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Abstract

Linear discriminant analysis (LDA) has been applied to many machine learning applications such as
medical diagnosis, face and object detection, handwriting recognition, spam filtering and credit card
fraud prediction. LDA is used either for supervised linear dimensionality reduction of high-dimensional
datasets or for statistical classification. Under the assumptions of normally-distributed classes and equal
covariance matrices among the classes, LDA is known to be optimal in terms of minimising the Bayes
error—the minimum achievable error rate by a classifier whose predictions are based on the knowledge of
the stochastic process generating the data. The widespread use of LDA in the application areas indicated
above is not because the datasets necessarily satisfy the two assumptions, but mainly due to the robustness
of LDA. Nonetheless, for many other applications, the performance of LDA can be unsatisfactory, if the
assumptions of normally-distributed classes and equal covariance are not met.

This thesis primarily addresses the violation of the assumption of equal covariance, also known as
homoscedasticity.

For statistical classification, accounting for homoscedasticity has led to a number of heteroscedastic
extensions of LDA, the most natural extension being quadratic discriminant analysis (QDA). However,
QDA tends to over-fit for many real-world datasets, especially if the normal distribution assumption is
also violated. Thus, heteroscedastic LDA (HLDA) procedures have involved finding a linear approxim-
ation to the quadratic boundary in QDA. However, most of these HLDA procedures have no principled
optimisation procedure, as they are obtained via trial and error. As a result, they tend to be compu-
tationally intractable for high-dimensional datasets. Other HLDA approaches constrain the domain of
the search space in an attempt to reduce the computational complexity; this, however, leads to poor
performance in terms of the classification accuracy and the area under the receiver operating charac-
teristics curve (AUC) under class imbalance. Using first and second-order optimality conditions for the
minimisation of the Bayes error, a dynamic Bayes-optimal linear classifier for heteroscedastic LDA that
is robust against class imbalance, and is optimised via a computationally efficient iterative procedure, is
derived. The proposed model, referred to as Gaussian linear discriminant (GLD), is also formulated as a
kernel classifier, in order to learn non-linear decision boundaries.

For the purpose of linear dimensionality reduction (LDR), existing heteroscedastic LDA approaches
involve the minimisation of some upper bounds of the Bayes error, or the maximisation of some measures
of class separation. These procedures are often reformulated as eigenvalue decomposition or singular
value decomposition (SVD) problems, after which a desired dimensionality q is chosen by taking the
first q independent vectors after the decomposition. However, these procedures provide no optimal
dimensionality to which to reduce the data, and consequently, they do not preserve the classification
information in the original data after the dimensionality reduction. This thesis presents a novel LDR
technique to reduce the dimensionality of the original data to K− 1 for a K-class problem, such that the
linearly-reduced data is well-primed for Bayesian classification. This technique is referred to as multi-
class Gaussian linear discriminant (M-GLD), and it involves sequentially constructing GLD classifiers
that minimise the Bayes error via a gradient descent procedure, under an assumption of within-class
normality.

Experimental validation carried out on several artificial and real-world datasets from the University
of California, Irvine (UCI) machine learning repository, highlight the scenarios under which the proposed
algorithms achieve superior performance to the original LDA and existing HLDA approaches.

Finally, the utility of the proposed algorithms is demonstrated by applying them to flow meter fault
diagnosis. Using data from 4 liquid ultrasonic flow meters, the proposed M-GLD dimensionality reduction
procedure and GLD classifier are used to achieve diagnostic accuracies of between 97.2% and 100%; this
far exceeds the performance of existing LDA procedures, as well as that of support vector machine (SVM).
High diagnostic accuracies promise significant cost benefits in oil and gas operations.
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Chapter 1

Introduction

A common theme in machine learning is how to correctly classify an object under one of a given number

of categories or classes, based on the features of the object and existing data about the process; this

is termed classification. A typical example is the task of having to classify an incoming email as spam

or legitimate, or a breast tumour as benign or cancerous. One of the widely used machine learning

techniques for classification is linear discriminant analysis (LDA), due to its simplicity and robustness

[2]. Prior to classification, LDA can also be used to reduce the dimensionality of the existing data, which

is given by the number of different features of the object to be classified.

Reducing the dimensionality of a dataset is an important preprocessing step in machine learning for

a number of reasons. On the one hand, dimensionality reduction enables easy visualisation of data when

the data is reduced to two or three dimensions. On the other hand, reducing the dimensionality often

reduces the complexity of learning algorithms in many applications. For example, in face recognition,

where the face images live in a high-dimensional space (often the dimensionality is equal to the number of

pixels in the face image [3]), a large dimensionality drastically increases the complexity of the learning al-

gorithm. To put this into perspective, an image with 2, 000, 000 pixels (2MP) would require the inversion

of a matrix of size 2, 000, 000 in order to apply a classification algorithm such as quadratic discriminant

analysis (QDA); this is computationally intractable for face recognition in most modern machines (includ-

ing, most certainly, the iPhone X), without any dimensionality reduction. More importantly, however,

dimensionality reduction often improves the accuracy of classification in the low-dimensional manifold in

which the data is reduced to lie [4, 5]. This is usually due to the fact that the original high-dimensional

data often contain noisy and redundant features, so that reducing the dimensionality results in useful

feature extraction from the data, which tends to reduce over-fitting [6, 7].

LDA has been applied in several applications such as medical diagnosis, handwriting recognition,

face and object detection and spam filtering, either for classification, or to reduce the dimensionality of

high-dimensional datasets.

At its core, however, LDA assumes that the data in each class is normally distributed, and that the

1
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covariance matrices are equal among the classes; the equal covariance assumption is referred to as homo-

scedasticity. When these assumptions are met, LDA minimises the Bayes error, which is the minimum

achievable error rate by a classifier that makes predictions using knowledge of the true distribution of

the data [7, 8]). Nonetheless, in many other applications, the assumptions of normally-distributed classes

and equal covariance are not met, and therefore the Bayes error is not minimised; consequently, the

performance of LDA is unsatisfactory in terms of the accuracy of classification. One such application in

which homoscedasticity is not satisfied is flowmeter fault diagnosis.

1.1 Motivation

The work described in this thesis is motivated by the application of LDA to flowmeter fault diagnosis.

Flowmeters are devices used to measure the volumetric or mass flow rate of a fluid. They come

in different forms, and the physical principles on which they operate include ultrasound Doppler shift,

Coriolis effect, and capacitance and inductance tomography. In the oil and gas industry, these meters are

often subject to several problems such as transducer failure and wax deposit, as well as harsh conditions

including extremes in temperature and pressure. These problems affect the performance of the meter

and, with time, cause the flow rate readings to be erroneous. The problem of incorrect measurement is

of great concern in the industry, since, for example, an incorrect measurement indicating a high flow rate

may attract high tax liabilities.

It is understood that after a period of systematic use of the meter, the errors associated with the

flow measurement may become significant and fall outside an allowable range. Thus, it is the current

practice that flowmeters are taken to accredited flow facilities to be recalibrated typically after one year

in operation.

Nevertheless, this time-based recalibration system has two main drawbacks. First, a given flowmeter

may encounter a problem, such as a transducer failure, even before the one year schedule, and continu-

ously provide incorrect measurements until the recalibration period is up. Second, a flowmeter under

consideration may be operating perfectly at the end of the one year period and still be taken in for recal-

ibration, in line with regulatory requirements. However, recalibration of a flowmeter can be expensive. In

the United Kingdom, for instance, it costs in the region of £30, 000 for the recalibration of an ultrasonic

flowmeter [1].

Thus, the trade-off between having accurate measurements and reducing costs incurred from frequent

recalibration of a flowmeter calls for the adoption of a condition-based flowmeter management system. In
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such a system, the condition of the flowmeter is continuously monitored so that if the monitored values

indicate an unhealthy meter, flowmeter operators in the field may act to mitigate the problem, and restore

the integrity of the measurement. Similarly, if the monitored values indicate a healthy meter, such that

the measurement integrity of the meter is not compromised even at the point of its recalibration schedule,

recalibration can be extended [1], thus resulting in significant cost savings.

Condition-based management is made possible with the advent of new flowmeters that provide sec-

ondary diagnostic information in addition to the primary flow measurement. Unfortunately, the volume

of diagnostic variables available makes it particularly difficult for flowmeter operators to interpret the

data to know the condition or health state of a meter. For example, for an 8-path ultrasonic flowmeter,

the different diagnostic variables available can number be anywhere between 20 and 100 [1]; most of these

variables happen to be noisy and redundant. Because of their number, only a handful of the diagnostic

variables are utilised for diagnostics. Consequently, the full diagnostic capability of a flowmeter is under-

exploited. Specifically, flow computers are often only able to display the colours: “Red”, “Amber” and

“Green” to indicate an unhealthy meter, a warning, and a healthy meter respectively [9]. It does not

suffice to simply know that a meter is unhealthy, without knowing the nature of the problem, as this can

lead to long periods of downtime in order to isolate the problem, mitigate it and restore the measurement

integrity. It is more appropriate to have an expert system that provides more specific diagnostics such

as, a “wax deposit in Port A” or a “vertical misalignment of flowmeter” [9].

Thus, the aim of flowmeter diagnostics is twofold: first, to reduce the wealth of diagnostic information

available for a given flowmeter to a few useful diagnostic variables that can be easily analysed by meter

operators (dimensionality reduction); secondly, to design an expert system to correctly diagnose a given

flowmeter under a number of known health states of the meter (classification).

Like many physical data, such as those involving measurement errors [10], flowmeter diagnostics data

tend to be nearly-normally distributed in each class or health state (see section 5.3), thus satisfying

the normality assumption in LDA. Yet, the peculiarities of the diagnostics problem do not allow a

straightforward application of LDA. In particular,

1. The covariance matrices of the classes or health states of a given flowmeter are not necessarily equal

(see section 5.3). This is known as heteroscedasticity.

2. There is the issue of class imbalance, a term used to describe the scenario where the cardinality of

the data in one class far exceeds those in the other classes; this leads to one class being far more

probable than the other classes in the classification task. In flowmeter diagnostics, class imbalance
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is pertinent because for a given flowmeter in operation, there is a much higher probability that

the meter is healthy than it is in a particular unhealthy state. It has been claimed that, under

heteroscedasticity, class imbalance has a negative effect on LDA [11, 12].

3. There are more than two health states for a given flowmeter (see section 5.3). Given that the

individual health states tend to be nearly normally distributed, optimum classification and dimen-

sionality reduction can be achieved by minimising the Bayes error [8]. However, unless there are

only two classes, LDA does not guarantee the minimisation of the Bayes error, even when the

assumptions of homoscedasticity and normality are satisfied.

1.2 Research questions

In light of the above problems with the application of LDA to flowmeter diagnostics, this thesis attempts

to answer the following research questions:

1. How can heteroscedasticity be accounted for in LDA while minimising the Bayes error for classific-

ation?

2. What is the effect of class imbalance on LDA when heteroscedasticity has been accounted for?

3. How can heteroscedasticity be accounted for in LDA while minimising the Bayes error for dimen-

sionality reduction?

4. Does accounting for heteroscedasticity in LDA improve the accuracy of diagnosis for a given flow-

meter?

1.3 Contributions to knowledge

The work described in this thesis has led to the following contributions to knowledge:

1. A computationally efficient heteroscedastic LDA procedure, termed the Gaussian Linear Discrim-

inant (GLD), that minimises the Bayes error in the two-class scenario. This procedure is described

in Chapter 3.

2. A local neighbourhood search procedure that accounts for non-normality in the data in each class.

This procedure is described in Chapter 3.
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3. An optimal design of a linear classifier for heteroscedastic LDA under class imbalance. This optimal

design is described in Chapter 3.

4. A scheme for the generalisation of GLD to multiple classes for dimensionality reduction via a

sequential minimisation of the Bayes error. Chapter 4 describes this generalisation.

1.4 Publications

The following are the publications that have resulted from the work on which this thesis is based:

Journal articles

• K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura. ‘Linear classifier design for heteroscedastic LDA

under class imbalance’. Accepted in Neurocomputing (to appear 2018).

• K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura. ‘Linear dimensionality reduction for classification

via a sequential Bayes error minimisation with an application to flowmeter diagnostics’. In: Expert

Systems with Applications (2017), vol. 91, Sep. 2017, pp. 252-262. https://doi.org/10.1016/

j.eswa.2017.02.039

• K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura. ‘Linear classifier design under heteroscedasticity

in Linear Discriminant Analysis’. In: Expert Systems with Applications, vol. 79, Aug. 2017, pp.

44-52. https://doi.org/10.1016/j.eswa.2017.02.039

Conference and workshop proceedings

• K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura. ‘Linear classifier design for heteroscedastic

LDA under class imbalance’. Proceedings of the Workshop on Learning in the Presence of Class

Imbalance and Concept Drift, Melbourne, IJCAI 2017, pp. 8-15 https://arxiv.org/ftp/arxiv/

papers/1707/1707.09425.pdf

• K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura. ‘K-Means clustering using Tabu Search with

quantized means’. Proceedings of the World Congress on Engineering and Computer Science. Vol.

1. 2016, pp. 426-432. http://www.iaeng.org/publication/WCECS2016/WCECS2016_pp426-432.

pdf

https://doi.org/10.1016/j.eswa.2017.02.039
https://doi.org/10.1016/j.eswa.2017.02.039
https://doi.org/10.1016/j.eswa.2017.02.039
https://arxiv.org/ftp/arxiv/papers/1707/1707.09425.pdf
https://arxiv.org/ftp/arxiv/papers/1707/1707.09425.pdf
http://www.iaeng.org/publication/WCECS2016/WCECS2016_pp426-432.pdf
http://www.iaeng.org/publication/WCECS2016/WCECS2016_pp426-432.pdf
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1.5 Thesis structure

This chapter presents an introduction to the thesis, including the motivation for the work. The chapter

has also presented the research questions the thesis aims to answer, as well as the contributions to

knowledge that have resulted from the work described in the thesis.

The rest of the thesis is organised as follows:

Chapter 2 provides a survey and discussion of the literature in the area of linear dimensionality

reduction and statistical classification, in line with the two objectives. A special emphasis is given to

Linear Discriminant Analysis (LDA), which is both a linear dimensionality reduction procedure and a

classification technique, and is the approach upon which this thesis builds.

Chapter 3 presents a computationally efficient heteroscedastic LDA procedure to minimise the Bayes

error in the two-class scenario. The resulting algorithm is known as the Gaussian Linear Discriminant

(GLD). The kernel formulation of the GLD is also provided. This chapter also presents an optimal design

for a linear classifier in heteroscedastic LDA under class imbalance.

Chapter 4 presents a scheme for the generalisation of the GLD for multiple classes via a sequential

minimisation of the Bayes error.

Chapter 5 discusses the application of the algorithms from Chapters 3 and 4 to ultrasonic flowmeter

diagnostics.

Chapter 6 then concludes the thesis and discusses possible directions for future work.

1.6 Acknowledgement of contributed work

This section details the contribution made by other researchers which have aided the work presented in

this thesis:

• The diagnostics data for the four liquid ultrasonic flowmeters were provided by Christopher Mills

and Craig Marshall of NEL.

• Dr. Stefan Berres of the Department of Mathematical and Physical Science, Temuco Catholic Uni-

versity, Temuco, Chile, provided useful feedback regarding the mathematics involved in the GLD

procedure.



Chapter 2

Linear discriminant analysis (LDA)1

This chapter provides the background for the work presented in subsequent chapters of this thesis. The

chapter provides a detailed treatment of the machine learning technique of linear discriminant analysis

(LDA), first as a classification technique and then as a linear dimensionality reduction procedure. In

these two treatments, this chapter surveys the relevant literature, and in doing so, the chapter reveals

the gaps in existing knowledge.

2.1 Statistical classification

In many applications, one encounters the need to classify a given object under one of a number of distinct

groups or classes based on a set of features known as the feature vector, which is a numerical representation

of the object. A typical example is the task of classifying a flowmeter under one of a number of health

states. Other applications that involve classification include face detection [13, 14, 15], object recognition

[16, 17, 18], medical diagnosis [19, 20, 21], credit card fraud prediction [22, 23, 24, 25] and machine fault

diagnosis [26, 27, 28].

A common treatment of such classification problems is to model the conditional density functions

of the feature vector [29]. This allows the construction of a Bayes classifier, which is the best possible

classifier if the underlying distribution of the data is known [30]. The Bayes classifier assigns a given

object to a class based on the a posteriori probability of the object. This is known as the maximum a

posteriori (MAP) decision rule.

Consider a training dataset X made up of n feature vectors,each of dimensionality d, i.e., X =

[x1, ...,xn] where xi ∈ Rd, ∀i ∈ {1, ..., n}. Suppose that the data is labelled and can be divided into

K classes thus: X = [D1, ...,DK ], where Dk are the training samples belonging to the kth class (k ∈

1Most of the work presented in this chapter first appeared in: K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura, “Linear
classifier design under heteroscedasticity in Linear Discriminant Analysis,” Expert Systems with Applications, vol. 79, Aug.
2017, pp. 44-52; in: K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura, “Linear classifier design for heteroscedastic LDA
under class imbalance,” Proceedings of the Workshop on Learning in the Presence of Class Imbalance and Concept Drift,
Melbourne, IJCAI 2017, pp. 8-15; and in: K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura, “Linear dimensionality reduction
for classification via a sequential Bayes error minimisation with an application to flowmeter diagnostics,” Expert Systems
with Applications (2017), vol. 91, Sep. 2017, pp. 252-262.

7
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{1, 2, ...,K}). Let Ck be the class label for the kth class. Then for a given feature vector x, the MAP

decision rule for the classification task is to choose the most likely class of x, C∗(x) given as:

C∗(x) = arg max
Ck

p(Ck|x), k ∈ {1, 2, ...,K} (2.1)

For the moment, it is assumed that there are only K = 2 classes, i.e. binary classification (see section

2.1.4 for multi-class classification). Then the decision rule of (2.1) may be expressed as:

p(C1|x)
p(C2|x)

C1

R
C2

1 (2.2)

Using Bayes rule, however, the two posterior probabilities can be expressed as:

p(C1|x) = p(x|C1)× p(C1)
p(x) and p(C2|x) = p(x|C2)× p(C2)

p(x) (2.3)

It is sometimes the case that the prior probabilities p(C1) and p(C2) are known, or else they may

be estimable from the relative frequencies of D1 and D2 in X ; let these priors be given by π1 and π2

respectively for class C1 and C2, i.e.,

π1 = n1

n
, π2 = n2

n
(2.4)

where n1 and n2 are the cardinalities of D1 and D2 respectively.

Thus, the decision rule of (2.2) may again be rewritten as:

p(x|C1)
p(x|C2)

C1

R
C2

π2

π1
. (2.5)

so that one decides on class C1 if λ(x) ≥ τ and class C2 otherwise, where λ(x) = p(x|C1)/p(x|C2) is the

likelihood ratio and τ = π2/π1 is a threshold. If C1 and C2 are equally probable, i.e., π1 = π2, then the

MAP decision rule of (2.5) becomes a maximum likelihood (ML) decision rule.

A major limitation of the MAP decision rule is the difficulty in estimating the conditional distributions

p(x|C1) and p(x|C1). For this reason, LDA proceeds from (2.5) with two basic assumptions [31, Chapter 8]:

1. The conditional probabilities p(x|C1) and p(x|C2) have multivariate normal distributions.

2. The two classes have equal covariance matrices, an assumption known as homoscedasticity.

Let x̄1, Σ1 be the mean and covariance matrix of D1 and x̄2, Σ2 be the mean and covariance of D2

respectively. The normality assumption allows the conditional probabilities p(x|C1) and p(x|C2) to be
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expressed as:

p(x|C1) = 1√
(2π)d det(Σ1)

exp
[
− 1

2(x− x̄1)>Σ−1
1 (x− x̄1)

]
(2.6)

and

p(x|C2) = 1√
(2π)d det(Σ2)

exp
[
− 1

2(x− x̄2)>Σ−1
2 (x− x̄2)

]
. (2.7)

Given the above definitions of the conditional probabilities, one may evaluate the natural logarithm of

(2.5), yielding the log-likelihood ratio given as:

lnλ(x) = 1
2 ln det Σ2

det Σ1
+ 1

2

[
(x− x̄2)>Σ−1

2 (x− x̄2)− (x− x̄1)>Σ−1
1 (x− x̄1)

]
(2.8)

which is then compared against ln τ so that C1 is chosen if lnλ(x) ≥ ln τ , and C2 otherwise. Therefore,

the decision rule for classifying a vector x under class C1 becomes:

(x− x̄2)>Σ−1
2 (x− x̄2)− (x− x̄1)>Σ−1

1 (x− x̄1) ≥ ln τ
2 det Σ1

det Σ2
(2.9)

which can be expressed in the quadratic form:

x>Ax + b>x + c ≥ ln τ
2 det Σ1

det Σ2
(2.10)

where

A = (Σ−1
2 −Σ−1

1 ) b = −2(Σ−1
2 x̄2 −Σ−1

1 x̄1) c = x̄>2 Σ−1
2 x̄2 − x̄>1 Σ−1

1 x̄1 (2.11)

In general, this result is a quadratic discriminant. However, a linear classifier is often desired for the

following reasons:

1. A linear classifier is robust against noise since it tends not to overfit [2].

2. A linear classifier has relatively shorter training and testing times [32].

3. Many linear classifiers allow for a transformation of the original feature space into a higher dimen-

sional feature space using the kernel trick for better classification in the case of a non-linear decision

boundary [33, Chapter 6].

By calling on the assumption of homoscedasticity, i.e. Σ1 = Σ2 = Σx, the original quadratic dis-

criminant given by (2.9) for classifying a given vector x decomposes into the following linear decision
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rule:

x>Σ−1
x (x̄1 − x̄2)

C1

R
C2

ln τ + 1
2(x̄>1 Σ−1

x x̄1 − x̄>2 Σ−1
x x̄2) (2.12)

which can be expressed as:

w>x
C1

R
C2

w0 (2.13)

where

w = Σ−1
x (x̄1 − x̄2), w0 = ln τ + 1

2(x̄>1 Σ−1
x x̄1 − x̄>2 Σ−1

x x̄2) (2.14)

and Σx is the pooled within-class covariance matrix [34] given by:

Σx = π1Σ̄1 + π2Σ̄2, (2.15)

where Σ̄1 and Σ̄1 are the sample covariance estimates of classes C1 and C2 respectively.

This linear classifier is also known as Fisher’s Linear Discriminant (FLD) [35]. Hamsici et al. [36] and

Izenman [31] show that FLD is the optimal Bayes classifier for binary classification if the normality and

homoscedasticity assumptions hold.

LDA demands only the computation of the dot product between w and x, which is a relatively com-

putationally inexpensive operation. LDA has been used for statistical classification in several application

areas. For example, Sharma and Paliwal [37], Coomans et al. [38], Sengur [39] and Polat et al. [40] have

used LDA for medical diagnosis; Song et al. [41], Chen et al. [42], Liu et al. [43] and Yu and Yang [44]

have employed LDA for face and object recognition; Jin et al. [45], Ayhan et al. [46] and Moosavian et

al. [47] have used LDA for machine fault diagnosis; Khan et al. [48], Yan et al. [49] and Iosifidis et al. [50]

have also employed LDA for human activity recognition. The widespread use of LDA in these areas is not

because the datasets necessarily satisfy the normality and homoscedasticity assumptions, but mainly due

to the fact that being a linear model, LDA is robust against noise [2]. Since the linear Support Vector

Machine (SVM) [51] can be quite expensive to train, especially for large values of K or n, LDA is often

relied upon [52].

Yet, practical implementation of LDA is not without problems. Of note is the small sample size (SSS)

problem that LDA faces with high-dimensional data and much smaller training data [53, 54, 42, 55, 56].

When d� n, the scatter matrix Σx is not invertible, as it tends to be of reduced rank. Since the decision

rule as given by (2.12) requires the computation of the inverse of Σx, the singularity of Σx makes the

solution infeasible. In works by, for example, Liu et al. [43] and Paliwal and Sharma [57], this problem is

overcome by taking the Moore-Penrose pseudo-inverse of the scatter matrix given by Σ†x = (Σ>x Σx)−1Σ>x ,
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rather than the ordinary matrix inverse. Another approach to solving the SSS problem, employed by

Friedman [58], Lu et al. [54] and Wu et al. [59], involves adding a scalar multiple of the identity matrix to

the scatter matrix to make the resulting matrix non-singular, a method known as regularised discriminant

analysis.

However, for a given dataset that does not satisfy the homoscedasticity or normality assumption, one

would expect that modifications to the original LDA procedure accounting for these violations would

yield an improved performance. One such modification, in the case of a non-normal distribution, is

explored by Hastie and Tibshirani [60], McLachlan [61] and Ju et al. [62] in a procedure known as

mixture discriminant analysis, in which a non-normal distribution is modelled as a mixture of Gaussians.

However, the parameters of the mixture components or even the number of mixture components, are

usually not known a priori. Cai et al. [63], Fukunaga [64] and Li et al. [65] propose other non-parametric

approaches to LDA that remove the normality assumption through the use of a similarity matrix based

on local neighbourhood structures in the data instead of the scatter matrix Σx used in LDA.

2.1.1 Kernel Fisher’s discriminant analysis

Another modification, in the case of a non-linear decision boundary between D1 and D2, is the Kernel

Fisher Discriminant (KFD), proposed by Mika et al. [2], and explored by Zhao et al. [66] and Polat et

al. [40]. KFD maps the original feature space X into some other space Y (usually higher dimensional)

via some transformation φ(x), i.e.,

φ(x) : X → Y (2.16)

where X = Rd, with d being the size of x. The transformation φ(x) is such that the transformed space

Y guarantees linear or near-linear separability between the classes.

Once the mapping is done, the decision rule of (2.13) for deciding on the class of a given vector x

then becomes:

w>φ(x)
C1

R
C2

w0 (2.17)

so that the aim is to find the vector of weights w and the threshold w0.

Without any loss of generality, the vector w can be expressed as:

w =
n∑
i=1

αiφ(xi) (2.18)

where n is the number of points in the training dataset X , and αi for i ∈ {1, ..., n} are yet to be
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determined. Then, substituting (2.18) into (2.17) results in:

( n∑
i=1

αiφ(xi)
)>

φ(x)
C1

R
C2

w0, (2.19)

i.e.,
n∑
i=1

αiφ(xi)>φ(x)
C1

R
C2

w0, (2.20)

which can be expressed as:
n∑
i=1

αiK(xi,x)
C1

R
C2

w0 (2.21)

where K is a kernel, which is an inner product between any two vectors in the space Y, satisfying Mercer’s

conditions [67]. It will be noted that (2.21) avoids the explicit transformation φ(x), and hence avoids the

computational difficulty involved in transforming the data to a higher dimensional feature space. This is

known as the kernel trick [2, 68, 69]. Though there is no readily obvious choice of a kernel function for a

given dataset, popular kernels used in practice include the polynomial and Gaussian kernels, the latter

allowing transformation to an infinite dimensional space [67].

Note that (2.21) can be rewritten as:

α>k
C1

R
C2

w0 (2.22)

where α = [α1, ..., αn]> and k = [K(x1,x), ...,K(xn,x)]>. Then, by noting the similarity with (2.13),

which has its LDA solution given by (2.14), KFD has the following solution for α [2]:

α = N−1(M̄1 − M̄2) (2.23)

where

(M̄k)i = 1
nk

nk∑
j=1
K(xi,xj), for i = 1, ..., n and k = 1, 2 (2.24)

and

N = N1 + N2. (2.25)

Here,

Nk = Kk(I− 1nk)K>k , k = 1, 2 (2.26)

with Kk(i, j) = K(xi,xj) for all xi ∈ X and all xj ∈ Dk, 1nk being an nk-sized square matrix with all

entries being 1/nk, and I the nk-sized identity matrix.
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The model for the Kernel Fisher’s discriminant is provided by (2.22); most other linear models in

the form of (2.13) can similarly be kernelised. Mika et al. [2] show that KFD performs well on datasets

with non-linear decision boundaries, and is even comparable to the non-linear SVM. However, since KFD

requires the inversion of the matrix N which is of size n, the algorithm is ill-suited for large datasets (as

they thus have large n), since inverting N may be computationally intractable.

