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An Artificial Neural Network -Based Mathematical Model for a Stochastic Health Care 

Facility Location Problem 

Abstract 

This research is conducted to investigate the problem of locating the trauma centers and 

helicopters' station in order to optimize the trauma care system. The stochastic characteristics of 

the system, such as stochastic transferring time of the patients, stochastic demand and stochastic 

servicing time of the patients in trauma centers are taken into account. The problem is first modeled 

as a stochastic mixed-integer linear mathematical model. In the proposed model, minimizing the 

total cost, minimizing the transferring time, and minimizing the waiting time inside the trauma 

center are considered as the three separate objectives. The third objective cannot be expressed by 

an analytical expression because of the complexity inside a trauma center. Therefore, an artificial 

neural network (ANN) is first trained by a simulation model and then is utilized to estimate the 

third objective function. A hybrid multi-objective algorithm is developed based on a non-

dominated sorting water flow algorithm in order to search the solution space.  Different numerical 

examples are applied to study the performance of the proposed method. The computational results 

show that the combination of simulation, ANN, and optimization technique provides an effective 

means for the highly complex optimization problems. 

Keywords: Artificial Neural Network; Mathematical Modeling; Health Care; Facility Location 

Problem, Operations Research 

 

 

 

 

 

 

 

 

 

 

 

 



 

Highlights 

 An artificial neural network is developed for the health care facility location problem. 

 A mixed integer non-linear programming model is proposed. 

 A simulation model is applied to consider the stochastic parameters. 

 Numerical experiments demonstrate the effectiveness of the proposed algorithm. 
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1. Introduction 

With the increase in the need for establishing better healthcare systems, finding the best location 

of the healthcare resources has become a vital issue in providing better and reliable healthcare 

services (Shikder et al., 2017). Trauma encompassing the accidents or unintentional injuries is 

among the most important issues in the healthcare. According to the world health organization 

(WHO), traumatic injury is a public health problem in the high and low-income countries. Kehoe 

et al., (2015) stated that the trauma is the leading cause of death in the people between 25– 50 

years of age in the United States and the second leading cause for those aged over 75 years old.  

As a result, the need for trauma centers is essential for each geographical area throughout the 

country. 

A trauma center is a hospital equipped and staffed to immediately provide the surgical services 

and care to the patients with traumatic injuries. Accredited trauma centers must always be prepared 

to treat the most disabling and life-threatening injuries. Each trauma center is designated with a 

certain level corresponding to the degree of care offered by the center (Moritz, 2012). When a 

trauma case occurs, critical care paramedics are quickly dispatched to the scene either by the 

ground ambulance or helicopter. They provide the first aid to stabilize the patient at the scene and 

then, transport him/her to a trauma center. Because any delay in transporting a patient to a trauma 

center can severely influence his/her survival rate, an appropriate clinical intervention should be 

provided very soon. Therefore, the optimal location of trauma centers is an integral part of the 

success of all the trauma systems so as to minimize the distance between the trauma centers and 

possible incident point. The time needed to transfer the injured to the trauma centers can be reduced 

by optimal locating the trauma centers. But, establishing the trauma centers is costly and they are 

generally located in the main hospitals. Therefore, locating a trauma center is equal to selecting a 

hospital to establish a trauma center in it.  

When there are a limited number of trauma centers, transferring will be much more important. 

Helicopters can quickly take the patient from the incident point to the trauma center. Also, they 

play an important role by expanding the geographical coverage through transporting the patients 

from rural areas to the trauma centers. Thus, it is important to simultaneously locate the trauma 

centers and helicopter stations in designing a trauma care system. In addition to the location 

problem, the way of allocating the resources in a trauma care system is vital. Helicopters are the 

most important resources, which should be optimally allocated to the stations. Allocation of the 

required resources is usually discussed further when the optimal location configuration is 

addressed.  However, the locations of trauma centers influence the demand for the helicopters and 

vice versa. This dependency is particularly problematic if the problem is not considered integrally. 

Thus, in this paper, both problems of locating the trauma centers and helicopter stations are 

considered along with allocating the rescores in order to optimize the trauma care system. To be 

more practical, the stochastic characteristics of the system are also taken into account. This 

stochastic comes from the stochastic transferring time of the patients, stochastic demand, 
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stochastic servicing time of the patients in trauma centers, etc. First, a stochastic mixed-integer 

linear mathematical model is developed. In the proposed model, minimizing the total cost, 

minimizing the transferring time, and minimizing the waiting time inside the trauma center are 

considered as the separate objectives. The first two objectives are expressed by the analytical 

formula. But, the third objective cannot be expressed by an analytical expression because of the 

complexity inside a trauma center. Therefore, an artificial neural network (ANN) is utilized to 

estimate the third objective function. The ANN works as an objective function estimator during 

the search process.  

The main contribution lies in calculating the time of transferring the injured patients to trauma 

centers by queueing theory, and calculating the waiting time spent inside the trauma center by 

ANN. To build an efficient ANN, a simulation model is made and through this simulation model 

the ANN is rained and utilized to estimate the waiting time spent inside the trauma center. Both 

queueing theory and simulation can handle the stochastic characteristics of the system, such as 

stochastic transferring time of the patients, stochastic demand and stochastic servicing time of the 

patients in trauma centers. Therefore, calculating the tome metric is done in a realistic manner. On 

the other hand, as another contribution, a novel metaheuristic algorithm, named Non-dominated 

Sorting Water Flow Algorithm (NSWFA), is combined with ANN and is applied to search the 

solution space. 

The remainder of this paper is organized as follows. A brief review of the literature is provided in 

Section 2. In Section 3, a description of the problem is given along with the mathematical model. 

Section 4 describes the methodology of the proposed solution. Computational experiments are 

given in Section 5. Finally, Section 6 is devoted to the conclusions and recommendations for future 

research. 

 

2. Literature Review 

Toregas et al., (1971) and Church and ReVelle (1974) are among the first researchers studied the 

vehicle location problems of emergency medical services. Toregas et al., (1971) investigated a 

location set covering problem.  They minimized the number of ambulances and find their locations 

covering all the demand points within a certain distance. Church and ReVelle (1974) proposed the 

maximal covering location problem, which deals with locating a fixed number of ambulances so 

as to maximize the amount of demand covered by at least one facility. Branas et al., (2000) 

presented an integrated model. The model could determine the optimum positions of trauma 

centers and helicopter stations. A heuristic algorithm was applied to optimize the model. Their 

computational results showed that the trauma resource allocation model for ambulances and 

hospitals allows the planners of the trauma systems to better locate their resources with respect to 

the spatial needs and response times. Branas and ReVelle (2001) considered a joint location 

problem of trauma centers and helicopters. They modeled this as a deterministic location problem, 



and formulated the problem as a mixed-integer linear program. They could not obtain the solutions 

within a reasonable amount of time using the CPLEX directly, so they developed an iterative 

heuristic to identify the best locations of helicopters, holding the locations of trauma centers fixed, 

followed by finding the best locations of trauma centers, holding the locations of helicopters fixed, 

and so on.  

