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Abstract  

There are a subset of cancers that since their initial discovery and early efforts to develop 

treatments, still have a poor prognosis. These include Small cell lung cancer, Neuroblastoma 

and Glioblastoma and together they contribute to a large percentage of human cancer 

deaths. Efforts now focus on identifying novel targets that drive the initiation and 

development of these cancers to advance therapeutics in an advance towards personalised 

cancer therapies. 

Aberrant post-transcriptional gene regulation has been implicated in numerous diseases 

including Neurodegeneration and Cancer. The family of Hu proteins consists of the neuronal 

HuB, HuC and HuD and ubiquitously expressed HuR. They are proto-type RNA-binding 

proteins functioning in all aspects of RNA processing including RNA stability, alternative 

splicing, polyadenylation, localisation and nuclear export. Hu proteins that are ectopically 

expressed or overexpressed in Small cell lung cancer (SCLC), Neuroblastoma and 

Glioblastoma have been linked to tumour progression. 

Little research has been done to analyse how Hu proteins contribute to the development 

and progression in the described cancers. Silencing Hu proteins using siRNA interference 

provides an opportunity to analyse the effect of decreased Hu expression on cellular 

properties and the change in post-transcriptional regulation of target RNA that may play a 

role tumour formation and progression. 

Effects of cell migration and cell viability were assessed in vitro and revealed HuB and HuC 

proteins to be key regulators of these processes.  A decrease of HuB gene expression by 

RNA interference resulted in an increase in migration, in Glioblastoma cells U87-MG and the 

Neuroblastoma cell lines SH-SY5Y and SK-N-AS. Whilst a decrease in HuB and HuC gene 
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expression showed an increase in viability and migration of the Neuroblastoma cells SH-

SY5Y and Glioblastoma cells U87-MG suggesting these proteins act to control these factors 

in the cancers. 

Individual and combined Hu gene knockdowns with siRNA also revealed regulatory and 

compensatory interactions of the Hu family members. HuR protein was found to positively 

regulate the expression of HuC in all cell models. In SH-SY5Y Neuroblastoma cells and U87-

MG Glioblastoma cells, additional similarities were observed. HuR protein positively 

regulated HuD mRNA and HuC negatively regulated HuR mRNA. The HuR and HuC 

interactions suggests they can regulate each other’s protein levels ensuring an abundance of 

each protein in cells. 

Molecular screening of a set of mRNA targets that have been described to contribute to the 

development of each cancer revealed many changes. From the array of targets that changed 

after knockdowns, genes with a high expression fold-change and influenced by more than 

one Hu protein were chosen to confirm the regulation by Hu proteins. Many of these targets 

were identified as members of the MAPK signalling pathway. 

Further analysis including a complete knockout of the Hu proteins is needed to confirm the 

role of Hu proteins in regulating members of the MAPK signalling pathway and how the 

knockout would affect upstream and downstream targets of this pathway. 
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Chapter 1 

Introduction 

1.1 Gene regulation  

The human genome encodes approximately 25,000 genes, organised into 23 chromosome 

pairs, made of over three billion deoxyribonucleic acid (DNA) base pairs. Whilst humans have 

the same sequence homology as plants and animals, there is greater diversity in appearance, 

properties and functions between organisms and within species due to differential ways 

genes are regulated (Phillips 2008).  

The enormous complexity and dynamic structure of the human genome emphasises the 

need for its regulation.  Regulation of eukaryotic gene expression is fundamental for 

synchronised synthesis, assembly and localisation of cells structure (Orphanides and 

Reinberg 2002). It is a multi-step process regulated at every level, from DNA to ribonucleic 

acid (RNA) and to protein. These processes begin in the nucleus and then continue in the 

cytoplasm following mRNA export.  

These events regulate processes including transcription, RNA processing, mRNA transport, 

turnover, storage, and translation. Proteins also undergo post-translational regulatory 

mechanisms during modification events including phosphorylation, ubiquitination and 

methylation (Maniatis and Reed 2002).  

The stages of gene regulation are displayed in Fig. 1.1. 
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Figure 1.1. Gene regulation from DNA to protein. DNA is regulated at a transcriptional level, to ensure 

the quality and number of mRNA transcripts. The pre-mRNA is subjected to capping, splicing and 

polyadenylation during post-transcriptional control. The mature mRNA is then transported to the 

cytoplasm where it sustains translational regulatory events during protein production and further 

post-translational modifications. 

 

In the nucleus, transcription factors recruit RNA polymerase II that bind upstream of a 

promoter in a gene sequence regulating RNA synthesis. The produced messenger RNA 

(mRNA) is processed by a large amount of RNA-binding proteins (RBPs) through post-

transcriptional events which prepares the mRNA for export through nuclear pores. In the 

cytoplasm, the mRNA is localised to regions consistent with its fate. mRNA can be destined 

for exonuclease-mediated degradation or when colocalised to translation factors and 

ribosomes, is used as a template for protein synthesis. Following translation, proteins still 
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endure further modifications such as phosphorylation and methylation. These processes 

combined, allows cells to respond to physiological stimuli (Glisovic et al. 2008, Yao et al. 1993). 

1.2 Post-transcriptional gene regulation 

Post-transcriptional gene regulation is a highly-coordinated process controlled by multiple 

mechanisms to ensure cellular homeostasis and contribute to organismal complexity (Glisovic 

et al. 2008). Pre-mRNA produced from RNA synthesis undergoes post-transcriptional gene 

regulatory events including 5′ capping, 3′ polyadenylation, cleavage, pre‐mRNA splicing, 

export, mRNA decay, and translation, ultimately increasing the diversity of a single gene. 

Several ubiquitous molecules and cell-specific trans-acting factors participate in the processes 

including RNA-binding proteins (RBPs), non-coding RNAs (ncRNAs) and microRNAs (miRNAs) 

(Khabar 2017). Modified pre-mRNA is then transported to the cytoplasm and translated into 

a protein (Glisovic et al. 2008). 

1.2.1 5′ capping  

The first modification the pre-mRNA experiences is 5'-capping where a 7-

methylguanosine cap (5′ m7G cap) is added to the beginning of the RNA transcript. The 5′ 

m7G cap is evolutionarily conserved in eukaryotic mRNA. It allows the recruitment of cellular 

proteins that regulate pre-mRNA processing and nuclear export including c-myc, involved in 

cell proliferation (Ramanathan et al. 2016). 
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1.2.2 Alternative splicing 

Alternative splicing occurs in all eukaryotes and is crucial for the development, differentiation 

and complexity of a cell. This diverse process determines the binding potential, intracellular 

localisation, enzymatic activity and protein stability of many proteins (Stamm et al. 2005). 

Alternative splicing allows the production of cell specific isoforms from a single gene in 

response to external stimuli (Roméria da Silva et al. 2015). A schematic diagram of this is 

shown in Figure 1.2. 

All genes are composed of long non-protein coding sequences called introns and shorter 

untranslated/coding sequences called exons. Alternative splicing joins exons or portions of 

exons by removing intronic sequences in a pre-mRNA transcript. The diverse isoforms can 

differ in composition and function determined by which exons are spliced together and 

translated (David and Manley 2010).  

Selection of alternative splice sites is determined by the spliceosome (Pagliarini et al. 2015). 

The spliceosome is a functionally dynamic, multi-megadalton ribonucleoprotein composed of 

small nuclear RNA (snRNA) and ribonucleoproteins (RNPs). cis-sequence transcripts in the 

core spliceosome bind to trans-acting RBPs that enlist factors and enzymes to initiate the 

removal of introns from the mRNA (Will and Lührmann 2011).  
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Figure 1.2: Alternative splicing of proteins. During transcription, a copy of DNA is made producing a pre-mRNA transcript. Alternative splicing of this transcript 

then joins different combinations of exons by the removal of introns forming a mature-mRNA transcript. 
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1.2.3 Polyadenylation 

Polyadenylation is a complex mechanism to regulate gene expression in all eukaryotic mRNAs 

except histones. Polyadenylation occurs at the 3’ end of pre-mRNA in the nucleus. It is a 2-

step reaction involving the cleavage of the 3’ end and addition of the poly (A) tail to the newly 

generated 3’ end (Erson-Bensan 2016). Polyadenylate, also known as the poly(A) tail is around 

100-200 nucleotides long and acts to protect the mRNA from degradation by phosphatases 

and nucleases (Ray and Fry 2015).  

The process involves a multiprotein machinery consisting of subunits of cleavage factors; 

polyadenylation stimulatory factor (CPSF), cleavage stimulatory factor (CSTF) and several 

other cleavage factor complexes. CPSF is the main regulator of poly(A) signal selection, a 15-

30 nucleotide sequence upstream of the cleavage site. The poly(A) signal sequence, AAUAAA, 

is highly conserved in mammals and present in 70% of human genes (Erson-Bensan 2016, 

Derti et al. 2012). Differential selection of poly(A) sites by polyadenylation and/or splicing 

factors can alter gene expression and implement significant physiological changes. RBPs play 

a crucial role in polyadenylation as they regulate the stability of the mRNA transcript during 

the process (Zhu 2009).  

1.2.4 mRNA export 

Transport of mRNA from the nucleus to the cytoplasm is crucial for the further processing of 

mRNA. The synthesised mature mRNA associates with various proteins forming a messenger 

ribonucleoprotein (mRNP) particle. The mechanism of nuclear mRNA export involves 

principal transport factors that allow only complete, functional mRNA to be transported to 
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the cytoplasm (Katahira 2015). Once in the cytoplasm, mRNA is either translated into 

protein, stored or recognised by degradation machinery depending on cell environmental 

signals (Zhu 2009). 

1.2.5 mRNA stability 

mRNA transcript stability is detrimental in the control of gene expression. It is mostly 

governed by AU-rich instability elements (AREs) and cis-acting elements located in the 3’ 

untranslated region and their interactions with trans-acting factors including RBPs. These 

interactions are initiated by specific intra-cellular and extra-cellular signals. AREs are 

destabilised thereby increasing the stability and half-life of the mRNA (Caput et al. 1986). 

Stability can also be affected by polyadenylation, mRNA primary and secondary structure, 

rate of translation and intracellular location (Bolognani et al. 2012).  Mutations in the coding 

region or nonsense mutation in 5’-UTR of mRNAs can result in truncated mRNAs that then 

contain an instability determinant affecting mRNA half-life (Ross 1995).  

1.2.6 mRNA localisation 

Eukaryotic cells contain various organelles that implement different functions. The 

localisation of mRNA depends on the transcript and its proteins function in certain specialised 

roles that relate to specific subcellular compartments (Martin and Ephrussi 2009). Some types 

of mRNA transcripts can re-enter the nucleus after being exported to the cytoplasm (Katahira 

2015). 
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1.2.7 mRNA decay 

RNA decay rate is dependent upon the mRNA sequence or structural elements within it. Poly-

A tail protects mRNAs from rapid or indiscriminate degradation as the first step in mRNA 

decay is deadenylation. cis-acting regulatory sequences, like GU-rich elements can regulate 

RNA decay in a similar manner trans-acting sequences (Halees et al. 2011). 

There are multiple RNA decay pathways and together they control the quality of gene 

expression. Pathways assesses properties crucial for functionality such as structural integrity 

or the presence of complete open reading frames. Upon initiation of mRNA decay, transcripts 

are degraded rapidly (Ghosh, Shubhendu and Jacobson 2010). 

1.3 Aberrant gene regulation in the development of human disease  

Maintenance of cell homeostasis including cellular growth, proliferation and differentiation 

are tightly managed processes activated when biological events occur including wound 

healing, blood cell formation, immune cell expansion and tissue regeneration (Campos-Melo 

et al. 2014). The intricate processes of cell homeostasis, the complex nature of gene 

regulation and its impact on cellular physiological development is rationale for the increased 

possibility for deleterious mutations, polymorphisms and deregulation to occur (Faustino et 

al. 2003). Mutations can lead to aberrant function of the gene expression regulators RBPs, 

microRNAs (miRNAs) and non-coding RNAs (ncRNAs). This results in altered gene expression 

levels and abnormal protein aggregation that impacts cellular function as displayed in Figure 

1.3 (Fredericks et al. 2015, Lukong et al. 2008, Gerstberger et al. 2014). Aberrant gene 

regulation is implicated in the pathophysiology of diseases, including neurodevelopmental 
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disorders, neurological diseases and cancer (Cooper et al. 2009, Wurth 2012, Yano et al. 

2016).  

Aberrant splicing, a process controlled by RBPs, produce differential mRNA transcripts that 

translate to proteins with aberrant function. This allows inhibited cell death, uncontrolled 

proliferation and decreased response to anti-apoptotic factors in cancer, or excessive 

neuronal cell death in neurodegenerative diseases (Driver 2012, Zaharieva et al. 2012).  

Alternative splicing contributes to functional complexity in normal cell homeostasis and 

influences tumour cell progression in cancer. Of all the post-transcription regulatory events, 

alternative splicing produces the most diverse outcomes. Whilst proto-oncogenes are largely 

associated with spontaneous mutation, activation of such genes can also occur through 

splicing events. The flexibility of remodelling the proteome is advantageous to cancer cells by 

producing proteins with antagonistic functions or excess expression levels that contribute to 

the growth and spread of the tumour (David and Manley 2010). Exon skipping produces 

truncated proteins with reduced or no function. Intron retention results in non-coding regions 

being translated, whilst use of alternative splice sites gives rise to a change in the protein 

composition or alteration to the proteome (Fredericks et al. 2015).  

Alternative splicing in cancers is illustrated in Fig. 1.3. 
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Figure 1.3: Deregulation of alternative splicing factors influences tumorigenesis. Aberrant changes 

in the regulation of alternative splicing can influence overexpression or aberrant function of splicing 

factors promoting the common traits of cancer formation and progression, angiogenesis, invasion, 

metastasis and evasion of cell death. Key: E-exon; RBP-RNA-binding protein. 
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Apoptosis is a result of many normal cellular pathways that many cancer cells are able to 

evade (Letai 2008). Alternative splicing of apoptosis-associated genes is regulated by RBPs. 

This results in isoforms with differentiated roles that are pro-apoptotic or anti-apoptotic 

proteins. A balance of these proteins achieves a regulatory mechanism for maintaining cell 

death in normal cells. In cancer cells, aberrant splicing patterns can result in fewer pro-

apoptotic isoforms causing prolonged survival (Schwerk and Schulze-Osthoff 2005). 

FOX-2 (RBM9) is an RBP paralog of the brain- and muscle-specific splicing factor FOX-1 

(A2BP1). FOX-2 is an upstream master regulator of splicing regulators. In ovarian tumours, 

FOX-2 is down regulated three-fold compared to normal ovarian tissues resulting in disrupted 

splicing events. Consequently, this leads to increased cell proliferation. In breast cancer, FOX-

2 influences 50% of splicing events particularly of genes involved in EMT (Venables et al. 

2009).  

Cyclin D1 is a key regulator of G1 phase progression of the cell-cycle. Cyclin D1 endures 

alternative splicing to produce Cyclin D1a and D1b, of which D1a is localised in the nucleus 

and the cytoplasm but D1b is found only in the nucleus (Betticher et al. 1995). Cyclin D1b is 

upregulated in breast and prostate cancer where nuclear Cyclin D1b expression is indicative 

of a more oncogenic form (Burd et al. 2006, Alt et al. 2000). 

Caspase-2 is a highly conserved cysteine protease and regulator of apoptosis initiation and 

execution (Puccini et al. 2013). It is alternatively spliced to produce a proapoptotic isoform 

called exon 9-lacking caspase-2L, and a antiapoptotic isoform exon 9-containing caspase-2S. 

Aberrant splicing patterns lead to an imbalance of these two factors and in some cases, it 

favours the cancers growth  (Iwanaga et al. 2005). Caspase 2 is often seen depleted in 
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Leukaemia, resulting in an increased survival of cells, particularly in response to 

chemotherapeutic agents (Ho et al. 2009). 

The B-cell lymphoma (BCL2) family of proteins are responsible for the regulation of the 

mitochondrial or intrinsic apoptotic response. Increased expression of anti-apoptotic BCL-2 

family proteins is observed in many cancers including breast and prostate cancer. 

Overexpression occurs due to chromosomal translocations, gene amplification, increased 

gene transcription, and/or altered post-translational processing (Hata et al. 2015). Alternative 

splicing of Bcl-x produces two distinct variants, Bcl-xL and Bcl-xS. Bcl-xL has a longer sequence 

and inhibits apoptosis, whilst Bcl-xS has a shorter sequence and activates apoptosis (Boise et 

al. 1993). Bcl- xL is overexpressed in colorectal cancer (Scherr et al. 2016). 

1.4 RNA-binding proteins 

The family of RNA-binding proteins (RBPs) diversely function as primary regulators of gene 

expression, playing essential roles in RNA splicing, export to the cytoplasm, translation and 

stability ultimately controlling the fate of RNAs (Glisovic et al. 2008). Until 2014 1542 RBPs 

were documented in the mammalian genome (Gerstberger et al. 2014). 

RBPs contain various structural motifs where RNA molecules interact directly with specific 

sequences or structures. There are several types of motifs, including K homology domain, Sm 

domain and zinc finger domain. The most abundant protein domain in eukaryotes is the RNA 

recognition motif (RRM) (Maris et al. 2005). The human genome has 497 genes coding for 

proteins containing RRMs. RRMs consist of 80-90 amino acid residues and can be present in 

single or multiple copies within a protein. RRMs are arranged specifically to achieve diverse 

functionality through their versatility and structural flexibility. This allows RBPs to control the 
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diversity of many different transcripts (Pereira et al. 2017). The target specificity of RBPs is 

influenced by the sequence length and type of ARE, the cellular environment and any 

posttranslational modifications to the RBP itself (Khabar 2017).   

The localisation of the RBPs in the cell is also crucial to their regulatory role in post 

transcriptional gene regulation (Zaharieva et al. 2015a). RBPs can be found in the nucleus or 

cytoplasm and translocate by shuttling between the two (Fan and Steitz 1998). In the nucleus, 

RBPs exist as heterogeneous ribonucleoprotein particles (hnRNPs) that form complexes with 

pre-mRNA. In the cytoplasm, RBPs influence mRNA stability and turnover allowing cells to 

adapt to environmental changes and increase cell survival (Bronicki and Jasmin 2013).  

RBPs can translocate between the nucleus and cytoplasm as a result of cellular stress 

including UV irradiation and hydrogen peroxide (H2O2) both of which induce oxidative stress 

(Wang et al. 2000), heat shock (Gallouzi et al. 2000), nutrient deficiency (Yaman et al. 2002) 

or energy depletion (Jeyaraj et al. 2005).  

Proteins including importins and exportins facilitate the export of macromolecules including 

RNA and proteins across the nuclear membrane to the cytoplasm. Protein sequences can 

contain nuclear localisation signals. Importins and Exportins can bind to these sequences 

initiating translocation to or from the nucleus in a GTP-dependent reaction against a 

concentration gradient. This mechanism could explain the ability of RBP to shuttle between 

the nucleus and cytoplasm although further research would be required to clarify this (Lange 

et al. 2007). 

miRNAs are a conserved family of about 22 nucleotide-long noncoding RNAs. In the human 

genome over 2000 miRNAs have been discovered. They regulate broad target networks and 
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influence diverse biological roles controlling one third of the genes in the genome (Hammond 

2015). Like RBPs, miRNA bind directly to adenylate/uridylate-rich elements (AREs), controlling 

mRNA decay and translating RBPs (Agami 2010, Khabar 2017). RBPs and miRNAs interact with 

each other to cooperate in a complex or compete for specific binding sites on mRNA 

transcripts. This cooperation or antagonism regulates PTGR processes (Khabar 2017).  

Another role of RBPs is as regulators of miRNA biogenesis (Fig. 1.4). RBPs function in every 

stage of miRNA formation from primary miRNA processing to formation of RNA-induced 

silencing complexes (RISC) (Loffreda et al. 2015).  

RNA Polymerase II consists of 12 RBP subunits and is responsible for the synthesis of the 

primary-miRNA (pri-mRNA) (Ha and Kim 2014). The stem-loop structure of the pri-miRNA is 

cleaved by p68, a dimer composed of two subunits, the RNase III enzyme DROSHA and its 

essential cofactor DGCR8 (Denli et al. 2004). The released hairpin called precursor-miRNA 

(pre-miRNA) is exported to the cytoplasm by Exportin-5 (Yi et al. 2003). DICER converts the 

pre-miRNA into a mature 22nt miRNA of which one strand is integrated into the RNA-induced 

silencing complex (Hutvágner et al. 2001). RISCs are a family of ribonucleoprotein complexes 

that are programmed to target and silence any nucleic acid sequence (Pratt and MacRae 

2009). 
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Figure 1.4: Biogenesis of canonical microRNAs. In the nucleus, pri-miRNA is cleaved by p68 aided by 

RNA polymerase II and RBPs. The pre-miRNA is then transported to the cytoplasm by Exportin 5. The 

miRNA experiences further processing by DICER and RBP. The mature miRNA associates with the RISC 

complex. 
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1.4.1 RNA-binding proteins implicated in disease 

Human neurological disorders are often related to irregular function of RNA-binding proteins. 

For example, Fragile X syndrome is caused by a trinucleotide repeat (CGG) expansion in the 

5′ UTR of the fragile X mental retardation (FMR1) gene. This gene codes for the RNA-binding 

protein, FMR1 protein in which the mutation results in the loss of protein function (Chelly and 

Mandel 2001).  

Similarly, Myotonic dystrophy is caused by a trinucleotide repeat (CTG) in the 3′UTR of the 

DMPK gene, coding for myotonic dystrophy protein kinase. In vitro experiments have shown 

that once the expanded trinucleotide repeat is transcribed, it folds into very stable and long 

RNA hairpin structures, that then accumulate in the nucleus.  This alters the function of RBPs 

including Muscle blind-like protein 1 (MBNL) and CUG binding protein 1 (CUGBP1). MBNL was 

shown to have a loss of function (Lee and Cooper 2009), whilst the mutation causes hyper-

phosphorylation and stabilisation of  CUGBP1 initiating aberrant activation of the Protein 

kinase C pathway (Kuyumcu-Martinez et al. 2007).  

NOVA-1 RBP has been implicated in paraneoplastic neurodegenerative disorders 

(Buckanovich and Darnell 1997). NOVA-1 expression is restricted to the brain. Therefore 

abnormal expression causes an immune response where auto-antibodies attack NOVA-1 in 

the normal expression areas of the brain and spinal cord (Yang et al. 1998).  

Aberrant transcriptional events, deregulation of RBPs, abnormal gene amplifications and 

alterations to signalling events contribute towards cancer progression (Croce 2008, Wang et 

al. 2015). Gene regulatory events including splicing, polyadenylation, translation, mRNA and 

protein stability are altered during the development of cancers and can influence the diseases 
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initiation and progression. PTGR events are therefore considered a ‘convergence point of 

oncogenic signalling’ (Yan and Higgins 2013).  

Several studies have highlighted correlation between aberrant RBP expression and cancer 

development. RBPs function as RNA regulatory factors in gene regulation is pathologically 

disrupted in cancer. Due to RBPs structurally flexible binding domains, they can regulate a 

wide range of mRNA sequences controlling their stability. Some of these transcripts can code 

for tumour-related proteins (Wang et al. 2015). They can therefore contribute to the complex 

network that enables tumour development (Eberhardt et al. 2016). Defects in RNA regulation 

include altered protein expression levels, abnormal aggregation, gene mutations and 

translocations and gain-of-function (oncogene). These changes deregulate important 

developmental pathways that drive cell proliferation, survival and differentiation, instead 

influencing invasion, metastasis and angiogenesis and avoiding cellular apoptosis 

(Abdelmohsen 2010, Wang et al. 2015, Wurth 2012). 

The examples discussed below highlight the importance of identifying RBPs role in cancers 

also emphasising the significance of alternative mRNA processing in cancer (López de Silanes 

et al. 2005). 

Musashi1 coded by the gene MSI1 is an RBP. Sam68 belongs to a family of RBPs called Signal 

Transduction and Activation of RNA. Both these factors have been shown to target hundreds 

of genes, forming networks that control all aspects of homeostasis particularly ensuring a 

balance between self-renewal and differentiation (Glazer et al. 2012). Musashi1 and Sam69 

have been shown to be upregulated in Glioblastoma, Breast and Colon cancer. In cancers, 

they regulate mRNA expression of oncogenic targets involved in cell adhesion, proliferation, 
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apoptosis, migration and invasion (Vo et al. 2012, Glazer et al. 2012, Plateroti et al. 2012, Busà 

et al. 2007, Richard et al. 2008).  

Quaking I (QKI) is an RNA-binding protein essential for myelination of the central nervous 

system implicated in promoting oligodendrocyte lineage development (Chen et al. 2007). At 

a cellular level, QKI protein supresses cell proliferation and transformation thus their 

downregulation in lung cancers is associated with larger tumour growth (Zong et al. 2014). 

1.5 Embryonic lethal abnormal vision 

The Drosophila melanogaster (D. melanogaster) Embryonic lethal abnormal vision (Elav) gene 

was the first member of neuronal RNA-binding proteins to be identified and is a paradigm for 

a gene family present in all metazoans. The mammalian homolog of elav is therefore referred 

to as ELAV-like (ELAVL) more recently referred to as Hu. In D.melanogaster, elav resides in a 

family of three genes alongside RNA-binding protein-9 (Rbp9) and found in neurons (Fne) (Yao 

et al. 1993). The three genes share 59-68% sequence homology (Samson 2008).  

Elav is one of the first neuronal proteins expressed during neurogenesis in Drosophila and 

continues to be expressed in all neurons throughout adulthood. It is essential for the 

differentiation, development and maintenance of post-mitotic neurons as well as and the 

development of the eyes (Robinow 1988). Fne also found exclusively in neurons but occurs 

later in D. melanogaster development than Elav. Fne is expressed in the cytoplasm suggesting 

a role in protein shuttling. Elav and Fne have been shown to interact with each other (Samson 

and Chalvet 2003). Rbp9 is predominantly expressed in nerve cells. Rbp9 is expressed mainly 

in the nuclei of neuronal cells but has also been located in the cytoplasm of cystocytes during 

the production and development of ovum (Kim-Ha et al. 1999). A number of other proteins 
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homologous to elav have been identified in other species including Xenopus laevis, Danio rerio 

and Mus musculus (Good 1995). Figure 1.5 summarises the sequence homology of elav in 

different species. 

 

 

Figure 1.5: Sequence homology of D. melanogaster elav protein in other species. The elav family is  

conserved in 11 species. In Homo sapiens, the Drosophila melanogaster elav protein shares 55% 

sequence similarity with HuB, HuD and HuR whilst HuC shares 54% similarity. Elav in C. elegans called 

EXC-7 shares 47% protein identity. A. gambiae has three elav-like proteins called Ag-1, Ag-2 and Ag-3 

that share 74%, 60% and 65% elav protein similarity. Like C. elegans, P. humanus corporis elav-like 

protein is called EXC-7 and shares 65% protein identity (Samson 2008).  

 



42 
 

In mice, the Hu homologue, ELAVL proteins, are expressed in neurons and shown to play a 

role in neuronal differentiation (Okano and Darnell 1997, Akamatsu et al. 2005). Studies have 

shown the direct binding of the mouse Hu homologues to target RNAs. Crosslinking 

immunoprecipitation and high-throughput sequencing of RNA (CLIP-seq), along with 

transcriptome profiling of ELAVL3/4 knockout mice, showed that ELAVL binds to the U-rich 

elements with dispersed purine residues in 3’UTRs and introns within the mouse brain (Ince-

Dunn et al. 2012). Knockout of ELAVL3 and ELAVL4 in mice causes problem in neuronal 

maturation as well as motor and sensory defects. Haploinsufficiency of ELAVL3 results in 

cortical hyper-synchronisation. These studies highlight the importance of ELAVL in mouse 

development but also a role in post-transcriptional events (Akamatsu et al. 2005, Ince-Dunn 

et al. 2012).  

1.6 The human ‘Hu’ proteins  

Human Hu proteins are a family of four RNA-binding proteins, HuB, HuC, HuD and HuR. They 

are highly conserved throughout evolution and the four human proteins share 74–91% 

identity (Samson, 2008). In humans, they were discovered due to their aberrant expression in 

paraneoplastic neurological syndromes (Darnell 1996). ‘Hu’ describes the first initials of the 

patient in which they were identified (Bronicki and Jasmin 2013). In the disease, 

autoantibodies are released by the immune system in response to the tumour that. These 

autoantibodies cross the blood-brain barrier and target healthy tissue causing severe 

neurological defects defined as paraneoplastic syndrome (Szabo et al. 1991, Darnell 2010, 

DeLuca et al. 2009). More on this topic is discussed in Section 1.8.   
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The HuB gene is located on chromosome 9p21.3 and contains 20 exons. This was determined 

by chromosome microdissection polymerase chain reaction (PCR) and fluorescence in situ 

hybridization (FISH) (Han et al. 1996).  

The HuB gene encodes a protein of 39.60kDa (D’Alessandro et al. 2008). In older studies, HuB 

is often referred to as Hel-N1. It has three transcript variants encoding two different isoforms. 

Alternative 5' splicing of HuB mRNA containing 20 exons, creates two isoforms Hel-N1 (HuB) 

and Hel-N2. Hel-N2 is characterised by the insertion of a 91-bp exon and has a larger N-

terminal region of 29 amino acids than Hel-N1. Both isoforms are predominantly localised to 

the cytosol although they can be in the nucleus too. The Hel-N2 isoform is expressed in 

different cell lines including neuronal precursors however, it is absent in mature neurons (Gao 

et al. 1994, King, 1994). Two isoforms also exist in rat neural tissue, Rel-N1 and Rel-N2 and 

share 96% nucleotide conservation between the two isoforms (King 1994).  

The HuB protein is localised in the cytoplasm of gonadal tissue and undifferentiated neurons. 

In neurons HuB co-localises with ribosomes facilitating mRNA metabolism and neuronal 

differentiation, ultimately influencing mRNA homeostasis in the dendrites of maturing 

neurons (Gao and Keene 1996). If the HuB-bound mRNAs associate with microtubules of the 

cytoskeleton, the complex binds with polysomes forming large β complexes that associate 

with the microfilament framework of the cytoskeleton (Antic and Keene 1998).  

Van Tine et al. (1998) used the tyramide signal amplification (TSA)-FISH technique, a 

molecular tool for visualising specific amplified DNA sequences in chromosome preparations, 

and radiation hybrid mapping of chromosomes for HuC localisation studies. HuC is localised 

to chromosome 19p13.2. 
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HuC encodes a protein of 39.55kDa (D’Alessandro et al. 2008). It is expressed in the cytoplasm 

of differentiated neurons. Four alternatively spliced transcript variants encode for two 

protein isoforms of HuC. The first is 367 nucleotides and the second is 360 nucleotides in 

length, the loss of nucleotides from RRM3 (Hinman et al. 2013, Kasashima et al. 1999). 

HuD was found to be located on 1p34 by Fluorescent in-situ hybridisation (FISH) (Muresu et 

al. 1994). The HuD gene spans 146kb of DNA and has eight coding exons, E1 to E8, each 

containing 44kb of DNA (Sekido et al. 1994, Inman et al. 1998, Bronicki et al. 2012). HuD gene 

contains multiple promoters that may provide considerable variation and complexity, further 

supporting its ability to be ectopically expressed in some cancers (Bronicki et al. 2012).  

HuD encodes a protein of 40.50kDa(D’Alessandro et al. 2008). HuD is alternatively spiced 

producing three isoforms called as HuD, HuDmex and HuDpro, with HuD being the more 

prominent transcript (Sekido et al. 1994). HuDpro is the largest variant due to the inclusion of 

an additional 42 nucleotides from the HuD isoform whilst, HuDmex is the smallest isoform 

characterised by a deletion of 13 amino acids (Liu et al. 1995).  

In mature neurons, HuD protein is present in axons and dendrites including pre- and post-

neurite terminals (Aronov et al. 2002). It is localised to the cytoplasm in neurons (Kasashima 

et al. 1999). Contrary to previous thoughts that HuD protein was only expressed in neurons, 

immunohistochemical analysis of HuD expression in a human tissue arrays reveals traces of 

HuD in in several non-neuronal tissues including lung, testes, liver, heart, pituitary gland and 

skeletal muscle (Abdelmohsen et al. 2010). Additionally, HuD is located in Beta-cells of the 

pancreas facilitating insulin expression (Lee et al. 2012).  
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Like HuC, HuR is also localised to chromosome 19p13.2. HuR and HuC each have distinct loci 

with HuC centromeric to HuR (Van Tine et al. 1998, Ma and Furneaux 1997). 

HuR encodes a protein of 36.00kDa (D’Alessandro et al. 2008). HuR exists as three isoforms 

which differ in 3′ UTR length. Each variant has differential AU-rich element involvement and 

stability. Each variant differs in size and in their tissue distribution. The 2.4kb transcript is 

ubiquitously expressed, the 1.5kb variant is localised in the testes with minor expression in 

heart and spleen, whilst the rarer, less-stable 6.0kb isoform is induced during neuronal 

differentiation and is expressed only in neurons (Mansfield and Keene 2012). The RNA binding 

specificity of HuR is similar to that of HuD and Hel-N1 (Ma et al. 1996).  

HuR protein is expressed ubiquitously including in the adipose tissue, intestines, spleen and 

testes (Wang et al. 2013). Its expression is predominantly seen in the nucleus of cells (Good 

1995). 

1.6.1 Structure of Hu proteins  

Th Hu protein family range between 326 and 380 amino acids with the sequence similarity 

between 74–91%. Thus, the four Hu proteins are of a similar size (Samson 2008). Hu proteins 

belong to the RNA recognition motif (RRMs) superfamily. Hu proteins have three, RRM1, 

RRM2 and RRM3, as shown in Fig 1.6, with each RRM containing 60-100 amino acid residues 

(Lunde et al. 2007). The RRM are structurally flexible allowing the binding of a large range of 

transcripts. Sequence alignment indicates that all three RRMs have the same canonical 

β1α1β2β3α2β4 fold (Maris et al. 2005). All three RRMs are highly conserved in vertebrates 

with the hinge domain less conserved. The N-terminal fragment is the most diverse domain 

among the ELAVL proteins (Liu et al. 1995). It is 117-amino acids long and carries RRM1 (Pulido 
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et al. 2016). HuR’s N-terminus has a small sequence homology to HuB, HuC or HuD. However, 

HuR’s N-terminus is most similar to the Xenopus homologue, elrA (Good 1995). 

RRM1 and RRM2 are consecutively arranged near the N-terminus followed by a hinge domain 

and RRM3 near the C-terminus (Fig 1.6) (Antic and Keene 1997). A nucleocytoplasmic 

shuttling sequence (HNS) is in the hinge region of Hu proteins. It is around 60-residues long 

and essential for nuclear export and subcellular localisation (Keene 1999, Fan and Steitz 

1998a).  

 

 

Figure 1.6: Structure of Hu Proteins. The generalised structure of Hu proteins displays three RNA 

Recognition Motifs (RRMs). RRM1 and RRM2 are separated from RRM3 by a hinge region.  

 

RRM1 and RRM2 of Hu proteins have been shown to specifically bind to the cis-acting 

elements, typically in the 3’UTR (Uren et al. 2011). RRM3 functions to block polyadenylation 

and binds with high specificity to long poly(A) tails stabilising RBP-mRNA complexes (Zhu et 

al. 2007, Brennan and Steitz 2001). RRM3 assembles HuR oligomers on RNA transcripts to 

support stabilisation (Fialcowitz-White et al. 2007). HuR’s RRM3 preferably binds to Uracil-

rich sequences rather than AUUUA motifs (Scheiba et al. 2014). 
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The first two RRMs of HuD interact with the primary general mRNA export receptor complex, 

nuclear RNA export factor 1 (NXF1) also called tip-associated protein (TAP) in humans. HuD 

therefore acts as a regulator for efficient export of ARE-containing mRNAs in neuronal cells 

(Saito et al. 2004). HuD has also been shown to bind and regulate cell cycle regulator p21 

(Joseph et al. 1998), neuronal mRNAs including N-myc (Lazarova et al. 1999) and growth-

controlling proteins including c-fos (Fig. 1.7) (Chung et al. 1996). 

 

 

Figure 1.7: Interaction of c-fos mRNA with HuD. This ribbon diagram displays an 11 nucleotide 

fragment of c-fos 3’UTR binding with the β-sheets (green) of the first two RRM’s of HuD. Α-helix of the 

protein structure are shown in yellow. This image is reproduced from (Wang and Hall 2001). 
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The versatility and flexibility of Hu proteins’ structure allows them to bind to many RNA 

targets and regulate their fate through different mechanisms (Wurth 2012, López de Silanes 

et al. 2004).  

1.7 Function of Hu proteins  

The family of Hu proteins are part of an intricate network where they are collaboratively 

responsible for many biological functions including the regeneration and development of the 

nervous system, neuronal specific RNA processing, differentiation, synaptic plasticity and 

learning and memory (Akamatsu et al. 2005, Deschênes-Furry et al. 2007). It also plays a 

crucial role in neuronal plasticity controlling the response to axonal injury and increasing 

learning and memory (Bronicki and Jasmin 2013).  

Both in vitro and tissue culture studies have shown that neuronal Hu proteins regulate gene 

expression at a post-transcriptional level typical of RNA-binding proteins. They influence all 

aspects of RNA processing including RNA stability, alternative splicing, polyadenylation, 

localisation and nuclear export as displayed in Fig 1.8. They are therefore essential in 

maintaining the cell homeostasis (Zhu 2009).  
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Figure 1.8 Hu proteins influence on gene regulation. Hu proteins mediate many aspects of core-

transcription and post-transcriptional events. In the nucleus, Hu proteins regulate 5′ capping, alternative 

splicing, 3’ poly-A tail addition and mRNA export. In the cytoplasm, they regulate mRNA  localisation, 

stability and degradation.  



50 
 

miRNAs have been shown to regulate RBP expression. Abdelmohsen et al. (2008) reported 

miR-519 binds directly to HuR mRNA decreasing HuR-regulated gene expression. HuR 

contains two binding sites for miR-519, one located in the coding regions and the other in its 

3′UTR. By measuring HuR translation and HuR mRNA association with polysomes, in several 

cancers over expressing miR-519 including, cervical, colon and ovarian, it was found that miR-

519 does not alter HuR mRNA abundance but decreases HuR biosynthesis. This thereby 

reduces HuR translation, HuR-regulated gene expression and cell division. 

Hu RNA-binding proteins promote skipping of alternative exons by inducing local histone 

hyperacetylation through interactions with pre-mRNAs and alternative exons (Wang et al. 

2010). The neuronal proteins, HuB, HuC and HuD are mostly implicated in alternative splicing, 

which allows cells to adapt to different stimuli by altering protein compositions (Wurth 2012). 

This significantly impacts neurophysiological mechanisms including neurotransmission, cell 

recognition and receptor specificity (Zhu 2009).  

Another role that Hu proteins regulate is polyadenylation. During this process, cleavage of the 

3’ end of the sequence and addition of the poly (A) tail to the newly generated 3’ end occurs 

producing mature mRNA as previously described in Section 1.2.3 (Erson-Bensan 2016). Hu 

proteins bind directly to sequence in cleavage sites preventing polyadenylation signals being 

transmitted. Hu proteins particularly target poly(A) sites that contain U-rich sequences near 

cleavage sites and the third RNA-recognition motif of Hu proteins is required to block 

polyadenylation. Interplay between Hu proteins and two poly(A) factors, the multiprotein 

cleavage and polyadenylation specificity factor (CPSF160) and the Cleavage stimulation factor 

(CstF64) is known. CPSF160 interacts with poly(A) polymerase initiating cleavage and poly(A) 
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addition whilst CstF64 is directly involved in binding to pre-mRNAs on 3’ non-coding sites (Zhu 

et al. 2007). 

Neurofibromatosis type I or von Recklinghausen neurofibromatosis is one of the most 

common dominant inherited autosomal disorders affecting 1 in 3,500 individuals worldwide. 

Neurofibromin 1, (NF1) gene codes for neurofibromin protein. This protein acts a tumour 

suppressor. NF1 gene mutations result in multiple abnormalities, including development of 

neurofibromas and gliomas and abnormal distribution of melanocytes (Bernards 1995). Exon 

23a of the NF1 gene is an in-frame exon that is included during alternative splicing. In the 

presence of HuC protein, exon23a of NF1 is skipped by binding to AU-rich sequences located 

either side of the regulated exon. This results in a defective NF1 protein. Deletions of HuC 

proteins RRMs resulted in exon 23a inclusion in NF1, whilst deletion of the hinge region only 

reduced NF1 exon 23a inclusion. This confirms HuC’s role as a polyadenylation regulator (Zhu 

et al. 2008). 

Hu proteins are essential in the cytoplasm for regulating mRNA stability by binding to AU-rich 

elements (AREs) of many short-lived mRNAs. AREs are typically found in non-coding regions 

of the transcripts, particularly the introns and the 3’ untranslated regions (UTR). By binding 

directly to AREs, Hu proteins influence the translation rate of targets RNA, preventing their 

degradation and enhancing protein production (Zhu et al. 2007). Hu proteins target an array 

of RNA transcripts coding for transcription factors, cytokines, growth factors and proto-

oncogenes (Wang et al. 2015). 

Jain et al. (1997) show that overexpression of HuB in preadipocytes elevated the expression 

of endogenous glucose transporter (GLUT1) protein 10-fold. This resulted in increased the 

uptake of glucose. HuB binding occurred directly to the U-rich region of GLUT1 mRNAs 3’-UTR 
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increasing GLUT1 at both translational and post-transcriptional levels confirming a role of HuB 

in mRNA stabilization and accelerated formation of translation initiation complexes.  

Although most neurons express HuC with HuB and/or HuD proteins, cerebellar Purkinje cells 

and hippocampal granule cells express only HuC protein. Studies in mice showed that HuC 

protein deficiency caused progressive motor deficits resulting in severe cerebellar ataxia 

and eventual axonal degeneration. This demonstrates that HuC protein is required for the 

maintenance of Purkinje neuron axons (Ogawa et al. 2018). 

HuD plays a critical role in Protein kinase C (PKC)-mediated neurite outgrowth through 

stabilising growth-associated protein-43 (GAP-43) mRNA. HuD protein binds to GAP-43 mRNA 

regulating its transcript. GAP-43 regulates axon growth in neurons (Beckel-Mitchener et al. 

2002). Overexpression of HuD results in delayed degradation of GAP-43 due to decrease in 

the rate of mRNA de-adenylation. PKC phosphorylates GAP-43, regulating neurite formation, 

regeneration and synaptic plasticity (Mobarak et al. 2000). 

p21 gene is highly regulated enabling cells to progress through the cell cycle. HuD protein 

binds with high affinity to a 42-nucleotide sequence within a U-rich region of the 3’UTR of 

cyclin-dependent kinase inhibitor 1 (p21waf1) mRNA. p21waf1 causes cell cycle arrest at the 

transition from G1 to S phase of the cell cycle through inhibition of cyclin-dependent kinases 

and proliferating cell nuclear antigens. G1 to S phase is essential in cell differentiation (Joseph 

et al. 1998). HuR was also shown to bind in the same manner to p21waf1 (Giles et al. 2003). 

Binding of Hu proteins enhances the transcripts stability. This example indicates how Hu 

proteins role in binding to targets involved in the regulation of the cell cycle, influences cell 

differentiation, mRNA stability, and the termination of the cell cycle. 
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HuR was first discovered in 1997 and is the most broadly studied in the Hu protein family (Ma 

and Furneaux 1997). Many of HuR mRNA targets encode proteins responsible for cell growth, 

proliferation, the immune response and the cellular response to stress and embryonic 

development and survival (Mansfield and Keene 2012, Hinman and Lou 2008).  Specific mRNA 

targets are discussed in more detail in Chapter 1.10.  

HuR functions in energy depletion through interactions with the mRNA target V-ATPases. 

These are multi-subunit membrane proteins that use ATP binding and hydrolysis to pump 

protons across cellular membranes against a concentration gradient. They also function in 

acidification of internal components in mechanisms including endocytosis and are therefore 

are required by all eukaryotes. V-ATPases are regulated at a post-transcriptional level. When 

ATP depletion is caused by cellular stress, HuR binds directly to AREs within the V-ATPase 

mRNA and stabilises the transcript, ultimately protecting the cell from loss of V-ATPase 

protein (Jeyaraj et al. 2005). 

1.7.1 Hu protein expression during development 

HuB, HuC and HuD proteins are expressed at different levels in embryonic neurons in 

comparison to adult neurons. HuB proteins are initially expressed in neurogenic progenitor 

cells and stays continuously expressed in mature neurons (Marusich et al. 1994, Yano et al. 

2016). HuC and HuD expression begins slightly later in development during cortical neuron 

development (Yano et al. 2016). In developing neurons, HuD is found in the growth cones of 

extending neurites (Aranda-Abreu et al. 1999).  

Akamatsu et al. (2005) showed that a triple knockdown of the neuronal Hu genes is lethal in 

mice. A single knockdown of HuC and HuD gene showed mice survive to adulthood but they 
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do display some neurological defects including poor hind-limb reflexes and decreased 

proliferative activity in the neural progenitor cells (Akamatsu et al. 2005). Interestingly, a 

knockdown of HuR in mice resulted in death of progenitor cells in the bone marrow, thymus, 

and intestine, loss of intestinal villi and obstructive inflammation of the small intestine and 

the colon. Death occurred within 10 days showing that in mice, HuR is required for organism 

survival (Ghosh et al. 2009).  

1.7.2 Homo- and hetero-dimerisation of Hu proteins 

Hu proteins are known to bind to themselves and other Hu protein family members to form 

complex assemblies (Kasashima et al. 2002). In situ chemical crosslinking assays revealed HuB 

can form dimers but not trimers. It also found HuD forms dimers, trimers and multimers in 

cells. The multimer maintains its ability to regulate mRNA transcripts and bind with additional 

Hu proteins. Additionally, HuR can form dimers but not trimers (Kasashima et al. 2002). 

Using immunoprecipitation and RT-PCR, it was found that the hinge region and the first 24 

amino acids of RRM3 of HuC are required for HuC homo-dimerisation. All four splice variants 

of the HuC hinge region were able to form HuC-self interactions highlighting alternative 

splicing does not affect homodimerization (Hinman et al. 2013). 

Similar to HuC, the third RRM and the hinge region of HuR play a role in homo-multimerization 

(Fialcowitz-White et al. 2007). HuR binds the 2.4kb ubiquitously expressed transcript of HuR 

mRNA sequences containing an ARE and stabilises its own transcript. This results in increased 

HuR expression (Pullmann et al. 2007, Al-Ahmadi et al. 2009).  
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1.7.3 Hu proteins participate in nucleo/cytoplasmic shuttling 

The subcellular location of Hu proteins determines the role in which they function. Hu 

proteins must become localised in the nucleus for pre-mRNA splicing to occur (Zhu 2009).  

HuR has been shown to shuttle between the nucleus and cytoplasm and can therefore be 

assumed the neuronal proteins HuB, HuC and HuD could have the same ability. The 

cytoplasmic trafficking of HuR and mRNA cargo is poorly understood although there are many 

proposed mechanisms. HuR contains nucleo-cytoplasmic shuttling sequences (HNS) in the 

hinge region of the protein spanning residues 205–237. It is thought this region is responsible 

for translocation (Fan and Steitz 1998). The HNS is phosphorylated by kinases including 

protein kinase Cα (Doller et al. 2007), protein kinase Cβ (Amadio et al. 2010), protein kinase 

Cδ (Doller et al. 2008), checkpoint kinase 2 (Abdselmohsen et al. 2007), cyclin dependant 

kinase 5 (Filippova et al. 2012) and cyclin dependent kinase 1 (Kim et al. 2008).  

The binding activity of HuR and its localisation is dependent on the kinase phosphorylating 

the HNS but also the position within the HNS that is phosphorylated (Kim and Gorospe 2008). 

For example, protein kinase C phosphorylates HuR at serine 158 and serine 221 and increasing 

its cytoplasmic expression (Doller et al. 2007). Cyclin dependent kinase 1 phosphorylates HuR 

at serine 202 (S202) ensuring HuR remains in the nucleus where it regulates polyadenylation 

and splicing. Unphosphorylated HuR-S202 complex is actively transported to the cytoplasm 

confirming phosphorylation of the complex changes its cellular location (Kim et al. 2008). 

Doller et al. (2013) proposed the involvement of actin-myosin in HuR mRNA trafficking. 

Angiotensin II initiates translocation of protein-kinase Cδ, which in turn phosphorylates 

nuclear HuR at serine 318 located within RRM3. This process increases HuR’s binding potential 
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to mRNAs. The HuR-bound mRNA complex interacts with motile transport ribonucleoproteins 

and cytoskeleton bound polysomes to translocate to the cytoplasm through myosin-driven 

transport along filamentous actin. HuR-bound mRNA is protected from degradation by 

exonucleases increasing the transcript stability. Once in the cytoplasm, HuR releases itself 

from the bound mRNA and returns to the nucleus (Fan and Steitz 1998a). 

Translocation of Hu proteins is modulated by cellular stress induced by UV-light, heat shock 

and nutrient deficiency derived translocation are described here.  

P21 protein is an inhibitor of cyclin-dependent kinase and known target of HuR protein. 

Human colorectal carcinoma, RKO cells were stimulated by Ultraviolet C-irradiation. HuR 

cytoplasmic localisation was enhanced, more HuR-p21 complexes were observed resulting in 

enhanced stability of p21 mRNA and its consequential upregulation. In the same study, 

western blot confirmed that when treating RKO cells with damaging agents including 

actinomycin D, hydrogen peroxide, an alkylating agent, and a cyclopentenone, p21 protein 

and cytoplasmic protein HuR levels increased (Wang et al. 2000).  

Immunofluorescence and cell fractionation studies revealed that following a heat-shock of 

HeLa cells, cytoplasmic HuR expression increased. Although cytoplasmic HuR is usually 

associated with upregulation of mRNA transcripts containing AREs, this was not observed and 

instead the only function of cytoplasmic HuR was sequestration of mRNA transcripts in the 

nucleus (Gallouzi et al. 2000). This highlights that a large cytoplasmic presence of HuR is not 

necessarily functioning to upregulate transcripts expression that would disrupt the 

homeostasis of the cell. 
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1.7.4 Self-regulation of Hu proteins 

Similar to its Drosophila homologue, members of the Hu family can bind their own mRNA and 

auto-regulate themselves or other Hu proteins (Bolognani et al. 2009, Mansfield and Keene 

2012). HuR protein has been shown to auto-regulate its own expression through a negative 

feedback loop. Nuclear HuR protein binds HuR mRNA sequences containing a GU-rich element 

that overlaps the HuR major polyadenylation signal, PAS2. Increased expression of HuR 

protein initiates the expression of the 2.4KB HuR mRNA that contains an ARE to destabilize 

the HuR mRNA and therefore reduce its protein production. Reduced recruitment of the 

Cleavage stimulating factor CstF-64 in the GU-rich region on HuR mRNA, resulted in activated 

PAS2. This mechanism results in a definite expression of HuR protein and allows a stable 

nucleocytoplasmic distribution and HuR homeostasis in proliferating cells (Dai et al. 2012) 

Hu proteins can also function as splicing enhancers on their own family transcripts. An 

example is their ability to promote the inclusion of an alternative exon, called exon 6 of the 

HuD pre-mRNA. This exon contains an ARE in which HuD and other Hu proteins can bind to 

resulting in an abundance of HuD protein expression (Wang et al. 2010). All three HuC RRMs 

are critical for the regulation of reporter HuD exon 6 inclusion (Kasashima et al. 2002). This 

confirms Hu proteins role as splicing regulators of their own transcripts but also allows them 

to self-regulate their own expression. 