2.1.2 Heteroscedastic LDA

Accounting for the differences in covariance matrices in LDA has led to several heteroscedastic extensions

of LDA, the most natural extension being Quadratic Discriminant Analysis (QDA), which makes use

of the quadratic discriminant given in (2.9) for classification. However, for the reasons of robustness,

shorter training and testing times, as well as the fact that linear classifiers can be kernelised, a linear

approximation to the quadratic boundary in QDA is often preferred. An example of the quadratic

boundary for heteroscedastic data and the possible linear approximations are indicated in Figure 2.1.
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Figure 2.1: Quadratic boundary in heteroscedastic LDA and linear approximations

As there is a multitude of such linear approximations that can be made, the works by Marks and

Dunn [70], Anderson and Bahadur [71], Peterson and Mattson [72] and Fukunaga [8] describe several
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heteroscedastic LDA procedures aimed at minimising the probability of misclassification pe as given by:

pe = π1p(y < w0|C1) + π2p(y ≥ w0|C2) (2.27)

where y = w>x. In the heteroscedastic case, the Bayes optimal weight vector and threshold required for

the linear decision rule in (2.13) are no longer as given in (2.14), as they do not minimise the Bayes error.

Unfortunately, there is no closed-form solution to the minimisation of (2.27) [71] under heteroscedasticity,

even though the optimal solution of w is known to be of the form:

w =
[
s1Σ1 + s2Σ2

]−1(x̄1 − x̄2) (2.28)

where s1 and s2 are unknown parameters [8, 70].

Marks and Dunn [70] describe an iterative procedure that involves solving for the optimal w as given

by (2.28) and w0 as given by:

w0 = µ1 − s1σ
2
1 = µ2 + s2σ

2
2 , (2.29)

where

µ1 = w>x̄1 µ2 = w>x̄2 σ2
1 = w>Σ1w σ2

2 = w>Σ2w. (2.30)

Here, one obtains the optimal values of s1 and s2 via systematic trial and error. This heteroscedastic

LDA procedure is denoted by R-HLD-2, for the reason that two parameters s1 and s2 are chosen at

random.

Anderson and Bahadur [71] make the observation that if the weight vector w and the threshold w0

are both multiplied by the same positive scalar, the decision boundary remains unchanged. Therefore,

by multiplying (2.28) and (2.29) through by the scalar s1 + s2, w and w0 can be put in the form of:

w =
[
sΣ2 + (1− s)Σ1

]−1(x̄1 − x̄2)

w0 = µ1 − (1− s)σ2
1 = µ2 + sσ2

2 (2.31)

Still, the optimal value of s has to be chosen by systematic trial and error. This heteroscedastic LDA

approach is denoted by R-HLD-1, for the reason that only one parameter s is chosen at random. As is

shown Chapter 4, s is unbounded. Therefore, the difficulty faced by this approach is that s has to be

chosen from the interval (−∞,∞), so that the probability of finding the optimal s for a given dataset
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is low, without extensive trial and error to limit the choice of s to some finite interval [a, b]. Thus,

the approaches taken by Marks and Dunn [70] and Anderson and Bahadur [71] present no principled

computational procedure for optimum parameter selection.

To avoid the unguided trial and error procedure by Marks and Dunn [70] and Anderson and Bahadur

[71], Peterson and Mattson [72] and Fukunaga [8] propose a theoretical approach described below:

1. Change s from 0 to 1 with small step increments ∆s.

2. Evaluate w as given by:

w =
[
sΣ1 + (1− s)Σ2

]−1(x̄1 − x̄2) (2.32)

3. Evaluate w0 as given by:

w0 = sµ2σ
2
1 + (1− s)µ1σ

2
2

sσ2
1 + (1− s)σ2

2
(2.33)

4. Compute the probability of misclassification pe.

5. Choose w and w0 that minimise pe.

This procedure is referred to as C-HLD, for the reason that the optimal s is constrained in the interval

[0, 1].

However, two main problems with the above C-HLD procedure are highlighted:

1. There is no obvious choice of the step rate ∆s. Too small a value of ∆s will demand too many

matrix inversions in Step 2, as there will be too many s values, thus increasing the computational

complexity especially for very-high dimensional datasets. On the other hand, if ∆s is too large, the

optimal s may not be refined enough, and the vector w obtained may not be optimal. Specifically,

the change in w that results from a small change in s is given as:

dw =
(
sΣ2 + (1− s)Σ1

)−1(Σ1 −Σ2)
(
sΣ2 + (1− s)Σ1

)−1(x̄1 − x̄2)ds (2.34)

Such a change in w may significantly affect the classification performance of the linear model

especially if the two classes are not well-separated.

2. The solution obtained this way is only locally optimal as s is constrained in the interval [0, 1]. When

there is a class imbalance [12, 73, 74, 75], the optimal s may be found outside the interval [0, 1] so

that the vector w found by this approach leads to poor classification accuracy.
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A recurring procedure among all three heteroscedastic LDA approaches is the matrix inversion as

given in (2.28) for R-HLD-2, (2.31) for R-HLD-1 and (2.32) for C-HLD. However, if these heteroscedastic

LDA procedures were to be kernalised in the manner shown in Section 2.1.1, by replacing x1,x2,Σ1,Σ2

with M̄1, M̄1,N1,N2 respectively, there would be too many inversions of size-n matrices, which can be

computationally infeasible for large datasets.

2.1.3 Class imbalance

The class imbalance problem arises when the number of objects in one class far exceeds the cardinality

of the other classes. Such datasets are often found in anomaly detection applications like falls detection

in remote health monitoring [76, 77, 78], customer churn prediction in telecommunication systems [79,

80, 81], or machine health monitoring [82, 83]. In these applications, a “fault” state is not as probable as

the “normal” state of the system.

As the prior probabilities are often estimated from the cardinality of each class, data imbalance in

binary classification leads to the case where π1 � π2 or π1 � π2. If the means are not well separated,

class imbalance has the effect of shifting the decision threshold w0 well beyond the closed interval [µ1, µ2],

where µ1 and µ2 are the projected class means for classes C1 and C2 respectively.

To put things in perspective, consider the linear discrimination rule in LDA as given by (2.13) and

(2.14). In the event of class imbalance, τ = π2/π1 is affected. If π1 � π2, then τ approaches 0, and

the decision threshold w0 approaches −∞. In such a case, the decision rule tends to favour class C1.

On the other hand, if π1 � π2, then τ approaches ∞, and the decision threshold w0 approaches ∞ as

well, in which case the decision rule tends to favour class C2. This then tends to skew the classification

accuracy in favour of the majority class. This can be problematic in several applications, for instance,

in medical diagnosis. In many Sub-Saharan African countries, for example, since the number of Malaria

cases usually far outweighs the number of cases for many other diseases, patients tend to be wrongly

diagnosed with Malaria.

In binary classification, the classification accuracy is obtained by evaluating the classifier on a test

dataset, and is given by:

Accuracy = TP + TN
TP + TN + FP + FN (2.35)

where TP, the true positives, is the number of positive samples that are correctly classified; TN, the true

negatives, is the number of negative samples that are correctly classified; FP, the false positives, is the

number of negative samples that are wrongly classified as positive; and FN, the false negatives, is the
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number of positive samples that are wrongly classified as negative. Let the discriminating hyperplane be

given by:

w>x− w0 = 0. (2.36)

To avoid any ambiguity, this thesis considers all samples x such that w>x−w0 ≥ 0 as positive samples,

and negative examples as all samples x such that w>x− w0 < 0.

Due to the bias of the classification accuracy as an evaluation metric, other evaluation metrics such

as Precision and Recall [84, 85] and the F-Measure [86, 87] are favoured over the classification accuracy

[88, 89, 90] in the presence of class imbalance. One other such metric is the area under the Receiver

Operating Characteristics (ROC) curve, often referred to simply as area under curve (AUC), [91, 92],

which is obtained by plotting the false positive rate (FPR) against the true positive rate (TPR), as the

decision threshold w0 is varied. An example ROC plot is shown in Fig. 2.2.
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Figure 2.2: Receiver Operating Characteristics

TPR and FPR are given by:

TPR = TP
TP + FN , FPR = FP

FP + TN (2.37)

Xue and Titterington [12] and Xie and Zhengding [11] have studied class imbalance in the context of
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LDA. Xie [11] has claimed that class imbalance has a negative effect on LDA in terms of the AUC when

the covariance matrices of the classes are unequal, based on experimental results. This claim has since

been disputed by Xue [12] because, in the event of class imbalance, the only parameter that is affected

in the LDA discrimination rule in (2.12) is τ = π2/π1, which only changes the decision threshold w0; the

pooled within-class covariance matrix is still as given by (2.15). However, the AUC is not affected by

the decision threshold, as w0 is not kept constant, but is varied to obtain different false positive and true

positive rates.

On the other hand, if one accounted for heteroscedasticity in LDA, as in the C-HLD, R-HLD-1 and

R-HLD-2 procedures, the Bayes optimal classifier is such that the weight vector w is no longer as given

in (2.14), but given by (2.28), as has already been mentioned. Moreover, it can be shown that the

unknown parameters s1 and s2 in (2.28) do themselves depend on the threshold w0 (see Section 3.1).

The implication of this dependence of s1 and s2 on w0 is that varying w0 to obtain different values of FPR

and TPR for the ROC necessarily causes w to vary. Therefore, if w is kept unchanged while varying w0

to obtain the ROC, the performance of heteroscedastic LDA is negatively affected in terms of the AUC.

Since all three heteroscedastic LDA approaches described above (R-HLD-1, R-HLD-2 and C-HLD) leave

no room to express s1 and s2 in terms of the threshold w0, w is kept constant while varying w0 to obtain

the ROC, and hence their AUC performance are suboptimal.

Even so, the suboptimal performance of the existing heteroscedastic LDA approaches is not particular

to class imbalance, except in the case of C-HLD. In (2.32) of the C-HLD procedure, s may be thought of

as s1 and 1− s as s2, thus satisfying the general solution of (2.28). However, s is constrained to vary in

the closed interval [0, 1]. While this may be valid under nearly equal priors, i.e., π1 ≈ π2, in the presence

of class imbalance, s tends to fall outside the interval [0, 1] (see section 3.4), so that the weight vector w

obtained in the C-HLD procedure is suboptimal. Moreover, if s ∈ [0, 1], then the threshold w0 as given

by (2.35) of the C-HLD procedure is a convex combination of the two projected means µ1 and µ2, such

that w0 is bounded in the interval [µ2, µ1]. This tends to negatively impact on the classification accuracy

of C-HLD since the optimal threshold w0 should approach +∞ or −∞ in the limit of τ as can be seen

from (2.14).

2.1.4 Multiclass classification

Suppose now that there are K > 2 classes in the dataset D, then the multiclass classification problem

may be reduced to a number of binary classification problems. The two main approaches usually taken

for this reduction are the One-vs-All (OvA) and One-vs-One (OvO) strategies [33, 93].
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One-vs-All (OvA)

In OvA, one trains a classifier to discriminate between one class and the remaining K − 1 classes. Thus,

there are K different classifiers that can be constructed. Since the classifiers are linear, this method

creates decision regions that are partitioned by hyperplanes. For the case K = 3, class C1 is trained

against C2 and C3, class C2 is trained against C1 and C3, and class C3 is trained against C1 and C2. This is

shown in Figure 2.3. The decision region for each of the three classes is also shown in the figure. It will be

noted that there are ambiguous regions outside the three decision regions. An unknown test vector falling

in these ambiguous regions could be wrongly classified. However, OvA is able to get around this problem

in such a way that an unknown vector x is tested on all K classifiers so that the class corresponding to

the classifier with the highest discriminant score is chosen. The discriminant score is given by w>x−w0.

This method of testing removes the ambiguity.
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Figure 2.3: Ambiguous region in one vs all multiclass classification

Nevertheless, with respect to LDA, this may be an ill-suited approach. This is because the collection

of all other classes on one side of the discriminating hyperplane will not necessarily have a normal

distribution as is required in LDA, and it could in fact be multimodal, if the means are well-separated.

If the normality assumption holds true for each class, then the distribution of K − 1 classes on one side
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of the discriminant is actually a mixture of K − 1 Gaussians. Thus, LDA is expected to perform poorly

in OvA multiclass classification.

One-vs-One (OvO)

In OvO, a classifier is trained to discriminate between every pair of classes in the dataset, ignoring the

other K−2 classes. Thus, there are K(K−1)/2 unique classifiers that may be constructed. For the case

K = 3, class C1 is trained against C2, class C1 is trained against C3, and class C2 is trained against C3.

This is indicated in Figure 2.4. Here too, there is an ambiguous region in the middle, outside the three

decision regions, where the three classifiers intersect. Even though the area of this ambiguous region is
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Figure 2.4: Ambiguous region in one vs one multiclass classification

often much smaller than in the OvA approach, the particular method of testing an unknown vector in

this multiclass strategy does not remove the ambiguity, unlike in the OvA scenario. Here, an unknown

vector x is tested on all K(K−1)/2 classifiers. The predicted classes for all the classifiers are then tallied

so that the class that occurs most frequently is chosen. This is equivalent to a majority vote decision. In

a lot of cases, however, there is no clear-cut winner, as more than one class may have the highest number

of votes. In such a case, the most likely class is often chosen randomly between those most frequently

occurring classes.
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However, unlike in the OvA strategy, the data on each side of each of theK(K−1)/2 classifiers remains

normally distributed, if the normality assumption holds true in each class. Thus, LDA is expected to

perform well on each of the classifiers in the OvO multiclass strategy.

2.2 Linear dimensionality reduction (LDR)

In applications such as face recognition where the images live in a high dimensional space (often d is equal

to the number of pixels in the facial image [3]), the large dimensionality d increases model complexity.

For example, an image with 2, 000, 000 pixels would require the inversion of a size-2, 000, 000 scatter

matrix Σx in order to apply LDA. This makes LDR a critical preprocessing step in order to reduce model

complexity. As an added advantage, classification accuracy is often improved after LDR [4, 5].

Consider a dataset X = [x1, ...,xn] with n examples and a dimensionality of d, i.e. xi ∈ Rd, ∀i ∈

{1, ..., n}. The aim of LDR is to find a linear transformationM such that X̃ = M>X has a dimensionality

of q, i.e., M ∈ Rd×q, where M is of rank q and q < d.

Cunningham and Ghahramani [94] give the general optimisation framework for this task as:

min fX (M)

subject to M ∈M (2.38)

whereM is the matrix manifold over which the optimisation is done. For example,M could be the set

of all rank q matrices in Rd×q or the set of all orthogonal matrices Od×q ∈ Rd×q. The objective function

fX (M) is chosen to yield a good representation of the original dataset X in the low-dimensional manifold.

There is no obvious choice of this objective function, and the differences in this choice bring about the

different LDR procedures.

2.2.1 Principal component analysis

One of the most well-known LDR procedures is Principal Component Analysis (PCA) [95]. Mika et

al. [96], Scholkopf et al. [97] and Hoffman [98] have also extended PCA for non-linear dimensionality

reduction via the kernel trick (section 2.1.1) in a procedure referred to as kernel PCA (KPCA).

PCA aims to maximise the variance of the projected data in each dimension, while minimising the

covariance between any two variables. Suppose that the dataset X has a mean of x̄ and a covariance of
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ΣX given by the following sample estimates:

x̄ = 1
n

n∑
i=1

xi and ΣX = 1
n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>. (2.39)

Then, the projected data X̃ has a sample covariance of ΣX̃ given by:

ΣX̃ = 1
n− 1

n∑
i=1

M>(xi − x̄)(xi − x̄)>M = M>ΣXM (2.40)

Since ΣX is square and real symmetric, it is orthogonally diagonalisable [99]. Thus, ΣX can be expressed

as:

ΣX = VDV> (2.41)

via an eigenvalue decomposition, where V is an orthonormal matrix whose columns are the eigenvectors

of ΣX and D is a diagonal matrix whose diagonal entries are the eigenvalues corresponding to the

eigenvectors in V. Therefore, the covariance ΣX̃ of the projected data is given by:

ΣX̃ = M>ΣXM = M>VDV>M (2.42)

Notice that by setting M as M = V, the covariance of ΣX̃ becomes:

ΣX̃ = V>VDV>V = D (2.43)

(since V>V = I), which maximises the variance (the diagonal entries) and minimises the covariance (the

off-diagonal entries).

Still, M is not necessarily of rank q, since its rank is equal to the number of eigenvectors in V. Thus,

if ΣX has a full rank, then M also has a rank of d, and no dimensionality reduction is achieved from

the linear transformation X̃ = M>X . In order to achieve dimensionality reduction, the transformation

matrix M is assigned instead to the q eigenvectors corresponding to the q largest eigenvalues in D. In

this manner, the columns of the matrix M represents the q directions along which the variability of the

original data is most pronounced; the variability of the data in the remaining d−q directions are assumed

to be insignificant or due to noise in the data.

However, when statistical classification is desired after dimensionality reduction, PCA may lose the

class-discriminatory information in the data, as the directions of maximum variance do not always coincide

with the most class-discriminative directions. In order to maximise the class-discriminatory information
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while linearly reducing the dimensionality, LDR that is aimed for classification involves the use of class

labels to inform the choice of the transformation matrix M. In this case, the optimum objective function

to minimise is the Bayes error in the linearly reduced space [8, 100].

Nevertheless, an analytic expression for the Bayes error is hard to obtain for the general K-class

problem, except for special cases such as K = 2 normally distributed classes with equal covariance

matrices. As such, several approximations have been made, for example, by Fukunaga [8], Duda et al. [101]

Buturovic [100], leading to several supervised dimension reduction techniques [94, 5, 4, 102, 103, 104].

These techniques have been classified into two by Fukunaga [8] and Buturovic [100]. The first involves

the use of a family of functions of scatter matrices that attempt to maximise the separability of the K

classes, but are not directly related to the Bayes error. The second approach involves the minimisation

of some upper bounds on the Bayes error.

2.2.2 Fisher’s linear discriminant (FLD)

One popular method for such a supervised LDR is Fisher’s linear discriminant (FLD) [35], which follows

the approach of maximising the class separability of the K classes using functions of the scatter matrix.

Mika et al. [2] Aitchison and Aitken [68] and Jaakkola et al. [69] have also extended FLD for non-linear

dimensionality reduction via the kernel trick (section 2.1.1).

Suppose that the dataset is labelled such that it can be divided into K classes thus: X = [D1, ...,DK ],

where Dk are the training samples belonging to the kth class (k ∈ {1, 2, ...,K}). Let x̄k, Sk and πk = p(Ck)

be the sample mean, sample covariance and empirical prior probability of the kth class respectively, for

k ∈ {1, ...,K}, as given by:

x̄k = 1
nk

∑
x∈Dk

x, Σk = 1
nk − 1

∑
x∈Dk

(x− x̄k)(x− x̄k)> and πk = nk
n

(2.44)

where nk is the number of samples in the kth class. Also, let x̄ be the mean of the overall dataset X , i.e.,

x̄ = 1
n

∑
x∈X

x =
K∑
k=1

πkxk (2.45)

The particular measure of class separability used in the FLD is Fisher’s criterion Jf , which is the

ratio of the between-class scatter to the within-class scatter in the linearly reduced space, and is given

by:

Jf = trace[(M>SwM)−1(M>SbM)] (2.46)
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where Sw, the within-class scatter matrix and Sb, the between-class scatter matrix are both given as:

Sw =
K∑
k=1

πkΣk and Sb =
K∑
k=1

πk(x̄k − x̄)(x̄k − x̄)>. (2.47)

Fisher’s criterion can be considered as a form of the generalised Rayleigh quotient [102, 105, 106]. For

K > 2, i.e., for reduction to more than one dimension, FLD is also referred to as canonical variates

[31, 107, 108, 102].

In order to maximise Jf , (2.46) is differentiated and equated to zero. From the Matrix Cookbook

[109], the derivative of the trace in the form of (2.46) is given as:

∂Jf
∂M = −2SwM(M>SwM)−1M>SbM(M>SwM)−1 + 2SbM(M>SwM)−1 (2.48)

By equating (2.48) to zero, the following is obtained:

SbM(M>SwM)−1 = SwM(M>SwM)−1M>SbM(M>SwM)−1 (2.49)

Assuming that Sw is invertible, (2.49) can be rewritten as:

S−1
w SbM = M(M>SwM)−1M>SbM (2.50)

Suppose that S−1
w Sb is not defective and can be orthogonally diagonalised via an eigenvalue decomposition

of the form:

S−1
w Sb = TΛT>, (2.51)

i.e.

S−1
w SbT = TΛT>T (2.52)

where T is an orthonormal matrix whose columns are the eigenvectors of S−1
w Sb and Λ is a diagonal

matrix whose diagonal entries are the eigenvalues corresponding to the eigenvectors in T. Since T is

orthonormal, T>T = I, so that

S−1
w SbT = TΛ (2.53)

Comparing (2.53) to (2.50), it will be noted that M can be set equal to T. It can be verified, using

the relation Sb = SwTΛT> obtainable from (2.51), that with this choice of M the right-hand side of

(2.50) becomes equal to TΛ as in (2.53).
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However, there are at most K − 1 non-zero eigenvalues in Λ due to the fact that the rank of S−1
w Sb is

at most K − 1 (see proof in section 4.A.1), and therefore there are at most K − 1 useful eigenvectors in

T required to satisfy (2.53). This implies that the transformation matrix M has to be set equal to the

eigenvectors corresponding to the first K − 1 largest (or non-zero) eigenvalues, if the trace of (2.46) is to

be maximised. For this reason, FLD projects the original d-dimensional data onto a K − 1 dimensional

subspace within which the separation between the classes is maximised in terms of Fisher’s criterion.

It will be recalled that this analysis is made possible by assuming that Sw ∈ Rd×d is invertible. For

this to be true, Sw has to have a rank of d. It can be shown, however, that the rank of Sw is at most

n−K (see proof in Section 4.A.1). Therefore, in the scenario a dataset has a very high dimensionality d

and a rather small number of samples n, such that d > n−K, Sw becomes singular, and FLD fails. This

is often referred to as the small sample size (SSS) problem [42, 56, 3], which is the same drawback that

has already been mentioned in the context of statistical classification. Belhumeur et al. [3] describes a

way to avoid the SSS problem, by applying PCA to reduce the dimensionality of the original dataset to

q = n−K, and then perform FLD on that reduced dataset. Other approaches, for example, by Sharma

and Paliwal [37], have avoided the computation of the inverse altogether, and instead have applied the

gradient descent procedure [110] wherein an iterative algorithm starts from some initial choice of M and

takes small steps in the negative direction of the gradient of Jf .

FLD (K = 2)

Now, for the two-class case, where reduction to only one dimension is possible, the transformation matrix

M contains only one column vector v, and Fisher’s criterion as given by (2.46) reduces to:

Jf = v>Sbv
v>Swv

(2.54)

where Sw is now given by:

Sw = π1S1 + π2S2, (2.55)

and Sb by:

Sb = π1(x̄1 − x̄)(x̄1 − x̄)> + π2(x̄2 − x̄)(x̄2 − x̄)> (2.56)

which can be simplified thus:

Sb = π1π2(x̄1 − x̄2)(x̄1 − x̄2)> . (2.57)
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when the following substitution is made in (2.56):

x̄ = π1x̄1 + π2x̄2 (2.58)

The optimal v can be obtained by differentiating Jf with respect to v as shown below

∂Jf
∂v = ∂

∂v
v>Sbv
v>Swv

= 2(v>Swv)Sbv− 2(v>Sbv)Swv
(v>Swv)2 (2.59)

and setting the partial derivative to zero, resulting in the following:

(v>Swv)Sbv = (v>Sbv)Swv (2.60)

Thus, (2.60) can be rewritten as:

Swv = v>Swv
v>Sbv

Sbv (2.61)

By substituting the expression for Sb into (2.61), the following equation is obtained:

Swv = v>Swv
v>Sbv

π1π2(x̄1 − x̄2)(x̄1 − x̄2)>v (2.62)

Notice that the factors (v>Swv)/(v>Sbv), π1π2 and (x̄1 − x̄2)>v are all scalars. Thus, (2.62) can be

rewritten in the form:

v = kS−1
w (x̄1 − x̄2) (2.63)

The constant k can be dropped off entirely as Fisher’s criterion as given by (2.54) is not affected by any

scale factor. Thus k can be set to 1, in which case it will be noted that the optimal v as given by (2.63)

is the same as the weight vector w as given by (2.14) and (2.15) obtained for the Bayes optimal linear

classifier in section 2.1. It is for this reason that the FLD is more commonly referred to simply as linear

discriminant analysis (LDA).

Since w as given by (2.14) minimises the Bayes error for two classes when the normality and homo-

scedasticity assumptions are satisfied, maximising Fisher’s criterion for LDR in the two-class case also

minimises the Bayes error in the linearly reduced space for K = 2 normally distributed classes with

equal covariance matrices. For more than two classes, however, maximisation of Fisher’s criterion does

not guarantee the minimisation of the Bayes error, even when the assumptions of homoscedasticity and

normality are satisfied.
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2.2.3 Mahalanobis distance criterion

As mentioned previously, one other approach to supervised LDR involves minimising certain bounds

on the Bayes error. One of such bounds is based on the Mahalanobis distance [4, 111, 112, 113]. The

Mahalanobis distance measures the separation between two populations of equal covariance. The square

of the Mahalanobis distance is defined for two classes with common covariance Σx as:

∆12 = (x̄1 − x̄2)Σ−1
x (x̄1 − x̄2) (2.64)

Using this, Brunzell and Eriksson [4] give an upper bound on the Bayes error as:

εm ≤
2π1π2

1 + π1π2∆12
(2.65)

For the K-class problem, the Mahalanobis distance is generalised as:

Jm =
∏

1≤i<j≤K
(x̄i − x̄j)>(πiΣi + πjΣj)−1(x̄i − x̄j) (2.66)

Subsequently, the task of the Mahalanobis-based LDR is to find a linear transformation that preserves

the separation given by Jm in the linearly reduced space. The optimal linear transformation M is found

by first defining a matrix U as:

U =
[
(π1Σ1 + π2Σ2)−1(x̄1 − x̄2), ...,

(πiΣi + πjΣj)−1(x̄i − x̄j), ...,

(πK−1ΣK−1 + πKΣK)−1(x̄K−1 − x̄K)
]

(2.67)

for 1 ≤ i < j ≤ K. Then, an eigenvalue decomposition of U is found, after which M is set to the q

eigenvectors corresponding to the q largest eigenvalues of U.

It will be observed (by verifying with several values of K) that U has K(K − 1)/2 columns, and it

can, in fact, equivalently be obtained by performing One-vs-One multi-class classification using LDA,

and forming a matrix out of the K(K − 1)/2 weight vectors w given by (2.14). However, just like with

LDA, the Mahalanobis-based LDR assumes a common covariance matrix among the classes [5].
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2.2.4 Chernoff criterion

To account for the differences in covariance matrices among the classes, Decell and Marani [114] propose

a heteroscedastic extension of the Mahalanobis distance based on the Bhattacharya distance [101, 115]

for LDR. The Bhattacharya distance, which is a measure of class separability, also gives an upper bound

on the Bayes error for normally distributed data [8]. Following this, there has been the use of a wider

class of Bregman divergences [116, 117], notably, the Kullback-Leibler (KL) divergence for heteroscedastic

LDR by Decell and Mayekar [118], even though the KL divergence is known to have a weaker link to the

Bayes error [8]. Yet, while the Bhattacharya distance provides a good enough bound on the Bayes error,

Qin et al. [119] and Das and Nenadic [120] have shown that the Chernoff criterion Jc provides a slightly

tighter bound than the Bhattacharya distance, which implies that the Chernoff criterion approximates

the Bayes error better.