Erdemir et al., (2008) developed a mathematical model in order to find the optimum location of 

helicopter stations.  Their model maximized the covered demands considering the service facilities 

with demands on both nodes and paths. Schuurman et al., (2009) presented a model to maximize 

the demand coverage of the regions without adding a new helicopter station. A real case with two 

hospitals and helicopter medical services was used to show the model efficiency. Erdemir et al., 

(2010) presented two models to optimize the locations of the ambulance, helicopter, and transfer 

points. The first model minimized the cost of establishing the facilities. The second model 

maximized the coverage of demands within the given total cost. Fulton et al., (2010) presented an 

optimization model considering the uncertainty in demand. The model sought to minimize the 

expected travel time over all the potential scenarios. Their model optimized the redesign and 

relocation of the emergency service facilities and the location of ground ambulances by finding 

the optimum location of helicopter stations, hospitals, and helicopter paths. Caunhye et al., (2012) 

categorized the optimization model for emergency logistics into three groups: (1) facility location, 

(2) relief distribution and casualty transportation, and (3) other operations. Factors, such as 

objective function, constraints, data modeling types, and decisions were used to analyze each 

group. Zanjirani Farahani et al., (2014) provided an overview of the models and algorithms used 

for health care problems.  

Bozorgi-Amiri et al., (2016) considered uncertain demand points and proposed an integer 

nonlinear programming model. The model was able to find the optimum location of the helicopter 

stations and helipads. They showed that the demands occur in a square-shaped area. Each side of 

this square-shaped area follows a uniform distribution. Lee and Jang (2018) addressed the problem 

of simultaneously locating the trauma centers and helicopters during the planning horizon. They 

extended the location model into a multi-period location model by introducing an additional 

decision point namely, the location time. An efficient solution approach, that iteratively updated 

the helicopters’ availability using the previous step of optimization results, was proposed to 

estimate the availability of the helicopters. They proved that the proposed method is valid and 

competitive compared to the alternative methods. Sathler et al., (2019) presented a new integrated 

approach to the public health care planning. They proposed an integrated mathematical model to 

locate the health care centers and allocate the equipment in order to maximize the demand 

satisfaction with the minimum resource allocation. The computational results revealed that their 

approach is generic and suitable to set the location and allocate the resources in the health care if 

the objective is maximizing the use of specialists’ assistance and medical exams. 

Belanger et al., (2019) performed a comprehensive review on the static ambulance location 

problems. They focused on the recent approaches to address the tactical and operational decisions, 



and the interaction between these two types of decisions. De Freitas et al., (2019) developed a two-

step optimization system and a web-based interface to provide an optimum solution for locating 

and sizing the medical centers and allocating the equipment to meet the secondary care needs of 

the community. They suggested a location-allocation mathematical model to address the health-

care facility location and capacity allocation for secondary care on the state level, adopt the 

available equipment idle capacity on a hierarchical healthcare system, and recognize the multiple 

preferences.  

Clearly, different types of objectives have been used to solve the health-care facility location 

problem. Some studies have used more than one objective. Dokmeci (1979) used two objectives 

of minimizing cost and maximizing utilization. Current et al., (1990) suggested four objectives 

including (1) cost minimization, (2) demand -oriented, (3) profit maximization, and (4) 

environmental concern to decide about the facility location. Doerner et al., (2007) studied the 

problem of locating the mobile healthcare facilities (HCFs). They developed a mathematical model 

to optimize the number and location of the facilities. Finally, three criteria of efficiency, average 

distances, and coverage were used to evaluate the model.  

Gu et al., (2010) set two objectives including (1) people should have more flexibility to select the 

service location, and (2) each preventive HCF needs to have a minimum number of clients in order 

to retain the accreditation to optimize the preventive HCF locations. De Vries et al., (2014) 

presented an approach to select the locations for new HCFs and to choose for each of these 

facilities whether to add the healthcare services for the human immunodeficiency virus (HIV). 

They proposed a two -objective mathematical model to maximize the number of the covered truck 

-driver patients at these facilities and the maximization of the extent such that, the truck drivers 

have the continuous access to the needed health service packages. Bonnet et al., (2015) also 

presented a multi-objective optimization along with simulation to test the optimization output for 

the performance of the automated external defibrillators in terms of time-to-retrieve. Furthermore, 

they displayed the results in an interactive decision-making web-based user interface to visualize 

the potential deployment configurations.  

However, in the above-mentioned researches, candidate solutions were obtained by summing the 

weighted objective functions. This method has several limitations: (1) the knowledge is required 

about the importance of the objectives, (2) it may lead to only one solution, and (3) trade-offs 

between the objectives cannot be evaluated (Ngatchou et al., 2005; Yoo & Harman, 2007). Some 

studies have focused to find the Pareto solutions in the multi -objective (MO) problems in order to 

cope with these weaknesses. Pareto solutions are the solutions that are greater with respect to the 

rest of the solutions in the search space when all the objectives are considered but are inferior to 

the other solutions in the space in case of one or more objectives (Srinivas & Deb, 1994). Pareto 

plans maintain a range of key index values and reflect the trade-offs between the objectives thus, 

the planners or decision -makers can select from the Pareto plans. Given the feature of the Pareto 

solutions, many scholars have attempted to search for the Pareto solutions rather than one best 

solution for MO problems.  



Zhang et al., (2016) proposed a Pareto-based multi-objective genetic algorithm to optimize the 

location of new HCFs in Hong Kong in 2020. Four objective functions of minimizing the inequity 

of accessibility, maximizing the accessibility for the whole population, minimizing the number of 

people who are present outside an acceptable travel distance, and minimizing the cost of 

constructing the new HCFs were selected. Decerle et al., (2018) presented a new Pareto-based 

multi-objective algorithm named as the multi-directional local search. They solved the problem so 

that, the total traveling time of the caregivers, the sum of the penalties due to soft patients’ time 

window and the maximal workload difference among the caregivers were minimized. Finally, they 

analyzed the effect of balancing each activity of the caregivers on the various objectives. Decerle 

et al., (2019) developed a multi-objective model to consider the caregivers and qualifications of 

the visits, temporal dependencies, patient's availability time window, multiple home health care 

offices, and balanced working time. A Pareto-based multi-objective memetic algorithm was used 

to simultaneously minimize the total working time of the caregivers, maximize the quality of 

service, and minimize the maximal working time of the nurses.  