1.8 Hu Proteins Implicated in Disease 

Since Hu proteins regulate many aspects of RNA regulation and the complex nature of the 

processes involved, there are many opportunities for deregulation to occur. This then causes 

disease in humans (Bronicki and Jasmin 2013). 
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Paraneoplastic encephalomyelitis and/or a sub-acute sensory neuropathy (PEM/SN) are 

collectively known as paraneoplastic neurological diseases (Anderson et al. 1987). These are 

disorders caused by an elicit Hu-specific humeral immune system response to Hu antigens 

produced ectopically by a primary tumour or metastasis in the brain. The body recognises 

these as foreign and releases autoantibodies that target all Hu proteins for degradation, this 

includes those that occur naturally in the body and those that are oncogenic, ectopically 

expressed. Normal tissue as well as cancerous tissue is targeted for degradation (Fisher et al. 

1994, Graus et al. 1997). This produces systemic symptoms resulting in dementia, cerebellar 

degeneration, brainstem encephalitis, or myelitis. The presence of paraneoplastic disorders 

has shown a more promising cancer-related prognosis due to the body destroying the Hu 

proteins in the tumour. However, the patients quality of life remains diminished as they suffer 

non-reversible, debilitating neurological syndromes (Manley et al. 1995, Dalmau, Josep and 

Furneaux 1992, Graus et al. 1997). The presence of these neuropathies is considered symbolic 

of a Small cell lung cancer tumour or Neuroblastoma (Szabo et al. 1991, Fisher et al. 1994).  

HuD was originally discovered by Szabo et al. (1991) due to its presence in patients with both 

Small cell lung cancer and paraneoplastic diseases. Patient’s antiserum was screened against 

a cerebellar expression library and found to have Hu autoantibodies present. This disorder 

was later described as the ‘Hu syndrome,’ after the name of the patient in which the 

antibody was first discovered (Graus et al. 1997). All SCLC tumours aberrantly expressed 

neuronal HuD protein and the tumour-initiated immune response can be detected in up to 

20% of those patients however PEM/SN is thought to develop in 1% of SCLC patients (Dalmau, 

Josep and Furneaux 1992, DeLuca et al. 2009). Posner and Dalmau (1997) determined the 
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other neuronal members of the Hu family, HuB and HuC were also autoimmune antigens of 

the Hu syndrome.  

A study by Dalmau and Furneaux (1992) of patients with PEM/SN and a raised level of Hu-

antibodies had tumours that were localised and small and this remained unchanged until 

death. Hu-autoantibodies are protective against tumour development and may aid 

eradication of tumour cells or at least improve patient survival (Graus et al. 1997). Research 

by Darnell and DeAngelis (1993) showed patients positive for anti-Hu antibodies showed 

spontaneous regression of Small cell lung cancer. This finding suggests the HuD-antigen might 

provide a molecular target for immunotherapy against HuD positive tumours but also 

provides a potential target for screening as a biomarker (Ehrlich et al. 2014). However, current 

efforts with systemic immunotoxin therapy and solid tumours is relatively unsuccessful due 

to poor penetration into the tumour mass because of large molecular size of the therapy, 

chemical instability or immunogenicity (Shan et al. 2013). 

Some Neuroblastoma patients also present with anti-HuD antibodies that initiate neuronal 

apoptosis resulting in enteric nervous system impairment underlying paraneoplastic gut 

dysmotility (De Giorgio et al. 2003). In one of the first reported cases, a child with 

Neuroblastoma, showed paraneoplastic symptoms of progressive hearing loss, areflexia, and 

seizures following removal of the tumour. Analysis of serum and cerebrospinal fluid 

discovered anti-Hu antineuronal antibodies (Fisher et al. 1994).  

Whilst aberrant expression of antigens by tumours can initiate an immune response, it is 

unusual for it to develop into a paraneoplastic disease therefore understanding the 

mechanism at which this occurs could be of value in the development of tumour detection, 
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diagnosis and new treatments, including immunotherapy (Kazarian, Meleeneh and Laird-

Offringa 2011).  

A recent study by Pulido et al (2016), identified isoaspartylation as a potential mechanism. 

Isoaspartylation is a naturally-occurring post-translational modification generating 

immunogenic protein damage. Isoaspartyl compounds are normally processed in the body 

causing no harm however abnormal isoaspartylation is implicated in several autoimmune 

diseases. Antibodies against isoaspartylated Hu would cross-react eliciting an immunological 

stimulus and an autoimmune response. Isoaspartyl linkages in proteins have been linked to 

aging and arise under physiological condition causing cellular stress (Mamula et al. 1999). HuD 

contains four canonical isoAsp-prone sites. The N-terminal region containing RRM1 contains 

three of those isoAsp conversion sites suggestive of RRM1’s role in the auto-immune response 

of paraneoplastic disease in SCLC (Pulido et al. 2016, Manley et al. 1995, Graus et al. 1997). 

Additionally, the deregulated expression of neuronal protein in non-neuronal cell types, like 

that of the neuronal Hu proteins in the lung, can induce isopartylated proteins (Pulido et al. 

2016). 

Neurofibromatosis type I or von Recklinghausen neurofibromatosis is one of the most 

common dominant inherited autosomal disorders affecting 1 in 3,500 individuals worldwide. 

Neurofibromin 1, (NF1) gene codes for neurofibromin protein. This protein acts a tumour 

suppressor. NF1 gene mutations result in multiple abnormalities, including development of 

neurofibromas and gliomas and abnormal distribution of melanocytes (Bernards 1995). Exon 

23a of the NF1 gene is an in-frame exon that is included during alternative splicing. In the 

presence of HuC protein, exon23a of NF1 is skipped by binding to AU-rich sequences located 

either side of the regulated exon. This results in a defective NF1 protein. Deletions of HuC 
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proteins RRMs resulted in exon 23a inclusion in NF1, whilst deletion of the hinge region only 

reduced NF1 exon 23a inclusion. This confirms HuC’s role as a polyadenylation regulator (Zhu 

et al. 2008). 

Aberrant expression of Hu proteins is also thought to play a role in Neurodegeneration 

(Doxakis 2014, Okano and Darnell 1997). Within the nervous system, the role of RBPs in brain 

function is essential for the architectural complexity of the neurons (Campos-Melo et al. 

2014). Hu proteins have been shown to play important roles in neurite outgrowth, synapse 

formation and plasticity. HuD’s role in neural development and regeneration means its 

aberrant role results in  in multiple neurological disorders including Parkinson’s disease, 

Alzheimer’s disease, schizophrenia, epilepsy and spinal muscular ataxia (Perrone-Bizzozero 

and Bird 2013). HuD was shown to bind to mRNA transcripts of APP encoding amyloid 

precursor proteins and BACE1 encoding β-site APP-cleaving enzyme 1, connected to 

Alzheimer’s disease pathogenesis. HuD upregulated transcript stability by binding to the 3’ 

UTR enhancing production of Aβ peptides that are related to the neurotoxicity of Alzheimer’s 

disease (Kang et al. 2014). Genome-wide association study (GWAS) of Japanese and Chinese 

populations found SNPs in HuB to contribute to the pathogenesis of schizophrenia (Yamada 

et al. 2011). 

Neurodegeneration is caused by disruptions of pathways involved in cell survival, cell death 

and the cell cycle resulting in a decrease in regulatory functions that impact on progressive 

neuronal cell death in neurodegenerative diseases (Driver 2012). A homeostatic balance 

between cell survival and cell death is dependent on the preservation of DNA integrity and 

repair. Additionally, deregulation to RNA metabolism is also considered a key feature in 

Neurodegeneration since it is essential for the molecular processes of RNA transcription, 
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maturation, transport, stability, degradation and translation in normal cells (Campos-Melo et 

al. 2014). HuR stabilises the mRNAs transcripts coding for cyclins D1, E1, A2, B1 each of which 

favour cell cycle progression. Therefore deregulation of HuR protein may influence 

neurodegeneration progression (Wurth 2012).  

Commonly seen in neurodegenerative diseases is the ectopic expression of proteins and 

accumulation of cytoplasmic protein aggregates that initiates cell death and neurotoxicity due 

to protein inspecificity (Zaharieva et al. 2012). Hu proteins are reportedly ectopically and 

overexpressed in many cancers and therefore their role in neurodegeneration should be 

further analysed. 

1.9 Cancer  

Cancer is a heterogeneous group of diseases characterised by growth, invasion and metastasis 

defined through changes at cellular, genetic, and epigenetic levels and abnormal cell division. 

In the process of cancer development, normal cells evolve progressively to a neoplastic, 

malignant state forming complex tissues called tumours (Fig. 1.9).  
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Figure 1.9: Hallmarks of cancer development. Normal cells evolve into oncogenic cells through a 

series of mechanisms that ultimately results in mutated cells and formation of tumours. 

 

Inflammation and energy metabolism also play an extensive role in cancer progression. 

Ultimately cancer is caused by an activation of oncogenes or decreased expression of tumour 

suppressors (Hanahan and Weinberg 2011). Tumours develop from cell populations including 
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inflammatory cells, vascular cells and support cells. Interactions between these cells is critical 

for the cancers maintenance and survival from the body’s immune defences and any 

additional treatments (Bissell and Labarge 2005). Cancer initiation and development is 

dependent on the reprogramming of cellular metabolism networks. This occurs through 

oncogenic mutations that allow the cancer cells to access nutrients from a nutrient-enriched 

environment and use them to sustain growth and vitality. Ultimately changes occur to glucose 

uptake, nutrient retrieval, glycolysis, nitrogen demand, gene regulation, and metabolic 

interactions with the microenvironment (Pavlova and Thompson 2016). 

For normal homeostasis, cells experience regulated cell death called apoptosis. Cancer cells 

that become mutated due to DNA damage, form a secondary tumour in an extrinsic area or 

are targeted by cancer therapy, should go through apoptosis as a method to supress tumour 

formation. Unfortunately cancer cells are able to evade apoptosis following these events 

(Lopez and Tait 2015). Apoptosis is triggered through two pathways; the extrinsic and intrinsic 

pathways. The extrinsic pathway is induced when tumour necrosis factors (TNF) bind to cell 

surface death receptors which initiates the death-inducing signalling complex (DISC) and the 

apical caspase 8.  The intrinsic pathway is started by interference with the mitochondrial outer 

membrane function and is the most common deregulated pathway involved in cancer 

apoptosis. It is regulated by a balance of pro- and antiapoptotic members of the Bcl-2 family 

of proteins (Reed 2000). 

Another cellular process affected in cancer is the epithelial to mesenchymal transition (EMT). 

This is a dynamic set of processes during which cells transition from a polarised epithelial cells 

into migratory, invasive mesenchymal phenotypes and was first described by Hay and Zuk 

(1995). In the human body it is essential for the formation of the body plan and differentiation 
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of tissues and organs as well as processes including tissue repair. During cancer, EMT is 

stimulated in epithelial-derived cancer cells allowing cells to dissociate from the primary 

tumour, invade blood vessels and initiate the formation of a secondary tumour (Thiery et al. 

2009, Goossens et al. 2017). EMT is controlled by a series of transcription factors including 

the families of Snail, Zeb and Twist, as well as microRNAs and epigenetic and post-

transcriptional gene regulators. During cancers, these factors and process can be aberrantly 

affected also contributing to a carcinogenic phenotype. 

Despite huge advances in our understanding into the mechanisms by which metastatic cells 

arise from primary tumours and the reasons that certain tumour types tend to metastasize to 

specific organs, it still accounts for around 90% of all cancer-related deaths. This mechanism 

was first described by an English surgeon called Stephen Paget in 1889. He hypothesised that 

metastasis relies on homeostatic interactions between the cancer cells, ‘the seeds’, and the 

organ microenvironment, ‘the soil’. Research has continued to evolve this theory (Fidler 

2003).  

1.10 Hu proteins, their presence and function in carcinogenesis 

Hu proteins interact and stabilise many mRNA targets that code for proto-oncogenes, 

cytokines and lymphokines each of which influence carcinogenesis. Regulation consists of 

multiple tightly controlled processes, consequently the complexity of each step increases the 

chance for deregulation to occur. Modifications to expression levels and function of RBPs and 

their mRNA targets can augment the effects of cancer driver genes by accelerating tumour 

progression and promoting aggressiveness (Bronicki and Jasmin 2013).  
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Radio-labelled transcripts and binding studies revealed HuB interacts and forms multimers 

with c-myc. This binding occurs directly to AUUUG, AUUUA, and GUUUUU sequences in the 

3’ UTR of c-MYC mRNA. Deletion analysis determined HuB’s RRM3 binds to those sequences 

(Levine et al. 1993). c-Myc functions as a transcription factors in many cancers, activating 

autonomous proliferation and growth, increasing DNA replication, upregulating cellular 

metabolism and has therefore been considered a molecular hallmark of cancer (Gabay et al. 

2014). c-FOS is also a target of HuB (Levine et al. 1993). c-Fos functions in proliferation and 

differentiation of normal tissue as well as in oncogenic transformation and tumour 

progression (Mahner et al. 2008).  

Each Hu proteins are known to have complementary mRNA target that once bound effects 

their stability. Brennan and Steitz (2001) have shown that HuR achieves stabilisation by 

competing with destabilizing ARE-binding proteins for the same mRNA binding sites or 

through actively protecting the mRNA transcript from degradation. HuR’s stabilising function 

correlates with its cytosolic presence which is often seen overexpressed in high grade 

tumours (Brennan and Steitz 2001, Bolognani et al. 2012). HuR binds to mRNA transcripts 

coding for proto-oncogenes, cytokines, growth factors and invasion factors increasing 

stability and translation. The corresponding proteins then influence various stages of tumour 

development including over-proliferation through c-Myc upregulation, evasion of apoptosis 

via apoptosis factors p27, p21, Bcl-2, sustained angiogenesis by upregulating VEGF and tissue 

invasion and metastasis by affecting the expression of MMP-9 and Snai1 (Wang et al. 2013, 

Vo et al. 2012, Wurth 2012, Filippova et al. 2011, Dong et al. 2007, 2014). Further details of 

these mRNA targets of the Hu family of RBP are described in Table 1.1.  
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Cancer Hallmark mRNA Target Hu protein Expression 
change 

Reference 

Tumour Formation ER HuR Upregulated (Calaluce et al. 2010) 

 GLUT1 HuB Upregulated (Jain et al. 1997) 

 Wnt5a HuR Downregulated (Leandersson et al. 2006) 

Proliferation BCL-2 HuR Upregulated (Filippova et al. 2011) 

 p21 HuD 
HuR 

Upregulated (Joseph et al. 1998) 
(Wurth 2012) 

 p27 HuR Upregulated (Wang et al. 2013) 

 Msi-1 HuR Upregulated (Vo et al. 2012) 

 c-fos HuD 
HuR 
HuB 

Upregulated (Chung et al. 1996) 
(Nabors et al. 2001) 
(Levine et al. 1993) 

 Cyclin A HuR Upregulated (Guo and Hartley 2006) 

 Cyclin B1 HuR Upregulated (Cho et al. 2006) 

 Cyclin E1 HuR Upregulated (Guo and Hartley 2006) 

 N-myc HuD Upregulated (Lazarova et al. 1999) 

 C-myc  HuB 
HuC 
HuD 
HuR 

Upregulated (Levine et al. 1993) 
(King 2000) 
(King 2000) 
(Milne et al. 2006) 

 NP53 HuR Upregulated (Yan et al. 2012) 

Invasion and 
Metastasis 

B-Actin HuR Upregulated (Dong, R. et al. 2007, 
Dormoy-Raclet et al. 2007)  

 uPA HuR Upregulated (López de Silanes et al. 
2004) 

 Snai1 HuR Upregulated (Dong, R. et al. 2007) 

 MMP-9 HuR Upregulated (Dong, R. et al. 2014) 

Angiogenesis VEGF HuC 
HuD  
HuR 

Upregulated (King 2000) 
(King 2000) 
(Nabors et al. 2003) 

 Hif-1 α HuR Upregulated (Dong, R. et al. 2014) 

 COX-2 HuR Upregulated (Nabors et al. 2001) 

Immunomodulation TNF-ß HuR Upregulated (Nabors et al. 2001) 

 TNF-α HuR Upregulated (Nabors et al. 2003) 

 IL-8 HuR Upregulated (Nabors et al. 2001) 

 IL-6 HuR Upregulated (Nabors et al. 2001) 

Table 1.1: mRNA targets of Hu proteins. Table 1.1 shows the variation of effects Hu proteins can have 

influencing the expression of other protein factors involved in tumour growth, tumorigenesis, invasion 

and metastasis, angiogenesis and tumour inflammation.  
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In cancer, cellular polarity and senescence are disrupted, these cellular processes are 

influenced by Hu proteins. HuR regulates Tumour protein 63 (∆Np63) transcript that 

maintains cell proliferation and polarity in normal mammary epithelial cells. RNA 

electrophoretic mobility shift assays performed on immortalized mammary epithelial cells, 

MCF10A, identified HuR binding regions in p63 transcript. HuR binds directly to one of two U-

rich elements in the 3’-UTR of the ∆Np63 mRNA inhibiting ΔNp63 protein expression through 

translation. Thus, HuR maintains cell proliferation and polarity of MCF10A cells at least in part 

via regulating ΔNp63 expression (Yan et al. 2012). 

During cell senescence cells reach their replicative life span in vitro and ultimately experience 

irreversible growth arrest. In humans, the Ink4a-Rb pathway plays a crucial role in senescence. 

HuR destabilises Ink4a mRNA in human diploid fibroblasts as well as controlling the regulation 

of other genes that function in senescence notably p53, p21 and cyclin D1. HuR is also known 

to repress the alternative reading frame (ARF) tumour suppressor of the p14ARF pathway 

which allows the replicative potential of the cells to increase (Kawagishi et al. 2013). Cellular 

senescence potentially acts as an anti-cancer mechanism whereas microglial senescence is 

thought to contribute towards Neurodegeneration. During cellular replicative senescence, 

HuR expression is suppressed and this is linked to a decreased capability of the protein to 

stabilise mRNA of pro-survival factors (Campos-Melo et al. 2014). 

Hu proteins regulate alternative splicing and polyadenylation. The complex nature of 

alternative splicing, polyadenylation and their deregulation is thought to initiate or contribute 

to many human diseases (Faustino et al. 2003). HuR regulates pre-mRNA splicing of FAS, an 

apoptotic-promoting receptor. When FAS endures alternative splicing, exclusion of exon 6 

results in an isoform that prevents programmed cell death. HuR promotes the exon 6 skipping 
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by binding to an exonic spicing silencer. This confirms HuR’s role in alternative splicing and in 

influencing cell fate (Izquierdo 2008). This is particularly significant in hepatocellular 

carcinoma where HuR restricts translation of FAS mRNA obstructing Fas-mediated apoptosis. 

Ultimately this results in an increase in cell survival and proliferate increasing the growth of 

the tumour (Zhu et al. 2015).  

Zaharieva et al. (2015) shows that specificity of RBPs binding patterns on mRNA transcripts 

are relative to its concentration, activity and localization. An interrelationship between Hu 

ectopic or over-expression and larger malignant tumours, advanced stage disease, positive 

lymph nodes, chemo resistance to standard cancer treatments and consequently poor 

survival rates (Denkert et al. 2004). Table 1.2 details Hu proteins aberrant or overexpression 

in cancers.  

Calaluce et al. (2010) described how HuR controls genes in different stages of cancer and 

hypothesized HuR is a tumour-maintenance gene, allowing for cancer progression once it is 

established. Its overexpression and cytoplasmic presence in many cancers suggests it could 

be used as a prognostic marker and a target in therapeutic treatments. Since these proteins 

share similar structure and function, it can be assumed that the other Hu proteins also can in 

this manner. Additionally, in mammals, Hu genes are alternatively spliced to produced 

different protein isoforms. Most variation occurs due to alternative splicing coding for the 

hinge region (Keene 1999). HuR isoforms often have different functions and are expressed 

based on their need and this may influence aberrant Hu protein expression in cancers, 

depending on the need and conditions within the tumour microenvironment. 
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Hu 
Protein 

Cancer Expression Subcellular 
Location 

Reference 

HuB Small cell lung 
cancer 

Aberrant expression  (King 1997) 

 Medulloblastoma Aberrant expression Cytoplasmic (Gao and Keene 1996) 

HuC Large cell 
neuroendocrine 
carcinoma 

Aberrant expression  (Matsumoto et al. 2012) 

 Small cell lung 
cancer 

Aberrant expression  (Matsumoto et al. 2012) 

HuD Small cell lung 
cancer 

Aberrant expression  (King 1997) 

 Neuroblastoma Aberrant expression  (Dalmau, J et al. 1995)  

HuR Oral cancer Over-expression Cytoplasmic (Kakuguchi et al. 2010) 

 Oesophageal cancer Over-expression Cytoplasmic (Zhang et al. 2014) 

 Cervical cancer Over-expression  (Cho et al. 2006) 

 Colon cancer 
 

Over-expression Both (López de Silanes et al. 
2003) 

 Small cell lung 
cancer 

Over-expression  (Wurth 2012) 

 Non-small cell lung 
cancer 

Over-expression Cytoplasmic (Wang et al. 2011) 

 Breast cancer Over-expression Cytoplasmic (Hostetter et al. 2008) 

 Renal cancer Over-expression Cytoplasmic (Datta et al. 2005) 

 Merkel cell 
carcinoma (Skin) 

Over-expression Cytoplasmic (Koljonen et al. 2008) 

 Mesothelioma Over-expression Cytoplasmic (Stoppoloni et al. 2008) 

 Ovarian cancer Over-expression Cytoplasmic (Prislei et al. 2013) 

 Urinary    tract 
urothelial carcinoma 

 Cytoplasmic (Liang et al. 2012) 

 Bladder cancer Over-expression Cytoplasmic (Miyata et al. 2013) 

 Glioblastoma Over-expression Cytoplasmic (Nabors et al. 2003) 

 Gastric cancer Over-expression Nuclear (Milne et al. 2006) 

 Pancreatic cancer Over-expression Cytoplasmic (Jimbo et al. 2015) 

 Prostate cancer Over-expression Cytoplasmic (Niesporek et al. 2008) 

 Thyroid cancer Over-expression  (Danilin et al. 2009) 

 Medulloblastoma Over-expression  (Nabors et al. 2001) 

Table 1.2: Association of Hu protein expression in Cancer. Summary of Hu proteins and their 

implication in cancer. This data particularly highlights a correlation between cytoplasmic over-

expression of HuR in cancer. 
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The localisation of RBPs within cells importantly influences its role in gene regulation events 

and its target mRNA transcripts. Although HuR protein is predominantly localised to the 

nucleus of normal cells, in response to environmental stimuli HuR can in an adaptive response 

translocate to the cytoplasm whereby it can participate in cytoplasmic gene regulation events 

(Atasoy et al. 1998, Nabors et al. 2001). In the cytoplasm, Hu proteins influence aberrant 

regulation of many mRNA transcripts. They can decrease the stability of tumour suppressor 

genes but more commonly increase the stability and translation of proto-oncogenes, cyclins, 

kinases, inflammatory factors, apoptosis-related factors that each have a direct influence of 

tumour formation and development(Wang et al. 2013). It is also important to consider the 

level of expression of Hu proteins in human cells since overexpression of the Hu homologue 

ELAV protein in Drosophila Melanogaster has shown to be lethal or produce cellular defects. 

This concentration-based functionality has also been observed in other RBPs (Zaharieva et al. 

2015b).  

Both the HuB protein isoforms are discussed in more detail in Section 1.6, are expressed in 

human Medulloblastoma cells and display different expression patterns in human brain and 

tumour cells (Gao et al. 1994). In Medulloblastoma cells extracted from a brain tumour, HuB 

proteins were found predominantly expressed in the cytoplasm. HuB proteins reside in 

granular structures that contain multiple protein molecules bound to each mRNA forming a 

multimeric RNP that then associates with polysomes. This highlights their involvement in 

translation or mRNA stability. Additionally, both HuB isoforms are also expressed in Small-cell 

lung carcinoma (Gao and Keene 1996). 

As discussed in Section 1.7.4, HuR proteins auto-regulation occurs through a negative 

feedback loop. This feature allows a stable nucleocytoplasmic distribution in normal cells (Dai 
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et al. 2012). In cancer, cytoplasmic HuR expression is related to the ability to bind and 

upregulate the stability of cancer-related mRNA transcripts, this helps accelerate the cancers 

progression. This is thought to occur in oesophageal cancers where upregulated cytoplasmic 

HuR expression is observed and associated with positive lymph node metastasis, deep tumour 

invasion, high-grade malignancy and poor survival rates during diagnosis (Zhang et al. 2014). 

Similarly, HuR cytoplasmic overexpression is seen in in breast cancer with characteristic large 

tumours, p53 positivity and oestrogen and progesterone receptor negativity (Heinonen et al. 

2007, Calaluce et al.2010). Knockdown of HuR in HeLa, a cervical carcinoma cell line, revealed 

HuR is a suppressor of apoptosis. Cellular stress caused by UV-radiation in HeLa cells showed 

upregulation of HuR and therefore extreme survival under stress (Lal et al. 2005). The role of 

HuR in transcript stabilisation is seen with Vascular endothelial growth factor-A (VEGF-A) and 

cyclooxygenase-2 (COX-2) mRNA. HuR bind specifically to AU-rich sequences in the 3’ UTR of 

VEGF and COX-2 transcripts. In tumour microenvironments, cytoplasmic HuR protein 

responds to hypoxia by stabilising of the mRNA transcripts of VEGF-A and COX-2 (Levy et al. 

1998, Kurosu et al. 2011). Under normal conditions, VEGF protein participates in a variety of 

physiological and pathological processes including stimulating the formation of blood vessels 

particularly during embryo development and wound healing. Overexpression of VEGF and its 

receptors, VEGFR-1, VEGFR-2, neuropilin-1, are associated with poor prognosis in Breast 

cancer (Ghosh et al. 2008).  

Recent research suggests RBPs influence miRNAs activity and stability and vice versa 

indicating a combined contribution towards regulating gene expression. HuR functions 

alongside miRNAs to aid the stabilisation process (Wurth 2012). For example, in breast cancer, 

HuR upregulates cyclin E1 expression by interacting directly within its transcript. Additionally, 



73 
 

miR-16 represses cyclin E1 through similar binding. This concludes that miR-16 can override 

HuR upregulation of cyclin E1 without affecting HuR expression and direct association with 

the cyclin E1 mRNA (Guo and Hartley 2006).  

1.11 Lung cancers 

Lung cancers are one of the leading causes of cancer-related deaths worldwide (Matsumoto 

et al. 2012). Lung cancer accounts for 12.7% of all cancer registrations in England and is the 

second most common malignant cancer for both females and males, after breast cancer in 

females and prostate cancer in males (King and Broggio 2018).  

Lung cancers are divided into two categories, Small cell lung cancer (SCLC) and Non-small cell 

lung cancer (NSCLC) which includes Squamous cell carcinoma, Large cell carcinoma and 

Adenocarcinoma (Van Meerbeeck et al. 2011). Whilst treatments for NSCLC have improved 

vastly in recent years, SCLC treatment is limited. This highlights the need for a deeper 

understanding of the disease, identification of novel targets and discovery of treatments 

(Lovly and Carbone 2011). 

1.11.1 Small cell lung cancer 

Small cell lung cancer (SCLC) is highly malignant and one of the most aggressive pulmonary 

neoplasms, with a rapid onset of symptoms (Ehrlich et al. 2014). Patients diagnosed with 

limited disease survive for 15-20 months with treatment. Patients with extensive disease at 

diagnosis survive between 7-11 months with treatment and without the median survival time 

is 2-4 months (Lampaki et al. 2016). Metastases are commonly found upon diagnosis in the 

liver, adrenals, bone, bone marrow and brain (Ehrlich et al. 2014, Glisson and Byers 2015). 
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SCLC originates from neuroendocrine cells (Glisson and Byers 2015). It was first referred to as 

‘Oat cell carcinoma’ when it was identified in 1936 in a asbestosis patient (Roodhouse Gloyne 

1936). 

SCLC shows a considerable degree of morphological histopathological variability. SCLC cells 

are small round, oval or spindle shaped cells with scanty cytoplasm (Brambilla et al. 2001). Of 

all lung cancers diagnosis, tumours with less than 10% of large cells is classified as pure SCLC 

by the World Health Organisation (WHO). Within the tumour, the size of the cells can vary 

however finely granulated chromatic, no prominent nucleoli and the lack of cell boarders are 

typical for SCLC morphology (Travis et al. 2015, Rekhtman 2010).  SCLC is distinguished from 

NSCLC physiologically due to aggressive nature, fast growth and easily developed metastases 

(Glisson and Byers 2015).  

Since 1970, there has been over 40 clinical trials conducted on SCLC patients with no 

significant change therefore the combination of chemotherapeutic drugs remain the same 

(Lampaki et al. 2016). Current research supports the idea that identifying a set of new novel 

antibody markers, more specific to the biology and behaviour of the SCLC will allow the 

development of a national screening program, improved targeted diagnosis and monitoring 

and specific treatments to overall improve the survival rate.  

SCLCs initiation and progression is a complex multi-step procedure. Progressive genetic 

alterations involving proto-oncogenes include the myc family, c-myb, c-kit, c-jun and c-src. 

Additionally two tumour suppressor genes that are affected are p53 and Retinoblastoma-

associated (Rb) (Cook et al. 1993). The use of paraffin-embedded tissue, highly polymorphic 

markers and PCR-based analysis revealed allelic loss on chromosomes 3p, 5q, 13q, and 17p 
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was found in 75-100% of SCLCs tumours obtained at autopsy. The 13q is typically significant 

of alteration to the Rb tumour suppressor gene (Merlo et al. 1994).  

Drug resistance often develops in SCLC. Early studies of the NCI-H69 SCLC cell line revealed 

amplification and expression of the P-glycoprotein encoded by MDR-1 and highlighted this as 

a cause of multidrug resistance in some SCLC tumours (Reeve et al. 1989). 

1.11.2 Non-small cell lung cancer 

Non-small cell lung cancer describes a series of Lung cancers including Adenocarcinoma 

(38%), Squamous cell carcinoma (20%), Large-cell carcinoma (5%), and other poorly 

differentiated variants (Goldstraw et al. 2011). In comparison to SCLC, it is seen to have better 

survival rates and clinically more manageable disease. 

Non-small cell tumours are defined by cells that are large, have a low nuclear to cytoplasmic 

ratio, have vesicular, coarse or fine chromatin and frequent nucleoli. Not all non-small cell 

lung tumour meet this criteria but are still considered NSCLC due to their large size and 

abundant cytoplasm (Travis et al. 1999). 

NSCLC is typically characterised by several genetic changes downregulating tumour 

suppressor genes and upregulating oncogenes. Research has sought to identify susceptibility 

genes that predispose Lung cancer. Of interest is 15q24–25, this region contains several genes 

of interest, including three genes that encode nicotinic acetylcholine receptor subunits 

(Thorgeirsson et al. 2008). Genes of interest in NSCLC include the tumour suppressors, tumour 

protein-53 (TP53), retinoblastoma-associated 1 (RB1), that govern two complementary 

regulatory pathways of proliferation control. Additional genes of interest are those including 
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epidermal growth factor receptor (EGFR), echinoderm microtubule-associated protein-like 4-

anaplastic lymphoma kinase (EML4-ALK) and cyclin-dependant kinase (p16INK4a). Genetic 

alterations including allelic loss of heterozygosity at chromosomes 3p and 17p are frequent 

in Lung cancers and has been shown to correlate with clinical parameters and poor prognosis 

(Chmara et al. 2004). 

Treatments targeting genetic alterations or the pathways they influence are in development. 

In NSCLC treatment, targeted gene therapies have focussed on mutations in EGFR and 

rearrangements in ALK. EGFR mutations are seen more commonly in Asian patients 

accounting for 30-50% of NSCLC cases in this population. Clinical trials using tyrosine-kinase 

inhibitors targeting EGFR proteins in patients positive for the EGFR mutation have shown 

promising results (Rosell et al. 2012). Alterations to the oncogenic fusion genes EML4-ALK is 

often seen in non-smokers and younger patients representing 2-7% of tumours (Reck et al. 

2013). ALK protein inhibition of EML4-ALK rearrangement-positive tumours saw a reduction 

in tumour size and a more stable disease in most patients (Kwak et al. 2010). 

1.12 Hu proteins in Small cell lung cancer 

The Hu protein family are considered tumour antigens in Small cell lung cancer (SCLC) 

(D’Alessandro et al. 2008). The neuronal Hu family members, HuB, HuC and HuD are 

ectopically expressed in SCLC tumours, but not in Non-small cell lung cancers. An over-

expression of HuR is common in both cancers (Manley et al. 1995). Paraneoplastic 

encephalomyelitis/sensory neuropathy (PEM/PSN) which accounts for 3-5% of all SCLC 

patients, although lower titres of Hu antibodies can be seen in about 15-20% of SCLC patients 

without autoimmune symptoms (Dalmau, Josep and Rosenfeld 2008, Kanaji et al. 2014).  
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As discussed in Section 1.12, the presence of Hu proteins in SCLC specifically is often symbolic 

of a more favourable cancer prognosis. Hu antigens initiate a humeral immune response 

producing an autoimmune attack on the nervous system where autoantibodies destroy Hu 

tumour antigens and normal immune antigens in the nervous system resulting in non-

reversible neurological paraneoplastic syndromes (Harmsma et al. 2013). Although a higher 

survival rate is predicted, the patients quality of life is reduced due to the symptoms of the 

paraneoplastic syndrome (Graus et al. 1997).  

Kazarian et al. (2009) showed in mice, anti-Hu levels rise before the cancer is chemically 

detectable. D’Alessandro et al. (2008) showed that in newly diagnosed SCLC patients, low 

anti-Hu-Ab are detected. Hu proteins could be used as biomarkers for this tumour type 

especially. Harmsma et al. (2013) summarised that the presence of Hu and anti-Hu 

autoantibodies is a good indicator of SCLC particularly since the immune response to Hu 

proteins may occur whilst the cancer is still small, asymptomatic and undetectable by routine 

methods. The cancer diagnosis could then be confirmed using imaging methods. Hu mRNA 

was detectable in the peripheral blood of SCLC patients, using RT-qPCR technologies 

suggesting a method to prompt further tests and secondly as monitoring tool (D’Alessandro 

et al. 2008). The immunoreactive regions of HuD protein have been mapped to the N-terminal 

region and in the first and second RRMs (Manley et al. 1995, Kazarian et al. 2009). 

A study looked at the role of MHC proteins in SCLC and the role they play in regulating the 

anti-Hu immune response. MHC Class I molecules are required for the presentation of viral or 

tumour antigens to cytotoxic T lymphocytes. MHC Class I proteins are found to be lowly 

expressed in SCLC, which is associated with a poor prognosis and increased metastatic 

potential. It was concluded that co-expression of Class I MHC and Hu antigen by tumours may 
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play a role in the development of anti-Hu associated paraneoplastic disorders (Dalmau et al. 

1995). 

Analysis of 20 primary human neuroendocrine lung tumour tissues revealed HuD ectopic 

expression. Sequencing revealed two inactivating somatic mutations in the coding sequence 

of HuD mRNA in 7 of the tumours. A stop codon mutation, (c.655C>T), resulting in a truncated 

protein and a frameshift caused by c.424delA. Loss of heterozygosity is common in cancer 

and results in the loss of gene function. This was seen in seven of the tumours studied 

(D’Alessandro et al. 2010). In the same study, genetic analysis of five SCLC cell lines revealed 

one mutation that was previously documented by Sekido et al. (1994). HuD mRNA 

experiences alternative splicing of its 5'-coding region resulting in an additional 87 base pairs 

of sequence and a termination codon. This codes for a small truncated protein of 11 amino 

acids but its function was undetermined. 

SCLC is associated with overexpression of c-myc protein and this contributes towards the 

cancers malignant and aggressive nature (Little et al. 1983). As previously described in Section 

1.10, HuD has additionally been shown to bind to AU-rich stability sequences of c-Myc mRNA, 

upregulating its expression (Cook et al. 1993, Liu et al. 1995). 

RT-qPCR and Western blot studies revealed HuC mRNA and HuC protein in 5 of 6 SCLC cell 

lines and 2 of 2 Large cell neuroendocrine carcinoma (LCNEC) cell lines which is a rare 

pulmonary tumour. Of SCLC patients with and without PEM/SN, 12.9% displayed anti-HuC 

antibodies (Matsumoto et al. 2012). 
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1.13 Neuroblastoma 

Neuroblastoma (NB) is an embryonal tumour of the peripheral sympathetic nervous system 

characterized by a substantial phenotypic diversity. NB is the most common extra-cranial solid 

tumour diagnosed in children and represents 15% of all childhood cancer deaths (Maris et al. 

2007). NB has an average 5-year survival rate of less than 50% (Ehrlich et al. 2014). The 

severity of this disease highlights the need to yield actionable therapeutic targets for the 

highly fatal cancer (Louis and Shohet 2015). 

Neuroblastoma is a heterogenous disease in its pathology and in its molecular profile. This 

heterogeneity is responsible for the exceptional phenotypic diversity resulting in contrasting 

clinical presentations and varied treatment responses (Louis and Shohet 2015). At one end of 

the spectrum, it is possible that the cells reach maturity and even spontaneous regression. 

On the contrary, significant disease progression irrespective of treatment can be fatal due to 

the transient state of neuronal crest cells.  

Screening of thousands of NB cases have not found a single homogenous genetic or epigenetic 

mutation further supporting the molecular heterogeneity. Familial NB accounts for 1-2% of 

cases with the primary cause identified as a germline mutation in the anaplastic lymphoma 

kinase (ALK) gene (Mossé et al. 2008). Patients with an increased expression of N-myc proto-

oncogene (MYCN) have showed to have a poorer prognosis. N-Myc protein is a transcriptional 

regulator expressed in the peripheral neural crest. In normal cells it controls proliferation, 

migration and stem cell homeostasis (Westermark et al. 2011). The molecular profile of this 

cancer might provide an insight into development of the disease and give rise to new novel 

targets for new therapies. 
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Neuroblastoma provides an ideal disease model to study functional cellular hierarchy in solid 

tumours in relation to the cancer stem cell (CSC) theory, due to its embryonal origin and 

heterogeneity (Hansford et al. 2007). Additionally, its wide range of clinical behaviours that 

can show spontaneous regression or a very aggressive metastatic disease, with limited 

response to treatment also supports the CSC model (Monclair et al. 2009). The CSC model 

describes a functional cellular hierarchy for malignancy or clonal evolution within the tumour 

which is entirely supported by tumour initiating cell (TICs) (Kreso and Dick 2017, Coulon et al. 

2011). Hansford et al. (2007) investigated characteristics including self-renewal through 

sequential sphere-forming cells, tumorigenicity, drug resistance and the ability to 

differentiate towards distinct lineages to identify tumour initiating cells. They concluded NB 

cells contain cancer stem cell properties adequate in tumour-initiating ability. Coulon et al. 

(2011) later confirmed and showed that the CSC model correlated with NB tumour-initiating 

cells which was suggestive of functional stem cell-like characteristics and contributors of 

tumour progression. 

1.14 Hu proteins in Neuroblastoma 

Hu proteins and their corresponding antibodies have been found in Neuroblastoma. In 1992, 

Dalmau and Furneaux, showed HuD protein is aberrantly expressed in over 50% of 

Neuroblastoma cells. Later in 1997, Ball and King described HuD and HuB proteins as excellent 

neuronal markers of Neuroblastoma. Their study on 36 primary tissue samples and 11 

cultured cell lines, showed HuB or HuD were expressed in 98% of their test samples.  

Cytoplasmic protein aggregates causes cell death and neurotoxicity in Neurodegenerative 

diseases, however in cancer, increased protein expression has no effect showing their ability 
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to tolerate these aggregates and continue proliferation (Zaharieva et al. 2012). Also, seen in 

neurodegeneration is ectopic expression of proteins which leads to protein inspecificity and 

function and therefore cell death (Zaharieva et al. 2015b). 

In a third of all Neuroblastoma cases, over expression of the proto-oncogene, MYCN, is 

observed. The level of MYCN expression can be used to determine the clinical behaviour of 

the Neuroblastoma since its expression correlates with rapid disease progression. HuD is 

known to modulate the expression of n-Myc protein through post-transcriptional events 

(Lazarova et al. 1999). HuB is predominantly expressed in Neuroblastoma tumours with 

unamplified n-Myc status. HuD specifically was associated with a clinically favourable 

prognosis since it’s expression is associated with single copy n-Myc status and limited disease 

progression (Ball and King 1997). 

A study identifying the presence of Hu antigens in Neuroblastoma patients found them 

present in 78% cases with less than 4% having clinically detectable titres anti-Hu antibodies 

in their blood serum. This suggests the measure of Hu antigens is a good indicator of tumour 

presence. Neuroblastoma tumours expressing little or no Class I MHC proteins were more 

aggressive and had more metastasis. Correlation between expression of MHC Class I proteins 

and the anti-Hu immune response in Neuroblastoma was suggestive of an additional T-cell 

mediated cytotoxic response but this would need further clarification (Dalmau et al. 1995).  

1.15 Glioblastoma multiforme 

Glioblastoma Multiforme also known as Glioblastoma, are very aggressive tumours of the 

central nervous system (Nabors et al. 2003). Brain tumours are classified according to their 

origin including astrocytic tumours, oligodendrogliomas, ependymomas, and mixed gliomas. 
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Glioblastoma are a type of astrocytoma and have an extremely poor prognosis 

(Schwartzbaum et al. 2006).  

Todays grading system is based on the initial findings of Bailey and Cushing (1926) and  

Glioblastomas are always graded IV due to their high malignancy, invasiveness and growth 

rate and the tumours contain undifferentiated cells (Ferguson and Lesniak 2005). 

Glioblastomas are easily distinguished from low-grade astrocytic tumours, due to their 

distinct histopathological features including cellular atypia, mitotic figures, necrotic foci with 

peripheral cellular pseudopalisading and microvascular hyperplasia.   

Glioblastomas are the most common primary malignant brain tumour accounting for 16% of 

primary brain and central nervous system neoplasms. Generally it is considered a rare tumour 

with an incidence of less than 10 in 100,000 people globally (Thakkar et al. 2014).  

Glioblastoma develop by two different mechanisms, and although the tumours are not 

morphologically different, they contain different patterns of promoter methylation and 

expression profiles at both RNA and protein levels (Ohgaki and Kleihues 2007). 90% of 

Glioblastoma cases develop de novo where normal glial cells endure multistep tumorigenesis 

and are termed primary Glioblastoma. Genetically 70% are characterised by loss of 

heterozygosity 10q, 36% have epidermal growth factor receptor (EGFR) amplification, 31% 

have a p16INK4a deletion and 25% have phosphate and tensin homologue (PTEN) mutations. 

Tumours display rapid growth developing in 3 months on average and manifests in older 

people (Ohgaki and Kleihues 2007). Secondary Glioblastomas develop through progression 

from low-grade tumours including low-grade glial tumours or anaplastic glial tumours. 

Genetic mutations in the TP53 gene, amplification of platelet-derived growth factor receptors 

and loss of heterozygosity at 17p, 19q, and 10q are often found. Secondary Glioblastomas 
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develop over time but generally present in younger patients (Kleihues and Ohgaki 1999). 

Previously, it was thought Glioblastoma only developed from glial cells. However, it was 

recently shown that it can develop from multiple cell types if they have neural stem-cell like 

properties. The cells in these tumours vary in stages of differentiation with their phenotypic 

variations induced by alterations to the Akt and Notch signalling pathways (Phillips et al. 

2006).  

The cause of Glioblastoma is under consideration. One factor known to increase the risk of 

glioma is ionising radiation exposure. This typically appears years later following treatment 

for a different tumour or condition where the risk of developing Glioblastoma following 

radiotherapy is estimated at 2.5% (Johnson et al. 2015, Salvati et al. 2003). Other 

environmental factors are thought to include exposure to pesticides, smoking, 

electromagnetic fields, formaldehyde, and nonionizing radiation from mobile phones 

although evidence is limited for these factors (Alifieris and Trafalis 2015).  

Development of Gliomas is correlated with some genetic diseases including 

Neurofibromatosis 1 and 2, Tuberous sclerosis, Li-Fraumeni syndrome, Retinoblastoma, and 

Turcot syndrome. However, these genetic diseases account for less than 1% of all 

Glioblastoma patients (Ellor et al. 2014). 

Genome studies of the U87-MG Glioblastoma cell line highlighted 512 genes with 

homozygous mutations. The mutations included an array of different types including single 

nucleotide polymorphisms, small insertions and deletions, microdeletions and 

interchromosomal translocations (Clark et al. 2010). A further study of more than 200 tumour 

samples and 600 genes produced a genetic profile where three key signalling pathways that 

were commonly activated. These were the p53 pathway, the receptor tyrosine 
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kinase/Ras/phosphoinositide 3-kinase signalling pathway, and the retinoblastoma pathway. 

Activation of these pathways results in uncontrolled cell proliferation and enhanced cell 

survival, essentially driving the process of gliomagenesis (Chen et al. 2012). 

Glioblastoma is associated with a significantly poor prognosis which is preliminary determined 

by the patients age and the histological type of their tumour as described above 

(Schwartzbaum et al. 2006, Thakkar et al. 2014). The two-year survival rate for adults between 

46-64 years of age is 7.7% and for people over 65, it is 2.1% which emphasises the  aggressive 

nature of the disease (Bolognani et al. 2012). More recently, gene expression studies have 

given rise to genetic profiling allowing a prediction of patient outcome and response to 

treatment through the relationships of implicated genes in tumour biology (Sulman et al. 

2009).  

Glioblastoma are particularly challenging to treat because they embed in deep, specialised 

areas of the brain that control aspects of speech, motor function and the senses. The tumours 

proliferate and invade other tissues very quickly and there are no effective treatments 

available (Ware et al. 2003). Initially, seizures can be treated with antiepileptic drugs. Whilst 

corticosteroids help control vasogenic oedema and its symptoms. The ability of surgical 

resection has improved over the years, however the survival rate is still low (Thakkar et al. 

2014). Chemotherapy is an additional option and often follows surgical resection. Despite 

maximal initial resection and multimodality therapy, recurrence of GBM is common affecting 

around 70% of patients (Stupp et al. 2009).  
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1.16 Hu proteins in Glioblastoma multiforme 

In the brain, RBPs ensure RNA regulation by performing roles both within the nucleus and at 

distant sites (Darnell and DeAngelis 1993). RBPs also regulate protein translation at synapses 

possibly providing an insight into learning and long-term memory (McKee et al. 2005).  

In normal glial cells, HuR is in the nucleus whilst in Gliomas HuR experiences nucleoplasmic 

shuttling to the cytoplasm where it upregulates growth factors and promotes neoplastic 

progression. Another common feature in malignant Gliomas is that HuR is expressed in 

excessive amounts (López de Silanes et al. 2005, Wang et al. 2013, Nabors et al. 2003).  

HuR’s target-mRNA transcripts decay rates were analysed in Gliomas and it was determined 

to be slower than in astrocytes (Bolognani et al. 2012). Disruption to the cell cycle is a common 

feature in most Gliomas including apoptosis, proliferation and migration (Schwartzbaum et 

al. 2006, Ware et al. 2003). Glioblastoma has been identified to have TP53 mutation and EGFR 

amplification. HuR is known to stabilise and regulate the transcription of mRNA transcripts 

TNF-α, VEGF and IL-8 in Glioblastoma as they contain a 3’ untranslated region (UTR) with an 

AU- or U- rich cis-regulatory sequence optimal for the binding of Hu proteins. Stabilisation of 

these oncogenes promotes a higher grade tumour and poorer prognosis (Nabors et al. 2003). 

Filippova et al. (2011) determined that in Glioma cells, HuR increased cell proliferation, 

anchorage-independent growth and chemoresistance to regular glioma treatments. They also 

identified that the known oncogenic BCL-2 family are target sequences for HuR increasing Bcl-

2 protein expression levels.  

As previously mentioned, Musashi1 (MSI1) gene encodes an oncogenic protein that is found 

aberrantly expressed in high quantities in Glioblastoma but also Lung and Colon cancer. Msi1 
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protein regulates gene expression involved in cancer-related processes including cell 

proliferation, apoptosis, cell cycle and differentiation. MSI1’s 3’UTR contains AU- or U- rich 

cis-regulatory sequences to which Hu proteins can bind. HuD has previously been implicated 

as a post-transcriptional regulator of MSI1 in normal stem cells influencing differentiation 

(Bolognani et al. 2012). Whilst Vo et al’s (2012) study provided evidence that high expression 

of MSI1 was partially influenced by HuR through direct binding to and increasing stability 

leading to an increased protein expression of Msi1 proteins. This highlights the importance of 

HuR in Gliomagenesis (Vo et al. 2012).   
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1.17 Aims of this study 

The fact that Hu proteins are ectopically or overexpressed in Small cell lung cancer, 

Neuroblastoma and Glioblastoma raises the question about their role in these cancers. 

Therefore, the main aim of this study is to identify which of the four Hu proteins are expressed 

in the three different cancers and if a knockdown of Hu expression can identify specific targets 

that may contribute to the cancerous phenotype. 

To address this overall aim the following objectives were established: 

• RT-qPCR will determine the expression levels of HuB, HuC, HuD and HuR genes in the 

human cancer cell lines; SK-N-AS and SH-SY5Y for Neuroblastoma and U87-MG for 

Glioblastomas and NCI-H69, NCI-H345 and CorL88 for Small cell lung cancer. 

• After the initial expression level of the four Hu proteins in the cancer cell lines is 

analysed, a siRNA knockdown will be established. The efficiency of the knockdown will 

be confirmed at RNA expression level as well as at protein level through RT-qPCR, 

western blotting and immunofluorescence techniques. 

• MTS assay, migration assays and microscopy will be used to analyse cell viability, 

migration and morphology following siRNA knockdown 

• To characterise the role of Hu genes on a molecular level, expression levels of target 

genes described to play a role in the cancer development of Neuroblastoma and 

Glioblastoma will be analysed before and after the knockdown.  

• MTS assay, migration assays and microscopy will allow analysis of viability, migration 

and morphology following siRNA knockdown 

• To characterise the role of Hu genes on a molecular level, RT-qPCR of genes involved 

in each cancer’s development will be analysed to determine Hu proteins mRNA targets 

and identify any pathways involved in Hu activity
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Chapter 2 

Methods & Materials 

2.1 Cell culture 

All cell culture was performed in a Category 2 laminar flow cabinet (Nuaire) to prevent 

airborne contamination. Cell lines were maintained in T25 and T75 tissue culture flasks (Fisher 

Scientific) and passaged regularly to maintain growth of cells by avoiding contact inhibition. 

Cells were incubated under standard conditions in a humidified incubator (Nuaire) at 37°C 

and 5% CO2.  

2.1.1 Cancer cell lines 

The human Glioblastoma, astrocytoma cell line, Uppsala 87 Malignant Glioma (U87-MG) were 

cultured as a monolayer in Dulbecco’s Modified Eagle’s Medium (DMEM) (Lonza, Switzerland) 

supplemented with Penicillin 100U/ml, Streptomycin 100µg/ml, 10% heat-inactivated Foetal 

Bovine Serum (FBS) (Fisher), Glucose, 2mM L-Glutamine and non-essential amino acids. U87-

MG is one of the most commonly studied Glioblastoma vitro cell line models. It was derived 

from a male of unknown age (ATCC 2016h). 

The human Neuroblastoma cell lines, SK-N-AS and SH-SY5Y were cultured in DMEM (Lonza, 

Switzerland) supplemented with Penicillin 100U/ml, Streptomycin 100µg/ml, 10% heat 

inactivated FBS, Glucose, 2mM L-Glutamine and non-essential amino acids. Both cell lines 

derived from the metastatic site of the bone marrow. SK-N-AS is fully adherent and was 
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obtained from a six-year-old Caucasian female (ATCC 2016f), whilst SH-SY5Y is semi-adherent 

and was obtained from a four-year-old Caucasian female (ATCC 2016e). 