For the two-class case, the criterion is defined by Loog [121] as:

Jc = trace
[
(M>SwM)−1(π1π2M>(x̄1 − x̄2)(x̄1 − x̄2)>M−M>S−

1
2

w (π1 log(S−
1
2

w Σ1S
− 1

2
w )

+ π2 log(S−
1
2

w Σ2S
− 1

2
w ))S

1
2
wM)

]
(2.68)

For the multi-class setting, the criterion is generalised by [5] as:

Jc =
K−1∑
i=1

K∑
j=i+1

πiπjtrace
[
(M>SwM)−1M>S

1
2
w

(
(S−

1
2

w SijS
− 1

2
w )− 1

2S−
1
2

w (x̄i − x̄j)(x̄i − x̄j)>S
− 1

2
w (S−

1
2

w SijS
− 1

2
w )− 1

2

+ 1
τiτj

(log(S−
1
2

w SijS
− 1

2
w )− τi log(S−

1
2

w SiS
− 1

2
w )− τj log(S−

1
2

w SjS
− 1

2
w ))

)
S

1
2
wM

]
, (2.69)

with

τi = πi
πi + πj

, τj = πj
πi + πj

and Sij = πiΣi + πjΣj (2.70)

The maximisation of this criterion is similar to that of FLD and the Mahalanobis distance-based LDR.

First, an eigenvalue decomposition of the following directed-distance matrix (DDM)[122] is found:

DDM =
K−1∑
i=1

K∑
j=i+1

πiπjS−1
w S

1
2
w

(
(S−

1
2

w SijS
− 1

2
w )− 1

2S−
1
2

w (x̄i − x̄j)(x̄i − x̄j)>S
− 1

2
w (S−

1
2

w SijS
− 1

2
w )− 1

2

+ 1
τiτj

(log(S−
1
2

w SijS
− 1

2
w )− τi log(S−

1
2

w SiS
− 1

2
w )− τj log(S−

1
2

w SjS
− 1

2
w ))

)
S

1
2
w, (2.71)



CHAPTER 2. LINEAR DISCRIMINANT ANALYSIS (LDA) 29

Then, M is set to the q eigenvectors corresponding to the q largest eigenvalues of the DDM.

However, while the FLD procedure provides reduction to at mostK−1 dimensions, the remaining LDR

approaches described do not provide the optimal dimensionality to which to the data is to be reduced.

Existing procedures are often reformulated as eigenvalue decomposition or singular value decomposition

(SVD) problems [94], after which a desired dimensionality q is chosen by taking the first q independent

vectors after the decomposition. Yet, Fukunaga [8] has shown that if a Bayes classifier [30, 123] (which

is the best possible classifier if the underlying distribution of the data is known [30]), such as quadratic

discriminant analysis (QDA), is to be applied after LDR, the smallest set of independent features required

is K − 1. This corresponds to a reduction of the original dataset to a (K − 1)-dimensional space . The

value of K − 1 is due to the fact that the optimal Bayes classifier evaluates K posterior probabilities,

among which the highest is chosen. Since the K probabilities must sum up to one, only K−1 of these K

probability functions suffices, and are independent. Thus, reduction to a (K − 1)-dimensional subspace

is necessary and sufficient to preserve the classification information in the original feature space [8].

In the absence of an optimal dimensionality q in the existing LDR procedures described, if q is

set to K − 1, there is no guarantee that the first K − 1 independent vectors alone preserve the class-

discriminatory information in the original space. As a result, classification information can be lost in the

(K − 1)-dimensional subspace, formed from the first K − 1 singular vectors or eigenvectors following an

SVD or eigenvalue decomposition, leading to a reduced classification accuracy using a Bayes classifier. On

the other hand, if q is chosen to be much greater than K−1, such as the number of non-zero eigenvectors

after the decomposition, the classification accuracy is not improved much, as will be shown in Chapter

4, and the problem of model complexity faced in applications such as face recognition may still persist.

2.3 Chapter summary

This chapter has provided a detailed background of linear discriminant analysis (LDA), thus setting the

stage for the rest of the work described in the thesis.

First, LDA is treated as a statistical classification technique. Here, assumptions of normality and

equal covariance (homoscedasticity) among the various classes in the data are required to make the

procedure optimal in terms of minimising the Bayes error. In many applications, such as flowmeter

diagnostics, however, the homoscedasticity assumption does not hold, leading to the development of

heteroscedastic LDA (HLDA) procedures. The chapter has highlighted the main problems with the

existing heteroscedastic LDA approaches. Firstly, most have no principled optimisation procedure, as
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they are obtained via trial and error. As a result, they tend to be computationally intractable for high-

dimensional datasets. Moreover, other HLDA approaches constrain the domain of the search space (by

constraining the parameter s to the interval [0, 1]) in an attempt to reduce the computational complexity;

this, however, leads to poor performance in terms of the classification accuracy and the area under the

receiver operating characteristics curve (AUC) under class imbalance.

Two main approaches to multi-class classification using LDA are also discussed.

Subsequent to that, LDA is also treated as a linear dimensionality reduction (LDR) technique, in-

volving the maximisation of Fisher’s criterion to obtain Fisher Linear Discriminant (FLD). Several other

LDR procedures are surveyed. While LDA is able to minimise the Bayes error for the two-class case

with normally distributed and homoscedastic data, the overarching issue among all the LDR methods is

their inability to provide a dimension-reducing transform that minimises the Bayes error for the general

K-class problem.

Moreover, the LDR methods, with the exception of FLD, provide no optimal dimensionality q to

which to linearly reduce a given dataset; the existing procedures are often reformulated as eigenvalue

or singular-value decomposition problems, after which the desired dimensionality q is chosen by taking

the first q eigenvectors or singular vectors. In the absence of the optimal value of q in the existing LDR

procedures, if q is set toK−1, such as is necessary and sufficient for Bayesian classification, unsatisfactory

classification accuracies may result.



Chapter 3

Heteroscedastic LDA for linear

classification1

This chapter introduces a novel approach to linear discriminant analysis (LDA) that accounts for hetero-

scedasticity by directly minimising the Bayes error. This approach, unlike the trial and error procedure

by Marks [70] and Anderson [71], has a principled optimisation procedure, and unlike the method by

Fukunaga [8] and Peterson [72], does not encounter the problem of choosing an inappropriate step rate

∆s, nor restricts s to the interval [0, 1]. Consequently, the proposed algorithm achieves an improved

classification accuracy for roughly the same computational effort. Moreover, under class imbalance, the

proposed heteroscedatic LDA procedure is optimal in terms of the misclassification rate and the area

under the receiver operating characteristics curve, unlike the existing procedures.

This chapter focuses on binary classification; the procedures described here are then extended to

multiclass classification in Chapter 4.

3.1 Gaussian linear discriminant (GLD)

Consider a training dataset D that is labelled and made up two classes C1 and C2 so that D can be

partitioned as D = [D1,D2]. Let x̄1, Σ1 be the mean and covariance matrix of D1 and x̄2, Σ2 be the

mean and covariance of D2 respectively. Also, let π1 and π2 respectively be the prior probabilities of C1

and C2.

1Most of the work presented in this chapter first appeared in: K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura, “Linear
classifier design under heteroscedasticity in Linear Discriminant Analysis,” Expert Systems with Applications, vol. 79, Aug.
2017, pp. 44-52. and in: K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura, “Linear classifier design for heteroscedastic LDA
under class imbalance,” Proceedings of the Workshop on Learning in the Presence of Class Imbalance and Concept Drift,
Melbourne, IJCAI 2017, pp. 8-15

31
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Let w ∈ Rd be a vector of weights and w0 ∈ R a threshold such that for a given test vector x:

C∗(x) =


C1 if y = w>x ≥ w0

C2 if y = w>x < w0

(3.1)

The test vector x is assumed to have a multivariate normal distribution in classes C1 and C2, and therefore,

y has a mean of µ1 and a variance of σ2
1 for class C1 and a mean of µ2 and a variance of σ2

2 for class C2;

these are given as:

µ1 = w>x̄1 µ2 = w>x̄2 σ2
1 = w>Σ1w σ2

2 = w>Σ2w (3.2)

It will be recalled from Chapter 2 that the Bayes error is given as.

pe = π1p(y < w0|C1) + π2p(y ≥ w0|C2), (3.3)

The individual misclassification probabilities can be expressed as:

p(y < w0|C1) =
∫ w0

−∞

1√
2πσ1

exp
[
− (ζ − µ1)2

2σ2
1

]
dζ (3.4)

and

p(y ≥ w0|C2) =
∫ ∞
w0

1√
2πσ2

exp
[
− (ζ − µ2)2

2σ2
2

]
dζ (3.5)

By letting z = ζ−µ1
σ1

, (3.4) can be rewritten as:

p(y < w0|C1) =
∫ w0−µ1

σ1

−∞

1√
2π
e−

z2
2 dz = 1−Q

(
w0 − µ1

σ1

)
(3.6)

Similarly, by letting z = ζ−µ2
σ2

, (3.5) can be expressed as:

p(y ≥ w0|C2) =
∫ ∞
w0−µ2
σ2

1√
2π
e−

z2
2 dz = Q

(
w0 − µ2

σ2

)
(3.7)

where Q(.) is the Q-function. Therefore, the Bayes error to be minimised may be rewritten as:

pe = π1
[
1−Q(z1)

]
+ π2

[
Q(z2)

]
(3.8)

where

z1 = w0 − µ1

σ1
and z2 = w0 − µ2

σ2
(3.9)
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3.1.1 Optimality conditions

Our aim is to find a local minimum of pe. A necessary condition is for the gradient of pe to be zero, i.e.,

∇pe(w, w0) =
[
∂pe
∂w> ,

∂pe
∂w0

]>
= 0. (3.10)

Note that:

Q(x) = 1− Φ(x) (3.11)

where Φ(x) is the cumulative distribution function (CDF) of the standard normal random variable x.

Therefore,
dQ(x)
dx

= −Φ′(x) (3.12)

But, by definition,

Φ′(x) = f(x) (3.13)

where f(x) is the probability density function (PDF) of x.

Using the above relations, it can be shown that:

∂pe
∂w = π1

(
1√
2π
e−

z2
1
2
∂z1

∂w

)
− π2

(
1√
2π
e−

z2
2
2
∂z2

∂w

)
(3.14)

From (3.9) and (3.2), it can be shown that

∂z1

∂w =
σ1(−x̄1)− (w0 − µ1)

( 1
2 (w>Σ1w)− 1

2
)
2Σ1w

σ2
1

(3.15)

∂z1

∂w = −σ1x̄1 − z1Σ1w
σ2

1
(3.16)

In a similar way, it can be shown from (3.9) and (3.2) that

∂z2

∂w = −σ2x̄2 − z2Σ2w
σ2

2
(3.17)

Therefore,
∂pe
∂w = π1√

2π

[
− e−

z2
1
2

(
σ1x̄1 + z1Σ1w

σ2
1

)]
+ π2√

2π

[
e−

z2
2
2

(
σ2x̄2 + z2Σ2w

σ2
2

)]
(3.18)

Also, from (3.8),
∂pe
∂w0

= π1

(
1√
2π
e−

z2
1
2
∂z1

∂w0

)
− π2

(
1√
2π
e−

z2
2
2
∂z2

∂w0

)
(3.19)
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Recalling (3.9) and (3.2), it can be shown that

∂z1

∂w0
= 1
σ1

and ∂z2

∂w0
= 1
σ2

(3.20)

Therefore,
∂pe
∂w0

= π1√
2π

(
1
σ1
e−

z2
1
2

)
− π2√

2π

(
1
σ2
e−

z2
2
2

)
(3.21)

Now, equating the gradient ∇pe(w, w0) to zero, the following set of equations are obtained:

(
π2z2

σ2
2
e−z

2
2/2Σ2 −

π1z1

σ2
1
e−z

2
1/2Σ1

)
w =

(
π1

σ1
e−z

2
1/2
)
x̄1 −

(
π2

σ2
e−z

2
2/2
)
x̄2 (3.22)

π1

σ1
e−z

2
1/2 = π2

σ2
e−z

2
2/2 (3.23)

Substituting (3.23) into (3.22) yields:

(
z2

σ2
Σ2 −

z1

σ1
Σ1

)
w = (x̄1 − x̄2) (3.24)

Then the vector w can be given by:

w =
(
z2

σ2
Σ2 −

z1

σ1
Σ1

)−1
(x̄1 − x̄2) (3.25)

But for the fact that z1 and z2 are functions of w0 as can be seen from (3.9), w could have been solved

for iteratively from (3.25) starting from some initial solution. To overcome this problem, an explicit

representation of w0 in terms of w is needed from (3.23) to substitute in z1 and z2 in (3.25) to allow for

the iterative solution of w from (3.25). Solving for w0 from (3.23) results in the following quadratic:

z2
2
2 −

z2
1
2 − ln

(
τσ1

σ2

)
= 0 (3.26)

which can be expanded to:

(
w0 − µ2

σ2

)2
−
(
w0 − µ1

σ1

)2
− 2 ln τσ1

σ2
= 0 (3.27)

and subsequently as:

(
1
σ2

2
− 1
σ2

1

)
w2

0 + 2
(
µ1

σ2
1
− µ2

σ2
2

)
w0 + µ2

2
σ2

2
− µ2

1
σ2

1
− 2 log τσ1

σ2
= 0, (3.28)
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where τ is given as before as τ = π2/π1. If τ is defined and not equal to zero, and σ2
1 6= σ2

2 (since Σ1 6= Σ2

for heteroscedastic LDA), (3.27) can be shown to have the following solutions:

w0 =
µ2σ

2
1 − µ1σ

2
2 ± σ1σ2

√
(µ1 − µ2)2 + 2(σ2

1 − σ2
2) ln

(
τσ1
σ2

)
σ2

1 − σ2
2

, (3.29)

i.e.,

w+
0 = µ2σ

2
1 − µ1σ

2
2 + σ1σ2β

σ2
1 − σ2

2
(3.30)

and

w−0 = µ2σ
2
1 − µ1σ

2
2 − σ1σ2β

σ2
1 − σ2

2
, (3.31)

where

β =
√

(µ1 − µ2)2 + 2(σ2
1 − σ2

2) ln
(τσ1

σ2

)
(3.32)

Nevertheless, since there are two solutions, a choice has to be made as to which of them is substituted

into (3.25). To eliminate one of the solutions, the second-order partial derivative of pe with respect to

w0 is considered, evaluated at w0 as given by (3.29), to determine under what condition the second-order

derivative is greater than or equal to zero. This is a second-order necessary condition for pe to be a local

minimum. From (3.21), it can be shown that:

∂2pe
∂w2

0
= π1√

2π

(
− z1

σ2
1
e−z

2
1/2
)

+ π2√
2π

(
z2

σ2
2
e−z

2
2/2
)

(3.33)

This second-order derivative is denoted by h. Then all possibilities of z1 and z2 (which are the variables

in (3.33) that depend on w0) are considered under three cases, and the sign of h is analysed in each.

1. Case 1: z2 ≤ 0 and z1 ≥ 0: then h is trivially non-positive.

2. Case 2: z2 ≥ 0 and z1 ≤ 0: then h is trivially non-negative.

3. Case 3: z2 > 0 and z1 > 0 or z2 < 0 and z1 < 0: then h is non-negative if and only if

ln
(
π2z2

σ2
2

)
− z2

2
2 ≥ ln

(
π1z1

σ2
1

)
− z2

1
2 (3.34)

i.e.,

ln
(
z2

σ2

/
z1

σ1

)
≥ z2

2
2 −

z2
1
2 − ln

(
τσ1

σ2

)
(3.35)

It will be noted that the right-hand side of the inequality (3.35) is identically zero, as can be seen
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from (3.26). Therefore, the condition under which h is greater than or equal to zero is when:

z2

σ2
≥ z1

σ1
(3.36)

Note also that Case 2 necessarily satisfies (3.36) so that (3.36) is considered as the general inequality

for the non-negativity of h for all cases, and thus for w0 to be a local minimum.

Now, when one considers the two solutions of w0 in (3.29), only w+
0 satisfies the inequality of (3.36),

i.e., only this choice of w0 corresponds to a local minimum. The proof of this is shown below.

Theorem 1. Let w+
0 and w−0 be the two distinct solutions of (3.29), then w+

0 and w−0 cannot both satisfy

(3.36) given that σ1 6= σ2; only w+
0 satisfies (3.36).

Proof. Let β be a positive scalar given by:

β =

√
(µ1 − µ2)2 + 2(σ2

1 − σ2
2) ln

(
τσ1

σ2

)
(3.37)

Note that when β = 0, (3.29) has a repeated root so that w+
0 = w−0 , which are not distinct. Also, let

w+
0 = µ2σ

2
1 − µ1σ

2
2 + σ1σ2β

σ2
1 − σ2

2
(3.38)

Then

z2 = (µ2 − µ1)σ2 + βσ1

σ2
1 − σ2

2
, and z1 = (µ2 − µ1)σ1 + βσ2

σ2
1 − σ2

2
(3.39)

so that
z2

σ2
= (µ2 − µ1)σ2 + βσ1

σ2(σ2
1 − σ2

2) ,
z1

σ1
= (µ2 − µ1)σ1 + βσ2

σ1(σ2
1 − σ2

2) (3.40)

Suppose that w+
0 satisfies (3.36), then

(µ2 − µ1)σ2 + βσ1

σ2(σ2
1 − σ2

2) ≥ (µ2 − µ1)σ1 + βσ2

σ1(σ2
1 − σ2

2) (3.41)

i.e.,
βσ2

1
σ2

1 − σ2
2
≥ βσ2

2
σ2

1 − σ2
2

=⇒ β
σ2

1 − σ2
2

σ2
1 − σ2

2
≥ 0, (3.42)

Therefore β ≥ 0.

Consider now w−0 given as:

w−0 = µ2σ
2
1 − µ1σ

2
2 − σ1σ2β

σ2
1 − σ2

2
(3.43)
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Then

z2 = (µ2 − µ1)σ2 − βσ1

σ2
1 − σ2

2
, and z1 = (µ2 − µ1)σ1 − βσ2

σ2
1 − σ2

2
(3.44)

such that
z2

σ2
= (µ2 − µ1)σ2 − βσ1

σ2(σ2
1 − σ2

2) ,
z1

σ1
= (µ2 − µ1)σ1 − βσ2

σ1(σ2
1 − σ2

2) (3.45)

In order for (3.36) to be satisfied,

(µ2 − µ1)σ2 − βσ1

σ2(σ2
1 − σ2

2) ≥ (µ2 − µ1)σ1 − βσ2

σ1(σ2
1 − σ2

2) , (3.46)

i.e.,
−βσ2

1
σ2

1 − σ2
2
≥ −βσ2

2
σ2

1 − σ2
2

=⇒ β
σ2

1 − σ2
2

σ2
1 − σ2

2
≤ 0 (3.47)

(3.47) implies that β ≤ 0. However, as given in the preamble, β > 0. Thus, w−0 does not satisfy (3.36),

and only w+
0 does.

This expression of w+
0 may then be substituted into (3.25) so that (3.25) is in terms of w only.

Even so, w has to be solved for iteratively. This is because (3.25) has no closed-form solution since

µ1, µ2, σ1, σ2 are themselves functions of w. The iterative procedure, denoted as the Recursive Gaussian

Linear Discriminant (R-GLD), is described in detail in Algorithm 1.

Algorithm 1 Recursive GLD (R-GLD)
1: Input: D1 and D2

2: Obtain x̄1, x̄2,Σ1,Σ2

3: Initialise w: w← (β2Σ2 − β1Σ1)−1(x̄1 − x̄2)

4: Evaluate µ1, µ2, σ
2
1 , σ

2
2 , z1, z2.

5: while Stopping criteria are not satisfied do

6: Solve for w0 = w+
0 from (3.30)

7: Evaluate z1, z2

8: Evaluate the Bayes error pe = π1
[
1−Q(z1)

]
+ π2

[
Q(z2)

]
9: Update w as w←

(
z2
σ2

Σ2 − z1
σ1

Σ1

)−1
(x̄1 − x̄2)

10: Evaluate µ1, µ2, σ1, σ2

11: end while

In Step 2 of Algorithm 1, β1 and β2 are chosen randomly such that β2 > β1 in order to satisfy (3.36).
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3.1.2 Stopping criteria

The R-GLD algorithm may be terminated under any of the following conditions:

1. When the change in pe, ∆pe < ε1, where ε1 is some predefined tolerance.

2. When the change in the norm of w, ∆‖w‖2 < ε2, where ε2 is some predefined tolerance.

3. When the gradient of pe as given by (3.18) is less than a certain tolerance ε3.

4. After a fixed number of iterations I, if convergence is slow.

After termination, the final solution may be chosen either as the solution to which the iterations converge,

or the solution corresponding to the minimum pe found in the iterative updates.

However, the procedure described in Algorithm 1 is not guaranteed to converge to a minimum of pe.

This is because the optimal w as given by (3.25) is obtained using first-order optimality conditions which

are equally satisfied for other critical points such as local maxima or saddle points. For this reason,

Algorithm 1 may have to be run a number of times in order to increase the chances of convergence

to a local minimum. An alternative approach is to minimise the Bayes error using a gradient descent

procedure.

3.1.3 Gradient descent GLD (G-GLD)

Gradient descent is a first-order optimisation procedure (i.e., it requires the computation of the gradient),

frequently employed in machine learning to minimise a differentiable function. Since the gradient rep-

resents the direction of the greatest rate of increase of a function, the negative direction of the gradient

represents a descent direction. Thus, taking steps in the negative direction of the gradient consequently

minimises the Bayes error, provided the steps taken are small enough to satisfy Wolfe’s conditions [124].

Then, for i = 0 until some stopping criteria are satisfied, w and w0 are updated as follows:

wi+1 = wi − γ ∂pe
∂wi

(3.48)

wi+1
0 = wi0 − γ

∂pe
∂wi0

(3.49)

This is shown in Algorithm 2 in its proper context.

The algorithm may be terminated using the same stopping criteria outlined above for the R-GLD.

However, the gradient descent procedure, unlike the R-GLD algorithm, is guaranteed to converge to a

local minimum, if the step rate γ is small enough. Still, gradient descent can be rather slow to converge,
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Algorithm 2 Gradient descent GLD (G-GLD)
1: Input: D1 and D2

2: Obtain x̄1, x̄2,Σ1,Σ2

3: Initialise w: w← (β2Σ2 − β1Σ1)−1(x̄1 − x̄2)

4: Evaluate µ1, µ2, σ
2
1 , σ

2
2 .

5: Solve for w0 = w+
0 from (3.30)

6: i← 0

7: while Stopping criteria are not satisfied do

8: Evaluate z1, z2

9: Evaluate the gradient of pe w.r.t. w as given by:

∂pe
∂w = π1√

2π

[
− e−

z2
1
2

(
σ1x̄1 + z1Σ1w

σ2
1

)]
+ π2√

2π

[
e−

z2
2
2

(
σ2x̄2 + z2Σ2w

σ2
2

)]
(3.50)

10: Evaluate the gradient of pe w.r.t. w0 as given by:

∂pe
∂w0

= π1√
2π

(
1
σ1
e−

z2
1
2

)
− π2√

2π

(
1
σ2
e−

z2
2
2

)
(3.51)

11: Evaluate the Bayes error pe = π1
[
1−Q(z1)

]
+ π2

[
Q(z2)

]
12: Update w as wi+1 ← wi − γ ∂pe∂wi

13: Update w0 as wi+1
0 ← wi0 − γ

∂pe
∂wi0

14: Evaluate µ1, µ2, σ1, σ2

15: end while
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as its rate of convergence is linear. In this regard, an alternative approach to minimising the Bayes error

is Newton’s method.

3.1.4 Newton’s method

Newton’s method is a second-order optimisation procedure derived from the Taylor’s series expansion of

a twice-differentiable function as follows:

Consider the twice differentiable function f(x). Suppose it is desired to find a descent direction di

at x = xi in the ith iteration along which the objective function may be minimised. The Taylor’s series

approximation of f(x + ∆x) at x = xi, ignoring all third and higher-order terms, is given by:

f(x + ∆x) ≈ f(xi) + ∆x>∇f(xi) + ∆x>∇2f(xi)∆x
2 (3.52)

By differentiating (3.52) w.r.t. ∆x and equating to zero, the optimal ∆x can be found, i.e.,

df(xi + ∆x)
d∆x = ∇f(xi) +∇2f(xi)∆x = 0, (3.53)

so that the optimal ∆x is given as:

∆x = −[∇2f(xi)]−1∇f(xi) (3.54)

If the Hessian [∇2f(xi)] is positive definite, then the descent direction can be given as di = ∆x. This

descent direction di may replace the negative gradient used in gradient descent as a descent direction, so

that with regard to the minimisation of the Bayes error, the following iterative procedure is obtained:

ŵi+1 = ŵi − γ[∇2pe(ŵi)]−1∇pe(ŵi), (3.55)

where ŵi = [wi>, w0]>.

While the above procedure, known as Newton’s method, converges much faster than gradient descent,

there are often some computational issues. In particular, the Hessian ∇2pe(ŵi) may not be invertible

or it may be close to singular, so that in practical implementations the matrix is often preconditioned

[124] before the above procedure. Also, for very high-dimensional data, computing the Hessian or its

inverse in every iteration may be computationally expensive. This has led to the use of quasi-Newton

methods, such as the BFGS algorithm [124], that approximate the Hessian and avoid an explicit matrix
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inversion. Furthermore, the algorithm tends to be numerically unstable as it approaches the minima

since the gradient tends to 0.

3.1.5 Non-convexity of pe

In each of the algorithms described so far, the focus has been on finding a local minimum of the Bayes

error pe. Whether a local minimum found is the global minimum depends on the convexity of the objective

function. For pe to be convex, the Hessian matrix H = ∇2pe(w, w0) has to be positive semi-definite for

all w ∈ Rd and w0 ∈ R, i.e.,

v>Hv ≥ 0 (3.56)

for every non-zero v ∈ Rd+1. Observe that:

∇2pe(w, w0) =


∂p2

e

∂w∂w>
∂p2

e

∂w∂w0

∂p2
e

∂w0∂w>
∂p2

e

∂w2
0

 (3.57)

Then, suppose that v = [0>d , x]>, where x ∈ R and 0d is a d-dimensional vector of all zeros. Then,

v>Hv = x2 ∂p
2
e

∂w2
0

(3.58)

It may be recalled from (3.33) that:

∂2pe
∂w2

0
= π1√

2π

(
− z1

σ2
1
e−z

2
1/2
)

+ π2√
2π

(
z2

σ2
2
e−z

2
2/2
)

Thus, the positive semi-definiteness of H requires that ∂2pe
∂w2

0
≥ 0.

However, recall that even under the first-order optimality condition of pe w.r.t. w0, ∂
2pe
∂w2

0
≥ 0 if and

only if z2
σ2
≥ z1

σ1
. Thus, as has been shown in Theorem 1, for w0 given by:

w0 = w−0 = µ2σ
2
1 − µ1σ

2
2 − σ1σ2β

σ2
1 − σ2

2
, (3.59)

this condition is not satisfied.

