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Abstract

By means of excursion theory, the evolution of a continuous Markov process satisfying regularity

assumptions is analysed in terms of its behaviour between visits to a recurrent point, for instance the

point zero in the state space of Brownian and Bessel diffusions of type reflecting at the origin. As a

preliminary conclusion, a sample path of the process can be reconstructed by the excursions away from

zero of random finite lengths and the time spent at visits to zero. These two together constitute the core

of the work in this thesis.

With respect to the zero-free intervals, we study the duration of the excursion in process away

from zero by time t, namely the age process, of a Bessel process instantaneously reflected at the origin.

The main contribution of our work is the development of a hybrid structural-reduced form model with

an endogenous intensity defined by the age process. This model provides a framework for assessing

default probabilities within a circumstance of very limited information, assuming that some statistics

about a firm are not observable but the time points when they reach certain level are. Results presented

include distributional properties for the default time and level as a joint stopping process, by which we

discover a decomposition theorem that contributes to exact schemes for simulating the default process.

A counting process for monitoring consecutive arrivals of some event driven by the same intensity is

also established. Main aspects to be addressed are the properties and the derivations of distributional

quantities concerning the interarrival times, the arrival of the nth event and the associated counting

process.

With respect to the zero set, we construct a continuous family of functionals for the part of time

spent at the origin by the age process, namely the local time at zero. It is a well known fact that there is

no unified representation for the local time of Markov process, as it can be approximated as a limit of

various processes describing the behaviour of trajectories of the underlying process. That being so, the

focus and efforts are put on the certain properties of the limit processes served as the approximations,

and on the first and second order limit theorems for the convergences to the local time.
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1
Introduction

Following the profound study by P. Lévy and K. Itô on the excursion theory of Markov processes,

the evolution of a continuous process satisfying regularity assumptions is analysed in terms of its

behaviour between visits to a recurrent point in the state space (see Itô [54] for full details). A sample

path of the process is then broken up into components, consisting of pieces of the path of random

finite lengths starting and finishing at the recurrent point (namely the excursion process), and the

time spent at all visits to the same point. This thesis proceeds in this spirit, studying and developing

theories on the path behaviour of Bessel processes of dimension (2 − 2α) with α ∈ (0,1), denoted

by X = {Xt, t ≥ 0} throughout the thesis. This type of diffusions has the feature of instantaneous

reflection at zero, and for α = ½ it coincides with a reflected Brownian motion. Partitioned by the

reflection points, the core of this work points to the zero-free intervals and the set of all zeros.

1.1 Zero-Free Intervals

With respect to the zero-free intervals, we study the duration of the excursion in progress away from

zero at time t of recurrent Bessel processes, namely the age process of Bessel excursions. Denoted by

U = {Ut, t ≥ 0}, the age of X straddling t is represented in the form:

Ut B t − sup{ s < t | Xs = 0 }, t ≥ 0 .

Excursion age along with relevant properties is well studied through working on various functionals

of excursion processes (see Jeanblanc et al. [61, Chap 4.3] and Yen and Yor [89, Chap 7] for more
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details). Particular attention has been paid to the scaled/signed age, which leads to the development and

extension of the famous Azéma martingale (see Azéma and Yor [2], Çetin [19] for reference). Literature

addressing the mathematical finance aspect related to the age process is extensive. Considerable effort

has been directed towards the study of the well-known "Parisian stopping time". It was introduced

by Chesney et al. [21], who defined it as the first time the age of the underlying process exceeds a

certain level. Topics regarding this stopping time include Parisian options with single/double barriers

[30, 31, 36], Parisian ruin problems [4, 26, 33] and decision problems with implementation delay

[24, 35, 70].

In this thesis, we extend the knowledge of Bessel age process to the area of default risk valuation

with incomplete information, which has not received due attention in the current literature. As the main

contribution of our work, we develop a hybrid structural-reduced form model with an endogenously

defined intensity to assess default probabilities for the context within which some statistics associated

with a firm’s positive activities (e.g. revenue, cash inflow, investments or other forms of asset) and

negative activities (e.g. debt, loan, cash outflow or other forms of liability) are not observable, but

instead the time points when they reach zero are. The idea of adopting such a hybrid method into

credit risk measurement arises primarily as a resolution to the defects existing in the classic structural

and intensity models. For background references please see [9, 80] for the former and [41, 60] for the

latter.

Turning first to the former, structural models assume complete knowledge of a very detailed

information set, thereby implying a predictable default time. In reality, however, the information

accessed from the public reports of a firm is certainly not exhaustive with noise, delay and omission

(see Çetin et al. [20] in this regard). In response to these issues, we provide a framework for modelling

default risk with a reduced information set, or a shrunk filtration from the perspective of filtration

theory. More precisely, the available statistics for assessing default, modelled as the elapsed time Ut of

the underlying process Xt since the last time visiting zero, are adapted to

Gt = σ{Us, s ≤ t} ⊂ σ{Xs, s ≤ t}.

As an immediate consequence, the default time turns inaccessible, which results in a transformation to

the intensity-based approach (see Guo et al. [50], Jarrow and Protter [58] in this regard).
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As opposed to the former, intensity-based models put no restriction to the completeness of the

information set. The arrival of default is in general modelled as the first jump of a point process

governed by an intensity process λt , either or not related to the assumed information set. The

presumption of an utterly exogenous intensity appears prevalent in the early frameworks (see Hübner

[53], Jarrow et al. [57], Jarrow and Turnbull [60] for instance), but becomes counterfactual as dealing

with more practical cases [41]. It seems to us that the nature of default is inextricably tied to some

sort of the performance of the underlying process, though it has been designed as an exogenous

event coming by "surprise" in the traditional intensity-based models. The exogeneity assumption,

disregarding the incentives to default and thus lacking fundamental interpretation in the economic

context, makes itself obsolete. Given this belief, we further postulate that the likelihood of default is

directly linked to the current age level by some function, e.g. λt = λ(Ut ).

Akin to our hybrid approach, various examples of model transformations as a result of imperfect

information appeared in the recent literature. Interested readers can refer to Giesecke [47], Kusuoka

[67] for coping with noisy information, to Collin-Dufresne et al. [23], Guo et al. [50] for deferred

information and to Çetin et al. [20], Jarrow et al. [59] for shrinking information. In particular to the

third case, it refers to modelling with a strict sub-filtration, to which our work belongs. The work of

Çetin et al. [20] resembles closely to ours but within the context of Brownian motion, by assuming

observables on both the age level and the sign changes and choosing a dependent intensity obtained

from the Azéma martingale.

As a sequel to this model, a counting process for monitoring consecutive arrivals of some event

driven by the same intensity is also established. Main aspects to be addressed are the properties and

the derivations of distributional quantities concerning the interarrival times, the arrival of the nth event

and the associated counting process.

Chapters related to the topic "Zero-Free Intervals" are 2, 3 and 4 with outlines as follows:

Chapter 2 Bessel Age Process. A formal introduction to the Bessel age process is given with

mathematical definitions and a visual impression of this jump-linear Markov process. By means of a

piecewise-deterministic Markov process framework, a perturbed Bessel process is constructed in order

to resolve the problem of producing infinitely tiny jumps in the path of the age process. Accordingly,

the distributional properties associated with the first stopping time problem are characterised with
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explicit results on the quantities like generating functions, Laplace transforms and densities. A notable

result to be mentioned is that we derive a decomposition rule for the stopping time which in turn

contributes to the development of simulation schemes.

Chapter 3 Application to Credit Risk Modelling with Exact Simulation Scheme. The realisation

of the hybrid model is presented in this chapter. We provide precise simulation algorithm for the

default time and level as a joint process by choosing a piecewise constant intensity function. To verify

the accuracy of the algorithm and assess its performance in evaluating the default risk, a numerical

study for the case of reflected Brownian motion is carried out.

Chapter 4 An Age-dependent Counting Process. A point process is established for monitoring

consecutive arrivals of some event with an age-driven intensity over a finite time interval. Main aspects

to be covered are the related properties and the derivation of distributional quantities concerning the

interarrival time, the arrival of the nth event and the moments of the counting process.

1.2 The Set of Zeros

With respect to the zero set, we construct and study a continuous family of functionals in an integral

form : ∫ t

0
f (Xs) ds, t ≥ 0,

with f is a non-negative Borel measurable function. Great attention has been given to a (scaled)

Lebesgue measure of the time spent by the age process under an arbitrary levelϖ up to time t. Denoted

by Zp =
{

Zp
t , t ≥ 0

}
with

Zp
t (ϖ) B

1

ϖp

∫ t

0
11{Us<ϖ} ds, 0 < ϖ < t,

such measure is often known as the occupation process at time t of a Bessel age process. Of special

interest to us is the asymptotic behaviour of Zp
t (ϖ) asϖ approaches zero. With probability one for

all t ≥ 0, the existence of such limit is guaranteed for every regular point in the state space of U,

according to the general theory of additive functionals [11]. In addition to the limit, this interest is also

linked to the distributional properties of lim
ϖ→0

Zp
t (ϖ) as a limiting process, and to the convergence to
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the associated local time. By the local time at zero of a Bessel age process, we mean that there exists a

continuous functional denoted by L = {Lt, t ≥ 0} that measuresZ = { t > 0 | Ut = 0 }, i.e. the time

set at which the age process visits zero.