Human Small-Cell Lung Carcinoma (SCLC) cell lines, NCI-H69, NCI-H345 and CorL88 are 

suspension cell lines maintained in Roswell Park Memorial Institute medium (X GI 1640) also 

complete with Penicillin 100U/ml, Streptomycin 100µg/ml, 10% heat inactivated FBS, 

Glucose, 2mM L-Glutamine and non-essential amino acids. NCI-H345 was derived from the 

metastatic site of the bone marrow from a 64-year-old Caucasian male (ATCC 2016b). NCI-

H69 was taken directly from the lung as floating aggregates from a 55-year-old Caucasian 

male (ATCC 2016d). NCI-H345and NCI-H69 grow as clumps in suspension. COR-L88 was 

derived from the pleural effusion of a 55-year-old Caucasian male and grows semi-adherent 

(Sigma-Aldrich 2017a). 

Human Non-Small Cell Lung Carcinoma (NSCLC) cell lines, NCI-H322 and NCI-H358 were 

maintained in X GI 1640 complete with Penicillin 100U/ml, Streptomycin 100µg/ml, 10% heat 

inactivated FBS, 2mM Glucose, L-Glutamine and non-essential amino acids. NCI-H322 

derived from a primary bronchioalveolar carcinoma of the lung from a 52-year-old male taken 

prior to treatment (Sigma-Aldrich 2017b). NCI-H358 was isolated from a primary 

bronchioalveolar carcinoma of the lung from a Caucasian male taken prior to treatment (ATCC 

2016c). Both cell lines grow as an adherent monolayer.  

2.1.2 Normal cell lines 

The human normal lung cell line BEAS-2B was maintained in Bronchial Epithelial Cell Growth 

Medium Bullet Kit (BEGM™) (Lonza, Switzerland) not including the gentamycin-amphotericin 

B mix (GA1000) provided with the BEGM kit. This media was supplemented with Penicillin 
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100U/ml, Streptomycin 100µg/ml. BEAS-2B cells were derived from normal bronchial 

epithelium obtained from autopsy of non-cancerous individuals (ATCC 2016a). These cells 

grow as an adherent monolayer. 

The normal human brain cell line SVG p12 was cultured in Eagle's Minimum Essential Medium 

(EMEM) (Lonza, Switzerland) supplemented with 10% FBS and Penicillin 100U/ml, 

Streptomycin 100µg/ml. This cell line grows as an adherent monolayer. These cells were 

extracted from the brain of healthy patients (ATCC 2016g). 

2.1.3 Cell harvesting 

Harvesting of cells from tissue culture flasks of 80% confluency was completed for general 

passaging, preparation for experiments or cryopreservation of cells.  

To subculture the adherent cell lines, the nutrient-depleted growth media was discarded, the 

cells were washed once with 10ml Dulbecco’s Phosphate Buffered Saline (DPBS) 

(2.7mM potassium chloride, 137mM sodium chloride, and 1.76mM potassium phosphate per 

litre in H2O, pH7.4) to remove any traces of serum, Calcium and Magnesium that inhibit the 

trypsin process. 1ml of Trypsin (0.5%) enzyme was added and incubated for 5 minutes at 37°C 

to detach the cells from the flask. Tapping of the flask allowed any final attached cells to be 

released. Fresh growth medium, warmed to 37°C in a heated water bath (Clifton) was added 

to re-suspend detached cells which could then be split into additional flasks for continued 

growth or transferred to a 20ml universal tube, pelleted at 1500x g in an Eppendorf centrifuge 

5702 (Eppendorf), counted and used in further experiments. 
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Suspension cells line were split by transferring nutrient-depleted media containing cells to a 

new flask and adding sufficient fresh media to allow further growth. Alternatively, for 

experiments, the cells in media were transferred to a 20ml universal tube and centrifuged at 

1500x g for 5 minutes in an Eppendorf centrifuge 5702. The pelleted cells were then re-

suspended in fresh media. The method of cell counting follows in Section 2.4.1. 

2.1.4 Cell counting 

Harvested cells were transferred to a 20ml universal tube and centrifuged for 5 minutes at 

1500x g to obtain a cell pellet. After the supernatant was discarded, the pellet was suspended 

in 10ml fresh medium and mixed by pipetting. A 200µl aliquot of the new cell suspension was 

mixed 1:1 dilution with 0.4% Trypan Blue stain (Gibco) once again ensuring sufficient mixing.  

Live unstained cells were counted by loading 15 µl to the bottom of a coverslip loaded on a 

haemocytometer, which is evenly distributed along the counting chamber by capillary action. 

Using a microscope set on the 10X objective, the corner sixteen squares of the 

haemocytometer were counted using a hand tally counter. 

2.1.4.1 Calculating viable cell number 

An average of the corner 16 squares was calculated, multiplied by 2, the dilution factor to 

allow for the trypan blue stain (Gibco), and further multiplied (104), the standard conversion 

factor for the haemocytometer. The calculated number is the number of viable cells/ml of the 

original suspension.  
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2.1.5 Cryopreservation of cells 

In preparation for long-term storage, cells were harvested from 80% confluent cell culture 

flasks and pelleted by centrifugation for 5 minutes at 1500x g then the supernatant was 

discarded. Cell pellets were then re-suspended in 1.5ml of cold freezing-media (complete 

media containing an extra 20% FBS and 10% Dimethyl sulfoxide). Dimethyl sulfoxide (DMSO) 

lowers the freezing temperature of the medium allowing it to cool more slowly, reducing the 

chance of ice crystals forming therefore preventing cell death. The cell suspension was 

transferred to polypropylene cryovials (Sarstedt, Germany). To preserve cells for long term 

storage, cell lines were stored in the gas stage above liquid nitrogen, whilst for short term 

storage, cell lines were kept at -80°C in a freezer (Sanyo, Japan).  

2.1.5.1 Thawing of cryopreserved cells 

Frozen cell aliquots were thawed quickly by agitating the cryovials in a 37°C water bath 

(Clifton) to avoid DMSO-related cell death. The cells were then transferred to a T25 flask 

containing warmed complete cell culture medium. Following a 24-hour incubation at 37°C 

and 5% CO2, cells were either sub-cultured or the medium replaced.  

2.1.6 Microscopy  

Cells were assessed for confluency using the Eclipse II inverted fluorescent microscope. Cell 

images were obtained by a Microtec camera for single images. More information  
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2.2 Gene studies 

Polymerase Chain Reaction (PCR) was used to determine the expression level of each Hu gene 

in each cancer cell line and non-cancerous control cell lines and additionally, confirm the 

annealing temperature of each primer set. Real-time quantitative PCR (RT-qPCR) was then 

performed as a more accurate method of gene expression. In preparation for all PCR 

reactions, the following steps occur: RNA isolation, RNA quantification, RNA purity analysis by 

gel electrophoresis and reverse transcription for the conversion of RNA to synthesis 

complementary DNA (cDNA). 

2.2.1 Total RNA isolation 

Total RNA from all the cell lines was extracted using the TRIsure reagent following the 

manufacturer’s guidelines with addition steps detailed below (Sigma-Aldrich). Cells were 

harvested from flasks using 1ml TRIsure or from a well-plate using 0.5ml TRIsure and a cell 

scraper. The contents were then transferred to an Eppendorf tube and mixed by pipetting to 

lyse the cells. This suspension was then transferred to an Eppendorf tube and incubated at 

room temperature for 5 minutes before 0.2ml of chloroform was added. Following vigorous 

mixing for 15 seconds, a further incubation for 3 minutes at room temperature followed by 

centrifugation for 15 minutes at 12,000g. The contents separated into three layers, a lower 

organic phase, an interphase that contain proteins and deoxyribonucleic acid (DNA) and an 

upper aqueous phase containing the RNA. The aqueous layer was carefully transferred to a 

new Eppendorf tube. To further eliminate traces of the TRIsure reagent, the chloroform step 

was repeated. An equal volume of ice-cold isopropanol allows the RNA to precipitate out of 

the aqueous phase. Samples were incubated at room temperature for 10 minutes and 
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centrifuged for 10 minutes at 12,000g. Additionally, for smaller samples with a lower RNA 

yield, 1µl glycogen was added at this stage. Glycogen acts as a carrier and improves the 

visibility of the RNA pellet. The pellet was washed with 70% ethanol by vortex mixing and 

undergoes a final centrifuge of 7500g for 5 minutes. The RNA pellet was air-dried and eluted 

in 12-20µl of Diethylpyrocarbonate (DEPC)-treated water dependent of the size of the starting 

sample. RNA was either stored in the -80°C or kept on ice ready for cDNA preparation. 

2.2.1.2 Removal of genomic DNA contamination 

All RNA samples were treated to remove any traces of DNA. This process was done using the 

Invitrogen TURBO DNA-free™ kit. 0.1 volume of 10X buffer and 1µl of TURBO DNase was 

added to the RNA. Following mixing by pipetting, the samples were incubated for 30 minutes 

at 37°C. 0.1 volume of DNase Inactivation reagent was added, and the samples mixed well. 

The samples were incubated at room temperature for 5 mins to allow the inactivation to work 

and finally the samples were centrifuged for 90 seconds at 10,000g to pellet the inactivation 

reagent and contained contaminants and the RNA transferred to a new tube.  

To further purify the RNA sample, 200µl of phenol and 180µl of DEPC-treated water were 

added to the samples. The samples were mixed via vortex and spun for 10 minutes at 13,000g. 

The samples separated to three phases of which the upper phase was transferred to a new 

tube. To the new tube, 200µl of 24:1 chloroform-isoamylalcohol was added and a further 

centrifuge for spin 5 minutes at 13,000g. The aqueous phase was transfer to a new tube. To 

this tube 20µl of 10% sodium acetate, 1µl of glycerol and 500µl of Ethanol were added. The 

samples were mixed thoroughly then incubated at -20°C for 20 minutes. A spin of 30 minutes 

at 10,000g was performed. The supernatant was removed then 200µl 75% ethanol was added 
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and a final spin of 10 minutes at 10,000g. The supernatant was discarded, and the RNA pellet 

was resuspended in 20µl of DEPC-treated water. 

2.2.2 RNA quantification  

The quality and quantity of the extracted RNA samples was analysed using a Nanodrop One™ 

spectrophotometer (Thermo Fisher Scientific) set at 260nm. 2µl of the RNA sample was 

loaded onto the pedestal of the spectrophotometer. RNA Purity was measured by a ratio of 

absorbance at 260 nm and 280 nm. 

2.2.3 Gel electrophoresis for RNA Integrity 

Agarose gel electrophoresis was used to analyse the integrity of the RNA, absence of other 

nucleic acid contamination and visualise ribosomal RNA subunits. Tris/acetic acid/EDTA (TAE) 

buffer (40mM Tris, 20mM acetic acid, 1mM Ethylenediamine tetraacetic acid (EDTA) buffer 

and 1.5% gel was used. RNA samples were mixed with 1x loading dye (2.5% Ficoll®-400, 11mM 

EDTA, 3.3mM Tris-HCl, 0.017% SDS, 0.015% bromophenol blue) and FastRuler™ Middle Range 

DNA Ladder (10mM Tris-HCl (pH 7.6), 0.03% bromophenol blue, 60% glycerol and 60mM 

EDTA) with the band sizes 100, 400, 850, 2000 and 5000bp. To visualise separated nucleic 

acids under ultraviolet (UV) light, 2µl GelRed™, a nucleic acid intercalating dye was added to 

melted agarose. 40V was applied to the gel (Bio-Rad) and then analysed using a UV Analyser 

(Bio-Rad) at 302nm and Bio-Rad Image Lab 4.1 software. 
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2.2.4 cDNA synthesis 

RNA was reverse-transcribed using the Tetro cDNA synthesis kit (Bioline) following the 

manufacturer’s protocol. 1500ng of RNA was used for all cDNA reactions. Mastermix 

consisting of oligo (dT)18 primers, 10mM dNTP mix, 5x RT buffer, 1 u/µl Ribosafe RNase 

Inhibitor, 200u/µl Tetro Reverse Transcriptase and DEPC-treated water was made to total 

20µl. Samples are incubated for 45°C for 30 minutes followed by a termination incubation of 

85°C for 5 minutes. The temperature changes were controlled by the Eppendorf Mastercycler 

Gradient (Eppendorf). The cDNA samples were chilled on ice and used immediately or stored 

at -20°C. 

2.2.5 Polymerase chain reaction 

PCR analysis was undertaken to test for primer specify and to confirm the product size 

determined primer blast software (NCBI 2017). 

For each reaction, 0.6µl dNTP, 3.0µl buffer, 0.2µl Taq, 1.5µl of each primer set for each Hu 

gene and β-Actin housekeeping gene and 300ng cDNA together with water to total 25µl. 

Samples were run in triplicate with a negative control for each primer set. For PCR, the 

Eppendorf Mastercycler Gradient machine was used. The cycling conditions are shown in 

Table 2.1. 
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PCR Stage Temperature Time 

Initial Denaturation 97ºC 5 minutes 

Denaturation 94ºC 1 minute 

Annealing 56ºC 1 minute 

Extension 72ºC 1 minute 

Repeat for 39 Cycles   

Final Extension 72ºC 10 minutes 

Hold 4 ºC  

Table 2.1: Benchtop PCR protocol. The cycling temperature and time period used at each PCR stage. 

 

The optimal annealing temperatures were determined by a gradient temperature PCR with 

temperatures ranging from 55°C to 61°C increasing 1°C every cycle. Initially two primer sets 

for each Hu protein were used alongside one ß-Actin primer as a positive control. Following 

optimisation one primer set for each Hu protein was selected and used in further PCR 

applications. The primers for HuB, HuC, HuD, HuR, GAPDH and β-Actin were purchased from 

Invitrogen and the sequences are detailed in Table 2.3. 

2.2.5.1 Gel electrophoresis for PCR band analysis 

The PCR products were analysed using 1.5% agarose Tris/Borate/EDTA (TBE) gel 

electrophoresis described in Section 2.2.3 and a PCR marker (New England Biolabs) displaying 

bands of 50, 150, 300, 500 and 766bp. TBE buffer consists of 89mM tris base, 89mM boric 

acid, 2mM EDTA.NA22H20 per 1 litre, pH8.  
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2.2.6 Real time-quantitative polymerase chain reaction 

Real time quantitative PCR (RT-qPCR) was performed using Hard-Shell® 96-Well, low profile, 

semi-skirted, green PCR Plates (Bio-Rad) sealed by a Microseal® Adhesive film (Bio-Rad) and 

the Bio-Rad CFX96 PCR Detection System (Bio-Rad). For each reaction, 0.4µM of each primer, 

300ng of cDNA and milli-Q water was added to 5µl of iTaq™ universal SYBR® Green supermix 

(x2) (Bio-Rad) creating a 10µl reaction. Primer sequences are listed below in Table 2.3. 

The amplification protocol is detailed in Table 2.2. β-actin served as a positive control and to 

normalise expression levels in analysis. Negative controls containing extra Milli-Q water in 

replace of cDNA were used. Each sample had three replicates. 

 

PCR Stage Temperature Time 

Initial Denaturation 95°C 3 minutes 

Denaturation 95°C 20 seconds 

Annealing 60°C 30 seconds 

Extension 72°C 30 seconds 

Repeat for 39 Cycles   

Melt Curve 55°C – 95°C 5 seconds 

Table 2.2: RT-qPCR cycling. The cycling conditions showing temperature and time period used at each 

RT-qPCR stage. 

2.2.6.1 Real time-quantitative polymerase chain reaction analysis 

Quantitative PCR data was initially interpreted by the Bio-Rad CFX manager software. The 

mean threshold cycle values (Ct) were determined for each Hu gene and β-actin. For general 
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gene expression, the relative quantification (RQ) method, the expression change in fold-

difference was calculated using the formula:  

ΔCT = Ct target – Ct β-Actin 

This determines the quantification of the target gene against the housekeeping gene to 

investigate physiological changes in gene expressions levels.  

When comparing fold gene expression before and after small interfering RNA (siRNA) 

knockdown experiments, I used the normalised expression analysis for which the formula is: 

RQ= 2- ΔΔCT 

Where, ΔΔCT = ΔCT treated – ΔCT control 

The normalised quantification analysis shows any changes to expression levels of target genes 

following treatment.  

Melting curve analysis was conducted to measures the dissociation of double-stranded DNA 

during the heating process described in Table 2.2, by recording the absorbance intensity of 

fluorescent probes.  

2.2.7 Primer design for qualitative polymerase chain reaction 

All primers were designed using Primer-BLAST: a tool to design target-specific primers for 

polymerase chain reaction (Ye et al. 2012). Primer sequences are listed in Table 2.3. 
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Gene Size Primer Sequence 

HuB(1) 75bp Forward  5′- TGGGAGAACTGCACCGTTAC -3′ 

  Reverse  5′- TGGCAGCAATTACCTGCTTT -3’ 

HuB(2) 396bp Forward  5’- AAACCTTAAGGGAGAAAGCAGG -3’ 

  Reverse  5’- AGAAGCTGAACTTGGGCGAG -3’ 

HuC(1) 526bp Forward  5′- ACAAGATCACAGGGCAGAGC -3′ 

  Reverse  5′- CCGTAGGCCATGTTGAGCA -3’ 

HuC(2) 318bp Forward  5’- GACCAGGTCACAGGTGTCTC -3’ 

  Reverse  5’- GATGGCGATCGGCGAGAA -3’ 

HuD(1) 585bp Forward  5′- GGTTTCAGCTCACTGCTCCT -3′ 

  Reverse  5′- GGACGGGCATATGAGACCTTT -3’ 

HuD(2) 592bp Forward  5’- ATCGGGGGTTTCAGCTCACT -3’ 

  Reverse  5’- CGGACGGGCATATGAGACCTTT -3’ 

HuD(3) 359bp Forward  5′- GTCTCTTCGGGAGCATTGGT -3′ 

  Reverse  5′- CCTCTTATCAAAGCGGAT -3’ 

HuD(4) 112bp Forward  5’- CCAGGCCCTGCTGTCCC -3’ 

  Reverse  5’- AGGCTTCTCATTCCATC -3’ 

HuD(5) 245bp Forward  5′- AGCCAATTTCAGCAAGGCTC -3′ 

  Reverse  5′- GCAGAGCTTCGACTCTTCTG -3’ 

HuD(6) 73bp Forward  5’- ACACATACACGAAAGAGAGAGAAACAA -3’ 

  Reverse  5’- AACACTGGCTTATAAAGTCCATGGT -3’ 

HuR(1) 302bp Forward  5′- CGGGATAAAGTAGCAGGACACA -3′ 

  Reverse  5′- CGGATAAACGCAACCCCTCT -3’ 

HuR(2)  277bp Forward  5’- GAAGACCACATGGCCGAAGA -3’ 

  Reverse  5’- GGCGAGCATACGACACCTTA -3’ 

ß-Actin 168bp Forward 5’- CTGGAACGGTGAAGGTGACA -3’ 

  Reverse 5’- AAGGGACTTCCTGTAACAATGCA -3’ 

Table 2.3: Hu primer sequences. Sequences and target amplicon size for each primer. 
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2.2.8 PrimePCR™ assays  

To study individual genes affected by the Hu proteins, PrimePCR™ pathway plates with 

primers for specific genes already loaded in were purchased from Bio-Rad. For Glioma, we 

used the plate, Human Glioma Tier 1 and for Neuroblastoma we used Human Neuroepithelial 

Neoplasms Tier 1. The PCR plates also include general PCR controls. The Plates were loaded 

the same as normal PCR plates but without primers. 

2.7.9 Statistical analysis of transfections 

All results represent the mean ± standard deviation from three independent experiments. An 

unpaired two-tailed T-test was used to evaluate the differences between the control cells and 

Hu knockdown cells in GraphPad prism software. Significant significance is displayed as *P ≤ 

0.05, **P ≤ 0.01, ***P ≤ 0.001. 

2.3 Western blotting 

Western blotting allows the detection of specific proteins with in a cell line. Firstly, protein is 

extracted from a cell line, it is then quantified and prepared for western blotting. 

2.3.1. Cell lysis 

Whole cell lysates were prepared from all cell lines by adding 1ml of ice-cold RIPA (Radio 

Immuno-Precipitation Assay) buffer containing 150mM NaCl, 1.0% IGEPAL CA-630, 0.5% sodium 

deoxycholate, 0.1% SDS, 50mM Tris with pH 8.0, directly to a 75cm2 confluent flask which has 

been washed with PBS. For 6-well plates a smaller volume of 0.5ml RIPA buffer was used. Cell 

scrapers aided detaching of the cells from the flask and collection into an Eppendorf tube. The 
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suspension was left rocking for 30 minutes at 4°C. The samples were then centrifuged at 

13,000g for 20 minutes to pellet cell debris and the supernatant was transferred to a new 

tube. Samples were stored on ice prior to protein spectrophotometry, Western blotting or 

storage at -20°C for longer periods of time.  

2.3.2 Protein quantification 

2.3.2.1 Spectrophotometry 

The protein concentrations were initially determined using a spectrophotometer at 280nm using 

RIPA buffer as a blank. Aliquots were stored at -20°C. 

2.3.2.2 Bradford assay 

To optimise the protein quantification, the Bradford assay was used. A series of standard 

Bovine Serum Albumin (BSA) concentrations were prepared from 100 to 1000µg/ml with a 

blank sample at 0µg/ml. The BSA was diluted in deionised water. At the same time, five 

dilutions of the unknown protein isolations were diluted also in deionised water to create a 

range between 0 and 1:15. All dilutions were performed in cuvettes to which 1ml of Bradford 

reagent was added, mixed and incubated at room temperature for five minutes. The 

absorbance of the standards and unknown samples were read at 595nm.  
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2.3.3 Protein preparation 

The proteins were mixed 1:1 ratio with SDS loading buffer (1M TrisHCl pH 6.8, 10% SDS, 0.2% 

Bromophenol blue, 1M DTT and Glycerol in MilliQ water). The samples were boiled at 95ºC for 

5 minutes in a heating block to ensure denaturation. 

2.3.4 Sodium dodecyl sulphate-polyacrylamide gels  

A 12% SDS-PAGE gel composed of a 4% stacking gel (30% Acrylamide, 1m Tris HCl pH6.8, 10% 

SDS and water) and a 12% separating gel (4x Lower gel buffer (1.5M Tris Base, 0.5% SDS and 

H2O), 30% acrylamide, 10% ammonium persulphate, TEMED and water) was used to separate 

proteins of different samples.  

To improve the efficiency and manage time restraints, 12-well Mini-Protean® TGX Stain-free™ 

Any kD™ Precast Gels (Bio-Rad) were also used.  

2.3.5 Separation of proteins 

The Mini-PROTEAN® electrophoresis tank (Bio-Rad) was filled with 1L protein running buffer 

(3.5mM SDS, 25mM Tris, 192mM Glycine and water) ensuring both inside and outside of the 

chambers were filled. Once the gel combs were removed, the wells were loaded with 20µl of 

sample and at least one well contained 5 µl Precision Plus Protein™ Dual Colour Standard (Bio-

Rad) which has stained bands ranging between 10-250kD.  

Current was applied to the SDS-PAGE gel at 20mA for 10 minutes, followed by 25mA (until the 

gel had run to the end) for a single gel to allow the separation of proteins. The current was 

increased on the addition of more gels into the tank.  
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2.3.6 Transfer to nitrocellulose membrane 

On completion of the electrophoresis, the gels were released from the plates and proteins were 

transferred from the gel to a nitrocellulose membrane, either by a wet blot system or later a 

semi dry blotting. For the wet blot method, a sandwich of Grade 3MM Chromatography blotting 

paper (Fisher), gel and Amersham Protran 0.45 nitrocellulose membrane (Fisher Scientific) was 

held tightly in a holder and 70V was applied to the tank containing Transfer buffer (25mM Tris, 

192mM glycine, 20% (v/v) methanol, 0.1% SDS in water) for approximately 1 hour at room 

temperature. For the semi-dry blot method, a Trans-Blot® Turbo™ Midi PVDF Transfer Pack 

(Bio-Rad) and Trans-Blot®Turbo™ Blotting System (Bio-Rad) were used. The gel was placed 

onto a nitrocellulose membrane directed towards the anode. The Bio-Rad pre-defined 

method for a mixed molecular weight turbo mode which runs for 7 minutes at 55V, 1.3A was 

used for all membranes. 

2.3.7 Membrane blocking 

The membrane was blocked in 5% semi-skimmed milk powder diluted in Tris-buffered saline 

with/Tween solution (50mM Tris-HCl, pH 7.6; 150mM NaCl, H20 and 0.05% Tween20) (TBST) 

for 30 minutes on a Gyro-rocker (Stuart Scientific Bibby). The remaining binding surface of the 

membrane is blocked to prevent nonspecific binding of the antibodies. The milk was removed 

ready for the addition of antibodies.  

2.3.8 Immunolabelling 

The primary Hu Antibodies were sourced from Santa Cruz Biotechnology. Anti-HuB (N-15): sc-

5982 goat polyclonal IgG, anti-HuC (G-15): sc-5981 goat polyclonal IgG, anti-HuD (E-1): sc-28299 
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mouse monoclonal IgG, anti-HuR (G-8): sc-365816 mouse monoclonal IgG. Anti-GAPDH (14C10) 

rabbit monoclonal IgG was purchased from Cell Signalling. Primary antibodies were added to 

membranes at a 1:1000 dilution in TBST containing 10% semi-skimmed milk powder. The 

membranes were left in the antibody solution on the gyro-rocker (Stuart Scientific Bibby) 

overnight at 4°C.  

The non-bound primary antibody was removed by washing the membrane in TBST for three 

times for 10 minutes on the gyro rocker (Stuart Scientific Bibby). Horse-radish peroxidase (HRP)-

conjugated secondary antibodies, goat anti-mouse IgG (H+L) Poly-HRP conjugated antibody 

(Life technologies) at a concentration of 1:10000 or goat anti-rabbit fluorescent HRP-conjugated 

antibody (Cell signalling), Rabbit anti-goat IgG (H+L) Secondary Antibody HRP conjugate (Life 

Technologies) 1:2000 in TBST 0.5% semi-skimmed milk powder was added to the membrane and 

left to incubate at room temperature for 1 hour with constant rocking. Three final washes of 10 

minutes in TBST occurred to remove unbound secondary antibody.  

2.3.9 Immunodetection  

To develop the membrane, Supersignal® West Femto Maximum Sensitivity Substrate 

Chemiluminescent kit (Thermo Fisher Scientific) was used following the manufacturer’s 

instructions, of which 1ml of luminol enhancer solution and 1ml of stable peroxide buffer was 

added and left to develop for two minutes. Immunodetection of Hu proteins and controls were 

performed using the chemi-doc UV analyser (Bio-Rad) and Bio-Rad Image Lab version 4.1 

software. 
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2.4 Immunofluorescence protein labelling 

Cells were double-immunostained to confirm the presence and localisation of Hu proteins and 

the cell nucleus.  

2.4.1 Adherent cell lines  

The cell lines were seeded into sterile 6-well plates containing 19mm glass cover slips at 

0.5x105/ml. Cells were incubated overnight at 37ºC and 5% CO2. The adhered cells were washed 

with PBS three times for 10 minutes and fixed with cold 4% paraformaldehyde for 20 minutes. 

Cells were washed to remove the fix, three times for 10 minutes with PBST (1x PBS, 10% FBS, 

0.1% Triton X100). Primary antibody anti-HuB goat polyclonal IgG, anti-HuC goat polyclonal IgG, 

anti-HuD mouse monoclonal IgG, anti-HuR mouse monoclonal IgG (Santa Cruz Biotechnology) 

was added to the well diluted in Phosphate buffered saline with Tween 20 (PBST). The plates 

were left overnight at 4°C in the dark. The wells were then washed with three times with PBST 

again. The secondary mouse anti-goat Alexa Green 488 Fluorescein isothiocyanate (FITC) IgG 

(Invitrogen) or goat anti-mouse Alexa 488 FITC IgG (Fisher) was applied to the wells 1:250 

dilution 4',6-diamidino-2-phenylindole (DAPI) nucleus stain 1:1000 in PBST and incubated for 1 

hour. Cells were washed a final three times for 10 minutes in PBST. Analysis is described below 

in section 2.4.3. 

2.4.2 Suspension cell lines 

Cells were seeded into 6-well plates at a concentration of 1x105/ml. Following 24 hours’ 

incubation, the cells were transferred to an Eppendorf tube, to pellet the cells, the tube was 

spun at 800rcf for 3 minutes and the media discarded. The pellet was re-suspended in 160µl of 
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PBS and 20µl of 3.7% paraformaldehyde was added to the suspension. Following incubation at 

room temperature for 15 minutes, the suspension was centrifuged for 3 minutes at 800rcf and 

the supernatant was discarded. 1ml of PBS was added and the tube was spun at 800rcf for 3 

minutes and the supernatant discarded, and the wash step repeated. To permeabilise the cells, 

the pellet was re-suspended in 500µl of 0.3% Triton X100 in PBS. The tube was centrifuged at 

800rcf for 3 minutes and the supernatant removed. 1µl primary antibody for anti-HuB, anti-HuC, 

anti-HuD or anti-HuR suspended in PBST was then added and incubated at room temperature 

overnight. The cells were centrifuged for 3 minutes at 800rcf followed by a wash with 500µl PBST 

and a spin for 3mins at 800rcf twice. The secondary antibodies were added along with 1µl DAPI 

nucleus stain. This suspension was left for 1 hour at room temperature. The tube was spun at 

800rcf for 3 minutes and the supernatant removed. Two final washes in PBT spun at 800rcf for 

3 minutes occurred. Following the discard of the final supernatant the cells were transferred to 

a coverslip. 

2.4.3 Analysis of immunofluorescence 

Before fluorescence microscope analysis, all the coverslips were mounted on a microscope slide 

using Vectashield (Vectorlabs) to protect the fluorescent labelled samples from photobleaching 

the presence and cellular localisation of the different proteins were visualised and 

photographed using the Nikon Eclipse II fluorescent microscope, Microtec camera with the DAPI 

- 358nm and Fluorescein isothiocyanate (FITC) - 495nm filters and imaged using the SOFTWARE. 

Images were then overlaid using the software Image-J (National Institute of Health, US). 
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2.5 Cell migration assays 

Cell movement was recorded on a CytoSMART™ microscope camera (Lonza, Switzerland) set 

to image every 15 minutes until the migration is complete or a given time. Due to malfunction 

of this equipment mid-project, cell movement was recorded using the Nikon Eclipse II 

fluorescent microscope and Microtec camera. 

2.5.1 Agarose-gel migration 

Prior to cells seeding, a 10µl droplet of 0.5% solution of electrophoresis grade agarose gel was 

created in 24-well opening. After 15 minutes’ cells were seeded into 24-well plate at a 

concentration of 5x104 in 500µl of fresh media. Cells were incubated for 24-hours to allow 

the cells to adhere to the wells before imaging began. Images were captured every 15 mins. 

The images analysed were every 6 hours over a 42-hour period. Images were acquired by a 

CytoSMART™ camera. 

2.5.2 Scratch-wound assays 

Cells were seeded into 6-well plates SK-N-AS 0.7x105/ml, SH-SY5Y 1x105/ml and U87-MG 

0.65x105/ml, 72-hours post transfection once protein knockdown was confirmed, multiple 

wounds were made per well using a sterile metal syringe edge to disturb the monolayer. 

Detached cells were removed by replacing the media. The wound was imaged every 24 hours 

for 96 hours. Between imaging cells were incubated under normal conditions.  
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2.5.3 Data analysis of migration assay 

All imagery analysis of migration assays was achieved using the software Image-J (National 

Institute of Health, US). Percentage area of cell migrated into agarose gel and percentage area 

of cells invading an man-made gap was calculated. 

2.6 Cell metabolism assay 

To determine any changes in cell growth before and after transfection, CellTiter 96® AQueous 

One Solution Cell Proliferation Assay (MTS) (Promega, US) was used. All studies were under 

normal cell culture conditions. 

This cell proliferation assay focuses on the reduction of the tetrazolium compound [3-(4,5-

dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt also 

known as MTS. Like the MTT assay described above, NADPH and NADH produced by 

dehydrogenase enzymes in metabolically active cells aid the reduction process. Phenazine 

ethosulfate (PES) combines with MTS to form a stable solution. 48-hour post-transfection, 

20µl of the CellTiter 96® AQueous One Solution Reagent was added to each well of the 96-well 

plate containing cells in 100µl of medium. The plate was then incubated under normal 

conditions for 2 hours. The absorbance of the plate was then read at 490nm using the 

fluorescent plate reader.  

From the absorbance readings, we could calculate the percentage of cell growth and cell 

growth inhibition using the following equations. 
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2.6.1 Data analysis of proliferation assays 

Changes were calculated as percentage of control cell growth using the formula: 

Change in proliferation = 

(%) 

Mean absorbance of Hu siRNA 

transfection 
X100 

Mean absorbance of Hu siRNA 

control transfection 

 

Significance was calculated by a two-tailed t-test.  This analysis allows the linear relationship 

between cell number and signal produced to be documented.  

2.7 Transfection 

Each cell line was tested to derive the most suitable cell seeding, incubation periods, 

transfection reagent and concentrations of those transfection regents and siRNAs.  

2.7.1 Small-interfering RNAs  

All siRNA was purchased in a stock of 10nmol which was suspended in 500ul of 1X siRNA 

buffer (Thermo Fisher Scientific) to produce a 20uM stock. Further dilutions of this stock were 

made depending on the requirements of individual transfection protocols. 

 

  



111 
 

ON-TARGETplus SMARTpool siRNA sequences Sequence 

HuB ELAVL-2 

UCACAAUAUGGACGCAUUA 

CAAUAUGGCUUAUGGAGUA 

GGUGUAGGGUUUAUUCGAU 

GAAAUAGAGUCCUGUAAGC 

HuC ELAVL-3 

CCUCAACGGCCUCAAAUUA 

GCGAACAACCCAAGUCAGA 

GCAAGUUGGUUCGGGACAA 

UCAAGGUCAUCCGUGAUUU 

HuD ELAVL-4 

GGUAUGGAUUUGUUAACUA 

GGAACUGGGUGGUGCAUCU 

CUACGGAACCGAUUACUGU 

CAGGGAUGCUAACCUCUAU 

HuR ELAVL-1 

GACAAAUCUUACAGGUUU 

GACAUGUUCUCGGUUUG 

ACAAAUAACUCGCUCAUGC 

GCUCAGAGGUGAUCAAAGA 

GAPDH Control Pool 

GUCAACGGAUUUGGUCGUA 

CAACGGAUUUGGUCGUAUU 

GACCUCAACUACAUGGUUU 

UGGUUUACAUGUUCCAAUA 

Non-targeting Pool 

UGGUUUACAUGUCGACUAA 

UGGUUUACAUGUUGUGUGA 

UGGUUUACAUGUUUUCUGA 

UGGUUUACAUGUUUUCCUA 

Table 2.4: Sequences of siRNAs. The sequences of the siRNA constructs are shown in the table.   
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2.7.2 JETprime transfection 

JETprime (Polyplus transfection) regent was determined the most suitable for SK-N-AS 

transfection. SK-N-AS cells were seeded at 1.4x105 for RNA or 1.3x105 for protein analysis in 

6-well plates and left under normal cell culture conditions for 24 hours. siRNAs were diluted 

to give a final concentration of 50nM and 4ul of JETprime was added. After a quick vortex and 

spin, it was left to incubate at room temperature for 15 minutes for the JETprime/siRNA 

complexes to form. To mix was then added dropwise to the wells containing 2ml Antibiotic-

free media and incubated for 48 hours at 37ºC and 5% CO2. After transfection, cells were 

harvested for RT-PCR at 48 hours’ post-transfection or protein analyses at 72-hour post-

transfection. 

2.7.3 DharmaFECT I transfection 

DharmaFECT I (Dharmacon) reagent was used for both U87-MG and SH-SY5Y cell lines. For a 

6-well plate, cells were seeded at SH-SY5Y 1x105/ml and U87-MG 0.65x105/ml for RNA 

analysis and SH-SY5Y 0.95x105/ml and U87-MG 0.6x105/ml for protein analysis into media 

containing no serum and incubated for 24 hours under normal conditions. For each Hu protein 

and controls, two separate solutions were prepared in sterile Eppendorf tubes. The first 

containing siRNA to a to a final concentration of 25nM and the second containing 6ul of 

DharmaFECT I in 200ul of serum-free media. The two tubes were mixed on a vortex and spun 

for several seconds followed by an incubation for 15 minutes at room temperature to allow 

the DharmaFECT I/siRNA complexes to form. The tubes were combined and mixed by vortex 

and centrifugation and incubated for a further 20 minutes. After this time, 1600ul of antibiotic 

free-media was added to the mix and the whole solution applied to the well of the cells. Cells 
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were incubated in the transfection mix for 48 hours at 37ºC and 5% CO2 before harvesting 

RNA and or for 72 hours for harvesting protein for analysis. 

2.7.4 Lipofectamine RNAi MAX 

Lipofectamine RNAi MAX (Invitrogen) was used during initial testing of siRNA knockdown 

experiments. Different concentrations of Lipofectamine RNAi MAX and all Hu genes siRNA 

were trialled following the manufacturers guidelines. In one Eppendorf tube, Lipofectamine 

RNAi MAX was diluted in 150µl of Gibco™ Opti-MEM™ - Reduced Serum Media (ThermoFisher 

Scientific). In a second Eppendorf tube, the siRNA was diluted also in 150µl Gibco™ Opti-

MEM™. The two tubes were mixed together and incubated at room temperature for 20 

minutes to allow the Lipofectamine/siRNA complex to form. 250µl of the solution was added 

to each well followed by 2250µl of antibiotic-free media. Incubation at 37ºC and 5% CO2 for 

48 hours before harvesting protein and RNA.  

2.7.5 Statistical analysis of transfections 

All results represent the mean ± standard deviation from three independent experiments. 

The T-test was used to evaluate the differences between the control cells and Hu knockdown 

cells in Graphpad Prism software. Significant significance is displayed as *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001. 
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Chapter 3 

Results 

Part I: Expression of Hu proteins in Small cell lung 

cancer, Non-small cell Lung Cancer and normal 

bronchial epithelial cells 

Hu protein expression was first identified in patients with Small cell lung cancer (SCLC) and 

paraneoplastic encephalomyelitis and/or a sub-acute sensory neuropathy (PEM/SN) (Szabo,  

a et al. 1991). All SCLC tumours aberrantly express neuronal HuD protein and the tumour-

initiated immune response can be detected in up to 20% of those patients, however PEM/SN 

is thought to occur in only 1% of all SCLC patients (Dalmau and Furneaux 1992, DeLuca et al. 

2009).  

The aim of this study was to investigate the presence of Hu RNA-binding proteins in lung 

cancer cells and normal bronchial epithelial cells as a control. A detailed analysis of Hu 

expression could potentially be used to detect SCLC at an early stage of disease and improve 

treatment options that are currently very limited. Detection could be done through blood 

screening for Hu antibodies or following tissue extraction (D’Alessandro et al. 2008). The 

development of molecular markers for targets of drug therapies could improve the low 

survival rates associated with SCLC.  

To investigate the expression of HuB, HuC, HuD and HuR in Small cell lung cancer the NCI-

H345, NCI-H69 and CorL88 cell lines were used. Additionally, the normal bronchial epithelial 

cell line BEAS2B was used as a control, whilst Non-small cell lung cancer cell lines NCI-H322 

and NCI-H358 allowed the comparison of these characteristically different lung cancers.  
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In addition to Hu gene and protein expression and localisation, a comparison of the 

morphology of the normal lung and cancerous lung cell lines and the motility of the NSCLC 

cells compared to the normal bronchial epithelial cells. These particular cell lines have not 

previously been examined for this property.  

3.1 Hu gene and protein expression and localisation in Small cell lung 
cancer, Non-small cell lung cancer and normal bronchial epithelial 
cells 

The aberrant expression of Hu genes is often recognised within cancers. To build an 

expression profile, each Hu gene and protein was analysed separately in all cell lines for gene 

expression, protein expression and protein localisation. 

Investigations into HuB gene expression levels in the normal bronchial epithelial cells, NSCLC 

and SCLC cell lines were performed by real time-quantitative polymerase chain reaction (RT-

qPCR) (described in Section 2.26) measuring mRNA levels. Primers sequences are listed in 

Table 2.3 in Section 2.27. 

Gene expression studies at RNA level do not necessarily reflect on the abundance of the gene 

product. Therefore, Western blot was used to determine the protein expression level. There 

is much evidence to suggest the localisation of Hu proteins within a cell determine its function 

therefore immunofluorescent staining confirmed protein localisation within the cells 

(Kasashima, K et al. 1999). 
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3.1.1 HuB expression 

RT-qPCR analysis of HuB gene expression in the normal bronchial epithelial cells, NSCLC and 

SCLC cell lines used the primers HuB (1) and β-Actin that are described in Table 2.3. The mRNA 

expression of HuB in SCLC, NSCLC and normal bronchial epithelial cells is displayed in Fig. 3.1. 
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Figure 3.1: HuB gene expression in SCLC, NSCLC and normal bronchial epithelial cell lines. HuB gene 

expression was analysed by RT-qPCR in Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-

H69, Non-small cell lung cancer cell lines, NCI-H322 and NCI-H358 and normal bronchial epithelial cells 

BEAS2B. The ΔCt results shown are an average of three replicates normalised to β-Actin gene 

expression, relative to zero. Error bars display ± standard error of the mean (SEM). Statistical 

significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 

0.001. (n=3).  

 

The examined gene, HuB, is a member of the Hu RNA-binding protein family and normally 

exclusive to the neurons and gonads. The expression of HuB gene was absent in the normal 

bronchial epithelial cells, NSCLC cells and CorL88 SCLC cells. Significant HuB expression was 
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observed in two of the SCLC cell lines, NCI-H345 and NCI-H69 when compared to the control 

normal bronchial epithelial cells. A 2.6-fold-increase of HuB gene expression was seen in NCI-

H345 cells when compared to the control BEAS2B cells. Whilst a 3.1-fold-increase of HuB gene 

expression was observed in NCI-H69 cells. These results indicate aberrant expression of HuB 

gene in the NCI-H345 and NCI-H69 SCLC cell lines. 

To further analyse if the gene expression of the HuB RNA-binding protein could be detected 

at protein level, western blotting was performed (Figure 3.2). Each cell line derived from 

normal bronchial epithelial cells, Small cell lung cancer and Non-small cell lung cancer was 

blotted and stained for HuB protein. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

was used as a loading control. 

 

Figure 3.2: Representative example of HuB protein expression detected by western blot. HuB 

protein expression in normal bronchial epithelial cell line BEAS2B, Non-small cell lung cancer cell lines, 

NCI-H322 and NCI-H358 and Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-H69. GAPDH 

protein expression was used as a loading control (n=3). 

 

The strongest HuB expression was observed in the SCLC cell lines CorL88, NCI-H345 and NCI-

H69 represented by darker bands that are less than the loading control. Weaker expression 
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was observed in the NSCLC cell lines NCI-H322 and NCI-H358 displayed by fainter bands 

showing less expression than the loading control. Only GAPDH protein could be detected in 

the lane containing protein extracted from the normal bronchial epithelial cells BEAS2B, 

confirming an absence of HuB protein expression. 

Whilst there was an absence of HuB gene expression in both NSCLC cell lines and SCLC cell 

line CorL88 (Fig. 3.2), a low level of HuB gene expression must be present to produce these 

proteins that is detected when the gene expression data is normalised. 

To determine the subcellular localisation of HuB proteins, immunofluorescent staining was 

performed with primary anti-HuB IgG and secondary Alexa green 488 FITC IgG (Fig 3.3). Cells 

were counterstained with DAPI for nuclear localisation.  
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Figure 3.3: Representative example of HuB protein localisation in SCLC, NSCLC and normal bronchial 

epithelial cells. Cellular localisation of HuB in the normal bronchial epithelial cells BEAS2B, Non-small 

cell lung cancer cell lines, NCI-H322 and NCI-H358 and Small cell lung cancer cell lines, CorL88, NCI-

H345 and NCI-H69. The left column showed staining of nuclei with DAPI (blue), the is middle column 

with anti-Hu (green) and the right column displays merged pictures. Magnification 20x. (n=3). 
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A low signal was detected for HuB protein in BEAS2B however, there was no HuB gene 

expression detected (Fig. 3.1) and it was absent from the western blot protein analysis (Fig. 

3.2). An explanation for this is that it is background noise arising from fluorescence or 

nonspecific staining. Lack of fluorescent anti-Hu staining confirmed HuB was absent in the 

NSCLC cell lines NCI-H322 and NCI-H358. Whilst, two of the SCLC cell lines, NCI-H345 and NCI-

H69 showed HuB protein expression consistent with the gene expression data (Fig. 3.1) and 

western blot protein determination shown in Fig. 3.2. CorL88 displayed some HuB protein 

expression in some of the cells that localised in the cytoplasm. 

In NCI-H69 cells, anti-HuB staining co-localised with the DAPI nucleus stain therefore 

confirming HuB protein is localised in the nucleus of these cells. NCI-H345 showed stronger 

HuB expression than NCI-H69 however, in this cell line HuB protein was clearly localised in 

the cytoplasm. 

3.1.2 HuC expression 

Next, analysis of HuC gene expression in cell lines representative of the normal bronchial 

epithelial cells, NSCLC and SCLC was performed using RT-qPCR. The mRNA expression of HuC 

in SCLC, NSCLC and normal bronchial epithelial cells is shown in Fig. 3.4. 
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Figure 3.4: Gene expression of HuC in SCLC, NSCLC and normal bronchial epithelial cells. HuC gene 

expression was analysed by RT-qPCR in Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-

H69, Non-small cell lung cancer cell lines, NCI-H322 and NCI-H358 and normal bronchial epithelial cells 

BEAS2B. The ΔCt results shown are an average of three replicates normalised to β-Actin gene 

expression relative to zero. Error bars display ± standard error of the mean (SEM). Statistical 

significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 

0.001. (n=3). 

 

The expression of HuC was absent in the NSCLC and normal bronchial epithelial cells. HuC 

gene expression was observed in CorL88, NCI-H345 and NCI-H69 confirming significant 

aberrant expression of HuC in SCLC when compared to the normal bronchial epithelial cells. 

A 1.55-fold-increase of HuB gene expression was observed in CorL88 compared to the normal 

bronchial epithelial cells, BEAS2B. A 2.7-fold-increase of HuC expression was observed in NCI-

H345 and a 1.0-fold-increase of HuC was shown in NCI-H69.  
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To detect if the gene expression was present at a protein level, western blotting (Section 2.3) 

of HuC protein using anti-HuC IgG was performed in each cell line derived from normal 

bronchial epithelial cells, Small cell lung cancer and Non-small cell lung cancer. GAPDH was 

used as a control protein with anti-GAPDH IgG to compare protein expression. Horse-radish 

peroxidase (HRP)-conjugated secondary antibodies were used to allow a detectable signal. The 

protein expression of HuC, RNA-binding protein in SCLC, NSCLC and normal bronchial epithelial 

cells is shown in Fig. 3.5. 

 

 

Figure 3.5: Representative example of HuC protein detected by western blot. HuC protein expression 

in normal bronchial epithelial cells BEAS2B, Non-small cell lung cancer cell lines, NCI-H322 and NCI-

H358 and Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-H69. GAPDH protein expression 

was used as a loading control (n=3). 

 

The results confirm an absence of HuC protein expression in the cell extracts of the normal 

bronchial epithelial cell line BEAS2B and NSCLC cell lines, NCI-H322 and NCI-H358. HuC 

protein was detected in the SCLC cell lines NCI-H345 and NCI-H69, correlating with the gene 

expression profile (Fig. 3.4). The bands detected for HuC protein in NCI-H345 and NCI-H69 are 
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less than the loading control. Interestingly, HuC gene was expressed in CorL88, but could not 

be detected at protein level. 

Immunofluorescence staining was performed to confirm the HuC protein presence in the 

normal and cancer cell lines and to identify its subcellular localisation using anti-HuC and 

secondary Alexa green 488 FITC IgG (Fig 3.6).  
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Figure 3.6: Example of HuC protein localisation in SCLC, NSCLC and normal bronchial epithelial cells. 

Cellular localisation of HuC in the normal bronchial epithelial cells BEAS2B, Non-small cell lung cancer 

cell lines, NCI-H322 and NCI-H358 and Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-H69. 

The left column showed staining of nuclei with DAPI (blue), the is middle column with anti-Hu (green) 

and the right column displays merged pictures. Magnification 20x. (n=3). 
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A very low fluorescence of HuC protein in BEAS2B cells was observed. However, since there 

was no HuC gene expressed (Fig. 3.4) and it was absent in the western blot protein analysis 

(Fig. 3.5), this must therefore be background fluorescence. This background fluorescence was 

also detected in staining of HuB protein in the BEAS2B cells strongly suggesting these cells 

autofluorescence.  

HuC was absent from both NSCLC cell lines, NCI-H358 and NCI-H322 as expected. Two of the 

three SCLC cell lines, NCI-H345 and NCI-H69 showed HuC protein expression which differs 

from the gene expression results where all three SCLC cell lines including CorL88 showed HuC 

gene expression (Fig. 3.4).  

NCI-H69 displays HuC protein that co-localises with the DAPI nucleus stain, therefore 

confirming HuC protein was localised to the nucleus of these cells. NCI-H345 showed stronger 

HuC protein expression than NCI-H69 and the staining was inconsistent with the DAPI nucleus 

stain. This concludes HuC protein was localised to the cytoplasm in these cells. These findings 

highlight variation of Hu protein localisation in SCLC cell lines.  

Additionally, correlation was seen between the varied localisation of aberrantly expressed 

HuB and HuC proteins in the NCI-H345 and NCI-H69 cell lines individually. Like HuB protein in 

Fig 3.3, Fig3.6 showed HuC protein was present in the cytoplasm of NCI-H345 whereas HuB 

and HuC proteins were present in the nucleus of NCI-H69. 

3.1.3 HuD expression 

HuD gene expression analysis in cell lines representative of the normal bronchial epithelial 

cells, NSCLC and SCLC was performed by RT-qPCR described in Section 2.2.6. The mRNA 
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expression of HuD RNA-binding protein in SCLC, NSCLC and normal bronchial epithelial cells 

is shown in Fig. 3.7. 
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Figure 3.7: Gene expression of HuD in SCLC, NSCLC and normal bronchial epithelial cells. HuD gene 

expression was analysed by RT-qPCR in Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-

H69, Non-small cell lung cancer cell lines, NCI-H322 and NCI-H358 and normal bronchial epithelial cells 

BEAS2B. The ΔCt results shown are an average of three replicates normalised to β-Actin gene 

expression relative to zero. Error bars display ± standard error of the mean (SEM). Statistical 

significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 

0.001. (n=3). 

 

The expression of HuD gene was absent in the normal bronchial epithelial cells, BEAS2B and 

NSCLC cells, NCI-H322 and NCI-H358. HuD gene was expressed in all SCLC cell lines CorL88, 

NCI-H345 and NCI-H69, highlighting significant aberrant expression of HuD in this cancer 
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compared to the normal bronchial epithelial cells. A 1.2-fold-increase of HuD gene expression 

was observed in CorL88 compared to the normal bronchial epithelial cells, BEAS2B. A 2.6-fold-

increase of HuD gene expression was observed in NCI-H345 and a 2.0-fold-increase of HuD 

gene expression was observed in NCI-H69.  

To confirm if the HuD gene expression is effectively translated to a protein, western blot 

analysis (Section 2.3) was performed. Anti-HuD IgG was used for the detection of HuD protein 

in each cell lines derived from normal bronchial epithelial cells, Small cell lung cancer and 

Non-small cell lung cancer. GAPDH expression was also detected using anti-GAPDH IgG and 

used as a loading control. The protein expression of HuD, RNA-binding protein in normal 

bronchial epithelial cells, NSCLC and SCLC cell lines is displayed in Fig. 3.8.  