Though, the concept of the Pareto solutions for MO problems has been widely used in different 

areas of operations research, there are a few researches addressed the Pareto solutions for the MO 

problem of locating the HCFs. Thus, in the current research, the multi-objective optimization 

(MOO) approach is employed to search for the Pareto solutions of HCF locations. For this purpose, 

first, a new multi-objective mathematical model is developed. Then, the water flow algorithm is 

adapted to solve the problem and search for the Pareto solutions. The proposed mathematical 

model is able to minimize the total cost, the transferring time, and the waiting time inside the 

trauma center. In this model, the time needed to transfer the injured is considered as a stochastic 

parameter. This makes the model to be more realistic and applicable. 

3. Mathematical Model 

The total geographical area that must be covered is partitioned into different areas. The demand in 

each area i is stochastic with mean 𝜆𝑖. There are U candidate sites for trauma centers. In fact, there 

is a hospital in each candidate site where a trauma center can be constructed in it. There are K 

candidate sites for helicopter stations. Two different modes exist to transfer the patients from each 

area to a trauma center. In the first mode, the injured is transferred directly to the trauma center by 

an ambulance sent from the trauma center. In the second mode, the helicopter is used to transfer 

the injured to the trauma center. In the first mode, there are enough ambulances so that, as soon as 

a request is arrived, an ambulance is sent to the demand point. But, in the second mode, since the 

number of available helicopters is limited, the injured have to wait for the helicopters to be 

available. The exact point of demand in each area is unknown. Therefore, the time needed to 

transfer the injured is considered as a stochastic parameter. The emergency treatment process will 

begin after transfer of the injured to the trauma center. The main process of treatment occurs inside 

the trauma center. Other assumptions are considered as follows: 

 A sufficient number of ambulances exist in each trauma center. 



 All the demand points must be covered. 

 The process of treatment in the trauma centers is predetermined. 

The problem is where the trauma centers and helicopter stations are established and how the 

resources are allocated so that the total cost of building the trauma centers and helicopter stations, 

total transferring time of the injured patients to trauma centers, and total waiting time of the injured 

patients inside the trauma centers are minimized. The problem is modeled as a mixed-integer 

mathematical programming model. The notations used in the developed mathematical model are 

as follows: 

 

 

Indices 

𝑖 Index for demand area 𝑖 = {1, 2, … , 𝐼}  

𝑘 Index for helicopter station 𝑘 = {1, 2, … , 𝐾}  

𝑢 Index for trauma center 𝑢 = {1, 2, … , 𝑈}  

 

 

parameters 

𝑡𝑖𝑢𝜋 The time distance of ambulance between demand area i and trauma center u in 

scenario 𝜋 

𝑡𝑖𝑢𝑘𝜋
′  The time distance of helicopter between helicopter station k and demand area i 

plus demand area i and trauma center u in scenario 𝜋 

𝜆𝑖 Mean arrival rate of demand in the demand area i  

𝑐ℎ𝑘 Establishment cost of each helicopter station k 

𝑐𝑡𝑢 Establishment cost of each trauma center u 

𝐻 Total number of available helicopters 

 

The proposed mathematical model has five principal decision variables. Four of them are binary 

variables and one is an integer variable. 

Decision variables 

𝑋𝑖𝑢 {
1      if demand area 𝑖 is directly serviced by the ambulance from trauma center 𝑢 
0     otherwise                                                                                                                                  

 

𝑌𝑖𝑢𝑘 {
1      if demand area 𝑖 is serviced by trauma center 𝑢 via helicopter station 𝑘           
0     otherwise                                                                                                                                  

 



𝑍𝑘 {
1       if a helicopter station is established at node 𝑘                                                            
0      otherwise                                                                                                                                  

 

𝑂𝑢 {
1      if a trauma center is established at node 𝑢                                                                    
0     otherwise                                                                                                                                  

 

𝐶𝑘 Number of the helicopters allocated to the helicopter station k 

𝜌𝑘 Utilization factor in the helicopter station k 

𝐸(𝑊𝑘) The average waiting time in the helicopter station k 

 

The first objective function minimizes the total costs of establishing the helicopter station and 

trauma center. 

𝑂𝐹1 = 𝑀𝑖𝑛∑𝑍𝑘𝑐ℎ𝑘
∀𝑘

+∑𝑂𝑢𝑐𝑡𝑢
∀𝑢

 (1) 

 

The second objective function minimizes the total time of transferring the injured patients to the 

trauma centers. The first part is related to the time of direct transferring from demand point to 

trauma centers through the ambulance. The second part is related to the time of transferring from 

demand point to trauma centers through a helicopter and the third part is related to the waiting time 

in the demand point for a helicopter. 

𝑂𝐹2 = 𝑀𝑖𝑛∑∑∑𝑋𝑖𝑢𝑡𝑖𝑢𝜋𝜆𝑖
∀𝑢∀𝑖∀𝜋

+∑∑∑∑𝑌𝑖𝑢𝑘𝑡𝑖𝑢𝑘𝜋
′ 𝜆𝑖

∀𝑘∀𝑢∀𝑖∀𝜋

+∑𝐸(𝑊𝑘)

∀𝑘

 (2) 

 

The third objective function minimizes the total waiting time spent inside the trauma center for a 

patient to complete the emergency activities. Calculating this time by the analytical formulation is 

impossible because of high complexity and high interaction between the elements inside the 

trauma centers. Therefore, its value is estimated by an ANN.  

𝑂𝐹3 = 𝑀𝑖𝑛 𝑓(𝑋𝑖𝑢, 𝑌𝑖𝑢𝑘 , 𝑍𝑘 , 𝑂𝑢)=ANN (3) 

 

Constraint set (4) guarantees that each demand area is serviced by only one of two modes. If one 

of decision variables of 𝑋𝑖𝑢 takes value one, all the 𝑌𝑖𝑢𝑘  values will be equal to zero showing that 

the patients in the demand area are transferred to the trauma center by the ambulance. If one of 

decision variables of 𝑌𝑖𝑢𝑘 takes value one, all the 𝑋𝑖𝑢 values will be equal to zero implying that the 

patients in the demand area are transferred to the trauma center by the helicopter. 