The concept of "local times" originated from Lévy’s study on the zero set of Brownian motion, at

which early time it was described as an occupation density and named as "Mesure du Voisinage" (see

[72] and [73] for details). It is a well known fact that there is no unified representation for the local

time, as it can be approximated as a limit of various processes describing the behaviour of trajectories

of the underlying process. Lévy gave several different definitions of Brownian local times in terms

of the occupation measure, the number of downcrossings and the total length/number of zero-free

intervals satisfying certain conditions. Interested readers are referred to Borodin [14], Itô and McKean

[55] and Karatzsas and Shreve [62] for full accounts.

Apart from the occupation time as a continuous measure, we also take into account other equivalent

representations for the local time. In the spirit of Lévy’s downcrossing theorem, we construct a

discontinuous one, defined as the number of times that Ut jumps down to zero by time t and denoted

by {Dt, t ≥ 0}. By virtue of the pathwise relation between Ut and Xt , Dt is equal in quantity to the

number of completed excursions away from zero by the underlying Bessel path. Particular interests

are given to the relevant properties of the limiting processes served as the approximations, and to the

first and second-order limit theorems for the convergence to the local time.

Another important fact concerning the local time of Markov processes is that it is analogous to an

inverse subordinator. Put another way, an inverse subordinator is the local time of some "well-behaved"

Markov process [6, 69]. In this regard, the most famous case is the Brownian local time that is an

inverse of a ½-stable subordinator; and a more general case is presented by Bingham [7] who showed

the inverse of α-stable subordinators with 0 < α < 1 arising as a limit process of occupation times.

Particularly relevant to our study is the correspondence of the local time to the inverse subordinator

that leads us to the law of Lt by characterising the inverse of Lt to the family of α-stable processes.

As an immediate consequence of this finding, Lt is further identified as a self-similar process, whose

paths fulfil the scale invariance property such that for all λ, t > 0,

{
λ−αLλt, t ≥ 0

} law
=

{
Lt, t ≥ 0

}
.
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Real valued positive self-similar processes often arise as the limits of some rescaled processes. For

instance, Brownian motion, Bessel processes, stable subordinators and the local time concerned in this

thesis, etc.

Chapters related to the topic "The Set of Zeros" are 5, 6 and 7 with outlines as follows:

Chapter 5 Local Times related to Bessel Age Process. This chapter deals with equivalent approxi-

mations to the local time of a Bessel (age) process. Main attentions are put to the occupation time and

the jump counting measures associated with the age process. Of great interests to us are the certain

properties arising from their asymptotic behaviours, and the first and second-order limit theorems for

the convergence to the local time. Furthermore, in favour of the fact that the inverse of local time is a

subordinator, the law of the local time is determined with a closed-form expression.

Chapter 6 Scale Invariance about Local Times. This chapter further explores the local time of

Bessel age process from a prospective of self-similar Markov processes. Specifically, we present some

examples of basic scaling properties associated with a Bessel (age) process and show that the local

time fulfils the scale invariance property. An interesting consequence is that the difference between

two scaled local times follows a brand new time-changed Brownian motion.

Chapter 7 Local Times related to Brownian Motion. In this chapter, we restrict our attention to

the zero set of a reflected Brownian motion and provide elementary proof for some celebrated results

concerning a Brownian local time. For instance, Lévy’s "Mesure du Voisinage", Lévy’s downcrossing

theorem and a central limit theorem as a sequel to the latter.
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2
Bessel Age Process

Bessel processes have been intensively studied in the area of mathematical finance. Main focus has

been put on the applications to the dynamics of asset prices (see [75, 77, 84] for examples), of interest

rates (see [45, 51]) and of stochastic volatilities (see [74, 76]).

Of particular interest to us is the Bessel process of dimension δ ∈ (0,2), whose path is continuous,

non-negative and reflected instantaneously at zero. A special case is given to δ = 1 as it corresponds to

a standard Brownian motion. For such processes denoted by Xt with zero a regular point in the state

space, we study the age process of its excursions away from zero. The Bessel age process defined by

Ut ≡ t − sup{ s < t | Xs = 0 }, t ≥ 0,

refers to the length up to time t of the excursion in progress, in line with the definitions appearing in

the majority of the literature on excursion theory. To get a visual impression of this process, sample

paths of the joint process (Xt,Ut ) with δ = 0.5,1.5 are presented in Figure 2.1.

This chapter together with the next contributes to the relevant literature in two aspects. First, as

a complement to the functionals of Bessel excursions, we develop distributional properties for joint

process (Ut, t) stopped at the first jump time τ with a general intensity function of the form λ(Ut ).

This is achieved by means of a piecewise-deterministic Markov process (PDMP) framework. Explicit

formulae for the generating functions, Laplace transforms and marginal densities are derived. In

addition to these, a notable result to be mentioned is that the stopping time τ is decomposable into

two independent variables: the stopping level of the age process and a Lévy process stopped at a unit

exponential time.
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Fig. 2.1 A sample path of the joint process (Xt,Ut ) with dimension 0.5 and 1.5 respectively.

Second, as a complement to the default risk measurement with limited information content, we

set up the mathematical framework for a hybrid structural-reduced form model with an endogenous

intensity λ(Ut ). This model provides a framework for assessing default probabilities within a circum-

stance of very limited information, assuming that some statistics about a firm are not observable but

the time points when they reach certain level are. The distributional results associated with the default

time achieved in the first part lead to the development of exact simulation schemes for the joint default

process (Uτ, τ).

The realisation of this model awaits to be presented in the next chapter.
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2.1 Age Process of Bessel Excursion

Characterised by its dimension (or index), a Bessel process behaves differently. The one of our concern

is the so-called recurrent Bessel process. The following describes how this type of Bessel process is

attractive to us.

2.1.1 Definitions

Given a filtered probability space
(
Ω,F ,P

)
, let X = {Xt }t≥0 adapted to {Ft }t≥0 be a Bessel process

of dimension δ = 2(1 − α) or equivalently of index (−α) with α ∈ (0,1). This process, denoted as

BES(α) throughout this chapter, is a R+-valued Feller diffusion whose infinitesimal generator coincides

on C2(0,∞) with :

GX =
1 − 2α

2x
∂

∂x
+

1

2

∂2

∂x2
.

For an extensive study on the path properties for Bessel process, we refer to Borodin and Salminen

[16, Chap IV-6] and Jeanblanc et al. [61, Chap 6].

We first recall some important characteristics of such a Bessel process:

(i) BES(α) is a strong Markov process with continuous path taking values in [0,∞);

(ii) For α = ½, BES(α) is identical in law to a reflected Brownian motion;

(iii) (Existence of Excursions) α restricted to (0,1) ensures BES(α) recurrently and instantaneously

reflecting at the boundary point zero, which implies the existence of excursions in its path.

Then we shall give a precise definition of what we mean by the Bessel age process. For all t > 0,

let

gt ≡ sup{ s < t | Xs = 0 }; dt ≡ inf{ s > t | Xs = 0 },

denote the last hitting time of zero before time t and the first hitting time after t, respectively. The

Bessel excursion straddling t is the path
{

Xgt+s; 0 ≤ s ≤ dt − gt
}
, in which the portion up to t is often

known as the Bessel meander. The age of Bessel excursion straddling t is defined by

0 ≤ Ut = t − gt ≤ t (2.1)

9



i.e. the length of the Bessel meander. In fact, it is right-continuous with left limits at every time point

and jumps down to 0 at points in which BES(α) gets reflected as a result of reaching zero. Due to

the Markov property of a recurrent Bessel process, {Ut }t≥0 is thus a Markov process in the filtration{
Fgt

}
t≥0

.

2.1.2 Some Preliminary Results

This section presents some preliminary results concerning the joint law of (Xt,Ut ).

Proposition 2.1.1 (First Passage Time). Denote Tx0 B inf{ t > 0 | Xt = 0 } as the first hitting time of

zero for BES(α) starting from x0 > 0. The density function of Tx0 is

P
(
Tx0 ∈ dt

)
=

x2α0

2αΓ(α)
t−α−1e−

x0
2

2t dt, t > 0, (2.2)

with 0 < α < 1, i.e. Tx0 is indeed a multiple of the reciprocal Gamma variable.

Proof. It is a well-known result in the area of first passage time of a Markov process, whose proof can

be found in [18, 51, 52]. In the literature related, this result is mainly deduced by the time reversal

property of Bessel process. Relying on the equality between the joint process of a recurrent Bessel

with its first hitting time and that of a transient Bessel with its last exit time, they conclude that the first

hitting time is identical in law to the last exit time. See examples in Göing-Jaeschke et al. [48] and

time/path reversal properties in Nagasawa [81], Pitman and Yor [83], Williams [88].

We propose another approach by means of the martingale property associated with the infinitesimal

generator. Interest readers may refer to Appendix I. □

In the following, we describe some measures with asymptotic analysis on the joint process (Xt,Ut ).

Let p(α)t (x, y), with x ≥ 0, y > 0 and t > 0, denote the transition probability for BES(α). From

Jeanblanc et al. [61, Chap 6.2.2], we have

p(α)t (x, y) =
y

t

(
x
y

)α
I−α

( xy
t

)
e−

x2+y2

2t ,

p(α)t (0, y) =
2α

Γ(1 − α)
y1−2αtα−1e−

y2

2t .

10



where Iν(x) is the modified Bessel function with index ν of the first kind. The second result can be

achieved by taking x → 0 and applying L’Hôpital’s Rule .