Therefore ∂2pe
∂w2

0
is not greater than or equal to zero for every w ∈ Rd and w0 ∈ R. Hence, H is not

positive-semidefinite. This in turn implies that pe is non-convex.

For this reason, the Bayes error is characterised by multiple local minima, so that the algorithms
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described have to be run several times, from different initial solutions, to improve the quality of the

overall solution.

3.2 Non-normal distributions

So far, the fundamental assumption that has been used to derive the proposed algorithms is that the data

in each class has a normal distribution. Thus, for a non-normal distribution, the linear classifier that has

been obtained does not minimise the Bayes error for that distribution. It can be argued, however, that

if this unknown distribution is nearly-normal [125], then a more robust linear classifier may be found

in some neighbourhood of the GLD classifier. For this reason, a local neighbourhood search algorithm

can be employed to explore the region in Rd+1 around the GLD to obtain the classifier that minimises

the number of misclassifications on the training dataset. This can be done by perturbing each of the

d + 1 vector elements in the optimal w̃ = [w0,w>]> obtained from the GLD procedure (i.e., R-GLD

or G-GLD) by a small amount δw̃i. After every perturbation, the resulting classifier is evaluated on

the training dataset. This procedure is repeated until the stopping criterion is satisfied, as described in

Algorithm 3.

Algorithm 3 Local Neighbourhood Search (LNS)
1: Input: Optimal w̃ = [w0,w>]> obtained from the GLD.

2: while Stopping criterion is not satisfied do

3: Let w̃ be the current solution.

4: for i← 1 to d do

5: v+ ← w̃, v− ← w̃.

6: v+ ← v+
i + δv+

i

7: Evaluate the misclassifications on the training set using v+

8: v− ← v−i − δv
−
i

9: Evaluate the misclassifications on the training set using v−

10: end for

11: Set the classifier with the minimum number of misclassifications as the current solution w̃.

12: end while

13: Choose the classifier with the smallest number of misclassifications.

The stopping criterion is such that the algorithm is terminated after a certain maximum number of

iterations Rmax is reached, or after a predefined number of iterations rmin when there is no improvement
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in the minimum number of misclassifications that has been found during the search.

3.3 Fisher’s Linear Discriminant

It will be recalled from Chapter 2 that if a common covariance matrix is assumed between the two

classes, Linear Discriminant Analysis (LDA) results in the following choice of the weight vector w and

the threshold w0:

w = Σ−1
x (x̄1 − x̄2), w0 = ln τ + 1

2(x̄>1 Σ−1
x x̄1 − x̄>2 Σ−1

x x̄2), (3.60)

where Σx is the common covariance matrix defined as:

Σx = π1Σ̄1 + π2Σ̄2, (3.61)

and Σ̄1, Σ̄2 are the sample covariance estimates of the data in classes C1 and C2 respectively. π1 and π2

retain their usual definitions as the prior probabilities of classes C1 and C2 respectively.

It is straightforward to show that on the assumption of homoscedasticity, the optimal solution derived

in (3.25) readily yields the optimal Fisher’s Linear Discriminant given by (3.60). If Σ1 = Σ2 = Σx, then

w>Σ1w = w>Σ2w, and σ1 = σ2 = σx. Then the optimal weight vector w as given by (3.25) becomes:

w =
(
z2

σ2
− z1

σ1

)−1
Σ−1
x (x̄1 − x̄2) = σ2

x

µ1 − µ2
Σ−1
x (x̄1 − x̄2) (3.62)

Also, (3.28) decomposes into the following linear equation in w0:

2
(
µ1 − µ2

σ2
x

)
w0 + µ2

2 − µ2
1

σ2
x

− 2 ln τ = 0, (3.63)

which has the following solution:

w0 = µ1 + µ2

2 + σ2
x

µ1 − µ2
ln τ (3.64)

Notice that by definition (3.1), µ1 = w>x̄1 > µ2 = w>x̄2. Therefore, the factor σ2
x

µ1−µ2
in (3.62) can

only be positive; thus, w and w0 given by (3.62) and (3.64) may be proportionally scaled down by σ2
x

µ1−µ2

without changing the discrimination criterion as given by (3.1).

After scaling down, w becomes:

w = Σ−1
x (x̄1 − x̄2) (3.65)
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and w0 becomes:

w0 = ln τ + µ2
1 − µ2

2
2σ2

x

(3.66)

Still, the term µ2
1−µ

2
2

2σ2
x

can be expressed in terms of x̄1, x̄2 and Σx as follows.

It will be noted that:
µ2

1 − µ2
2

2σ2
x

= (µ1 − µ2)(µ1 + µ2)
2σ2

x

, (3.67)

while

µ1 − µ2 = w>(x̄1 − x̄2) = (x̄1 − x̄2)>Σ−1
x (x̄1 − x̄2)

µ1 + µ2 = w>(x̄1 + x̄2) = (x̄1 − x̄2)>Σ−1
x (x̄1 + x̄2)

σ2
x = w>Σxw = (x̄1 − x̄2)>Σ−1

x ΣxΣ−1
x (x̄1 − x̄2) = (x̄1 − x̄2)>Σ−1

x (x̄1 − x̄2) (3.68)

Substituting (3.68) into (3.67) results in the following:

µ2
1 − µ2

2
2σ2

x

= 1
2(x̄1 − x̄2)>Σ−1

x (x̄1 + x̄2) = 1
2
(
x̄>1 Σ−1

x x̄1 − x̄>2 Σ−1
x x̄2

)
(3.69)

Therefore, (3.66) becomes:

w0 = ln τ + 1
2
(
x̄>1 Σ−1

x x̄1 − x̄>2 Σ−1
x x̄2

)
(3.70)

By comparing (3.65) and (3.70) to (3.60), it will be noted that the optimal solutions derived in the

proposed procedure is equivalent to Fisher’s Linear Discriminant if homoscedasticity is assumed.

3.4 Class imbalance

This subsection investigates the effect of class imbalance on the proposed and existing heteroscedastic

LDA algorithms. As has already been indicated in Chapter 2, class imbalance is the scenario where

the data in one class far exceeds the data in the other classes. For the two-class case, this implies that

π1 � π2 or π1 � π2, since the prior probabilities π1 and π2 are often estimated empirically from the

cardinality of the data in each class. By defining τ as

τ = π2

π1
, (3.71)
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the limiting behaviour of LDA and the existing heteroscedastic LDA procedures can studied as τ tends

towards 0 or ∞.

3.4.1 LDA

From (2.13) and (2.14), as τ → ∞, the discriminating threshold w0 approaches ∞. Similarly, as τ → 0,

the discriminating threshold approaches −∞. This tends to skew the decision rule in favour of the

majority class.

3.4.2 R-HLD-2

First, it will be recalled that the existing R-HLD-2 heteroscedastic LDA procedure introduced in Chapter

2 involves solving for the optimal w as given by:

w =
[
s1Σ1 + s2Σ2

]−1(x̄1 − x̄2) (3.72)

by obtaining the optimal values of s1 and s2 via systematic trial and error.

If this solution in (3.72) is compared to the optimal solution derived in (3.25), it will be noted that:

s2 = z2

σ2
and s1 = − z1

σ1
(3.73)

1. Case 1: π1 � π2. Then, from the definition of τ in (3.71), τ → ∞. As τ → ∞, notice that

in (3.30), w0 = w+
0 → ∞, in which case both z2 and z1 approach ∞ as can be seen from (3.9).

Therefore, if the Bayes error is to be minimised in the event of a class imbalance such that π2 � π1,

s2 approaches ∞ and s1 tends toward −∞.

2. Case 2: π1 � π2. Then, from the definition of τ in (3.71), τ → 0. As τ → 0, 2(σ2
1 − σ2

2) ln(τσ1/σ2)

approaches −∞ as can be seen from (3.32). However, since the Bayes optimal threshold w0 is

supposed to be real, as is defined in the problem description in (3.1), β has to be non-negative in

(3.32). Therefore, as τ → 0, β → 0, and w0 = w+
0 →

µ2σ
2
1−µ1σ

2
2

σ2
1−σ2

2
. By substituting this value of w0

into z2 and z1 as defined in (3.9), s2 can be shown to approach:

s2 = z2

σ2
= w0 − µ2

σ2
2

= µ2σ
2
1 − µ1σ

2
2 − µ2(σ2

1 − σ2
2)

σ2
2(σ2

1 − σ2
2) = µ2 − µ1

σ2
1 − σ2

2
(3.74)
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while s1 can also be shown to approach:

s1 = z1

σ1
= w0 − µ1

σ2
1

= µ2σ
2
1 − µ1σ

2
2 − µ1(σ2

1 − σ2
2)

σ2
1(σ2

1 − σ2
2) = µ2 − µ1

σ2
1 − σ2

2
(3.75)

By considering the two cases, it will be noted that for any given dataset, s1 is constrained in the

interval
(
−∞, µ2−µ1

σ2
1−σ2

2

)
while s2 is constrained in the interval

(
µ2−µ1
σ2

1−σ2
2
,∞
)
. This limiting behaviour

makes it difficult to find the optimal values of s2 and s1 in the unbounded interval (−∞,∞) by

trial and error for an arbitrary dataset with class imbalance in the R-HLD-2 heteroscedastic LDA

procedure, unless a very large number of trials are performed.

3.4.3 R-HLD-1 and C-HLD

Moreover, if the optimal solution obtained in (3.25) as well as the optimal threshold given in (3.30) are

multiplied proportionally by:

c = σ1z2 − σ2z1

σ1σ2
, (3.76)

(3.25) may then be expressed as:

w =
[
sΣ2 + (1− s)Σ1

]−1(x̄1 − x̄2) (3.77)

where

s = − σ2z1

σ1z2 − σ2z1
= 1

1− σ1z2

σ2z1

= 1

1− σ2
1
σ2

2

w0 − µ2

w0 − µ1

(3.78)

Due to (3.36) c is non-negative and hence the discrimination criterion given by (3.1) is not changed.

Notice that (3.77) is then in the form of the R-HLD-1 and C-HLD heteroscedastic LDA solutions

described in Chapter 2. However, the R-HLD-1 procedure obtains s by systematic trial and error, unlike

in (3.78), while s is varied between 0 and 1 to obtain the optimal value in the C-HLD procedure.

By analysing the behaviour of the optimal s as given by (3.78) under class imbalance, the performance

of C-HLD and R-HLD-1 under class imbalance can be understood.

1. Case 1: π1 � π2. Then, from the definition of τ in (3.71), τ → ∞. As τ → ∞, notice that in

(3.30), w0 = w+
0 →∞. Then,

lim
τ→∞

s = 1

1− σ2
1
σ2

2

= σ2
2

σ2
2 − σ2

1
(3.79)
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A consequence of the inequality of (3.36) which is necessary for the minimisation of the Bayes error

is that, as τ →∞, σ2 ≤ σ1. Thus, the limit shown in (3.79) tends to be negative.

2. Case 2: π1 � π2. Then, from the definition of τ in (3.71), τ → 0. As τ → 0, 2(σ2
1 − σ2

2) ln(τσ1/σ2)

approaches −∞ as can be seen from (3.32). However, since the Bayes optimal threshold w0 is

supposed to be real, as is defined in the problem description in (3.1), β has to be non-negative in

(3.32). Therefore, as τ → 0, β → 0, and w0 = w+
0 →

µ2σ
2
1−µ1σ

2
2

σ2
1−σ2

2
. Once again, by substituting this

value of w0 in (3.78), the limit of s as τ →∞ can be shown to approach ∞.

Since s tends to be negative in Case 1 as well as approaching ∞ in Case 2, clearly the C-HLD procedure

that constrains s to the interval [0, 1] yields solutions that are only locally optimal in the interval [0, 1].

Moreover, since s is constrained to this interval, the threshold w0 computed in step 3 of the C-HLD

procedure in (2.33) (page 15), is a convex combination of the two projected means µ1 and µ2. Therefore,

the discriminating threshold is always bounded between µ1 and µ2, even when it ought to approach ±∞

under class imbalance. Thus, the C-HLD heteroscedastic LDA procedure tends to be suboptimal in terms

of the error rate under class imbalance, when s falls outside the interval [0, 1].

Also, due to the fact that s is unbounded in the limit of τ , it is tedious to obtain the optimal value

of s for an arbitrary dataset in the R-HLD-1 procedure, except when one runs a very large number of

trials.

3.4.4 A dynamic linear model

Often, under class imbalance, the misclassification rate (which weights the false positive and false negative

rates equally) may not be a preferable evaluation metric. For instance, in credit card fraud prediction,

it is less costly to wrongly flag genuine transactions as fraudulent than to incorrectly classify fraudulent

transactions as genuine. Thus, if it is assumed that genuine transactions are positive examples while

fraudulent transactions are negative examples, minimising the false positive rate is considered more

important than minimising the false negative rate in this scenario.

Most classifiers tend to perform poorly under class imbalance in terms of detecting the minority class,

and LDA is no exception. A common approach to dealing with unbalanced data involves rebalancing

the dataset by procedures such as random oversampling, random undersampling and SMOTE [126, 127].

However, it is known that rebalancing the data does not guarantee a better performance in LDA [12]. This

is due to the fact that LDA, unlike support vector machine (SVM) or logistic regression, is a generative

classifier that attempts to learn the model that generates the data. Specifically, LDA relies on knowledge
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of the true class prior probabilities; if these probabilities are not known a priori, then they are best

estimated from the empirical distribution of the classes in the dataset. Rebalancing the dataset therefore

removes this information about the prior probabilities.

Another common approach to handling class imbalance is to bias the discriminating threshold so that

more minority samples are detected [126]. Certainly, if the minority class is considered as the positive

class, then shifting the discriminating threshold in such a way as to improve the correct classification of

more positive samples, i.e., the true positive rate (TPR) will necessarily increase the majority negative

samples that are wrongly classified as positive, i.e., increase the false positive rate (FPR). In this case, a

measure of the robustness of the classifier is the level of FPR–TPR trade-off it is able to provide, such

as is measured by the area under the receiver operating characteristics (ROC) curve, or AUC. Thus, a

large AUC generally indicates a robust classifier performance under class imbalance.

For a given binary classifier, varying the discriminating threshold w0 has the effect of putting more

emphasis on either the false positive rate or the false negative rate, depending on the specific application

of the classifier. For a lot of classifiers such as the SVM or LDA under equal covariance (3.60), the

discriminating threshold w0 is independent of the weight vector w, and therefore varying w0 does not

change w. However, under unequal covariance, the Bayes optimal weight vector is a function of w0 as can

be noted in (3.22). Therefore, if a different threshold w0 is to be used, other than the optimal threshold

w0, then (3.25) is no longer optimal, as it is obtained using the optimal threshold in (3.23). In such a

case, for any arbitrary w0 chosen in such a way as to emphasise the false positive rate or false negative

rate, the optimal w can be obtained from (3.22) as follows:

w =
(
π2z2

σ2
2
e−

z2
2
2 Σ2 −

π1z1

σ2
1
e−

z2
1
2 Σ1

)−1(
π1

σ1
e−

z2
1
2 x̄1 −

π2

σ2
e−

z2
2
2 x̄2

)
(3.80)

If both sides of (3.22) were projected onto w, the following is obtained:

w>
(
π2z2

σ2
2
e−z

2
2/2Σ2 −

π1z1

σ2
1
e−z

2
1/2Σ1

)
w = w>

(
π1

σ1
e−z

2
1/2
)
x̄1 −w>

(
π2

σ2
e−z

2
2/2
)
x̄2. (3.81)

The above result can be simplified as follows:

π2z2e
−
z2

2
2 − π1z1e

−
z2

1
2 = π1µ1

σ1
e−

z2
1
2 − π2µ2

σ2
e−

z2
2
2 . (3.82)

π2e
−
z2

2
2

(
z2 + µ2

σ2

)
= π1e

−
z2

1
2

(
z1 + µ1

σ1

)
(3.83)
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π2w0

σ2
e−

z2
2
2 = π1w0

σ1
e−

z2
1
2 (3.84)

Substituting (3.84) into (3.80) then results in:

w =
(
z2

σ2
Σ2 −

z1

σ1
Σ1

)−1
(x̄1 − x̄2) (3.85)

Still, (3.80) has no closed form solution (since σ1, σ2, z1, z2 are themselves functions of w), and it must

be solved iteratively, for example using gradient descent.

By optimising (3.85) via the gradient descent procedure described in Algorithm 2, a dynamic model

of the weight vector may be obtained as a function of a given threshold value w0 as:

w(w0) =
(
z′2
σ∗2

Σ2 −
z′1
σ∗21

Σ1

)−1
(x̄1 − x̄2) (3.86)

where

σ∗21 = w∗>Σ1w∗, σ∗22 = w∗>Σ2w∗, z′1 = w0 −w∗>x̄∗1
σ∗1

, z′2 = w0 −w∗>x̄∗2
σ∗2

(3.87)

and w∗ is the optimal weight vector that the gradient descent procedure in Algorithm 2 yields. This

model is referred to as dynamic GLD (D-GLD).

The procedure described in (3.86) is dynamic in the sense that it optimises the weight vector w

depending on the specified discriminating threshold w0. Therefore, it is more generalised than the existing

heteroscedastic LDA procedures, as it can easily be employed in different applications with different goals

in terms of minimising the probability of false alarm or the probability of missed detection.

In terms of the area under the receiver operating characteristics curve therefore, since w is optimised

for any given w0 in the dynamic linear model, the true positive rate and false positive rate obtained at

every threshold setting are equally optimal. This is unlike the existing heteroscedastic LDA procedures

where a single weight vector w (as given in (3.72) or (3.77) which implicitly employs the optimal value of

w0) is used for all other threshold settings. Employing a constant w for any value of w0 violates the result

in (3.80) which indicates that under unequal covariance, the Bayes-optimal w is a non-linear function of

w0.

3.5 The kernel formulation

If the classes C1 and C2 are not linearly separable in the space X , which is the original feature space of the

feature vector x, accounting for heteroscedasticity may still yield unsatisfactory results. It would thus be
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appropriate to first map the training data X via a transformation φ(x) into a higher dimensional feature

space where linear separability would be guaranteed.

After this transformation, the aim, as before, is to find a linear discriminant of the formw>φ(x)−w0 =

0, i.e. a vector of weights w and a threshold w0 such that for a given vector x:

C∗(x) =


C1 if y = w>φ(x) ≥ w0

C2 if y = w>φ(x) < w0

(3.88)

Let the weight w be given by the relation:

w =
N∑
i=1

αiφ(xi) (3.89)

where n is the cardinality of the training dataset X , and αi for i ∈ {1, ..., N} are unknown. Then, the

random variable y is given by:

y = w>φ(x) =
( N∑
i=1

αiφ(xi)
)>

φ(x) (3.90)

y =
N∑
i=1

αiφ(xi)>φ(x) (3.91)

y =
N∑
i=1

αiK(xi,x) (3.92)

where K(xi,x) = φ(xi)>φ(x), as introduced in Section 2.1.1.

Since the minimisation of the error probability pe as given in (3.8) assumes a normal distribution

in the two classes, it is assumed in this formulation also that the data in the transformed space Y is

normally distributed, so that the variable y in turn is normally distributed as follows:

C1 : y ∼ N (µ1, σ
2
1)

C1 : y ∼ N (µ2, σ
2
2) (3.93)

where

µ1 = w>m̄1 µ2 = w>m̄2 σ2
1 = w>K1w σ2

2 = w>K2w. (3.94)

Here, m̄1, m̄2 are the sample means for classes C1 and C2, and K1,K2 are the sample covariance
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matrices for classes C1 and C2 respectively, all given as:

m̄1 = 1
n1

n1∑
i=1

φ(xi), m̄2 = 1
n2

n2∑
i=1

φ(xi) (3.95)

K1 = 1
n1 − 1

n1∑
i=1

(
φ(xi)−

1
n1

n1∑
j=1

φ(xj)
)(

φ(xi)−
1
n1

n1∑
k=1

φ(xk)
)>

(3.96)

K2 = 1
n2 − 1

n2∑
i=1

(
φ(xi)−

1
n2

n2∑
j=1

φ(xj)
)(

φ(xi)−
1
n2

n2∑
k=1

φ(xk)
)>

(3.97)

with n1 and n2 being the number of training points in classes C1 and C2 respectively.

But for the unknown transformation φ(x), it would have been straightforward in this kernel formula-

tion to minimise the Bayes error using Algorithm 2, by replacing x̄1, x̄2,Σ1 and Σ2 with m̄1, m̄2,K1 and

K2 respectively. However, by employing the kernel trick, an explicit representation of φ(x) is rendered

unnecessary, since the formulation is reduced to an inner product between two vectors in Y, which is the

kernel K. Thus, µ1, µ2, σ1 and σ2 are derived in terms of the kernel K.

µ1 = w>m̄1 =
( n∑
i=1

αiφ(xi)
)>( 1

n1

n1∑
j=1

φ(xj)
)

(3.98)

µ1 = 1
n1

n∑
i=1

n1∑
j=1

αiφ(xi)>φ(xj) (3.99)

µ1 = 1
n1

n∑
i=1

n1∑
j=1

αiK(xi,xj) (3.100)

µ1 = α>b̄1 (3.101)

where α = [α1, ..., αn] and

b̄1 = 1
n1

M11n1 (3.102)

with 1n1 being an n1-dimensional vector with all entries being 1, and M1 an n× n1-dimensional matrix

with M1(i, j) = K(xi,xj) = φ(xi)>φ(xj) for all xi ∈ X and all xj ∈ D1. Similarly,

µ2 = 1
n2

n∑
i=1

n2∑
j=1

αiK(xi,xj) (3.103)

µ2 = α>b̄2 (3.104)
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where

b̄2 = 1
n2

M21n2 (3.105)

with 1n2 being an n2-dimensional vector with all entries being 1, and M2, an n× n2-dimensional matrix

with M2(i, j) = K(xi,xj) = φ(xi)>φ(xj) for all xi ∈ X and all xj ∈ D2.

Note that K1 as given by (3.96) can be expanded as follows:

K1 = 1
n1 − 1

n1∑
i=1

[
φ(xi)φ(xi)> −

1
n1
φ(xi)

n1∑
k=1

φ(xk)> − 1
n1

n1∑
j=1

φ(xj)φ(xi)> + 1
n2

1

n1∑
j=1

φ(xj)
n1∑
k=1

φ(xk)>
]

(3.106)

K1 = 1
n1 − 1

[ n1∑
i=1

φ(xi)φ(xi)> −
1
n1

n1∑
i=1

φ(xi)
n1∑
k=1

φ(xk)> − 1
n1

n1∑
j=1

φ(xj)
n1∑
i=1

φ(xi)>+

n1

n2
1

n1∑
j=1

φ(xj)
n1∑
k=1

φ(xk)>
]

(3.107)

K1 = 1
n1 − 1

[ n1∑
i=1

φ(xi)φ(xi)> −
1
n1

n1∑
i=1

φ(xi)
n1∑
k=1

φ(xk)>
]

(3.108)

so that

σ2
1 = w>K1w = 1

n1 − 1

( n∑
m=1

αmφ(xm)
)>[ n1∑

i=1
φ(xi)φ(xi)> −

1
n1

n1∑
i=1

φ(xi)
n1∑
k=1

φ(xk)>
]( n∑

t=1
αtφ(xt)

)
(3.109)

σ2
1 = 1

n1 − 1

[ n∑
m=1

αmφ(xm)>
n1∑
i=1

φ(xi)φ(xi)>
n∑
t=1

αtφ(xt)−

1
n1

n∑
m=1

αmφ(xm)>
n1∑
i=1

φ(xi)
n1∑
k=1

φ(xk)>
n∑
t=1

αnφ(xt)
]

(3.110)

σ2
1 = 1

n1 − 1

[ n∑
m=1

n1∑
i=1

αmφ(xm)>φ(xi)
n∑
t=1

αtφ(xi)>φ(xt)−

1
n1

n∑
m=1

n1∑
i=1

αmφ(xm)>φ(xi)
n1∑
k=1

n∑
t=1

αtφ(xk)>φ(xt)
]

(3.111)

σ2
1 = 1

n1 − 1

(
α>M1M>1 α− 1

n1
αM11n1>nM

>
1 α

)
(3.112)

σ2
1 = α>C1α (3.113)
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where

C1 = 1
n1 − 1

(
M1In1M

>
1 −

1
n1

M11n1×n1M
>
1

)
(3.114)

with In1 being an n1-sized identity matrix, and 1n1×n1 being an n1-sized square matrix with all entries

being 1.

Similarly, it can be shown that:

σ2
2 = α>C2α (3.115)

where

C2 = 1
n2 − 1

(
M2In2M

>
2 −

1
n2

M21n2×n2M
>
2

)
(3.116)

with In2 being an n2-sized identity matrix, and 1n2×n2 being an n2-sized square matrix with all entries

being 1.

Having obtained µ1, µ2, σ1 and σ2 in terms of the kernel function K, the gradient descent procedure

in Algorithm 2 is then readily applicable to minimise the Bayes error in the transformed space Y, where

the gradient of pe w.r.t. α is given by:

∂pe
∂α

= π1√
2π

[
− e−

z2
1
2

(
σ1b̄1 + z1C1α

σ2
1

)]
+ π2√

2π

[
e−

z2
2
2

(
σ2b̄2 + z2C2w

σ2
2

)]
. (3.117)

This is done by replacing x̄1, x̄2,Σ1,Σ2 and w with b̄1, b̄2,C1,C2 and α respectively as indicated in

Algorithm 4.

The output of the gradient descent procedure would be the vector α and w0 so that for a given vector

x, one predicts class C∗(x) based on the following:

C∗(x) =


C1 if y =

∑n
i=1 αiK(xi,x) ≥ w0

C2 if y =
∑n
i=1 αiK(xi,x) < w0

(3.121)

Moreover, the computation associated in each iteration of the gradient descent procedure is cheap, and no

matrix inversion is need for the minimisation of the Bayes error, unlike in the Kernel Fisher’s discriminant

or the kernel adaptations of the existing heteroscedastic LDA approaches.

While the main utility of the kernel function is to guarantee linear separability of the two classes in

the transformed space Y, the kernel may also be chosen in such a way that it transforms non-normal

data into one that is nearly-normal, so that the assumption of normality used in this formulation may

be satisfied.
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Algorithm 4 Kernel GLD (K-GLD)
1: Input: D1 and D2

2: Choose a kernel function K(xi,xj)

3: Evaluate M1,M2

4: Evaluate b̄1, b̄2,C1,C2

5: Initialise α: α← (β2C2 − β1C1)−1(b̄1 − b̄2),

6: Evaluate µ1, µ2, σ
2
1 , σ

2
2

7: Solve for w0 = w+
0 from

w+
0 =

µ2σ
2
1 − µ1σ

2
2 + σ1σ2

√
(µ1 − µ2)2 + 2(σ2

1 − σ2
2) ln

(
τσ1
σ2

)
σ2

1 − σ2
2

(3.118)

8: while Stopping criteria are not satisfied do

9: Evaluate z1, z2

10: Evaluate the gradient of pe w.r.t. α as given by:

∂pe
∂α

= π1√
2π

[
− e−

z2
1
2

(
σ1b̄1 + z1C1α

σ2
1

)]
+ π2√

2π

[
e−

z2
2
2

(
σ2b̄2 + z2C2α

σ2
2

)]
. (3.119)

11: Evaluate the gradient of pe w.r.t. w0 as given by:

∂pe
∂w0

= π1√
2π

(
1
σ1
e−

z2
1
2

)
− π2√

2π

(
1
σ2
e−

z2
2
2

)
(3.120)

12: Update α as αi+1 ← αi − γ ∂pe∂αi

13: Update w0 as wi+1
0 ← wi0 − γ

∂pe
∂wi0

14: Evaluate µ1, µ2, σ1, σ2

15: end while
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3.6 Experimental validation

Three different experiments are described in this section. The first experiment is aimed at investigating

the performance of the proposed GLD algorithm for balanced datasets, while the second experiment

examines the effect of class imbalance on the proposed algorithm as well as the existing heteroscedastic

LDA procedures. The third experiment looks at the performance of the GLD procedure when kernalised

to learn non-linear decision boundaries.