∑𝑋𝑖𝑢
∀𝑢

+∑∑𝑌𝑖𝑢𝑘
∀𝑘∀𝑢

= 1                       ∀𝑖 (4) 

 



Constraint set (5) implies that the demand area i can be assigned to the trauma center u if a trauma 

center is already established in point u. Constraint set (6) implies that the demand area i can be 

assigned to the trauma center u through the helicopter station k if a trauma center is already 

established in point u and a helicopter station is already established in point k. 

𝑋𝑖𝑢 ≤ 𝑂𝑢 ∀𝑖, 𝑢 (5) 

𝑌𝑖𝑢𝑘 ≤ 𝑍𝑘𝑂𝑢 ∀𝑖, 𝑢, 𝑘 (6) 

 

Each helicopter station k is modeled as a M/M/k queueing system to calculate the waiting time of 

the injured to reach the helicopter. Readers are referred to the study by Gross and Harris (1985) 

for justification of the formulas of M/M/k queueing systems. According to the formula of M/M/k 

queueing system, the average length of a queue is calculated by Equation (7)  

𝐿𝑞𝑘 =
𝑃0𝑘𝜌

𝐶𝑘+1

(𝐶𝑘 − 1)! (𝐶𝑘 − 𝜌𝑘)
2
 

(7) 

 

Where, 𝜌𝑘 is utilization factor in the helicopter station k and 𝑃0𝑘 denotes the probability that 

there are zero injured in the helicopter station k calculated by the following equations. 

𝑃0𝑘 = (∑
𝜌𝑖

𝑖!

𝐶𝑘−1

𝑖=0

+
𝜌𝐶𝑘

𝐶𝑘!
(

𝐶𝑘𝜇𝑘
𝐶𝑘𝜇𝑘 − ∑ ∑ 𝑌𝑖𝑢𝑘∀𝑢∀𝑖 𝜆𝑖

))

−1

 

(8) 

𝜌𝑘 =
∑ ∑ 𝑌𝑖𝑢𝑘∀𝑢∀𝑖 𝜆𝑖

𝐶𝑘𝜇𝑘
 

(9) 

0 ≤ 𝜌𝑘 ≤ 1 (10) 

 

In Equations (8) and (9), 𝜇𝑘 is the average number of the injured served by the helicopter station 

k, and is calculated by Equation (11). 

𝜇𝑘
−1 =  mean

𝜋

∑ ∑ 𝑡𝑖𝑢𝑘𝜋
′ 𝑌𝑖𝑢𝑘∀𝑢∀𝑖

∑ ∑ 𝑌𝑖𝑢𝑘∀𝑢∀𝑖
 

∀𝑘 (11) 

 

Hence, the average waiting time in the helicopter station k, 𝐸(𝑊𝑘), can be obtained as follows: 

𝐸(𝑊𝑘) =
𝐿𝑞𝑘

∑ ∑ 𝑌𝑖𝑢𝑘∀𝑢∀𝑖 𝜆𝑖
 

(12) 

Constraint set (13) controls the total number of the helicopters. 



∑𝐶𝑘
∀𝑘

≤ 𝐻 (13) 

The decision variables are kept to be binary or integer by the constraint set (14) and (15).  

𝑋𝑖𝑢, 𝑌𝑖𝑢𝑘 , 𝑍𝑘 , 𝑂𝑢 ∈ {0, 1}  ∀𝑖, 𝑢, 𝑘 (14) 

𝐶𝑘 ∈ 𝑁 ∀ 𝑘 (15) 

4. Proposed Approach 

This section describes the proposed approach to solve the model. There are two difficulties in 

solving the model. Firstly, the model is stochastic, multi-objective, and non-deterministic 

polynomial-time (NP)-hard leading to the fact that the mathematical programming approaches are 

not so efficient to solve the problem. Another difficulty comes from calculating the third objective 

function. Because of the high complexity and high interaction between the elements inside the 

trauma centers, the third objective function cannot be expressed as a formula. Thus, combining a 

multi-objective metaheuristic optimization algorithm, named Non-dominated Sorting Water Flow 

Algorithm (NSWFA), along with simulation modeling and ANN is proposed to cope with these 

difficulties. The NSWFA is used to solve the model. NSWFA can calculate the value of the two 

first objective functions through Equations (1) and (2). However, there is no equation to calculate 

the third objective function. First an ANN is trained to calculate the third objective function. To 

this aim, a series of random solutions are generated. Each solution, called a scenario, is an especial 

type of decision variables. Then, a discrete-event simulation is used to evaluate the third objective 

function (the waiting time spent in each trauma center). The obtained values from the simulation 

model are applied to train an ANN. The trained ANN performs just like an estimator capable of 

estimating the third objective function. By this way, the value of the third objective function is 

calculated and NSWFA can search the solution space. In fact, in our NSWFA, an ANN is 

considered as the evaluator of the third objective function. The combination of simulation, ANN, 

and NSWFA technique provides an effective means for the highly complex optimization problems. 

 

4.1. Non -Dominated Sorting Water Flow Algorithm 

The design of the Non-dominated Sorting Water Flow Algorithm (NSWFA) is a mimic of normal 

manner of water flowing from higher to lower points. On a surface, one side of a flow will be 

splitted into multiple sub-flows and on the other hand, sub-flows will merge. Directed by the 

gravity and based on the fluid momentum, flows can run to higher or lower levels. Water flow will 

cease and stagnate at the locally or globally lowest depression; when the momentum left cannot 

expel the water out of the depression, it will stagnate at its current location. No movement is 

allowed until other flows merge with it or until the water evaporates into the atmosphere. When 

the evaporated water is accumulated, it will come back to the ground as new flows. This is called 



the rainfall that occurs occasionally. In order to apply the NSWFA for an optimization problem, 

the geographical terrain is considered as the solution space, each flow of water is considered as a 

solution, and the altitude of each flow is the objective value. Movement of a water flow to a lower 

place is considered as the searching for the optima. Thus, the solution search process is modeled 

as the water flow. The NSWFA algorithm consists of four primary operations: (1) flow splitting 

and moving, (2) flow merging, (3) water evaporation, and (4) precipitation. Fig. 1 shows the 

pseudo-code for the general procedure to implement the NSWFA. In the first step, the initial water 

flow algorithm parameters including the initial mass of original low, 𝑀0, initial velocity of original 

flow, 𝑉0, upper limit on the number of subflows splitted from a flow, n and number of the 

iterations, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  are set (line 1). Based on the method described in Subsection 4.4, a set of 

initial flows is randomly generated (line 2). All the flows (solutions) are sorted based on non-

dominated sorting approach (line 3), which will be described in Subsection 4.2. Then, the solutions 

in the same front are sorted based on the crowding distance metric (lines 4-5), which will be 

described in Subsection 4.3.  For each flow, a set of subflows is created based on the method 

described in Subsection 4.5 and then, each flow moves to its best subflow (lines 7-10). Subflows 

with the same objective values are merged and the resulting mass and velocity are updated based 

on Equations (21) and (22) (line 11). Based on the method, which will be described in Subsection 

4.7, evaporation operation is performed and the mass is updated for each water flow (line 12). 