Lemma 2.1.2. Let (Xt )t≥0 be a Bessel process defined as before with starting level ε > 0 and

Ut = t − sup{ s < t | Xs = 0 } be its age process. It holds for any α ∈ (0,1) that

lim
ε→0
ε−2α P(Xt ∈ dx,Ut ∈ dt | X0 = ε) =

xt−α−1

2αΓ(1 + α)
e−

x2

2t dx dt. (2.3)

As a result,

lim
ε→0
ε−2α P(Ut ∈ dt | X0 = ε) =

t−α

2αΓ(1 + α)
dt, (2.4)

and

P(Xt ∈ dx | Ut = t) =
x
t

e−
x2

2t dx. (2.5)

Proof. Given Tε the first time point in which the Bessel process X reaches zero, the probability in

(2.3) is equivalent to

P(Xt ∈ dx,Xs > 0,∀s ∈ (0, t) | X0 = ε)

= P(Xt ∈ dx,Tε ≥ t | X0 = ε)

= P(Xt ∈ dx | X0 = ε) − P(Xt ∈ dx,Tε < t | X0 = ε). (2.6)

The first probability follows p(α)t (ε, x)dx. Let X̃ be an independent duplicate of X starting from zero

describing the motion by the underlying process after Tε . We then calculate the second probability by

P(Xt ∈ dx,Tε < t | X0 = ε)

=

t∫
0

P(Xt ∈ dx,Tε ∈ ds | X0 = ε) ds

=

t∫
0

P(Tε ∈ ds) · P
(
X̃t−s ∈ dx

�� X̃0 = 0
)
ds

=

t∫
0

ε2α

2αΓ(α)
s−α−1e−

ε2

2s ·
2α

Γ(1 − α)
x1−2α(t − s)α−1e−

x2

2(t−s) dx ds.

11



This integral expression is obtained as a consequence of the strong Markov property of Bessel process

and the first-entrance decomposition.

Taking Laplace transform over t of (2.6) gives,

εαx1−α
∞∫

0

e−βt t−1I−α
(εx

t

)
exp

{
−
ε2 + x2

2t

}
dx dt

−
ε2αx1−2α

Γ(α)Γ(1 − α)

∞∫
0

e−βt
∫ t

0
s−α−1(t − s)α−1 exp

{
−
ε2

2s
−

x2

2(t − s)

}
dx ds dt

= 2εαx1−αI−α
(
ε
√
2β

)
Kα

(
x
√
2β

)
dx −

4εαx1−α

Γ(α)Γ(1 − α)
Kα

(
x
√
2β

)
Kα

(
ε
√
2β

)
dx

= 21−
α
2 x1−αβ−

α
2 Kα

(
x
√
2β

)
×{ (

ε
√
2β

)α
I−α

(
ε
√
2β

)
−

2

Γ(α)Γ(1 − α)

(
ε
√
2β

)α
Kα

(
ε
√
2β

) }
dx

= 21−
α
2 x1−αβ−

α
2 Kα

(
x
√
2β

) (
ε
√
2β

)α
Iα

(
ε
√
2β

)
dx,

where we have used the following equation for the modified Bessel functions of first and second kind:

Kα(v) =
Γ(α)Γ(1 − α)

2

[
I−α(v) − Iα(v)

]
.

With regard to the limit behaviour as ε → 0, the product of the last two terms involving ε grows at

a rate of ε2α, i.e. (
ε
√
2β

)α
Iα

(
ε
√
2β

)
∼ O

(
ε2α

)
, (2.7)

and thus

lim
ε→0
ε−2α

(
ε
√
2β

)α
Iα

(
ε
√
2β

)
=

βα

Γ(1 + α)
. (2.8)

Therefore, the limit of the Laplace transform as ε tends to zero is equal to

21−
α
2

Γ(1 + α)
β

α
2 x1−αKα

(
x
√
2β

)
. (2.9)

Inverting it w.r .t . β produces (2.3). (2.4) follows immediately by integrating x from 0 to∞ and the

quotient of the two yields (2.5). □

12



Lemma 2.1.3. For any x, x0 ∈ R
+ and 0 < t < T,

P(XT ∈ dx , UT ∈ dt | X0 = x0) =

1

Γ(1 − α)Γ(1 + α)
xt−α−1(T − t)α−1 exp

{
−

x2

2t
−

x0
2

2(T − t)

}
dx dt, (2.10)

and
P(UT ∈ dt | X0 = x0) =

1

Γ(1 − α)Γ(1 + α)
t−α(T − t)α−1 exp

{
−

x0
2

2(T − t)

}
dt. (2.11)

Proof. The idea of proving (2.10) is due to the path decomposition at last zero. Using the strong

Markov property of Bessel (age) processes, the equality in probability of the following events is

implied:

{XT = x,UT = t | X0 = x0}

= {XT = x,XT−t = 0,UT = t | X0 = x0}

= {XT−t = 0 | X0 = x0} ∩
{

X̃t = x,Ũt = t
�� X̃0 = 0

}
,

where X̃ is an independent duplicate of X describing the motion commencing from the last zero,

referred by the time T − t, and Ũ is the age process defined based on X̃ . By path analysis,

U(T−t)+ = Ũ0 = X(T−t)+ = X̃0 = 0 .

It allows us to compute its probability by weak convergence in distribution, i.e.

P(XT ∈ dx,UT ∈ dt | X0 = x0) =

lim
ε→0
ε−1P(XT−t ∈ dε | X0 = x0) · P

(
X̃t ∈ dx,Ũt ∈ dt

�� X̃0 = ε
)
. (2.12)

Note that the right of the equation is constructed by the measure of the likelihood of XT−t (or X̃0)

at ε-neighbourhood of zero. As ε → 0, the result turns out to be the probability right at zero. The

transition density of BES(α) gives

P(XT−t ∈ dε | X0 = x0) =

13



ε1−2α(T − t)α−1
( x0ε

T − t

)α
I−α

( x0ε

T − t

)
exp

{
−

x0
2 + ε2

2(T − t)

}
dε.

Following this result and (2.3), (2.12) equates to

(T − t)α−1 lim
ε→0


( x0ε

T − t

)α
I−α

( x0ε

T − t

)
exp

{
−

x0
2 + ε2

2(T − t)

}P(X̃t ∈ dx,Ũt ∈ dt
�� X̃0 = ε

)
ε2α


=

1

Γ(1 − α)Γ(1 + α)
xt−α−1(T − t)α−1 exp

{
−

x0
2

2(T − t)
−

x2

2t

}
dx dt .

Integrating it over x from 0 to∞ yields (2.11) . □

2.2 Mathematical Framework of Hybrid Model

As expounded in the introduction, we construct a hybrid structural-reduced form model based on

the information described by Gt = σ{Us, s ≤ t} with an intensity defined endogenously by {Ut }t≥0.

This section establishes the mathematical framework underpinning the proposed model. To be more

specific, we study the joint process (Ut, t) at the first jump time τ followed a general intensity function

of the form λ(Ut ). Essentially the path of (Ut, t) admits two resources of jumps: one of which is

spontaneous jumps coming from the self-reflection by BES(α) upon reaching zero (i.e. the time points

when the statistics being observed attain zero), and the other a one-time endogenous jump occurring in

a Poisson-like fashion with rate depending on the age of the excursion straddling t (i.e. the arrival of

default). Within a piecewise-deterministic Markov process (PDMP) framework, a specific type of

Markov process initially formalised by Davis [39] to deal with non-diffusion models, distributional

properties concerning the stopping time τ and the stopping level Uτ , including the generating functions,

Laplace transforms and marginal densities, have been derived.

2.2.1 Perturbed Bessel Process

A peculiar problem in considering the path of BES(α) is the frequent visits at the regular point zero that

results in the occurrence of infinitely many small excursions, thereby producing also correspondingly

infinite jumps in the path of the age process. To circumvent this problem, we construct a new process,

namely the perturbed Bessel process, from the original process X defined in the space
(
Ω,F ,P

)
such

14



that for all t ≥ 0

{ ω ∈ Ω | Xt (ω) ∈ B } ∈ Ft, ∀B ∈ B
(
R+

)
.

For ε > 0 and n ∈ N+, define a sequence of stopping times by

δ0 = 0;

σn = inf{ t > δn | Xt = ε };

δn+1 = inf{ t > σn | Xt = 0 },

and then define the perturbed Bessel process, denoted as Xε , by

Xε
t =


ε − Xt, if δn ≤ t < σn;

Xt, if σn ≤ t < δn+1.

Accordingly, the age process for the new process is given by

Uε
t =


t − δn, if δn ≤ t < σn;

t − σn, if σn ≤ t < δn+1.

For a graphical illustration of this process, please refer to Figure 2.2 that shows a sample (original)

path of Xt and the defined stopping times σn and δn, and to Figure 2.3 that demonstrates how the

perturbation technique has been applied to the original path resulting in a clear pattern of the age

process.

In words, the perturbation has been done by chopping up the original path into pieces according to

the positions of σn and δn, and reversing all the parts of the periods δn ≤ t < σn by (ε − Xt ). In this

manner, we ensure the associated process Uε
t conforms to our definition of age process since all the

stopping times of σn and δn are actually describing the last zero points in the perturbed path.

This perturbation approach, aimed at achieving a clear structure of excursions around a regular

point, was introduced by Dassios and Wu [36] in their study of the Parisian stopping time in the context

of a drifted Brownian motion. Instead of doing path reversions, they do path movements by imposing

a jump of ε-size on the process immediately after it reaches zero. In comparison, our method of

path reversions is preferable in the respect of coordinating with a wider range of processes involving

15
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Fig. 2.2 A sample (original) path of Xt and the stopping times σn and δn.
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Fig. 2.3 Illustration of the perturbed path Xε
t versus the associated age process Uε

t .

reflected processes and non-negative processes. For more applications of this approach to the area of

option pricing and barrier strategy, interested readers are referred to the subsequent papers of the same

authors and in particular to Dassios and Wu [34, 35, 37, 38].