3.6.1 Balanced datasets

GLD is validated on two artificial datasets denoted by D1 and D2, and on ten real-world datasets taken

from the University of California, Irvine (UCI) Machine Learning Repository. These datasets are shown in

Table 3.1 and cut across a wide range of applications including handwriting recognition, medical diagnosis,

remote sensing and spam filtering. D1 and D2 are normally distributed with different covariance matrices.

For D1, 1000 samples are generated each for class C1 and class C2 using the following Gaussian parameters:

x̄2 = [3.86, 3.10, 0.84, 0.84, 1.64, 1.08, 0.26, 0.01]>,

Σ2 = diag(8.41, 12.06, 0.12, 0.22, 1.49, 1.77, 0.35, 2.73)

x̄1 = x̄2 − 0.3, Σ1 = I (3.122)

Similarly, for D2, 1000 samples are generated each for class C1 and class C2 using the following Gaussian

parameters:

x̄2 = [−1.5,−0.75, 0.75, 1.5]>,

Σ2 = diag(0.25, 0.75, 1.25, 1.75)

x̄1 = x̄2 − 0.75, Σ1 = I (3.123)

The above Gaussian parameters are slightly modified from the two class data used by Fukunaga [8] and

Xue [12] in order to make the sample means less separated.

For each dataset in Table 3.1, 10-fold cross validation is repeated for 20 different trials. On each

training dataset, the average minimum Bayes error achievable by the proposed GLD algorithm is obtained.

The recursive GLD (R-GLD) optimisation method is used in these experiments. If there are more than

two classes, the OvO multiclass strategy is used, and then the mean Bayes error over all K(K − 1)/2
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Table 3.1: List and characteristics of datasets
K is the number of classes, d is the dimensionality of the dataset, and n is the number of data points (or
feature vectors) in the dataset.

Dataset Label n d K

D1 (a) 2000 8 2
D2 (b) 2000 4 2
Liver (c) 345 6 2
Shuttle (d) 58000 9 7
Vowels (e) 990 10 11

Zernike Moments (f) 2000 47 10
Image Segmentation (Statlog) (g) 2310 19 7

Spambase (h) 4601 37 2
Wine Quality (White) (i) 4898 11 7

Optical Digits (j) 5620 64 10
Satellite (Statlog) (k) 6435 36 6

Letters (l) 20000 16 26

discriminants is calculated. The performance of the R-GLD is compared with the original LDA as well

as the heteroscedastic LDA procedures by Fukunaga [8], Anderson [71] and Marks [70] in terms of the

Bayes error 3.8. For the sake of brevity, these three heteroscedastic LDA algorithms are denoted by the

annotations earlier introduced: C-HLD, R-HLD-1 and R-HLD-2 respectively. These results are shown in

Table 3.2. Quadratic discriminant analysis (QDA) is not included in this comparison because the Bayes

error in (3.8) is only defined for linear classification.

Moreover, for each of the test datasets, the average classification accuracy for each of LDA, C-HLD,

R-HLD-1, R-HLD-2, GLD and GLD with local neighbourhood search (LNS) (Algorithm 3) are also

evaluated. The performance of these LDA approaches are also compared to support vector machines

(SVMs). These results are shown in Table 3.3, while the average training times of the algorithms are

shown in Table 3.4 and pictorially in Figure 3.1.

The prior probabilities are estimated based on the relative frequencies of the data in each class in the

dataset, and the stopping criterion for the R-GLD is thus: the algorithm is stopped if the Bayes error

pe is less than or equal to 10−6, or else it is terminated after 20 iterations, if pe is not within the 10−6

tolerance; the solution corresponding to the minimum pe is then chosen. Also, for the LNS procedure,

each vector element is perturbed by 10% of its absolute value, i.e. δw̃i = 0.1|w̃i|, and the procedure is run

for R=1000 iterations, terminating prematurely if rmax = 0.1Rmax (page 42). A step size of ∆s = 0.001

is used for the C-HLD algorithm, and 1000 trials are run for R-HLD-1 and R-HLD-2. All the parameter
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settings used in the experiments are optimised via cross-validation. Note that if the sample covariance

matrix is singular, the Moore-Penrose pseudo-inverse is used.

Results and Discussion

Table 3.2: Average Bayes error (%)
Best values are in bold. The values with asterisk (*) are those that are statistically indiscernible from
the best values based on the Wilcoxon’s signed rank test at a significance level of 0.01.

Dataset LDA C-HLD R-HLD-1 R-HLD-2 R-GLD
(a) 0.0397 0.0382 0.0383 0.0361* 0.0360
(b) 0.0774 0.0749 0.0749 0.0740* 0.0739
(c) 0.9981 0.9838 0.9838 0.9838 0.9838
(d) 0.0001 0.0001 0.0001 0.0001 0.0001
(e) 0.0339 0.0326 0.0326 0.0326 0.0326
(f) 0.0054 0.0051 0.0048 0.0048 0.0050*

(g) 0.0037 0.0029 0.0029 0.0029 0.0029
(h) 0.0253 0.0228 0.0228 0.0228 0.0228
(i) 0.0162 0.0201 0.0156* 0.0155* 0.0154
(j) 0.0002 0.0002 0.0002 0.0002 0.0002
(k) 0.0046 0.0039 0.0039 0.0039 0.0039
(l) 0.0007 0.0007 0.0007 0.0007 0.0007

Table 3.3: Average classification accuracy (%)
In bold for each dataset is the best values among the six LDA procedures. The values with asterisk (*)
are those that are statistically indiscernible from the best values based on the Wilcoxon’s signed rank
test at a significance level of 0.01.

Dataset LDA C-HLD R-HLD-1 R-HLD-2 R-GLD GLD+LNS SVM
(a) 76.00 77.18 77.00 78.48 78.65 78.57 77.47
(b) 76.87 77.93 77.93 78.17* 78.37 78.00 77.70
(c) 67.83 63.19 62.32 62.03 63.77 68.12 68.70
(d) 94.10 96.60 96.74 96.73 96.59 97.91 84.39
(e) 73.64 74.14 74.44 74.44 74.14 75.66 76.77
(f) 84.00 83.90 84.10 84.15 84.80 84.00 81.90
(g) 94.33 94.59 94.59 94.63* 94.59 94.89 96.15
(h) 88.76 88.29 88.26 88.15 88.26 90.28 85.68
(i) 53.41 46.59 53.37 53.33 53.55 54.14 51.88
(j) 96.74 96.99 96.97 96.98 97.01 97.41 97.84
(k) 85.69 86.06 86.06 86.03 86.08 86.65 86.85*

(l) 81.67 81.87 81.83 81.78 81.88 82.25 85.39
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Table 3.4: Average training time (s)
Best values are in bold.

Dataset LDA C-HLD R-HLD-1 R-HLD-2 R-GLD R-GLD+LNS SVM
(a) 0.001 0.161 0.140 0.139 0.002 0.181 23.192
(b) 0.001 0.142 0.121 0.121 0.002 0.060 0.721
(c) 0.001 0.155 0.142 0.134 0.003 0.028 2.673
(d) 0.037 3.531 3.023 3.012 0.089 43.32 4623.138
(e) 0.036 11.099 9.409 9.751 0.167 2.075 1.173
(f) 0.387 123.662 123.649 121.906 1.955 110.694 23.126
(g) 0.128 37.320 37.876 37.875 0.488 2.143 21.775
(h) 0.101 10.437 7.729 7.474 0.753 36.83 804.574
(i) 0.017 4.257 3.691 3.750 0.080 5.928 914.257
(j) 0.638 10.099 9.358 9.171 0.915 168.190 409.380
(k) 0.304 18.067 17.842 17.912 0.858 13.919 311.202
(l) 0.835 73.050 64.022 65.414 3.245 37.202 109.232

(a) (b) (c) (i) (e) (d) (h) (g) (k) (f) (j) (l)
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Figure 3.1: Average training time (s)
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For real-world datasets, the covariance matrices of the classes are rarely equal, therefore the homo-

scedasticity assumption in LDA does not hold. The results in Table 3.2 confirm that LDA does not

minimise the Bayes error under heteroscedasticity, as none of the datasets used has equal covariance

matrices. With the exception of datasets (d), (j) and (l), where LDA achieves an equal Bayes error as

the other heteroscedastic LDA approaches, LDA is outperformed by R-GLD on all remaining datasets in

terms of minimising the Bayes error. The differences in the Bayes error are due to small changes in the

weight vector w as given in (2.34) (page 15). Though this difference in Bayes error is insignificant on

most of the datasets, the weight vector w is sensitive enough to small changes that it results in significant

differences in the classification accuracies, as is seen on datasets (a), (b), (c), (d) and (f). It will be noted

that the other three heteroscedastic LDA approaches algorithms achieve a performance comparable to

R-GLD on all the datasets in terms of the Bayes error. However, R-HLD-1 and R-HLD-2 require a lot of

trials (1000 in our experiments) in order to obtain the optimal parameters s and s1, s2 respectively, while

C-HLD requires a step size of ∆s = 0.001 which translates to 1001 trials. Consequently, the training

time for these algorithms far exceed that of R-GLD, as can be seen in Table 3.4. For example, the gain in

training time of R-GLD over C-HLD, R-HLD-1 and R-HLD-2 is over 62 fold for dataset (g), and about

20 fold for dataset (l). Moreover, since C-HLD, R-HLD-1 and R-HLD-2 all require matrix inversions,

performing a matrix inversion for each of the 1000 trials can be a computationally demanding task es-

pecially for high-dimensional data, which have large covariance matrices. Instead, since R-GLD follows

a principled optimisation procedure, the number of matrix inversions required is far lower. For example,

on dataset (f), which has a dimensionality of 47, R-GLD requires over 60 times less time to train than

the other heteroscedastic LDA approaches.

It is conceivable that the minimisation of the Bayes error would translate into a good performance in

terms of the classification accuracy, if the normality assumption of LDA holds. For this reason, it can be

seen in Table 3.3 that R-GLD achieves the best classification accuracy on datasets (a) and (b), which are

generated from known normal distributions. Thus, the proposed R-GLD algorithm is particularly suited

for applications with datasets that tend to be normally distributed in each class e.g., in machine fault

diagnosis, or accelerometer-based human activity recognition [76], as it also requires far less training time

than the existing heteroscedastic LDA approaches.

However, for datasets (c) through to (l), the classes do not have any known normal distribution.

Therefore, minimising the Bayes error under the normality assumption would not necessarily result in a

classifier that has the best classification accuracy, even if the difference in covariance matrices has been

accounted for. For this reason, it is not surprising that LDA achieves a superior classification accuracy
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than C-HLD, R-HLD-1, R-HLD-2 and R-GLD on datasets (c) and (h) as can be seen in Table 3.3.

However, by searching around the neighbourhood of the R-GLD classifier, the LNS procedure is able to

account for the non-normality and obtain a more robust classifier. Thus, R-GLD, together with the LNS

procedure, achieves a higher classification accuracy than all the LDA approaches on all the real-world

datasets (i.e. (c) to (l)) with the exception of dataset (f) which has R-GLD showing superior classification

accuracy.

While the SVM outperforms the LDA approaches on half of the datasets, its training time can be

rather long for large datasets. For instance, for dataset (d) which has 58000 elements, the SVM takes

about 1.3 hours to train whereas R-GLD with LNS, which achieves the best classification accuracy on

this dataset, takes 43 seconds to train, representing over 100 fold savings in computational time over the

SVM. Similar patterns can be seen in other datasets like dataset (i), where R-GLD with LNS achieves

a superior classification accuracy with over 150 times shorter training time than SVM. This suggests

that for such large datasets, R-GLD with Local Neighbourhood Search is a low-complexity alternative to

SVM, as it requires far less computational time than SVM.

However, since the LNS procedure involves evaluating the misclassification rate on the training set

for every perturbation, the procedure does not scale well with large amounts of training data. Because

of this, it is important to have a good initial solution like R-GLD, so that an early termination may be

performed if there is no improvement after some number of iterations.

3.6.2 Imbalanced datasets

The effects of class imbalance is investigated experimentally in this section. While the classification

accuracy may be skewed toward the majority class under class imbalance, the datasets used here are

not rebalanced, since rebalancing the data results in poor estimates of the true class prior probabilities

employed in LDA (see Section 1). Instead, the discriminating threshold is varied to allow for the detection

of more minority samples. Thus, the AUC has been provided as the evaluation metric. The AUC provides

a measure of the trade-off between the false positive rate and the true positive rate, as the discriminating

threshold is varied. The proposed D-HLD model is evaluated on an artificial dataset D3 with the following
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Gaussian parameters:

x̄1 = [−1.5,−0.75, 0.75, 1.5]>,

Σ1 = diag(0.25, 0.75, 1.25, 1.75)

x̄2 = x̄1 − ω, Σ2 = I (3.124)

Here, ω controls the degree of class overlap, and is set to ω = 0.5 in the experiments. 100, 000 points are

generated in class C1 and 100, 000f points are generated in class C2 to simulate an unbalanced data. Two

values of f are used, i.e., f = 2 and f = 10, representing an imbalance ratio 2 and 10 respectively. This

is followed by 10 trials of 10-fold cross validation. The same parameters for all algorithms used for the

first experiment in Section 3.5.1 are used here. Note that the heteroscedastic LDA procedure, R-HLD-1,

is not simulated here, as it has been shown to have roughly the same performance as that of R-HLD-2 in

Section 3.5.1, the only difference being the number of random parameters that are controlled.

The experiment is repeated for 8 real-world datasets for which the fraction of the minority class range

between 0.77% and 42.56%. The characteristics of the datasets are shown in Table 3.5.

Table 3.5: Characteristics of artificial and UCI datasets
The dimensionality of the dataset is denoted by d, while n is the number of samples in the dataset. f
represents the ratio of the majority class to the minority class. Indices appended to a dataset represents
the minority class, while all remaining classes form the majority class.

Dataset d n Minority (%)
D3(f = 10) 4 1, 100, 000 9.09
D3(f = 2) 4 300, 000 33.33
E-Coli-1 7 1484 42.56
Liver 6 345 42.03

Diabetes 8 768 34.90
WpBC 33 194 23.71
USPS-1 256 1484 16.70
Yeast-1 8 1484 16.44
Yeast-6 8 1484 3.44

Abalone-19 7 4177 0.77

The average AUC and training time over all 10 folds for each of the artificial and real-world datasets

for our algorithm compared with LDA, QDA, R-HLD and C-HLD are then computed. These results

are shown in Tables 3.6 to 3.15. Other metrics of interest provided in the results include the error rate

(ER), and the balanced error rate (BER), which is defined as half the sum of the false positive and false
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negative rates, i.e., BER = 0.5(FPR+FNR). While the F-measure is another common evaluation metric

under class imbalance scenarios, it is not included here because it only considers the precision and recall

values which do not take into account the true negatives, so that the true negatives can be allowed to

vary freely without significantly changing the F-measure [88]. Additionally, the existing LDA approaches

are compared in the tables with the linear SVM [93] without any enhancement by rebalancing procedures

such as SMOTE.

Note that in all the tables, the best average values are in bold, while the values in asterisk are those

that do not differ statistically from the best values based on Wilcoxon’s signed rank test at a significance

level of 0.01.

Results and discussions

Table 3.6: Artificial dataset D3 (f=10): AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.748 0.090* 0.490 0.038
C-HLD 0.747 0.195 0.334 0.174
R-HLD 0.712 0.089 0.483 0.154
QDA 0.817 0.089 0.463 0.046
SVM 0.740 0.091* 0.500 7667.820

D-GLD 0.788 0.089 0.483 0.038

Table 3.7: Artificial dataset D3 (f=2): AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.674 0.330 0.443 0.008

C-HLD 0.667 0.334 0.378 0.153
R-HLD 0.654 0.306 0.422 0.133
QDA 0.760 0.272 0.332 0.012
SVM 0.719 0.323 0.481 1347.635

D-GLD 0.745 0.305 0.422 0.013

The results in Table 3.6 and 3.7 show QDA having the largest AUC and error rate among all the

classifiers compared. This is consistent with the fact that the artificial dataset is normally distributed

in each class with unequal covariances. Therefore the Bayes-optimal classifier is obtained from quadratic

discriminant analysis. The SVM shows a competitive performance on this dataset to QDA (below the

performance of D-GLD). However, since the SVM does not make any assumptions on the distribution

of the data, maximising the margin between the positive and negative examples does not necessarily
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Table 3.8: E-Coli-1 dataset: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.980 0.032* 0.032* 0.022
C-HLD 0.980 0.032* 0.032* 0.191
R-HLD 0.980 0.032* 0.032* 0.217
QDA 0.971 0.441 0.500 0.045
SVM 0.979 0.031 0.030 1.242

D-GLD 0.995 0.032* 0.032* 0.069

Table 3.9: Liver disorders dataset: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.703 0.309 0.333 0.001
C-HLD 0.700 0.358 0.366 0.155
R-HLD 0.699 0.359 0.367 0.132
QDA 0.692 0.401 0.386 0.001*

SVM 0.728 0.403 0.472 0.014
D-GLD 0.757 0.359 0.367 0.005

Table 3.10: Diabetes dataset: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.828 0.226 0.274 0.004
C-HLD 0.827 0.229 0.283 0.167
R-HLD 0.827 0.229 0.282 0.144
QDA 0.805 0.258 0.300 0.001
SVM 0.836 0.223 0.275* 0.031

D-GLD 0.845 0.229 0.283 0.005

Table 3.11: WpBC dataset: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.788 0.202 0.300 0.043
C-HLD 0.785 0.212 0.307 0.581
R-HLD 0.785 0.212 0.307 0.522
QDA 0.641 0.230 0.480 0.001
SVM 0.720 0.202 0.411 0.031

D-GLD 0.923 0.211 0.306 0.057
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Table 3.12: USPS-1: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.997* 0.017 0.032 0.091
C-HLD 0.997* 0.015 0.022 19.722
R-HLD 0.997* 0.015 0.022 19.732
QDA 0.984 0.167 0.500 0.035
SVM 0.999 0.128 0.384 12.491

D-GLD 0.990 0.015 0.022 0.396

Table 3.13: Yeast-1 dataset: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.832 0.131 0.313 0.002*

C-HLD 0.825 0.131 0.273 0.167
R-HLD 0.820 0.131 0.313 0.143
QDA 0.817 0.164 0.500 0.001
SVM 0.854* 0.117 0.324 0.039

D-GLD 0.856 0.131 0.312 0.005

Table 3.14: Yeast-6 dataset: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.878 0.037* 0.390 0.001*

C-HLD 0.878 0.054 0.243 0.165
R-HLD 0.877 0.037* 0.390 0.143
QDA 0.845 0.034 0.500 0.001
SVM 0.845 0.034 0.500 0.028

D-GLD 0.911 0.037* 0.390 0.005

Table 3.15: Abalone-19 dataset: AUC, Error Rate (ER), Balanced Error Rate (BER), Time

Algorithm AUC ER BER Time (s)
LDA 0.847 0.015 0.504 0.001
C-HLD 0.848 0.085 0.308 0.163
R-HLD 0.724 0.014 0.503 0.140
QDA 0.737 0.016 0.504 0.001*

SVM 0.662 0.008 0.500 0.083
D-GLD 0.862 0.014 0.503 0.007
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yield the Bayes-optimal discrimination for this dataset with a known normal distribution. Moreover, the

training time of the SVM is large, taking as much as 2.1 hours in Table 3.6, due to the fact that as a

kernel classifier, it doesn’t scale well with a lot of training data; the training time can be prohibitive on

larger datasets.

For arbitrary non-normal distributions, however, QDA may be prone to overfitting, and may not

perform satisfactorily, due, in part, to the fact that it is a quadratic classifier. Linear classifiers, on the

other hand, tend to be more robust to non-normality than quadratic classifiers [128]. Thus, LDA, as well

as R-HLD and D-HLD outperform QDA in terms of the error rate on most of the real-world datasets.

However, C-HLD, while also being a linear model, constrains the parameter s to [0, 1] in (2.32) and (2.33)

on page 15. This has been shown analytically to affect the classification accuracy in Section 3.3.2 (page

46), since s tends to fall outside the interval [0, 1] under class imbalance. This accounts for why C-HLD

shows the largest error rate in both Tables 3.7 and 3.6. It is for this same reason that the C-HLD achieves

the best BER in both Tables 3.7 and 3.6, since by constraining s to the interval [0, 1], the discriminating

threshold is always bounded between the projected class means, and hence the error rate tends to be

more balanced.

It will also be noted that the error rate (ER) of the LDA procedure is significantly worse than that

of QDA in Table 3.7, but only marginally in Table 3.6. This is because as the degree of class imbalance

increases, the majority class becomes far more probable than the minority class. Therefore, the decision

rule depends less on the differences in covariance matrices, but depends more on the discriminating

threshold w0. Since the threshold obtained by LDA as given by (2.14) is unbounded and depends on the

ratio of the prior probabilities (or equivalently the degree of class imbalance), LDA is able to track the

optimal w0 under high degrees of class imbalance and yields a satisfactory performance in terms of the

error rate. This result confirms the conclusions by Xue [12] that unbalanced data have no negative effect

on LDA in terms of the error rate.

Unlike LDA however, R-HLD and the D-HLD account for heteroscedasticity by obtaining a linear

approximation to the quadratic boundary in QDA that minimises the Bayes error. Due to this, their

error rate performance is closest to QDA on the toy dataset under any degree of class imbalance as

can be seen from Tables 3.6 and 3.7. Since the criterion that is minimised in the R-HLD and D-HLD

procedures is the Bayes error (or the probability of misclassification), which makes use of the empirical

prior probabilities, the BER is not necessarily minimised for these procedures. However, regarding the

AUC, D-HLD dynamically optimises the weight vector w to minimise the Bayes error for any given

threshold w0, so that for the FPR corresponding to that threshold, the TPR is maximised. Therefore,
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D-HLD results in an improved AUC over R-HLD.

For the real-world datasets, due to the fact that they are not drawn from a normal distribution, QDA

is no longer superior in terms of the error rate. For these datasets, the best error rate performance is

dominated by SVM, which is a non-parametric classifier. The original LDA and heteroscedastic LDA

procedures compare closely to the SVM in terms of the error rate, and consistently outperform QDA due

to the fact the linear models provide robustness over QDA, even if the normal distribution assumption

is not satisfied.

Still, the fact that the BER happens to be significantly larger than the ER values on most of the real-

world datasets suggests that the classification is skewed toward the majority class. This is particularly so

for the SVM and QDA classifiers on the USPS, Liver, WpBC, Yeast-1 and Yeast-6 datasets. The AUC

is then a preferred evaluation criterion. For the same reason as indicated for the artificial datasets, the

proposed D-HLD procedure yields the best AUC values over all the real-world datasets, with the exception

of the USPS dataset. Moreover, D-HLD is superior to the other heteroscedastic LDA procedures (R-HLD

and C-HLD) in terms of the training time, since D-HLD follows a principled optimisation procedure

for minimising the Bayes error, unlike in R-HLD and C-HLD. This computational gain increases with

the dimensionality d of the dataset, and is most profound on the USPS dataset, since the bulk of the

computation required in the heteroscedastic LDA procedures is for the inversion of a d-sized scatter

matrix.

3.6.3 Kernel classification

Apart from robustness, one other advantage of LDA and heteroscedastic LDA over QDA is the abil-

ity of the linear models to be kernelised to learn general non-linear decision boundaries for non-linear

classification. To do this, the data is implicitly transformed via a non-linear kernel function into a higher-

dimensional feature space where linear separability is guaranteed (See Section 3.5 on page 49). While

there is no obvious choice of a kernel function for a given data, some popular kernels such as the Gaussian

kernel and polynomial kernel have been successfully applied in many applications. In this experiment,

both the Gaussian kernel and the polynomial kernel of degree 2, i.e., the quadratic kernel, are employed.

The quadratic kernel K is defined for any two vectors xi and xj as:

Kq(xi,xj) = (1 + x>i xj)2, (3.125)
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while the Gaussian kernel is given as:

Kg(xi,xj) = exp
(
− ‖xi − xj‖2

c

)
, (3.126)

where c is set to 1 in this experiment.

The proposed kernel GLD algorithm (K-GLD) in Algorithm 4 is used for this evaluation. For com-

parison, the kernel SVM (K-SVM) and Kernel Fisher Discriminant (KFD) in Section 2.1.1 (page 11)

are also simulated. Moreover, the existing heteroscedastic LDA procedures of C-HLD and R-HLD-2 are

kernelised in the manner as is described on page 15 and simulated. The kernelised forms of C-HLD and

R-HLD are denoted as K-CHLD and K-RHLD respectively.

The KFD solution is used as the initial solution to the K-GLD algorithm; the algorithm is stopped if

the Bayes error pe is less than or equal to 10−6, or else it is terminated after 2, 000 iterations. Due to the

time complexity of the heteroscedastic LDA procedures, a step size of ∆s = 0.001 is used for C-HLD, and

1000 trials are run for R-HLD-2. The datasets employed for this experiment, and their corresponding

kernel transformations, are shown in Table 3.16.

Table 3.16: List and characteristics of datasets
K is the number of classes, d is the dimensionality of the dataset, and n is the number of data points in
the dataset.

Dataset Label n d K Kernel transform
Vowels (e) 990 10 11 Quadratic

Zernike Moments (f) 2000 47 10 Quadratic
Image Segmentation (Statlog) (g) 2310 19 7 Gaussian

Table 3.17: Average classification accuracy with kernel classifiers (%)

Algorithm (e) (f) (g)
KFD 97.98 82.00 96.54

K-CHLD 93.94 75.00 88.31
K-RHLD 93.94 74.50 93.51
K-SVM 86.87 85.50 94.37
K-GLD 98.99 85.00 96.54

Results and discussions

In Table 3.17, it is seen that K-GLD achieves classification accuracies of 98.99% on dataset (e). It will be

recalled, however, that using a linear decision rule, R-GLD achieves much lower classification accuracies
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on these datasets as shown in Table 3.3 (page 57). This implies that a non-linear classifier is more suitable

to discriminate the classes in this dataset. Therefore, by employing the Gaussian kernel transformation,

R-GLD ensures better discrimination, and hence better classification. Similar performance improvement

is seen on this dataset between the linear classifiers (LDA, R-HLD-2, C-HLD and SVM) in Table 3.3 and

their respective kernelised versions (KFD, K-RHLD, K-CHLD, K-SVM) in Table 3.17, although K-GLD

shows superior performance over the remaining kernel algorithms.

Similarly for datasets (f) and (g), K-SVM and K-GLD achieve improved classification accuracies over

their linear versions, with K-SVM being superior on these datasets, as shown in Table 3.17. However,

since the kernel LDA procedures all require the inversion of kernel matrices of size n, their time complexity

can be prohibitive for very large datasets, especially for K-RHLD and K-CHLD which require several

matrix inversions. Since it does not require any matrix inversions, K-SVM performs best in terms of

the training time among the different algorithms on all the datasets, as shown in Figure 3.2. While the

performance of K-RHLD and K-CHLD are suboptimal on datasets (f) and (g), they can be improved by

increasing the number of random trials (page 14) or the step rate ∆s (page 15) at the expense of an even

more prohibitive computation time.
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3.7 Chapter summary

This chapter has introduced a linear discriminant analysis (LDA) procedure, known as the Gaussian

linear discriminant (GLD), that accounts for heteroscedasticity by finding a linear approximation to the

quadratic boundary in quadratic discriminant analysis (QDA). This is done by minimising the Bayes

error using two optimisation procedures.