Then, we check whether the precipitation condition is met; if yes, the precipitation operation 

(Subsection 4.8) is done to generate a set of new solutions (lines 13-15). Finally, the flows are 

sorted based on non-dominated sorting and crowding distance and the extra flows are the removed 

solutions (lines 16-19). 

 

//𝑁𝑆𝑊𝐹𝐴 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

1: Initializing the parameters of the NSWFA (𝑀0, 𝑉0, 𝑛, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

2: Creating the initial flows randomly (POP) 

3: Sorting the solutions based on the non-dominated sorting  

4: Calculating the crowding distance  

5: Ranking the flows in the same front by the crowding distance 

6: For 𝑗 = 1 to 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 Do 

7:       For each flow 𝑖 ∈ {1, 2, … , 𝑁} Do 

8:                      Flow splitting and moving 

9:                      Moving to a neighborhood solution 

10:        End For 

11:                    Flow merging. 

12:                    Water evaporation. 

13:          IF rainfall is required DO 

14:                   Precipitation. 

15:              End IF 



16: Sorting the solutions based on the non-dominated sorting 

17: Calculating the crowding distance  

18: Ranking the flows in the same front by the crowding distance 

19: Selecting the flows for the next iteration by eliminating the extra flows 

20: End For 

Fig 1. A generic framework for the NSWFA. 

4.2. A Fast Non-Dominated Sorting Approach 

First a concept, called non-domination is applied to sort the flows. Based on the non-domination 

definition, a solution dominates the other solutions if its objective function is not worse than the 

others and at least, one of its objective functions is better than the other ones. Fig. 2 shows a 

graphical representation of the non-dominated sorting for a minimization problem. Individuals, 

such as 𝑥1, 𝑥4, 𝑥6, and 𝑥7 are assigned the ranks as rank 1 since there is no individual superiority 

to them with respect to 𝑓1(𝑥) and 𝑓2(𝑥). The individuals of rank 1 are removed and the individuals 

with rank 2 are selected in the same way. This procedure is repeated until all the individuals are 

categorized. The Pareto-optimal front includes the solutions existing in the front 1. 

 

Fig 2. Schematic representation of the non-dominated sorting for two objectives. 

4.3. Crowding Distance (CD) 

In a situation where two solutions are in the same front, the crowding distance (CD) metric is used 

to rank the solutions. The crowding distance determines the amount of closeness of a solution to 

its neighbors. The basic idea behind the crowding distance is finding the Euclidean distance 

between each individual in a front based on their m objectives in m-dimensional hyperspace. The 

formula to calculate the CD metric is given in Equation (27), where 𝑟 is the number of the 

objectives, 𝑓𝑖+1
𝑘  is the kth objective of the i+1st individual ,and 𝑓𝑖−1

𝑘  is the kth objective of the i-1st 

individual after sorting the population according to the CD. The individuals with lower CDs are 

put forward in the removal process. 



𝐶𝐷𝑖 =
1

𝑟
∑|𝑓𝑖+1

𝑘 − 𝑓𝑖−1
𝑘 |

𝑟

𝑘=1

                                                                                                                                         (27) 

  

Afterwards, the normal operators of the water flow algorithm are applied on the flows to improve 

the current flows and generate the new flows as the next generation. The details of the other 

operations of the NSWFA to solve the proposed model are described in the following subsections. 

 

4.4. Flow Structure 

In the water flow algorithm, each flow is representative of a solution. Therefore, each flow should 

show all the decision variables. The proposed flow structure is a matrix where each of its cells 

represents a special area of decision -making. First, the U+K number is considered where U is the 

number of the potential trauma centers and K is the number of the potential helicopter stations. 

Therefore, 1 to U presents the trauma center and U+1 to K presents the helicopter station. Then, a 

random subset is selected. These numbers show where the trauma center and helicopter station 

should be established. Then, the numbers are randomly sorted; from left to right, each number 

shows a point for trauma center or helicopter station and its position shows the allocated demand 

area. Also, some random numbers are generated according to the number of the established 

helicopter stations so the sum of them is equal to the total available helicopters. 

Fig. 3 shows an example for a flow with 5 potential points for the trauma center and 3 potential 

points for the helicopter stations, respectively. The total number of the available helicopters is 

equal to 5. As shown in Fig. 3, the points 1, 4, and 5 are selected to establish the trauma center and 

points 6 and 7 are selected to establish the helicopter station. The demand area 1 is allocated to 

trauma center 5, demand area 2 is allocated to helicopter station 7, demand area 3 is allocated to 

helicopter station 5, demand area 4 is allocated to trauma center 1, and demand area 5 is allocated 

trauma center 4. Also, 2 and 3 helicopters are allocated to stations 6 and 7. This type of solution 

representation can guarantee that each demand area is serviced by only one of two modes and each 

demand area is assigned to an open trauma center. The other constraint related to the availability 

of the facilities inside the trauma center is satisfied by the simulation model. 

 



Fig 3. An example of the solution structure (flow) 

 

4.5. Flow Splitting and Moving Operation 

When the NSWFA starts to search, there is only one water flow. The location of this flow is 

generated randomly. The flow moves to the new locations according to the mass and velocity of 

flow. Fig. 4 demonstrates the splitting and moving operation for searching the neighborhood 

solutions. As flow i splits into the sub-flows, the number of subflows ni is obtained based on 

Equation (16): 

𝑛𝑖 = 𝑚𝑎𝑥 {1, 𝑖𝑛𝑡(
𝑊𝑖𝑉𝑖
𝑇
)} 

(16) 

 

Where, Wi is the mass of flow i, Vi is the velocity of flow i, and T is the base momentum.  