 

 

Figure 3.8: Representative western blot of HuD protein with anti-HuD antibody. HuD protein 

expression in normal bronchial epithelial cells BEAS2B, Non-small cell lung cancer cell lines, NCI-H322 

and NCI-H358 and Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-H69. GAPDH protein 

expression was used as a loading control (n=3). 
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An absence of HuD protein expression was observed in the normal bronchial epithelial cell 

line BEAS2B and NSCLC cell lines, NCI-H322 and NCI-H358 correlating with gene expression 

results where HuD mRNA was not expressed (Fig. 3.7). HuD protein was detected in two of 

the three SCLC cell lines. NCI-H345 and NCI-H69 cells show faint bands indicating HuD protein 

expression whilst no band is present in the CorL88 cells. This differs from HuD gene expression 

shown in Fig. 3.7 where CorL88 also expressed HuD mRNA. 

To clarify the data above and identify HuD’s subcellular localisation in SCLC cell NCI-H345 and 

NCI-H69, immunofluorescence staining was performed. Anti-HuD IgG was used with the 

secondary Alexa 488 FITC IgG. Cells were also counterstained with DAPI nucleus stain for 

nuclear localisation. 
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Figure 3.9: Representative localisation of HuD protein in SCLC, NSCLC and normal bronchial 

epithelial cells. Cellular localisation of HuD in the normal bronchial epithelial cells BEAS2B, Non-small 

cell lung cancer cell lines, NCI-H322 and NCI-H358 and Small cell lung cancer cell lines, CorL88, NCI-

H345 and NCI-H69. The left column showed staining of nuclei with DAPI (blue), the is middle column 

with anti-Hu (green) and the right column displays merged pictures. Magnification 20x. (n=3). 
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The Immunofluorescence staining shown in Fig. 3.9 collaborates gene expression (Fig. 3.7) 

and western blot data (Fig. 3.8), where an absence of HuD gene and protein is shown in the 

normal bronchial epithelial cell line BEAS2B and the NSCLC cell lines NCI-H322 and NCI-H358. 

HuD gene expression (Fig. 3.7) in CorL88 is confirmed at a protein level by 

immunofluorescence confirms a protein expression with a low signal observed in CorL88 SCLC 

cells. HuD protein expression in CorL88 was not detected during western blot (Fig. 3.8) and 

low protein expression level was most likely the cause of this. Additionally, low fluorescence 

of HuD protein was detected in the SCLC NCI-H345 cells, contrasting the strong fluorescence 

observed in SCLC NCI-H69 cells. 

The HuD staining in CorL88 and NCI-H345 cells was inconsistent with the DAPI nucleus stain 

ultimately showing HuD was localised in the cytoplasm in these cells. NCI-H69 has HuB 

staining that co-localises with the DAPI nucleus stain and confirming its expression there. 

3.1.4 HuR expression 

Analysis of HuR gene expression in cell lines representative of the normal bronchial epithelial 

cells, NSCLC and SCLC was performed by RT-qPCR (Section 2.2.6). The fold-change of gene 

expression was calculated comparing expression to the normal bronchial epithelial cells 

BEAS2B. The data was normalised to the housekeeping gene β-Actin. HuR (2) and β-Actin 

primers are listed in Table 2.3. Statistical significance was calculated by a two-tailed t-test. 

The mRNA expression of HuR RNA-binding protein in normal bronchial epithelial cells, BEAS2B 

cell line, NSCLC cell lines NCI-H322 and NCI-H358 and SCLC cell lines CorL88, NCI-H345 and 

NCI-H69 is shown in Fig. 3.10.  
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Figure 3.10: Gene expression of HuR in SCLC, NSCLC and normal bronchial epithelial cells. HuR gene 

expression was analysed by RT-qPCR in Small cell lung cancer cell lines, CorL88, NCI-H345 and NCI-

H69, Non-small cell lung cancer cell lines, NCI-H322 and NCI-H358 and normal bronchial epithelial cells 

BEAS2B. The ΔCt results shown are an average of three replicates normalised to β-Actin gene 

expression relative to zero. Error bars display ± standard error of the mean (SEM). Statistical 

significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 

0.001. (n=3). 

 

HuR gene is ubiquitously expressed in human cells and this was confirmed by RT-qPCR where 

HuR gene expression was confirmed in all cell lines (Wang et al. 2013). Overall, a higher 2-ΔΔCt 

HuR mRNA expression was observed in the cancer cell lines in comparison to the normal 

bronchial epithelial cells control with a significant increase observed in the NSCLC cell line 

NCI-H322 and SCLC cell line CorL88 and NCI-H345. Of the two NSCLC cell lines, a 1.51 fold-

increase was observed for NCI-H322 whilst a 0.44 fold-increase was observed in NCI-H358, 
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the latter was not significant. The three SCLC cell lines revealed a 1.44 fold-increase in HuR 

expression for CorL88, a 1.61 fold-increase in NCI-H345 and a 0.51 fold-increase in NCI-H69, 

again the latter was not significant.  

To confirm if the HuR gene was present at a protein level, western blot analysis using anti-

HuR IgG was carried out in each cell line derived from normal bronchial epithelial cells, Small 

cell lung cancer and Non-small cell lung cancer was compared. Anti-GAPDH IgG was also used 

for the detection of GAPDH as a loading control. Horseradish peroxidase (HRP)-conjugated 

secondary antibodies were used to allow a detectable signal. 

The protein expression of HuR, RNA-binding protein in normal bronchial epithelial cells, NSCLC 

and SCLC cell lines is displayed in Fig. 3.11. 
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Figure 3.11:  Example western blot analysis of HuR protein with anti-HuR antibody. A) HuR protein 

expression in normal bronchial epithelial cell line and different NCLC and SCLC cell lines. B) HuR protein 

expression in the normal bronchial epithelial cells and NSCLC cell lines only. GAPDH protein expression 

was used as a loading control in both blots. (n=3). 

 

HuR protein was detected in the cell extracts from NSCLC cell lines NCI-H322 and NCI-H358, 

and SCLC cell lines CorL88, NCI-H69 and NCI-H345 cell lines represented by two distinct bands 

around 36kDa, the expected size of HuR. A possible explanation for the two bands is that HuR 

has experienced posttranslational modifications such as phosphorylation resulting in two 

slightly different sized proteins. GAPDH protein was detected at the expected size of 37kDa. 
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Strongest staining was observed in the NSCLC NCI-H358 cell line and SCLC cell lines CorL88 

and NCI-H345. The SCLC protein expression matches the gene expression data (Fig. 3.10) 

where CorL88 and NCI-H345 cells showed the highest HuR mRNA expression. However, for 

the NSCLC cells, the protein expression varies from the gene expression data (Fig. 3.10) that 

showed more HuR mRNA expressed in the NSCLC NCI-H322 than the NCI-H358 cell line. This 

could be explained by post-transcriptional modifications resulting in more HuR gene 

translated in some cell lines than others although there is no evidence to support this.   

Whilst the normal bronchial epithelial cell line, BEAS2B, displayed no HuR protein expression, 

HuR gene expression was previously shown to be expressed in the lungs in Fig. 3.10. To 

confirm if HuR protein lied under the detection level due to the high level of detection of the 

other bands shown in Fig. 3.11A, a second western blot with only NSCLC and normal bronchial 

epithelial cells was performed. This confirmed an absence of HuR protein expression in the 

BEAS2B cell lines. 

To confirm the HuR protein presence and identify the location of the proteins in all the 

analysed cell lines, immunofluorescence staining was performed using anti-HuR mouse IgG 

and secondary Alexa 488 FITC IgG. Cells were counterstained with DAPI nucleus stain for 

nuclear localisation. 

HuR protein fluorescence shown in Fig. 3.12 was observed in all cell lines BEAS2B, NCI-H322, 

NCI-H358, CorL88, NCI-H345 and NCI-H69 correlating with gene expression data in Fig. 3.10. 



135 
 

 

Figure 3.12: Representative localisation of HuR protein in normal bronchial epithelial cells and 

NSCLC and SCLC cell lines. Cellular localisation of HuR in the normal bronchial epithelial cells BEAS2B, 

Non-small cell lung cancer cell lines, NCI-H322 and NCI-H358 and Small cell lung cancer cell lines, 

CorL88, NCI-H345 and NCI-H69. The left column showed staining of nuclei with DAPI (blue), the is 

middle column with anti-Hu (green) and the right column displays merged pictures. Magnification 20x. 

(n=3). 
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In NCI-H322 cells, only a weak signal could be detected for HuR protein in the nucleus. This 

was consistent with western blot results where only a weak band could be detected in NCI-

H322 cell extract. 

The fluorescence of HuR protein in the normal bronchial epithelial cell line BEAS2B was co-

localised with the DAPI nucleus stain therefore HuR protein was localised to the nucleus. 

Strong fluorescence in the nucleus was also observed in both NSCLC cell lines NCI-H322 and 

NCI-H358. Two of the SCLC cell lines also display HuR nuclear localisation CorL88 and NCI-H69. 

The remaining SCLC cell line NCI-H345 displayed strong cytoplasmic localisation of HuR. 

3.2 Morphology of lung cell lines 

Lung cancers are easily distinguishable into Non-small cell lung cancers and Small cell lung 

cancer due to their size. A tumour with less than 10% of large cells is classified as SCLC by 

WHO (Travis et al. 2015). Often cellular changes to the morphology or lung cells is how lung 

cancers are observed through biopsies during diagnosis. 

SCLC showed a considerable degree of morphological histopathological variability during in-

vitro studies. SCLC cells are small, round, oval or spindle shaped cells with scanty cytoplasm 

(Brambilla et al. 2001). Their nucleus contain granular nuclear chromatin and very faint or 

absent nucleoli and lack of cell boarders (Travis et al. 1999). Krohn et al. (2014) reports of two 

cells types. Some cells float in clusters, are smaller, round and have small nuclei. Attached 

cells are larger (although still smaller than three lymphocytes defining cells ‘small’) and grow 

in little clumps with less cell-cell contacts and a large cytoplasm-to-nucleus ratio. 
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Non-small cell lung cancer tumours contain large cells, that have a small nuclear to 

cytoplasmic ratio, also contain vesicular, coarse or fine chromatin and common nucleoli. Not 

all NSCLC tumours meet this criteria but are still considered NSCLC due to their bigger size 

and large cytoplasm (Travis et al. 1999). 

To observe difference in the morphology of cell lines derived from the lung cell images were 

obtained using an Eclipse II fluorescent inverted microscope and Microtec camera as described 

in Section 2.1.6. These are shown in Fig. 3.13. 

 

Figure 3.13: Microscopy images of each lung cell line. Inverted microscopy at x20 Objective. A) 

Normal lung cell line, BEAS2B. B) NSCLC cell line, NCI-H322. C) NSCLC cell line, NCI-H358. D) SCLC cell 

line, CorL88. E) SCLC cell line, NCI-H345. F) SCLC cell line, NCI-H69. 
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The normal bronchial epithelial cells (Fig. 3.13A) grew with similar properties to that of the 

two NSCLC cell lines NCI-H322 (Fig. 3.13B) and NCI-H358 (Fig. 3.13C). These are adherent cells 

that grow as a single monolayer. They have an epithelial-like shape.  

In contrast, the three SCLC cells lines studied, collectively feature both semi-adherent and 

suspension cells described by Krohn et al. (2014). The CorL88 (Fig. 3.13D) is a semi-adherent 

cell line whilst the NCI-H345 (Fig. 3.13E) and NCI-H69 (Fig. 3.13F) cell lines are grow in 

suspension. All SCLC cell lines grow in multi-cellular aggregates and have a visually similar 

morphology. NCI-H345 and NCI-H69 are solely suspension cell lines that grow in large clumps 

and are very similar. CorL88 also feature these large clumps in suspension however, as a semi-

adherent cell line, the adherent cells form small clumps that anchor to the cell culture flask 

rather than float in suspension. These anchored cells often show a fibroblast-like appearance, 

while suspended cells attached to this clump are round. The SCLC cells are distinctly smaller 

than NSCLC cells. 

3.3 Motility of lung cells 

An assessment of cell motility was made to compare the normal bronchial epithelial cells and 

NSCLC cells. This aimed to determine the invasiveness of NSCLC cells in culture, since a key 

characteristic of cancer cells is the ability to invade into distant tissues. Unfortunately, a 

measure of SCLC invasiveness could not be determined by this method as two of the SCLC cell 

lines grow in suspension in culture and the other is semi-adherent. 

The cell motility was analysed in normal bronchial epithelial cells BEAS2B and NSCLC, NCI-

H322 and NCI-H358 cell lines. It was measured by the ability of the cells to invade into a 0.5% 

agarose gel matrix captured through several microscopy imaging equipment. The images 
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below show time-lapse photography by a CytoSMART™ camera, described in Sections 2.5 and 

2.5.1.  

 

Figure 3.14: The non-migration of BEAS2B, normal bronchial epithelial cells into an agarose gel 
matrix. During the observed 42-hour period, no migration into the gel matrix was detected. Time-
lapse photography of the cell migration can be viewed at: 
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19712&ac1=149416767a3753
53f51632463fb10382a640ba0896cb9b42bd7d545ad26b5e1b&ac2=880daacfc972a8ab4d37a6ff5a3c
82f587f08552a7ed72cafb0c4c4ac2e8894d 

 

The normal bronchial epithelial cells, BEAS2B, did not move into the agarose gel during the 

observed 42-hours as expected for a non-cancer cell line. Instead they grew densely in a line 

surrounding the agarose. 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19712&ac1=149416767a375353f51632463fb10382a640ba0896cb9b42bd7d545ad26b5e1b&ac2=880daacfc972a8ab4d37a6ff5a3c82f587f08552a7ed72cafb0c4c4ac2e8894d
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19712&ac1=149416767a375353f51632463fb10382a640ba0896cb9b42bd7d545ad26b5e1b&ac2=880daacfc972a8ab4d37a6ff5a3c82f587f08552a7ed72cafb0c4c4ac2e8894d
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19712&ac1=149416767a375353f51632463fb10382a640ba0896cb9b42bd7d545ad26b5e1b&ac2=880daacfc972a8ab4d37a6ff5a3c82f587f08552a7ed72cafb0c4c4ac2e8894d
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When the NSCLC, NCI-H322 cells, were observed for their motility over 42 hours, they too, 

did not migrate into the agarose. These cells also grew in a line around the outside of the 

agarose gel. 

 

 

Figure 3.15: The non-migration of NCI-H322, Non-small cell lung cancer cells into an agarose gel 
matrix. Over the observed 42-hour period, no migration into the gel matrix was detected. Time-lapse 
photography of the cell migration can be viewed at: 
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9757&ac1=711ef18fe2c96396
58912d0e6549cbfa07b511b3dc550fd92d290f069aa92db9&ac2=efc7fe8945b0c64aead79e94ca96cfe
e4147a02bebbd4081979f4a4047ba5c1c 

 

Next, the second NCSLC NCI-H358 cell line was analysed for their migrative ability. In contrast 

to the BEAS2B and NCI-H322 cell lines, the NCI-H358 cells moved into the agarose gel matrix. 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9757&ac1=711ef18fe2c9639658912d0e6549cbfa07b511b3dc550fd92d290f069aa92db9&ac2=efc7fe8945b0c64aead79e94ca96cfee4147a02bebbd4081979f4a4047ba5c1c
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9757&ac1=711ef18fe2c9639658912d0e6549cbfa07b511b3dc550fd92d290f069aa92db9&ac2=efc7fe8945b0c64aead79e94ca96cfee4147a02bebbd4081979f4a4047ba5c1c
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9757&ac1=711ef18fe2c9639658912d0e6549cbfa07b511b3dc550fd92d290f069aa92db9&ac2=efc7fe8945b0c64aead79e94ca96cfee4147a02bebbd4081979f4a4047ba5c1c
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Figure 3.16: The migration of NCI-H358, Non-small cell lung cancer into an agarose gel matrix. Over 
the observed 42-hour period, cells migrated into the gel matrix. Time-lapse photography of the cell 
migration can be viewed at: 
https://cytomate.com/access/Project_main/main.php?DiD=233&PiD=9876&ac1=c81bf7110ff48994
eda221f058f3b2b551a0a584726303de3164645b899f6839&ac2=008c9d6d9c1a69de50192aac15c1e
ea44c463735f0044aea87f10ed2f698eef1 

 

As seen in Fig. 3.16, the NCI-H358 cells can be seen collecting around the agarose gel at 0 

hours. From 6 hours the cells began to migrate into the gel matrix. 

Imagery analysis displayed above is representative of one attempt although consistently 

observed was the ability of the NCI-H358 cells to migrate into the gel whilst NCI-H322 and 

BEAS2B cells were not able to. 

https://cytomate.com/access/Project_main/main.php?DiD=233&PiD=9876&ac1=c81bf7110ff48994eda221f058f3b2b551a0a584726303de3164645b899f6839&ac2=008c9d6d9c1a69de50192aac15c1eea44c463735f0044aea87f10ed2f698eef1
https://cytomate.com/access/Project_main/main.php?DiD=233&PiD=9876&ac1=c81bf7110ff48994eda221f058f3b2b551a0a584726303de3164645b899f6839&ac2=008c9d6d9c1a69de50192aac15c1eea44c463735f0044aea87f10ed2f698eef1
https://cytomate.com/access/Project_main/main.php?DiD=233&PiD=9876&ac1=c81bf7110ff48994eda221f058f3b2b551a0a584726303de3164645b899f6839&ac2=008c9d6d9c1a69de50192aac15c1eea44c463735f0044aea87f10ed2f698eef1
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Figure 3.17: The migration of NCI-H358 NSCLC cells compared to the non-migration of normal 

bronchial epithelial cells BEAS2B and NSCLC NCI-H322. Percentage area of the gel matrix invaded by 

NCI-H358 cells. 

 

As seen in Fig. 3.17, NCI-H358 cells were able to invade into the gel matrix potentially 

replicating their invasiveness in the body. Over a 42-hour period cells invaded 31.11% of the 

observed section of gel matrix (Fig. 3.17).  

3.4 Summary  

For the first time, an expression profile comparing Hu expression in different lung cancer cell 

lines has been established. Concluded in Table 3.1 is the Hu protein expression detected in 

each cell line following different methods for mRNA and protein analysis. 
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 Hu Protein 

Cell type Cell line HuB HuC HuD HuR 

PCR WB IF PCR WB IF PCR WB IF PCR WB IF 

Bronchial 

epithlia 

BEAS2B 
           N 

Non-Small 

Cell Lung 

Cancer 

NCI-H322            N 

NCI-H358            N 

Small Cell 

Lung Cancer 

CorL88         C   N 

NCI-H345   C   C   C   C 

NCI-H69   N   N   N   N 

Table 3.1: Overall expression of HuB, HuC, HuD and HuR proteins in cell lines of normal bronchial 

epithelial cells, Non-Small Cell Lung Cancer and Small Cell Lung Cancer cells. Each method of analysis 

including RT-qPCR (PCR), western blotting (WB) and immunofluorescent staining (IF) is shown. Green 

represents a positive result. Also shown is the localisation of the proteins determined through immune 

fluorescence cytoplasm is shown by C  and the nucleus is represented by N. 

 

There are several conclusions that can be drawn from the investigation into the presence of 

Hu RNA-binding proteins in lung cancers. Gene expression analysis showed a difference 

between the expression of the neuronal Hu protein family members HuB, HuC and HuD in the 

normal bronchial epithelial cells and different lung cancer groups. All neuronal Hu genes were 

expressed in the Small cell lung cancer cell lines apart from HuB in CorL88. This is significant 

since HuB, HuC and HuD are not naturally expressed within lung tissue. Additionally, there 

was an absence of the neuronal Hu genes in the normal bronchial epithelial cells and NSCLC 

cell lines. This data confirms these genes are only present in SCLC providing an insight into a 

functional role required for the development of the cancer.  



144 
 

HuR gene was detected in all the lung cell lines which was expected since it is ubiquitously 

expressed in all tissues in the human body. In each cancer, at least one cell line showed 

significant upregulated HuR gene expression in comparison to the normal bronchial epithelial 

cell line BEAS2B supporting the idea that HuR is functionally upregulated in cancers. 

Whilst gene expression is important in cancer studies, the active status of a gene and its ability 

to translate into a functional protein is of equal significance. Western blot studies 

interestingly showed, HuC and HuD proteins were only present in two of the SCLC cell lines 

NCI-H345 and NCI-H69 despite CorL88 also expressing these genes at an RNA level. 

Conversely, HuB gene was detected at a high level though RT-qPCR in NCI-H345 and NCI-H69 

cell lines yet at a protein level, it was detected at high levels in all three SCLC, NCI-H345, NCI-

H69 and CorL88 cell lines. Interestingly, CorL88 differs from NCI-H69 and NCI-H345 in its 

morphology in culture. CorL88 is semi-adherent whilst NCI-H345 and NCI-H69 grows in 

suspension, suggestive of alternative characteristics within SCLC tumours.  

Despite the aberrant and over expression of these Hu proteins that has been described in this 

study at both gene and protein levels, the location of the Hu proteins within the cell has been 

shown to influence the pathogenicity of some cancers. 

Anti-Hu fluorescent staining revealed all the Hu proteins present in the nucleus of the NCI-

H69 cells, whilst all Hu proteins were detected in the cytoplasm in the NCI-H345 cells. CorL88 

cells revealed HuD protein localises in the cytoplasm and HuR protein in the nucleus. HuD 

protein was previously undetected by western blot and whilst the fluorescent staining is 

weak, it does confirm HuD protein is actively translated in this cell line. However, during the 

western blot, the strong bands of the HuD in the other two SCLC cell lines NCI-H345 and NCI-

H69, CorL88 HuD fluorescence remained undetected. Interestingly, western blot of HuR 
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detected two bands significant of a phosphorylation event of HuR resulting in two differently 

sized HuR protein monomers. This has previously been described by (Kim and Gorospe, 2008).  

During western blot studies in comparison to the loading control GAPDH, the NSCLC cell line 

NCI-H358, showed a strong expression of HuR. Whilst NCI-H322 did display weak staining 

despite HuR gene expression being significantly higher in NCI-H322. HuR immunofluorescence 

studies showed its expression was localised to the nucleus in both NSCLC cells lines.  

HuR protein expression could not be detected in normal bronchial epithelial cells using 

western blotting however, antibody staining methods did and confirmed its localisation in the 

nucleus. During the western blot, HuR protein expression was most likely missed due its 

expression remaining under the detection level.  

In summary, all Hu proteins are found expressed in two of the SCLC cell line NCI-H69 and NCI-

H345. CorL88, also a SCLC cell line showed HuD and HuR expression at both RNA and protein 

levels. HuC was expressed at RNA level but not at a protein level. In the normal bronchial 

epithelial cells and NSCLC cell lines NCI-H322 and NCI-H358, only HuR was present at both 

gene and protein level. 

Cell culture observations show a similarity in the morphology of the different lung cancer 

groups in comparison to the normal bronchial epithelial cells suggestive of similar 

characteristics within the named cancers and potentially their pathogenicity. The differences 

in size, growth as a monolayer or as multicellular aggregates, nuclear to cytoplasm ratio, 

nucleoli presence and chromatin structure aids diagnosis and the ability to distinguish 

between SCLC and NSCLC. 
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When determining the invasive potential of the NSCLC cell lines, interestingly only one of the 

cell lines NCI-H322 cells managed to penetrate the gel matrix. This is clinically significant of 

the ability for cells to migrate into other organs and form tumour growth and highlights a 

difference in migrative potential within the NSCLC cell types. 

Overall, there are several conclusions that can be drawn from the results in this Chapter. 

Firstly, the ectopic presence of the neuronal genes in SCLC is established and an 

overexpression of HuR expression in both NSCLC and SCLC is shown. Within this expression 

there was still distinct differences within protein expression and localisation within the cells 

despite cell morphology similarities. In summary, this highlights differences within tumour 

types at both a genetic and protein level.  
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Chapter 4  

Results  

Part II: Expression of Hu proteins, their role and mRNA 

targets in Neuroblastoma  

Hu proteins were first described in Neuroblastoma by Dalmau, Josep and Furneaux (1992), 

whereby analysis of neuroendocrine tumours such as Small cell lung cancer, Neuroblastoma, 

Sarcoma, and Prostate carcinoma revealed about 50% of Neuroblastoma tumours express Hu 

proteins. Later is was described that specifically HuB and HuD were identified in some 

Neuroblastoma patients (Ball, N. S. and King, Peter H. 1997). In these patients and similar to 

the effect in SCLC, the triggered immune response initiates neuronal apoptosis resulting in 

enteric nervous system impairment underlying paraneoplastic gut dysmotility (De Giorgio et 

al. 2003). However, the extent of all Hu proteins expression and their biological function of 

Hu proteins in Neuroblastoma has not been established. 

The general expression of each Hu gene and protein in Neuroblastoma was determined 

through studies on two Neuroblastoma cell lines SK-N-AS and SH-SY5Y compared to a normal 

astrocyte cell line SVG p12. Next, knockdown studies of Hu genes were established to 

ultimately define how Hu expression may influence a cancerous phenotype through tumour 

initiation and development characteristics. Finally, these studies analysed mRNA transcripts 

targeted by the Hu RNA-binding protein family and sought to determine the Hu protein 

family’s overall influence on molecular pathways and the downstream effects of these 

pathways in cancer development.  
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4.1 Hu gene expression in Neuroblastoma and normal astrocytes 

The gene expression of all Hu proteins in two Neuroblastoma cell lines SH-SY5Y and SK-N-AS 

and in normal astrocytes SVG p12 was determined using quantitative RT-PCR. The fold-change 

of expression was analysed by comparing expression levels to the normal astrocyte cell line 

SVG p12. β-Actin was the housekeeping gene to which the data was normalised. Statistical 

significance was calculated by a two-tailed t-test. The relative transcript expression levels of 

all Hu genes in the two Neuroblastoma cell lines in comparison to the normal astrocyte cell 

line is displayed in Fig. 4.1.  
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Figure 4.1: Gene expression of all the Hu protein family members in normal astrocytes and 

Neuroblastoma cells. HuB, HuC, HuD and HuR gene expression was analysed by RT-qPCR in normal 

astrocytes, SVG p12 and Neuroblastoma cell lines, SH-SY5Y and SK-N-AS. The ΔCt results shown are 

an average of three replicates normalised to β-Actin, relative to zero. Error bars display ± SEM. 

Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001. (n=3). 



149 
 

The normal astrocyte cell line SVG p12 expressed HuB, HuC or HuD mRNA in very low levels 

that upon normalisation of the data, is not displayed on the graph. SVG p12 cells do express 

HuR gene. All Hu genes was expressed in the Neuroblastoma cell lines SH-SY5Y and SK-N-AS. 

All upregulated gene expression values were statistically significant except HuR expression in 

SK-N-AS Neuroblastoma cells.  

A 1.05 fold-increase of HuB gene expression was observed for SK-N-AS in comparison to the 

normal astrocyte line SVG p12, whilst a 1.05 fold-increase of HuB gene expression was 

observed for SH-SY5Y. HuC and HuD gene expression was seen upregulated the most in SH-

SY5Y cells with a 1.71 fold-increase in HuC expression and a 1.71 fold-increase also in HuD 

expression. In SK-N-AS cells, HuC was increased by 0.16 fold-change whilst HuD was increased 

0.17 fold-change. The gene expression of HuR only showed a small increase of 0.15 in SK-N-

AS cells. A 1.42 fold-increase in HuR expression was observed in the SH-SY5Y cells.  

4.2 Hu protein expression and localisation in Neuroblastoma and 
normal astrocytes  

Gene expression does not always reflect the amount of protein expressed due to post-

transcription gene regulation. Therefore, the presence of Hu proteins in the normal astrocytes 

SVG p12 and Neuroblastoma cells SK-N-AS and SH-SY5Y was determined using Western 

Blotting (Section 2.3).  Whilst subcellular localisation of Hu proteins was determined by 

immunofluorescent staining methods (Section 2.41). 
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4.2.1 HuB protein expression and localisation 

HuB protein expression in SK-N-AS and SH-SY5Y Neuroblastoma cells and SVG p12 normal 

astrocytes was determined by western blot analysis (Fig. 4.2). Blots were probed for the 

presence of HuB protein with anti-HuB IgG. Anti-GAPDH IgG, was used to detect GAPDH as a 

loading control. 

 

Figure 4.2: Representative western blot of HuB protein with anti-HuB antibody. HuB and GAPDH 

protein expression in normal astrocytes SVG p12, and Neuroblastoma cells SK-N-AS and SH-SY5Y.  

GAPDH protein expression was used as a loading control (n=3). 

 

HuB protein was detected in the normal astrocytes, SVG p12 at the expected size of 38kDa. A 

higher migrating band was detected in all cell lines, SVG p12, SK-N-AS and SH-SY5Y at around 

75kDa. Since this is about double the expected size of the HuB protein and the Hu family is 
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known to form dimers (Kasashima et al. 2002), this leads to the conclusion it is a result of 

dimerisation. GAPDH was detected at the expected size of 37kDa. 

Western blot analysis showed that HuB gene is expressed in very high amounts in normal 

astrocytes in comparison to the Neuroblastoma cell lines. At a protein level, HuB is expressed  

more than GADPH protein expression. The western blot and RT-qPCR results suggest that HuB 

is translated very efficiently in the normal astrocytes cells, SVG p12 since there was very little 

HuB gene expression (Fig 4.1).  

Of the two Neuroblastoma cell lines, HuB gene expression was highest in the SK-N-AS cells 

(Fig. 4.1) and this was also observed at the protein expression level (Fig. 4.2). HuB protein 

expression was comparable to GAPDH protein expression whilst in SH-SY5Y cells, HuB protein 

was less than the GAPDH expression. 

Subcellular Hu protein localisation was determined for all Neuroblastoma and normal 

astrocytes cell lines using immunofluorescent staining (Section 2.4.1). To detect HuB protein, 

anti-HuB IgG was used with the secondary Alexa green 488 FITC IgG and counterstained with 

DAPI nucleus stain.  

As seen in Fig. 4.3, HuB fluorescence is observed in all cell lines, SVG p12, SK-N-AS and SH-

SY5Y. This aligns with the HuB protein detected during western blotting displayed in Fig. 4.2. 
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Figure 4.3: Example of cellular localisation of HuB protein in normal astrocytes SVG p12 and 

Neuroblastoma cells SK-N-AS and SH-SY5Y. The left column displays staining of nuclei with DAPI 

(blue), the middle column is stained with anti-HuB (green) and the right column displays a merged 

picture of DAPI and anti-HuB staining. Magnification x20. (n=3).  

 

HuB protein expression was observed in both the nucleus and the cytoplasm of all cell lines. 

The strongest HuB protein fluorescence was observed in regions co-localised to the DAPI 

nuclei counterstain confirming HuB is predominantly nuclear.  

4.2.2 HuC protein expression and localisation 

HuC protein expression and localisation was determined through western blot analysis 

(Section 2.3) and anti-HuC immunofluorescence (Section 2.4.1). 
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Detection of HuC protein was carried out in each cell line derived from normal astrocytes and 

Neuroblastoma by western blot (Fig. 4.4). GAPDH was used as a control protein to compare 

protein expression to. Anti-HuC IgG detected HuC protein whilst anti-GAPDH IgG detected 

GAPDH, used as a loading control. 

 

Figure 4.4: Representative western blot of HuC protein with anti-HuC antibody. HuC and GAPDH 

protein expression in normal astrocytes SVG p12, and Neuroblastoma cells SK-N-AS and SH-SY5Y. 

GAPDH protein expression was used as a loading control. (n=3). 

 

Like HuB protein, HuC protein was detected in the normal astrocytes at its expected size of 

39kDa and an additional migrating band was observed in all cell lines for normal astrocytes 

and Neuroblastoma at around 150kDa. As this is four times the expected band size, it is most 

likely due to HuC multimerisation. With this observation, Fig. 4.4 displays the astrocytes and 
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both Neuroblastoma cell line express HuC protein. GAPDH, used as a loading control was 

detected at 37kDa as expected for its molecular weight. 

HuC expression at RNA level (Fig. 4.1) showed HuC gene is expressed in very low amounts in 

normal astrocytes in comparison to the Neuroblastoma cell lines, yet western blot analysis 

reveals HuC protein is expressed more than GADPH protein. The western blot results suggest 

that like HuB, HuC is very efficiently translated in normal astrocytes. 

Immunofluorescent HuC protein labelling (Section 2.4.1) was performed to identify its 

subcellular localisation. Anti-HuC IgG was used with the secondary Alexa green 488 FITC IgG. 

Cells were counterstained with DAPI nucleus stain. The stains are shown in Figure 4.5. 
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Figure 4.5: Example of cellular localisation of HuC protein in normal astrocytes SVG p12 and 

Neuroblastoma cells SK-N-AS and SH-SY5Y. The left column showed staining of nuclei with DAPI 

(blue), the middle column is stained with anti-HuC (green) and the right column displays a merged 

picture of DAPI and anti-HuC staining. Magnification x20. (n=3). 

 

As seen in Fig. 4.5, HuC protein expression was observed in SVG p12, SK-N-AS and SH-SY5Y 

cell lines, confirming western blot data shown in Fig. 4.4. The strongest HuC protein 

fluorescence was observed in SVG p12 cell line which is co-localising with the DAPI nucleus 

stain indicating its localisation in the nucleus. A weaker staining was also observed in the 

cytoplasm. In the SH-SY5Y and SK-N-AS Neuroblastoma cell lines, HuC protein labelling was 

inconsistent with the DAPI nucleus stain concluding HuC was localised to the cytoplasm in the 

Neuroblastoma cells. 
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4.2.3 HuD protein expression and localisation 

To confirm if the HuD gene expression is effectively translated to a protein, western blot 

(Section 2.3) was performed using anti-HuD to detect HuD protein in each cell line derived 

from normal astrocytes SVG p12 and Neuroblastoma cells SK-N-AS and SH-SY5Y. 

As shown in Fig. 4.6, HuD protein was detected at its expected molecular weight of 42kDa in 

both Neuroblastoma cell lines SK-N-AS and SH-SY5Y. A distinct absence of HuD protein was 

observed in the normal astrocyte cell line SVG p12. 

 

Figure 4.6: Representative western blot of HuD protein with anti-HuD antibody. HuD and GAPDH 

protein expression in normal astrocytes SVG p12, and Neuroblastoma cells SK-N-AS and SH-SY5Y. 

GAPDH protein expression was used as a loading control. (n=3). 

 

HuD expression at RNA level displayed in in Fig. 4.1 showed more HuD gene expression in the 

SH-SY5Y cells followed by SK-N-AS cells with little or no expression of HuD in the normal 

astrocyte cell line SVG p12 strongly correlating the protein expression shown in Fig. 4.6. 
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GAPDH protein detection was used as a loading control and was detected at the expected size 

of 37kDa. HuD protein expression level in SH-SY5Y cells was comparable to that of the GAPDH 

protein expression. The HuD protein expression in the SK-N-AS Neuroblastoma cell line was 

less than the GAPDH protein expression.  

The prominent expression of HuD protein was comparable to HuD gene expression and an 

indication of a relative translation rate of the upregulated HuD gene in Neuroblastoma. 

To identify the subcellular localisation of HuD proteins in normal astrocytes and 

Neuroblastoma, immunofluorescence staining was performed as described in Section 2.4.1.  

Anti-HuD IgG was used with secondary Alexa 488 FITC IgG and counterstaining with DAPI was 

used for nuclear localisation. The immunofluorescent images are shown in Figure 4.7. 
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Figure 4.7: Example of cellular localisation of HuD protein in normal astrocytes SVG p12 and 

Neuroblastoma cells SK-N-AS and SH-SY5Y. The left column showed staining of nuclei with DAPI 

(blue), the middle column is stained with anti-HuD (green) and the right column displays a merged 

picture of DAPI and anti-HuD staining. Magnification x20. (n=3). 

 

No HuD protein expression could be detected by immunostaining in SVG p12 normal 

astrocytes. Strong fluorescence was observed in both Neuroblastoma cell lines SK-N-AS and 

SH-SY5Y. These findings agree with western blot data of HuD protein expression (Fig. 4.6) and 

HuD gene expression profile (Fig. 4.1) in these cell lines. 

HuD expression in both Neuroblastoma cell lines SK-N-AS and SH-SY5Y did not show a co-

localisation with nuclear DAPI staining therefore argues a cytoplasmic localisation of HuD 

protein in these cells.  
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4.2.4 HuR protein expression and localisation 

Finally, the protein expression level and cellular localisation of ubiquitously expressed HuR 

was analysed. Western blot was performed as described in section 2.3. Anti-HuR IgG and 

loading control anti-GAPDH IgG were used for detection of HuR and GAPDH proteins 

respectively. As seen in Fig. 4.8, HuR protein was detected at its expected size of 36kDa and 

the loading control, GAPDH was observed at 37kDa.  

 

 

Figure 4.8: Representative western blot of HuR protein with anti-HuR antibody. HuR and GAPDH 

protein expression in normal astrocytes SVG p12, and Neuroblastoma cells SK-N-AS and SH-SY5Y. 

GAPDH protein expression was used as a loading control. (n=3). 

 

HuR protein expression was faintly observed in the normal astrocyte cell line SVG p12. The 

gene expression profile in Fig. 4.1 displayed a large expression of HuR mRNA in the SVG p12 

cell line. This shows that the HuR gene to protein translation is low and could be explained by 
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post-transcriptional modifications and post-translational regulatory events. HuR expression 

at RNA-level (Fig. 4.1) revealed HuR was upregulated in Neuroblastoma cells in comparison 

to the normal astrocyte. The highest expression was observed in the SH-SY5Y cells.  

HuR protein was detected by western blot in both Neuroblastoma cell lines and was 

expressed slightly higher than the GAPDH control. SH-SY5Y cell line showed HuR expression  

higher than the control whilst SK-N-AS cells showed a higher expression.  

To identify the location of the Hu RNA-binding proteins in all the analysed cell lines, 

immunofluorescent staining (Section 2.4.1) was performed (Fig. 4.9). Anti-HuR IgG was used 

with the secondary Alexa 488 FITC IgG and the counterstain DAPI for nuclear localisation. 
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Figure 4.9: Example of cellular localisation of HuR protein in normal astrocytes SVG p12 and 

Neuroblastoma cells SK-N-AS and SH-SY5Y. The left column showed staining of nuclei with DAPI 

(blue), the middle column with anti-HuR (green) and the right column displays a merged picture of 

DAPI and anti-HuR. Magnification x20. (n=3). 

 

Displayed in Fig. 4.9, HuR protein expression is observed in normal astrocytes SVG p12 and 

Neuroblastoma cells SK-N-AS and SH-SY5Y. In SVG p12 cells, strong nucleus staining of HuR 

protein was observed with a weaker staining in the cytoplasm. In SK-N-AS cells, HuR protein 

was only localised to the nucleus whilst in the second Neuroblastoma cell line SH-SY5Y, HuR 

expression was predominantly observed in the cytoplasm. 
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4.3 Establishing Hu gene knockdowns using siRNA interference in 
Neuroblastoma cells 

To gain an insight into the molecular role of Hu protein expression and its contribution to a 

cancerous phenotype, siRNA interference was established to downregulate Hu gene 

expression in the Neuroblastoma cell lines, SK-N-AS and SH-SY5Y. Each cell line was tested for 

the most efficient transfection by trialling different transfection reagents, concentration of 

siRNAs and different time periods. Following RT-qPCR, all samples were analysed using the 2-

Δ ΔCT method.  

4.3.1 Hu gene knockdown in SH-SY5Y Neuroblastoma cells 

For each individual Hu gene in the SH-SY5Y Neuroblastoma cell line, a knockdown was 

established through transfection with ON-TARGETplus SMARTpool small-interfering RNA 

(siRNA). These commercially available siRNAs were purchased to interfere with the genes 

HuB, HuC, HuD, HuR, GAPDH and a non-targeting siRNA. Each siRNA contained a pool of four 

interfering sequences listed in Table 2.4. 

The optimum transfection in SH-SY5Y Neuroblastoma cells was achieved using DharmaFECT I 

transfection reagent over 48 hours for which the protocol is provided in Section 2.7.3.  

RT-qPCR was performed to confirm Hu gene knockdowns. The cycling and reactions of RT-

qPCR are described in Section 2.26. HuB (1), HuC (1), HuD (6), HuR (2) and β-Actin primer 

sequences are listed in Table 2.3 of Section 2.27. The fold-change of expression was analysed 

by comparing expression levels to the control non-targeting siRNA. β-Actin was the 

housekeeping gene to which the data was normalised. Statistical significance was calculated 

by a two-tailed t-test. 



163 
 

Figure 4.10 displays the mRNA-transcript levels that were determined by RT-qPCR 48-hours 

post-transfection with DharmaFECT I. 
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Figure 4.10: Knockdown efficiency of Hu genes after individual Hu siRNA interference in the 

Neuroblastoma cell line SH-SY5Y. HuB (A), HuC (B), HuD (C) and HuR (D) gene expression following Hu 

gene knockdowns was analysed by RT-qPCR in the Neuroblastoma cell line, SH-SY5Y. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin gene expression and compared with 

the control set at 1.00. Error bars display ± SEM. Statistical significance was calculated by a two-tailed 

t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

In the Neuroblastoma cell line, SH-SY5Y, the knockdown decreased 4.7-fold for HuB, 2.0-fold 

for HuC, 2.2-fold for HuD and 5.5-fold for HuR.  
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To observe the effects of a combined Hu gene family knockdown in Neuroblastoma, SH-

SY5Y cells were transfected with all Hu gene siRNAs in a single attempt using the same 

methods described above. The results of this combined knockdown are shown in Fig. 4.11. 
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Figure 4.11: Combined siRNA interference of all Hu genes in the Neuroblastoma cell line SH-SY5Y. 

HuB, HuC, HuD and HuR gene expression following a full knockdown of each Hu gene in a single 

attempt in the SH-SY5Y Neuroblastoma cells. Samples were analysed by RT-qPCR. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin gene expression and compared with 

the control set at 1.00. Error bars display ± SEM. Statistical significance was calculated by a two-tailed 

t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

A combined knockdown of all four HuB, HuC, HuD and HuR genes was successful. The gene 

expression profile showed the mRNA expression of each Hu gene in the control non-targeting 

siRNA sample and its reduced expression in the combined siRNA transfection attempt.  
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When comparing the knockdown of each Hu gene individually and in combination, the 

combined knockdown increased the knockdown efficiency of HuC and HuD gene when 

compared to single siRNA knockdown attempts.  

Single HuB gene knockdown and combined Hu gene family knockdown achieved a 4.76- fold 

decrease and 4.54-fold decrease in HuB gene expression respectively showing little 

difference.  

Interestingly, HuC knockdown efficiency increased by 0.5-fold from a 2.0-fold decrease 

following single HuC knockdown to a 2.5-fold HuC gene decrease in combined Hu gene family 

knockdown. HuD efficiency increased by 0.3-fold from a 2.2-fold HuD gene reduction in single 

HuD gene knockdown to 2.5-fold following combined Hu gene family knockdown. 

Surprisingly, HuR gene expression revealed a decrease in knockdown efficiency of 1.9-fold 

from a 5.3-fold decrease by single HuR knockdown to a 3.4-fold decrease following combined 

Hu family knockdown attempts. 

Since the knockdown amounts differ between single knockdowns and combined knockdown, 

this suggests an external factor may influence Hu gene expression when other Hu members 

expression is compromised. 

4.3.2 Hu gene knockdown in SK-N-AS Neuroblastoma cells  

Hu gene knockdown was achieved in the SK-N-AS Neuroblastoma cell line using jetPRIME 

transfection reagent over 48 hours described in Section 2.7.2. ON-TARGETplus SMARTpool 

siRNAs targeted the HuB, HuC, HuD, HuR, GAPDH genes and a non-targeting siRNA was used 

as a control.  
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RT-qPCR was performed to confirm Hu gene knockdown with the primers HuB (1), HuC (1), 

HuD (6), HuR (2) and β-Actin (Sequences listed in Table 2.3 of Section 2.27). The fold-change 

of expression was analysed by comparing expression levels to the control non-targeting siRNA 

transfection. β-Actin was the housekeeping gene to which the data was normalised. Statistical 

significance was calculated by a two-tailed t-test. 

Displayed in Fig. 4.12, gene expression was analysed by RT-qPCR 48-hours post-transfection 

and showed the knockdown efficiency was 2.0-fold for HuB, 2.6-fold for HuC, 2.2-fold for HuD 

and 18.6-fold for HuR.   
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Figure 4.12: Hu gene expression levels in the Neuroblastoma cell line SK-N-AS following individual 

Hu RNA interference. HuB (A), HuC (B), HuD (C) and HuR (D) gene expression was analysed by RT-qPCR 
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in SK-N-AS Neuroblastoma cells. The 2-ΔΔCt results shown are an average of three replicates normalised 

to β-Actin gene expression and compared with the non-targeting control set at 1.00. Error bars display 

± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P 

≤ 0.01, ***P ≤ 0.001. (n=3). 

 

Overall, the knockdown efficiency in SK-N-AS cells compared to SH-SY5Y cells was lower, 

however HuB, HuD and HuR gene reductions were still statistically significant. 

A combined knockdown of each Hu gene family member was established using siRNAs for 

each Hu gene in a combined attempt. The results as analysed by RT-qPCR are shown in Fig. 

4.13. 
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Figure 4.13: Combined siRNA interference of all Hu genes in the Neuroblastoma cell line SK-N-AS. 

HuB, HuC, HuD and HuR gene expression following a single knockdown in the SK-N-AS Neuroblastoma 
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cells. Samples were analysed by RT-qPCR. The 2-ΔΔCt results shown are an average of three replicates 

normalised to β-Actin gene expression and compared with the non-targeting control set at 1.00. Error 

bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed by *P 

≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

The combined knockdown off all Hu genes in SK-N-AS resulted in a 1.4-fold reduction of a HuB 

expression, a 1.7-fold reduction in HuC expression, a 2.5-fold reduction in HuD expression and 

a 1.5-fold reduction in HuR expression however only the reduction in HuD was statistically 

significant. 

When all Hu genes were knocked down, the mRNA expression of HuB, HuC and HuR showed 

a smaller reduction compared to individual knockdowns. 

HuB transfection decreased by 0.6-fold from a 2.0-fold decrease achieved during single 

knockdown to a 1.4-fold decrease during combined Hu knockdown. HuC expression 

decreased from 2.6-fold during single HuC knockdown to a 1.7-fold decrease following 

transfection with all Hu siRNAs, a difference of 0.9-fold. HuR transfection decreased by 17.1-

fold from an 18.6-fold decrease with single HuR knockdown to a 1.5-fold decrease with 

combined Hu family knockdown. HuD transfection increased slightly by 0.3-fold from a 2.2-

fold decrease during single knockdown to a 2.5-fold decrease when all Hu genes were 

knocked down.  

4.3.3 Hu gene knockdowns confirmed at a protein level 

To confirm the Hu genes knockdowns and the impact at protein-level, protein expression 

levels were analysed by western blot analysis (Section 2.3). Cellular target protein levels may 
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remain in the cell following gene expression knockdown, dependent upon protein half-life. 

Protein expression was therefore analysed 96-hours post-transfection.  

Each Hu gene knockdown both individually and in combination in each Neuroblastoma cell 

line SK-N-AS and SH-SY5Y was blotted and stained for Hu proteins. The primary antibodies 

anti-HuB IgG, anti-HuC IgG, anti-HuD IgG, anti-HuR IgG and anti-GAPDH IgG were used along 

with Horse-radish peroxidase (HRP)-conjugated secondary antibodies. GAPDH was used as a 

control protein to normalise expression.  

SH-SY5Y Neuroblastoma cells with siRNAs targeting HuB, HuC and HuR individually and in 

combination were probed for the target proteins. The results are displayed in Figure 4.14. Hu 

family siRNA interference show varied results at protein level. 
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Figure 4.14: Hu protein expression during single and combined Hu knockdowns in SH-SY5Y 

Neuroblastoma cells. A) HuB protein expression following single HuB and combined Hu family 

knockdown. B) HuC protein reduction following single HuC and combined Hu knockdown. C) HuD 

protein partial reduction following single HuD and combined Hu knockdown. D) HuR protein 

knockdown following single HuR and combined Hu family knockdown. GAPDH protein expression was 

used as a loading control. 

 

As previously described in Section 4.2.1, HuB protein was detected as a dimer (Fig. 4.2) and 

that is also observed here. The HuB protein both in monomer and dimer complex show a 50% 

depletion following individual HuB knockdown and a 90% knockdown following combined Hu 

family knockdown (Fig. 4.14A). The same effect is seen for HuD protein expression that was 

detected at 42kDa (Fig. 4.14C). 
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The previously described HuC multimer at 156kDa (Fig. 4.4) shows little change following the 

single HuC gene knockdown and a 50% reduction following the combined Hu knockdown. HuR 

individual knockdown was effective in knocking down HuR protein which was detected at 

36kDa in the non-targeting control sample. These protein results correlate with Hu gene 

expression data following gene knockdowns displayed in Fig. 4.10 and Fig. 4.11. 

Figure 4.15 displays Hu protein knockdown confirmation following siRNA interference.  

 

Figure 4.15: Hu protein expression during single and combined Hu knockdowns in SK-N-AS 

Neuroblastoma cells. A) HuB protein expression following single HuB and combined Hu family 

knockdown. B) HuC protein reduction following single HuC and combined Hu knockdown. C) HuD 

protein partial reduction following single HuD and combined Hu knockdown. D) HuR protein 

knockdown following single HuR and combined Hu family knockdown. GAPDH protein expression was 

used as a loading control. 
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As previously described in Section 4.2.1, HuB protein was detected as a dimer (Fig. 4.2) and 

that is also observed here. The HuB dimer at 75kDa is present in the control non-targeting 

siRNA interference sample yet absent in the single and combined siRNA transfections. 

Additionally, the HuC multimer at 156kDa (Fig. 4.4) first observed in Section 4.2.2 is present 

in the control but absent in the single and combined Hu knockdown. HuR individual 

knockdown was enough to knockdown HuR protein which was detected at 36kDa in the non-

targeting control sample. All these results of full protein knockdowns are despite a lower 

knockdown efficiency observed in the combined gene knockdowns displayed in Fig. 4.13. 

A 50% reduction of HuD protein (42kDa) was observed through single HuD siRNA interference. 

In the combined Hu siRNA interference, HuD protein expression decreased by 90% when 

compared to HuD control and comparable GAPDH expression in all samples.  

At protein level, in HuD single and combined knockdown attempts there was a difference in 

Hu proteins expression when individual Hu knockdown efficiency was compared to the 

combined knockdown. This may be due to complex interplay between the Hu family members 

in that they are able to influence expression or translational efficiency by targeting their own 

or family members sequences and up-regulating their expression although further studies 

look to confirm this hypothesis below in Section 4.4. 

4.4 Differential gene expression of Hu proteins following individual 
and combined Hu gene knockdowns 

Due to the described differences in gene and protein expression following single and 

combined knockdowns and the known ability of HuR to -regulate its own expression, a gene 

expression profile was established to explore the possibility of a regulatory mechanism within 
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the Hu family of RNA-binding proteins. The level of all Hu genes individual expression 

following individual Hu gene knockdowns was analysed. 

4.4.1 Hu gene expression profiling in SH-SY5Y Neuroblastoma cells 

RT-qPCR (Section 2.26) was performed to confirm Hu gene knockdowns and to determine any 

changes to the expression levels of other Hu genes.  The primers HuB (1), HuC (1), HuD (6), 

HuR (2) and β-Actin were used. β-Actin was the housekeeping gene to which the data was 

normalised and compared to the non-target control. Statistical significance was calculated by 

a two-tailed t-test. 