By such construction, it is clear that Xε converges pointwise to X , often written as{
ω ∈ Ω

���� limε↓0 Xε
t (ω) = Xt (ω), ∀t ≥ 0

}
= Ω.

This implies convergence between (i) variables defined on the basis of Xε and X , in particular Uε

converges pointwise to U as ε approaches zero, and (ii) expectations of continuous bounded functions
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of the variables referred to in (i). In this regard, similar convergences for the case of a drifted Brownian

motion have been proved in the mentioned [34, 38]. Following an analogous line of reasoning, one

can find that it holds for a recurrent Bessel process as well. Consequently, we obtain the results with

respect to Ut by carrying out the calculations for Uε
t , in the course of which ε will be retained without

taking the limit to zero until the very last step.

2.2.2 Martingale Problem and Generating Function

To find a martingale on the joint perturbed process
(
Uε
t , t

)
, we refer to the framework of PDMP.

According to it,
(
Uε
t , t

)
is characterised by two components: namely,

• flow: the motion between spontaneous jumps in the new age process Uε is increasing at unit

rate due to the time characteristics of age process; and

• transition intensity, the likelihood of observing a spontaneous jump in the next instant of time is

formulated as

pε(u)
P̄ε(u)

=

ε2α

2αΓ(α)
u−α−1e−

ε2

2u

∞∫
u

ε2α

2αΓ(α)
x−α−1e−

ε2

2x dx

,

where pε(u) and P̄ε(u) denote the density function and the tail distribution, respectively, of the

first hitting time of zero for the perturbed Bessel process Xε starting from ε.

The theory of PDMP provides a certain infinitesimal generator for
(
Uε
t , t

)
. Consider a bounded

function f : R2 → R, we define A as the operator making

f
(
Uε
t , t

)
−

∫ t

0
A f

(
Uε
s , s

)
ds,

a martingale and we have

A f (u, t) =
∂ f
∂t
+Au f

=
∂ f
∂t
+
∂ f
∂u
+

pε(u)
P̄ε(u)

(
f (0, t) − f (u, t)

)
.

(2.13)
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A suitable candidate of martingale of the form f
(
Uε
t , t

)
can be obtained from solving A f = 0. In our

hybrid model, the default time τ is defined in the way that the probability of a company to default in

the infinitesimal interval
[
t, t + dt

)
having not defaulted before t is :

P(τ ∈ [ t, t + dt ) | τ ≥ t) = λ(Ut ) dt, (2.14)

with λ(Ut ), a hazard rate, representing an instantaneous credit spread. Having constructed the above,

we can find the generating functions for the joint stopping process
(
Uε
τ , τ

ε
)

and thus (Uτ, τ) by taking

ε to zero.

To simplify expressions, we adopt the following convention in subsequent calculations that for all

t ≥ 0

Λ(t) B
∫ t

0
λ(s) ds, and Λ

′(t) = λ(t). (2.15)

Theorem 2.2.1 (Generating Functions). For κ(·) and λ(·) to be non-negative bounded functions,

β ∈ R+ and 0 < α < 1 to be constants, and τ to be the first jump time with the intensity λ(Uε), the

probability generating function of
(
Uε
τ , τ

ε
)

is given by

E
[
e−βτ

ε
κ
(
Uε
τ

) ]
=

∞∫
0

e−βvκ(v)λ(v)e−Λ(v)P̄ε(v) dv

∞∫
0

(β + λ(v))e−βve−Λ(v)P̄ε(v) dv

. (2.16)

Taking limit of ε to zero yields the generating function of (Uτ, τ) with τ being the default time dominated

by the intensity λ(U),

E
[
e−βτκ(Uτ)

]
=

∞∫
0

e−βvκ(v)λ(v)e−Λ(v)v−α dv

∞∫
0

(β + λ(v))e−βve−Λ(v)v−α dv

. (2.17)

Proof. Let G ε
t = σ

{
Uε
s , s ≤ t

}
denote the σ-algebra generated by the information of Uε up to time t.

According to (2.14) the definition of τ , the probability of the endogenous jump occurring in [ t, t+dt )

is given by

P
(
τε ∈ dt

�� G ε
t

)
= λ

(
Uε
t

)
exp

{
−

∫ t

0
λ
(
Uε
s

)
ds

}
dt.

18



Based on this result, we formulate the generating function of
(
Uε
τ , τ

ε
)

as follows

E
[
e−βτ

ε
κ
(
Uε
τ

) ]
=

∞∫
0

e−βt E
[
κ
(
Uε
t

)
λ
(
Uε
t

)
exp

{
−

∫ t

0
λ
(
Uε
s

)
ds

}]
dt . (2.18)

To find the representation of (2.18), we apply the Feynman-Kac Theory to the PDMP framework

constructed before for
(
Uε
t , t

)
. First, we extend the joint process by adding two more components, the

continuous processes

Yε
t =

∫ t

0
λ
(
Uε
s

)
ds and Zε

t =

t∫
0

e−βs κ
(
Uε
s

)
λ
(
Uε
s

)
e−Y

ε
s ds.

Please note that λ(·) and κ(·) are provisionally set to be arbitrary bounded functions and they will be

chosen in the way that contributes to the achievement of various distributionals. We then define another

generator G for the expanded process
(
Uε
t ,Y

ε
t , Z

ε
t , t

)
acting on a function f (u, y, z, t) in its domain as

G f (u, y, z, t) =
∂ f
∂t
+ λ(u)

∂ f
∂y
+ e−βt κ(u)λ(u)e−y

∂ f
∂z
+Au f .

Substituting f (u, y, z, t) = z + e−βte−yg(u) with g(·) assumed to be a bounded function into G f = 0

generates

g′(u) − g(u)
(
β +

pε(u)
P̄ε(u)

+ λ(u)
)
+ g(0)

pε(u)
P̄ε(u)

+ κ(u)λ(u) = 0.

Solving this differential equation gives,

g(u)e−βu P̄ε(u)e−Λ(u) =

g(0)

∞∫
u

e−βve−Λ(v)pε(v) dv +

∞∫
u

e−βvκ(v)λ(v)e−Λ(v)P̄ε(v) dv.

Setting u = 0,

g(0) =

∞∫
0

e−βvκ(v)P̄ε(v)λ(v)e−Λ(v) dv

1 −

∞∫
0

e−βvpε(v)e−Λ(v) dv

.
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By the property of PDMP, we get a martingale in the form

f
(
Uε
t ,Y

ε
t , Z

ε
t , t

)
= Zε

t + e−βte−Y
ε
t g

(
Uε
t

)
,

and therefore

lim
t→∞

E
[
Zε
t + e−βte−Y

ε
t g

(
Uε
t

) ]
= lim

t→∞
E
[
Zε
t

]
= g(0).

This completes the proof of (2.16) and (2.17) follows immediately by taking ε to zero. □

2.2.3 Distributional Results

This section presents some other distributional results obtained from a proper choice of κ(·) in the

generating functions. In particular, we find exact representations of the Laplace transforms of Uτ and

τ, and get the marginal density of Uτ .

Theorem 2.2.2. For β, φ ∈ R+ and 0 < α < 1, we find the joint Laplace transform of as

E
[
e−βτe−ϕUτ

]
=

∞∫
0

e−βve−ϕvλ(v)e−Λ(v)v−α dv

∞∫
0

(β + λ(v))e−βve−Λ(v)v−α dv

. (2.19)

Proof. This result follows immediately by replacing κ(u) in the generating function (2.17) with

e−ϕu. □

Corollary 2.2.3. Based on the joint Laplace transform, we have got the Laplace transform of Uτ ,

E
[
e−ϕUτ

]
=

∞∫
0

e−ϕvλ(v)e−Λ(v)v−α dv

∞∫
0

λ(v)e−Λ(v)v−α dv

, (2.20)
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from which we extract the density function of Uτ ,

fUτ (u) =
λ(u)e−Λ(u)u−α

∞∫
0

λ(v)e−Λ(v)v−α dv

; (2.21)

and the Laplace transform of τ,

E
[
e−βτ

]
=

∞∫
0

e−βvλ(v)e−Λ(v)v−α dv

∞∫
0

(β + λ(v))e−βve−Λ(v)v−α dv

. (2.22)

For the conditional case, we also get

E
[
e−βτ

�� Uτ

]
=

e−βUτ

∞∫
0

λ(v)e−Λ(v)v−α dv

∞∫
0

(β + λ(v))e−βve−Λ(v)v−α dv

. (2.23)

Proof. (2.20) and (2.22) are obtained by setting β and φ zero, respectively, in the joint Laplace

transform (2.19). The density of Uτ comes naturally from the representation of its Laplace transform.

For the last result, it comes from the representation

E
[
e−βτ

]
=

∞∫
0

E
[
e−βτ

�� Uτ = u
]

fUτ (u) du.

□

Upon realising that a closed-form solution to the density of τ is unattainable, we provide an

alternative way of studying the randomness of τ. Specifically, we discover a decomposition rule for

τ that it can be decomposed into Uτ , the stopping level of the age process and Vϱ, a Lévy process

stopped at a unit exponential time.
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Lemma 2.2.4. For 0 < α < 1, the Laplace transform of τ can be decomposed as follows

Lβ(τ) = Lβ(Uτ) ·

∞∫
0

e−v exp

−
v

η

∞∫
0

(
1 − e−βx

)
e−Λ(x)αx−α−1 dx

 dv, (2.24)

with Lβ(Uτ) denotes the Laplace transform of Uτ with respect to β and

η =

∞∫
0

λ(v)e−Λ(v)v−α dv. (2.25)

Proof. Multiplying the constant term
∫ ∞

0
λ(v)e−Λ(v)v−α dv to both the numerator and the denominator

of the result (2.22), we have

E
[
e−βτ

]
=

∞∫
0

e−βvλ(v)e−Λ(v)v−α dv

∞∫
0

λ(v)e−Λ(v)v−α dv

∞∫
0

λ(v)e−Λ(v)v−α dv

∞∫
0

(β + λ(v))e−βve−Λ(v)v−α dv

.