 

Fig 4. Flow splitting and moving  

The design of the flow-moving operation is problem-dependent. In the proposed NSWFA, two 

neighborhood structures are defined. Both structures are able to preserve the feasibility of the 

solutions. Neighborhood strategy type 1 is related to the location-allocation decisions. In the 

neighborhood strategy type 1, two different cells of the first row are randomly selected and 

swapped (Fig.5). The number of the allocated helicopter is changed by the neighborhood strategy 

type 2 where two different cells related to the helicopter stations are randomly selected and 

swapped (Fig. 5). 

In the neighborhood strategy type 2, two periods are randomly selected and all the data related to 

the machine layout and transporter allocation of these periods are exchanged (Fig. 6). 



 

Fig 5. An example of the neighborhood strategy type 1 

 

 

Fig 6. An example of the neighborhood strategy type 2 

As mentioned previously, the mass of flow i  must be reasonably distributed to its subflows. To 

this aim, the non-dominated sorting and crowding distance metric are used to rank the subflows of 

flow i. The allocated mass to subflow j  is distributed in the flow i , 
ijU , is then calculated by 

Equation (17). 
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(17) 

Where, 
jrank  is the rank of subflow j with respect to the other subflows distributed in the flow i . 

For instance, if flow i splits to 5 subflows, the mass of rank1 subflow is obtained from Equation 

(18). 
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(18) 

Also, velocity of subflow j splitting from flow i is calculated by Equation (19). 

𝜇𝑖,𝑗 = {
√𝑉𝑖

2 + 2𝑔𝛿𝑖,𝑗̅̅ ̅̅                          𝑖𝑓 𝑉𝑖
2 + 2𝑔𝛿𝑖,𝑗 > 0 

0                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

𝛿𝑖,𝑗 = ,mean k

i j
k

  

(19) 



Where, ‘g’ is the gravitational acceleration and 
,

k

i j  is the difference between flow i  from its 

subflow j in the objective function k . Equation 19 is used to compute the value of 
,

k

i j  for 

minimization and maximization and then, is averaged. 

,

,

,
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,   

k k
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 (20) 

Where, k

if   is the objective function value k of flow i and 
,

k

i jf  represents the kth objective function 

values of subflow j distributed in the flow i . 

4.6. Flow-Merging Operation 

Sometimes, two flows move to the same location. In this situation, they are merged into one. The 

similarity of the flows is considered to determine if two flows are in the same location or not. If 

all the decision variables are the same, then it can be said that the flows are in the same position. 

If the flows i and j share the same location, then flow j will be deleted and the mass and velocity 

of flow i will be updated as follows: 

𝑊𝑛𝑒𝑤 = 𝑊𝑖 +𝑊𝑗 (21) 

𝑉𝑛𝑒𝑤 =
𝑉𝑖𝑊𝑖 + 𝑉𝑗𝑊𝑗

𝑊𝑖 +𝑊𝑗
 

(22) 

The NSWFA reduces the number of duplicate solutions to avoid the redundant searches using the 

flow-merging operation. 

4.7. Water Evaporation Operation 

As a normal behavior of water, it evaporates and returns to the ground through the precipitation. 

Water evaporation and precipitation show the mechanism to avoid being trapped in the local 

optima. In the NSWFA, the velocity-based evaporation is defined such that, the flows with smaller 

velocities should evaporate faster than those with larger velocities. The formulation of the 

evaporation proposed in the literature (Wu et al., 2010) is presented in Equations (4.9)–(4.10). 

𝑊𝑖 = (1 − 𝜌𝑖)𝑊𝑖 
(23) 

𝜌𝑖 =

{
 
 

 
 
1,                            𝑖𝑓 𝜇𝑖,𝑗 = 0 

0,                            𝑖𝑓 
𝜇𝑖,𝑗

𝑉𝑖
≥ 1 

1 −
𝜇𝑖,𝑗

𝑉𝑖
          𝑖𝑓 0 ≤

𝜇𝑖,𝑗

𝑉𝑖
≤ 1

 

(24) 

 



4.8. Water Precipitation Operation 

The evaporated water will return to the ground by the precipitation operator after a number of 

iterations. In this paper, a seasonal rainfall is applied periodically where the precipitation takes 

place when the number of the evaporated flows reaches to a predefined level. The location of the 

returned flow is deviated far away from that of flow before evaporation in order to enhance the 

algorithm’s diversity. In this way, the bits of flow are arranged inversely. 

4.9. Stopping Criterion 

Some convergence experiments are performed and the best criterion is selected to limit the number 

of replications of the NSWFA. The NSWFA will be stopped when the total number of iterations 

reaches to a predefined number, which is set according to the result of the experimental design. 

5. Computational Experiments 

 This section describes the applocation of the proposed approach. First, a numerical example is 

applied to demonstrate how the third objective function is estimated by the ANN.  Then, a set of 

random test problems are generated to evaluate the performance of the NSWFA.  The performance 

of the NSWFA is evaluated against two well-known metaheuristic algorithms named the non-

dominated sorting genetic algorithm (NSGA-II) and non-dominated ranked genetic algorithm 

(NRGA). It should be noted that, the MATLAB software (Version 7.10.0.499, R2010a) was used 

to code the proposed metaheuristic optimization algorithms, and the programs were executed on a 

2 640 GHz laptop with 4 GB RAM. 

5.1. Dataset 

Due to the lack of a benchmark in the literature for the presented model, the test problems are 

randomly generated. Table 1 presents the specifications of these problems. The data are generated 

so that it can be applied for city districts in capital province of Iran. The generated problems are 

divided into four sets of problem. In the first set, there are 5 demand areas, 2 trauma centers, and 

2 helicopter stations, in the second set, there are 10 demand areas, 3 trauma centers, and 3 

helicopter stations, in the third set, there are 15 demand areas, 5 trauma centers, and 5 helicopter 

stations, and in the fourth set, there are 30 demand areas, 8 trauma centers, and 7 helicopter 

stations. Each demand area is considered with an area of 600 km2 and a population size uniformly 

distributed between the following ranges (5×105, 7×105). The total number of the available 

helicopters is equal to 15. For each problem size, 8 random problems are generated. The test 

problems are generated by changing the input parameters of arrival rate of demand, time distance 

of the ambulance and helicopter, and establishment cost of the trauma center and helicopter station. 

