen in �gure 7.10 this leads to a 

stably oscillating interface at initial times. The shear instability leads to oscilla-
tions at later stages of the simulation where the energy is seen to exponentially 

increase. Nevertheless, the sudden energy increase may still reach a plateau-like 

state, as seen in �gure 7.10b, where it grows at a lower rate. 
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Figure 7.10: The energy variation for a rectangular cell with � = 0.075 and 
a (1, 1) gravity wave mode with an initial amplitude of � = 0.01. 

The numerical results concerning a rectangular cell of aspect ratio ��/�� = 2 

are plotted in �gures 7.11 7.13 for a range of the parameter � and an initial 
(1, 0) mode perturbance of amplitude � = 0.01. Figure 7.11 shows the stable 

evolution of a slowly increasing interface motion for a small but �nite value of �. 
In contrast to square cells where instabilities develop for � > 0, it can be seen 

that for � = 0.5 the interface height and energy variation for both the symmetric 

and asymmetric layer depths gradually evolve in absence of strong instabilities. 
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Figure 7.11: The evolution of the interfacial amplitude and energy variation 
for � = .5 of a rectangular cell of aspect ratio ��/�� = 2 for a (1, 0) gravity mode 

with an initial amplitude of � = 0.01. 

In a rectangular cell with layers of equal thickness, a signi�cantly higher, com-
pared to the square cell, electromagnetic parameter is permitted. In �gure 7.12a 

the duration of the simulation prior to the break down is longer than �gure 7.7a 

while the electromagnetic parameter is set to � = 0.9 as opposed to 0.075. The 

e�ect of numerical dissipation, discussed in the preceding paragraphs, is clearly 

demonstrated throughout �gure 7.12 where a coarser discretisation results in 

longer simulation times. The results plotted in �gure 7.12c does not provide def-
inite answer in regards to the separation of the top and bottom momenta but 
in view of �gure 7.12d the shear velocity is seen to increase, thus leading to the 

development of short-wave shear instability. Similarly to �gure 7.10, �gure 7.12e, 
demonstrates an initially slowly increasing energy variation which for � = 0 even-
tually explodes. 
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Figure 7.12: The MHD problem with � = 0.9, the interface centred at � = 
0 and an initial amplitude of � = 0.01 for a rectangular cell of aspect ratio 

��/�� = 2. 

Note that, unlike to the results for a square cell plotted in �gure 7.8, in a rect-
angular cell of aspect ratio ��/�� = 2 with unequal layer depths, the simulation 

breaks down much sooner due to a rapid increase of the interfacial amplitude 

as shown in �gure 7.13a. The angular momentum of the lower layer, shown in 

�gure 7.13c, is larger than the one of the upper layer which appears to oscillate 

about zero, and thus induces an increase of the shear velocity as it may be seen in 
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�gure 7.13d. Consequently, an instability arises in early stages of the simulation 

resulting into an exponential increase of energy as shown in �gure 7.13. 
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Figure 7.13: The MHD problem with � = 0.9, the interface centred at � = 
0.5 and an initial amplitude of � = 0.01 for a rectangular cell of aspect ratio 

��/�� = 2. 
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Conclusions and further work 

This thesis is concerned with the numerical modelling of large-amplitude inter-
facial waves produced by metal pad roll instability in the aluminium reduction 

cells. This system was studied with the use of the two-layer rigid-lid model, 
for conducting �uid layers under the in�uence of a uniform magnetic �eld. The 

semi-conservative 2D shallow-water model derived in 2.7 includes a novel fully 

nonlinear equation for the electric potential, derived in 5. The approximation 

of small density variation between the �uids permitted the exact 1D solution of 
the equations and a straightforward implementation of the 2D scheme and al-
gorithms. The commonly encountered linear damping term, discussed in 2.7.4, 
was utilised in the investigation of both the linear stability analysis, in 6, as 

well as the numerical implementation of the 2D MHD shallow-water equations in 

7.3, and it is shown to adequately stabilise the system. 

The method of characteristics was used to obtain a novel exact solution of the 

two-layer lock-exchange problem where the initially piecewise interface height 
is released and the slightly heavier �uid is driven into the slightly lighter one. 
The results obtained show four di�erent interface shapes dependent on the initial 
interface height. The suitability of the 1D Lax-Wendro� scheme in the presence 

of discontinuities was veri�ed via the numerical solution of the lock-exchange 

problem, for the previously mentioned interface shapes, with a good agreement 
in the results. 