The first fraction recovers the Laplace transform of Uτ . Considering the denominator of the second

fraction, we first rewrite it as

∞∫
0

βe−βve−Λ(v)v−α dv +

∞∫
0

e−βvλ(v)e−Λ(v)v−α dv, (2.26)

and then substitute

e−Λ(v)v−α =

∞∫
v

λ(x)e−Λ(x)x−α dx +

∞∫
v

e−Λ(x)αx−α−1 dx,

into the first integral in (2.26) and thus get

∞∫
0

βe−βv
∫ ∞

v

λ(x)e−Λ(x)x−α dx dv +

∞∫
0

βe−βv
∫ ∞

v

e−Λ(x)αx−α−1 dx dv

+

∞∫
0

e−βvλ(v)e−Λ(v)v−α dv.
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Changing the order of integrals gives

∞∫
0

λ(x)e−Λ(x)x−α dx +

∞∫
0

(
1 − e−βx

)
e−Λ(x)αx−α−1 dx,

which completes the proof. □

The greater details on the decomposition along with necessary conditions are given in the following

theorem.

Theorem 2.2.5 (Decomposition Rule). There exists a decomposition for τ in the form:

τ
D
= Uτ + Vϱ, (2.27)

where

• Uτ is the stopping level of the age process ; and

• Vϱ is a Lévy process stopped at a unit exponential time, i.e. ϱ ∼ exp(1), whose measure is

described by

Π(dx) =
e−Λ(x)αx−α−1

η
dx, x > 0 (2.28)

with η defined by (2.25) and satisfying
∫
R+

(
1 ∧ x2

)
Π(dx) < ∞.

Proof. Clearly, (2.24) is expressed as the product of the Laplace transforms of Uτ and Vϱ. By the

convolution theorem, the result follows. □

At this stage, it is difficult to attributeVϱ further to any specific subclass, as one notice in the above

that the choice of λ(·) acting on the Lévy measure determines the existence and characteristics of such

process. Without loss of generality, we have selected a piecewise constant intensity, represented of the

form:

λ(Ut ) = λ111{Ut < c } + λ211{Ut ≥ c }, λ1 ≥ 0, λ2, c > 0 .

to continue the study in terms of simulation. This appears in CHAPTER 3: Application to Credit Risk

Modelling with Exact Simulation Scheme.
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Appendix I : A Supplementary Proof for PROPOSITION 2.1.1.

Proof. With the above construction of the Bessel process, we define Y = X2, a squared Bessel of

the same dimension 2(1 − α) with 0 < α < 1 and starting value y. Considering a bounded function

f : R2 → R, we define a generator A acting on the function f (y, t) by,

A f (y, t) =
∂ f
∂t
+ 2(1 − α)

∂ f
∂y
+ 2y

∂2 f
∂y2
. (2.29)

Any candidate satisfying A f (y, t) = 0 subject to certain conditions makes itself a martingale of the

form f (Yt, t), to which allow the application of optional sampling theorem in order to obtain the

Laplace transform of the stopping time/level.

Assuming f is of the following form,

e−βt
∞∫

0

e−yuh(u) du, (2.30)

where h(u) is a bounded function restricted to: lim
u→∞

e−yuu2h(u) = 0. Applying (2.30) to (2.29) and

then equating the latter to zero give

−β

∞∫
0

e−yuh(u) du − 2(1 − α)

∞∫
0

e−yuuh(u) du + 2y

∞∫
0

e−yuu2h(u) du = 0,

from which we extract

− βh(u) − 2(1 − α)uh(u) + 2 ∂
∂u

{
u2h(u)

}
= 0. (2.31)

By solving it we obtain, for c to be an arbitrary constant,

h(u) = cu−α−1e−
β
2u . (2.32)

The martingale is thus found as,

f (Yt, t) = ce−βt
∞∫

0

e−Ytuu−α−1e−
β
2u du. (2.33)
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Define TY
y→0 B inf{ t > 0 | Yt = 0 } to be the first hitting time of level zero for the squared Bessel

process. With y = x2, TY
y→0 is identical in law to Tx→0. According to the optional sampling theorem,

the Laplace transform of TY
y→0 is obtained by ,

E
[
e−βT

Y
y→0

]
=

βα

2αΓ(α)

∞∫
0

e−yuu−α−1e−
β
2u du.

Change of variable u = βt
y ,

E
[
e−βT

Y
y→0

]
=

yα

2αΓ(α)

∞∫
0

e−βt t−α−1e−
y
2t dt.

Replacing y with x2 completes the proof. □
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3
Application to Credit Risk Modelling with

Exact Simulation Scheme

Following the Decomposition Rule (THEOREM 2.2.5) in Chapter 2, we compute default probabilities

by developing exact simulation schemes for the joint stopping process (Uτ, τ). The intensity at this

stage has been chosen in the form of a piecewise constant function, whose description along with the

implication is given in Section 3.1. The motivation of this choice, in a nutshell, is that an intensity (or

a hazard rate) in such form has been widely used in survival analysis due to its strength in coordinating

with recurrent event processes, e.g. visiting zero by Ut in our case, while achieving a high degree of

flexibility and robustness [71]. The simulation algorithm for the joint process is presented in Section

3.3. To assess the accuracy of the algorithm and its performance in evaluating default risk, a numerical

study for the case of reflected Brownian motion (i.e. the Bessel of dimension δ = 1) is carried out in

Section 3.4.

3.1 Piecewise constant Intensity Function

What we have achieved before is conducive to investigating default time from the perspective of

simulation. To demonstrate this, particular attention is given to a default intensity defined by a two-step

function such that for all λ1 ≥ 0, λ2, c > 0,

λ∗(Ut ) = λ111{Ut<c } + λ211{Ut ≥c } . (3.1)

26



That is to say, given the current age smaller than a predetermined level c, the conditional probability of

default arriving within △t-period of time is

P(τ ≤ t + △t | τ > t, Ut < c) = λ1△t + o(△t),

otherwise, the probability is

P(τ ≤ t + △t | τ > t, Ut ≥ c) = λ2△t + o(△t).

We presume that conditioned on whether the age level exceeds c at time t, a firm is afflicted with

different loads of default risk. In terms of economic interpretation, the case λ1 > λ2 is applicable to

the scenario where the underlying process Xt represents some unobservable positive statistics and

Ut is constructed from the known points of time when they fall down to zero. Following it, if the

firm’s revenue (e.g.) remains above zero for a period longer than c, the intensity of default is thought

to downgrade from λ1 to λ2. Conversely, the case λ1 < λ2 applies to that where Xt represents some

unobservable negative statistics and Ut records the time elapsed since the last time they are cleared to

zero. If a period of length c has passed and the debt (e.g.) remains outstanding, the default intensity as

a consequence upgrades from λ1 to λ2.

3.2 Distributional Results

In the sequel, for simplicity in presenting results we denote by

γ(α, z) =
∫ z

0
e−t tα−1 dt;

Γ(α, z) =
∫ ∞

z

e−t tα−1 dt,

the lower and upper incomplete gamma functions.

We first update THEOREM 2.2.2 and its COROLLARY 2.2.3 with the chosen intensity (3.1). New

results are given explicitly in closed form.
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Theorem 3.2.1. Given τ∗ the default time driven by λ∗(U), the joint Laplace transform of (Uτ∗, τ
∗) is

obtained by

E
[
e−βτ

∗

e−ϕUτ∗

]
=

λ1
β + φ + λ1

η−(β + φ + λ1) +
λ2

β + φ + λ2
η+(β + φ + λ2)

η−(β + λ1) + η
+(β + λ2)

,

and we have defined functions η− and η+ to be

η−(s) = eλ1csαγ(1 − α, sc); (3.2)

η+(s) = eλ2csαΓ(1 − α, sc). (3.3)

Corollary 3.2.2. We hence have the Laplace transform of Uτ∗ ,

E
[
e−ϕUτ∗

]
=

λ1
φ + λ1

η−(φ + λ1) +
λ2
φ + λ2

η+(φ + λ2)

η−(λ1) + η
+(λ2)

; (3.4)

the density function of Uτ∗ ,

fUτ∗
(u) =

λ1e−λ1(u−c)u−α11{u < c } + λ2e−λ2(u−c)u−α11{u ≥ c }

η−(λ1) + η
+(λ2)

;

the Laplace transform of τ∗,

E
[
e−βτ

∗
]
=

λ1
β + λ1

η−(β + λ1) +
λ2
β + λ2

η+(β + λ2)

η−(β + λ1) + η
+(β + λ2)

;

and the Laplace transform of τ conditioned on Uτ∗ ,

E
[
e−βτ

∗
��� Uτ∗

]
= e−βUτ∗

η−(λ1) + η
+(λ2)

η−(β + λ1) + η
+(β + λ2)

. (3.5)

Proof. The results from Theorem 3.2.1 and Corollary 3.2.2 are simply obtained by substituting

λ(u) = λ111{u<c } + λ211{u≥c } into the results (2.19) – (2.23) from the last chapter. □
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3.3 Exact Simulation Algorithm

This section is devoted to developing simulation schemes for the default time τ∗ and the default level

Uτ∗ governed by the new intensity measure. Following the τ-decomposition in THEOREM 2.2.5, we

impose an upgrade on the Lévy part by decomposing it to an exhaustive extent, with each component

corresponding to a well-defined random variable that allows exact simulation. The simulation method

is straightforward and fast in implementation and avoids generating sample paths in the entire process

thus eliminating discretization bias.