The first optimisation procedure, known as recursive GLD (R-GLD), makes use of the first and second

order optimality conditions for the minimisation of the Bayes error, involves recursive matrix inversions,

and is suitable for low-dimensional data. The second optimisation procedure, known as gradient-descent

GLD (G-GLD), uses only the first-order optimality conditions, requires no matrix inversions, and is thus

suitable for very high-dimensional data for which matrix inversion can be computationally intractable.

The Bayes error is shown to be non-convex, and thus, the GLD procedures require the use of multiple

initial solutions to improve the quality of the local minimum found.

Since LDA assumes a normal distribution in each class of a dataset, the chapter also discusses modi-

fications to the GLD, a local neighbourhood search (LNS) procedure, that allows it to be robust when

dealing with non-normal distributions (nearly-normal distributions) to achieve a satisfactory classification

accuracy.

Following this, the performance of LDA and existing heteroscedastic LDA approaches are discussed

under the scenario of class imbalance, using the first and second order optimality conditions for the Bayes

error minimisation. The existing heteroscedastic LDA models are shown to be suboptimal in terms of

the area under the receiver operating characteristics curve (AUC). A dynamic GLD model (D-GLD) is

then proposed to overcome the class imbalance problem.

The kernel formulation of the GLD is also provided in this chapter, that permits the construction

of a non-linear decision boundary if a linear discriminant is inappropriate, using an appropriate kernel

function.

Finally, the proposed R-GLD procedure is experimentally validated in three sets of experiments. The

first experiment deals with balanced data where R-GLD, together with LNS, outperforms the existing

heteroscedastic LDA procedures in terms of the classification accuracy, and is shown to be comparable

with the classification performance of SVM, but with a much smaller training time. The second exper-

iment on imbalanced data shows the proposed D-GLD procedure achieves superior AUC values over all

the existing heteroscedastic LDA approaches as well as the SVM. The final experiment on datasets that

are linearly non-separable indicates that the kernel version of GLD (K-GLD) is able to learn non-linear

decision boundaries for such datasets, resulting in an improved classification performance.
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Chapter 4

Heteroscedastic LDA for

dimensionality reduction 1

In the previous chapter, a heteroscedastic extension of linear discriminant analysis (LDA), known as

Gaussian linear discriminant (GLD), which is optimal in terms of minimising the Bayes error, was pro-

posed for linear classification in the two-class case. More commonly, however, LDA is employed for

linear dimensionality reduction (LDR), which involves a linear transformation of the original dataset

(see section 2.2.2), followed by classification. In the two-class case, the weight vector w used for linear

classification in LDA is also the linear transformation used for LDR. In this chapter, GLD is extended

to the multi-class scenario for supervised LDR, which involves linearly reducing the dimensionality of a

dataset while maximising the class-discriminatory information. The proposed procedure, referred to as

multi-class GLD (M-GLD), involves the sequential minimisation of the Bayes error, via the successive

construction of (K2 +K − 4)/2 GLD classifiers for the K-class problem. The M-GLD procedure reduces

the dimensionality of the dataset to K − 1, such that it is well-primed for Bayesian classification.

4.1 Multi-class Gaussian linear discriminant (M-GLD)

As with the two-class case, it is assumed that the data in each of the K classes is normally distributed

with a mean of x̄k and a covariance matrix of Sk for every k ∈ {1, ...,K}. The aim is to apply a Bayes

classifier after linear dimensionality reduction (LDR). Bayesian classification involves the evaluation of K

posterior probabilities, among which the highest is chosen. These K probability functions must however

sum up to one, making only K − 1 of them independent. Therefore, the smallest set of features required

for Bayesian classification is K− 1, corresponding to an optimum transformation to a K− 1-dimensional

space.

1Most of the work presented in this chapter first appeared in: K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura, “Linear
dimensionality reduction for classification via a sequential Bayes error minimisation with an application to flowmeter
diagnostics,” Expert Systems with Applications (2017), vol. 91, Sep. 2017, pp. 252-262.
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Along this line, it is sought to project the dataset D onto a (K− 1)-dimensional subspace. Therefore,

the transformation matrix M is given as M = [v1, ...,vK−1], where vi ∈ Rd for i ∈ {1, ...,K − 1}. The

proposed algorithm is such that one column of M is found in each of K − 1 steps.

Before fully detailing the proposed linear dimensionality reduction procedure for the general K-class

problem, the special cases of K = 2 and K = 3 are first considered.

4.1.1 Two-class case

In the two-class case, M = v1, and therefore the task of finding v1 that preserves the classification

information in the original space is equivalent to obtaining a linear discriminant that best divides the

two classes C1 and C2. That is, it is desired to obtain a linear classifier {w1, t1} such that, for every data

sample x ∈ D, the true class of x, C∗(x), is decided according to the following decision rule:

C∗(x) =


C1 if w>1 x ≥ t1

C2 if w>1 x < t1

(4.1)

The optimal w1 minimises the Bayes error given by:

ε1 = π1p
(
y < t1|C1

)
+ π2p

(
y ≥ t1|C2

)
(4.2)

where y = w>1 x.

Since x is assumed to have a normal distribution in classes C1 and C2, y is expected to be normally

distributed with a mean of µ1 and a variance of σ2
1 for class C1, and a mean of µ2 and a variance of σ2

2

for class C2 given as:

µ1 = w>1 x̄1 µ2 = w>1 x̄2 σ2
1 = w>1 S1w1 σ2

2 = w>1 S2w1 (4.3)

The normality assumption allows the individual misclassification probabilities in (4.2) to be expressed

as:

p(y < t1|C1) =
∫ t1

−∞

1√
2πσ1

exp
[
− (r − µ1)2

2σ2
1

]
dr = 1−Q

(
t1 − µ1

σ1

)
(4.4)

and

p(y ≥ t1|C2) =
∫ ∞
t1

1√
2πσ2

exp
[
− (r − µ2)2

2σ2
2

]
dr = Q

(
t1 − µ2

σ2

)
(4.5)
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where Q(.) is the Q-function, so that the Bayes error ε1 may be rewritten as:

ε1 = π1
(
1−Q(z1)

)
+ π2

(
Q(z2)

)
(4.6)

where

z1 = t1 − µ1

σ1
and z2 = t1 − µ2

σ2
(4.7)

In Section 3.1.1, it was shown using first and second-order optimality conditions that the optimal w1

and t1 that minimise ε1 can be obtained by solving the following equations iteratively:

w1 =
(
z2

σ2
S2 −

z1

σ1
S1

)−1
(x̄1 − x̄2) (4.8)

and

t1 =
µ2σ

2
1 − µ1σ

2
2 + σ1σ2

√
(µ1 − µ2)2 + 2(σ2

1 − σ2
2) ln

(
τσ1
σ2

)
σ2

1 − σ2
2

(4.9)

where τ = π2/π1 [129].

Though the aim is to find only the weight vector w1, it is noted that w1 is not independent of t1, as

it is related to t1 through z1 and z2. Therefore, the optimal choice of w1 is obtained only by optimising

w1 and t1 simultaneously.

The resulting transform is then M = [v1], where v1 is set to the optimal w1 as above.

4.1.2 Three-class case

In the case where K = 3, the transformation matrix is M = [v1,v2].

Step 1

In the first step, it is sought to find the first column of M, i.e., v1. To do this, a linear classifier is trained

to separate one class from the remaining classes; since there are three classes, there are three different

classifiers that could be constructed to this end. The idea is to choose v1 to correspond to the classifier

among these three whose minimum Bayes error is smallest.

First, the possibility of training a linear classifier {w1, t1} to discriminate class C1 from classes C2 and
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C3 is considered. Then, for every data sample x ∈ D, the following decision rule applies:

C∗(x) =


C1 if w>1 x ≥ t1

C2, C3 if w>1 x < t1

(4.10)

Notice that, as with the case K = 2, the projected data in class C1 is normally distributed on one side

of the linear discriminant with a mean of µ1 and a variance of σ2
1 as given by (4.3), while the projected

data in classes C2 and C3, on the other side of the discriminant, form a mixture of two Gaussians M1

given by:

M1 ∼
3∑
i=2

piN (µi, σ2
i ), where pi = πi

1− π1
, such that

3∑
i=2

pi = 1

and µi = w>1 x̄i σ2
i = w>1 Siw1 (4.11)

As before, the optimal w1 then minimises the Bayes error. However, the Bayes error is now given by:

ε1 = π1p
(
y < t1|C1

)
+ (1− π1)p

(
y ≥ t1|M1

)
(4.12)

Here, p
(
y < t1|C1

)
is as given before in (4.4), while p

(
y ≥ t1|M1

)
can be expressed as:

p(y ≥ t1|M1) =
3∑
i=2

pi

∫ ∞
t1

1√
2πσi

exp
[
− (r − µi)2

2σ2
i

]
dr

=
3∑
i=2

piQ

(
t1 − µi
σi

)
. (4.13)

Thus, the Bayes error ε1 can be evaluated as:

ε1 = π1
(
1−Q(z1,1)

)
+ (1− π1)

3∑
i=2

piQ(z1,i),

where z1,k = t1 −w>1 x̄k
(w>1 Skw1)1/2 , for every k ∈ {1, 2, 3}. (4.14)

i.e.,

ε1 = π1
(
1−Q(z1,1)

)
+

3∑
i=2

πiQ(z1,i) (4.15)

Next, the second possibility of training a linear classifier {w2, t2} to discriminate class C2 from classes

C1 and C3 is considered. The optimal {w2, t2} minimises the Bayes error which can be shown, similar to
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the derivation of ε1, to be given by:

ε2 = π2
(
1−Q(z2,2)

)
+

∑
i∈{2,3}

πiQ(z2,i),

where z2,k = t2 −w>2 x̄k
(w>2 Skw2)1/2 , for every k ∈ {1, 2, 3}. (4.16)

Finally, a classifier {w3, t3} is trained to linearly discriminate class C3 from classes C1 and C2. The

optimal values of w3 and t3 are obtained by minimising the Bayes error ε3 which can be shown to be

given by:

ε3 = π3
(
1−Q(z3,3)

)
+

2∑
i=1

πiQ(z3,i),

where z3,k = t3 −w>3 x̄k
(w>3 Skw3)1/2 , for every k ∈ {1, 2, 3} (4.17)

It is assumed, without any loss of generality, that the first classifier {w1, t1} yields the smallest Bayes

error, i.e., ε1 < ε2, ε3. Then, v1 is set to the optimal vector w1 corresponding to the minimisation of ε1.

Step 2

Following Step 1, the next task is to find the second column of M, i.e., v2. As a classifier has already

been trained to separate class C1 from the two remaining classes in Step 1, C1 is now removed from the

dataset D. This permits the construction of a linear classifier {w2, t2} to linearly discriminate classes C2

and C3, in the fashion of the case K = 2,. This is done by minimising the Bayes error ε2 given by:

ε2 = π′2
(
1−Q(z2)

)
+ π′3

(
Q(z3)

)
(4.18)

It will be noted that by removing C1 from the dataset D, the prior probabilities of the remaining classes

change. Therefore, in (4.18), π′2 and π′3 are the prior probabilities of classes C2 and C3 respectively,

conditional on class C1 being removed from the dataset D, and they are given by:

π′2 = π2

1− π1
and π′3 = π3

1− π1
(4.19)

The optimal w2 is then assigned to v2.

Note that often, the transformation matrix M is constrained to be orthogonal [94]. Thus, it would be

necessary to have an orthogonality constraint in the form, w>1 w2 = 0, while minimising the Bayes error
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ε1 in the second step. However, such an orthogonality constraint is not binding, if classification is desired

after dimensionality reduction [8]; it is sufficient that the component vectors of M be independent.

4.1.3 Arbitrary number of classes

Having detailed the fundamentals of the proposed LDR procedure for the special cases of K = 2 and

K = 3, the description of the proposed algorithm for a general value of K is now provided.

Let L = {1, ...,K}, and l be an arbitrary element in L. Define a conditional prior probability

π′i = p(Ci|C̄l) to be the prior probability of Class Ci conditional on the data in Class Cl being removed

from the dataset D, for all i ∈ L. Then for the k = 1st iteration, when no class has been removed yet,

π′i = πi.

Step 1

A linear classifier {wi, ti} that discriminates class Ci from all other classes is constructed, for every i ∈ L,

by minimising the Bayes error εi given by:

εi = π′i
(
1−Q(zi)

)
+

∑
j∈L\{i}

π′jQ(zj), (4.20)

where

zk = ti − µk
σk

, µk = w>i x̄k and σ2
k = w>i Skwi, for every k ∈ L. (4.21)

After the minimisation of εi, vk, i.e., the kth column of M is set to wl, where

l = arg min
i
{ε1, ..., ε|L|} (4.22)

Step 2

As the optimal classifier {wl, tl} linearly separates class Cl from all other classes, class Cl can be excluded

from the dataset D to allow for the construction of other classifiers to linearly discriminate the remaining

classes. Correspondingly, we remove l from the set L. The conditional prior probabilities of the remaining

classes are then updated as:

π′i := π′i
1− π′l

, for all i ∈ L. (4.23)

The index k is then incremented by one.
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Step 3

Steps 1 and 2 are repeated until all K−1 columns of the transformation matrix M have been determined.

4.1.4 Optimisation of the Bayes error εi

Up until this point, it has only been indicated that the classifier {wi, ti} ought to minimise the Bayes

error given by (4.20). However, explicit expressions for the optimality conditions under which the Bayes

error is minimised are computationally difficult to solve (see section 4.A.2). Therefore, a gradient descent

procedure is proposed:

For j = 0 :

wj+1
i = wj

i − α
∂εi

∂wj
i

(4.24)

tj+1
i = tji − α

∂εi

∂tji
(4.25)

starting from an initial choice of wi and ti, where α is the learning rate. Note that the partial derivatives

of εi have been derived in (4.55) and (4.58). Since the Bayes error is known to be non-convex and is char-

acterised by multiple local minima [71], the gradient descent algorithm may have to be performed using

different initial solutions to improve the quality of the local minima to which the algorithm converges.

Though only the optimal wi is required to form the columns of M, it will be noted that the optimal

wi is tied to the optimal threshold ti through zi and zj as can be seen from (4.21) and (4.63), requiring

that they both be minimised in the gradient descent procedure.

In all, (K2 +K − 4)/2 classifiers are constructed in the proposed algorithm for a K-class problem.

The proposed LDR procedure is detailed in Algorithm 5.

4.2 Experimental validation

In this section, the proposed LDR technique is validated experimentally, first on two artificial datasets,

and then on 10 UCI datasets. The characteristics the UCI datasets are shown in Table 4.1, while the

artificial datasets are generated as follows:

4.2.1 Artificial dataset 1 (DS1)

1. DS1 has a dimensionality of d = 20, and K = 3 classes with each of the classes being normally

distributed.
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Algorithm 5 Multiclass GLD (M-GLD)
1: Input: X

2: L ← {1, ...,K}

3: π′t = πt for all t ∈ L

4: for k ← 1 to K − 1 do

5: for i ∈ L do

6: Initialise wi

7: j ← 0

8: while Gradient descent stopping criteria are not satisfied do

9: for t ∈ L do

10: Evaluate µt, σt, zt as given by (4.21)

11: end for

12: Evaluate the gradient of εi w.r.t. wi as given by (4.55)

13: Evaluate the gradient of εi w.r.t. ti as given by (4.58)

14: Evaluate the Bayes error εi given by (4.20)

15: Update wi as wj+1
i = wj

i − γ
∂εi
∂wj

i

16: Update ti as tj+1
i = tji − γ

∂εi
∂tj
i

17: end while

18: end for

19: l← arg mini{ε1, ..., ε|L|}

20: vk ← wl

21: L ← {1, ..., l − 1, l + 1, ...,K}

22: π′i := π′i
1−π′

l

23: end for

24: M = [v1, ...,vK−1]
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2. The means of the classes are randomly sampled uniformly from a Latin hypercube of side length 6

in 2 dimensions. The following instances of the mean parameters are used in the experiment:

x1 =

1.6638

3.6366

 , x2 =

5.1489

1.2540

 , x3 =

3.9970

5.6633

 (4.26)

3. The covariance matrix of each class is determined as the 2-dimensional identity matrix I2.

4. Using the means from Step 2 and the covariances in Step 3, 100 samples are generated from the

Gaussian distribution for each class to obtain a dataset with 300 samples.

5. Two information-less features are then added to the dataset obtained in Step 4: for all samples, two

linear combinations (whose coefficients are in the interval [0, 1]) of the two features are obtained

randomly to form two extra dimensions. Then, 16 random features are generated from the normal

distribution N (0, 1) for each sample. Due to the fact that random features are appended to the

original 2-dimensional samples, the covariance matrices are unequal among the classes.

6. The resulting dataset has 20 dimensions. Step 5 is necessary to simulate multicollinearity and noisy

features that exist in many real world datasets and which lead to overfitting.

4.2.2 Artificial dataset 2 (DS2)

1. DS2 has a dimensionality of d = 20, and K = 4 classes with each of the classes being normally

distributed.

2. The means of the classes are randomly sampled uniformly from a Latin hypercube of side length 6

in 3 dimensions. The following instances of the mean parameters are used in the experiment:

x1 =


0.6541

3.6482

1.9521

 , x2 =


2.4828

2.8612

0.5296

 , x3 =


3.6194

0.7111

2.4050

 , x4 =


1.1658

1.9022

3.4388

 (4.27)

3. The covariance matrix of each class is determined as the 3-dimensional identity matrix I3.

4. Using the means from Step 1 and the covariances in Step 2, 100 samples are generated from the

Gaussian distribution for each class to obtain a dataset with 400 samples.
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5. Three information-less features are then added to the dataset obtained in Step 4: for all samples,

three linear combinations (whose coefficients are in the interval [0, 1]) of the three features are

obtained randomly to form three extra dimensions. Then, 16 random features are generated from

the normal distribution N (0, 1) for each sample. Due to the fact that random features are appended

to the original 3-dimensional samples, the covariance matrices are unequal among the classes.

6. The resulting dataset has 20 dimensions.

The above procedures are based on the method of generating artificial datasets by Guyon [130]. The

number of classes K for the two artificial datasets are chosen in such a way as to allow visualisation in

K − 1 dimensions after LDR.

Table 4.1: List and characteristics of datasets
K is the number of classes, d is the dimensionality of the dataset, and n is the number of data points in
the dataset.

Dataset Label d n K

Diabetes (a) 8 768 2
Glass (b) 9 214 6

Cleveland Heart (c) 13 297 2
Vehicles (d) 18 846 4

Image Segmentation (Statlog) (e) 18 2310 7
Ionosphere (f) 33 351 2

SPECTF Heart (g) 44 267 2
Zernike Moments (h) 47 2000 10
Optical Digits (i) 62 5620 11

United States Postal Service (j) 256 9298 10

4.2.3 Experimental procedure

First, the predictors are rescaled to the range [0, 1]. Then, dimensionality reduction is performed using

the proposed algorithm and existing algorithms. This is followed by 10 independent trials of 10-fold cross-

validation. On each training set after LDR, four Bayesian classifiers, namely QDA, LDA [5], the Naive

Bayes classifier, and the GLD classifier (Algorithm 1, page 37) are trained. The average classification

accuracy on the test set is then evaluated using the four classifiers.

For the proposed algorithm, the Bayes error is minimised using Algorithm (5) on page 78. A learning

rate of α = 0.1 over 10000 iterations is employed, although the procedure is terminated prematurely

when the difference between two consecutive values of the Bayes error is less than 10−6. The gradient
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descent procedure uses only one initial solution at each step, given by:

w
(0)
i = S−1

L (x̄i − x̄L)

t
(0)
i = ln(τ) + 1

2(x̄>i S−1
L x̄i − x̄>LS

−1
L x̄L) (4.28)

for every i ∈ L, where

SL =
∑

j∈L\{i}

πiSj , x̄L = 1
|L − 1|

∑
j∈L\{i}

x̄j and τ =
∑
j∈L\{i} πj

πi
. (4.29)

The performance of the proposed algorithm is then compared with the following: PCA, F-LDR, M-

LDR, C-LDR, as well as the case where there is no dimensionality reduction and the full dimensionality

is used (No-LDR). Note that for PCA, F-LDR, M-LDR and C-LDR, the first ρ̄ independent vectors

after the matrix decomposition are taken to form the transformation matrix M, where ρ̄ is the effective

rank of the matrix which is eigen-decomposed in the respective procedure. In the scenario where the

effective rank cannot be easily determined (because all singular values happen to be non-zero, and it is

not clear what values are large enough to be considered significant ranks), the first K − 1 independent

vectors are used. The results of these experiments can be seen in Tables 4.2, 4.4, 4.3 and 4.5. For every

test dataset, the Wilcoxon’s signed rank test is performed at a significant level of 0.01 to check for any

significant differences between the classification accuracy of the best performing algorithm and those of

the remaining algorithms. Based on the test results, an asterisk has been indicated against a value if that

value is not statistically different from the best value in bold.

To provide a more meaningful perspective on the utility of the proposed algorithm, in Table 4.6,

comparison is provided for the performance of the proposed LDR algorithm followed by the GLD classifier

with that of the linear Support Vector Machine (SVM) that uses no dimensionality reduction. The SVM

is implemented with the MATLAB function fitcsvm using the default settings for a linear SVM. The

GLD classifier is used in this comparison because it shows the better performance among the two linear

classifiers used in this section: LDA and the GLD classifier.

4.2.4 Results and discussions

The results of the dimensionality reduction for all the simulated algorithms for dataset DS1 with K = 3

classes are shown in Figs 4.1, 4.2, 4.3, 4.4 and 4.5, while the results for dataset DS2 with K = 4 classes

are shown in Figs 4.6, 4.7, 4.8, 4.9 and 4.10. No axis labels are provided for these figures because the



82 CHAPTER 4. HETEROSCEDASTIC LDA FOR DIMENSIONALITY REDUCTION

datasets are artificially generated and the features have no specific meaning.
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Figure 4.1: LDR using PCA on DS1

Table 4.2: Average classification accuracy (%) using QDA
Best values are in bold. The values with asterisk (*) are those that are statistically indiscernible from
the best values based on the Wilcoxon’s signed rank test at a significance level of 0.01.

Dataset No-LDR PCA F-LDR M-LDR C-LDR M-GLD
(DS1) 89.17 93.67 94.57 95.60 92.67 96.80
(DS2) 89.58 93.75 94.60 94.35 94.80 95.50
(a) 74.20 68.57 64.55 77.69 78.09 78.17
(b) 55.16 55.25 54.63 61.89 54.09 55.21
(c) 82.00 79.56 85.06 84.82 85.22* 85.49
(d) 85.27 45.78 63.80 78.61 75.97 81.95
(e) 88.82 89.32 90.36 88.09 89.82 93.56
(f) 87.51 61.14 89.37 90.43 89.12 91.12
(g) 79.42 72.61 79.42 82.96 78.42 84.24
(h) 80.14 77.76 79.08 77.47 82.96 84.93
(i) 96.44 96.00 96.30 92.55 79.94 97.69
(j) 88.09 91.67 88.96 57.70 61.37 92.94

The results in Tables 4.2, 4.3, 4.4 and 4.5 show that the classification performance can be improved
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Figure 4.2: LDR based on Fisher’s criterion on DS1
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Figure 4.3: LDR based on Mahalanobis distance criterion on DS1
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Figure 4.4: LDR based on Chernoff criterion on DS1
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Figure 4.5: LDR based on M-GLD on DS1
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Figure 4.6: LDR using PCA on DS2
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Figure 4.7: LDR based on Fisher’s criterion on DS2
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Figure 4.8: LDR based on Mahalanobis distance criterion on DS2
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Figure 4.9: LDR based on Chernoff criterion on DS2
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Figure 4.10: LDR based on M-GLD on DS2

Table 4.3: Average classification accuracy (%) using Naive Bayes classifier
Best values are in bold. The values with asterisk (*) are those that are statistically indiscernible from
the best values based on the Wilcoxon’s signed rank test at a significance level of 0.01.

Dataset No-LDR PCA F-LDR M-LDR C-LDR M-GLD
(DS1) 92.40 93.43 94.73 96.00 92.53 96.90
(DS2) 94.48 94.13 94.73 94.50 94.08 96.38
(a) 73.49 67.37 66.45 77.49* 77.97 77.71*

(b) 59.89 59.84 70.91 62.29 54.53 61.65
(c) 79.64 81.47 53.25 84.53 85.03* 85.06
(d) 61.44 54.43 65.41 73.80 76.47 80.68
(e) 89.98 89.13 90.48 81.07 89.16 92.10
(f) 90.19 79.57 89.62 89.71 91.39 90.76
(g) 73.64 78.85 79.42 83.35* 82.18 83.84
(h) 72.55 70.28 71.89 69.61 81.24 82.25
(i) 82.12 92.68 93.37 88.52 76.42 96.04
(j) 56.63 85.48 81.22 52.86 66.93 92.09
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Table 4.4: Average classification accuracy (%) using LDA
Best values are in bold. The values with asterisk (*) are those that are statistically indiscernible from
the best values based on the Wilcoxon’s signed rank test at a significance level of 0.01.

Dataset No-LDR PCA F-LDR M-LDR C-LDR M-GLD
(DS1) 92.13 93.20 94.80 95.97 92.83 97.00
(DS2) 93.65 94.18 94.85 94.73 95.38* 95.68
(a) 77.39 68.37 65.11 77.76 77.87 78.36
(b) 63.09 60.66 61.08 62.76 59.26 65.09
(c) 83.55 79.61 85.29 84.89 85.36* 85.84
(d) 78.19 47.18 58.31 75.02 75.65 79.30
(e) 91.48 83.68 87.83 88.24 88.84 90.33
(f) 86.72 54.50 73.73 90.13* 74.92 90.62
(g) 75.27 79.42 79.42 84.77 79.30 85.55
(h) 81.79 70.35 74.02 70.78 82.00 83.92
(i) 95.32 91.49 93.06 88.86 56.81 96.09
(j) 91.62 84.29 81.62 27.41 60.96 90.21

Table 4.5: Average classification accuracy (%) using R-GLD classifier
Best values are in bold. The values with asterisk (*) are those that are statistically indiscernible from
the best values based on the Wilcoxon’s signed rank test at a significance level of 0.01.

Dataset No-LDR PCA F-LDR M-LDR C-LDR M-GLD
(DS1) 93.23 93.47 94.67 95.80 96.17 97.13
(DS2) 90.03 81.95 91.75 92.65 92.83 95.63
(a) 77.59 68.54 64.23 77.73 78.07 78.06*

(b) 62.89 59.85 65.27 63.10 57.37 62.52
(c) 83.78 79.62 85.22* 84.75 85.26* 85.48
(d) 80.75 46.72 60.87 75.98 76.30 81.11
(e) 94.99* 87.58 89.20 90.42 92.58 95.01
(f) 86.95 58.86 90.12 90.31 89.15 91.48
(g) 73.56 79.42 79.42 84.10 79.42 83.96*

(h) 83.77 75.20 78.51 75.45 83.71 86.14
(i) 98.17 94.54 95.08 93.12 80.69 97.16
(j) 94.46* 89.87 86.32 50.70 66.25 94.52



CHAPTER 4. HETEROSCEDASTIC LDA FOR DIMENSIONALITY REDUCTION 89

Table 4.6: Average classification accuracy (%): M-GLD+G-GLD vs Linear SVM
Best values are in bold. The values for both algorithms for all datasets are statistically different based
on the Wilcoxon’s signed rank test at a significance level of 0.01.