Figure 4.16 displays the effect on other Hu genes expression level following individual Hu 

knockdown. Here, the original knockdown levels are those initially described in Fig. 4.10. 
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Figure 4.16: Influence of individual Hu gene knockdowns on other Hu family members gene 

expression in SH-SY5Y Neuroblastoma cells. A) HuB Knockdown B) HuC Knockdown C) HuD 

Knockdown D) HuR Knockdown. The 2-2-ΔΔCt results shown are an average of three replicates 

normalised to β-Actin gene expression and compared with the non-target control. Error bars display 

± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P 

≤ 0.01, ***P ≤ 0.001. (n=3). 

 

In Fig. 4.16A, a 4.6-fold knockdown of HuB gene expression resulted in a significant increase 

of HuC and HuD by 1.1-fold and 0.5-fold respectively. No significant change was observed for 

HuR gene expression.  
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A 2-fold interference of HuC expression also showed a significant 0.6-fold increase in 

HuR expression. No significant change was observed for HuB and HuD gene expression 

following HuC knockdown. 

Interestingly, a 2.2-fold decrease of HuD gene expression showed an opposite effect to HuB 

and HuC siRNA knockdown and a significant decrease in gene expression of HuB and HuC was 

observed. HuB gene expression decreased by 2.18-fold, whilst HuC gene expression 

decreased by 2.3-fold. No significant change was observed for HuR gene expression. 

HuR knockdown significantly decreased the expression of the other three family members. A 

5.3-fold reduction of HuR gene expression resulted in HuB gene expression decrease of 2.6-

fold, HuC gene expression decrease of 2.4-fold and HuD gene expression decrease of 2.1-fold.  

To provide a clearer visual representation, highlight key characteristics and gain a better 

understanding of the effect of each Hu gene knockdown, a full expression profile was 

established. This data shown is Figure 4.17 is a combination of that shown in Fig. 4.10, Fig. 

4.11 and Fig. 4.16. The data is normalised to the same non-target controls of the siRNA 

interference transfection.  
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Figure 4.17: The complete profile of Hu gene expression in Neuroblastoma cell line SH-SY5Y, after 

knockdown of each individual Hu protein individually and combined. HuB, HuC, HuD and HuR 

expression following knockdown of each Hu gene both individually and in combination was analysed 

by RT-qPCR in SH-SY5Y cells. The 2-ΔΔCt results shown are an average of three replicates normalised to 

β-Actin gene expression and compared with the non-targeting control. Error bars display ± SEM. 

Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001. (n=3). 

 

The effect of the individual and combined knockdowns on Hu gene expression is shown in 

displayed in Fig. 4.17. Here it is clear that generally, HuB knockdown results in an increase of 

the other Hu family members. HuC knockdown decreases the expression of HuB and increases 

the expression of HuR. Similarities are highlighted between HuD, HuR and combined Hu 

knockdown in that all other Hu family members are also decreased upon their reduced 

expression. This suggests HuD and HuR may be major players in the reduction of Hu genes 

and therefore also responsible for the results observed in the combined Hu knockdown. 
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The overall knockdown profile is summarised as percentages in a heatmap is displayed in Fig. 

4.18. 

 

Figure 4.18: Heatmap summarising Hu gene expression change after single and combined 

knockdown experiments in SH-SY5Y Neuroblastoma cells. Colour intensity proportional to the 

amount. Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P 

≤ 0.01, ***P ≤ 0.001. (n=3). 

 

In summary, a similar Hu gene expression profile is observed when all Hu genes are knocked 

down in combination, with that of HuD and HuR knockdowns. Upregulation of Hu gene family 

members only occurs during HuB and HuC knockdowns. 

The changes in expression levels of the different Hu family members following knockdown of 

single Hu genes could be explained in three ways. A compensatory effect through which other 

Hu genes become more expressed to compensate for the reduced expression of a different 

Hu family member. A second interpretation is a regulatory effect whereby Hu family members 

actively target each other’s transcripts affecting its stability and ultimately controlling its 

expression. A third idea is that there may be off-target effects of the Hu gene downregulation. 

This is explained by different mRNA targets that Hu genes normally regulate form part of a 
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pathway that upon Hu gene knockdown, a series of downstream effects result in other Hu 

gene family members subsequent upregulation or downregulation. 

The model in Fig. 4.19 displays how different Hu family members can regulate each other’s 

expression in the Neuroblastoma cell-line SH-SY5Y.  

 

Figure 4.19: A model representing the regulation of the Hu protein family in the Neuroblastoma cell-

line SH-SY5Y. Colour intensity proportional to the change in regulation.  

 

The model in Fig. 4.19 is based only on significant changes in gene expression determined by 

a two-tailed T-test. This data indicates that HuB knockdown increased the gene expression of 

HuC and HuD. HuC knockdown increased the gene expression of HuR. Whilst individual HuD 

knockdown decreased HuB and HuC gene expression and HuR knockdown significantly 

decreased the gene expression of all the other Hu family members.  

Based on the three theories described above of compensatory expression, regulatory 

influences within the Hu family or off-target effects, there are several conclusions that can be 

drawn in the SH-SY5Y Neuroblastoma cell model. 
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4.4.2 Hu gene expression profiling in SK-N-AS Neuroblastoma cells 

For the second Neuroblastoma cell line SK-N-AS, a RT-qPCR expression profile (Section 2.2.6) 

was established to identify the general expression of Hu genes and any regulatory influences 

between the family members. RT-qPCR was performed to confirm Hu gene knockdowns and 

changes in the gene expression of other Hu family members (Fig. 4.20) using the primers HuB 

(1), HuC (1), HuD (6), HuR (2) and β-Actin. β-Actin was the housekeeping gene to which the 

data was normalised. Statistical significance was calculated by a two-tailed t-test. 
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Figure 4.20: Influence of individual Hu gene knockdowns on other Hu gene family members 

expression levels in SK-N-AS, Neuroblastoma cells A) HuB Knockdown B) HuC Knockdown. C) HuD 

Knockdown. D) HuR Knockdown. The 2-2-ΔΔCt results shown are an average of three replicates 

normalised to β-Actin gene expression and compared with the control. Error bars display ± SEM. 

Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001. (n=3). 
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The amount of gene expression change was calculated and normalised to the non-target 

siRNA control. A HuB knockdown of 2.0-fold resulted in a 1.0-fold increase in HuR gene 

expression (Fig. 4.20A). No significant change was observed in HuC and HuD gene expression. 

HuC siRNA decreased HuC gene expression by 2.57-fold. As seen in Fig. 4.20B, this reduction 

in HuC gene expression resulted in a 1.1-fold increase of HuB gene expression. No significant 

change was observed for HuD and HuR gene expression levels. 

A HuD knockdown of 2.2-fold resulted in a 1.0-fold increase in HuB gene expression. No 

statistical change was observed for HuC and HuR gene expression. 

siRNA transfection of HuR resulted in a decrease of HuR gene expression by 18.6 fold. As seen 

in Fig. 4.20D, this gene knockdown did not result in any significant change to the other Hu 

family members expression.  

To provide a clearer visual representation, highlight key characteristics and gain a better 

understanding of the effect of each Hu gene knockdown, a full expression profile was 

established. Fig. 4.24 is a summary of the results presented in Fig. 4.12, Fig. 4.13 and Fig. 4.20. 

The data is normalised to the same non-target siRNA controls of the transfection.  

A complete Hu gene expression profile in SK-N-AS Neuroblastoma cells following individual 

and combined Hu siRNA knockdowns is displayed in Fig. 4.21.  
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Figure 4.21: The complete profile of Hu gene expression in Neuroblastoma cell line SK-N-AS, after 

knockdown of each individual Hu protein individually and combined. HuB, HuC, HuD and HuR 

expression knockdown of each Hu gene individually and following combined knockdown was analysed 

by RT-qPCR in SK-N-AS cells. The 2-ΔΔCt results shown are an average of three replicates normalised to 

β-Actin gene expression and compared with the non-targeting control. Error bars display ± SEM. 

Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001. (n=3). 

 

Generally, HuB knockdown results in an increase of HuR expression. HuC knockdown 

increased HuC and HuR expression but decreased HuD expression. HuD siRNA interference 

results in an increased in HuB and HuC expression whilst a decrease of HuR expression is 

observed. HuR siRNA interference results in an increase of HuB gene expression and a 

decreased in HuC and HuD gene expression. Combined Hu siRNA clearly reduces all Hu genes 

expression. 

The overall knockdown profile is summarised as percentages in a heatmap is displayed in Fig. 

4.22. 
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Figure 4.22: Heatmap displaying Hu gene expression change after Knockdown experiments in SK-N-

AS Neuroblastoma cells. Colour intensity proportional to the amount. Statistical significance was 

calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

The heatmap displayed in Fig. 4.22 includes less statistically significant regulatory features. A 

model was developed to portray the significant regulation observed in a visual 

representation. Fig. 4.23 shows a model regulatory influences within the Hu family that exist 

in the SK-N-AS Neuroblastoma cell line. 

 

 

Figure 4.23: A model representing the statistically significant regulation of the Hu protein family in 

the Neuroblastoma cell like SK-N-AS. Colour intensity proportional to the change of gene expression 

compared to the control. 
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Based on levels of significance conducted by statistical two tailed t-test, decreases in HuC and 

HuD gene expression see an increase HuB expression. Additionally, a decreased expression of 

HuR significantly upregulated HuC expression.  

Upon comparing both Neuroblastoma cell models of regulatory interactions, the only 

significant similarity between the two models is the decrease of HuC gene expression when 

HuR gene is knocked down. Since these two cell lines portray two initial different expression 

profiles of the Hu proteins, it is unfeasible to combine the two data sets but show that the 

observed regulatory effects of Hu proteins are possible. 

4.5 Cellular morphology and invasion of normal astrocytes and 
Neuroblastoma cells 

Human cancer is often diagnosed and classified through microscopy techniques through 

identification of cell origin and various cell attributes. Morphological characteristics of cells 

are often related to their functional abilities particularly those that are malignant (Idikio 

2011).  

4.5.1 Cellular morphological analysis 

Often, cancer cells are defined by a large nucleus with prominent nucleoli, have little 

cytoplasm and are overall an irregular shape and size (Baba and Câtoi 2007). Microscopic 

analysis of Neuroblastoma and normal astrocytes is shown in Fig. 4.24. Cell images were 

obtained using an Eclipse II fluorescent inverted microscope and Microtec camera as described 

in Section 2.1.6. 
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Figure 4.24: Microscopy images of each brain and Neuroblastoma cell line. Light microscopy at x20 

objective. A) Normal astrocytes cell line, SVG p12. B) Neuroblastoma cell line, SK-N-AS. C) 

Neuroblastoma cell line, SH-SY5Y.  

 

The Neuroblastoma cell lines grow as adherent monolayers and have an epithelial-like shape. 

There is a considerable degree of similarity in morphology of each Neuroblastoma cell line.  

The normal astrocytes cell line SVG p12 typically grow in star-shaped cells called fibroblasts. 

4.5.2 Cellular migrative potential 

One hallmark of cancer cells is their ability to migrate and invade into distant tissues forming 

tumour metastases. To measure the invasiveness of the Neuroblastoma cells in culture, cell 

migration was calculated by the ability of the cells to invade into a 0.5% agarose gel matrix. It 

was captured through several microscopy imaging equipment. The images below were 

achieve using time-lapse photography captured by the CytoSMART™ camera as described in 

Sections 2.5 and 2.5.1.  
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First, the ability of the normal astrocytes to migrate into the gel was assessed and is shown in 

Fig. 4.25. The normal astrocyte cells SVG p12 did not migrate into the agarose gel matrix 

during the observed 42 hours as expected for a non-cancer cell line. The cells proliferate and 

grew in a line surrounding the agarose. 

 

 

Figure 4.25: The migration of SVG p12, normal astrocyte cells into an agarose gel matrix. During the 

observed 42-hour period, no migration into the gel matrix was detected. Time-lapse photography of 

the cell migration can be viewed at: 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e9308

1fa6bd13ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f33

67e00e143135c75d21d55c29158ae7a23a2f5c3e9a182ae6 

 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e93081fa6bd13ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f3367e00e143135c75d21d55c29158ae7a23a2f5c3e9a182ae6
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e93081fa6bd13ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f3367e00e143135c75d21d55c29158ae7a23a2f5c3e9a182ae6
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e93081fa6bd13ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f3367e00e143135c75d21d55c29158ae7a23a2f5c3e9a182ae6
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The Neuroblastoma cells were then assessed for their ability to penetrate the gel matrix. In 

contrast to the normal astrocytes, both Neuroblastoma cell lines migrated into the agarose 

gel matrix as displayed in Fig. 4.26 and 4.27. A difference in migration rate over the observed 

42-hour was seen.  

 

Figure 4.26: The migration of SK-N-AS Neuroblastoma cells into an agarose gel matrix. Over the 

observed 42-hour period, cells migrated into the gel matrix. Time-lapse photography of the cell 

migration can be viewed at: 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9849&ac1=cdca561ef977a7ffe

181cc31181d7f20eee22891dc6da50db9aa7af006a53750&ac2=1ee64f16a15e4b0270a75d164393ad

c88fe312e8444ddf5363f6105a6aa7742a 

The migration of SK-N-AS cells into the agarose gel matrix is shown in Fig. 4.26. SK-N-AS cells 

immediately started to migrate into the matrix (0 Hours). Over the 42-hour period, the cells 

migrated into the 31.37% of the gel displayed.  

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9849&ac1=cdca561ef977a7ffe181cc31181d7f20eee22891dc6da50db9aa7af006a53750&ac2=1ee64f16a15e4b0270a75d164393adc88fe312e8444ddf5363f6105a6aa7742a
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9849&ac1=cdca561ef977a7ffe181cc31181d7f20eee22891dc6da50db9aa7af006a53750&ac2=1ee64f16a15e4b0270a75d164393adc88fe312e8444ddf5363f6105a6aa7742a
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=9849&ac1=cdca561ef977a7ffe181cc31181d7f20eee22891dc6da50db9aa7af006a53750&ac2=1ee64f16a15e4b0270a75d164393adc88fe312e8444ddf5363f6105a6aa7742a
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Figure 4.27: The migration of SH-SY5Y Neuroblastoma cells into an agarose gel matrix. Over the 

observed 42-hour period, cells migrated into the gel matrix. Time-lapse photography of the cell 

migration can be viewed at: 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19941&ac1=a952363d82989cf

53da1a9c4440da1a2b9765a30b49c87cbe5fcbb84276f25af&ac2=e5ad51992f4567b12906250a4723a

25827016e4a1c7cec36830141a4414a7d89 

 

The migration of SH-SY5Y cells into the agarose gel matrix is shown in Fig. 4.27. The cells were 

seeded 24-hour post-transfection and once adhered to the flask, immediately began 

migrating into the gel matrix. Over the 42-hour period, the SH-SY5Y cells migrated into 18.92% 

of the displayed gel matrix. 

The invasiveness of the Neuroblastoma cell lines SK-N-AS and SH-SY5Y and the normal 

astrocyte cells SVG p12 was compared and is shown in Fig. 4.28.  

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19941&ac1=a952363d82989cf53da1a9c4440da1a2b9765a30b49c87cbe5fcbb84276f25af&ac2=e5ad51992f4567b12906250a4723a25827016e4a1c7cec36830141a4414a7d89
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19941&ac1=a952363d82989cf53da1a9c4440da1a2b9765a30b49c87cbe5fcbb84276f25af&ac2=e5ad51992f4567b12906250a4723a25827016e4a1c7cec36830141a4414a7d89
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19941&ac1=a952363d82989cf53da1a9c4440da1a2b9765a30b49c87cbe5fcbb84276f25af&ac2=e5ad51992f4567b12906250a4723a25827016e4a1c7cec36830141a4414a7d89
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Figure 4.28: The migration of SK-N-AS and SH-SY5Y Neuroblastoma cells compared to the non-

migration of SVG p12 astrocyte cells. Migration into the gel matrix was calculated by the percentage 

surface area invaded by the cells. 

 

Migration of the normal astrocyte and Neuroblastoma cell lines over 42 hours is displayed in 

Fig. 4.28. SK-N-AS was the most migrative with a 12.45% increase in the migrative potential 

than the SH-SY5Y cells whilst normal astrocyte SVG p12 were shown to not penetrate the gel. 

In summary, the Neuroblastoma cell lines have a greater migrative potential than the normal 

astrocytes. 

4.6 Cellular morphology, viability and migration following Hu 
knockdown in Neuroblastoma cells 

Often cancer cells experience genomic alterations causing mutations that influence 

proliferation, cell motility and changes to cell morphology (Baba and Câtoi 2007). Cell 
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morphology can help determine the physiological state of the cells and can therefore be used 

to qualitatively assess to cell health.  

4.6.1 Effect of Hu knockdowns in SH-SY5Y cells  

To assess the effect of Hu gene expression on these features in Neuroblastoma, cells 

morphology was analysed following individual and combined  Hu gene knockdowns. Cells were 

imaged to assess any changes to cell morphology through size and shape following Hu gene 

knockdowns. RT-qPCR of knockdown experiments confirmed a Hu gene knockdown at 48 

hours, subsequently cell morphology was observed at this time point. Cell images were 

obtained using an Eclipse II fluorescent inverted microscope and Microtec camera as described 

in Section 2.1.6. 

It is also important to mention, the images displayed in Figure 4.29 do not confer the 

confluency of the cell lines following Hu knockdowns. Other methods evaluate the 

proliferation rates described later in this section. Some cells had died, these were removed 

when the media was replaced prior to imaging.  
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Figure 4.29: SH-SY5Y cell morphology 48-hours post-transfection with Hu siRNAs. SH-SY5Y cells with 

Hu genes knocked down in combination and individually. Light microscopy at 20x objective. 

 

The morphology of SH-SY5Y has not been influenced by the individual or combined Hu gene 

knockdowns compared to the control non-target siRNA transfected cells. 

The cell viability after Hu knockdowns both individually and in combination were assessed 

over 120 hours in SH-SY5Y cells using CellTiter 96® AQueous One Solution assay (Section 2.6). 

Readings were taken at 24 hour intervals, 48 hours after transfection. 
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Figure 4.30: Cell viability of SH-SY5Y cells after knockdown experiments. Mean cell viability 

normalised to the control non-target siRNA treated cells. A) Effect of HuB knockdown. B) Effect of HuC 

knockdown. C) Effect of HuD knockdown. D) Effect of HuR knockdown. E) Effect of combined Hu 

knockdown. MTS absorbance was recorded at 490nm over a 120-hour period. Data are expressed as 

mean values ± SD. n=3. Statistical significance was calculated by a two-tailed t-test and is displayed by 

*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 



192 
 

The SH-SY5Y cell viability profiles displayed in Fig. 4.30 showed that the highest variability of 

Hu knockdowns was at the 120-hour time point. At this time point, cell viability increased 

43.72% following HuB knockdown, 9.92% following HuC knockdown and 41.23% in the 

combined Hu knockdown cells which were all significant. HuC showed a significant increase 

in viability when compared to the 48 hour sample whilst the combined Hu knockdown also 

showed a significant increase when compared to the 48 and 72 hours time points. HuD and 

HuR knockdown samples showed no significant change on viability between time points or 

when compared to the control. 

Cell motility was measured before and after individual and combination Hu gene knockdowns 

with a scratch wound assay (Section 2.5.2). This assay measures the ability and speed of the 

cells to migrate into an artificially created cell-free gap until new cell-cell contacts are 

established. Cells were imaged every 24 hours.  

The visual representation of SH-SY5Y cells migrating into a gap is shown in Fig. 4.31, Fig. 4.32 

and Fig. 4.33. Whilst this method can show variable results, quantitative measurements for 

the 48-hour timepoint were recorded. Later timepoints although captured visually, show 

great variability due to changes in cell viability. 

The control cells with a non-targeting siRNA (Fig. 4.31) showed an increase in motility 

following 24 hours where the cells became too confluent and started to detach at the wound 

edge. 
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Figure 4.31: Scratch wound assays in control SH-SY5Y Neuroblastoma cells with non-targeting 

siRNA. Migration was assessed 48 hours post-transfection when cells were confluent. Images were 

taken for 72 hours. Wounds were generated after cell confluence following siRNA interference. 

Timepoints state the number of hours post-wound making. Yellow lines highlight the gap. 

Magnification x10. 

 

Next, the effect of individual Hu gene knockdowns were observed (Fig. 4.32). Again a similar 

effect was observed in that an increase in motility following 24 hours resulted in the cells 

becoming too confluent and consequently start to detach at the wound edge. HuC knockdown 

resulted in detaching of cells following 48-hours so no images were obtained following that 

timepoint for that sample. 
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Figure 4.32: Scratch wound assays in SH-SY5Y Neuroblastoma cells following knockdown of Hu genes individually. Migration was assessed 48 hours post-

transfection when cells were confluent. Images were taken for 72 hours. A) HuB knockdown B) HuC knockdown C) HuD knockdown D) HuR knockdown. 

Timepoints state the number of hours post-wound making. Yellow lines highlight the gap. Magnification x10. 
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The effect of a combined knockdown is shown in Figure 4.33. 

 

 

Figure 4.33: Scratch wound assays in SH-SY5Y Neuroblastoma cells following knockdown of Hu 

genes combined. Migration was assessed 48 hours post-transfection when cells were confluent. 

Images were taken for 72 hours. Wounds were generated after cell confluence following siRNA 

interference. Timepoints state the number of hours post-wound making. Yellow lines highlight the 

gap. Magnification x10. 

 

Percentage migration into the cell-free gap was calculated for the 48 hour timepoint using 

ImageJ pixel analysis. Two-tailed t-test determined the statistical significance. This data is 

show in Fig. 4.33 
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Figure 4.34: Cell migration of Neuroblastoma cells SH-SY5Y represented as the percentage of 

migration into the cell-free gap over 48 hours. The measure of cell motility was calculated in ImageJ 

through the measurement of pixels and conversion into a percentage to determine the rate of cell 

migration. Data showed the mean migration of cells into the cell-free gap over 48 hours. Error bars 

display ± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 

0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

Whilst defining the role of the Hu-family of RNA binding proteins in cell migration, it was 

observed that the most variation between individual and combined Hu gene knockdowns 

compared to the non-target control at the 48 hours timepoint. This is displayed in Fig. 4.33. 

All cells with either individual or combined Hu gene knockdowns had a greater directional 

migratory response in comparison to the controls.  

Changes to the cellular properties observed following Hu gene knockdowns in the SH-SY5Y 

cell line are summarised in Fig. 4.35. 
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Figure 4.35: Changes in cellular properties following Individual and combined Hu gene family 

knockdown in the Neuroblastoma cell line SH-SY5Y.  

 

Knockdown of individual Hu or combined Hu genes did not result in any morphological 

changes. However, an increase in viability could be seen following HuB, HuC and the 

combined knockdown of all four Hu genes. Additionally, a reduction of HuB, HuC and HuR 

individually and all Hu genes in combination revealed an increased migrative potential.  

4.6.2 Effect of Hu knockdowns in SK-N-AS cells 

Cells were imaged to assess any changes to cell morphology through size and shape following 

Hu gene knockdowns (Fig. 4.36). Images were obtained using an Eclipse II fluorescent inverted 

microscope and Microtec camera as described in Section 2.1.6.  
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Figure 4.36: SK-N-AS cell morphology 48-hours post-treatment with siRNA. SK-N-AS cells with Hu 

genes knocked down in combination and individually. Light microscopy at 20x objective. 

No morphological changes could be observed in SK-N-AS cells following knockdown of all Hu 

proteins individually and in combination in comparison to the control untreated cells.  

The cell viability after Hu knockdowns both individually and in combination were assessed 

over 120 hours in SK-N-AS cells using CellTiter 96® AQueous One Solution assay (Section 2.6). 

Readings were taken in 24 hour intervals, 48 hours after transfection.  

The cell viability profile for SK-N-AS cells is displayed in Fig. 4.37. 



199 
 

48 72 96 120
0

50

100

150

200
siControl

siHuB

Number of Hours Post-transfection

C
e

ll
 V

ia
b

il
it
y

 (
%

)

48 72 96 120
0

50

100

150

200
siControl

siHuC

Number of Hours Post-transfection

C
e

ll
 V

ia
b

il
it

y
 (

%
)

48 72 96 120
0

50

100

150
siControl

siHuD

Number of Hours Post-transfection

C
e

ll
 V

ia
b

il
it

y
 (

%
)

48 72 96 120
0

50

100

150

200
siControl

siHuR

Number of Hours Post-transfection

C
e

ll
 V

ia
b

il
it

y
 (

%
)

48 72 96 120
0

50

100

150
siControl

siHuB/C/D/R

Number of Hours Post-transfection

C
e

ll
 V

ia
b

il
it
y

 (
%

)
A B

C D

E

Figure 4.37: Cell viability of SK-N-AS cells after knockdown experiments. Cell viability normalised to 

the non-target control. A) Effect of HuB siRNA transfection. B) Effect of HuC siRNA transfection. C) 

Effect of HuD siRNA transfection. D) Effect of HuR siRNA transfection. E) Effect of combined Hu siRNA 

transfection. MTS absorbance was recorded at 570nm over a 120-hour period. Data are expressed as 

mean values ± SD of at least three separate determinations. No statistical significance was detected 

by a two-tailed t-test. 

 

The cell viability of the control is set at 100%. At 96 hours where most variability is seen, 

viability increased 27.23% following HuB knockdown and 21.75% following HuR knockdown 
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although these values are not statistically significant. Cell viability reduced 7.08% following 

HuC knockdown,19.54% following HuD knockdown and 8.25% when all Hu genes were 

knocked down. Unfortunately, none of these values held significance. 

To address if any of the Hu knockdowns influence cell motility, a scratch wound assay (Section 

2.5.2) was performed and captured at 24 hour intervals starting 48 hours post-transfection. 

Images were captured using an Eclipse II fluorescent inverted microscope and Microtec camera 

as described in Section 2.1.6. The visual representation of SK-N-AS cells migrating are shown 

in Fig. 4.38, Fig. 4.39 and Fig. 4.40. 

Whilst this method can show variable results, quantitative data for the 24-hour timepoint was 

recorded. Later timepoints although captured visually, show great variability due to changes 

in cell viability. 

Damage induced by the wound to the cell layer showed a different pattern of disruption when 

comparing this cell line to the other Neuroblastoma cell line. This can be explained as a 

different effect to the extracellular matrix formed by all adherent cells in culture. Whilst 

wounds were induced using the same methods, SH-SY5Y cells formed a more uniform gap 

compared to the  irregular disruption inflicted on the SK-N-AS cell monolayer. These cells still 

managed to migrate towards each other, filling in smaller areas but generally at a slower rate 

than the SH-SY5Y cells. 
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Figure 4.38: Scratch wound assays in control SK-N-AS Neuroblastoma cells with non-targeting siRNA. 

Migration was assessed 48 hours post-transfection when cells were confluent for 72 hours. Wounds 

were generated after cell confluence following siRNA interference. Timepoints state the number of 

hours post-wound making. Yellow lines highlight the gap. Magnification x10. 

 

The effect of the individual Hu gene knockdowns are displayed in Figure 4.39.
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Figure 4.39: Scratch wound assays in SK-N-AS Neuroblastoma cells before and after knockdown of Hu genes individually. Migration was assessed 48 hours 

post-transfection when cells were confluent for 72 hours. A) HuB knockdown B) HuC knockdown C) HuD knockdown D) HuR knockdown. Timepoints state the 

number of hours post-wound making. Yellow lines highlight the gap. Magnification x10. 
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HuD knockdown resulted in detaching of cells following 24-hours so no images were obtained 

following that timepoint for that sample. The same occurred with HuC knockdown and 

combined Hu knockdowns after 72 hours. Interestingly, this correlates with viability data 

shown for this Neuroblastoma cell line SK-N-AS detailed in Fig. 4.37. Although not statistically 

significant, a decrease in viability is observed for these knockdowns at the 96-hours timepoint 

when compared to the non-target control.  

 

SiHuB/C/D/R 

 

Figure 4.40: Scratch wound assays in SK-N-AS Neuroblastoma cells before and after knockdown of 

all Hu genes combined. Migration was assessed 48 hours post-transfection when cells were confluent 

for 72 hours. Wounds were generated after cell confluence following siRNA interference. Timepoints 

state the number of hours post-wound making. Yellow lines highlight the gap. Magnification x10. 
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Percentage migration into the cell-free gap was calculated for the 24 hour timepoint using 

ImageJ pixel analysis. Two-tailed t-test determined the statistical significance. This data is 

show in Fig. 4.41. 
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Figure 4.41: Cell migration of Neuroblastoma cells SK-N-AS represented as the percentage of 

migration into the cell-free gap over 24 hours. The measure of cell motility was calculated in ImageJ 

through the measurement of pixels and conversion into a percentage to determine the rate of cell 

migration. Data showed the mean migration of cells into the cell-free gap over 24 hours. Error bars 

display SEM. (n=3). Statistical significance was calculated by a two-tailed t-test and is displayed by *P 

≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.  

 

The cell migration profile displayed in Fig. 4.41 details a different migratory rate than the 

other Neuroblastoma cell line examined (Fig. 4.33). Whilst defining the role of the Hu-family 

of RNA binding proteins in cell migration in the SK-N-AS cell line, the most reliable data was 

at the 24-hour timepoint as cell growth was not affected during this time. At 24-hours, a 

significant 24.06% increase in the migratory rate of SK-N-AS cells was seen following HuB 
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knockdown. 10.62% increase following HuC knockdown and a 21.96% increase following 

combined Hu knockdown that were insignificant. HuD and HuR knockdowns showed a 

reduced migratory potential of 10.04% and 7.62% respectively both of which were also 

insignificant. 

A summary of the overall effect of Hu interference in SK-N-AS cells is displayed in Figure 4.42. 

Knockdown of individual Hu or combined Hu genes in SK-N-AS cells did not result in any 

morphological changes. HuB knockdown increased the migrative potential of SK-N-AS cells. 

 

 

Figure 4.42: Changes in cellular properties following Individual and combined Hu gene family 

knockdown in the Neuroblastoma cell line SK-N-AS.  
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The two Neuroblastoma cell lines SH-SY5Y and SK-N-AS shared some similarities. There was 

no change in morphology following any Hu gene knockdowns. HuB gene knockdown resulted 

in a more migrative phenotype in both cell lines. 

4.7 Effect of Hu knockdown on gene regulation and translational 
networks in Neuroblastoma 

To assess the biological function of Hu proteins, the molecular targets of Hu proteins and the 

affect they have on those mRNA transcripts were determined through RT-qPCR before and 

after individual and combined Hu gene knockdowns. A collection of 91 pre-selected genes 

(Table 4.1) with appropriate controls were analysed before and after Hu gene knockdowns. 

The genes selected are thought to play a role in the development of Neuroepithelial 

neoplasms referenced by the National Library of Medicine database (NLM 2018). Gene targets 

are ranked based on frequency of gene expression changes in biomarker studies, popularity 

in overall medical research and popularity in current medical research (Biorad 2018).  

The array of genes (Table 4.1) was screened to highlight target mRNAs influenced by the 

family of Hu RNA-binding proteins regulation to establish a role of their aberrant or 

overexpression in Neuroblastoma.   

 



207 
 

 

Table 4.1: Gene targets by the Neuroepithelial T1 PrimePCR™ Assay. 

 

PrimePCR™ Disease state panels (Section 2.2.8) allow for an in-depth investigation of 

differentially expressed genes within Neuroblastoma. The targets on the panel are in line with 

the National Library of Medicine database (NLM 2018). Using cDNA from Hu gene 

knockdowns in the Neuroblastoma cell lines, SH-SY5Y and SK-N-AS, RT-qPCR of these panels 

facilitated initial screening of the genes. RT-qPCR data was analysed by the PrimePCR™ data 

analysis software provided by Bio-Rad. 

4.7.1 Identification of mRNA target transcripts of Hu gene regulation 
in SH-SY5Y Neuroblastoma cells 

The gene analysis of SH-SY5Y Neuroblastoma cells following Hu gene individual and combined 

knockdowns revealed a multitude of gene expression changes when compared to the non-

target control. To identify the genes with the highest expression level changes, a set the 

threshold of 3 fold-cycle difference was applied.  

 

ABCB1 CCND1 CTNNB1 HIF1A KIT MMP9 RB1 TLR2 TBP

AKT1 CCND2 CXCL12 HLA-DRB1 KRAS MYC RRM2 TNF GAPDH

APOE CD44 CXCR4 HMOX1 MAP2K2 NFKB2 SERPINE1 TOP2A HPRT1

ATM CDK1 EGFR IFNG MAPK1 PCNA SOD2 TYMS

AURKA CDK2 EGR1 IGF1 MAPK3 PIK3CA SP1 UBB

BCL2 CDKN1A ERBB2 IGF1R MDM2 PIK3R1 SPP1 UBC

BDNF CDKN2A ESR1 IGFBP3 MKI67 PLAU STAT3 VCAM1

BIRC5 COL1A1 EZH2 IL10 MLH1 PRKCA TCF7L2 VEGFA

BRCA1 COL1A2 FN1 IL6 MMP1 PROM1 TERT VIM

CCNA2 CTBP2 GSK3B ITGB1 MMP2 PTEN TGFB1 WNT5A

CCNB1 CTGF GSTP1 KDR MMP7 RAF1 TIMP1 ZWINT
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siRNA Interference Target 

HuB HuC HuD HuR Combined Hu 

IGFBP3 IGFBP3 IGFBP3 IGFBP3 IGFBP3 

EGR1 EGR1 EGR1 EGR1 EGR1 

   IL10 IL10 

   ESR1 ESR1 

BCL2   BCL2  
CCND2    CCDN2 

 PROM1  FN1 COL1A1 

   CXCL12 SERPIN 

   MAPK3  

   IGFIK  

   SP1  

   NFKB2  

   VCAM1  

Table 4.2: Identification of targets for further gene analysis influenced by Hu gene knockdowns in 

Neuroblastoma cells SH-SY5Y. List of the 16 genes conforming to the criteria of a fold-change of at 

least 3. Highlighted genes are those consistent with two or more of the knockdown samples. 

 

Of the 91 genes analysed shown in Table 4.2, there was 16 identified alterations consisting of 

both upregulated and downregulated expression of more than a 3.0 fold-change difference 

to the control non-targeting siRNA.  

To further minimise the number of genes for analysis, targets expression that was affected by 

two or more Hu gene knockdowns were selected. Highlighted in blue in Table 4.2 are the six 

genes that conform to the criteria described above in the Neuroblastoma cell line SH-SY5Y.  

Changes in IGFBP3 and EGR1 gene expression were consistent amongst all Hu gene 

knockdowns both individually and combined. IL10 and ESR1 gene expression was affected by 

HuR and combined Hu family knockdowns. BCL2 expression changed upon HuB and HuR gene 

knockdowns whilst CCND2 gene expression was affected by HuB and combined Hu family 
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knockdowns. A custom PrimePCR™ assay was designed to specifically target these genes to 

determine the extent of the Hu gene family in regulating these targets.  

For each gene target, individual and combined Hu gene knockdown in SH-SY5Y cDNA was run 

with expression normalised to β-Actin and compared with the control non-target siRNA using 

the 2-ΔΔCt method. Statistical significance was determined by a two-tailed t-test. 

The relative fold-change in the transcript levels of B-cell lymphoma (BCL2) following 

knockdown of each Hu gene individually and in combination in the Neuroblastoma cell lines 

SH-SY5Y is displayed in Fig. 4.43. Gene expression was normalised to the non-target control. 

C
ontr

ol

si
H
uB

si
H
uC

si
H
uD

si
H
uR

si
H
uB

/C
/D

/R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

** **

***

** **

siRNA Target

R
e

la
ti

v
e

 N
o

rm
a
li
s
e

d
 E

x
p

re
s
s
io

n

 

Figure 4.43: BCL2 gene expression following individual and combined Hu gene family knockdowns 

in SH-SY5Y Neuroblastoma cells. BCL2 gene expression was analysed by RT-qPCR in SH-SY5Y cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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RT-qPCR revealed that there was statistically significant downregulation of BCL2 gene 

expression in all knockdowns tested. An average decrease of 2.1-fold was observed for the 

siRNA interference of HuB, HuC and HuR and combination Hu gene when compared to the 

control. The highest knockdown was a 3.4-fold downregulation of BCL2 mRNA level after 

knockdown of HuD gene. 

Next, the expression of Cyclin D2 (CCND2) was analysed following Hu gene knockdowns (Fig. 

4.44). Gene expression was normalised to β-Actin and compared with the control non-target 

siRNA. 
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Figure 4.44: CCND2 gene expression following individual and Hu family combined Hu gene 

knockdowns in SH-SY5Y Neuroblastoma cells. CCND2 gene expression was analysed by RT-qPCR in 

SH-SY5Y cells with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. 

The 2-ΔΔCt results shown are an average of three replicates normalised to β-Actin and compared with 

the control non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-

tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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The relative normalised expression of CCND2 following siRNA interference of each Hu gene 

individually and in combination in the Neuroblastoma cell lines SH-SY5Y. RT-qPCR revealed a 

statistically significant downregulation of CCND2 expression in HuC knockdown by 3.5-fold 

and in HuD knockdown, a downregulation of 5.8-fold. However, a statistically significant  2.1-

fold increase of CCND2 was observed after knockdown of all Hu genes in combination. HuB 

and HuR knockdown showed little change in CCND2 gene expression. 

Next, the expression of Early Growth Receptor 1 (EGR1) following siRNA interference of each 

Hu gene individually and in combination was analysed and is displayed in Fig 4.45.  
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Figure 4.45: EGR1 gene expression following HuB, HuC and HuD, HuR and combined Hu gene 

knockdowns in SH-SY5Y Neuroblastoma cells. EGR1 gene expression was analysed by RT-qPCR in SH-

SY5Y cells with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. 

The 2-ΔΔCt results shown are an average of three replicates normalised to β-Actin and compared with 

the control non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-

tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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EGR1 gene expression was normalised to β-Actin and compared with the control non-target 

siRNA. EGR1 expression levels were downregulated in SH-SY5Y cells with siRNA interference 

of HuB, HuC and HuD genes. After HuB knockdown, EGR1 decreased by 3.7-fold, knockdown 

of HuC expression also resulted in a 2.1-fold down regulation and a HuD knockdown 

additionally showed a 3.8-fold decrease each of which was statistically significant. Little 

change was observed in EGR1 gene expression following HuR and combined Hu family 

knockdowns. 

Next, the expression of Estrogen Receptor 1 (ESR1) was analysed, the relative normalised 

gene expression is showed in Fig. 4.46.  
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Figure 4.46: ESR1 gene expression following individual and combined Hu gene family knockdowns 

in SH-SY5Y Neuroblastoma cells. ESR1 gene expression was analysed by RT-qPCR in SH-SY5Y cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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The relative normalised ESR1 gene expression showed that after individual Hu gene 

knockdowns there was a decrease of ESR1 expression when compared to the control. ESR1 

gene expression decreased following HuB knockdown by 3.0-fold, HuC knockdown by 4.8-fold 

and HuD knockdown by 8.7-fold, each were statistically significant. When the Hu genes were 

knocked down in combination, ESR1 expression increased by 1.1-fold. No significant change 

was observed in ESR1 expression upon HuR knockdown. 

Next, the expression of Insulin-like growth factor-binding protein 3 (IGFBP3) was analysed 

following Hu gene knockdowns (Fig. 4.47).  
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Figure 4.47: IGFBP3 gene expression following individual and combined Hu gene family knockdowns 

in SH-SY5Y Neuroblastoma cells. IGFBP3 gene expression was analysed by RT-qPCR in SH-SY5Y cells 

with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt 

results shown are an average of three replicates normalised to β-Actin and compared with the control 

non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-

test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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IGFBP3 gene expression was normalised to β-Actin and compared with the control non-target 

siRNA. RT-qPCR revealed a statistically significant downregulation of 3.9-fold in IGFBP3 

expression in HuR gene knockdown of SH-SY5Y cells. There was no significant difference in 

expression in all other knockdowns. 

Next, the expression of Interleukin 10 (IL10) was analysed. The relative fold-change in the 

transcript levels of IL10 expression following siRNA interference of each Hu gene individually 

and in combination in SH-SY5Y is displayed in Fig. 4.48. Gene expression was normalised to β-

Actin and compared with the control non-target siRNA. 
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Figure 4.48: IL10 gene expression following individual and combined Hu gene family knockdowns in 

SH-SY5Y Neuroblastoma cells. IL10 gene expression was analysed by RT-qPCR in SH-SY5Y cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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The relative normalised IL10 gene expression, showed that after all individual Hu gene 

knockdowns, a decrease of IL10 expression  was observed when compared to the control. 

HuB siRNA interference decreased IL10 expression by 2.8-fold, HuC siRNA interference 

showed a reduction of IL10 expression by 5.1-fold, HuD siRNA interference resulted in a 10.4-

fold decrease in IL10 expression and HuR siRNA interference reduced it by 6.3-fold. When Hu 

genes were knocked down in combination, IL10 expression increased by 1.3-fold. All changes 

to IL10 gene regulation were statistically significant. 

To summarise the expression of all the gene targets discussed above, a heat map was 

developed in Microsoft Excel using analysis from Biorad PrimePCR Analysis (Fig. 4.49). 

 

Figure 4.49: Heatmap of genes with differential expression in SH-SY5Y cells following Hu gene 

knockdowns individually and in combination. The relative gene expression data of multiple targets 

in each Hu  gene knockdown individually and combined in SH-SY5Y. Targets are clustered according 

to their similarity in the gene expression pattern. (Up regulation; Red, Down regulation; Green, no 

change; Black, as shown by the key). The lighter the shade of colour, the greater the relative 

expression difference according to the magnitude of relative gene expression). 
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The heat map concludes that the most similarity was observed in the gene expression profiles 

of CCND2, ESR1 and IL10. Knockdown of HuC, HuD and all Hu genes in combination for these 

profiles sees the same effect on the target genes expression. Of the CCND2, ESR1, IL10 

clustering, there was then a further 50% similarity to EGR1 and BCL2 with HuB, HuD and HuC 

knockdowns, which showed the same trend in the target gene expression. The least similarity 

was observed in the IGFBP3 gene expression profile compared to the other target genes.  

Interestingly, this heat map also highlights trends in the Hu knockdowns in the SH-SY5Y cells. 

Following HuC and HuD knockdown, five of the six gene targets expression decreased. HuB 

knockdown decreased its target gene expression in four of the genes. Also, all Hu genes 

knocked down in combination showed an increase in five of the target gene expression 

profiles including CCND2, ESR1, IL10, EGR1, and IGFBP3. 

4.7.2 Identification of mRNA target transcripts of Hu gene regulation 
in SK-N-AS Neuroblastoma cells 

Next, the targets displayed in Table 4.1 were screened by RT-qPCR following each Hu gene 

knockdown individually and in combination were in the second Neuroblastoma cell line, SK-

N-AS. RT-qPCR data was analysed by the PrimePCR™ data analysis software provided by Bio-

Rad. 

The gene analysis of SK-N-AS Neuroblastoma cells following Hu gene individual and combined 

knockdowns revealed many gene expression changes when compared to the non-target 

control. Therefore, a threshold of 3.6 fold-cycle difference was set to maintain a more 

manageable number of genes to target for further analysis.  
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Of 91 genes named in Table 4.1, there were 35 genes that either became amplified, over-

expressed or under-expressed and deleted by 3.6 fold-change difference in comparison to the 

control. These are summarised in Table 4.3. 

 

siRNA Interference Target 

HuB HuC HuD HuR Combined Hu 

MAPK3 MAPK3 MAPK3   

APOE APOE APOE   

FN1 FN1    

PRKCA PRKCA    

CDK1 CDK1    

TOP2A TOP2A    

CTGF CTGF    

KRAS KRAS    

GSTP1 GSTP1    

 EGR1 EGR1   

 MAP2K2 MAP2K2   

 TGFΒ1 TGFΒ1   

 BDNF SERPINE1 UBC PLAU 

STAT3 GFB1 COL1A1 HLA-DRB1  

ATM BCL2  PTEN  

RAF1 WNT5A    

VEGFA IL10    

ITGB1 BRCA1    

MMP1 AURKA    

CCNB1     

PIK3CA     

COL1A2     

Table 4.3. Identification of targets for further gene analysis influenced by Hu gene knockdowns in 

Neuroblastoma cells SK-N-AS. The 35 genes conforming to the criteria of a fold-change of at least 3.6. 

Highlighted genes are those consistent with two or more of the knockdown samples. 
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To further minimise the number of genes for analysis, targets expression that was affected by 

two or more Hu gene knockdowns were selected. Highlighted in blue in Table 4.3 are the 12 

genes that conform to the criteria described above in the Neuroblastoma cell line SK-N-AS.  

MAPK3 and APOE gene expression changes were observed following HuB, HuC and HuD gene 

knockdowns. FN1, PRKCA, CDK1, TOP2A, CTGF, KRAS and GSTP1 gene expression was affected 

by HuB and HuC knockdowns whilst, EGR1, MAP2K2 and TBFB1 expression was affected by 

HuC and HuD gene knockdowns. A custom PrimePCR™ assay was designed to specifically 

target these genes to determine the extent of the Hu gene family in regulating these targets.  

For each gene target, individual and combined Hu gene knockdown in SH-SY5Y cDNA was run 

with expression normalised to GAPDH and compared with the control non-target siRNA using 

the 2-ΔΔCt method. Statistical significance was determined by a two-tailed t-test. 

First, the effect of single and combined Hu gene knockdown was assessed for the effects on 

Apolipoprotein E (APOE) expression. The relative fold-change in the transcript levels of APOE 

expression displayed in Fig. 4.50.  
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Figure 4.50: APOE gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. APOE gene expression was analysed by RT-qPCR in SK-N-AS cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to GAPDH and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

Apolipoprotein E expression decreased when all Hu genes were knocked down individually 

and combined in the SK-N-AS Neuroblastoma cell line. APOE expression decreased by 2.5-fold 

following HuB knockdown, 1.5-fold following HuC knockdown, 3.1-fold following HuD 

knockdown and 1.6-fold following HuR knockdown. Interestingly, the combined Hu family 

knockdown caused the lowest decrease expression in APOE by only 1.3-fold. 

Next, the expression of Cyclin-dependent kinase 1 (CDK1) was analysed. The relative fold-

change in the transcript levels of CDK1 expression following siRNA interference of each Hu 
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gene individually and in combination in SK-N-AS is displayed in Fig 4.51. Gene expression was 

normalised to GAPDH and compared with the control non-target siRNA. 
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Figure 4.51: CDK1 gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. CDK1 gene expression was analysed by RT-qPCR in SK-N-AS cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to GAPDH and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

Kknockdown of HuC and HuR genes in SK-N-AS caused no significant change to Cyclin-

dependent Kinase 1 (CDK1) gene expression. HuB siRNA interference induced an upregulation 

of CDK1 expression by 0.8-fold, likewise HuD siRNA interference also increased CDK1 

expression by 0.5-fold. Combined Hu gene family knockdown resulted in a significant 

upregulation of CDK1 by 0.1-fold. 
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Connective Tissue Growth Factor (CTGF) gene expression was analysed following siRNA 

interference of the Hu gene family in SK-N-AS cells (Fig 4.52). Gene expression was normalised 

to GAPDH and compared with the control non-target siRNA. 
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Figure 4.52: CTGF gene expression following HuB, HuC, HuD and HuR knockdowns and combined Hu 

gene family knockdowns in SK-N-AS Neuroblastoma cells. CTGF gene expression was analysed by RT-

qPCR in SK-N-AS cells with siRNA interference of HuB, HuC, HuD and HuR individually and all Hu in 

combination. The 2-ΔΔCt results shown are an average of three replicates normalised to GAPDH and 

compared with the control non-target siRNA. Error bars display ± SEM. Statistical significance was 

calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

Of the statistically significant data, HuC, HuD and HuR knockdowns all decreased CTGF gene 

expression by 1.7-fold, 1.6-fold and 2.9-fold respectively. HuB and Hu family combined gene 

knockdown did not show any statistical difference. 
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The next gene to be analysed is Early Growth Receptor 1 (EGR1) was analysed. The relative 

fold-change in the transcript levels of EGR1 expression following siRNA interference of each 

Hu gene individually and combined in SK-N-AS cells is shown in Fig. 4.53. Gene expression was 

normalised to GAPDH and compared with the control non-target siRNA.  
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Figure 4.53: EGR1 gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. EGR1 gene expression was analysed by RT-qPCR in SK-N-AS cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to GAPDH and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

A reduction of EGR1 gene expression was observed in all SK-N-AS cell samples varying with 

single or combined Hu gene knockdown. Of statistical significance was the reduction in EGR1 

expression by 6.6-fold following HuC knockdown down and 5.1-fold reduction following HuD 
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knockdown, whilst Hu genes knocked down in combination saw a reduction of EGR1 

expression by 3.8-fold. 

Fibronectin 1 (FN1) gene expression was determined following siRNA interference of SK-N-AS 

cells (Fig 4.54). Gene expression was normalised to GAPDH and compared with the control 

non-target siRNA. 
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Figure 4.54: FN1 gene expression following individual and combined Hu gene family knockdowns in 

SK-N-AS Neuroblastoma cells. FN1 gene expression was analysed by RT-qPCR in SK-N-AS cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to GAPDH and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

Fibronectin 1 gene expression decreased upon Hu gene knockdowns both individually and in 

combination in the Neuroblastoma cell line SK-N-AS. Whilst none were significant most likely 
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due to SEM in the control sample, all showed a reduction of at least 1.3-fold with HuD 

knockdown causing the greatest effect on FN1 expression. 

The effect of Hu gene siRNA interference on Glutathione S-Transferase Pi 1 (GSTP1) was 

determined in SK-N-AS cells and is shown in Fig. 4.55. Gene expression was normalised to 

GAPDH and compared with the control non-target siRNA. 

C
ontr

ol

si
H
uB

si
H
uC

si
H
uD

si
H
uR

si
H
uB

/C
/D

/R

0.0

0.5

1.0

1.5

2.0

*

*

**

siRNA Targets

R
e
la

ti
v
e
 N

o
rm

a
li
s
e
d

 E
x
p

re
s
s
io

n

 

Figure 4.55: GSTP1 gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. GSTP1 gene expression was analysed by RT-qPCR in SK-N-AS cells 

with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt 

results shown are an average of three replicates normalised to GAPDH and compared with the control 

non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-

test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

As seen in Fig. 4.55, a variable response was observed on Glutathione S-Transferase Pi 1 gene 

expression upon both individual and combination Hu gene knockdowns. HuB siRNA 

interference was the only knockdown to induce a decrease in GSTP1 expression. In this 
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sample, GSTP1 expression decreased by 1.4-fold. HuC, HuD and HuR siRNA interference saw 

an increased in GSTP1 expression by 0.4-fold, 0.2-fold and 0.7-fold respectively. Additionally, 

when all Hu gene were knocked down in combination, an upregulation of 0.2-fold was 

observed in GSTP1 gene expression. 

The effect of Hu gene siRNA interference on Ki-ras2 Kirsten rat sarcoma viral oncogene 

homolog (KRAS) was determined in SK-N-AS cells and is shown in Fig. 4.56. Gene expression 

was normalised to GAPDH and compared with the control non-target siRNA. 
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Figure 4.56: KRAS gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. KRAS gene expression was analysed by RT-qPCR in SK-N-AS cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to GAPDH and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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As seen in Fig. 4.56, a decrease in KRAS expression was observed for HuC, HuD, HuR and 

combined Hu gene knockdown. KRAS expression decreased significantly by 1.5-fold following 

HuC knockdown and 2.1-fold following HuR knockdown. HuB, HuD and combined Hu 

knockdown did not show any significant change to KRAS gene expression in the SK-N-AS cells. 

Next, two members of the mitogen-activated kinase family were analysed, Mitogen-Activated 

Protein Kinase Kinase 2 (MAP2K2 (Fig 4.57) and Mitogen-Activated Protein Kinase 3 (MAPK3) 

(Fig 4.58) for any change in gene expression following Hu gene knockdowns both individually 

and I combination. Gene expression was normalised to GAPDH and compared with the control 

non-target siRNA. 
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Figure 4.57: MAP2K2 gene expression following individual and combined Hu gene family 

knockdowns in SK-N-AS Neuroblastoma cells. MAP2K2 gene expression was analysed by RT-qPCR in 

SK-N-AS cells with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. 