Table 1. Random problem generation template 

Number of the demand areas   [5, 10, 15, 30] 



Number of the trauma centers  [2, 3, 5, 8] 

Number of the helicopter stations  [2, 3, 5, 7] 

Population of each demand area  Uniform [5×105, 7×105] 

Time distance of the ambulance   Uniform [1.5×102 to 3×102] 

Time distance of the helicopter   Uniform [1.5×102 to 3×102] 

Establishment cost of each helicopter station  Uniform [2×104 , 3×104] 

Establishment cost of each trauma center  Uniform [8×104 , 9×104] 

 

5.2. Numerical Example 

Consider a health care system where there are 10 demand areas, 3 potential trauma centers, 4 

potential helicopter stations, and 5 helicopters. Five test problems are generated based on the 

method described in Subsection 5.1 to train an ANN. For each test problem, a set of solutions is 

randomly generated.  Each solution shows the value of all the decision variables. The simulation 

model is set according to these decision variables. Then, the simulation model is run and the 

waiting time spent in each trauma center is determined as the third objective function of the model. 

According to Laurence and Peterson (1998), the number of experiments must be equal to (i+h+o) 

≤N ≤ 10(i+h+o) to develop a capable ANN where, i is the number of the decision variables, h is 

the number of the hidden neurons, and o is number of the objective functions. In our case, i and o 

are equal to 10 and 1, respectively. The number of nodes in the hidden layer can be estimated by 

Equation (25) proposed by Chen and Yang (2002). 

 

ℎ =
𝑖 + 𝑜

2
 

(25) 

Consequently, ℎ =
10+1

2
≈ 6 and so the number of the required experiments must be 17≤N ≤170. 

Totally, 50 random experiments are generated, each of which are simulated and the total cost and 

total population coverage are considered as the results of each experiment. MATLAB 2010 

toolbox is used to generate an ANN. In this study, the ANN is a multi-layer perceptron (MLP). 

The learning of such networks is mainly accomplished through the error emission method. Fig. 7 

shows the sample of a MLP network where the Xi is the decision variable, Sj represents the hidden 

neurons, and Yi is the objective function. 

 



 
Fig 7. Structure of the MLP  

It should be mentioned that the efficiency of neural network is determined by R2 measure. The R2 

measure shows the ability of the neural network to predict the objective function based on the input 

factors. Fig. 8 demonstrates the values of R2. The higher value of 2R shows that the efficiency of 

the designed neural network is satisfactory and it could be used for predicting the values of the 

objective function. According to R2=0.9771, the ANN model has been properly trained and has 

good quality predictions. Now, we have a trained ANN, which is capable of better estimation of 

the objective function values. 



 
Fig 8. Efficiency of the neural network in the data fitness 

 

 

 

5.3. Multi-Objective Metrics 

The following metrics were selected to evaluate the performances of the multi-objective meta-

heuristic algorithms: 

1. Diversity (D): It measures the diversity of the Pareto front. 

2. Spacing (S): It measures the standard deviation of the distances among solutions of the 

Pareto front. 

3. Number of the Pareto Fronts (NPF): It shows the number of the solutions in the first Pareto 

front.  
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4. Time (CPU time): It is referred to the CPU time of running the algorithms until they are 

terminated. 

 

5.4. Parameter Tuning 

In this research, the parameters are tuned based on the Taguchi approach in order to regulate the 

algorithms for better performance as much as possible. The levels of the factors are first determined 

in order to apply the Taguchi method. Then, the appropriate experiments are designed and 

performed based on the number of factors and their levels. Since, there are 4 factors in 3 levels, 

therefore, the appropriate array must have at least 13 trials. The array 𝐿16  is used for the 

experiment. The multi-objective coefficient of variation (MOCV) is considered as the response for 

the experiments. 

   

𝑀𝑂𝐶𝑉 =
𝑆

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 
 

(26) 

 

 In the Taguchi design of experiment, the result of each experiment is converted into a Taguchi 

parameter defined as the signal-to-noise ratio (𝑆 𝑁⁄ ).  These 𝑆 𝑁⁄  ratios of trials are averaged and 

for each parameter, the level with the maximum value of the  𝑆 𝑁⁄  is selected as the optimum level. 

Table 2 shows all the levels for each parameter where the best values are highlighted. 

 

Table 2. Algorithm parameters and their level 

Solving 

methodology 
Parameter 

 
Range Level 1 Level 2 Level 3 Level 4 

NSGA-II 

Popsize Initial pop size 30-200 30 70 140 200 

Pc Percent of crossover 0.7-0.9 0.7 0.8 0.85 0.9 

Pm Percent of mutation 0.1-0.2 0.1 0.15 0.17 0.2 

Iteration Number of generation 200-500 200 300 400 500 

NRGA 

Popsize Initial pop size 50-200 50 100 150 200 

Pc Percent of crossover 0.7-0.9 0.7 0.8 0.85 0.9 

Pm Percent of mutation 0.1-0.3 0.1 0.15 0.2 0.3 

Iteration Number of generation 200-600 200 350 500 600 

NSWFA 

M0 Initial mass of the original flow 30-60 30 40 50 60 

V0 Initial velocity of the original flow 10-30 10 15 25 30 

n 
Upper limit on the number of 

subflows splitted from a flow 
2-8 2 4 6 8 

Iteration Number of Iteration 100-400 100 200 300 400 

 

 



5.5. Computational Results 

In this section, the performances of the proposed tuned multi-objective solving methodologies are 

evaluated and compared using the multi-objective metrics. Appendix A shows the results of 

applying the algorithms on the 32 test problems. It should be mentioned that while, in diversity 

and NOS metrics, bigger values are desired, smaller values are considered to be better for spacing 

and CPU time. Fig. 9 shows the performance of the algorithms in all the metrics. 

    

       

Fig 9. Comparison of the proposed algorithms according to the metrics of spacing, 

diversity, NOS, and CPU time  
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Fig. 10 shows a graphical illustration of the obtained Pareto fronts for the problems 12 and 20. As 

shown in Fig. 10, the solutions of NSWFA have achieved the best values in all the objective 

functions indicating the effectiveness of the NSWFA in terms of solution quality. 