Dataset SVM M-GLD+G-GLD
(DS1) 93.40 97.13
(DS2) 93.98 95.63
(a) 76.94 78.06
(b) 57.79 62.52
(c) 83.45 85.48
(d) 74.11 81.11
(e) 92.89 95.01
(f) 87.73 91.48
(g) 79.60 83.96
(h) 82.94 86.14
(i) 98.28 97.16
(j) 95.81 94.52

after linear dimensionality reduction. This is due to the fact that the original datasets tend to show

multicollinearity as well as contain noisy and useless features that cause overfitting. As an example,

the two artificial datasets may be considered. These datasets have 14 and 16 noisy features respectively

which can be easily overfit using a quadratic classifier such as QDA. Due to this, an improved performance

is seen by employing any of the LDR procedures on these artificial datasets using the QDA classifier.

Furthermore, the results also show the superiority of the proposed M-GLD LDR procedure over the

existing C-LDR, M-LDR, F-LDR and PCA procedures on all four classifiers. This relative performance

of the algorithms may be evident from the degree of class separation that is yielded by the M-GLD and

other existing LDR procedures in Figure 4.1, 4.2, 4.3, 4.4 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10.

Regarding the real-world datasets, Table 4.2 shows that the proposed M-GLD algorithm achieves the

highest classification accuracy on 8 out of the 10 real-world datasets tested using a QDA classifier, as

compared to the remaining LDR procedures. This superior performance is most marked on datasets

(e), (g), (h), (i) and (j). On dataset (d), using the full dimensionality results in the best classification

accuracy using the LDA classifier, as LDR seems to lose useful classification information. Yet, among

the five dimensionality reduction techniques, the M-GLD achieves the best classification accuracy on this

dataset.

A similar performance is seen in Table 4.3. The proposed algorithm once again achieves superior

classification accuracy on 8 out of the 10 real-world datasets using the Naive Bayes classifier, with datasets,
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(d), (e), (h), (i) and (j) showing the most significant performance. Furthermore, the relative superior

performance of the proposed M-GLD LDR procedure in Tables 4.4 and 4.5 is consistent with the fact

that the proposed algorithm is well-suited for Bayesian classification, unlike the existing heteroscedastic

LDA approaches.

While the M-GLD is consistently superior on the four Bayesian classifiers, it will be noted that for the

same linearly-reduced data arising from a given LDR procedure, the relative performance of the remaining

LDR algorithms depends on the choice of the classifier. For example, the M-LDR procedure tends to

outperform the F-LDR and C-LDR procedures for most of the test datasets using a QDA classifier,

whereas the C-LDR procedure tend to yield superior classification performance over the C-LDR and F-

LDR on most of the datasets using the Naive Bayes classifier and the two linear classifiers. It is also worth

noting that when no dimensionality reduction is employed, the performance of the No-LDR procedure

using a QDA classifier is significantly improved using a linear classifier such as LDA or the GLD. For

instance, using the GLD classifier, the No-LDR is shown to be competitive with the LDR procedures

on datasets (d), (e), (h), (i) and (j). This is because if a dataset does indeed contain repeated or noisy

features, without linearly reducing the dimensionality, a linear classifier tends to reduce overfitting as

compared to a quadratic classifier.

On the whole, the GLD classifier outperforms the LDA classifier, notably on datasets (d), (e), (f),

(h), (i) and (j), due to the fact that the former does not make the assumption of homoscedasticity which

is rarely seen in most real-world datasets. Moreover, in Table 4.6, it is seen that the proposed LDR

algorithm, together with the GLD classifier, easily outperforms the linear SVM on 10 out of the 12

datasets tested.

The poor performance of PCA on most of the datasets across all the classifiers, e.g., datasets (b), (c),

(d), (f), (h) and (i), is due to the fact that PCA reduces the dimensionality of the data without taking

into account the class discriminatory information in the data. Also, as there is no guarantee that the

choice of the first K − 1 independent vectors (if there is no obvious effective rank) are those that mostly

preserve the classification information in the reduced space for PCA, M-LDR and C-LDR, a reduction

to some other dimensionality q 6= K − 1 might result in a better classification performance. Yet, these

algorithms do not provide the optimal dimensionality q to which to reduce the data. Thus, extensive trial

and error is required to obtain an optimal dimensionality in these approaches. The proposed algorithm,

on the other hand, obtains satisfactory classification performance after a reduction to a dimensionality

of K − 1, which is the optimal dimensionality required for Bayesian classification.

Even though the proposed algorithm has been shown to be superior to the existing procedures on
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the datasets tested in terms of classification accuracies, it is built on an assumption of normality of the

data in each of the K classes. Yet, since a lot of physical data tend to be nearly-normally distributed

[10], the proposed M-GLD algorithm is well suited for a lot of applications particularly those involving

measurement errors such as machine fault diagnosis or those involving physical measurements such as

accelerometer-based human activity recognition. However, for data that are radically non-normal, the

M-GLD procedure is expected to perform relatively poorly, as the Bayes error is not guaranteed to be

minimised. Also, while the proposed procedure has been derived for Bayesian classification and is thus

expected to perform well on Bayesian classifiers such as LDA, QDA and the Naive Bayes classifier, it

is not suitable for other discriminative classifiers such as the SVM or logistic regression. Moreover, the

M-GLD algorithm requires the successive construction of (K2 + K − 4)/2 classifiers. Thus, the time

complexity is quadratic in K which can be rather computationally costly for a dataset having a large

number of classes. Nevertheless, this is not prohibitive, as the average training time for dataset (i), which

has the largest number of classes, with K = 11 is 4.5s.

4.3 Chapter summary

This chapter has introduced a supervised linear dimensionality reduction (LDR) procedure that extends

linear discriminant analysis (LDA) to the multi-class case while maintaining heteroscedasticity. This

procedure requires the construction of multiple GLD classifiers by sequentially minimising the Bayes error

in the multi-class scenario. The optimality conditions for this minimisation problem have been derived

in the chapter. For a K-class problem, the procedure is shown to require (K2 + K − 4)/2 classifiers.

This is first described for the special cases of K = 2 and K = 3, before it is detailed for any general

value of K. The resulting procedure known as M-GLD projects the data unto a K − 1 dimensional space

which is optimal for Bayesian classification. Thus, the algorithm is shown to be well-suited for Bayesian

classifiers, such as quadratic discriminant analysis (QDA), Naive Bayes and LDA classifiers.

The chapter concludes with an extensive experimental validation of the proposed LDR algorithm

on 2 artificial datasets and 10 real-world UCI datasets. Using four different Bayesian classifiers for

classification, the M-GLD is shown to yield the best classification accuracies on most of the datasets, as

compared to the existing LDR procedures such as LDR based on PCA, Fisher’s criterion, Mahalanobis

distance and the Chernoff-criterion.
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4.A Appendix to Chapter 4

4.A.1 Rank inequalities

Consider the dataset X ∈ Rd×n having n d-dimensional vectors, which are all labelled such that X can

be partitioned into K classes thus: X = [D1, ...,DK ], with the sample covariance matrix of the kth class

given by:

Σk = 1
nk − 1

nk∑
i=1

(xi − x̄k)(xi − x̄k)>, ∀xi ∈ Dk (4.30)

where x̄k is the sample mean of Dk, and nk is the number of samples in the kth class. Define a within-class

covariance matrix Sw and a between-class covariance matrix Sb as:

Sw =
K∑
k=1

πkΣk and Sb =
K∑
k=1

πk(x̄k − x̄)(x̄k − x̄)>. (4.31)

where

x̄ =
K∑
k=1

πkxk and πk = nk
n
. (4.32)

Let ρ(A) denote the rank of matrix A.

Theorem 2. ρ(Σk) ≤ nk − 1

Proof. The subadditivity property of a rank [131] holds that for any two comformable matrices A and

B,

ρ(A + B) ≤ ρ(A) + ρ(B) (4.33)

Since the rank of a matrix is unchanged by a scale factor, it follows that

ρ(Σk) ≤
nk∑
i=1

ρ
[
(x− x̄k)(x− x̄k)>

]
(4.34)

However, note that for any two conformable matrices, A and B [131]

ρ(AB) ≤ min
[
ρ(A), ρ(B)

]
(4.35)

Therefore,

ρ
[
(x− x̄k)(x− x̄k)>

]
≤ min

[
ρ(x− x̄k), ρ(x− x̄k)>

]
(4.36)
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Since x− x̄k is a vector, it has a rank of at most 1. Therefore (4.36) becomes,

ρ
[
(x− x̄k)(x− x̄k)>

]
≤ 1 (4.37)

Substituting (4.37) into (4.34), results in the following:

ρ(Σk) ≤ nk (4.38)

However, this bound can be tightened by noticing that the sample covariance matrix is mean-centred and

hence it contains only nk − 1 independent terms in the sum. To verify this, observe that:

nk∑
i=1

(xi − x̄k) =
nk∑
i=1

xi −
nk∑
i=1

x̄k = 0 (4.39)

Therefore,
nk−1∑
i=1

(xi − x̄k) = −(xnk − x̄k) (4.40)

Since the covariance of Σk in (4.30) can be rewritten as:

Σk = 1
nk − 1

[ nk−1∑
i=1

(xi − x̄k)(xi − x̄k)> + (xnk − x̄k)(xnk − x̄k)>
]
, ∀xi ∈ Dk, (4.41)

substituting (4.40) into (4.41) yields the following:

Σk = 1
nk − 1

[ nk−1∑
i=1

(xi − x̄k)(xi − x̄k)> −
nk−1∑
i=1

(xi − x̄k)(xnk − x̄k)>
]
∀xi ∈ Dk (4.42)

which can be simplified as:

Σk = 1
nk − 1

nk−1∑
i=1

(xi − x̄k)(xi − x̄nk)>, ∀xi ∈ Dk (4.43)

Since Σk has been expressed as a sum of nk − 1 rank-1 matrices, it follows from (4.33),

ρ(Σk) ≤ nk − 1 (4.44)

Theorem 3. ρ(Sw) ≤ n−K
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Proof. Sw is as defined in (4.31). Therefore, from (4.34),

ρ(Sw) ≤
K∑
k=1

ρ(πkΣk) (4.45)

Since scalar multiplication does not change the rank of a matrix, and Σk has been shown to have a rank

of at most nk − 1,

ρ(Sw) ≤
K∑
k=1

nk − 1 = n−K (4.46)

since
∑K
k=1 nk = n. Therefore, ρ(Sw) ≤ n−K

Theorem 4. ρ(Sb) ≤ K − 1

Proof. Notice that Sb (4.31) is a covariance matrix of the form Σk (4.30) where

K ≡ nk, x̄k ≡ xi, x̄ ≡ x̄k and πk ≡
1

nk − 1 (4.47)

Therefore, since ρ(Σk) ≤ nk − 1, in the same way, ρ(Sb) ≤ K − 1

Theorem 5. ρ(S−1
w Sb) ≤ K − 1

Proof. From (4.33),

ρ(S−1
w Sb) ≤ min[ρ(S−1

w ), ρ(Sb)] (4.48)

But ρ(Sb) ≤ K − 1, and ρ(S−1
w ) = ρ(Sw) ≤ n−K since an invertible matrix has full rank and so does its

inverse. Therefore,

ρ(S−1
w Sb) ≤ min[n−K,K − 1] (4.49)

However, in order for the sample covariance matrix per class Σk given by (4.30) to be non-zero, notice

that there has to be at least two samples per class, i.e., nk ≥ 2. This implies that for all K classes,

n ≥ 2K, and therefore,

n−K ≥ K > K − 1 (4.50)

Hence,

ρ(S−1
w Sb) ≤ K − 1 (4.51)
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4.A.2 Optimality conditions for minimisation of Bayes error

The first-order optimality condition for the minimisation of εi requires the gradient of εi to be zero, i.e.,

∇εi(wi, ti) =
[
∂εi
∂w>i

,
∂εi
∂ti

]>
= 0 (4.52)

From (4.20), it can be shown that:

∂εi
∂wi

= πi

(
1√
2π
e−

z2
i
2
∂zi
∂wi

)
−

∑
j∈L\{i}

πj

(
1√
2π
e−

z2
j
2
∂zj
∂wi

)
(4.53)

where ∂zk/∂wi can be obtained from (4.21) as:

∂zk
∂wi

= −σkx̄k − zkSkwi

σ2
k

for every k ∈ L. (4.54)

Therefore,

∂εi
∂wi

= πi√
2π
e−

z2
i
2

(
−σix̄i − ziSiwi

σ2
i

)
−

∑
j∈L\{i}

πj√
2π
e−

z2
j
2

(
−σjx̄j − zjSjwi

σ2
j

)
(4.55)

Also,
∂εi
∂ti

= πi√
2π
e−

z2
i
2
∂zi
∂ti
−

∑
j∈L\{i}

πj√
2π
e−

z2
j
2
∂zj
∂ti

(4.56)

where,
∂zk
∂tj

= 1
σk
, for every k ∈ L (4.57)

which can also be obtained from (4.21). Therefore,

∂εi
∂ti

= πi√
2πσi

e−
z2
i
2 −

∑
j∈L\{i}

πj√
2πσj

e−
z2
j
2 (4.58)

By equating the gradient to zero, (4.55) yields the following:

( ∑
j∈L\{i}

πj
σj
e−

z2
j
2
zj
σj
Sj −

πi
σi
e−

z2
i
2
zi
σi
Si
)
wi = πi

σi
e−

z2
i
2 x̄i −

∑
j∈L\{i}

πj
σj
e−

z2
j
2 x̄j (4.59)

while (4.58) results in:
πi
σi
e−

z2
i
2 =

∑
j∈L\{i}

πj
σj
e−

z2
j
2 (4.60)
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Substituting (4.58) into (4.55), the following is obtained:

( ∑
j∈L\{i}

πj
σj
e−

z2
j
2
zj
σj
Sj −

∑
j∈L\{i}

πj
σj
e−

z2
j
2
zi
σi
Si
)
wi =

∑
j∈L\{i}

πj
σj
e−

z2
j
2 x̄i −

∑
j∈L\{i}

πj
σj
e−

z2
j
2 x̄j , (4.61)

i.e., ∑
j∈L\{i}

πj
σj
e−

z2
j
2

(
zj
σj
Sj −

zi
σi
Si
)
wi =

∑
j∈L\{i}

πj
σj
e−

z2
j
2 (x̄i − x̄j) (4.62)

wi may then be obtained as:

wi =
[ ∑
j∈L\{i}

πj
σj
e−

z2
j
2

(
zj
σj
Sj −

zi
σi
Si
)]−1 ∑

j∈L\{i}

πj
σj
e−

z2
j
2 (x̄i − x̄j) (4.63)

But for the fact that zi and zj are functions of ti as can be seen from (4.21), wi could have been

solved for iteratively from (4.63) starting from an initial solution. To overcome this problem, ti can be

solved for from (4.58), expressing it as a function of wi, to allow for the iterative solution of wi from

(4.63).

From (4.58), the following can be derived:

ln
(
πi
σi

)
− z2

i

2 = ln
∑

j∈L\{i}

πj
σj
e−

z2
j
2 (4.64)

If the cardinality of L, |L| > 2, the right hand side of (4.64) is a logarithmic sum of exponentials, and

(4.64) has no closed-form solution. Note, however, that (4.64) can be rewritten as

ln
(
πi
σi

)
− z2

i

2 − ln(|L| − 1) = ln
(

1
|L| − 1

∑
j∈L\{i}

πj
σj
e−

z2
j
2

)
. (4.65)

Then, as a consequence of Jensen’s inequality,

ln
(
πi
σi

)
− z2

i

2 − ln(|L| − 1) ≥ 1
|L| − 1

∑
j∈L\{i}

ln
(
πj
σj

)
−
z2
j

2 , (4.66)
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By approximating (4.64) using the lower bound in (4.66), we obtain:

1
|L| − 1

∑
j∈L\{i}

z2
j

2 −
z2
i

2 + ln
(
πi
σi

)
− 1
|L| − 1

∑
j∈L\{i}

ln
(
πj
σj

)
− ln(|L| − 1)

= 0 (4.67)

which can be simplified to:

(
1

|L| − 1
∑

j∈L\{i}

1
σ2
j

− 1
σ2
i

)
t2i + 2

(
µi
σ2
i

− 1
|L| − 1

∑
j∈L\{i}

µj
σ2
j

)
ti −

µ2
i

σ2
i

+ 1
|L| − 1

∑
j∈L\{i}

µ2
j

σ2
j

+ 2
[

ln
(
πi
σi

)
− 1
|L| − 1

∑
j∈L\{i}

ln
(
πj
σj

)
− ln(|L| − 1)

]
, (4.68)

a quadratic in ti. Thus, by solving (4.68), ti can be expressed as a function of wi through the variables

µi, µj , σi and σj . Being a quadratic, there are two solutions to (4.68). Yet, by choosing the solution that

yields the smaller Bayes error, (4.68) is then expressed solely in terms of wi, so that wi can be solved for

iteratively.

Note two computational issues with the above procedure. First, (4.63) is derived from the first-order

optimality condition. Therefore, there is no certainty that iteratively solving for wi would converge to a

local minimum of εi, as the optimality condition of (4.52) from which (4.63) is derived is also satisfied for

a local maximum or a saddle point. For this reason, the iterative procedure requires the use of several

different initial solutions to improve the chances of convergence to a local minimum. Moreover, there is

no guarantee that (4.68) has any real solution, for any given dataset D.
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Chapter 5

LDA for flowmeter fault diagnosis1

This chapter follows from Section 1.1, and it describes the applicability of the linear classification and

dimensionality methods proposed in Chapters 3 and 4 to flowmeter diagnostics. The need for flowmeter

diagnostics is described first. This is followed by a description of experiments performed with the project

partner, National Engineering Laboratory (NEL), Glasgow, United Kingdom, to investigate the relation-

ship between diagnostic variables and the health states of four flowmeters. Using the data from these

experiments, the chapter describes how the machine learning techniques of linear dimensionality reduc-

tion (LDR) and linear classification may be used to improve the diagnostic capabilities of the flowmeters.

Using the proposed methods in Chapters 3 and 4, diagnostic accuracies of between 97.2% and 100% are

achieved on four flowmeter types.

5.1 Need for flowmeter diagnostics

As mentioned in Chapter 1, condition-based management (CBM) of flowmeters promises to mitigate the

problem of incorrect measurements in the oil and gas industry, avoid costly shut-downs of a flow rig, and

reduce the recalibration frequency of a flowmeter. To enable CBM, the condition of the flowmeter has

to be known at all times. Fortunately, with the recent emergence of flowmeters that provide diagnostic

information that are secondary to the primary flow measurement, it is possible to infer the health state

of a flowmeter by monitoring the values of the diagnostic variables.

However, making sense of the wealth of diagnostic data accessible from a given flowmeter usually

requires end-user expertise, which is not often available in the oilfield. Thus, it becomes necessary for

flowmeter manufacturers to provide an expert system as part of the meter’s diagnostic capabilities to

eliminate the need for end-user expertise. Such an expert system would summarise the plethora of

diagnostic variables from a given flowmeter and relate them to known health states of the meter. Since

flowmeters are used in varied environments, establishing a relationship between the diagnostic variables
1Most of the work presented in this chapter first appeared in: K. S. Gyamfi, J. Brusey, A. Hunt and E. Gaura, “Linear

dimensionality reduction for classification via a sequential Bayes error minimisation with an application to flowmeter
diagnostics,” Expert Systems with Applications (2017), vol. 91, Sep. 2017, pp. 252-262.

99
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and the different health states of the meter requires testing the flowmeter under ideal and non-ideal

conditions in a test facility.

Only one representative flowmeter from a line of similarly-manufactured flowmeters needs to undergo

these tests in a test facility on the assumption that any relationships derived from the tests would be

applicable to all similar flowmeters. (This assumption is tested in Section 5.4). Moreover, only the most

prevalent health states of the meter need to be simulated. Along this line, NEL have conducted a series of

experiments, in collaboration with three flowmeter manufacturers. Four representative liquid ultrasonic

flowmeter types were tested under ideal and non-ideal conditions to investigate how the diagnostic vari-

ables change from their baseline values under three conditions, namely: non-ideal installations, presence

of a second phase, and wax-filled ports.

Training the proposed model or expert system can be formulated as a classification task where it is

desired to classify the flowmeter under one of K classes (or health states), based on a set of diagnostic

variables that form the feature vector x (see Section 2.1). For the liquid ultrasonic flowmeters (USM)

used in the NEL experiments, the K classes include: healthy, waxing, installation effects, and presence

of second phase [1].

Nevertheless, the diagnostic variables available from a given flowmeter can be varied and many, so

that the feature vector x lives in a rather high-dimensional space. For the USM shown in Figure 5.1, the

diagnostic variables include the flow profile, symmetry, cross-flow, swirl angle, flow velocity (as measured

by each of the eight paths), speed of sound (as measured by each of the eight paths), signal strength (as

measured at both ends of each of the eight paths), turbulence (as measured by each of the eight paths),

signal quality (as measured at both ends of each of the eight paths), gain (as measured at both ends of

each of the eight paths) and transit time (as measured at both ends of each of the eight paths). Thus,

the feature vector x has 92 diagnostic variables in total.

However, some of the diagnostic variables like the swirl angle or turbulence have been shown exper-

imentally to contain little or no classification information required to classify the meter under the most

prevalent health states, such as those simulated in the NEL experiments [1]. Besides, it is not known if the

diagnostic variables measured from all eight paths in Figure 5.1 are useful for classification, or whether

the average of all eight paths would suffice. The effect of having too many nuisance features is that the

learning model can over-fit the data leading to poor diagnostic accuracy, especially if the data is noisy,

which is inevitable due to an imperfect measurement system. Linear dimensionality reduction (LDR)

alleviates this problem, and if reduction to two or three dimensions is possible, LDR makes visualisation

and analysis of the diagnostics data easier for flowmeter operators.
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Furthermore, some of these diagnostic variables tend to be correlated. For example, the speed of sound,

flow velocity and transit time have a known dependence [132]. Dimensionality reduction is therefore

useful to reduce the effects of multicollinearity from the features, before the data is trained for statistical

classification.

Performing LDR for the purpose of flowmeter diagnostics involves linearly reducing the dimensionality

of the high-dimensional diagnostics data, while maximising the class discriminatory information contained

in it, so that the diagnostic capabilities of a given flowmeter are not compromised. Still, given the wide-

ranging dimensionality reduction procedures in existence, there is no obvious choice of which procedure

would yield satisfactory performance in terms of class separation. Thus, this chapter evaluates the

performance of existing LDR procedures such as principal components analysis (PCA) and LDR based on

Fisher’s criterion (F-LDR), Chernoff criterion (C-LDR) and Mahalanobis distance (M-LDR) (see Section

2.2), as compared to the proposed multi-class Gaussian linear discriminant (M-GLD) LDR procedure.

5.2 Description of NEL experiments [1]

5.2.1 Meter description

As indicated earlier, four different liquid USMs were tested in all. These are denoted as Meter A, Meter

B, Meter C and Meter D. Meter A has 8 paths, as indicated in Figure 5.1, while Meters B, C and D have

4 paths as shown in Figure 5.2.

Figure 5.1: An 8-path ultrasonic flowmeter transducer configuration [1]
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Figure 5.2: A 4-path ultrasonic flowmeter transducer configuration [1]

All four meters were tested to monitor their diagnostic values under the following conditions: in-

stallation effects, waxing, and two-phase flow, with the exception of Meter A that was tested only for

installation effects. Before and after each test, the diagnostic variables of the healthy meter are recorded

over the various reference flow rates to indicate the baseline performance of the meter.

5.2.2 Installation effects tests

These tests were aimed at exploring the impact an imperfect installation of a flowmeter may have on the

performance of the meter. The imperfect installations simulated included both vertical and horizontal

misalignment of the flange of the flowmeter, as well as the use of a different pipe schedule2 at the upstream

port. It was expected that changes in some of the diagnostic variables might indicate this health state

of the meter. Each of the flowmeters was tested over its specified flow range, and single readings of the

measured flow rate and all the diagnostic variables were taken at each reference flow rate.

5.2.3 Waxing tests

These tests were aimed at investigating the effect of wax build-up (due to the accumulation of hydrocarbon

fluids in the transducer ports) on the performance of liquid USMs, and the changes in the diagnostic

variables. Paraffin or candle wax was heated until molten and used to fill the transducer ports. The

2The pipe schedule is a number that expresses the thickness of the walls of a pipe.
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waxing tests included the waxing of upstream ports only, as well as waxing of all transducer ports. Tests

were conducted at 8 flow rates across the range of 40 to 140 litres/second. At each reference flow rate,

single readings of the measured flow rate and the diagnostic variables were taken.

5.2.4 Two-phase flow tests

Since the performance of a liquid USM can be adversely affected by the presence of a second phase

[1], these tests were aimed at investigating the relationship between the meter’s performance, diagnostic

variables and the presence of a second phase. The second phase used was gas. A gas measurement

system was employed to allow the injection of gas into the liquid whose flow rate was being measured by

the liquid USM. Over flow rates that range from 25 to 100 litres/second, different amounts of gas were

injected, whose gas volume fractions (GVF) ranged from 0.1% to 10%. The diagnostic variables were

recorded for every GVF and reference flow rate settings.

5.2.5 Diagnostic variables [1]

The diagnostic variables recorded from these tests are explained below:

1. Flatness ratio or profile factor: This parameter compares the amount of flow on the outer paths to

the centre paths. It quantifies how peaked or flattened the flow profile is.

2. Profile symmetry: It compares the amount of flow on the top planes to the bottom planes.

3. Swirl: It describes the amount of transversal flow that is rotating in the pipe. Typically, this

describes flow profile in a pipe after an out of plane double elbow. A positive number means swirl

flow is clockwise looking downstream.

4. Cross-flow: This parameter describes the amount of transversal flow that is generating a double

swirl pattern with individual vortices in the top and bottom of the pipe. Typically, this describes

flow profile after a single bend. The sign of the number indicates the direction of the cross-flow.

The cross-flow compares velocities in the chords in one plane to velocities in the plane at right

angles. In good flow conditions, the ratio should be close to unity.

5. Standard deviation: This describes the stability of flow measurement in each path, and is sometimes

used as a measure of turbulence in the flow.

6. Speed of sound (SoS): It is calculated from transit-time measurements. The calculated value is

compared to a theoretical value. The SoS should be approximately the same for each path.
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7. Gain: This is a measure of how much amplification is being applied by the electronics to the

received ultrasonic signal to ensure an effective level. This is controlled by the automatic gain

control (AGC) function built into the software. The AGC function is programmed to maintain a

constant amplitude of received signal.

8. Performance or signals percentage: This value describes how many of the ultrasonic signals are

acceptable to be used for flow measurement. The value is displayed as a percentage indicating how

many of the transmitted signals are being used.

9. Signal to noise ratio (SNR): The SNR is the ratio of the amplitude of the received signal to the

amplitude of the background noise. The signal amplitude should be significantly greater to ensure

good measurement.

Other diagnostic variables include the transit time and the flow velocity.

5.3 Characteristics of diagnostics data

Following the receipt of the diagnostics data gathered from the above tests from NEL, the procedures

applied to pre-process the data prior to training an expert system for flowmeter diagnostics are detailed

in this section.

The first task was to clean the data. Data cleaning consisted in deleting all rows with missing data,

removing outliers, as well as deleting any diagnostics variables that were constant for all tests or that were

not recorded for each health state of a given flowmeter; the entire data collected under the “Installation ef-

fects” state for Meter B were deleted, as there were too many columns with missing data. The original and

processed data can be accessed at the University of California, Irvine (UCI) machine learning repository

http://archive.ics.uci.edu/ml/datasets.html or at http://cogentee.coventry.ac.uk/~kojo/.

The cleaned data are summarised in Table 5.1 for each of the flowmeters tested.