The 2-ΔΔCt results shown are an average of three replicates normalised to GAPDH and compared with 

the control non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-

tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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As seen in Fig. 4.57, the biggest reduction of Mitogen-Activated Protein Kinase Kinase 2 gene 

expression was observed in individual HuB and HuD knockdowns with a reduction of 

expression of 6.2-fold and 9.04-fold respectively. Upon HuC and HuR knockdown, MAP2K2 

expression decreased by 2.3-fold and 1.3-fold respectively. Combined Hu gene knockdown 

showed a reduction in MAP2K2 expression of 2.2-fold. 
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Figure 4.58: MAPK3 gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. MAPK3 gene expression was analysed by RT-qPCR in SK-N-AS cells 

with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt 

results shown are an average of three replicates normalised to GAPDH and compared with the control 

non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-

test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

The expression profile of MAPK3 gene expression following Hu individual and combined 

knockdowns. Like MAP2K2, the largest reduction in Mitogen-activated Protein Kinase 3 

(MAPK3) gene expression was following HuB and HuD knockdown where expression 
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decreased by 3.6-fold and 5.7-fold respectively. HuC knockdown resulted in a 2.7-fold 

reduction in MAPK3 expression whilst HuR knockdown showed a 2.4-fold decrease. Combined 

Hu gene knockdown showed the smallest effect on MAPK3 expression although it still resulted 

in a 1.6-fold decrease. 

An overall decreased of both kinases was observed upon single and combined Hu gene 

knockdowns in SK-N-AS cell line. Within this observation is a similar pattern for each sample 

whereby HuB and HuD knockdowns showed the most decrease in MAP2K2 and MAPK3 gene 

expression followed by HuC, HuR and combined Hu siRNA knockdowns in the SK-N-AS cell 

line. 

Another member of the kinase family was analysed, Protein kinase C α (PRKCA). The relative 

fold-change in the transcript level expression following knockdowns of each Hu gene 

individually and combined shown in Fig 4.59. Gene expression was normalised to GAPDH and 

compared with the control non-target siRNA. 
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Figure 4.59: PRKCA gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. PRKCA gene expression was analysed by RT-qPCR in SK-N-AS cells 

with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt 

results shown are an average of three replicates normalised to GAPDH and compared with the control 

non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-

test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

An overall reduction of Protein Kinase C Alpha gene expression upon Hu gene knockdowns. 

However, only HuD siRNA interference showed a significant effect of a 2.4-fold reduction in 

PRKCA gene reduction. Of the other Hu siRNA interference-induced SK-N-AS cells, an average 

1.7-fold decrease in expression of PRKCA gene was observed. 

The gene expression profile of Transforming growth factor beta 1 (TGFΒ1) (Fig 4.60) following 

Hu gene knockdowns was analysed. Gene expression was normalised to GAPDH and 

compared with the control non-target siRNA. 
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Figure 4.60: TGFΒ1 gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. TGFΒ1 gene expression was analysed by RT-qPCR in SK-N-AS cells 

with siRNA interference of HuB, HuC, HuD and HuR and in combination. The 2-ΔΔCt results shown are 

an average of three replicates normalised to GAPDH and compared with the control non-target siRNA. 

Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed 

by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

There was no significant change in TGFΒ1 gene expression following Hu gene knockdowns 

although a general observation showed a large decrease when all Hu genes were knocked 

down individually. If the TGFΒ1 gene expression SEM would have been more accurate the 

results may well have represented a significant change. 

DNA Topoisomerase II Alpha (TOP2A) gene expression was analysed following Hu gene 

knockdowns and is displayed in Figure 4.61. Gene expression was normalised to GAPDH and 

compared with the control non-target siRNA. 
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Figure 4.61: TOP2A gene expression following individual and combined Hu gene family knockdowns 

in SK-N-AS Neuroblastoma cells. TOP2A gene expression was analysed by RT-qPCR in SK-N-AS cells 

with siRNA interference of HuB, HuC, HuD and HuR and in combination. The 2-ΔΔCt results shown are 

an average of three replicates normalised to GAPDH and compared with the control non-target siRNA. 

Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed 

by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

As seen in Fig. 4.61, there was no significant change in expression of TOP2A. Variation was 

observed in the TOP2A gene expression up on HuD and HuR RNA interference but was not 

significant. HuD knockdown resulted in a decreased TOP2A expression by 1.5-fold. HuR 

interference showed an increased expression of TOP2A by 0.6-fold. 

To summarise the expression of all the gene targets discussed above, a heat map was 

developed in Microsoft Excel using analysis from Biorad PrimePCR Analysis (Fig 4.62). 
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Figure 4.62: Heatmap of genes with differential expression in SK-N-AS cells following Hu gene 

knockdowns individually and in combination. The relative gene expression data of multiple target in 

each Hu gene knockdown in SK-N-AS. Targets are clustered according to their similarity in the gene 

expression pattern (Up regulation; Red, Down regulation; Green, no change; Black, as shown by the 

key). The lighter the shade of colour, the greater the relative expression difference according to the 

magnitude of relative gene expression). 

 

The heatmap concludes the most similarity was observed between the gene expression 

profiles of the protein kinases MAP2K2 and MAPK3 along with APOE and PRKCA. Their 

expression profiles for each Hu knockdown in SK-N-AS was almost identical. Likewise, TOP2A 

and FN1 shared a high similarity. EGR1 showed similar homology to TGFB1. These groups of 

targets shared about 30% similarity with CTGF, KRAS and CDK1 in their expression profiles 

following Hu gene knockdowns. Importantly, GSTP1 did not show any expression homology 

reflecting the greater divergence in the relationship to the other targets. 
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This heatmap clearly displays similarities within each Hu knockdown in that HuB and HuD 

knockdown resulted in a downregulation in 7 of the 12 genes analysed. HuC and HuR 

knockdown resulted in a downregulation in 8 of the 12 genes analysed. 

4.7.3 Genes affected by Hu gene regulation in Neuroblastoma 

To summarise the roles the genes targeting by Hu RNA-binding proteins have in cancer the 

pie chart displayed Fig. 4.63 was drawn. 

 

Figure 4.63 Map of Hu gene regulation targets identified through Hu gene knockdowns. The 

individual targets of each Hu protein individually and combined. Positive regulation is represented by 

a green arrow whilst negative regulation is shown by a red arrow. 
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The genes are separated into categories of the well-defined cancer hallmarks; Enhanced cell 

survival through self-sufficiency in growth signals, Enhanced cell proliferation through 

insensitivity to anti-growth signals evading apoptosis to produce limitless replication 

potential, Elevation of local angiogenesis, Evasion of immune response, Tissue invasion and 

metastasis and Reprogramming of energy metabolism. 

 

 

Figure 4.64: Categorisation of the statistically significant collective regulation of the Hu RNA-protein 

family in the Neuroblastoma cell like SH-SY5Y. mRNA targets of Hu gene regulation grouped by cancer 

hallmarks; Reprogramming of energy metabolism, tissue invasion and metastasis, evasion of the 

immune resonse, elevation of local angiongensis, enhanced cell survival and enhanced proliferation.  

 

The pie chart displayed in Fig. 4.64 showed 49% of the genes collectively controlled by the Hu 

protein family are those involved in the enchanced cell survival group. 17% of the genes 

analysed were involved in the reprogramming of energy metablism, followed by 13% of the 

targets involved in enhanced cell survival. 9% of the genes were involved in tissue invasion 
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and metastasis and elevation of local angiogenesis. 4% of the gene targets were involved in 

evading the immune response.  

4.8 Summary 

There are several conclusions that can be drawn from the results present in this chapter. Gene 

expression data showed an upregulation of all neuronal Hu genes, HuB, HuC, HuD in the 

Neuroblastoma cells lines in comparison to the control astrocyte cell line. Upregulation of the 

ubiquitously expressed HuR was observed in one of the two Neuroblastoma cells SH-SY5Y. 

Secondly, regulatory influences amongst Hu proteins was proven. This level of regulatory 

influences was variable between the two Neuroblastoma cell lines SH-SY5Y and SK-N-AS. And 

finally, to identify targets that the Hu family of RNA-binding proteins control resulting in the 

development of cancer, following Hu gene individual and combined knockdowns, several 

mRNA transcripts were found to change their expression level identifying Hu’s role at a 

genetic level. This confirms Hu genes participate in the regulation of these targets which is 

discussed in more detail below. 

With an overall higher expression of the Hu family of RNA-binding proteins, SH-SY5Y 

Neuroblastoma cells showed an upregulation of all Hu genes whilst SK-N-AS showed 

upregulation of the neuronal Hu family members HuB, HuC and HuD only. Of the neuronal Hu 

members upregulated, the SH-SY5Y showed an overall higher expression in comparison to the 

other SK-N-AS cell line.  
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 Hu Protein 

Cell type Cell line HuB HuC HuD HuR 

PCR WB IF PCR WB IF PCR WB IF PCR WB IF 

Normal 

Astrocytes 

SVGp12 
  B   B      B 

Neuroblastoma SK-N-AS   N   C   C   N 

SH-SY5Y   B   C   C   C 

Table 4.4: Overall expression of HuB, HuC, HuD and HuR proteins in cell lines of normal astrocytes 

and Neuroblastoma cells. Each method of analysis including RT-qPCR (PCR), western blotting (WB) 

and immunofluorescent staining (IF) is shown. Green represents a positive result. Also shown is the 

localisation of the proteins determined through immune fluorescence cytoplasm is shown by C, the 

nucleus is represented by N, whilst B refers to both the cytoplasm and the nucleus. 

 

Whilst gene expression analysis is important, equally as valuable is the translation of these 

genes into a functional protein product. Western blot analysis confirmed HuB and HuC 

proteins were expressed in all cell lines representative of normal astrocytes and 

Neuroblastoma, whilst HuD and HuR proteins were only detected in the Neuroblastoma cell 

lines.  

The normal astrocytes cell line SVG p12 had the highest levels of HuB and HuC protein 

expression when normalised to the control GAPDH and compared to the Neuroblastoma cells. 

Based on the explanation of band sizes, HuB protein was detected as a monomer and dimer 

in the normal astrocytes and only as a dimer in the Neuroblastoma cells. Similarly, HuC protein 

was detected as a monomer and multimer in the normal astrocytes and only as a multimer in 

the Neuroblastoma cells. HuD protein was absent in normal astrocyte but present in the 
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Neuroblastoma cells. HuR protein detected by western blot at a low level in normal astrocytes 

when compared to the Neuroblastoma. 

Studies of Hu protein localisation in astrocyte cells revealed HuB, HuC and HuR proteins were 

mainly localised in the nucleus of the cells with a lower presence in the cytoplasm. There was 

no detectable expression of HuD protein confirming western blot analysis.  

In the Neuroblastoma cells, HuB protein was found predominantly localised to the nucleus 

although a faint staining revealed a low expression in the cytoplasm of the SK-N-AS cell line. 

HuC and HuD proteins were localised to the cytoplasm in both Neuroblastoma cell lines whilst 

HuR protein was found in the nucleus of the SK-N-AS cells and in the cytoplasm of SH-SY5Y 

cells. 

Optimisation experiments for siRNA transfection efficiency showed DharmaFECT I most 

suitable for SH-SY5Y cells and JETprime for SK-N-AS cells. Knockdown efficiency was 

determined through RT-qPCR whilst protein knockdown was confirmed by western blotting. 

Higher efficiency was achieved when all Hu genes were knocked down together that could be 

explained by a regulatory mechanism within the Hu family. 

Knockdown of Hu genes in Neuroblastoma cell lines, established a regulatory mechanism 

within the Hu family. The observed interplay between the different Hu proteins when 

individually or together knocked down resulted in two cell line-specific models displayed in 

Fig. 4.19 and Fig. 4.23. The described findings in Section 4.7, is in alignment with the known 

molecular heterogeneity within this disease. Of the since the only significant similarity within 

the two models is that following downregulation of HuC and HuR increases. However, the 

regulation observed by each Hu family members showed the extent of regulation that is 
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feasible. Three theories were proposed to explain the traits of regulatory influences observed; 

A compensatory effect where Hu gene family members become more expressed to 

compensate for each other’s reduced expression. A regulatory mechanism in which Hu family 

members actively bind to Hu mRNA transcripts to regulate their expression during Hu reduced 

expression, a family member may also show decreased expression or become more expressed 

dependent on the effects of the Hu’s RNA stabilisation effect on the transcript. Additionally, 

the changes observed could be due to off-target effects of Hu gene downregulation on certain 

pathways.  

The assessed motility of the cell lines prior to knockdown experiments showed the two 

Neuroblastoma cell lines had a greater migrative potential than the normal astrocytes 

highlighting the Neuroblastoma cells have a more motile, invasive phenotype.  

The knockdown of Hu genes individually and in combination showed no change to 

morphology in both Neuroblastoma cell lines. Significant changes were observed to cell 

viability only in the SH-SY5Y cell line. An increase in cell viability was observed following HuB, 

HuC, HuR and combined Hu knockdown in SH-SY5Y cells.  

SH-SY5Y cells adopted a more migrative phenotype when HuB, HuC and HuR were knocked 

down individually and when Hu genes were knocked down in combination. SK-N-AS cells also 

saw an increase in migration following HuB knockdown. 

Initial gene screening studies using pre-designed PrimePCR™ plates with genes thought to 

influence disease progression in Neuroepithelial cancers. Targets were identified for further 

analysis of gene expression change following individual and combined Hu siRNA interference. 

Due to the distinct variability in gene expression change of targets between the two 
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Neuroblastoma cell lines highlighted throughout these studies, the two cells lines were 

treated as individual models to identification of novel targets.  

The influence of Hu gene regulation can be concluded as follows. Gene expression profiling 

of the 6 selected genes in SH-SY5Y Neuroblastoma cells revealed that individual and combined 

Hu gene knockdowns resulted in a reduction of BCL2 gene expression. CCND2 gene expression 

decreased following HuC and HuD individual knockdowns but increased following combined 

Hu gene knockdown. EGR1 expression decreased following HuB, HuC and HuD individual gene 

knockdowns. ESR1 expression decreased following individual HuB, HuC and HuD gene 

knockdowns and increased following combined Hu gene knockdown. The expression of 

IGFBP3 was only affected during HuR knockdown, where its expression was reduced. 

Individual knockdowns of Hu gene observed a decrease in IL10 gene expression. An increase 

in IL10 gene expression was found following combined Hu gene knockdown. The heatmap for 

this data concluded that HuC and HuD have the largest effect on the expression of these 

chosen genes. 

Of the 12 genes analysed in SK-N-AS cells, APOE and MAP2K2 gene expression reduced 

following individual and combined Hu gene knockdowns. CDK1 gene expression increased 

following HuB and HuD gene knockdowns. CTGF gene expression reduced following HuC, HuD 

and HuR gene knockdowns. EGR1 gene expression decreased following HuB, HuC and HuD 

gene knockdowns, which is consistent with the SH-SY5Y cell lines. Combined Hu knockdown 

also resulted in an EGR1 expression decrease. GSTP1 expression decreased following HuB 

knockdown but increased following HuC and HuR gene knockdowns. KRAS gene expression 

decreased after HuC and HuR gene knockdowns. MAPK3 gene expression decreased following 

all Hu individual gene knockdowns. PRKCA showed a reduced gene expression following HuD 
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gene knockdown. The overall heat map of this data revealed HuC and HuD followed closely 

by HuB as major players in the gene regulation of these targets. 

The targets from both gene models were combined to show the extent of Hu gene regulation 

in Neuroblastoma. Their categorisation in cancer hallmarks concluded majority of the targets 

are involved in enhancing cell proliferation.  

Importantly, highlighted consistently throughout these studies is the cellular and molecular 

variability typical of the heterogeneity in the Neuroblastoma cell lines used.
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Chapter 5 

Results  

Part III: Expression of Hu proteins in Glioblastoma 

Glioblastoma remains the most common and most malignant brain tumour, responsible for 

2.5% of all cancer-related deaths (Hanif et al. 2017). HuR overexpression in Glioblastoma was 

initially reported by Nabors et al. (2001). Later, studies showed HuR localisation in Glioma 

cells influences its role within the cells and its function in developing the cancer. It was 

reported that HuR in Glioma is often present in the cytoplasm influencing a more malignant 

phenotype and therefore a poorer prognosis (Filippova et al. 2011).  

Whilst some molecular targets of HuR in Glioblastoma have been identified e.g. MSI1 (Vo et 

al. 2012), the extent of target transcripts of the ubiquitously expressed HuR and the neuronal 

Hu proteins, HuB, HuC and HuD are yet to be determined. These studies aim to identify the 

roles of these proteins in tumour initiation or development through their influence on 

molecular pathways.  

This experiment focussed on building an expression profile of these Hu proteins in a 

Glioblastoma multiforme cell line and using a normal astrocyte cell line as a control. 

Knockdown studies of each Hu protein in the Glioblastoma multiforme cell lines were 

established to determine any specific effects on molecular pathways. The following cell lines 

were selected as suitable models to investigate Hu proteins in Glioblastoma; SVG p12 for 

normal astrocytes and U87-MG for Glioblastoma.  
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5.1 Hu gene expression in Glioblastoma and normal astrocytes 

The gene expression level of all Hu proteins in Glioblastoma U87-MG cells and normal 

astrocytes SVG p12 were determined using quantitative RT-qPCR (described in Section 2.26). 

HuB (1), HuC (1), HuD (6), HuR (2) and β-Actin primer sequences are listed in Table 2.3 of 

Section 2.27. The fold-change of expression was analysed by comparing expression levels to 

the normal astrocyte cell line SVG p12. β-Actin was used as a housekeeping gene to normalise 

Hu expression. Statistical significance was calculated by a two-tailed t-test. 

Figure 5.1: Gene expression of all the Hu protein family members Glioblastoma compared to normal 

astrocytes. HuB, HuC, HuD and HuR gene expression was analysed by RT-qPCR in Glioblastoma cells 

U87-MG and normal astrocytes SVG p12. The 2-ΔΔCt results shown are an average of three replicates 

normalised to β-Actin. Error bars display ± SEM. Statistical significance was calculated by a two-tailed 

t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

The relative fold-change in the transcript levels of all Hu genes in the Glioblastoma cell line in 

comparison to the normal astrocyte cell line is displayed in Fig. 5.1. The normal astrocytes 
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expressed a low level of HuB, HuC and HuD gene, whilst HuR was expressed at higher levels. 

The data concludes all Hu genes were upregulated in the U87-MG Glioblastoma cell lines. 

A 1.85 fold-increase of HuB gene expression was observed in U87-MG cells when compared 

to the SVG p12 normal astrocyte cell line. A similar expression increase was observed for HuC 

and for HuD by a 1.79 and 1.9 fold-change respectively. HuR gene expression showed a 

smaller 0.83 fold-increase in U87-MG cells compared to SVG p12 cells. 

5.2 Hu protein expression and localisation in Glioblastoma and normal 
astrocytes 

Gene expression studies at RNA level do not necessarily reflect the abundance of the protein 

product. Therefore, Western blot analysis (described in Section 2.3) was used to determine 

the protein expression in the Glioblastoma cell line, U87-MG and normal astrocyte cells, SVG 

p12. Astrocyte cells were also used as a control for Neuroblastoma studies in Chapter 4. 

Western blot analysis confirmed the presence of HuB and HuC proteins in the SVG p12 normal 

astrocyte cell line. Low expression of HuR was also observed with a distinct absence of HuD 

expression in the normal astrocytes. 

The Hu protein family have been shown to shuttle between the nucleus and the cytoplasm 

(Doller et al. 2008b). Its subcellular location particularly in the cytoplasm has shown 

correlation with a poorer prognosis in Glioblastoma (Filippova et al. 2011). Therefore, 

immunofluorescence staining (Section 2.4.1) and fluorescent microscopy was used to 

determine the localisation of each Hu protein in Glioblastoma cells and astrocytes.  
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5.2.1 HuB protein expression 

HuB protein expression was confirmed using western blotting (Section 2.3). Protein 

extracted from Glioblastoma cells and normal astrocytes were analysed for the presence of 

HuB protein with anti-HuB IgG. Anti-GAPDH IgG was used to detect GAPDH as a control 

protein.  

 

Figure 5.2: Representative western blot analysis of HuB protein with anti-HuB antibody. HuB and 

GAPDH protein expression in normal astrocytes SVG p12, and Glioblastoma cells U87-MG. GAPDH 

protein expression was used as a loading control. (n=3). 

 

As shown in Fig. 4.2, HuB protein was detected in the normal astrocytes SVG p12 and 

Glioblastoma cells U87-MG. There is a faint band at 38kDa for each cell line and a higher 

migrating band at 76kDa which could be explained as a HuB dimer. A signal at 76kDa was also 

observed in Neuroblastoma cells (Fig. 4.2). GAPDH protein detection was used as a loading 

control and was detected at the expected size of 37kDa.  
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The signal intensity of GAPDH was comparable in both cells as well as for HuB. This differs 

from the gene expression profile displayed of HuB at RNA level (Fig. 5.1) where HuB protein 

was upregulated in the Glioblastoma cell line. 

Subcellular localisation of HuB protein was determined for the Glioblastoma and normal 

astrocyte cell lines. Anti-HuB IgG was used with secondary Alexa green 488 FITC IgG. Cells were 

counterstained with DAPI nucleus stain.  

 

Figure 5.3: Example of the cellular localisation of HuB protein in normal astrocytes SVG p12 and 

Glioblastoma cells U87-MG. The left column displays staining of nuclei with DAPI (blue), the middle 

column is stained with anti-HuB (green) and the right column displays a merged picture of DAPI and 

anti-HuB staining. Magnification x20. (n=3). 

 

As seen in Fig. 5.3, HuB expression was confirmed in both cell lines by anti-HuB 

immunofluorescent staining. This aligns with western blot analysis where HuB protein was 

also detected (Fig 5.2).  
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In normal astrocyte cells, SVG p12, HuB was expressed in both the nucleus and the cytoplasm 

which was shown by a stronger fluorescence co-localising with DAPI nucleus stain and a 

weaker signal in the surrounding cytoplasm. HuB was localised to the cytoplasm in 

Glioblastoma cells U87-MG. 

5.2.2 HuC protein expression 

HuC protein expression in U87 Glioblastoma cells and SVG p12 normal astrocytes was 

determined by western blot analysis (Section 2.3). The primary antibodies anti-HuC IgG and 

anti-GAPDH allowed for the detection of HuC and GAPDH proteins respectively and are 

displayed in Figure 5.4. 

 

Figure 5.4: Example of western blot analysis of HuC protein with anti-HuC antibody. HuC and GAPDH 

protein expression in normal astrocytes SVG p12, and Glioblastoma cells U87-MG. GAPDH protein 

expression was used as a loading control. (n=3). 

 



247 
 

HuC was identified at its expected size of 37kDa in the SVG p12 cell line whilst a second 

stronger band was also detected at 156kDa in both cell lines which could be due to 

multimerisation of HuC. This higher molecular band was also found in Neuroblastoma Hu 

protein studies (Fig. 4.4).  

GAPDH protein was detected at its expected size of 37kDa. HuC was expressed at a very high 

level in SVG p12 cells when compared to the weak GAPDH signal. HuB protein was comparable 

to the GAPDH loading control. This suggests a high HuC protein expression in SVG p12 cells in 

comparison to U87-MG cells. This differs from the gene expression data show in Fig 5.1, where 

HuC expression was higher at RNA level in U87-MG cells than in SVG p12 cells. 

Immunofluorescent HuC protein labelling (Section 2.4.1) was performed to identify its’ 

subcellular localisation. Anti-HuC IgG was used with the secondary Alexa green 488 FITC IgG. 

Cells were counterstained with DAPI nucleus stain for nuclear localisation. HuC 

immunostaining is shown in Figure 5.5. 
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Figure 5.5: Representative cellular localisation of HuC protein in normal astrocytes SVG p12 and 

Glioblastoma cells U87-MG. The left column showed staining of nuclei with DAPI (blue), the middle 

column is stained with anti-HuC (green) and the right column displays a merged picture of DAPI and 

anti-HuC staining. Magnification x20. (n=3). 

 

As seen in Fig. 5.5, HuC protein expression was observed in SVG p12 and U87-MG cell lines, 

confirming western blot data shown in Fig. 5.4. The strongest HuC protein fluorescence was 

observed in the cytoplasm of U87-MG cells. SVG p12 cells showed a strong signal for HuC 

protein in the nucleus with a weaker stain observed in the cytoplasm.  

5.2.3 HuD protein expression 

HuD protein was detected in only in U87 cells by western blot using HuD specific antibodies. 

HuD was absent in the control cell line. A comparable amount of GASPH protein used as 

loading control was observed in SVG and U87 Cells.  Fig 5.6 showed HuD protein was 

detected at its expected molecular weight of 42kDa in Glioblastoma cells U87-MG.  
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Figure 5.6: Example of western blot analysis of HuD protein with anti-HuD antibody. HuD and GAPDH 

protein expression in normal astrocytes SVG p12, and Glioblastoma cells U87-MG. GAPDH protein 

expression was used as a loading control. (n=3). 

 

This correlates with HuD expression at an RNA-level shown in Fig. 5.1 where it was higher in 

U87-MG cells compared to the normal astrocytes SVG p12. Immunofluorescence staining 

using anti-HuD antibodies confirmed an absence of HuD in the normal astrocytes and a strong 

presence in the cytoplasm of Glioblastoma cells (Fig 5.7). 
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Figure 5.7: Representative cellular localisation of HuD protein in normal astrocytes SVG p12 and 

Glioblastoma cells U87-MG. The left column showed staining of nuclei with DAPI (blue), the middle 

column is stained with anti-HuD (green) and the right column displays a merged picture of DAPI and 

anti-HuD staining. Magnification x20. (n=3). 

 

The immunofluorescence shown in Fig. 5.7 agrees with western blot data of HuD protein 

expression (Fig. 5.6) and HuD gene expression profile (Fig. 5.1) in the U87-MG cell line. HuD 

expression is confirmed in the cytoplasm only of the Glioblastoma cells. 

5.2.4 HuR protein expression 

HuR protein expression level and its cellular localisation was analysed in Glioblastoma U87-

MG cells and normal astrocytes SVG p12. The primary antibodies anti-HuR IgG and loading 

control anti-GAPDH IgG were used for the detection of HuR and GAPDH proteins respectively.  
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Figure 5.8: Example of a western blot analysis of HuR with anti-HuR antibody. HuR and GAPDH 

protein expression in U87-MG Glioblastoma cells and normal astrocytes SVG p12. GAPDH protein 

expression was used as a loading control. (n=3). 

 

HuR protein was only detected in U87-MG cells at the expected size of 36kDa. GAPDH was 

detected at 37kDa in both cell lines. These results differ from the gene expression profile (Fig. 

5.1), that showed HuR to be expressed in both cell lines. This suggests that the HuR gene to 

protein translation is low in the U87-MG Glioblastoma cells and could be explained by post-

transcriptional modifications and post-translational regulatory events.  

To identify HuR protein’s subcellular location in these cells, immunofluorescence staining was 

performed (Section 2.4.1) (Fig. 5.9). Anti-HuR IgG was used with secondary Alexa 488 FITC IgG. 

Cells were counterstained with DAPI nucleus stain. 
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Figure 5.9: Representative cellular localisation of HuR protein in Glioblastoma U87-MG and normal 

astrocytes SVG p12. The left column showed staining of nuclei with DAPI (blue), the middle column 

with anti-HuR (green) and the right column displays a merged picture of DAPI and anti-HuR. 

Magnification x20. (n=3). 

 

HuR protein expression was detected in normal astrocytes and Glioblastoma cells. The 

strongest staining in SVG p12 astrocyte cells co-localised with the DAPI stain and therefore 

showed HuR protein was predominantly in the nucleus with some weaker expression 

observed in the cytoplasm. HuR protein was also located in both the nucleus and cytoplasm 

in Glioblastoma cells U87-MG with the strongest staining observed in the nucleus of these 

cells.  

HuR was not detected during western blot analysis however its presence during 

immunofluorescence studies confirms its protein expression. Therefore, it can be assumed 

that during western blot, HuR protein expression remained under the detection level. 
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5.3 Establishing Hu gene and protein knockdowns using siRNA 
interference in Glioblastoma cells 

To determine the cellular and molecular role of the Hu family overexpression in Glioblastoma 

and its influence in the initiation and development of cancer, Hu gene knockdowns were 

established in the U87-MG cell line. U87-MG cells were tested for the most efficient 

transfection reagent, concentration of siRNA and time periods. Samples were collected and 

analysed. 2-Δ ΔCT values were calculated normalised to β-Actin. 

For each Hu gene in the U87-MG Glioblastoma cell line, a knockdown was established 

individually and in combination to knockdown the whole Hu family. Commercially available 

siRNAs were purchased to interfere with the genes HuB, HuC, HuD, HuR, GAPDH and a non-

targeting siRNA. Each siRNA contained a pool of four interfering sequences (Table 2.4). In this 

specific cell-line, siRNAs were introduced with DharmaFECT I transfection reagent over 48 

hours, for which the protocol is provided in Section 2.7.3. 

RT-qPCR was performed to confirm Hu gene knockdowns. The cycling and reactions of RT-

qPCR are described in Section 2.26. HuB (1), HuC (1), HuD (6), HuR (2) and β-Actin primer 

sequences are listed in Table 2.3 of Section 2.27. The fold-change of expression was analysed 

by comparing expression levels to the control non-targeting siRNA (Fig. 5.10). β-Actin was the 

housekeeping gene to which the data was normalised. Statistical significance was calculated 

by a two-tailed t-test. 
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Figure 5.10: Knockdown efficiency of Hu genes after individual Hu siRNA interference in the 

Glioblastoma cell line U87-MG. HuB (A), HuC (B), HuD (C) and HuR (D) gene expression following Hu 

gene knockdowns was analysed by RT-qPCR in the Glioblastoma cell line, U87-MG. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin gene expression and compared with 

the control set at 1.00. Error bars display ± SEM. Statistical significance was calculated by a two-tailed 

t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

As seen in Fig. 5.10, in the Glioblastoma cell line, U87-MG, the knockdown efficiency was 2.4-

fold for HuB, 1.5-fold for HuC, 1.7-fold for HuD and 4.3-fold for HuR. Whilst not as successful 

as Neuroblastoma studies, HuC and HuR knockdown were still statistically significant based 

on a two-tailed T-test. 
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Regulatory influences between the Hu protein family has previously been documented in 

research and observed in the previous chapter of this thesis. A combined Hu gene family 

knockdown was achieved and is shown in Fig. 5.11. 
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Figure 5.11: Combined siRNA interference of all Hu genes in the Glioblastoma cell line U87-MG. HuB, 

HuC, HuD and HuR gene expression following a full knockdown of each Hu gene in a single attempt in 

the U87-MG Glioblastoma cells. Samples were analysed by RT-qPCR. The 2-ΔΔCt results shown are an 

average of three replicates normalised to β-Actin gene expression and compared with the control set 

at 1.00. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and is 

displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

A combined knockdown of all four HuB, HuC, HuD and HuR genes was mostly successful. HuC, 

HuD and HuR knockdown increased overall. Unfortunately, HuB still proved challenging to 

knockdown in this cell line. The combined Hu family gene knockdown resulted in a decrease 
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of expression of 1.5-fold for HuB, 8-fold for HuC, 2.8-fold for HuD and 5.2-fold for HuR, of 

which the latter three were statistically significant as determined by a two-tailed t-test. 

To confirm the Hu genes knockdowns’ and the impact at protein-level, protein expression 

levels were analysed by western blot analysis 96-hour post-transfection (Section 2.3).  

Each Hu gene knockdown both individually and in combination in Glioblastoma cells U87-MG 

was blotted and analysed for Hu protein. The primary antibodies anti-HuB, anti-HuC, anti-HuD, 

anti-HuR and anti-GAPDH were used. GAPDH was used as a control protein to normalise 

expression. The western blots are displayed in Figure 5.12. 
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Figure 5.12: Hu protein expression during single and combined Hu knockdowns in U87-MG 

Glioblastoma cells. A) HuB protein reduction following single HuB and combined Hu family siRNA 

interference. B) HuC protein reduction following single HuC and combined Hu family siRNA 

interference. C) HuD protein partial reduction expression following single HuD and combined Hu 

family siRNA interference. D) HuR protein reduction following single HuR and combined Hu family 

siRNA interference. GAPDH protein expression was used as a loading control. 

 

Western blot analysis shown in Fig. 5.12A displays the HuB protein was detected at 75 kDa, 

which is double of the expected size of 37kDa. This was earlier identified in Fig. 5.2. Due to 

the size of this band, it is most likely dimerisation of HuB. The HuB knockdown showed little 

reduction in HuB protein expressed. Following knockdown of all Hu family members in 

combination, HuB protein was absent. This trend was also observed for HuC (Fig. 5.12B) and 
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HuD (Fig. 5.12C) knockdowns. HuC protein was detected at 156kDa. This was previously 

documented in Fig 5.4 and was suspected to be HuC multimer. HuD was detected at its 

expected size of 42kDa. Shown in Fig. 5.12D, no HuR protein could be detected after the HuR 

siRNA knockdown.  

The described difference in Hu individual and combined Hu gene knockdowns could be due 

to complex interplay between the Hu family members as previously shown in Neuroblastoma 

studies (Section 4.4). Observations concluded Hu gene family members can influence 

expression or translational efficiency by targeting their own or family members mRNA 

transcripts and regulating their expression. The next section (5.4) aims to study these 

regulatory influences. 

5.4 Differential gene expression of Hu proteins following individual 
and combined Hu gene knockdowns in Glioblastoma 

Due to differences in the gene expressions of single and combined knockdowns and the 

known ability of HuR to regulate its own expression, a gene expression profile was established 

to explore the possibility of a regulatory mechanism within the Hu family of RNA-binding 

proteins in Glioblastoma. The level of all individual Hu genes expression when individual Hu 

siRNA interference was performed was analysed and compared to the non-targeting control 

siRNA transfection. 

RT-qPCR was performed to confirm Hu gene knockdowns and to determine any changes to 

the expression levels of other Hu genes. The cycling and reactions of RT-qPCR are described 

in Section 2.26. HuB (1), HuC (1), HuD (6), HuR (2) and β-Actin primer sequences are listed in 

Table 2.3 of Section 2.27. β-Actin was the housekeeping gene to which the data was 
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normalised and compared to the non-target control. Statistical significance was calculated by 

a two-tailed t-test. 
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Figure 5.13: Influence of individual Hu gene knockdowns on other Hu gene family members 

expression levels in U87-MG, Glioblastoma cells. A) HuB Knockdown B) HuC Knockdown C) HuD 

Knockdown D) HuR Knockdown. The 2-2-ΔΔCt results shown are an average of three replicates 

normalised to β-Actin gene expression and compared with the non-target control. Error bars display 

± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P 

≤ 0.01, ***P ≤ 0.001. (n=3). 

Here the initial Hu gene knockdown levels are those described previously in Fig. 5.10. 

Displayed in Fig. 5.13A, a 2.4-fold knockdown of HuB gene expression, resulted in a significant 

3.9-fold reduction of HuC gene. No significant change was observed for HuD or HuR 
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expression.  HuC siRNA interference is shown in Fig. 5.13B, a 1.5-fold knockdown of HuC 

showed a significant 0.3-fold increase in HuR expression. A 1.7-fold HuD siRNA knockdown 

(Fig 5.13C) did not significantly change the expression of the other genes. HuR siRNA 

knockdown (Fig. 5.13D) of 4.3-fold resulted in a significant decrease in HuC gene expression 

by 3.8-fold and HuD gene expression by 4.0-fold. 

To better visualise the key expression changes after each Hu knockdown, the data from above 

displayed in Fig. 5.10, Fig. 5.11 and Fig. 5.13 is summarised in Fig. 5.14. The data is normalised 

to the same non-target controls of the siRNA interference transfection.  
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Figure 5.14: Complete profile of Hu gene expression in Glioblastoma cell line U87-MG, after 

knockdown of each individual Hu protein individually and combined. HuB, HuC, HuD and HuR 

expression following knockdown of each Hu gene both individually and in combination was analysed 

by RT-qPCR in U87-MG cells. The 2-ΔΔCt results shown are an average of three replicates normalised to 

β-Actin gene expression and compared with the non-targeting control. Error bars display ± SEM. 

Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001. (n=3). 
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The effect of the combined knockdown on individual Hu expression is displayed in Fig. 5.14. 

HuB gene knockdown results in a HuC and HuD gene expression decrease, whilst there was 

little change to HuR. Upon HuC siRNA interference, HuD expression also decreased. However, 

HuB and HuR gene expression increased.  

Following HuD siRNA interference, a decrease in HuR expression was observed along with 

increased HuC expression and no change in HuB expression. Upon HuR siRNA knockdown, 

there was a decrease in all other Hu genes. Fig. 5.14 also shows the knockdown all Hu gene in 

a single combined attempt. Since similarities are observed between HuR knockdown and 

combined Hu family knockdown, this could suggest HuR is the major player in the Hu family 

combined knockdown. 

The overall knockdown profile is summarised as percentages in a heatmap and is displayed in 

Fig. 5.15. 

 

Figure 5.15: Heatmap summarising Hu gene expression change after single and combined 

knockdown experiments in U87-MG Glioblastoma cells. Colour intensity proportional to the 

percentage change. Statistical significance was calculated by a two-tailed t-test and is displayed by *P 

≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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In summary, a similar Hu gene expression profile is observed when all Hu genes are knocked 

down in combination and following individual HuR gene knockdown.  

The differential expression changes in different Hu family members was previously described 

in Chapter 4 of the Neuroblastoma studies. In short, three possible explanations were 

described based around compensatory action, regulatory effects or consequences of off-

target effects.  

To conclude the differential expression, change within the Hu RNA-binding protein family, a 

model was drawn summarising how the regulation occurs and is shown in Figure 5.16. 

 

Figure 5.16: A model representing the regulation of the Hu protein family in the Glioblastoma cell -

line U87-MG. Colour intensity proportional to the change in regulation.  

 

The model summarises only statistically significant data determined by a two-tailed t-test. 

The model showed that following HuR knockdown, HuD and HuC gene expression also 

decreased as did HuC expression when HuB was knocked down. Following HuC knockdown, 

HuR gene expression increased.  
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Based on the three potential explanations that are described above for compensatory 

expression or regulatory influences within the Hu family, there are several conclusions that 

can be drawn in the U87-MG Glioblastoma cell model. 

5.5 Cellular morphology of normal astrocytes and Glioblastoma cells 

The morphology in which cells grow in the human body influences their function. In cancer, 

cells adopt a more invasive phenotype in which the cells are more robust and gain function. 

Glioblastoma are typically hard to treat due to the nature of their growth. These tumours are 

not considered a defined mass with clear borders, instead considered as diffuse 

Glioblastomas, they have finger-like projections called tendrils that extend into other parts of 

the brain (Armento 2017). 

5.5.1 Cellular morphological analysis 

Microscopic analysis of Glioblastoma and normal astrocytes is shown in Fig. 5.17. Cell images 

were obtained using an Eclipse II fluorescent inverted microscope and Microtec camera as 

described in Section 2.1.6.  
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Figure 5.17: Microscopy images of the normal astrocytes and Neuroblastoma cell lines. Inverted light 

microscopy at x20 objective. A) Normal astrocytes cell line, SVG p12. B) Glioblastoma cell line, U87-

MG.  

 

Astrocytes form the supportive tissue of the brain. The normal astrocytes cell line SVG p12 

was established from a foetus during the first trimester. These typically grow in star-shaped 

cells called fibroblasts. In culture, U87-MG Glioblastoma Multiforme cells grow with the same 

characteristic star-shape as SVG p12 astrocytes. 

5.5.2 Cellular migrative potential 

Cancer cells are known for their ability to migrate from the localised tumour and establish a 

secondary tumour also called a metastasises. A good measure of both cellular migration and 

invasion, which replicates the ability of a cancer cell to metastasise. Astrocyte and 

Glioblastoma cell migration was calculated by the ability of the cells to invade into a 0.5% 

agarose gel matrix. It was captured through several microscopy imaging equipment. The 
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images below were achieve using time-lapse photography captured by the CytoSMART™ 

camera as described in Sections 2.5 and 2.5.1. 

First, the ability of the normal astrocytes to migrate into the gel was assessed and is shown in 

Fig. 5.18. 

 

Figure 5.18: The migration of SVG p12, normal astrocyte cells into an agarose gel matrix. During the 

observed 42-hour period, no migration into the gel matrix was detected. (n=3). Time-lapse 

photography of the cell migration can be viewed at: 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e93081fa6bd1

3ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f3367e00e143135c7

5d21d55c29158ae7a23a2f5c3e9a182ae6 

 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e93081fa6bd13ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f3367e00e143135c75d21d55c29158ae7a23a2f5c3e9a182ae6
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e93081fa6bd13ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f3367e00e143135c75d21d55c29158ae7a23a2f5c3e9a182ae6
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=19644&ac1=92e93081fa6bd13ce510fd1cad4efcc8f3b9be40cac0df160fe49728dd028276&ac2=b8af21ea150c9f3367e00e143135c75d21d55c29158ae7a23a2f5c3e9a182ae6
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As previously observed in Section 4.5.2, the normal astrocytes, SVG p12 did not migrate into 

the agarose gel during the observed 42 hours and instead proliferated and grew in a line 

surrounding the agarose. This was expected for a non-cancer cell line.  

The Glioblastoma U87-MG cells were then observed for their ability to migrate into an 

agarose gel matrix. The cells were seeded into a well and a period of 24 hours preceded to 

allow the cells to adhere for the migration was captured. Images were taken every 15 

minutes for 42 hours. 

 

Figure 5.19: The migration of U87-MG Glioblastoma cells into an agarose gel matrix. Over the 

observed 42-hour period, cells migrated into the gel matrix. (n=3). Time-lapse photography of the cell 

migration can be viewed at: 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=8247&ac1=12ca4d991e2c70b

ecaec0c763bf609824808f4d35a3669db52b05566ede04374&ac2=dce32963547c525342b172a17bc4

202c438aac32842dd495f2e45535aa7b1b68 

https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=8247&ac1=12ca4d991e2c70becaec0c763bf609824808f4d35a3669db52b05566ede04374&ac2=dce32963547c525342b172a17bc4202c438aac32842dd495f2e45535aa7b1b68
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=8247&ac1=12ca4d991e2c70becaec0c763bf609824808f4d35a3669db52b05566ede04374&ac2=dce32963547c525342b172a17bc4202c438aac32842dd495f2e45535aa7b1b68
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=8247&ac1=12ca4d991e2c70becaec0c763bf609824808f4d35a3669db52b05566ede04374&ac2=dce32963547c525342b172a17bc4202c438aac32842dd495f2e45535aa7b1b68
https://cytomate.com/access/Project_main/main.php?DiD=238&PiD=8247&ac1=12ca4d991e2c70becaec0c763bf609824808f4d35a3669db52b05566ede04374&ac2=dce32963547c525342b172a17bc4202c438aac32842dd495f2e45535aa7b1b68
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The migration of U87-MG cells into the agarose gel matrix is shown in Fig. 5.19. U87-Mg cells 

started to migrate into the gel matrix at around 6-hours. A key hallmark of cancer is the ability 

of cells to invade and metastasis and this was portrayed by the U87-MG Glioblastoma cells 

penetrating the agarose gel matrix and proliferating. 

The invasiveness of the Glioblastoma cell line U87-MG and the normal astrocyte cells SVG p12 

was compared and is shown in Fig. 5.20. 
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Figure 5.20: The migration of U87-MG Glioblastoma cells compared to the non-migration of SVG p12 

astrocytes. Migration into the gel matrix was calculated by the percentage surface area invaded by 

the cells. 

 

The U87-MG cells achieved a 47.82% invasion into the gel matrix over the 42-hour period 

observed through time-lapse photography. This finding highlights the greater migrative 

potential that Glioblastoma cells have compared to normal astrocytes. 
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5.6 Cellular morphology, viability and migration following Hu protein 
knockdown in Glioblastoma 

As previously discussed in Section 4.6, cancer cells can contain many genomic mutations that 

contribute to changes in cellular phenotype that may manifest through cell proliferation, 

motility and morphology (Baba and Câtoi 2007). 

To assess the effect of Hu gene expression on these features in Glioblastoma, cell morphology 

was analysed 48 hours following individual and combined Hu gene knockdowns. Cells were 

imaged to assess any changes to cell morphology through size and shape following Hu gene 

knockdowns. Images were obtained using an Eclipse II fluorescent inverted microscope and 

Microtec camera as described in Section 2.1.6. 

As shown in Fig. 5.21, the morphology of U87-MG was not influenced by the individual or 

combined Hu gene knockdowns compared to the control non-target siRNA transfected cells. 
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Figure 5.21: U87-MG cell morphology 48-hours post-transfection with Hu siRNAs. U87-MG cells with 

Hu genes knocked down in combination and individually. Light microscopy at 20x objective. 

 

Some cells had died, these were removed when the media was replaced prior to imaging. It 

is also important to mention; these images do not confer the confluency of the cell lines 

following Hu knockdowns. Other methods to evaluate cell viability are described next in this 

section.  

Cell viability of U87-MG cells with individual and combined Hu gene knockdowns was 

determined by CellTiter 96® AQueous One Solution assay (Section 2.6). 48-hours post-

transfection absorbance was recorded at 24-hour intervals over 120-hours. The absorbance 
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was then converted to a percentage and compared to the control non-targeting siRNA (Fig. 

5.22). 

 

Figure 5.22: Cell viability of U87-MG cells after knockdown experiments. Mean cell viability 

normalised to the control non-target siRNA treated cells. A) Effect of HuB knockdown. B) Effect of HuC 

knockdown. C) Effect of HuD knockdown. D) Effect of HuR knockdown. E) Effect of combined Hu 

knockdown. MTS absorbance was recorded at 490nm over a 144-hour period. Data are expressed as 

mean values ± SD. n=3. Statistical significance was calculated by a two-tailed t-test and is displayed by 

*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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Whilst defining the role of the Hu-family of RNA binding proteins, we observed that reduced 

expression of HuB and HuC resulted in an initial lower rate of cell viability compared to the 

control, however a conclusive increase at the 120-hour time point. At the 120-hour time 

point, U87-MG cells treated with HuB siRNA showed a reduction in cell viability in comparison 

to the control whilst HuC siRNA-treated cells showed an increase. 

 The knockdown of HuD, HuR and all Hu gene in combination, resulted in a decrease in cell 

overall viability in comparison to the non-target siRNA control. At 120 hours HuD knockdown 

resulted in a 5.38% decrease in cell viability compared to the control. Whilst HuR knockdown 

decreased cell viability by 9.11% and all Hu combined knockdown showed 6.70% decrease in 

cell viability. 

Cell motility was measured before and after individual and combination Hu gene knockdowns 

with a scratch wound assay (Section 2.5.2). Migration images are shown in Fig. 5.23, Fig. 5.24 

and Fig. 5.25. This assay measures the ability and speed of the cells to migrate into an 

artificially created cell-free gap until new cell-cell contacts are established. Cells were imaged 

over 48 hours. 
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Figure 5.23: Scratch wound assays in control U87-MG Glioblastoma cells following interference with 

a non-targeting siRNA. Mobility was assessed 24 hours post-transfection when cells were confluent 

for 72 hours. Wounds were generated using a needle after cell confluence following siRNA 

interference. Timepoints state the number of hours post-wound making. Yellow lines highlight the 

gap. Magnification x10. (n=3). 

 

The initial gap made by inducing a wound in the cell monolayer can be seen shrinking over 

the different time points. 
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Figure 5.24: Scratch wound assays in U87-MG Glioblastoma cells following knockdown of Hu genes individually. Mobility was assessed 24 hours post-

transfection when cells were confluent for 72 hours. A) HuB knockdown B) HuC knockdown C) HuD knockdown D) HuR knockdown. Timepoints state the 

number of hours post-wound making. Yellow lines highlight the gap. Magnification x10. (n=3).
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The scratch wound assays following individual Hu gene knockdowns are displayed in Figure 

5.24. An overall decrease in the wound can be seen over the timepoints. U87-MG cells with 

HuD knockdown detached from the flask following 24-hours so no images were taken at the 

48-hour timepoint. 

Next the effect of a combined Hu gene knockdown was determined and is displayed in Figure 

5.25. 

 

Figure 5.25: Scratch wound assays in U87-MG Glioblastoma cells following knockdown of Hu genes 

in combination. Mobility was assessed 24 hours post-transfection when cells were confluent for 72 

hours. Wounds were generated after cell confluence following siRNA interference. Timepoints state 

the number of hours post-wound making. Yellow lines highlight the gap. Magnification x10. (n=3). 

 

Percentage migration into the cell-free gap was calculated for the 24 hour timepoint using 

ImageJ pixel analysis. Two-tailed T-test determined the statistical significance. This data is 

show in Fig. 5.26  
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Figure 5.26: Cell migration of Glioblastoma cells U87-MG represented as the percentage of 

migration into the cell-free gap over 24 hours. The measure of cell motility was calculated in ImageJ 

through the measurement of pixels and conversion into a percentage to determine the rate of cell 

migration. Data showed the mean migration of cells into the cell-free gap over 24 hours. Error bars 

display ± SEM. Statistical significance was calculated by a two-tailed t-test and is displayed by *P ≤ 

0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

The cell migration data in Fig. 5.25 displays that following HuB, HuC and combined Hu gene 

knockdowns, there was a significant increase in the cell migration in comparison to the non-

target siRNA control. HuB knockdown resulted in a 33.58% increase, HuC knockdown showed 

a 22.76% increase whilst all Hu gene knocked down in combination resulted in a 28.30% 

increase in migrative potential. 

A summary of changes to the cellular properties observed following Hu gene knockdowns in 

the U87-MG cell line, is displayed in Fig. 5.27. 
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Figure 5.27: Changes in cellular properties following Individual and combined Hu gene family 

knockdown in the Glioblastoma cell line U87-MG.  

 

No visible change in morphology was observed following any of the Hu gene knockdowns. 

HuB and HuC knockdowns both caused an increase in cell viability and migrative potential. All 

Hu knockdown also increased the U87-MG cells migrative potential. 

5.7 Effect of Hu knockdown on gene regulation on translational 
networks in Glioblastoma 

To identify gene networks the Hu RBPs are impacting in the development and progression of 

cancers, many genes known to influence Glioblastoma were analysed following knockdown 

of the Hu proteins. Ultimately, this will allow a better understanding of how Hu genes are 

functioning in the cancer and how they target translational pathways when they are 

aberrantly or overexpressed in Glioblastoma. Pre-designed PrimePCR™ assays with an array 
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of 91 primer sets in addition to controls targeting genes known to influence Glioblastoma 

were screened. This was to determine how Hu impacted networks and may influence 

fundamental cell processes.  

U87-MG Glioblastoma cells were treated with siRNA and transfection reagents over a 48 

hours period. RNA was then extracted, and reverse transcribed to cDNA. The knockdown was 

confirmed by real-time PCR before the samples were then run on PrimePCR™ assays. The pre-

designed plate was run on RT-qPCR and analysed by the PrimePCR™ data analysis software 

provided by Bio-Rad.  

 

Table 5.1: Gene targets by the Glioma T1 PrimePCR™ Assay.  

 

Gene analysis of U87-MG Glioblastoma cells revealed many differential gene expression 

changes of other targets. To reduce the number of targets for further analysis, a threshold of 

2.0 fold-cycle difference in gene expression was selected.  