3.3.1 Simulation Scheme for the Stopping Level

The algorithm for generating N samples of Uτ∗ is given as follows:

Algorithm 1 : Generating N samples of Uτ∗

( I ) Generate n indicator variates, u = { u1,u2, · · · ,un }, from a Bernoulli distribution with success

rate

p =
η−(λ1)

η−(λ1) + η
+(λ2)

(3.6)

where η−(·) and η+(·) are given by (3.2) and (3.3).

( II ) Compute two parameters: l1 =
∑n

i=1 ui and l2 = n − l1.

( III ) Generate l1 variates, x =
{

x1, x2, · · · , xl1
}
, from a left-truncated gamma distribution with

density:

f̃1(x) =
e−x x−α

γ(1 − α, cλ1)
11{x < cλ1 }; (3.7)

and rescale them by the factor 1
λ1

, i.e. x̃ = x
λ1

.

( IV ) Generate l2 variates, y =
{
y1, y2, · · · , yl2

}
, from a right-truncated gamma distribution with

density:

f̃2(x) =
e−x x−α

Γ(1 − α, cλ2)
11{x ≥ cλ2 } . (3.8)

and rescale them by 1
λ2

, i.e. ỹ = y
λ2

.

( V ) Combine x̃ with ỹ in order of the one-zero distribution of u.
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Proof. We start by rewriting the Laplace transform of Uτ∗ in (3.4) into the following form

E
[
e−ϕUτ∗

]
=

λ1

c∫
0

e−λ1ve−ϕvv−α dv + λ2e−(λ1−λ2)c
∞∫

c

e−λ2ve−ϕvv−α dv

λ1

c∫
0

e−λ1vv−α dv + λ2e−(λ1−λ2)c
∞∫

c

e−λ2vv−α dv

=

∞∫
0

e−ϕv
λ1eλ1ce−λ1vv−α11{v < c } + λ2eλ2ce−λ2vv−α11{v ≥ c }

λ1eλ1c
c∫

0

e−λ1vv−α dv + λ2eλ2c
∞∫

c

e−λ2vv−α dv

dv,

from which we extract the density of Uτ∗ ,

fUτ∗
(u) =

λ1eλ1ce−λ1uu−α

λ1eλ1c
c∫

0

e−λ1vv−α dv + λ2eλ2c
∞∫

c

e−λ2vv−α dv

11{u < c }

+
λ2eλ2ce−λ2uu−α

λ1eλ1c
c∫

0

e−λ1vv−α dv + λ2eλ2c
∞∫

c

e−λ2vv−α dv

11{u ≥ c } .

Multiplying the top and bottom of the first fraction with
∫ c

0
e−λ1vv−α dv and of the second with∫ ∞

c

e−λ2vv−α dv, we get

λ1eλ1c
c∫

0

e−λ1vv−α dv

λ1eλ1c
c∫

0

e−λ1vv−α dv + λ2eλ2c
∞∫

c

e−λ2vv−α dv

e−λ1uu−α
c∫

0

e−λ1vv−α dv

11{u < c }

+

λ2eλ2c
∞∫

c

e−λ2vv−α dv

λ1eλ1c
c∫

0

e−λ1vv−α dv + λ2eλ2c
∞∫

c

e−λ2vv−α dv

e−λ2uu−α
∞∫

c

e−λ2vv−α dv

11{u ≥ c }

= p · f1(u) + (1 − p) · f2(u),
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where

p =

λ1eλ1c
c∫

0

e−λ1vv−α dv

λ1eλ1c
c∫

0

e−λ1vv−α dv + λ2eλ2c
∞∫

c

e−λ2vv−α dv

,

f1(u) =
e−λ1uu−α

c∫
0

e−λ1vv−α dv

11{u < c } and f2(u) =
e−λ2uu−α

∞∫
c

e−λ2vv−α dv

11{u ≥ c } .

It is apparent that the result of the above form is a convex combination of two density functions: f1

(a left-truncated gamma) and f2 (a right-truncated gamma). The simulation of one variate from such

a mixed distribution with weights specified as p and 1 − p can be undertaken in two steps. We first

generate an indicator variate from a Bernoulli distribution with success rate p and indicated by which

we then generate another variate from either f1 or f2. Note that in order to improve the efficiency

of simulating the two truncated gamma functions, we have rescaled the random variable by defining

x = λ1u for its support in (0, c) and x = λ2u for u ∈ (c,∞). The resulting density functions are the

results shown by (3.7) and (3.8). □

3.3.2 Simulation Scheme for the Stopping Time

According to the decomposition rule in THEOREM 2.2.5, the difference by subtracting τ∗ from Uτ∗ has

been clarified as a Lévy process stopped at unit exponential time, denoted asV∗ϱ , with measure Π∗(dx).

As for our choice of λ∗(U), one can easily check that
∫
R+

(
1 ∧ x2

)
Π
∗(dx) < ∞ holds where

Π
∗(dx) =

eλ1c
c∫

0

x−
3
2 e−λ1x dx + eλ2c

∞∫
c

x−
3
2 e−λ2x dx

2
(
η−(λ1) + η

+(λ2)
) .

However, it does not provide any insight into the implementation of its simulation. Towards a better

understanding ofV∗ϱ , following the same spirit of decomposition we subdivide it into two independent

components, each corresponding to a precise and efficient simulation scheme. More precisely, we find

on the whole that a random variate of V∗ϱ can be obtained by generating one variate from α-stable
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process and one from compound Poisson. Due to the difference in quantity between λ1 and λ2, there

will be a slight difference in the parametrization.

Case I : λ1 > λ2

We find an integral representation for the Laplace transform ofV∗ϱ in the case λ1 > λ2.

Theorem 3.3.1. For any λ1 > λ2, the Laplace transform ofV∗ϱ has an integral representation of the

form

E
[
e−βV

∗
ϱ

]
=

∞∫
0

e−t · exp
−

t
η∗

eλ1c
∞∫

0

(
1 − e−βx

)
e−λ1xαx−α−1 dx

·
exp

−
t
η∗

∞∫
c

(
1 − e−βv

) (
e−λ2(v−c) − e−λ1(v−c)

)
αv−α−1 dv

 dt . (3.9)

with η∗ = η−(λ1) + η+(λ2).

Accordingly, there exists an explicit and exhaustive decomposition forV∗ϱ such that

V∗ϱ
D
= Ts(ϱ) + Tcp(ϱ), ϱ ∼ Exp(1), (3.10)

where Ts(ϱ) and Tcp(ϱ) denote respectively the realisations at unit exponential time ϱ of

• α-stable subordinator Ts described by Lévy measure

αx−α−1e−λ1(x−c)

η∗
; (3.11)

• and compound Poisson variable Tcp with rate

Γ(1 − α)λα1 eλ1c

η∗
− 1,

and jump size density
αv−α−1

(
e−λ2(v−c) − e−λ1(v−c)

)
Γ(1 − α)λα1 eλ1c − η∗

11{v > c } .
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Proof. We first give out the derivation of (3.9). The Laplace transform of τ∗ | Uτ∗ is given in (3.5), to

which we multiply both sides with eβUτ∗ to get the Laplace transform ofV∗ϱ ,

E
[
e−βV

∗
ϱ

]
=

λ1eλ1c
c∫

0

e−λ1x x−α dx + λ2eλ2c
∞∫

c

e−λ2x x−α dx

(β + λ1)eλ1c
c∫

0

e−(β+λ1)x x−α dx + (β + λ2)eλ2c
∞∫

c

e−(β+λ2)x x−α dx

. (3.12)

The numerator, computed and expressed as
(
η−(λ1) + η

+(λ2)
)
, is constant of no effect. For simplicity in

notation, we denote this quantity by η∗. Considering the denominator, we rewrite the lower incomplete

gamma function in the first integral as a subtraction of the upper function from the corresponding

complete function and thus obtain

Γ(1 − α)(β + λ1)
αeλ1c + (3.13)

∞∫
c

e−βve−λ1(v−c)αv−α−1 dv −

∞∫
c

e−βve−λ2(v−c)αv−α−1 dv. (3.14)

Regarding the first term (3.13), with α ∈ (0,1) we expand it to

Γ(1 − α)
(
(β + λ1)

α − λα1
)
eλ1c + Γ(1 − α)λα1 eλ1c

=

∞∫
0

(
1 − e−βx

)
e−λ1(x−c)αx−α−1 dx + Γ(1 − α)λα1 eλ1c . (3.15)

Moreover, the two integrals in (3.14) can be transformed as follows,

− eλ1c
∞∫

c

(
e−λ1v − e−(β+λ1)v − e−λ1v

)
αv−α−1 dv

+ eλ2c
∞∫

c

(
e−λ2v − e−(β+λ2)v − e−λ2v

)
αv−α−1 dv

= −

∞∫
c

(
e−λ2(v−c) − e−λ1(v−c)

)
αv−α−1 dv

+

∞∫
c

(
1 − e−βv

) (
e−λ2(v−c) − e−λ1(v−c)

)
αv−α−1 dv. (3.16)
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Following (3.15) and (3.16), the denominator is equal to

Γ(1 − α)λα1 eλ1c −

∞∫
c

(
e−λ2(v−c) − e−λ1(v−c)

)
αv−α−1 dv (3.17)

+

∞∫
0

(
1 − e−βx

)
e−λ1(x−c)αx−α−1 dx +

∞∫
c

(
1 − e−βv

) (
e−λ2(v−c) − e−λ1(v−c)

)
αv−α−1 dv,

and (3.17) is further found matching the numerator,

Γ(1 − α)λα1 eλ1c −

∞∫
c

(
e−λ2(v−c) − e−λ1(v−c)

)
αv−α−1 dv

= λ1eλ1c
∞∫

0

e−λ1x x−α dx +

∞∫
c

(
e−λ2(v−c) − e−λ1(v−c)

)
∂
∂v {v

−α} dv

= λ1eλ1c
c∫

0

e−λ1x x−α dx + λ2eλ2c
∞∫

c

e−λ2x x−α dx.