With this data, a learning model is trained to learn the relationship between the diagnostic variables

and the health states of the flowmeters. Specifically, an expert system in the form of a statistical classifier

is trained using the above data to make predictions on the health state of a flowmeter given a particular

set of diagnostic variables.

Prior to training the classifier, however, LDR is performed to reduce the possibility of over-fitting

in order to improve the diagnostic accuracy of a given flowmeter. This is done using the M-GLD LDR

procedure proposed in Chapter 4 on page 78, after which the linearly reduced data is trained for stat-

http://archive.ics.uci.edu/ml/datasets.html
http://cogentee.coventry.ac.uk/~kojo/
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Table 5.1: USM diagnostics data
The table shows the number of data samples collected for each health state of a given flowmeter. n is
the total number of data samples for a meter, d represents the number of diagnostic variables, and K,
the number of health states. “−” indicates the non-availability of data.

Meter A Meter B Meter C Meter D
Healthy 35 19 54 51

Gas injection − 24 23 23
Installation effects 52 − 54 55

Waxing − 24 49 51
n 87 92 181 180
d 36 51 43 43
K 2 3 4 4

istical classification using the Gaussian linear discriminant optimised with gradient descent (G-GLD) as

proposed in Chapter 3 on page 39.

Since both of the proposed models are based on linear discriminant analysis (LDA), it is important to

first test for the within-class normality and the homoscedasticity assumptions that LDA makes, i.e., the

data gathered for every health state of a given flowmeter is normally distributed, and that the covariance

matrices of the data are the same across all health states for that flowmeter. For this purpose, the

Royston test is used to test for multivariate normality [133, 134], while the Box M test is used to test for

homoscedasticity [135, 136]. The results of these tests are shown in Tables 5.2 and 5.3.

Table 5.2: Royston test
This table indicates whether or not the null hypothesis of within-class normality is accepted, based on
the Royston multivariate normality test at a significance level of 0.01. “−” indicates the non-availability
of data.

Meter A Meter B Meter C Meter D
Healthy Yes Yes Yes Yes

Gas injection − No No No
Installation effects Yes − Yes Yes

Waxing − No No No

The results of the normality and homoscedasticity tests show that the data for the “Healthy” and

“Installation effects” health states of all four flowmeters tend to be normally distributed, whereas the

“Waxing” and “Gas injection” health states do not show normality. Moreover, with the exception of

Meter A, none of the meters has a common covariance across all its simulated health states. While

satisfying the assumptions of normality and homoscedasticity is not critical to the application of LDA,

any unsatisfactory performance can be attributed to the extent of violation of the assumptions. In the
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Table 5.3: M Box test
This table indicates whether or not the null hypothesis of homoscedasticity is accepted, based on the M
Box test for equality of covariances at a significance level of 0.01.

Homoscedasticity accepted
Meter A Yes
Meter B No
Meter C No
Meter D No

same way, the proposed algorithms are expected to show an improved performance over the original

LDA procedure for heteroscedastic data, since they account for the violation of the homoscedasticity

assumption.

Finally, since the different diagnostic variables take on different ranges of values, it is important to

first normalise all the variables in order to improve the speed and accuracy of the learning algorithm

[137]. This is done by using the following transformation:

p′ = p− pmax

pmax − pmin
, (5.1)

where p is any given diagnostic parameter, pmax and pmin are respectively the maximum and minimum

values of that parameter across all the data samples for a given flowmeter, and p′ is the normalised value

of p. The formula in (5.1) ensures that all the variables are rescaled to the range [0, 1].

5.4 Cross-validation performance for USMs

In order to show that any relationships derived from the tests would be applicable to similarly-manufactured

flowmeters, cross-validation is employed [138]. Cross-validation involves partitioning the diagnostics data

for a given flowmeter into a number of folds: one fold, known as the test set, is used for testing or valid-

ating the model, while the remaining folds, known as the training set is used to train the model or expert

system. The test set is therefore an unseen independent set of samples which represents the diagnostics

data expected from similarly-manufactured flowmeters in the field.

5.4.1 Linear dimensionality reduction (LDR)

The proposed LDR technique, M-GLD (Algorithm 5 on page 78), is applied to the normalised data to

reduce the dimensionality to K − 1 for each of the flowmeters: the data for Meter A is reduced to 1
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dimension, that for Meter B is reduced to 2 dimensions, and those for Meters C and D are reduced to

3 dimensions (see Table 5.1). In Figure 5.3, the 1-dimensional representation of the diagnostics data

for Meter A is shown. The implication of this linear transformation is that, instead of the 36 diagnostic

variables that were recorded for Meter A, only one parameter (dimension) is necessary to tell the “Healthy”

state from the “Installation effects” state of Meter A; note that this one parameter is a linear combination

of all 36 diagnostic variables, and it does not rely solely on one. The existing algorithms of PCA, F-LDR,

M-LDR, and C-LDR are also used to reduce the dimensionality of Meter A’s diagnostic data to 1, as

shown in Figure 5.3

In Figures 5.4, 5.5, 5.6, 5.7 and 5.8, the 3-dimensional representation of the diagnostic data for Meter

C are shown using the proposed M-GLD and existing LDR procedures. However, only the “Healthy”

and “Installation effects” health states are shown, since they are the ones that show the most marked

difference in the degree of class separation among the LDR algorithms.
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Figure 5.3: LDR performance on Meter A diagnostics data

5.4.2 Statistical classification

Following dimensionality reduction with the proposed M-GLD and existing LDR procedures, the dia-

gnostics data for the flowmeters are trained for statistical classification, after which the classification (or
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Figure 5.5: LDR performance on Meter C diagnostics data: PCA
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Figure 5.6: LDR performance on Meter C diagnostics data: F-LDR
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Figure 5.7: LDR performance on Meter C diagnostics data: M-LDR
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Figure 5.8: Proposed M-GLD LDR performance on Meter C diagnostics data: C-LDR

diagnostic) accuracy is evaluated. For this purpose, 10 independent trials of 10−fold cross validation are

performed. 10-fold cross validation involves randomly partitioning the entire data for a given flowmeter

into 10 folds. For every fold F out of the 10 folds, the data contained in the remaining 9 folds are

used to train the algorithm. The classifier obtained from training is then tested on the fold F that was

excluded from training. On each test fold F , the correctly classified samples are tallied and expressed as

a percentage of the total samples in the fold; this is the classification accuracy.

The classifier is trained using the G-GLD algorithm (Algorithm 2), as well as the original LDA and

QDA procedures (Section 2.1) for comparison. For Meters B, C and D which have more than two classes,

the One-vs-One multi-class classification strategy is used (See Section 2.1.4). For all the algorithms, the

prior probabilities of a meter’s health states (classes) are estimated from their empirical distribution in

the data, even though in practice, the healthy state of the meter may be far more probable than the

unhealthy states; if the true prior probabilities are known, they can easily be substituted in place of the

empirical estimates in the respective algorithms.

The results of classification using the three classifiers (QDA, LDA, G-GLD) on all flowmeters, without

any dimensionality reduction, are shown in Figure 5.9. The classification results after the various LDR

procedures have been applied to the original datasets are shown in Figure 5.10 to Figure 5.14.
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The performance of the proposed G-GLD algorithm, after dimensionality reduction with M-GLD, is

also compared with the linear Support Vector Machine (SVM) in Figure 5.15. SVM is implemented with

the MATLAB function fitcsvm using the default settings for a linear SVM; no dimensionality reduction

is performed prior to using SVM.

Note that in all the figures, the classification accuracies of the highest achieving algorithms are statist-

ically different from those of the remaining algorithms at the 0.01 confidence level based on the Wilcoxon’s

signed rank test.

Meter A Meter B Meter C Meter D

60

70

80

90

100
93.4

58.3

81.5

86.9

99.5
96.1

85.3 83.5

99.7

93.8

81.5
83.6

%

QDA LDA G-GLD

Figure 5.9: Average classification accuracy for all flowmeters with no LDR (No-LDR) (%)

5.4.3 Results and discussion

Meter A

After linearly reducing the dimensionality of Meter A’s diagnostic data to 1 using the proposed M-GLD

procedure, Figure 5.3 shows the two health states of the flowmeter to be very well-separated. Thus, there

is no ambiguity in classifying unknown diagnostic data from this meter under the “Healthy” class or the

“Installation effects” class; there is a 100% classification accuracy for Meter A using the QDA, LDA and

G-GLD classifiers, after dimensionality reduction with M-GLD (Figure 5.14).

Due to the fact that Meter A’s diagnostic data shows within-class normality and homoscedasticity

(Tables 5.2, 5.3), as well as having K = 2 classes, the existing LDR procedures of F-LDR, M-LDR and C-

LDR are optimal in terms of minimising the Bayes error (see Section 2.2), and hence they achieve the same
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Figure 5.10: Average classification accuracy for all flowmeters after LDR by PCA (%)
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Figure 5.12: Average classification accuracy for all flowmeters after LDR by M-LDR (%)
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Figure 5.13: Average classification accuracy for all flowmeters after LDR by C-LDR (%)



114 CHAPTER 5. LDA FOR FLOWMETER FAULT DIAGNOSIS

Meter A Meter B Meter C Meter D
60

70

80

90

100100 100 99.4
97.3

100 100

67.7

63.2

100 100 98.4 97.2

%
QDA LDA G-GLD

Figure 5.14: Average classification accuracy for all flowmeters after LDR by M-GLD (%)
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degree of class separation as the proposed M-GLD procedure, as can be seen in Figure 5.3. Consequently,

these algorithms achieve classification accuracies of 100%, equivalent to the proposed M-GLD procedure,

using all three classifiers, as shown in Figure 5.11, Figure 5.12 and Figure 5.13.

PCA, while being a common dimensionality reduction procedure, is unsupervised in the sense that it

does not make use of the class labels, but rather, it linearly projects the 36-dimensional data of Meter

A onto a linear subspace in such a way as to maximise the variance. However, maximising the variance

results in significant class overlap in the 1-dimensional space, as can be seen in Figure 5.3. Therefore,

the performance of PCA is unsatisfactory on Meter A using all three classifiers (Figure 5.10).

Without any dimensionality reduction, the degree of class separation obtained for Meter A by M-GLD

as well as F-LDR, M-LDR and C-LDR may not be possible in the original 36-dimensional space, as the

original data tends to be noisy and full of redundant features. It is for this reason that the classification

accuracy for Meter A without any dimensionality reduction (No-LDR), at 93.4%, is lower than those of

F-LDR, M-LDR, C-LDR and M-GLD using the QDA classifier (Figure 5.9, 5.10, 5.11, 5.12, 5.13, 5.14).

However, since linear classifiers tend to be more robust under noisy data, the classification performance

for Meter A without any dimensionality reduction using the LDA and G-GLD classifiers show significant

improvement over its performance with the QDA classifier (Figure 5.9).

Note that there is little performance difference between the QDA, LDA and G-GLD classifiers on

Meter A for the F-LDR, M-LDR, C-LDR and M-GLD procedures. This is due to the fact that under

within-class normality and homoscedasticity, both QDA and G-GLD decompose to become equivalent to

the LDA classifier.

Meter B

In the case of Meter B, which does not satisfy the homoscedasticity and within-class normality assump-

tions of LDA (Tables 5.2, 5.3), F-LDR shows a reduced classification accuracy of 97.2% (Figure 5.11)

as compared to M-GLD (Figure 5.14) and C-LDR (Figure 5.13) which both achieve 100% classification

accuracy using the QDA classifier. This is because, while F-LDR assumes normally distributed and

homoscedastic data, both M-GLD and C-LDR account for the violation of homoscedasticity. Though

M-LDR also assumes homoscedastic data, the Mahalanobis distance criterion, which is maximised in

the M-LDR procedure, results in a better class separation than Fisher’s criterion, which is employed in

F-LDR. As a result, M-LDR also achieves 100% classification accuracy using the QDA classifier (Figure

5.12).

PCA performs fairly well on Meter B as compared to Meter A (Figure 5.10), because for Meter B, the
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directions of maximum variance onto which the original data is linearly reduced, coincide with the dir-

ections that maximise the class-discriminatory information, thereby yielding a satisfactory classification

performance using the QDA classifier.

The QDA classifier performs poorly on Meter B (58.3%) without any dimensionality reduction (No-

LDR) (Figure 5.9) due to the fact the original data is noisy, contains redundant features, is not normally

distributed in each class, and does not have equal covariance among the classes. Using the two linear

classifiers (LDA and G-GLD), the classification performance is significantly improved for No-LDR, since

linear classifiers are more robust to noise and the distribution of the data, while QDA easily over-fits.

After dimensionality reduction, however, especially with M-GLD, QDA tends to not over-fit (Figure

5.14).

Note that with the exception of No-LDR, there is a general decrease in classification accuracy among

all the LDR procedures on Meter B using an LDA classifier as compared to using a QDA classifier (Figure

5.10 to Figure 5.14). This is attributable to the fact that the LDA classifier assumes equal covariance

whereas the QDA classifier does not. The loss in performance due to using an LDA classifier is recouped

to a large extent by the G-GLD, which although being a linear classifier, accounts for unequal covariances

among the different health states of the meter.

5.4.4 Meters C and D

Meters C and D, being heteroscedastic, show a similar performance to Meter B for all LDR procedures and

all three classifiers, except for the fact that M-GLD (Figure 5.14) significantly outperforms C-LDR (Figure

5.13) and M-LDR (Figure 5.12) using the QDA and G-GLD classifiers. This is because the sequential

minimisation of the Bayes error that is followed by the M-GLD procedure in reducing the dimensionality,

results in a better class discrimination than maximising the Chernoff criterion (as employed in C-LDR)

or the Mahalanobis distance (as employed in M-LDR).

5.4.5 All flowmeters

A comparison of M-GLD+G-GLD with the linear SVM in Figure 5.15 shows that the M-GLD LDR

procedure, followed by linear classification with G-GLD, easily outperforms the linear SVM on all four

flowmeters; the SVM performs rather poorly on all flowmeters but Meter B. This shows that the SVM,

while being one of the most widely used algorithms for linear classification, is unsuitable for the diagnosis

of the health states of the four meter types tested.

In general however, the best classification (diagnostic) accuracy for all four flowmeters is achieved
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by performing dimensionality reduction with the proposed M-GLD procedure on the original datasets,

followed by quadratic discrimination with QDA. With this approach, Meters A and B have the best

diagnostic capabilities (100%), followed by Meter C at 99.4% and Meter D at 97.3%, as shown in Figure

5.14. Also in the same figure, it will be noted that the G-GLD classifier shows a competitive performance

with QDA after dimensionality reduction with M-GLD.

For other flowmeters in the field, different from the ones tested in this chapter, G-GLD may have the

advantages of robustness in terms of diagnostic performance, and a faster testing (or diagnosing) time,

since G-GLD is a linear classifier.

5.5 Chapter summary

This chapter discusses the application of the Gaussian linear discriminant (GLD) proposed in Chapter

3 and extended for linear dimensionality reduction in the multi-class case in Chapter 4 to flowmeter

diagnostics. The chapter begins by justifying the need for flowmeter diagnostics in the oil and gas

industry as a measure to avoid costly shut-downs of a flow facility, and to reduce costs incurred as a

result of incorrect measurements and frequent recalibration of a flowmeter.

Following this, the chapter describes experiments conducted at the National Engineering Laboratory

(NEL), UK, to test the diagnostic capabilities of four different ultrasonic flowmeter types, by monitoring

the changes in their diagnostic variables under ideal and non-ideal flow conditions.

The data gathered from these tests are preprocessed and used to train an expert system to predict the

health states of similar flowmeters in the field based on the values their diagnostic variables take. Training

the expert system involves linear dimensionality reduction of the original diagnostics data to reduce over-

fitting, followed by statistical classification using the following Bayesian classifiers: linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA), and the Gaussian linear discriminant optimised

by gradient descent (G-GLD).

By performing 10-fold cross validation, the classification or diagnostic accuracy of the four flowmeters

are evaluated on the test folds, using various dimensionality reduction procedures together with the three

Bayesian classifiers. The proposed multi-class Gaussian linear discriminant (M-GLD) LDR procedure

followed by quadratic discrimination with the QDA classifier is shown to achieve the best diagnostic

performance on all four flowmeters, with Meters A and B showing the best diagnostic capabilities, followed

by Meters C and D respectively.

The results shown in this chapter indicate that, with the adoption of the proposed M-GLD dimen-
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sionality reduction procedure and G-GLD linear classifier, it is possible to eliminate the need for end-user

expertise required to interpret the wealth of diagnostic variables from a flowmeter in order to make sense

of the health state of the meter. Moreover, the high diagnostic accuracies achieved for the flowmeters

with the proposed algorithms have huge implications for the recalibration frequency of a flowmeter. Spe-

cifically, if evidence is provided to the regulatory body that a meter is predicted to be in its healthy

state even at the point of its scheduled recalibration period, recalibration may be delayed [1], resulting in

substantial savings (see page 1). In the same way, if a meter is predicted to be in a particular unhealthy

state, even before its scheduled recalibration period, recalibration may be recommended earlier to prevent

incorrect flow measurement and its associated costs (see page 1).



Chapter 6

Conclusions and future work

Linear discriminant analysis (LDA) has been applied to several problems such as medical diagnosis, face

recognition and spam filtering, either for supervised linear dimensionality reduction (LDR) of a dataset,

or for linear classification. This thesis addresses the issue of unequal covariance (heteroscedasticity),

which causes LDA to be suboptimal in its performance, since LDA assumes equal covariance and nor-

mally distributed classes. The work presented in this thesis details how to account for heteroscedasticity

in LDA for linear classification in a computationally efficient procedure termed Gaussian linear discrim-

inant (GLD), that minimises the Bayes error—the minimum achievable error rate by a classifier that

makes predictions from the knowledge of the true distribution of the data. The GLD procedure is then

extended for dimensionality reduction in a procedure that involves the sequential minimisation of the

Bayes error, while accounting for heteroscedasticity. Experimental validation of the proposed algorithms,

using several publicly available datasets, indicate significant performance improvement over LDA when

heteroscedasticity is accounted for.

This thesis further demonstrates the utility of the proposed algorithms by describing their applicability

to flow meter diagnostics, which involves classifying a flow meter under one of a given number of health

states.

6.1 Research questions answered

Motivated by the following peculiarities with flow meters, namely:

1. the covariance matrices of the health states of a given flow meter are not equal;

2. there is the potential issue of class imbalance, which has been claimed to negatively affect the

performance of LDA [11];

3. the individual health states tend to be nearly normally distributed; with knowledge of this distri-

bution, optimum linear classification and dimensionality reduction can be achieved by minimising

the Bayes error [8],

119
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This thesis has sought to answer the following research questions:

1. How can heteroscedasticity be accounted for in LDA while minimising the Bayes error for classific-

ation?

2. What is the effect of class imbalance on LDA when heteroscedasticity has been accounted for?

3. How can heteroscedasticity be accounted for in LDA while minimising the Bayes error for dimen-

sionality reduction?

4. Does accounting for heteroscedasticity in LDA improve the accuracy of diagnosis for a given flow

meter?

6.1.1 How can heteroscedasticity be accounted for in LDA while minimising

the Bayes error for classification?

To answer this question, the first and second-order optimality conditions for the minimisation of the Bayes

error are derived for linear classification, while accounting for heteroscedasticity under an assumption of

normally distributed classes. From the optimality conditions, it is shown that there is no closed-form

solution for a linear classifier that minimises the Bayes error in heteroscedastic LDA, thus, requiring

the use of iterative methods. An iterative procedure that involves recursive matrix inversions to obtain

the Bayes-optimal linear classifier is therefore derived from the optimality conditions. This procedure is

referred to as recursive Gaussian linear discriminant (R-GLD). While R-GLD is computationally efficient

for low-dimensional data, it is shown that it can sometimes converge on solutions that do not minimise

the Bayes error at all, but rather maximise it. A gradient descent procedure, for which convergence to a

local minimum is guaranteed, is therefore proposed to minimise the Bayes error under heteroscedasticity

in a procedure referred to as gradient descent Gaussian linear discriminant (G-GLD). G-GLD requires

no matrix inversions, and as such, is well-suited for high-dimensional data, for which matrix inversions

can be computationally prohibitive.

An analysis of the Hessian matrix of the Bayes error under heteroscedasticity shows that the Bayes

error is non-convex, which implies that the local optimum solution on which R-GLD or G-GLD converges

is not unique, and there may be several other local minima. Non-convexity of the Bayes error therefore

requires R-GLD or G-GLD be run several times with different initial solutions, to improve the quality of

the overall solution.

R-GLD and G-GLD are validated experimentally, and are shown to achieve improved performance

over LDA.
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6.1.2 What is the effect of class imbalance on LDA when heteroscedasticity

has been accounted for?

The effect of class imbalance on LDA is to cause the prior probability of the majority class to be much

higher than that of the minority class. By studying the limiting behaviour of the ratio of the prior

probabilities of the classes, it is seen that classification accuracy of LDA is biased in favour of the

majority class, whether or not heteroscedasticity has been accounted for.

However, under heteroscedasticity, the optimality conditions of the Bayes error imply that the Bayes-

optimal discriminating hyperplane depends on the choice of the discriminating threshold. Thus, a dynamic

linear model, referred to as dynamic Gaussian linear discriminant (D-GLD), is derived, which directly

expresses the discriminating hyperplane in terms of the discriminating threshold.

Under class imbalance, when the discriminating threshold is typically varied to improve the detection

of more minority samples, D-GLD is shown experimentally to improve the area under the receiver oper-

ating characteristics curve (AUC). The improved performance is due to the fact that D-GLD optimises

the discriminating hyperplane for every choice of the discriminating threshold. The AUC is an evaluation

metric that measures the trade-off between the probability of correct detection of minority samples and

the probability of false alarm, and is preferred over the classification accuracy under class imbalance,

since the classification accuracy is skewed toward the majority class.

6.1.3 How can heteroscedasticity be accounted for in LDA while minimising

the Bayes error for dimensionality reduction?

In the two-class case, the linear classifier obtained using G-GLD or R-GLD can be directly employed for

linear dimensionality reduction, since it minimises the Bayes error under heteroscedasticity.

For more than two classes however, the Bayes error is not minimised in LDA, even if the assumptions

of equal covariance and normally distributed classes are satisfied. To solve this problem, a procedure that

involves the sequential minimisation of the Bayes error under heteroscedasticity is proposed for the multi-

class case. The optimality conditions for this minimisation are derived. The procedure, termed multi-

class Gaussian linear discriminant (M-GLD), involves the successive construction of G-GLD classifiers

to discriminate one class from the remaining classes in K − 1 stages, where K is the number of classes.

M-GLD consequently reduces the dimensionality of a given dataset to K − 1, which is necessary and

sufficient to preserve the classification information in the original dataset, if a Bayesian classifier such as

LDA is to be employed after LDR.
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6.1.4 Does accounting for heteroscedasticity in LDA improve the accuracy

of diagnosis for a given flow meter?

Yes.

To answer this question, the proposed M-GLD dimensionality reduction procedure is applied on four

different ultrasonic flow meter (USM) diagnostics datasets. The datasets are obtained from experiments

performed by National Engineering Laboratory (NEL), United Kingdom. Dimensionality reduction with

M-GLD is then followed by linear classification with the proposed G-GLD classifier. The cross-validation

results show that, by accounting for heteroscedasticity, M-GLD followed by G-GLD achieve substantial

performance improvement over LDA in terms of the classification or diagnostic accuracy on all flow

meters. The performance difference observed between the proposed algorithms and LDA are significant

at the 0.01 confidence level, based on the Wilcoxon’s signed rank test.

6.2 Future work

By addressing the research questions posed, the work presented in this thesis has led to significant

contributions to knowledge. Yet, it still opens several windows for future work.

Firstly, the proposed GLD linear classifier, while it accounts for heteroscedasticity, still makes the

assumption of within-class normality, in line with LDA. For many physical quantities such as measurement

errors, the assumption of normality is often valid. Still, there are a lot others that do not satisfy this

assumption. To account for non-normality, this thesis proposes a local neighbourhood search (LNS)

procedure that searches in the neighbourhood of the GLD classifier to obtain a discriminative classifier

that is robust to the distribution of the data. However, the computational time of LNS does not scale well

with large amounts of training data, and it only works well on data that are nearly normally distributed,

and not on those that are radically non-normal. One possible direction for future work is therefore to

derive the GLD procedure for arbitrary non-normal distributions by minimising their Bayes error (or

some upper bounds of it, given that the Bayes error can be analytically intractable for an arbitrary

distribution). Alternatively, future research can be aimed at deriving a kernel function that implicitly

transforms some data of a known non-normal distribution into a feature space where the data in each

class is nearly normally distributed.

Secondly, it is implicitly assumed in LDA and the proposed GLD procedures that the data in any

two classes are linearly separable, thus necessitating the construction of a linear decision boundary.

For datasets with classes that are not linearly separable, there has been the application of the kernel
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trick to LDA to implicitly transform the data into a new feature space where linear separability is

guaranteed; this procedure, referred to as kernel Fisher discriminant (KFD), still does not account for

heteroscedasticity. A heteroscedastic kernel LDA model, dubbed kernel Gaussian linear discriminant

(K-GLD), which minimises the Bayes error in the transformed space, has been proposed in this thesis.

However, neither K-FD nor K-GLD scales well with large amounts of training data, as they require the

inversion of matrices the size of the training data. More efficient optimisation procedures are therefore

needed to minimise the Bayes error in the K-GLD procedure.

Thirdly, while the proposed M-GLD procedure has been shown to be superior to LDA and other

existing heteroscedastic LDA procedures for dimensionality reduction, it requires the construction of

(K2 +K− 4)/2 GLD classifiers for a K-class problem, which can be computationally costly for a dataset

having a lot of classes. As future work, information theoretic approaches can be explored to reduce the

total number of classifiers constructed in each stage of the proposed M-GLD dimensionality reduction

procedure. This would decrease the computational complexity of the algorithm and improve its speed.

Fourthly, LDA relies on knowledge of the prior probabilities of the classes in a dataset. Since these

prior probabilities are often unknown, they are commonly estimated from the relative frequency of each

class in the dataset. However, for the four flow meter datasets used in this work, the relative frequencies

of the health states are roughly balanced, and not indicative of the actual prior probabilities expected

in the field. This is because, for a given flow meter in operation, there is a much higher probability

that it is healthy than it is in a particular unhealthy state. Thus, it is expected that typical flow meter

diagnostics data would show class imbalance in favour of the healthy class. Further research work is

therefore required to estimate the prior probabilities of each health state of a given flow meter.

Finally, as an application to flow meter diagnostics, future work can focus on leveraging the correct

diagnosis of a flow meter in the estimation of the error associated with each flow measurement, with reas-

onable accuracy. That is, with the knowledge of the true health state of a given flow meter, the associated

flow measurement errors can be estimated with improved accuracy. This will allow erroneous flow meas-

urements to be self-validated, thus resulting in significant cost cuts due to incorrect flow measurements

in oil and gas operations.

6.3 Summary

In conclusion, this thesis describes the design of an optimal linear classifier and linear dimensionality

reduction procedure which account for unequal covariance (heteroscedasticity) in LDA, while minimising
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the Bayes error. Further adaptations of these basic models are made for the scenarios of non-normal

distributions, class imbalance and linearly non-separable classes. The experimental validation of the

proposed heteroscedastic LDA models on several real-world and artificial datasets show that accounting

for heteroscedasticity while minimising the Bayes error results in significant performance improvement

over LDA and other existing heteroscedastic LDA procedures.

The thesis further demonstrates the utility of the proposed heteroscedastic LDA models, by employing

them in diagnosing the health states of four ultrasonic flow meters. The high diagnostic accuracies

achieved with the proposed algorithms on the flow meters promise significant cost benefits in oil and gas

operations.
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