AKT1 CD44 CXCR4 HRAS MAPK3 PCNA SERPINE1 TNF TBP

APOE CDK1 E2F1 IFNG MDM2 PIK3CA SOD2 TOP2A GAPDH

ATM CDK2 EGFR IGF1 MKI67 PIK3R1 SP1 TYMS HPRT1

AURKA CDKN1A ERBB2 IGFBP3 MLH1 PLAUR SPP1 UBB

BCL2 CDKN2A ESR1 IL10 MMP1 PRKCA STAT3 UBC

BIRC5 COL1A1 EZH2 IL6 MMP2 PROM1 TCF7L2 VCAM1

BRCA1 COL1A2 FN1 ITGB1 MMP7 PTEN TERT VEGFA

CCNA2 CTBP2 GSK3B KDR MMP9 RAF1 TGFB1 VIM

CCNB1 CTGF GSTP1 KRAS MYC RB1 TIMP1 WNT5A

CCNB2 CTNNB1 HIF1A MAP2K2 NFKB2 RBM47 TIMP3 XPO5

CCND1 CXCL12 HMOX1 MAPK1 NOTCH1 RRM2 TLR2 ZWINT
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Of the 91 genes analysed shown in Table 5.1, there were 21 gene that conformed to this 

criterion and therefore had a differential gene expression consisting of either amplified, 

overexpressed, deleted or under expressed. These are shown in Table 5.2. 

 

siRNA Interference Target 

HuB HuC HuD HuR Combined Hu 

HMOX1 HMOX1 HMOX1 HMOX1 HMOX1 

MMP9     MMP9 MMP9 

NOTCH1 NOTCH1     NOTCH1 

VCAM1 VCAM1   VCAM1 VCAM1 

COL1A1     COL1A1   

 MMP1  MMP1 MMP1 

   IGFBP3 IGFBP3 

APOE ITGB1 IGF1 FN1 PCNA 

ERBB2 RAF1       

IL10 STAT3       

TERT MLH1       

  PCNA       

  RB1       

  TCF7L2       

  TLR2       

Table 5.2: Identification of targets for further gene analysis influenced by Hu gene knockdowns in 

Neuroblastoma cells U87-MG. List of the 21 genes conforming to the criteria of a fold-change of at 

least 2. Highlighted genes are those consistent with two or more of the knockdown samples. 

 

To limit the number of genes analysed in further studies and to identify the most important, 

genes whose expression was affected by two or more Hu gene knockdowns were selected. 

These are highlighted blue in Table 5.2. This lowered the gene selection to seven genes for 

the Glioblastoma cell line, U87-MG. A PrimePCR™ assay was designed to specifically target 

these genes to confirm their gene expression changes.  



279 
 

The relative fold-change in the transcript levels of alpha-1 type I collagen (COL1A1) following 

knockdown of each Hu gene individually and in combination in the Glioblastoma cell lines 

U87-MG is displayed in Fig. 5.28. Gene expression was normalised to the non-target control. 
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Figure 5.28: COL1A1 gene expression following individual and combined Hu gene family 

knockdowns in U87-MG Glioblastoma cells. COL1A1 gene expression was analysed by RT-qPCR in 

U87-MG cells with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. 

The 2-ΔΔCt results shown are an average of three replicates normalised to β-Actin and compared with 

the control non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-

tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

The gene expression profile of COL1A1 displays no statistical significance due to variation in 

the control. Although there was an overall general trend of decreased expression of COL1A1 

was observed when the Hu gene family were knocked down individually. A 1.3-fold decrease 

in expression was observed following HuB knockdown, a 1.6-fold decrease following HuC 

knockdown, a 2.4-fold decrease following HuD knockdown and a 3.5-fold decrease following 
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HuR knockdown. Little variation was seen when all Hu genes were knocked down in 

combination. 

Next, the expression level of Heme Oxygenase 1 (HMOX1) was analysed for any alterations 

following Hu individual and combined gene knockdowns. This is displayed in Fig. 5.29. 
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Figure 5.29: HMOX1 gene expression following individual and combined Hu gene family 

knockdowns in U87-MG Glioblastoma cells. HMOX1 gene expression was analysed by RT-qPCR in 

U87-MG cells with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. 

The 2-ΔΔCt results shown are an average of three replicates normalised to β-Actin and compared with 

the control non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-

tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

The HMOX1 gene expression profile displshowed an overall increased in HMOX1 gene 

expression following Hu gene knockdowns. HMOX1 gene expression increased by 1.4-fold 

following HuB knockdown, a 2.6-fold increase was observed following HuC knockdown, a 3.1-

fold increase was observed following HuD knockdown and a 1.9-fold increase was observed 
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following HuR knockdown. Combined Hu gene knockdown resulted in a 2.5-fold increase in 

HMOX1 gene expression. All upregulations observed were statistically significant following 

analysis by a two-tailed t-test. 

Insulin-like growth factor-binding protein 3 (IGFBP3) gene expression was determined 

following individual and combined Hu gene knockdowns (Fig. 5.30). 
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Figure 5.30: IGFBP3 gene expression following individual and combined Hu gene family knockdowns 

in U87-MG Glioblastoma cells. IGFBP3 gene expression was analysed by RT-qPCR in U87-MG cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 

Insulin-like growth factor-binding protein 3 (IGFBP3) gene expression showed an overall 

increase following Hu gene knockdowns. IGFBP3 gene expression increased by 1.1-fold 
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following HuB knockdown, 0.6-fold following HuC knockdown, 0.6-fold following HuD 

knockdown and 2.6-fold following HuR knockdown. Combined Hu gene knockdown resulted 

in an increase of 1.9-fold in IGFBP3 gene expression. All expression changes were statistically 

significant. 

Matrix metallopeptidase 1 (MMP1) gene expression following Hu gene individual and 

combined knockdowns was then profiled and is shown in Figure 5.31. 
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Figure 5.31: MMP1 gene expression following individual and combined Hu gene family knockdowns 

in U87-MG Glioblastoma cells. MMP1 gene expression was analysed by RT-qPCR in U87-MG cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 



283 
 

Following all Hu gene knockdowns both individually and in combination, MMP1 expression 

increased. Following HuB knockdown, MMP1 expression increased by 0.7-fold, 0.9-fold 

following HuC knockdown, 1.1-fold following HuD knockdown and 1.6-fold  following HuR 

knockdown, of which the latter three are significant. Combined Hu gene knockdowns saw an 

increase in MMP1 gene expression by 1.1-fold that was also significant.  

A further member of the Matrix metallopeptidases was analysed Matrix metallopeptidase 9 

(MMP9) and is displayed in Figure 5.32. 

C
ontr

ol

si
H
uB

si
H
uC

si
H
uD

si
H
uR

si
H
uB

/C
/D

/R

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

siRNA Targets

R
e

la
ti

v
e

 N
o

rm
a
li
s
e

d
 E

x
p

re
s
s
io

n

 

Figure 5.32: MMP9 gene expression following individual and combined Hu gene family knockdowns 

in U87-MG Glioblastoma cells. MMP9 gene expression was analysed by RT-qPCR in U87-MG cells with 

siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt results 

shown are an average of three replicates normalised to β-Actin and compared with the control non-

target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-test and 

is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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The gene expression profile of MMP9 displays no statistical significance due to variation 

within samples. No obvious trend is observed, however a 1.3-fold increase in MMP9 gene 

expression was observed following HuD gene knockdown and a 2.4-fold decrease following 

HuR knockdown. 

The expression profile of Notch homolog 1 (NOTCH1) was analysed following Hu gene 

individual and combined gene knockdowns (Fig. 5.33). 
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Figure 5.33: NOTCH1 gene expression following individual and combined Hu gene family 

knockdowns in U87-MG Glioblastoma cells. NOTCH1 gene expression was analysed by RT-qPCR in 

U87-MG cells with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. 

The 2-ΔΔCt results shown are an average of three replicates normalised to β-Actin and compared with 

the control non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-

tailed t-test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 

 



285 
 

NOTCH1 gene expression showed little change following HuC, HuD and HuR gene 

knockdowns. However, upon HuB knockdown, an increase of 2.2-fold was observed and a 1.0-

fold increase following combined Hu gene knockdowns of which both were statistically 

significant. 

The vascular cell adhesion molecule 1 (VCAM1) gene expression profile was established 

following individual and combined Hu gene knockdowns (Fig. 5.34). 
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Figure 5.34: VCAM1 gene expression following individual and combined Hu gene family knockdowns 

in U87-MG Glioblastoma cells. VCAM1 gene expression was analysed by RT-qPCR in U87-MG cells 

with siRNA interference of HuB, HuC, HuD and HuR both individually and in combination. The 2-ΔΔCt 

results shown are an average of three replicates normalised to β-Actin and compared with the control 

non-target siRNA. Error bars display ± SEM. Statistical significance was calculated by a two-tailed t-

test and is displayed by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (n=3). 
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The VCAM1 gene expression profile showed no statistical significance. There were very little 

differences observed in the gene expression. The most distinct changes observed, was an 

upregulation of VCAM1 gene expression following HuD knockdown which can be discredited 

due to its large SEM. The second largest difference is the 1.6-fold decrease in VCAM1 

expression following HuR gene knockdown. 

To summarise the expression of all the gene targets discussed above, a heat map was 

developed in Microsoft Excel using analysis from Biorad PrimePCR Analysis (Fig 5.35). 

 

 

Figure 5.35: Heatmap of genes with differential expression in U87-MG cells following Hu gene 

knockdowns individually and in combination. The relative gene expression data of multiple targets 

in each Hu gene knockdown in U87-MG. Targets are clustered according to their similarity in the 

gene expression pattern. (Up regulation; Red, Down regulation; Green, no change; Black. The lighter 

the shade of colour, the greater the relative expression difference according to the magnitude of 

relative gene expression). 
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The heat map displayed Fig. 5.35, concludes that the most similar expression profiles were 

that of MMP1, HMOX1 and IGFBP3. VCAM1 and COL1A1 displayed no similarity to the other 

genes. MMP9 and NOTCH shared small similarities within their expression profiles. 

The heatmap also highlighted trends between the Hu knockdowns. Following combined Hu 

gene knockdowns, 4 of the 7 genes were upregulated including NOTCH1, MMP1, IGFBP3 and 

HMOX1. HuB knockdown showed 5 of the 7 genes were downregulated which included 

NOTCH1, MMP9, MMP1, HMOX1 and IGFBP3.  

The array of genes affected by Hu RNA-binding proteins in Neuroblastoma are summarised 

in Fig. 5.36.  
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Figure 5.36 Map of Hu gene regulation targets identified through Hu gene knockdowns in U87-MG 

cells. The individual targets of each Hu protein individually and combined. Negative regulation is 

shown by a red arrow. 

 

All the statistically significant regulation of genes following Hu gene individual and combined 

knockdowns are displayed in Fig. 5.36. Interestingly, all the genes were upregulated following 

the Hu gene knockdowns, showing that Hu genes play a role in negatively regulating their 

expression in that upon a downregulation of Hu gene expression, the regulatory control is 

lost, and their gene targets expression increases.  

Additionally, all the genes named in Fig. 5.35, play a role in cell proliferation or metastasis or 

both. 
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5.8 Summary 

The investigations into the Hu RNA-binding protein family and its role in Glioblastoma is 

shown in this chapter. The expression of each Hu gene and protein is summarised in Table 

5.4. 

 Hu Protein 

Cell type Cell line HuB HuC HuD HuR 

PCR WB IF PCR WB IF PCR WB IF PCR WB IF 

Normal 

Astrocytes 

SVGp12 
  B   B      B 

Glioblastoma U87-MG   C   C   C   N 

Table 5.3: Overall expression of HuB, HuC, HuD and HuR proteins in cell lines of normal astrocytes 

and Glioblastoma cells. Each method of analysis including RT-qPCR (PCR), western blotting (WB) and 

immunofluorescent staining (IF) is shown. Green represents a positive result. Also shown is the 

localisation of the proteins determined through immune fluorescence cytoplasm is shown by C, the 

nucleus is represented by N, whilst B refers to both the cytoplasm and the nucleus. 

 

Gene expression data showed an upregulation of HuB, HuC, HuD and HuR gene expression in 

the U87-MG Glioblastoma cell line when compared to the normal astrocytes SVG p12. 

Western blot analysis confirmed all Hu proteins were also present in the Glioblastoma cell 

line. HuD and HuR proteins were absent in the normal astrocytes. However, HuR protein was 

later confirmed present through immunofluorescent staining. 

Hu localisation studies revealed HuB, HuC and HuR proteins were localised to the nucleus with 

fainter expression present in the cytoplasm whilst HuD protein was confirmed absent. In U87-
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MG Glioblastoma cells, the neuronal Hu proteins were present in the cytoplasm whilst HuR 

protein was predominantly localised in the nucleus with weaker expression in the cytoplasm. 

A knockdown of each Hu gene individually and in combination was established in the 

Glioblastoma U87-MG cells (Fig. 5.10). Knockdown efficiency was determined through RT-

qPCR. Protein knockdowns were confirmed by western blotting (Fig. 5.12). As previously 

shown, HuB protein was detected at twice its expected size and HuC protein was detected at 

four times its expected size. HuB, HuC and HuD protein expression decreased following 

individual knockdowns and was completely absent in the combined knockdown for HuB and 

HuC proteins. HuD’s protein expression decreased following combined Hu gene knockdowns 

but was not as large as the other Hu proteins. HuR was knocked down at a protein level 

following individual and combined Hu gene knockdowns.  

A higher knockdown efficiency was observed when all Hu genes were knocked down in 

combination compared to individual knockdowns except for HuB observed in Fig. 5.10 and 

Fig. 5.11. Since this was observed, gene studies were performed to identify any changes to 

Hu gene family members upon individual Hu gene knockdowns.  

From these findings, it became apparent there was a level of regulatory control occurring 

within the Hu gene family that lead to the production of the model displayed in Fig. 5.16. 

From this model, it can be concluded that upon HuC knockdown, HuR gene expression 

increased showing HuC protein negatively regulates HuR gene expression. HuB knockdown 

resulted in a downregulation of HuC gene as did HuR knockdown on HuD and HuC gene 

expression. This indicates HuB positively regulates HuC gene expression and HuR positively 

regulates HuC and HuD gene expression. Three proposed theories are discussed for these 

regulatory influences and are discussed in Section 5.4. 
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Initial studies of the naïve cells migrative potential, U87-MG cells were able migrate into an 

agarose cell matrix whereas SVG p12 cells weren’t showing Glioblastoma cells have a more 

migrative phenotype than normal astrocytes. 

Following knockdown studies, no change in cellular morphology was observed, however 

changes in viability and migration potential were observed. Over 120 hours, HuB and HuC 

knockdown in U87-MG cells caused a significant increase in cell viability when compared to 

the control. The cells migrative potential increased following HuB, HuC and combined Hu gene 

knockdowns. 

To identify genes that the Hu-RNA binding protein family target, a pre-designed PrimePCR™ 

arrays containing genes thought to be involved in Gliomas determined through the National 

Library of Medicine. Whilst lots of genes expression level changed following individual and Hu 

gene knockdown, a criterion was set to minimise the number of targets for further study. 

Genes with a gene expression change of 2.0 fold-change cycles and consistent amongst 2 or 

more of the Hu knockdowns reduced the targets to seven genes. The genes studied were 

HMOX1, MMP9, NOTCH1, VCAM1, COL1A1, MMP1 and IGFBP3. 

In-depth gene studies on the targets described above revealed a significant upregulation in 

NOTCH1, IGFBP3 and HMOX1, following HuB gene knockdown. Upregulation was also 

observed in MMP1, IGFBP3 and HMOX1 following HuC, HuD and HuR individual knockdowns. 

NOTCH1, HMOX1, IGFBP3 and MMP1 gene expression increased following Hu family 

combined knockdown. This is suggestive of a negative regulatory effect of the Hu family on 

those genes. Each of these genes has an effect of cell proliferation or metastasis in cancer 

development. 
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Chapter 6  

Discussion  

Part I: Expression of Hu proteins in Small cell lung 

cancer, Non-small cell lung cancer and normal bronchial 

epithelium 

Worldwide, lung cancer is considered one of the leading causes of cancer-related death 

(Matsumoto et al. 2012). Lung cancers are divided into two categories, Small cell lung cancer 

(SCLC) and Non-small cell lung cancer (NSCLC). SCLC represents 15-20% of all lung cancers in 

the western world (Lampaki et al. 2016).  

Since 1970, there have been over 40 clinical trials conducted on SCLC patients with no 

significant improvement. The treatment remains unchanged consisting of combinational 

chemotherapeutic drugs of etoposide and cisplatin or etoposide and carboplatin (Sundstrom 

et al. 2002, Okamoto et al. 2007).  

SCLC is diagnosed at a late stage resulting in a poor prognosis (Matsumoto et al. 2012). 

Current research into lung cancers stems the idea of identifying a set of new novel antibody 

markers. Targeting the biology and behaviour of the cancer will allow earlier diagnosis and 

could be used for a national screening program. Additionally, identifying more specific targets 

will aid the development of treatments to improve overall the survival rate.  

In many cancers including Small cell lung cancer, neuronal Hu proteins are ectopically 

expressed in tissues or HuR is found overexpressed and this is thought to have a detrimental 

effect on the cells contributing to the disease. Their role in cancer development is mainly 

thought to be related to their role in stabilising mRNA transcripts where oncogenes are 
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stabilised and tumour suppressor genes are destabilised (King 1997, López de Silanes et al. 

2003, Hostetter et al. 2008).  

Ectopic Hu expression was originally discovered due to investigations into the cause of 

paraneoplastic disorders in patients with SCLC. These patients show a higher titre of 

autoantibodies against Hu proteins (Trier et al 2012). 

Therefore, Hu proteins could be potential markers for the early detection of SCLC. This would 

impact the diagnosis and treatment of SCLC since treatment of early stage SCLC has a better 

prognosis. 

6.1 The family of Hu RNA-binding proteins and their presence in lung 
cancers 

To investigate the Hu RNA-binding proteins expression levels in lung cancers, cell lines 

representative of the normal bronchial epithelial tissue, Non-small cell lung cancer and Small 

cell lung cancer, were examined.  

HuR is the most studied gene in the Hu family and its overexpression in cancers is well 

documented and related to a more aggressive cancer. As expected, HuR mRNA was expressed 

in all tested cell lines as HuR protein is expressed ubiquitously. There was a significant 

overexpression of HuR in two of the SCLC cell lines and one of the NSCLC lines when compared 

to the normal bronchial epithelial cells supporting the idea that HuR is functionally 

upregulated in cancers (Abdelmohsen and Gorospe 2010). This has previously been 

documented in SCLC (Onganer et al. 2005) and NSCLC (Wang et al. 2009). 
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The two suspension Small cell lung cancer cell lines, NCI-H69 and NCI-H345 showed HuB, HuC 

and HuD ectopic gene expression, whilst the third semi-adherent cell line, CorL88 displayed 

HuC and HuD gene expression. The absence of the neuronal Hu family members in the control 

normal bronchial epithelial cells and NSCLC cells suggests that the expression of these genes 

could influence SCLC development. Interestingly, lung cancer cell lines NCI-H69 and NCI-H345 

represent a more severe form of SCLC with a considerably poorer prognosis. 

The ectopic expression of the neuronal Hu proteins in SCLC supports existing knowledge that 

HuB, HuC and HuD can be ectopically expressed in SCLC tumours but not in Non-small cell 

lung cancers (Manley et al. 1995). Correlation exists between SCLC patients, a high titre of 

HuB and HuD protein antibodies and the development of paraneoplastic disorders. In these 

disorders, the expression of neuronal Hu proteins by the SCLC tumour provokes an 

autoimmune response against both the tumour and nervous tissue resulting in neurological 

disorders (Trier et al 2012). The oncogenic properties of Hu proteins and how they become 

expressed and respectively overexpressed in some tumours is unknown, although it is 

suggested somatic mutations may play a key role (D’Alessandro et al 2010).  

RBPs contribution to SCLC carcinogenesis can be explained by their ability to bind to mRNA 

transcripts of oncogenes or tumour suppressor genes affecting their stability and 

consequently influencing oncogenic signalling pathways (Wang et al. 2015).  

Hu proteins bind directly to AU-rich sequences found in the introns and 3՛ untranslated 

regions of many short-lived mRNAs. They can target a large range of transcripts involved in 

cancer development including those responsible for proliferation, invasion and metastasis, 

angiogenesis and immunomodulation. This allows aberrant and over-expressed RBPs to 

provide a regulatory function specific to the cancer needs (Wurth 2012).  
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Genome-wide studies of Hu expression revealed major differences between mRNA transcript 

presence and protein expression. It also revealed that protein expression vary in different 

conditions such as during development, environmental stress and during disease (Re et al. 

2016). Therefore, protein expression studies using western blot were performed for each Hu 

protein detection. 

Western blotting interestingly revealed strong HuB protein expression in CorL88, NCI-H345 

and NCI-H69 SCLC cell lines as well as faint staining in the NSCLC cell lines, NCI-H322 and NCI-

H358. The mRNA expression of HuB was almost undetectable in NSCLC cells when compared 

to the normal bronchial epithelial cell, analysed by the ΔΔCT method. Low HuB expression at 

RNA level and high protein expression detected through western blot suggests a high 

translation rate.  

HuC and HuD protein expression was only detected in NCI-H345 and NCI-H69 SCLC cell lines 

despite the third SCLC cell line CorL88 also showed a HuC and HuD at RNA level. This could be 

explained by mRNA instability or a low translational rate of HuC and HuD in the CorL88 SCLC 

cells. 

In summary, ectopic expression of the neuronal Hu proteins, HuB, HuC and HuD proteins was 

observed in Small cell lung cancer. An upregulation of HuR was observed in all NSCLC and 

SCLC cells.  

Whilst the results have currently demonstrated the aberrant and over expression of the Hu 

RNA-binding protein family that is definite at both gene expression and protein level in SCLC, 

the subcellular localisation of the Hu proteins within cells is as important to the pathogenicity 

of the cancer.  
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HuB, HuC and HuD protein expression is in the cytoplasm of neurons whist HuR protein is 

predominantly expressed in the nucleus (Gao and Keene 1996, Kasashima et al. 1999, Good 

1995). 

HuR’s cytoplasmic overexpression is associated with a clinically poorer cancer phenotype. As 

previously discussed in Section 1.10, HuR cytoplasmic localisation in Oesophageal tumours is 

associated with lymph node metastasis, high-grade malignancy and poor survival rates (Zhang 

et al. 2014). Large tumours in Breast cancer are usually p53 positive, oestrogen and 

progesterone receptor negative, and show upregulated cytoplasmic HuR (Heinonen et al. 

2007, Calaluce et al. 2010). Chemically induced mice lung tumours expressed elevated levels 

of cytoplasmic HuR (Blaxall et al. 2000).  In NSCLC specifically, cytoplasmic HuR induced 

angiogenesis and lymph-angiogenesis through the upregulation of VEGF-C (Wang et al. 2011).  

Whilst HuR protein could not be detected by western blot in the normal bronchial epithelial 

cells, a clear localisation to the nucleus could be shown by immunofluorescence. 

Furthermore, HuR protein was also localised to the nucleus in both NSCLC cells lines.  This was 

consistent with HuR’s expected subcellular localisation. HuR’s nuclear role is in regulating the 

export of bound mRNAs to the cytoplasm protecting them from decay (Brennan and Steitz 

2001). HuR protein expression in nucleus of NSCLC cells correlates to a more treatable cancer 

diagnosis. 

In NCI-H345 and NCI-H69 SCLC cells specifically, all Hu proteins expression was confirmed by 

western blot and immunofluorescence. This shows the ectopic expression detected at RNA 

level leads to a protein product that can be identified by specific Hu antigens. Anti-Hu 

fluorescence staining revealed the Hu family of proteins resided in the nucleus of the NCI-H69 

cell line, whilst all Hu proteins were detected in the cytoplasm in the NCI-H345 cell line. This 
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data highlights the variability of SCLC and the differential localisation of Hu proteins can be 

explained by the different cell types that been found in SCLC cancer samples. Contrary to their 

normal localisation in neurons, HuB, HuC and HuD protein in NCI-H69 and HuR in NCI-H345 

were alternatively localised, a feature conserved to SCLC cells.  

There is little known about how the subcellular localisation of neuronal Hu proteins affects 

the cancerous phenotype. However, research into the posttranscriptional gene regulatory 

role of Hu proteins and their ability to influence mRNA transcript stability provides a possible 

explanation of how these cells contribute to disease (Zaharieva et al. 2015b). In the nucleus, 

Hu proteins control polyadenylation and splicing. Whilst in the cytoplasm, Hu proteins 

regulate mRNA stability by binding to AU-rich elements (AREs) of many short-lived mRNAs 

(Kim and Gorospe 2008, Zhu et al. 2007).  

The presence of HuR in  the cytoplasm of NCI-N345 SCLC cells is indicative of nucleo-

cytoplasmic shuttling, a process that is discussed in Section 1.7.3. In the cytoplasm, HuR 

mediates mRNA stabilisation through its ability to interact directly with an mRNA transcript 

by binding to AREs in their 3′UTR enabling translation into a protein (Abdelmohsen and 

Gorospe 2010). Hu proteins target an array of RNA transcripts coding for transcription factors, 

cytokines, growth factors and proto-oncogenes (Wang et al. 2015). Many of HuR’s targets are 

oncogenes therefore promoting stabilisation and translation of mRNA transcripts in SCLC will 

aid cancer initiation and progression.  

Whilst HuC gene expresison was observed in CorL88 SCLC cells, HuC protein could not be 

detected by western blot or immunofluorescence staining suggesting the expressed RNA 

detected by RT-qPCR is inactive and therefore not translated into a protein. CorL88 cells 

showed weak staining of HuD in the cytoplasm whilst HuR was observed in the nucleus 
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corresponding to their normal localisation described in the literature  (Gao and Keene 1996, 

Kasashima et al. 1999, Good 1995). HuD was previously undetected by western blot in CorL88 

cells, yet fluorescence staining showed a weak signal of HuD protein in the cytoplasm, its 

natural residing location.  

6.2 Cellular properties of normal lung and lung cancer cells 

Cell culture observations revealed similar morphology within each cell subtypes of SCLC, 

NSCLC and the normal bronchial epithelial cells separately. SCLC has impressive 

morphological features during in-vitro studies and this could be related to its pathogenicity. 

These cells are small and round with small nucleus to cytoplasm ratio. They grow in clusters 

regardless of whether they are in suspension or attach to the vessel in which they are cultured 

(Brambilla et al. 2001). 

All three SCLC cell lines grew in clusters. NCI-H345 and NCI-H69 of the SCLC cell lines grew in 

suspension while the third CorL88 is a semi adherent cell line. Interestingly, the semi adherent 

CorL88 cell line differed in its Hu protein expression at RNA and protein level compared to the 

other two SCLC cells lines and gives rise to further studies of Hu derived targets that influence 

anchorage dependence.  

The two NSCLC cell lines and the normal bronchial epithelial cells shared a similar morphology 

with adherent properties. This allowed studies of motility.  

These cells were tested for their ability to migrate into a gel matrix. Interestingly, one of the 

NSCLC cell lines, NCI-H358 was able to migrate into the gel matrix showing a more motile cell 

phenotype. This could represent the ability of the cells to metastasize into distant organs 
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forming secondary tumours. This finding highlights a difference in migrative potential within 

the NSCLC tumours but also concludes that it is possible for some NSCLC tumour to have a 

metastatic phenotype. 

In this study, the ectopic expression of the neuronal Hu genes HuB, HuC and HuD in SCLC were 

identified with an overexpression of HuR in both SCLC and NSCLC. Current diagnosis of SCLC 

relies heavily on the morphology in which the lung tumour cells present. This along with the 

developmental stage of the disease determines the course of treatment the patient is offered. 

A large degree of variability between Hu gene and protein expression was observed as well 

as differential cellular localisation even within the SCLC cells with similar morphology. This 

highlights the importance of the development of new diagnostic methods particularly 

focussed on molecular subtyping of cancers since the morphology is not sufficient. 

6.3 Concluding Remarks 

The proposition of using Hu gene and protein expression to develop a grading system could 

be beneficial to current diagnosis methods, however further studies would be required to 

support this theory. Initially, the aberrant expression of these proteins in the cells should be 

determined due to its significance but then also the sub-cellular expression of these proteins 

is indicative of their role within the cells which is essentially the most important factor. 

The expression and prognostic value of the neuronal Hu genes and proteins could initially be 

used an indicator of SCLC through detection of anti-Hu antibodies in the blood as previously 

described by D’Alessandro et al. (2008), or in very early lung tumour tissue. It was established 

that aberrant HuB, HuC, HuD and overexpression of HuR in SCLC may influence the progress 

of the cancers through their natural role as RNA-binding proteins. By regulating splicing 
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patterns and the stability of mRNA transcripts, the ectopic Hu proteins along with natural-

occurring lung-specific RNA-binding proteins, increase the number of transcripts expressed 

overall in the tumour due to their individual target transcripts, expanding the number of 

genes transcribed. The extra Hu protein action gives rise to a genetically-rich enhanced cell 

type influencing the cancers development and progression. The extent of Hu profiling can be 

used as a prognosis method in that the more of the Hu genes actively working the more 

enhanced the cancer cells are and likely to be a more aggressive phenotype.  

The subcellular Hu localisation in the SCLC cells could serve as method to better predict 

prognosis. This also gives rise to Hu proteins as therapeutic targets regardless of their role 

since by targeting cells only containing the aberrantly expressed proteins, the tumour tissue, 

and the evidence that a triple depletion of neuronal Hu genes in mice was lethal (Akamatsu 

et al. 2005).  

The ability to transfect SCLC-cell lines proved extremely difficult, this is thought to be due to 

their growth in suspension. Therefore, considering this reason and previous research on this 

cancer and Hu proteins, it was decided to focus our future studies on Glioblastoma and 

Neuroblastoma. If studies into SCLC were continued, CRISPR technology would have been 

used to knockout the Hu genes in these cell lines. 

Due to the inability to knockdown the Hu genes it was impossible to determine if using Hu 

proteins as targets to knockdown genetically within SCLC cells would impact the tumours 

growth. If this was the case, immunotherapeutic testing and therapeutic drugs could be 

applied to several different malignancies of solid tumours where Hu proteins are indicated 

not just SCLC and NSCLC. 
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Chapter 7 

Discussion 

Part II: Expression of Hu proteins in Neuroblastoma  

Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system. It 

represents 15% of all childhood cancer deaths and has an average 5-year survival rate of less 

than 50% (Maris et al. 2007, Ehrlich et al. 2014). The molecular heterogeneity and phenotypic 

diversity of Neuroblastoma is responsible for a wide range of clinical presentations and 

varying response to treatments. The severity of this disease drives the need to yield 

actionable therapeutic targets for this highly fatal cancer (Louis and Shohet 2015). 

Hu proteins and their corresponding antibodies have been found in Neuroblastoma. Ball and 

King (1997) found that in primary NB tissue, samples that expressed the highest Hel-N1 (HuB) 

or HuD levels were MYCN unamplified tumours. HuB and HuD upregulated gene expression 

in this cancer provides an excellent model for Hu protein analysis.  

Whilst Hu activity is reported in many cancers and thought to have oncogenic properties, 

unfortunately, the mechanisms that modulate its ectopic and overexpression in tumours is 

largely unknown. It is suggested somatic mutations may play a key role (D’Alessandro et al 

2010). HuR specifically is localised in chromosome 19p13.2 and this particular locus has been 

associated many translocations and oncogenic advances in human tumours (Ma and 

Furneaux 1997). 
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7.1 The family of Hu RNA-binding proteins and their presence in 
Neuroblastoma 

The Hu gene expression profiling in Neuroblastoma focused on three cell lines; normal 

astrocytes, SVG p12, as a control and two Neuroblastoma cell lines, SH-SY5Y and SK-N-AS. 

Using relative fold change expression analysis (2-∆∆Ct) and ß-Actin as an internalised standard, 

the expression levels of each Hu gene was analysed. The RT-qPCR data of the two 

Neuroblastoma cell lines was normalised to the control cell line, SVGp12 normal astrocytes 

cell line which by itself had the lowest gene expression of HuB, HuC, HuD and HuR.  

Hu gene analysis revealed an upregulation of the neuronal Hu genes in both Neuroblastoma 

cell lines compared to the control astrocyte cell line. These genes are known to be 

differentially expressed at various stages of embryonic neuronal development. HuB 

expression occurs very early in development whilst HuC and HuD expression appear later in 

embryonic development (Marusich et al. 1994, Yano et al. 2016). Since Neuroblastoma is an 

embryonal-derived tumour, an upregulated expression of all the neuronal Hu genes in 

tumours, may induce a gain-in-function where a new molecular function or a new pattern of 

gene expression is observed.  

The ubiquitously expressed HuR was significantly upregulated in SH-SY5Y Neuroblastoma 

cells. HuR gene expression levels are often elevated in cancer cells and are reduced in 

senescent and quiescent cells (Dai et al. 2012). This upregulated expression of HuR suggests 

an additional role in this cell line compared to the second Neuroblastoma cell line, SK-N-AS 

and the control normal astrocyte cell line.  

A comparison of the two Neuroblastoma cell lines showed an overall higher gene expression 

of all Hu proteins in SH-SY5Y cells than the second Neuroblastoma cell line SK-N-AS when 

compared to the control astrocytes.  



303 
 

This variation of Hu gene expression in these two cell lines aligns with the described variation 

of HuB and HuD expression at a densitometric levels in samples of Neuroblastoma tissue as 

determined through RNase protection assay (Ball and King 1997).  

The observed gene expression profile of Hu proteins does not necessarily mean that the 

same levels of expression is detected at protein level. Additionally, a proteins intracellular 

localisation determines it functional effect (Zaharieva et al. 2015b). Previously studies have 

shown that Hu proteins can redistribute between the nucleus and cytoplasm. The neuronal 

Hu members HuB, HuC, HuD are mainly located in the cytoplasm with a small amount of 

protein detected in the nucleus (Gao and Keene 1996, Antic and Keene 1998). Hu proteins 

subcellular localisation can be quite variable depending on the cell type. A more 

cytoplasmic-defined localisation is observed in many tumour cells (Antic and Keene 1997). 

It is well established that in the nucleus, Hu proteins regulate processes such as alternative 

splicing and polyadenylation and are also involved in the export of bound mRNAs to the 

cytoplasm protecting them from decay (Brennan and Steitz 2001, Zhu et al. 2007, Izquierdo 

2008). In the cytoplasm, they continue to act on these mRNA transcripts by binding directly 

and upregulating a transcripts potential (Brennan and Steitz 2001). 

HuB was expressed at RNA level in all cell lines as confirmed by RT-qPCR gene analysis. Protein 

expression levels did not correlate with transcript mRNA levels detected by the gene analysis. 

Normal astrocytes showed the least HuB gene expression at an almost undetectable level 

when compared to the Neuroblastoma cells following 2-∆∆Ct gene quantification. However, at 

a protein level, HuB showed a four times higher expression compared to GAPDH expression 

suggesting a high translational rate for HuB in normal astrocytes, SVGp12. This could be 
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explained by the embryonic origin of this cell line when HuB is expressed during neuronal 

development as mentioned above. 

In addition to the expected Hu signal at 38kDa, a band at 76kDa was detected which could be 

a HuB dimer. This is rather a usual occurrence following the denaturation of proteins before 

the Western blot but offers an explanation. The presence of HuB could be confirmed by 

immunofluorescence and a localisation in both the cytoplasm and nucleus was found. 

The nuclear localisation of HuB in normal astrocytes is inconsistent with the regular 

localisation of HuB protein. The presence neuronal Hu family proteins in the cytoplasm and 

the nucleus of the normal astrocytes is not surprising since they share similarities with 

neurons in that both reside in cortical areas, contribute to the maintenance of the central 

nervous system and allow metabolic interplay between astrocytes and neurons.  In neurons, 

Hu proteins can appear to be distributed equally in both the nucleus and cytoplasm (Antic 

and Keene 1997). As a post-transcriptional gene regulator, HuC protein can act to influence 

splicing patterns and mRNA export when it is localised in the nucleus. 

The SK-N-AS Neuroblastoma cells showed equal expression of HuB to GAPDH expression as 

determined through band intensity. Compared to SH-SY5Y cells, SK-N-AS cells have a higher 

protein expression which is consistent with the gene expression data. In SH-SY5Y cells, HuB 

proteins shows less than half of the control GAPDH protein expression. 

In SK-N-AS and SH-SY5Y Neuroblastoma cells, only the higher band at 76 kDa could be 

detected which could be a result of HuB protein dimerisation. HuB was localised mainly in 

the nucleus, with a weaker signal in the cytoplasm in these cells. HuB protein is normally 

restricted to the cytoplasm in undifferentiated neurons where it co-localises with ribosomes 

controlling mRNA metabolism and neuronal differentiation (Gao and Keene 1996). The 
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presence of neuronal Hu proteins in the nucleus is not unusual as it is well documented that 

Hu proteins can translocate from the cytoplasm to the nucleus playing crucial roles in 

posttranscriptional gene regulation (Doller et al. 2008b).  

HuB nuclear localisation in the Neuroblastoma cell line SK-N-AS, could be explained by its 

upregulated gene expression and high protein level whereby it is proactively transported to 

the nucleus in a ratio-dependent mechanism. As previously described, in the nucleus, HuB 

can regulate alternative splicing of mRNA transcripts and can assist in the export of mRNA 

transcripts to the cytoplasm protecting them from decay (Zhu et al. 2007, Ince-Dunn et al. 

2012, Brennan and Steitz 2001). 

One feature of cancer cells is a high proliferation rate. In the cytoplasm, HuB protein can bind 

and regulate the stability and translation of many mRNA transcripts involved in proliferation. 

This increases the molecular advantage of a cell (Brennan and Steitz 2001).  

HuC protein was found to be highly expressed in the normal astrocytes, SVG p12. In this cell 

line, it was detected as a monomer at the expected size of 39kDa and around four times the 

expected size of HuC protein, suggesting HuC experiences multimerisation. HuC protein was 

predominantly localised in the nucleus of the SVG p12 astrocytes, although a lower a level of 

HuC protein was also observed in the cytoplasm.  

The nuclear localisation of HuC in normal astrocytes is inconsistent with the regular 

localisation of HuC protein and is thought to be due to similar effects described about HuB 

where there is an increased demand for mRNA regulation in the nucleus. 

Similar to the effects seen in the embryonic cell line, the stresses upon a cancer cell may result 

in HuC being recruited to the nucleus. In the nucleus, it can regulate the splice patterns of 

mRNA transcripts and assist in their translocation to the cytoplasm for additional processing. 
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In both Neuroblastoma cell lines, only the higher molecular band four times the size of the 

expected 39kDa was detected by Western blotting. This is potentially significant of HuC 

protein multimerisation. HuC was expressed equally and about half of the GADPH control 

protein expression. At RNA expression level in SH-SY5Y cells showed a HuC higher expression 

level than SK-N-AS cells highlighting again that RNA expression levels do not necessarily 

reflect on the abundance at protein level. 

HuC protein expression and localisation was also confirmed by immunofluorescence studies. 

HuC was localised in both the cytoplasm and the nucleus in the normal astrocytes and SH-

SY5Y, Neuroblastoma cells. In SK-N-AS cells, HuC protein was expressed in the cytoplasm only. 

HuC protein is reportedly expressed in the cytoplasm of differentiated neurons (Okano and 

Darnell 1997).  

The larger protein moieties detected in normal astrocytes and Neuroblastoma cells could be 

explained by a dimerization or multimerisation of HuB and HuC, respectively. It is known that 

Hu monomers can bind to each other or themselves at the third RRM and hinge region of Hu 

RNA-binding proteins structure displayed in Fig. 1.6. (Fialcowitz-White et al. 2007, Kasashima 

et al. 2002). 

Dimerisation and multimerisation of the neuronal proteins is thought to contribute to their 

ability to form large ribonucleoprotein (RNP) complexes. These form from protein-protein 

interactions that then bind RNA (Kasashima et al. 2002). RNP complexes then bind with the 

translational apparatus of the cell, upregulating transcript stability and translation (Antic and 

Keene 1998). 

Protein analysis revealed HuD was absent in normal astrocytes but present in the 

Neuroblastoma cells. HuD protein expression in the SH-SY5Y cells was comparable to the 

GAPDH control. In SK-N-AS cells, HuD protein was expressed about 20% of the control band 
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intensity. Overall, a higher HuD protein expression was observed in the SH-SY5Y cells that 

correlates with gene expression levels.  

The absence of HuD protein in normal astrocytes was confirmed by immunofluorescent 

staining. In SK-N-AS and SH-SY5Y cells, HuD protein was found in the cytoplasm only which 

aligns with the described localisation of HuD in neuronal development  (Kasashima et al. 

1999). 

Ball and King (1997) reported that upregulation of HuB and HuD gene expression correlated 

with unamplified MYCN levels in primary Neuroblastoma tissue. A upregulation of HuB and 

HuD was found in both Neuroblastoma cell lines, SH-SY5Y and SK-N-AS and their known status 

of NMYC-non-amplified cells (Peirce and Findley 2015, Veas-Perez de Tudela et al. 2010). 

Western blot analysis showed a very low expression of HuR in the normal astrocytes cell line 

SVG p12. A low abundance of HuR was confirmed by immunofluorescence with a 

predominant localisation to the nucleus. 

A slightly increased expression of HuR compared to GADPH was seen in both Neuroblastoma 

cell lines. The protein expression level aligns with the HuR RNA expression level which showed 

a upregulation in both Neuroblastoma cell lines, but not statistically significant in SK-N-AS 

cells. 

HuR protein was localised in the nucleus of the SK-N-AS cells and in the cytoplasm of SH-SY5Y 

cells. In neurons, HuR protein expression is predominantly seen in the nucleus of normal cells, 

but upon cellular signals HuR shuttles between the nucleus and the cytoplasm (Good 1995, 

Fan and Steitz 1998). 

RNA-binding proteins localisation often determines the extent of transcript stability, 

translation rate and degradation (Zhu 2009). The cytoplasmic localisation of HuR protein in 
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SH-SY5Y cells could be linked to its overexpression. Often when an upregulation of HuR 

protein in the nucleus occurs, the cells actively translocate HuR protein to the cytoplasm 

(Doller et al. 2008b). In the cytoplasm, HuR protein can participate in roles such as regulating 

mRNA translation, stability and degradation.  

HuR is the most extensively researched Hu protein in cancer related studies; it’s upregulation 

and cytoplasmic localisation has been linked to a severe phenotype of cancer resulting in a 

poor prognosis (Table 1.2).  

7.2 Regulatory interactions of Hu RNA-binding proteins in 
Neuroblastoma 

Members of the Hu family can bind their own mRNA and mRNA of other family members and 

influence their expression (Bolognani et al. 2009, Mansfield and Keene 2012). Hu proteins 

bind mRNA sequences containing a distant AU-rich elements and once bound stabilise the 

target transcripts (Pullmann et al. 2007, Al-Ahmadi et al. 2009).  

HuR protein specifically auto-regulates its’ own expression through a negative feedback loop 

maintaining HuR homeostasis in proliferating cells. This occurs in response to cellular stress 

by promoting alternative polyadenylation site usage. HuR protein residing in the nucleus 

contains a GU-rich element overlapping with the HuR major polyadenylation signal. Following 

upregulation of HuR protein, the expression of the long 2.4kb isoform of HuR containing an 

AU-rich element is destabilised, reducing its protein level. This maintains a steady expression 

of HuR in the cell (Dai et al. 2012). 

To understand the regulatory interactions of Hu RNA-binding proteins, a single and combined 

knockout of the Hu genes was established in SH-SY5Y and SK-N-AS Neuroblastoma cells using 

siRNA interference.   
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Observations in Neuroblastoma cells but particularly in the SH-SY5Y cell line, where a high 

overall expression of Hu genes was observed, were suggestive of a regulatory mechanism 

occurring between Hu family members an overall more efficient knockdown of Hu gene 

expression was achieved in a combined knockdown compared to the individual knockdowns. 

This was later confirmed by western blot where the most efficient knockdown of each 

individual Hu protein was through the combined Hu siRNA knockdown. 

In the single knockdowns of HuR and HuD, all the other Hu family members mRNA levels also 

reduced. In the combined knockdown, an increased efficiency was seen for the neuronal Hu 

genes, HuB, HuC and HuD. HuR gene expression following combined Hu gene knockdown 

correlated a combined effect of the individual knockdowns of HuD and HuR. HuR mRNA levels 

decreased by 27% following HuD knockdown, 81% following HuR knockdown and 70% 

following combined Hu family knockdown. Overall, it can be concluded that HuD and HuR the 

main players in regulating other Hu proteins expression. 

Hu family proteins are highly conserved not just within their sequence but in their roles as 

posttranscriptional regulators. ELAV is the Drosophila homolog of the human Hu genes. 

Zaharieva et al. (2015) found that Drosophila family members can regulate each other’s target 

transcripts. ELAV-related Sex-lethal regulated ELAV targets. They also described a dosage-

compensation relationship between Sex-lethal and RBP9 proteins.  

It appears familial Hu proteins are possibly able to functionally counteract the depletion of 

another. The work described in this thesis found regulatory mechanisms within the Hu family 

network. This led to the development of a hypothetical model of Hu protein interactions for 

each of the Neuroblastoma cell lines.  
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The hypothetical model describes the potential interactions and regulatory interplays as 

follows. Firstly, an auto-regulation of Hu protein family members where they can target their 

own transcripts and regulate their expression in a feedback loop. Secondly, the regulation 

could be due to a functional compensation, during which other Hu genes become upregulated 

for the decreased expression of other Hu family members after the knockdown. And finally, 

the observed effects could due to an off-target effect of Hu gene regulation, whereby a mRNA 

transcript affected by the Hu genes regulation triggers a feedback loop, affecting the 

expression of a different Hu gene family member. Since, miRNAs and other RBPs have also 

shown to influence Hu protein expression, it’s important to consider potential other upstream 

or downstream regulators of the Hu family proteins, which itself highlights the need to 

identify other signalling pathways important for Hu regulatory function (Al-ahmadi et al. 

2013).  

In the SH-SY5Y cell line, HuB is potentially a negative regulator of HuC and HuD gene 

expression. This could be explained that HuB bind to AREs of HuC and HuD mRNA transcripts 

which leads to a regular expression of their mRNA in the cells. Therefore, when HuB is 

downregulated, consequently the expression of HuC and HuD would increase. Alternatively, 

HuC and HuD genes may compensate for the decreased expression of HuB gene by 

upregulating their own expression. There is also the possibility that HuB knockdown results 

in off targets effects subsequently upregulating HuC and HuD gene expression through 

downstream activators. This could be HuB acts of a different target transcript that also affect 

HuC and HuD gene regulation and the described effects could be due to the effect on that 

different transcript initially. 
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When HuC gene expression was reduced, a significant increase of HuR gene expression was 

observed. This could be explained by HuC protein actively controlling the transcription of HuR 

mRNA or that the increase in HuR gene expression compensates for HuC gene activities.  

HuD seems to positively regulate the gene expression of the other neuronal Hu genes, HuB 

and HuC. Whilst HuR upregulated the gene expression of all the other Hu genes in this 

Neuroblastoma cell model. When HuD or HuR gene expression was decreased, the other Hu 

genes expression were also reduced. This is most likely due to HuD and HuR proteins binding 

directly to the mRNA transcripts of the other Hu genes and stabilising their expression or it 

could be due to off target effects where a different mRNA affected by HuD or HuR knockdown 

influences the other neuronal Hu proteins. HuC protein was also found to be a positive 

regulator of HuB gene expression, since HuB gene expression decreased when HuC gene was 

knocked down. This can be explained by the same possible interpretation as described for 

HuD regulation of HuB and HuC. In the SK-N-AS cell line, the following explanations are based 

on three hypothesised regulatory interactions that were previously discussed in Section 4.4.1. 

HuC and HuD are negative regulators of HuB expression. The regulatory influences of HuC and 

HuD proteins on HuB gene expression may be explained by direct binding of HuC or HuD 

proteins to the mRNA transcripts of HuB gene and stabilising its expression. Therefore, upon 

HuC and HuD siRNA knockdown, HuB mRNA transcript is no longer under this regulatory 

control and its expression increases. It is also possible that HuB compensates for the reduced 

gene expression of HuC and HuD. This level of regulation can be explained by the same 

interpretations discussed for HuC’s regulation of HuR. 

HuR knockdown appears as a positive regulator of HuC expression as a decrease in HuC 

expression occurs. This can be explained by the fact that HuR binds directly to HuC’s mRNA 



312 
 

transcript and stabilises its expression. Therefore, when HuR expression is reduced, HuC’s 

transcript becomes unstable. Additionally, this could be caused by off target effects of HuR’s 

downregulation. HuC and HuR are located on the same chromosome, 19p13.2 where HuC is 

centromeric to HuR (Van Tine et al. 1998). 

Correlation between nuclear HuR and its ability to auto-regulate its own transcript was 

documented by Dai et al. (2012). HuR autoregulates its expression by promoting alternative 

polyadenylation site usage through a negative feedback loop. This often leads to a large 

amount of cytoplasmic HuR as it’s the nuclear HuR that induces this action. In the 

Neuroblastoma cell line SH-SY5Y, overexpression of HuR gene showed a predominant protein 

presence in the cytoplasm contributing to this theory. 

These regulatory interactions observed of HuR may apply to other Hu proteins since their 

sequences and function is highly conserved. This may also explain the inability to achieve 

higher than a 50% knockdown of HuB gene in SK-N-AS cells. 

The observed higher molecular weight of HuB and HuC in western blots that could be a result 

of a dimerisation or multimerisation respectively, has been shown to allow Hu proteins to 

upregulate their own mRNA transcripts and further bind with additional Hu proteins at the 

third RRM and hinge region as previously described (Fialcowitz-White et al. 2007, Kasashima 

et al. 2002). 

In Neuroblastoma, HuB and HuC proteins were revealed as major players in only the negative 

regulation of other Hu genes. In SK-N-AS cells, HuB protein was a negative regulator of HuR 

gene expression. This was shown by HuB gene knockdown and a resulting increase in HuR 

gene expression. Also, HuC protein negatively regulated HuB gene expression. In SH-SY5Y 

cells, HuB protein was a negative regulator of HuC and HuD gene expression, since following 
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HuB knockdown, HuC and HuD gene expression increased significantly. Additionally, HuC 

protein was a negative regulator of HuR gene expression.  

Of the two cell regulatory models, the only similarity is that HuC is a negative regulator of HuR 

gene expression. However, if these models were combined, HuB and HuR protein can regulate 

each other’s expression, as can HuB and HuD, HuC and HuR. 

This presented study on gene expression and the regulatory network of Hu proteins highlights 

the compensatory effects of which is important to be considered for gene therapies. Further 

study would require complete knockouts of the Hu genes that could be achieved by CRISPR. 

Also, miRNA analysis would help understand the extended regulation of Hu genes.  

7.3 Hu proteins and their influence on Neuroblastoma cell phenotype 

The knockdown studies of single and combined Hu genes were assessed for their effect on 

cellular properties. No clear changes of the cell morphology were observed following 

individual or combined Hu gene knockdowns.  

MTS studies revealed HuB, HuC and combined Hu gene knockdowns increased cell viability in 

SH-SY5Y cells but not in SK-N-AS cells. This suggests that in the cell, HuB and HuC proteins can 

act in manner to maintain a steady rate of cell viability and without this control, a possible 

upregulation in cell viability could occur. This would suggest HuB and HuC proteins have 

tumour suppressor properties. This may be occurring through direct regulation of transcripts 

involved in cell viability or through regulating transcripts whose downstream targets affecting 

cell viability. In Glioblastoma, HuB protein has previously been described as a tumour 

suppressor (Tarter 2013). 
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Cell migration, invasion and chemotaxis are typically involved in diverse processes from 

embryonic development and differentiation to angiogenesis, immune response, wound 

healing and cancer cell metastasis (Khabar 2017).  