Gathering all the results obtained, the Laplace transform ofV∗ϱ , after dividing both the numerator

and the denominator by η∗, is represented as

E
[
e−βV

∗
ϱ

]
=

©­­­­­­­­«

1 +
1

η∗

∞∫
0

(
1 − e−βx

)
e−λ1(x−c)αx−α−1 dx

+
1

η∗

∞∫
c

(
1 − e−βv

) (
e−λ2(v−c) − e−λ1(v−c)

)
αv−α−1 dv

ª®®®®®®®®¬

−1

.

Note that the two integrals, disregarding the parametrization, are the characteristic exponents of a α-

stable subordinator and a compound Poisson process, respectively. Taking this fraction as a whole, we

rewrite it as an integral form as (3.9). Following the integral representation whose integrand contains

a product of the two characteristic functions, the decomposition (3.10) comes by the convolution

theorem. □

This theorem leads immediately to the simulation algorithm ofV∗ϱ .

34



Algorithm 2 : Generating one sample of V∗
ϱ with λ1 > λ2.

(I) Generate a unit exponential variable ϱ ∼ Exp(1).

(II) Generate one α-stable subordinator (at time ϱ) Ts with measure given by (3.11).

(III) Generate one Poisson random variable N with rate :

ϱ

η∗

(
Γ(1 − α)λα1 eλ1c − η∗

)
.

(IV) Generate N independent jump variables {Yi}i=1,2, · · ·N using Acceptance - Rejection (A-R)

scheme. For each jump Yi, take the following steps:

(i) Generate a random variable Y from an envelope density

fY (y) =
αeλ2ce−λ2yy−α−1

c−α − η+(λ2)
11{y > c }; (3.18)

(ii) Generate a standard uniform variate U ∼ U(0,1);

(iii) Set Yi ← Y if U < 1 − e−(λ1−λ2)(Y−c); otherwise, return to step (i).

Then, a sample of the compound Poisson is obtained by Tcp =
∑N

i=1 Yi.

(V) SetV∗ϱ = Ts + Tcp.

Remark 3.3.2. To be more precise on simulating the α-stable subordinator, there seems no problem

for the case α = 1
2 , as it is the well-known inverse Gaussian process with ready-made simulation

packages. In general situation when α , 1
2 , we refer to Dassios et al. [32] who develops a so-called

backward recursive scheme for exactly simulating a class of tempered stable distribution with stability

index q
2n ∈ (0,1) and q,n ∈ N+.

Case II : λ1 < λ2

Within a manner analogous to the previous case, we find a modified integral representation for the

Laplace transform ofV∗ϱ in the case λ1 < λ2.
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Theorem 3.3.3. For any λ1 < λ2, the Laplace transform ofV∗ϱ can be represented in the following

integral form

E
[
e−βV

∗
ϱ

]
=

∞∫
0

e−t · exp
−

t
η∗

eλ1c
∞∫

0

(
1 − e−βv

)
e−λ2vαv−α−1 dv

·
exp

−tΛ

∞∫
0

(
1 − e−βv

) [
q · Q1(v) + (1 − q) · Q2(v)

]
dv

 dt . (3.19)

Accordingly, the decomposition is given by

V∗ϱ
D
= Ts(ϱ) + Tcp(ϱ), ϱ ∼ Exp(1), (3.20)

where Ts(ϱ) and Tcp(ϱ) denote the realisations at unit exponential time ϱ of :

• α-stable subordinator Ts described by Lévy measure

eλ1ce−λ2vαv−α−1

η∗
dv; (3.21)

• and compound Poisson variable Tcp with rate Λ equal to

Γ(1 − α)λα2 eλ1c

η∗
− 1; (3.22)

and jump size density
(
q · Q1(v) + (1 − q) · Q2(v)

)
where

q =
η−(λ2) − η

−(λ1) −
1 − e−(λ2−λ1)c

cα

Γ(1 − α)λα2 eλ1c − η∗
; (3.23)

Q1(v) =
eλ1c

(
e−λ1v − e−λ2v

)
αv−α−1

η−(λ2) − η
−(λ1) −

1 − e−(λ2−λ1)c

cα

11{v < c }; (3.24)

Q2(v) =
eλ2ce−λ2vαv−α−1

c−α − η+(λ2)
11{v > c }, (3.25)

with η∗ = η−(λ1) + η+(λ2). η−(·) and η+(·) are defined before in (3.2) and (3.3).
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Proof. The core of this proof is to show the formation of the integral result (3.19), during which course

the detailed components in the decomposition are identified. We proceed as in the last proof with

minor modification on the representation of the denominator in (3.12), i.e.

c∫
0

βe−βxe−λ1(x−c)x−α dx +

∞∫
c

βe−βxe−λ2(x−c)x−α dx

+ λ1eλ1c
c∫

0

e−βxe−λ1x x−α dx + λ2eλ2c
∞∫

c

e−βxe−λ2x x−α dx.

Substituting for i = 1,2

e−λi x x−α =

∞∫
x

λie−λivv−α dv +

∞∫
x

e−λivαv−α−1 dv,

into the first two integrals and then interchanging the order of each yields, we have

eλ1c
c∫

0

(
1 − e−βv

) (
λ1e−λ1vv−α + e−λ1vαv−α−1

)
dv

+ eλ1c
∞∫

c

(
1 − e−βc

) (
λ1e−λ1vv−α + e−λ1vαv−α−1

)
dv

+ eλ2c
∞∫

c

(
e−βc − e−βv

) (
λ2e−λ2vv−α + e−λ2vαv−α−1

)
dv

+ λ1eλ1c
c∫

0

e−(β+λ1)x x−α dx + λ2eλ2c
∞∫

c

e−(β+λ2)x x−α dx.

These integrals are computed to

λ1eλ1c
c∫

0

e−λ1vv−α dv + c−α −

∞∫
c

e−βve−λ2(v−c)αv−α−1 dv

+

c∫
0

(
1 − e−βv

)
e−λ1(v−c)αv−α−1 dv

= η∗ +

c∫
0

(
1 − e−βv

)
e−λ1(v−c)αv−α−1 dv +

∞∫
c

(
1 − e−βv

)
e−λ2(v−c)αv−α−1 dv.
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With λ1 < λ2, this can be rewritten as follows,

η∗ +

c∫
0

(
1 − e−βv

) (
e−λ1(v−c) − e−λ2(v−c)

)
αv−α−1 dv +

∞∫
0

(
1 − e−βv

)
e−λ2(v−c)αv−α−1 dv

= η∗ +

c∫
0

(
1 − e−βv

)
e−λ1(v−c)αv−α−1 dv −

c∫
0

(
1 − e−βv

)
e−λ2(v−c)αv−α−1 dv

+ eλ1c
∞∫

0

(
1 − e−βv

)
e−λ2vαv−α−1 dv +

(
eλ2c − eλ1c

) ∞∫
0

(
1 − e−βv

)
e−λ2vαv−α−1 dv

= η∗ + eλ1c
∞∫

0

(
1 − e−βv

)
e−λ2vαv−α−1 dv + eλ1c

c∫
0

(
1 − e−βv

) (
e−λ1v − e−λ2v

)
αv−α−1 dv

+
(
eλ2c − eλ1c

) ∞∫
c

(
1 − e−βv

)
e−λ2vαv−α−1 dv.

Therefore, a modified version of the Laplace transform ofV∗ϱ has been achieved as

E
[
e−βV

∗
ϱ

]
=

©­­­­­­­­­­­­­­­«

1 +
eλ1c

η∗

∞∫
0

(
1 − e−βv

)
e−λ2vαv−α−1 dv

+
eλ1c

η∗

c∫
0

(
1 − e−βv

) (
e−λ1v − e−λ2v

)
αv−α−1 dv

+

(
eλ2c − eλ1c

)
η∗

∞∫
c

(
1 − e−βv

)
e−λ2vαv−α−1 dv

ª®®®®®®®®®®®®®®®¬

−1

. (3.26)

It is apparent that the first integral is related to the characteristic exponent of α-stable subordinator.

Considering the second and the third integral in terms of a proper Lévy density, we find that they

combined together constitute the jump measure of a compound Poisson process. That is to say we can

express the sum of them as in the form

eλ1c

η∗

c∫
0

(
1 − e−βv

) (
e−λ1v − e−λ2v

)
αv−α−1 dv +

eλ2c − eλ1c

η∗

∞∫
c

(
1 − e−βv

)
e−λ2vαv−α−1 dv

= Λ

∞∫
0

(
1 − e−βv

) (
q · Q1(v) + (1 − q) · Q2(v)

)
dv.
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Λ denotes the Poisson jump rate and equates to

eλ1c

η∗

c∫
0

(
e−λ1v − e−λ2v

)
αv−α−1 dv +

eλ2c − eλ1c

η∗

∞∫
c

e−λ2vαv−α−1 dv

=
eλ1c

η∗
©­«

c∫
0

λ2e−λ2vv−α dv −

c∫
0

λ1e−λ1vv−α dv −
e−λ1c − e−λ2c

cα
ª®¬

+
eλ2c − eλ1c

η∗
©­« e−λ2c

cα
−

∞∫
c

λ2e−λ2vv−α dv
ª®¬

=
Γ(1 − α)λα2 eλ1c

η∗
− 1.