The validation of the Lax-Wendro� scheme for discontinuous �ows motivated 

the extension of the scheme to 2D. Furthermore, a new scheme was developed 

based on the 2D Richtmyer-Lax-Wendro� scheme by consideration of the �nite 

volume formulation on a set of staggered rhombic grids. This scheme was then 

coupled with the newly developed and e�cient fast Poisson solver which utilises a 

combination of the discrete cosine transforms and the tridiagonal matrix Thomas 

algorithm for the solution of the interface pressure and electric potential. The 

performance of the newly developed 2D scheme coupled with the DCT-TDMA 

algorithm, was benchmarked with reference to the purely hydrodynamic 1D two-
layer model for smooth initial data. 
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The linear stability analysis of the magnetohydrodynamic system under the 

in�uence of an external uniformly vertical magnetic �eld for the half-plane and 

the �nite width channel geometries was revisited in 6. This was followed by 

the analysis of the rectangular geometry laterally bounded by four walls. This 

analysis revealed the instability threshold dependence on the aspect ratio of the 

cell. These new analytic results were obtained using an eigenvalue perturbation 

method and veri�ed by numerical solution of the linear stability problem, where 

the aspect ratios for which the cells become unstable at arbitrary weak electro-
magnetic e�ect, were found to be equal to the ratio of two odd numbers. 

The nonlinear evolution of electromagnetic interfacial-wave instability was nu-
merically investigated in 7.3 for the square cell which is inherently unstable. 
The interface positions considered were that of equal thickness layers as well as 

the case where their thickness ratio is 1 : 3. The numerical results obtained from 

the 2D two-layer shallow-water model at initial times were in excellent agreement 
with the growth rates predicted by the linear stability analysis. Furthermore, 
it was shown that the nonlinear e�ects result in the slowdown of the growth of 
large-amplitude waves leading to a quasi-equilibrium state in certain cases. How-
ever, it was found that the rotating interfacial wave by the nonlinear streaming 

e�ect induces a global counter-circulation in the top and bottom layers, whereby 

exceeding a critical value of the shear velocity leads to the Kelvin-Helmholtz-type 

instability which causes the interface to break down. 

The models and algorithms designed and utilised in this work employed a series 

of simpli�cations in order to reduce the complexity in the problem. In order to 

model aluminium reduction cells in a more realistic framework, extensions may 

be required in terms of the perturbation of the electric �eld induced by the �ow 

across the magnetic �eld. Furthermore, a more realistic model of the problem 

could be constructed by considering non-uniform magnetic �elds, known to be 

present in aluminium reduction cells Bojarevics and Romerio (1994). 

Although e�ects of linear friction were brie�y considered in terms of a linear 
friction term, incorporation of more re�ned viscous terms similarly to Zikanov 

(2018) or turbulent stresses could potentially enable a more adequate modelling 

of the viscous e�ects. Furthermore, the hydrodynamic analysis and numerical 
investigation of magnetohydrodynamic instabilities beyond the Boussinesq ap-
proximation pose an interesting aspect of the problem being natural extensions 

of the present work. Additionally, the thickness of the respective layers should 

be further investigated as it has a critical role on the stability of a cell. In fu-
ture work, the discussed reduction of simpli�cations presently made, could enable 
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veri�cation against real data of aluminium reduction cells. 
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Appendix A 

Algorithms 

A.1 Thomas algorithm 

Algorithm 1 The Thomas Type-I algorithm factorisation and solver 
Comment: Factorization of the tridiagonal matrix: [1-d,1; 1,-d,1; ...; 1,1-d] 
Input: � (vector size), � (reserved matrix), � (main diagonal element) 
Output: � (Thomas algorithm factors) 

1: function tdfct1(�, �, �) 
2: if � == 2 then ⊲ Singular case 
3: �(1 : �) = 1 
4: else 
5: �(1) = 1/(� − 1)
6: for � = 2 to � − 1 do 
7: �(�) = 1/(� − �(� − 1)) 
8: end for 
9: �(�) = 1/(�(� − 1) − (� − 1)) 

10: end if 
11: end function 

Comment: Solution using the factorised matrix a(n) to solve f(1, n) 
Input: � (vector size), � (Thomas algorithm factors), � (Poisson RHS) 
Output: � (Solution) 