Cell mobility and cell invasiveness was measured through cell migration into an agarose gel 

matrix. When compared, SK-N-AS cells had an overall more invasive phenotype than SH-SY5Y 

cells before any knockdown experiments. In a wound healing assay, HuB gene knockdown 

increased the migrative potential of both Neuroblastoma cell lines, as did individual HuC and 

HuR knockdown and combined Hu gene knockdown in the SH-SY5Y cell lines. Differences 

observed between the cell lines may be related to the higher overall expression of Hu genes 

in SH-SY5Y cells compared to the SK-N-AS cells. Interestingly, HuB gene expression was 

highest in the SK-N-AS cells which was the only effective gene knockdown in producing 

cellular effects.  

The increased motility after Hu gene knockdowns suggests that Hu gene play a role in the 

relative migration rate of these cells. The described effects of HuB, HuC and HuR inducing a 

more migrative phenotype, suggests that the Hu genes role in the cell, is to maintain a relative 

rate of migration. 

7.4 Gene targets regulated by Hu proteins in Neuroblastoma 

The influence of Hu gene expression on potential mRNA targets was analysed. Gene 

amplifications of Hu genes and consequential increases in their protein expression are likely 

to impact translational networks and change fundamental cellular processes. Hu proteins can 

modulate the stability of ARE-containing mRNAs in vitro positively as well as negatively 

(Brennan and Steitz 2001). 
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A commercially available array consisting of 91 mRNA targets described in the National Library 

of Medicine database and thought to contribute to the development Neuroepithelial 

disorders was used. Gene expression levels were analysed following single and combined Hu 

gene knockdowns in both Neuroblastoma cell lines SH-SY5Y and SK-N-AS. In each 

Neuroblastoma cell line, a unique alteration in target gene expression was observed.  

Considering each cell line as an individual model and to reduce the number of target genes 

for analysis, several parameters were set. A 3.0 cycle fold-change difference in gene 

expression compared to the control non-targeting siRNA expression was selected for the SH-

SY5Y samples following individual and combined gene knockdowns when compared to the 

non-targeting knockdown control. A fold-change of 3.6 cycles was selected for SK-N-AS 

Neuroblastoma cells. An additional selection for the genes were ones that were consistent in 

two or more of the knockdowns observed within each cell line. For the SH-SY5Y cell line, 6 

genes were identified to meet these criteria and 12 genes for the cell line SK-N-AS. 

A knockdown of Hu genes individually and combined in SH-SY5Y cells revealed that B-cell 

lymphoma (BCL2) mRNA transcript levels were affected, showing a lower expression. This 

shows that in the Neuroblastoma cell model SH-SY5Y, Hu proteins regulate the expression of 

BCL2 transcript probably by stabilising its mRNA. Ishimaru et al. (2009) identified HuR as a 

component of Bcl-2 messenger ribonucleoprotein (mRNP) complexes in in HL60 Leukaemia 

cells and A431 Carcinoma cells. BCL2 mRNA contains AU-rich elements in the 3′-untranslated 

region to which Hu proteins can bind to and regulate (Schiavone et al. 2000). A schematic 

diagram showing how Hu protein can bind and regulate mRNA transcripts is demonstrated in 

Fig. 1.6. 
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Bcl-2 is an anti-apoptotic protein and mediator of cell survival and cell death,  by regulating 

caspase-dependent and caspase-independent cell death pathways (Nunez and Clarke, M. F. 

1994). Bcl-2 is known to affect the progression of diseases such as cancer, autoimmune 

diseases and neurological conditions such as stroke and neurodegenerative diseases (Hughes 

et al. 2006, Akhtar et al. 2004, Kirkin et al. 2004). The potential influence of Hu genes in 

neurodegenerative disorders and its ability to regulate BCL2 transcript has previously been 

discussed in Section 1.8.  

Cyclin D2 (CCND2) gene was shown to be regulated by HuC and HuD proteins in SH-SY5Y 

cells. Following knockdown of these Hu genes, CCND2 expression also decreased suggesting 

HuC and HuD positively regulate the stability of CCND2 mRNA transcript promoting its’ 

expression. Cyclins are involved in controlling the cell cycle progression for which their 

expression is tightly regulated (Johnson and Walker 1999). HuR protein was documented in 

Colorectal carcinoma cells, RKO, to regulate cell division and checkpoint responses by 

stabilising the transcripts of key cell cycles regulators, namely cyclin A and cyclin B1 (Wang 

et al. 2000)  Therefore, it is not surprisingly that HuC and HuD show this effect on CCND2.  

Following a combined Hu gene knockdown, a large upregulation of CCND2 was observed. 

This is unusual but can be described by genetic compensation. This is a widespread 

phenomenon, where the reduced or loss of expression of one gene is compensated by 

another with a similar function and expression pattern. There are multiple RBPs in the 

human genome that co-regulate mRNA targets. Keene (2007) described a model in which 

mRNAs encoding for proteins with similar functions are co-ordinately regulated as post-

transcriptional RNA operons or regulons, through a ribonucleoprotein-driven mechanism 
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(Keene 2007). This co-regulation of mRNA transcripts has also been described for the 

Drosophila Hu homolog, ELAV, and its family members (Zaharieva et al. 2015b) 

The decrease of Hu protein expression could induce the expression of other RNA binding 

proteins to compensate for Hu’s cell vital functions in posttranscriptional gene regulation of 

target RNAs, here acting on Cyclin D2 expression (El-Brolosy and Stainier 2017). HuR protein 

and the eukaryotic translation initiation factor 4E (eIF4E) are RNA regulons sharing targets 

that regulate survival and proliferation-related genes such as c-myc, cyclin D1 and VEGF 

(Wurth 2012, Topisirovic et al. 2009).  

Importantly, this shows how targeting HuB or HuC protein individually could be beneficial in 

the reducing CCND2 expression whilst a knockdown of all Hu proteins seems to have the 

contrary effect. The influence of Hu proteins on target RNAs in Neuroblastoma that are 

involved in cell proliferation, and the compensatory aspects when Hu proteins are 

downregulated, highlight the underlying molecular complexity of the disease and a concept 

that must be considered for therapeutic approaches. 

Early Growth Receptor 1 (EGR1) gene encodes a transcription factor required for programmed 

cell death or apoptosis in both normal and tumour cells (Adamson and Mercola 2002). Here 

it was shown that following HuB, HuC and HuD gene knockdowns in SH-SY5Y cells, EGR1 gene 

expression also decreased. This shows that the neuronal Hu proteins act as positive regulators 

of EGR1 mRNA expression. The same effect on EGR1 was also observed in the second 

Neuroblastoma cell line, SK-N-AS. In this cell line, the combined Hu gene knockdown also 

significantly decreased EGR1 gene expression. In addition, in SK-N-AS cells, the combined 

knockdown of all Hu proteins showed a significant decrease of EGR1 expression while in SH-

SY5Y cells, only a moderate decrease was observed. 



318 
 

These findings suggest that in Neuroblastoma cells, the neuronal Hu genes actively regulate 

EGR1 gene expression either directly or indirectly and consequently stimulating tumour 

growth (Adamson and Mercola 2002). In Prostate cancer, EGR1 is overexpressed. EGR1 was 

linked to several target genes including cyclin D2 (Virolle et al. 2003).  

As mentioned in SH-SY5Y cell line, the combined Hu gene knockdown did not reduce the EGR1 

expression much, therefore EGR1 could upregulate CCND2 expression. However, in SK-N-AS 

cell, the expression of CCND2 was not selected as a target following the criteria described 

above, therefore this interpretation cannot proved. 

Neuroblastomas are often defined by a poor outcome if an amplified state of proto-oncogene 

MYCN is found (Cohn et al. 2009). MYCN is a member of the MYC family of transcription 

factors regulating cellular processes including survival, proliferation, and differentiation 

(Westermark et al. 2011). Lovén et al. (2010) shows an array of MYCN-induced miRNAs 

including the micro RNAs, miR-18a and miR-19a, that target and repress Estrogen Receptor 1 

(ESR1) gene expression. ESR1 encodes the protein estrogen receptor α. ESR1 expression in 

Neuroblastoma tumours has been shown to induce a favourable disease outcome.  

Individual knockdowns of HuB, HuC and HuD genes showed their proteins are positive 

regulators of ESR1 gene expression, as when HuB, HuC and HuD gene expression decreases, 

ESR1 also does. In the SH-SY5Y cells, HuB, HuC and HuD proteins must be acting on the ESR1 

gene transcript to maintain a steady regulation, potentially demonstrating a tumour 

suppressor role. SH-SY5Y cells do not show MYCN amplification and no interference with ESR1 

regulation by MYCN must be considered. However, it has been shown that MYCN becomes 

upregulated in SH-SY5Y cells when treated with nutlin-3 and doxorubicin, due to cellular 

stress (Peirce and Findley 2015). Upon knockdown of the Hu family in combination, ESR1 gene 
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expression increased, suggesting that a downregulation of the Hu family could be a potential 

target for gene therapy  leading to higher ESR1 gene expression. Lovén et al. (2010) showed 

higher ESR1 expression induced growth arrest and neuronal differentiation in Neuroblastoma 

cells.  

Insulin-Like Growth Factors play a crucial role in the regulation of cell proliferation, 

differentiation, apoptosis and transformation (Clemmons and Jones 1995). Insulin-like 

growth factor-binding protein 3 (IGFBP3) was shown to be positively regulated by HuR RNA-

binding protein. This was shown in mouse embryonic stem cells where a knockdown of HuR 

decreased IGFBP3 expression. It showed IGFBP3 contains a HuR binding motif in its 3′-UTR 

that upon HuR binding, increased stability of the transcript (Wang et al. 2014). This suggests 

HuR as a novel target to reduce IGFBP3 since a HuR knockdown resulted in a decrease in 

IGFBP3 expression in the SH-SY5Y cells.  

The anti-inflammatory cytokine Interleukin-10 (IL10) has previously been reported to regulate 

the expression of HuR (Prasanna et al. 2009). To maintain normal physiology, IL10 balances 

anti-inflammatory regulatory T-cells and proinflammatory IL17-expressing T-cells. Mice 

deficient in IL10 have increased inflammatory responses often causing cancer, demonstrating 

a tumour suppressive effect of IL10 (Oft 2014). The data presented shows that after the 

individual knockdown of Hu genes in SH-SY5Y, IL10 expression was decreased. Therefore, Hu 

genes may post-transcriptionally regulate IL10 expression or IL10 expression may decrease 

because of down-stream effects following Hu gene depletion. A combined knockdown of all 

Hu genes leads to a significant increase in IL10 expression. This is most certainly an off-target 

effect, where different genes compensate for Hu gene expression decrease.  
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It could be hypothesised that a combined Hu family knockdown may provide a good 

therapeutic target since there is a large increase in IL10 expression, that would induce an anti-

tumour effect. Overexpression of a synthetic IL10  has shown to induce anti-tumour immunity 

(Oft 2014). However, this must be confirmed by further experiments looking at the interaction 

of Hu proteins on multiple levels.  

An upregulation of Apolipoprotein E (APOE) is commonly associated with the Alzheimer’s 

disease pathology (Diedrich et al. 1991). Likewise, Hu genes have been implicated in 

Alzheimer’s pathology and regulation of genes implicated in AβPP processing (Amadio et al. 

2010). 

ApoE proteins function in lipid metabolism and neuronal homeostasis (Huang, Yadong and 

Mahley 2014). There are three variants isoforms of ApoE proteins of which the ApoE3 variant 

has previously been identified in SH-SY5Y Neuroblastoma cells (Dupont-Wallois et al. 1997). 

In Neuroblastoma, ApoE has also been shown to affect cell viability when oxidised by a 

phospholipid (Hoy et al. 2000). 

In Ovarian cancer, ApoE was shown to be a tumour-associated marker required for increased 

proliferation and cell survival. Knockdown experiments in ovarian cells, OVCAR3, resulted in 

cell-cycle arrest and apoptosis (Chen et al. 2005).  

In the presented study, APOE gene expression was downregulated following all individual and 

combined Hu gene knockdowns in SK-N-AS cells. This highlights that the APOE gene is 

targeted directly or indirectly by the Hu gene family maintaining its regulation in these cells. 

Further experiments would be required to prove that the knockdown of Hu protein results in 

a decrease of APOE inducing cell death in a vivo model.  

As previously mentioned, Neuroblastoma has a poor prognosis if proto-oncogene MYCN is 

amplified (Cohn et al. 2009). A study in Neuroblastoma cells showed that cells treated with 
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CDK1 inhibitors showed a reduced expression of MYCN and survivin expression. They 

concluded CDK1 inhibition induced cell cycle arrest and apoptosis through interruption of the 

miR-34a–MYCN–survivin pathway (Chen et al. 2013).  

A knockdown of HuB and HuD genes individually in SH-SY5Y cells, resulted in an increased 

CDK1 gene expression. This shows HuB and HuD proteins have a repressive regulatory effect 

on CDK1, either through direct or indirect effect on the CDK1 gene transcript.  

Studies into Connective Tissue Growth Factor (CTGF) expression in breast carcinoma revealed 

CTGF contains five HuR binding motifs and is therefore regulated by HuR protein (Heinonen 

et al. 2011). The data presented in this study confirms HuR protein as a regulator of CTGF in 

SK-N-AS cells. The downregulation of HuR lead to a decreased CTFG expression. CTGF 

expression was also downregulated when HuC and HuD genes were knocked down 

individually. This potentially shows that these Hu proteins also regulate CTGF. These results 

suggest that in the SK-N-AS Neuroblastoma cells, Hu proteins modulate CTGF mRNA levels 

during post-transcriptional events ensuring its expression is maintained. CTGF is a matrix-

associated protein and its functions in cancer is related to angiogenesis and tumour growth 

and even cancer cell migration and invasion (Chu et al. 2008). This highlights the potential 

oncogenic effects of HuR, HuC and HuD in relation to the CTGF transcript in these cells. 

High expression levels of Glutathione S-Transferase Pi 1 (GSTP1) mRNA that encodes a 

detoxifying enzyme expression have been associated with decreased survival in 

Neuroblastoma patients. Further investigation revealed N-Myc as a transcriptional regulator 

of GSTP1. N-Myc also regulates the expression of several ATP-binding cassette (ABC) 

transporters, further increasing the level of regulatory control in drug metabolism. This could 

explain the high multi-drug resistance observed in Neuroblastoma (Fletcher et al. 2012). SK-
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N-AS cells are typically MYCN-non-amplified cells, although MYCN expression can be induced 

through treatment induced cellular stress as previously described (Prochazka et al. 2013).  

GSTP1 gene expression was reduced following HuB gene knockdown. This shows that HuB 

protein is a positive regulator of GSTP1 expression. In contrast, HuC and HuR proteins were 

revealed as negative regulator of GSTP1 gene expression since their knockdown resulted in 

increased GSTP1 expression levels. This is suggestive of a tumour-suppressor function to 

maintain low/moderate GSTP1 expression in the SK-N-AS Neuroblastoma cells. These 

observed differences in the effect of single Hu proteins on the expression of certain genes 

highlights molecular heterogeneity of this type of cancer and the difficulty of establishing an 

effective treatment. 

Transforming growth factor beta (TGF-β1) mRNA has previously been reported in 

Neuroblastoma and normally plays a role in the homeostasis of proliferation and 

differentiation (Lolascon et al. 2000). TGF-β normally functions in cell growth inhibition, 

however it is documented that several cancers develop resistance to TGF-β (Polyak 1996). 

TGF-β1 mRNA levels decreased in SK-N-AS cells following all Hu gene individual and combined 

knockdowns. Although this downregulation was not significant, it forms an intricate part in 

the Neuroblastoma network. The observed regulation suggests that Hu proteins upregulate 

TGF-β1 expression in the SK-N-AS cells. 

TGF -β1 binds to one of three cell surface receptors namely TGF-βR1, TGF-βR2. and TGF-βR3. 

Lolascon et al. (2000) reports TGF-βR3 is extensively reduced in the later stages of 

Neuroblastoma development. 

Protein kinase C α (PKCα), belongs to a family of proteins that emit signals inducing lipid 

hydrolysis. These signals stimulate other factors such as G protein-coupled receptors and 

tyrosine kinase receptors, which lead to activation of pathways ultimately activating protein 
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kinase C (Newton 1995). In Breast cancer, Protein kinase C α induces a more migrative 

phenotype of breast cancer cells through FOXC2-mediated repression of p120-catenin (Pham 

et al. 2017). 

Following HuD gene knockdown in SK-N-AS cells, PKCα was also reduced suggesting a positive 

regulation of HuD protein on PKCα mRNA transcript. In these cells, HuD protein would 

maintain the expression of PKCα, which may have the same effect as in Breast cancer cells, 

inducing a more migrative phenotype. 

Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) forms part of a group of GTP-

binding proteins called the RAS family that are characterised by a catalytic G domain 

(Wennerberg et al. 2005). K-Ras protein is involved in signalling pathways intracellularly, 

transporting signals from the cell surface to the nucleus. Their signalling cascade is initiated 

by molecules like TGF-β1 binding to cell surface receptors. Overall K-Ras can modulate normal 

cellular functions such as cell differentiation, growth, chemotaxis, migration and apoptosis 

through activation of downstream targets such as cytoplasmic kinases. In cancer, K-Ras can 

therefore influence transformation, angiogenesis, invasion and metastasis (Zuber et al. 

2000).  

A screening of relapsed Neuroblastomas revealed 29 somatic mutations of which eighteen 

were forecast to initiate the RAS-MAPK signalling pathway. 61% of activating mutations in the 

RAS-MAPK pathway were detected in Neuroblastoma cell lines. KRAS particularly has shown 

to have a activating somatic mutation in Neuroblastoma (Eleveld et al. 2015).  

In SK-N-AS cells, HuC and HuR individual gene knockdowns resulted in a decrease in KRAS 

gene expression, suggestive of a positive regulatory effect of HuC and HuR proteins on KRAS 

mRNA. This is most likely due to an indirect effect, since there is no evidence to suggest KRAS 
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mRNA contains an AU-rich element in its 3′UTR region for Hu proteins to bind directly to. Only 

10% of all mRNA transcripts are thought to contain AREs in their 3′UTR (Halees et al. 2008). 

Mitogen-activated protein (MAP) kinases are downstream effectors in the RAS-MAPK 

signalling pathway. They aid in the relaying extracellular signals to implement intracellular 

responses. The combined effects of MAPKs function to modulate cell growth, cell 

differentiation and cell death (Schaeffer and Weber 1999).  

Mitogen-activated protein kinase 2 (MAP2K2) gene expression was reduced following 

individual and combined Hu gene knockdowns in SK-N-AS Neuroblastoma cells. Mitogen-

activated protein kinase 3 (MAPK3) serves downstream of MAP2K2 and showed a significant 

decrease in expression following all individual Hu gene knockdowns. A decrease also occurred 

following combined Hu gene knockdown but was not statistically significant. MAPK mRNA are 

not reported to have ARE in their 3′ untranslated regions therefore concluding Hu gene 

regulation occurs due to an indirect effect. This is most likely an upstream regulator of MAPK.  

7.5 Concluding remarks 

Hu gene analysis revealed its upregulated expression in all Neuroblastoma cells lines when 

compared to the control normal astrocytes. Hu protein was observed in its natural location 

except for HuD in SH-SY5Y cell where it is located in the nucleus. This was most interesting 

since this cell line showed the most Hu protein expression overall. Whilst this aberrant 

localisation of HuD protein is usually associated with a poorer diagnosis, HuD knockdowns did 

not reveal any in vitro cell phenotypic gain of migration or viability. 

The HuB protein dimerisation and HuC protein multimerisation described in Section 7.1, are 

thought to increase the binding potential of their proteins in binding to themselves and other 

proteins. Further correlating this theory was that HuB and HuC proteins were seen to be major 
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players in the expression of mRNA targets discussed in Section 7.4. HuB knockdown 

influenced changes in RNA levels of four of the six transcripts analysed. Whilst HuC 

knockdown influenced the expression of five of the six transcripts. Additionally, HuB 

knockdown induced a more migrative phenotype in both Neuroblastoma cell lines whilst in 

the SH-SY5Y cell line, HuB knockdown also saw an increase in cell viability. Also observed in 

the SH-SY5Y cells was a more migrative phenotype following HuC and HuR knockdowns and 

greater viability following HuC knockdown. Further highlighting HuB and HuC as large 

influencers in the cellular phenotype. 

The regulatory interactions described in both Neuroblastoma cell lines showed that through 

either direct effect on each other or off-target effects of Hu gene regulation, the regulation 

loops back to affect the expression of a different member of the Hu RNA-binding protein 

family. Despite either mechanism, a high level of regulation is observed if the two models 

were combined. This highlights the need for genome wide studies when considering targets 

for personalised targeted therapies, especially where genes are as highly conserved as the Hu 

family of RNA-binding proteins are. 

Gene expression studies identified targets of Hu genes at RNA level. Of these genes, Hu 

generally displayed a positive regulatory effect on their transcripts upregulating their 

expression or a negative regulatory effect maintaining a steady expression in the cell  through 

direct binding of the mRNA transcript or in-directly through cascade effects. Either way this 

revealed Hu genes collectively as major players in regulating the transcripts of BCL2, EGR1, 

IL10, APOE, CDK1, GSTP1, MAP2K2, MAPK3, ESR1, CTGF, PRKCA, KRAS IGFBP3 and CCND2 in 

the Neuroblastoma cell models. Following generalised classification of the function of these 

genes, it was found the targets contribute to a pathogenic phenotype of many cancer 

hallmarks including energy metabolism, cell survival and proliferation, invasion and 
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metastasis, immune response and angiogenesis. HuB and HuC were on numerous occasions 

found to be potentially acting in a tumour suppressive function. However, overall, the 

regulation of these transcripts contributed to an oncogenic phenotype.  

Interestingly, some of these targets fall into the RAS-MAPK signalling pathway adding a 

potential new dimension to how Hu proteins modulate gene expression.  
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Chapter 8 

Discussion  

Part III: Expression of Hu proteins in Glioblastoma 

Glioblastoma multiforme is an astrocytoma that is challenging to treat because of their 

proliferative and metastatic ability (Ware et al. 2003). With a two-year survival rate for adults 

aged 46-64 of just 7.7% and 2.1% for patients over 65, this highlights the aggressiveness of 

the disease and the need for further research (Bolognani et al. 2012). 

HuR is known to be over-expressed in human gliomas (Bolognani et al. 2012). Its expression 

is often seen localised to the cytoplasm where it’s thought to bind and upregulate cancer-

related mRNA targets such as TNF-α, VEGF and IL-8. Stabilisation of these oncogenes 

promotes a higher grade tumour and poorer prognosis (Nabors et al. 2003). 

Reports highlighting the significance of HuR expression in Glioblastoma were established in 

2001, where the tumours were reported to overexpress HuR in the nucleus of the cells by 

Nabors et al. (2001). HuB has previously been reported to have tumour suppressor properties 

in Glioblastomas (Tarter 2013). 

8.1 The family of Hu RNA-binding protein and their presence in 
Glioblastoma 

The Hu gene expression profiling in Neuroblastoma focused on two cell lines; normal 

astrocytes, SVG p12, as a control and the Glioblastoma cell line, U87-MG. Using relative fold 

change express when analysed (2-∆∆Ct) and ß-Actin as an internalised standard, the expression 

levels of each Hu gene was analysed. The RT-qPCR data of the Glioblastoma cell line was 
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normalised to the control cell line, SVGp12 normal astrocytes cell line which by itself had the 

lowest gene expression of HuB, HuC, HuD and HuR. The upregulated expression of the Hu 

genes in the Glioblastoma cells suggests an additional role in this cell line compared to the 

normal astrocytes. 

HuB gene expression was detected in the cell lines for normal astrocytes and Glioblastoma, 

however a significant upregulation of HuB expression was observed in the U87-MG 

Glioblastoma cells. This observation was also seen in the expression profiles of HuC, HuD and 

HuR gene expression.  

Despite the upregulation of HuB at RNA level in U87-MG cells, HuB protein detection through 

western blotting revealed an almost equal expression of HuB protein in the normal astrocytes 

and Glioblastoma cells.  

HuB protein was detected at its expected size of 38kDa and an additional band at 76kDa that 

could be a dimer. The higher molecular weight band could be indicative of a HuB dimer and 

had a stronger signal then the monomer. The higher molecular weight band in HuB protein 

analysis was also detected in protein analysis of Neuroblastoma cell lines SH-SY5Y and SK-N-

AS (Section 7.1). 

The presence of HuB was confirmed by immunofluorescence. HuB localisation was 

determined as both the nucleus and cytoplasm in normal astrocytes, but only in the cytoplasm 

of the Glioblastoma cells. HuB protein resides in the cytoplasm of undifferentiated neurons 

where it co-localises to the ribosomes controlling mRNA metabolism and neuronal 

differentiation (Gao and Keene 1996). Whilst the cytoplasm is the normal location for HuB, 

an upregulation of cytoplasmic Hu expression is often seen in tumour cells (Antic and Keene 

1997), consistent with the localisation described here. 
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HuC protein showed a much higher expression in the normal astrocytes than in U87-MG cells. 

HuC was detected at the expected size of 39kDa and around four times the expected size at 

156kDa, that could represent a multimer of HuC protein. This was also detected previously in 

Neuroblastoma studies (Section 7.1). Both the monomer and suggested multimer were 

detected in the SVG p12 astrocyte cell line, however only the multimer was found in U87-Mg 

Glioblastoma cells. 

Like HuB, HuC protein was localised to both the nucleus and cytoplasm in normal astrocytes 

but only in the cytoplasm of the Glioblastoma cells, which is described as the normal 

localisation in differentiated neurons (Okano and Darnell 1997).  

The subcellular distribution of Hu proteins is reported to vary amongst tumour cell lines, 

whereby expression of Hu proteins is mostly seen in the cytoplasm. However, in neurons from 

the hippocampus and neocortex, Hu proteins can be equally distributed in both cellular 

compartments (Antic and Keene 1997). The equal distribution between the cytoplasm and 

the nucleus is seen for HuC and HuD proteins in normal astrocytes. The nuclear presence of 

neuronal Hu proteins, observed in the normal astrocytes is known due to their involvement 

in functional regulatory processes such as alternative splicing, polyadenylation and mRNA 

decay. 

The larger protein moieties detected in normal astrocytes and Glioblastoma cells are 

consistent with homo-dimerisation and homo-multimerisation of HuB and HuC proteins, 

respectively. This was also found in the Neuroblastoma cell lines SH-SY5Y and SK-N-AS 

(Section 7.1). Multimerisation as described above is a structural feature that ensures 

specificity for RNA target recognition (Soller and White, Kalpana 2004).  
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Western blot and immunostaining revealed an absence of HuD protein in normal astrocytes, 

despite a low expression at mRNA level. HuD protein expression in U87-MG cells revealed a 

similar expression level to that of GAPDH protein and immunofluorescence showed HuD 

protein was localised to the cytoplasm. 

HuR protein expression was not detected in SVG p12 astrocytes and showed only a weak 

protein expression in U87-MG Glioblastoma cells, despite a high RNA expression level seen 

with qPCR. HuR protein expression was confirmed Immunofluorescence in both cell lines and 

is mostly located in the nucleus with a weaker signal in the cytoplasm. A nuclear location of 

HuR has been described for many cell types (Hinman and Lou 2008). HuR protein has a 

nuclear-cytoplasmic shuttling sequence (HNS) in the hinge region of the protein which allows 

it to translocate between the two cellular compartments (Fan and Steitz 1998). The 

cytoplasmic localisation of HuR is often correlated to a more aggressive cancer phenotype. 

The localisation of HuR is related to its subcellular function. In the nucleus Hu proteins 

regulate processes such as alternative splicing and preparing mRNA for export in the 

cytoplasm whilst in the cytoplasm, they regulate transcript stability and mRNA decay. HuR 

overexpression and its localisation in the cytoplasm has been described in Glioblastoma.  In 

the cytoplasm it stabilises factors such as VEGF, BCL-2 and IL8. When HuR was silenced, cells 

showed a  decrease in anchorage-independent growth and cell proliferation (Filippova et al. 

2017). A summary of known mRNA targets stabilised by Hu proteins are listed in Table 1.1. 
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8.2 Regulatory interactions of Hu RNA-binding proteins in 
Glioblastoma  

Regulatory interactions between different Hu proteins have been described for 

Neuroblastoma in Section 7.2. The influence of individual and combined Hu knockdowns on 

the expression of the other Hu protein members was analysed in U87-MG cells as well. 

A more efficient knockdown of Hu gene expression was achieved in the combined approach 

in U87-MG cells compared to individual knockdowns for the Hu genes HuC, HuD and HuR. HuB 

knockdown decreased in efficiency following combined Hu gene knockdowns compared to 

the single Hu gene knockdown. 

Western blot analysis confirmed a more efficient knock down was also seen at protein level 

in the combined Hu siRNA transfection. 

Details of the knockdown data and the influences of gene expression between the different 

Hu proteins is summarised in a hypothetical model (Fig. 5.16) of interaction for U87-MG 

Glioblastoma cells. As previously described for Neuroblastoma cell lines, there are three 

potential explanations to interpret the up or down regulation of different Hu proteins after 

an individual or combined Hu gene knockdowns. Firstly as a result of an individual knockdown 

other Hu protein family members become more expressed to compensate for the reduced 

expression of a different Hu family member (Zaharieva et al. 2015b). A second interpretation 

is a regulatory effect, whereby Hu family members target each other’s transcripts stabilising 

and controlling their expression. A third interpretation is that the observed effects could due 

to a feedback loop of other Hu protein targets that then affect the regulation of different Hu 

genes. 
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Overall, RNA and protein expression showed that there is a statistically significant change in 

gene expression following a HuB knockdown resulting in a decreased expression of HuC. A 

HuD siRNA knockdown did not significantly change the expression of the other Hu genes. 

When HuR was knocked down a significant decrease in HuC and HuD mRNA levels was 

observed. 

HuR is potentially a positive regulator of HuC and HuD mRNA transcripts since following HuR 

knockdown a significant decrease in HuC and HuD mRNA was also observed. Therefore, upon 

HuR depletion, the control is no longer there so HuC and HuD expression also decreases. 

Alternatively, different HuR targets that influence the expression of HuC and HuD are less 

expressed after HuR knockdown which the leads to a down regulation of HuC and HuD gene 

expression as well. 

HuB was also found to be a positive regulator of HuC, since a knockdown of HuB lead to a 

decreased expression of HuC. This can be explained by the same mechanism described above. 

The decrease of HuB can either directly or indirectly by other HuB targets, influence the 

expression level of HuC mRNA. 

HuC itself negatively regulates HuR expression leading to an increase in HuR mRNA expression 

following HuC knockdown. Utilising its role as an RNA-binding protein enables HuC proteins 

to regulate HuR mRNA transcripts by binding directly to ARE in its 3′-UTR regions, destabilising 

the transcript. Alternatively, HuR gene may compensate for the decreased expression of HuC 

by upregulating its own expression. There is also a possibility that HuC knockdown results in 

off-target effects subsequently upregulating HuR expression. 
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The regulatory effects of HuB and HuC may be linked to the HuB protein dimerisation and 

HuC protein multimerisation in the Glioblastoma cells (Kasashima et al. 2002). These actions 

allow Hu proteins to upregulate mRNA transcripts and further bind with additional Hu 

proteins through the action of forming ribonucleoprotein complexes (Kasashima et al. 2002, 

Hinman et al. 2013). 

Whilst further clarification is required to fully understand the interaction between different 

Hu proteins, a first insight into the complex regulatory network of Hu proteins is described 

above. The interplay and compensatory of the Hu family members could potentially apply to 

other highly conserved RBP members and may need to be considered in targeted therapy 

approaches. 

8.3 Hu proteins and their influence on Glioblastoma cell phenotype 

To understand the contribution of Hu proteins on cellular properties, cell viability, 

morphology and migrative potential were assessed after the described individual or 

combined Hu gene knockdowns. There were no clear changes to the U87-MG cell morphology 

following individual or combined Hu gene knockdowns.  

MTS assays showed that HuB and HuC individual gene knockdowns significantly increased the 

U87-MG cell viability compared to the control non-targeting siRNA cells. This suggests that in 

U87-MG cells, HuB and HuC proteins are potentially functioning to maintain a steady rate of 

cell viability. Without the regulatory control of HuB and HuC proteins in the cells, a possible 

upregulation in cell viability could occur. This would indicate a tumour suppressive effect of 

HuB and HuC knockdown on cell viability and is consistent with effects observed in 

Neuroblastoma (Section 7.3). This tumour suppressive function of HuB particularly, is 

documented in Glioblastoma studies (Tarter 2013). An interpretation of this regulation is that 
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HuB and HuC proteins modulate cell viability by binding to an array of mRNA transcripts, that 

can directly or indirectly affect cell survival and cell death pathways. 

The general cell mobility and invasiveness was measured through a cell migration into an 

agarose gel matrix. When compared to the normal astrocyte cells, SVGp12, the U87-MG cells 

had a more invasive phenotype. This is typical of Glioblastoma cells and present issues during 

treatment since surgery to remove the tumour sees a high re-occurrence rate since the 

tumour cells have already invaded normal brain tissue  (Demuth and Berens 2004).  

In a wound healing assay of U87-MG cells, individual HuB and HuC gene knockdowns along 

with a combined Hu gene knockdown generated an increased directional migratory cell 

response. The increased motility following HuB and HuC gene knockdowns suggests that Hu 

proteins play a role to maintain a relative migratory rate. This is possibly through influencing 

the stability of mRNA transcripts that function directly or indirectly lead into cell migratory 

pathways. The described findings may support genetic studies or give rise to networks in 

which Hu proteins influence. It is also suggestive of HuB and HuC proteins functioning with 

tumour suppressor properties also observed in the cell viability assays in this cell line. 

8.4 Gene targets regulated by Hu RNA-binding proteins 

It is well established that Hu proteins function as post-transcriptional gene regulators 

(Hinman and Lou 2008). To gain a better understanding of the molecular role and function of 

Hu proteins in Glioblastoma, an array of 91 genes were screened following individual and 

combined Hu gene knockdowns. The genes are documented in the National Library of 

Medicine database as key players in the development of Glioblastoma tumours.  

Several parameters were set to identify key target genes of Hu protein regulation. A minimum 

of a 2.0 cycle fold-change difference from the control non-targeting siRNA was required. An 
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additional criterion was set that the expression changes must be consistent between two or 

more of the Hu gene knockdowns. This identified seven genes for further analysis. 

HMOX1, a cell-surface marker was seen upregulated by 54% glioma tissue compared to 

normal brain tissue. Following cell injury or stress, Glioblastoma cell lines showed an 

increased expression of HMOX1 by 81% and the protein was located in the cytoplasm. High 

HMOX1 expression is associated with a decreased survival time. HMOX1 protein was also 

shown to regulate Glioblastoma cell proliferation (Gandini et al. 2014). An additional study 

found HMOX1 expression in pseudopalisading cells that reside in the hypoxic region of 

Glioblastoma tumour. Increased HMOX1 expression correlates with increased invasion in 

Glioblastoma tumours (Ghosh et al. 2016). 

In U87-MG cells, a knockdown of Hu genes individually and combined revealed Heme 

Oxygenase 1 (HMOX1) mRNA transcript was affected by Hu genes showing an increase in its 

expression. This defines Hu genes as negative regulators of HOMX1 expression, however this 

is likely through indirect effects since the HMOX1 transcript does not contain an AU-rich 

sequence in its 3′ prime UTR.  

Insulin-like growth factor-binding protein 3 (IGFBP3) was previously identified to be affected 

by HuR protein regulation in the Neuroblastoma studies (Section 7.4). In Glioblastoma cells, 

it was shown that following all Hu gene knockdowns both individually and combined, IGFBP3 

expression increased. This probably through Hu proteins binding to a Hu binding motif in the 

3′-UTR of IGFBP3 mRNA transcript. This increased expression was observed at the highest 

level following both HuR individual knockdown and the Hu family combined knockdown. It is 

important to consider the effect seen in the combined knockdown is potentially only caused 

by the observed effect on IGFBP3 by the HuR knockdown.  
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The observed regulation suggests that in the U87-MG cells, the Hu genes are regulating the 

IGFBP3 expression in a negative manner to maintain a steady level in the cells. Without Hu 

proteins control and more specifically Hu’s regulatory control, an upregulation in IGFBP3 gene 

expression. 

Since IGFBP3 regulates cell proliferation, differentiation, apoptosis and transformation 

(Clemmons and Jones 1995), maintaining a steady expression level of IGFBP3 in the cells 

ensuring it is not upregulated is suggestive of a tumour suppressor effect. On the contrary, 

HuR in Neuroblastoma SH-SY5Y cells was shown to have a positive regulatory effect inducing 

a potential oncogenic effect and further highlighting variability with Hu gene regulation 

(Section 7.4).  

One of the most important hallmarks of malignant gliomas is their invasive behaviour 

(Demuth and Berens 2004). Matrix metallopeptidases exhibit proteolytic activity towards 

extracellular matrix molecules, which induce a more invasive motile phenotype in cells  

(Fillmore et al. 2001). Matrix metallopeptidase 1 (MMP1) and Matrix metallopeptidase 

(MMP9) gene expression was analysed following individual and combined Hu gene 

knockdowns. MMP1 expression increased significantly following HuC, HuD, HuR individual 

gene knockdowns and a combined Hu gene knockdown in U87-MG cells.  

Whilst the profile of MMP9 expression showed no statistically significant changes due to 

variation in the control, it could still be observed that HuB and HuD gene knockdowns increase 

MMP9 expression. In contrast, HuR gene knockdown decreased MMP9 expression. MMP9 

specifically has been shown to have an AU-rich element in its 3′-UTR to which HuR is known 

to bind providing protection against degradation (Akool et al. 2003). These studies confirm 

findings by Akool et al. (2003), that HuR binds to MMP9. This is also consistent with 

downregulation of MMP1 and MMP9 expression following HuR knockdown and confirms HuR 
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is acting on their mRNA transcripts to maintain their expression in the cell in a positive 

manner. Since MMP expression is correlated with a more motile phenotype, it explains the 

increased invasive phenotype of Glioblastoma cells when compared to normal astrocytes. 

The observed differences in the effect of single Hu proteins on the expression of a single gene, 

and the fact that HuD protein can have both positive and negative effects on MMP expression 

highlights the heterogeneity of Glioblastoma and provides and explanation in the difficulty of 

creating an effective treatment. 

Interestingly, the Ras-dependent MAPK/ERK signalling pathway, that it is consitently 

highlighted in these Hu gene target studies, maintains increased MMP9 levels in immortalised 

keratinocytes through cooperation with α3β1 integrin that stabilises the MMP9 transcript 

(Iyer 2005). 

The Notch signalling pathway is involved in cellular processes such as stem cell proliferation 

and maintenance (Stockhausen et al. 2010). It was established that NOTCH1 is expressed in 

71% of Glioblastoma tumours (Han et al. 2017). Furthermore, knockdown of NOTCH1 mRNA 

in Glioblastoma cells, both in vitro and in vivo induced apoptosis. It was found that Notch 

binds with NF-κB (p65), that plays a key role in the proliferation of Glioblastoma cells (Hai 

et al. 2018). 

Individual HuB knockdown and combined Hu gene knockdown showed that NOTCH1 

expression increased. There was no change in NOTCH1 expression following the other Hu 

genes individual knockdowns, HuB protein could be major player in the combined 

knockdown, and HuB’s reduced expression results in an increase in NOTCH1 expression. The 

observed upregulated expression of NOTCH1 mRNA is suggestive of HuB’s role to maintain a 

steady state of NOTCH1 protein abundance in the U87-MG cells. Without HuBs regulatory 
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control, NOTCH1 expression would be even higher in the cells which is indicative of tumour 

suppressor role of HuB on the NOTCH1 transcript.  

The gene expression profile of alpha-1 type I collagen (COL1A1) and Vascular cell adhesion 

protein 1 (VCAM1) did not produce any statistically significant data due to large unfortunate 

variation in the control. There was an observable progressive decrease in expression in 

COL1A1 from HuB to HuC to HuD to HuR knockdown, suggesting there may be a regulatory 

mechanism of HuR on COL1A1, but this would need repeating to clarify. 

8.5 Concluding remarks 

Gene analysis showed an upregulated expression of all Hu genes in the U87-MG 

Glioblastoma cells when compared to the control normal astrocytes. Neuronal Hu proteins 

showed their normal cytoplasmic localisation. HuR protein was found in both the cytoplasm 

and the nucleus. HuR is normally localised in the nucleus and a cytoplasmic HuR localisation 

has been associated with a more aggressive cancer and poor survival rate. This is thought to 

be due to HuR’s ability to stabilise transcripts encoding for oncogenes and transcripts 

involved in cancer progression. On a cellular level, in vitro studies did not show any changes 

in the viability or migration of U87-MG cells after the HuR knockdown. 

The HuB protein dimerisation and HuC protein multimerisation are thought to contribute to 

a greater binding potential of the Hu proteins (Kasashima et al. 2002). HuB and HuC were 

shown to influence the same number of targets as were HuD and HuR. Interesting, on the 

initial gene array HuB and HuC Knockdown did affect more target genes but this would need 

further analysis to confirm this observation. In the Glioblastoma cells, HuB and HuC were 

revealed as major players in modulating cell viability and motility determined by MTS and 
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wound healing assay, respectively. When HuB and HuC were knocked down, an increase in 

the viability and migration was observed suggesting their targets on a molecular level may 

influence cell anchorage and adhesion pathways as well as cell survival and cell death 

pathways.  

From the collected data, a regulatory Hu network was hypothesised within the Glioblastoma 

U87-MG cells. The described regulations correspond to similar interaction found in the 

Neuroblastoma cell lines. The main findings of the regulatory mechanisms are that HuB is a 

positively regulator of HuC and HuR positively regulates HuC and HuD mRNA transcripts. 

Whilst HuC is a negative regulator of HuR, this shows the complex compensatory interactions 

of this highly conserved protein family members which has to be considered in target specific 

therapies.  

Gene expression studies in the U87-MG Glioblastoma cell line identified targets of Hu genes 

at RNA level. Mainly a negative regulatory effect was observed that maintained a steady 

expression of target transcripts. The transcripts regulated by Hu proteins were NOTCH1, 

HMOX1, IGFBP3, MMP1. A knockdown of all Hu proteins resulted in an increase in HMOX1 

expression. Maintaining a low HMOX1 expression in cells is associated with an increased 

survival rate suggesting a tumour suppressive effect of Hu proteins (Gandini et al. 2014). The 

same effect was observed for IGFBP3 mRNA levels which increased after Hu knockdowns. 

Since IGFBP3 is responsible for cell proliferation and differentiation, a coordinated regulation 

prevents cells from uncontrolled growth (Clemmons and Jones 1995).  

Also, MMP1 expression was negatively controlled by Hu proteins and after Hu knockdown an 

increase in expression was observed. HuB knockdown resulted in an increase in NOTCH1 

mRNA again showing the negative regulatory control of the Hu proteins on this set of targets.  
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The negative control of this set of target genes by Hu proteins suggest a role for Hu proteins 

as tumour suppressors. To elucidate the role of Hu proteins in tumorigenesis of Glioblastoma 

a genome wide expression analysis to look at the influence of Hu proteins on cancer related 

targets would be needed. 
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Chapter 9 

Conclusions and future work 

Part IV: Overall effect of Hu proteins in cancers 

In this thesis, it has been shown that Hu proteins show varied expression profiles between 

Non-small cell lung cancer, Small cell lung cancer, Neuroblastoma and Glioblastoma. 

Knockdown studies in Neuroblastoma and Glioblastoma cell lines allowed an insight in the 

role of these proteins at a cellular level but also on a molecular level. Regulatory interactions 

were observed with the Hu family of RNA-binding proteins. And finally, an abundance of gene 

targets were identified to which Hu genes had a positive or negatively regulatory effect on. 

9.1 Influence of Hu proteins on cellular properties in cancer 

An increased cell motility could be observed after a HuB knockdown in both Neuroblastoma 

and Glioblastoma cell lines, SH-SY5Y, SK-N-AS and U87-MG. This suggests that in these cells, 

HuB is acting on transcripts to maintain a moderate level of migration control that results in 

a high mobility of these cell after HuB knockdown. These findings supports research 

presented by Tarter (2013) where HuB is described as a potential tumour suppressor. Their 

study found that HuB controls the expression of genes involved in cell adhesion and motility 

and that a loss of HuB expression increases the degree of stemness in glioma cells. 

HuB and HuC gene knockdowns increased cell viability in SH-SY5Y Neuroblastoma cells and 

U87-MG Glioblastoma. If HuB and HuC protein expression is downregulated, cell viability 

increases again highlighting a potential tumour suppressor mechanism of these two Hu 
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proteins. None of the Hu gene knockdowns resulted in a cell morphology change in the 

Neuroblastoma and Glioblastoma cell models used. 

9.2 Regulatory interactions of Hu proteins in cancer 

Assessing the effect of regulatory influences of different Hu family proteins on each other’s 

gene expression in Neuroblastoma and Glioblastoma showed some similarities. HuR was 

found to positively regulate the expression of HuC in all cell models. 

In the SH-SY5Y Neuroblastoma cell line and U87-MG Glioblastoma cell line, additional 

similarities in the gene expression of other Hu proteins regulation were observed. HuR 

positively regulated HuD and HuC negatively regulated HuR. The HuR and HuC interactions 

reveal they can both regulate each other’s proteins levels ensuring an abundance of each 

protein in the cells. A summary of the Hu protein regulation in regard to the gene expression 

of other family members in in Neuroblastoma and Glioblastoma is displayed in Fig. 9.1. 

 

 

Figure 9.1: Hypothesised regulatory interactions achieved by the Hu family of RNA-binding 

proteins in Neuroblastoma and Glioblastoma cell models. Overlay of the regulatory pattern 

observed in Neuroblastoma and Glioblastoma cell lines.  
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9.3 Gene targets regulated by Hu proteins 

Hu proteins have been shown to regulate the expression of an array of different mRNA 

transcripts. When analysed, some of the Hu proteins showed oncogenic as well as tumour 

suppressive effects depending on the knocked down Hu protein. Analysis of effected target 

genes after Hu gene knockdowns showed that many of the target genes are members of the 

MAPK signalling pathway. Some targets were upstream regulators of the pathways and others 

were downstream effectors. In addition, some of the other targets have been closely linked 

to the MAPK signalling pathway. 

The evolutionary conserved family of mitogen-activated protein kinases (MAPKs) includes 

extracellular signal-regulated kinase (ERK), p38 isoforms, and c-Jun N-terminal kinase (JNK) 

(Schaeffer and Weber 1999, Chakraborti et al. 2003). The MAPK pathways are activated by 

diverse extracellular and intracellular stimuli controls fundamental cellular processes such 

as growth, proliferation, differentiation, migration and apoptosis through a series of 

phosphorylation events (Dhillon et al. 2007). Interestingly, deregulation of the MAPK 

signalling pathway has been implicated in many neurodegenerative diseases including 

Alzheimer's disease and Parkinson's disease (Kim and Choi 2010). These disorders are also 

linked to the paraneoplastic Hu syndrome. 

Doller et al. (2008) previously identified a link between Hu proteins and MAPK showing that 

cytoplasmic shuttling of HuR is potentially regulated by MAPK and its downstream kinases 

MK2, AMPK PKC family. AMPK phosphorylates and acetylates importin-a1, a nuclear 

transportation protein resulting in nuclear accumulation of HuR (Kim et al 2008). This nuclear 

HuR is then transported to the cytoplasm in a ratio-driven exchange.  They concluded MAP 
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kinases increase cytoplasmic HuR and therefore may participate in stabilisation or translation 

or both of TNFa, IL6, IL8, COX-2 GMCSF, uPa and UPAR (Doller et al 2008).  

 

Summarised in Fig. 9.2. is an extended version of the MAPK signalling pathway showing the 

interactions between signalling pathway components from the cell surface to gene 

transcription. Hu proteins seem to influence the regulation of different targets of the network 

however the underlying mechanism and the interplay of these targets must be determined. 

In relapsed Neuroblastomas, eighteen somatic mutations were identified that initiated  the 

RAS-MAPK signalling pathway (Eleveld et al. 2015).  

Further gene profiling would be required to confirm the influence of Hu proteins on other 

MAPK signalling pathways targets and if the knockdown would influence upstream or 

downstream target of the pathway. 
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Figure 9.2: Extended MAPK signalling pathway. MAPK signalling pathway with genes highlighted in black that are affected by Hu gene regulation. 
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9.4 Therapeutic intervention: Hu proteins as potential targets in 
screening, diagnosis, monitoring and treatment of cancers 

The identification of RBPs, mRNA targets and underlying molecular mechanism can give rise 

to new targets for cancer therapy and a need for the development of RNA-based therapeutics 

to treat human diseases (Wurth 2012, Cooper. et al. 2009).  

The aberrant expression of Hu protein observed in SCLC, Neuroblastoma and Glioblastoma 

could define Hu expression as biomarker in diagnosing cancer.  

Pagliarini et al. (2015) concluded future treatments for cancer will include screening individual 

patients for specific splicing-alterations and developing anti-cancer treatments in response to 

these findings. Personalised, targeted treatments based on the molecular genetics of tumours 

provides the key to future treatment (Dietel and Sers 2006).  

In this thesis, an individual pattern of Hu gene targets was established and have been 

implicated in the pathogenicity of cancers. Within the Hu family, differential Hu protein 

members showed an upregulation of targets whilst others downregulated the same target 

depending on the transcripts role but also highlighting the different regulatory effect Hu 

proteins can have on mRNA transcripts’ for example, HuR and HuB seemed to show both 

oncogenic and tumour suppressive regulation within on cell line. This results in HuB and HuC 

showing both oncogenic and tumour suppressive phenotypes within one cell line. A more in 

depth study of individual Hu genes and their effects would therefore be required before 

conclusively understanding the role of Hu proteins in Small cell lung cancer, Neuroblastoma 

and Glioblastoma. 

RBPs were considered relatively ‘undruggable’ targets due to their structure and deficiency 

in well-defined binding pockets (Wu et al. 2015). Treatment with systemic immunotoxin 



347 
 

therapy in patients with solid tumours has been unsuccessful due to poor penetration into 

the tumour (Ehrlich et al. 2014). However, the development of RNA interference (RNAi) to 

silence any gene gives rise to a new approach of therapeutic intervention. Current research 

stems the idea of developing methods to deliver siRNAs to the site of action in cells of target 

tissues (Kanasty et al. 2013). A recent strategy suggested by Jimbo et al. (2015), uses lipidoid 

nanoparticles to deliver siRNA to target tumour sites. Other mechanisms to target RNA in cells 

include the use of antisense oligonucleotides, antisense snRNA and RNA interference (Cooper 

et al. 2009). 

9.5 Future Research 

siRNA used in this thesis for knocking down the expression of target genes isn’t as efficient as 

‘Clustered regularly interspaced in between short palindromic repeats’ (CRISPR). This 

technology allows editing of the genome with great specificity, precision and efficiency.  

The inability to knockdown Hu proteins in lung cancer using siRNA interference proved a huge 

limitation therefore further experiment could be performed using CRISPR. It is a natural 

defence mechanism found in many of bacteria. This new method would allow a complete 

knockout of the Hu genes, guaranteeing to reveal the extent of its effects. 

This CRISPR technology would enable 100% knockouts in all the studies rather than a 

knockdown that leaves some functioning gene. Since, the Hu proteins can also auto-regulate 

themselves and a small amount of remaining protein can be sufficient to influence its own 

expression and target other mRNAs for regulation. This technology along with RNA-seq and 

ribosomal profiling can allow a more in-depth quantifiable level of mRNA and protein levels 

following knockout experiments. 
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As advances in medical science move towards personalised targeted treatments, core 

signalling pathways will need to be established to ensure these treatments will be 100% 

effective. Here, genetic compensation was observed following knockdown of the Hu gene in 

combination that could have adverse effect in a targeted therapy. Additionally, miRNA 

analysis could help understand the extended regulation of Hu genes. 
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