 

Fig 10.  Visual presentation of the obtained Pareto-fronts for the test problems 12 and 20 

The analysis of variance (ANOVA) test is used to statistically evaluate the algorithms. To this aim, 

the results of the algorithms in each metric are normalized based on the formulation of the relative 

percentage deviation (RPD): 

𝑅𝑃𝐷(𝑖, 𝑗, 𝑘) =
𝐴𝑙𝑔𝑠𝑜𝑙(𝑖, 𝑗, 𝑘) − 𝑚𝑖𝑛𝑠𝑜𝑙(𝑘)

𝑚𝑖𝑛𝑠𝑜𝑙(𝑘)
× 100        (27) 

In Equation (32),  𝐴𝑙𝑔𝑠𝑜𝑙(𝑖, 𝑗, 𝑘) shows the value of algorithm 𝑖 in the performance metric 𝑗 in the 

problem number 𝑘 and 𝑚𝑖𝑛𝑠𝑜𝑙(𝑗, 𝑘) is the best value of the performance metric 𝑗 in the problem 

number 𝑘 between all the algorithms. Table 3 presents the ANOVA results so that, where there is 

a significant difference between the algorithms, the null hypothesis is rejected. 

Table 3. ANOVA test results 

Metric’s name   F-value  P-value  Test results 

Spacing   12.18  1.995e-5  Null hypothesis is rejected 

Diversity   13.81  5.599e-06  Null hypothesis is rejected 

NPF   10.57  7.30e-5  Null hypothesis is rejected 

CPU Time   12.80  1.232e-5  Null hypothesis is rejected 

 



Based on the statistical outputs presented in Table 3, there is a significant difference in all the 

performance metrics. Therefore, Tukeysʼ test is applied to statistically rank the algorithms for more 

investigation. Fig. 11 shows the results of the Tukeysʼ 95% confidence intervals.  According to 

Fig. 11, in terms of the spacing metrics, it can be said that the NSWFA algorithm is considerably 

better than the other two algorithms. Also, NSGA-II can perform better than the NRGA. NRGA 

has the lowest diversity performance among all the algorithms. But, the NSWFA has the best 

efficiency in this metric. The NSGA-II had the better performance in terms of the NPF metric 

among the other algorithms as shown in Fig. 11. Regarding the CPU time index, the NSWFA was 

statistically better than the other two algorithms.  

 

         

    

 

Fig 11. The simultaneous Tukeysʼ 95% confidence intervals for the metrics 
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6. Conclusion 

In this paper, a new multi-objective mathematical model was developed and a new solution 

approach was presented for health care facility location problem where transferring time of the 

patients, demand and servicing time of the patients were considered as the stochastic parameters.  

In addition to minimizing the costs, the proposed model considered the time-based metrics, which 

is very important in the health care optimization problems.  Considering the high complexity and 

interaction between the elements of the model, optimizing it by typical mathematical programing 

approaches was impossible. Consequently, a new approach was presented. The proposed approach 

was a hybrid method encompassing the simulation, ANN, and multi-objective metaheuristic 

algorithm. A novel multi-objective metaheuristic algorithm called the NSWFA was applied. Some 

experimental computations were accomplished to evaluate the effectiveness of the proposed 

NSWFA. In these experiments, the proposed algorithms were statistically compared with two well-

known meta-heuristic algorithms using 32 test problems through the four multi-objective metrics. 

Results showed that the algorithm generally acts more effectively than the other two algorithms. 

For future researches, other features, such as transferring point of the patient, allocation of the 

buffers between the machines, and unequal area of the machines can be incorporated in the 

presented model. Also, developing a regression model to estimate the third objective function and 

applying a non-linear solver to optimize the model are among the remarkable directions for the 

future researches. It is also suggested to evaluate the proposed NSWFA in other fields of operations 

research like the facility layout problems. 
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Appendix A: Multi-objective performance measures obtained for each algorithm 

 Spacing  Diversity (D)  NPF  CPU time 

  NSGA-II NRGA NSWFA  NSGA-II NRGA NSWFA  NSGA-II NRGA NSWFA  NSGA-II NRGA NSWFA 

P1  4933 5125 5019  8702 11625 9151  17 11 17  1877 1814 1721 

P2  4752 4785 5124  10709 6336 8733  14 13 18  1834 1620 1595 

P3  5231 5112 5304  8237 8694 11419  17 14 12  2447 1704 1773 

P4  5294 5313 5118  10873 6282 8774  19 21 16  1521 2695 1936 

P5  5288 5540 5696  7471 10628 11186  16 15 15  1743 2350 1906 

P6  4827 5089 5632  8825 9641 7052  17 18 12  1761 2577 2438 

P7  4673 5121 5341  10590 6458 9049  14 21 20  1534 1585 1121 

P8  4599 5079 5307  10788 5817 12561  21 14 17  1871 2046 1462 

P9  8583 9273 8611  12107 6762 11146  21 22 15  1801 1561 1391 

P10  8527 8824 8879  10011 10223 12095  18 18 17  1668 1229 1875 

P11  9425 9070 8974  6347 7635 13434  27 18 16  1713 1248 1557 

P12  9314 9858 9375  7892 11011 11224  25 19 16  2595 2615 1891 

P13  9365 9339 8680  8753 9871 12756  16 21 18  984 2277 1585 

P14  8356 8076 8100  10940 8525 12305  31 26 27  1462 1929 1693 

P15  9930 10376 9974  9592 9253 9259  28 23 18  2109 1476 1556 

P16  9641 9559 9586  9717 7348 13770  29 17 21  2112 1165 2125 

P17  18623 19291 17651  12426 9812 12120  26 25 19  3483 2237 1681 

P18  17685 18115 16554  61408 44849 64184  23 23 21  3742 3149 2203 

P19  16911 18448 16603  75518 82398 42240  19 22 24  4212 1616 2110 

P20  16529 17230 15566  75726 70858 73017  12 16 14  2969 1807 1137 

P21  17911 18928 17270  49135 51673 63370  17 31 23  1578 2038 1534 

P22  16044 17135 15310  60004 89401 47509  25 21 23  2150 2164 1112 

P23  18709 19744 17743  91992 57157 70267  26 22 20  2299 1678 861 

P24  18934 18571 16712  81193 50485 79888  24 19 21  3630 1584 1692 



 

P25  28626 28557 24941  55463 46126 73798  33 31 20  10280 10694 4995 

P26  26444 28684 25576  88702 49939 86470  36 28 19  10364 8217 5649 

P27  29478 29106 25516  55656 47519 64925  35 28 28  13764 7152 4371 

P28  27702 29467 25691  62944 40774 86049  31 27 29  8947 9927 6217 

P29  27225 28355 25313  51939 45270 59029  36 39 27  8183 7899 5175 

P30  29360 28854 25592  83085 50247 78813  32 28 24  12009 9091 5993 

P31  27087 28496 24721  68679 44311 86127  34 26 26  11663 8977 7231 

P32  28248 29354 25924  70238 53891 77671  32 29 25  12963 9335 5473 
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