1: function tdslv1(�, �, � ) 
2: for � = 1 to � − 1 do 
3: � (1, � + 1) = � (1, � + 1) + � (1, �) ∗ �(�) ⊲ Forward sweep 
4: end for 
5: � (1, �) = � (1, �) ∗ �(�)
6: for � = � − 1 to 1 do 
7: � (1, �) = ( � (1, � + 1) − � (1, �)) ∗ �(�) ⊲ Backward sweep 
8: end for 
9: end function 
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Algorithm 2 The Thomas Type-II algorithm factorisation and solver 
Comment: Factorization of the tridiagonal matrix: [-d,2; 1,-d,1; ...; 2,-d] 
Input: � (vector size), � (reserved matrix), � (main diagonal element) 
Output: � (Thomas algorithm factors) 

1: function tdfct2(�, �, �) 
2: if � == 2 then ⊲ Singular case 
3: �(1 : � + 1) = 1 
4: else 
5: �(1) = 2/� 
6: for � = 2 to � do 
7: �(�) = 1/(� − �(� − 1)) 
8: end for 
9: �(�) = 1/(�(� − 1) − �/2)) 

10: end if 
11: end function 

Comment: Solution using the factorised matrix a(n+1) to solve f(1, n+1) 
Input: � (vector size), � (Thomas algorithm factors), � (Poisson RHS) 
Output: � (Solution) 

1: function tdslv2(�, �, � ) 
2: for � = 1 to � do 
3: � (1, � + 1) = � (1, � + 1) + � (1, �) ∗ �(�) ⊲ Forward sweep 
4: end for 
5: � (1, � + 1) = � (1, � + 1) ∗ �(� + 1)
6: for � = � to 1 do 
7: � (1, �) = ( � (1, � + 1) − � (1, �)) ∗ �(�) ⊲ Bacward sweep 
8: end for 
9: end function 

Algorithm 3 The tridiagonal system coe�cients for GRID-0 & GRID-1 
Comment: Factorization of the tridiagonal matrix: [1-d,1; 1,-d,1; ...; 1,1-d] 
Input: �� (Matrix rows), �� (Matrix columns), ��, �� (Spatial discretisation) 
Output: �� (Thomas algorithm coe�cients) 

1: for � = 0 to �� do 
2: �� (:, � + 1, 1) = tdfct2(��, �� (:, � + 1, 1), 2 + 4 ∗ (���(�� ∗ �/��/2) ∗ ��/��)2)
3: �� (:, � + 1, 2) = tdfct1(��, �� (:, � + 1, 2), 2 + 4 ∗ (���(�� ∗ �/��/2) ∗ ��/��)2)
4: end for 



123 A.2. The 2D Poisson solver 

A.2 The 2D Poisson solver 

Algorithm 4 The 2D Poisson solver 
Input: � (2x1 constant vector de�ning the switch of grids), � (2x1 vector con-
taining the matrix dimensions), �� (spatial discr.), �� (factors), � (Reserved 
matrix) 
Output: � (Solution) 

1: function psn2D(�, �, ��) 
2: � = 1 : �(1) + 1 − � (1) ⊲ Indices declaring the necessary points 
3: � = 1 : �(2) + 1 − � (2)
4: � (�, �) = dct( � (�, �), [], 1, 0 � ���0, � (1) + 1) ⊲ Apply DCT 
5: for �� = 0 to �(1) − � (1) do ⊲ Thomas algorithm solution 
6: if � (2) == 0 then 
7: � (�� + 1, �) = tdslv0(�(2), �� ( � , �� + 1, 1), � (�� + 1, �)) 
8: end if 
9: if � (2) == 1 then 

10: � (�� + 1, �) = tdslv1(�(2), �� ( � , �� + 1, 2), � (�� + 1, �)) 
11: end if 
12: end for 
13: � (�, �) = idct( � (�, �), [], 1, 0 � ���0, � (1) + 1) ⊲ Apply inverse DCT 
14: end function 
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A.3 Code structure 

Initialisation of the program: 
(mesh setting, creation of matrices, initial 

parameters for ℎ, �, � 

prefactorisation of the coe�cient for the 

Poisson solver) 

Half-step LW 

Half-step MHD 

Half-step Pressure 

Full-step LW 

Full-step MHD 

Full-step Pressure 

End or broken 

Export results 

Time integration 

Height average 

Height average 

No 

Yes 

Poisson solver 

Poisson solver 

← time-projection scheme 

using last step potential 

← time-projection scheme 

using last step potential 

Figure A.1: Code logic diagram. 
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