(
q ·Q1(v)+ (1−q) ·Q2(v)

)
is a convex combination of two density functions Q1(v) and Q2(v) weighted

by q ∈ (0,1) with

q =

λ2eλ1c
c∫

0

e−λ2vv−α dv − λ1eλ1c
c∫

0

e−λ1vv−α dv −
1 − e−(λ2−λ1)c

cα

Γ(1 − α)λα2 eλ1c − η∗
.

Q1(v) and Q2(v) have been found by

Q1(v) =

(
e−λ1v − e−λ2v

)
αv−α−111{v < c }

c∫
0

λ2e−λ2vv−α dv −

c∫
0

λ1e−λ1vv−α dv −
e−λ1c − e−λ2c

cα

;

Q2(v) =
e−λ2vαv−α−111{v > c }

e−λ2c

cα
−

∞∫
c

λ2e−λ2vv−α dv

.

It is easy to prove that they are proper density functions.

To conclude this proof, we rewrite (3.26) into an integral form incorporating the above results to

get (3.19). This leads immediately to the decomposition result (3.20). □

The simulation algorithm for one sample ofV∗ϱ is given as follows:
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Algorithm 3 : Generating one sample of V∗
ϱ with λ1 < λ2.

( I ) Generate a unit exponential variable ϱ ∼ Exp(1);

( II ) Generate a α-stable subordinator (at time ϱ) Ts with measure given by (3.21) ;

( III ) Generate one Poisson random variable N with rate :

ϱ

η∗

(
Γ(1 − α)λα2 eλ1c − η∗

)
;

( IV ) Generate N independent jump variables {Yi}i=1,2, · · ·N using Acceptance - Rejection (A-R)

scheme. For each jump Yi, take the following steps:

( i ) Generate an indicator variable R ∼ Bernoulli(q) with q given by (3.23) ;

( ii ) • If R = 1, generate two independent standard uniform variables {U1,U2} ∼ U(0,1)

and compute Y = cU1
1

1−α . Set Yi ← Y if U2 <
e−λ1Y − e−λ2Y

(λ2 − λ1)Y
; otherwise repeat this

point;

• If R = 0, generate a random variable Y from the density given by (3.25) and set

Yi ← Y ;

Then, a sample of the compound Poisson Tcp =
∑N

i=1 Yi.

( V ) SetV∗ϱ = Ts + Tcp.

The decomposition (3.20) has been found in the same form as (3.10) so the algorithm for the case

λ1 < λ2 is expected to follow a similar rule to that for λ1 > λ2. In particular, the simulation of Ts from

the α-stable family would not be hard by referring to the literature mentioned before. Moreover, the

methodology of generating Tcp, represented as a linearly combined density, has been introduced in

ALGORITHM 1 : Generating N samples of Uτ∗ . Exactly the same procedures can be applied here.
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3.4 Numerical Studies

This section illustrates the accuracy of our simulations schemes and their performance in assessing

default risk. We assume α = ½ that reduces the underlying process, originally being a recurrent

Bessel process, to a reflected Brownian motion. As a result, the α-stable subordinator appearing in the

V∗ϱ -decomposition turns into an inverse Gaussian process.

Examination of Simulation Algorithms. To verify the accuracy of our algorithms by means of

error analysis, we compare the estimated mean values of Uτ∗ , V∗ϱ and τ∗ with the corresponding

theoretical results evaluated from their Laplace transforms obtained previously. For α ∈ (0,1) and

λ1, λ2 > 0, we get

E[Uτ∗] =
1
η∗

(
eλ1cλα−11 γ(2 − α,λ1c) + eλ2cλα−12 Γ(2 − α,λ2c)

)
E
[
V∗ϱ

]
= 1

η∗

(
eλ1cλα−11

(
γ(1 − α,λ1c) − γ(2 − α,λ1c)

)
+ eλ2cλα−12

(
Γ(1 − α,λ2c) − Γ(2 − α,λ2c)

) )
E[τ∗] = 1

η∗

(
eλ1cλα−11 γ(1 − α,λ1c) + eλ2cλα−12 Γ(1 − α,λ2c)

)



, (3.27)

with

η∗ = eλ1cλα1γ(1 − α,λ1c) + eλ2cλα2 Γ(1 − α,λ2c).

In the special case of α = ½, E[Uτ∗] = E
[
V∗ϱ

]
= ½ E[τ∗] holds.

The associated discrepancies are measured by relative error, expressed as the percentage of

estimates relative to the true values. To implement the simulation, we set parameters

λ1 = ( 0,0.5,1,1.5,2,2.5,3 ),

one-to-one corresponding to

λ2 = ( 3.5,3,2.5,2,1.5,1,0.5 ),
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to be combined with each in c = (0.5,1,1.5,2). Each estimate is obtained based on a size of 105

samples. The comparison results are listed in TABLE 3.1, from which we conclude that demonstrated

by the close agreement between the true means and the estimated values, the proposed algorithms

provide consistent estimators for Uτ∗ , V∗ϱ and τ∗ with an achievement of high-level accuracy. The

associated histograms for the chosen cases Θ := (c, λ1, λ2) = (0.5,0.5,3)i, (1,0,3.5)ii, (1.5,2,1.5)iii

and (2,3,0.5)iv are provided in FIGURE 3.1.

Application to Default Risk Assessment. Looking into the comparison table, we are indicated

that with an increase in the level c, the expected Uτ∗ , V∗ϱ and τ∗ (both true and estimated results)

moves progressively upwards for the case λ1 > λ2 but downwards for the opposite case. Once

studying further the role of (c, λ1, λ2) in determining the behaviour of default risk, we understand that

the default probability P(τ∗ < T | c, λ1, λ2) and the default level P(Uτ∗ < T | c, λ1, λ2) do not always

follow the same rule. To demonstrate this, we conduct a sensitivity analysis by generating a table for

the cumulative distribution function of τ∗ and Uτ∗ within a range of parameter sets representing the

following three scenarios,

(I) (λ1, λ2) = (0,3) with c = { 0.5,1.0,1.5,2.0 } ;

(II) (λ1, λ2) = (0.5,3) with c = { 0.5,1.0,1.5,2.0 } ;

(III) (λ1, λ2) = (2,0.3) with c = { 0.2,0.4,0.6,0.8 } .

The numerical results are presented in TABLE 3.2 and the associated plots in FIGURE 3.2.

It can be observed from the sub-plots in FIGURE 3.2 that in general the level c imposes a negative

effect on the possibility of default for the case λ1 < λ2 and a positive effect for the opposite case. This

means that as c increases, the probability of a default happening before time T is descending under the

case λ1 < λ2 and ascending under the opposite case. The situation becomes a bit complicated for the

default level Uτ . The extreme case λ1 = 0 suggests a strictly negative relationship in the effect of c to

the probability of Uτ before T . For the rest two cases, there exist transitions in their CDF-plots that

turns the negative relationship towards positive referring to the case λ1 < λ2 or the other way around

to the case λ1 > λ2.

The intuition behind these findings is straightforward. Depending on the age of the excursion

straddling t, the underlying process is subjected to and switching between different exposures to risk
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measured by λ1 within the space {Ut < c} and λ2 within {Ut ≥ c}. With a rise in the value of c, it is

increasingly unlikely for the process to complete an excursion with a length exceeding c so as to enter

into the region {Ut ≥ c}. As for the case λ1 < λ2, the process is expected to suffer more of the time

from the relatively lower risk than higher. However, each time it succeeds in escaping from the lower

risk region into that of higher risk, a boost in the possibility of default is ensured. Moreover, the bigger

value in c the less possibility of a boost. As a result, once a default happens it is ended up with a higher

value. This explains the finding mentioned at the beginning that the expected τ and Uτ become smaller

as c increases. It has also been reflected in the associated plot as the conspicuous increase in the slope

of the curve happening immediately after c. Then for the other case λ1 > λ2, following a similar line

of reasoning, the underlying process is expected to remain more of the time in the higher-risk region

and highly likely the event of default will arrive before c. Due to the increasing difficulty of entering

into the lower-risk region, i.e. completing an excursion of length over c, the default is less likely to

happen after c. In the associated plot, this has been captured by the drop in the slope right after c.
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Table 3.1 Comparison between the true means (3.27) and the simulated results based on varying
parameter settings of (c, λ1, λ2); the associated histograms are provided in FIGURE 3.1.

c λ1 λ2 E[Uτ∗] Estimates Error(%) E

[

V∗
ϱ

]

Estimates Error(%) E[τ∗] Estimates Error(%)

0.5

0.0 3.5 0.7467 0.7461 -0.07 0.7467 0.7475 0.10 1.4934 1.4936 0.02
0.5 3.0 0.5186 0.5193 0.13 0.5186 0.5183 -0.06 1.0373 1.0377 0.04
1.0 2.5 0.3925 0.3928 0.07 0.3925 0.3918 -0.20 0.7851 0.7845 -0.07
1.5 2.0 0.3141 0.3146 0.14 0.3141 0.3136 -0.17 0.6283 0.6282 -0.02
2.0 1.5 0.2625 0.2624 -0.05 0.2625 0.2629 0.14 0.5250 0.5253 0.04
2.5 1.0 0.2290 0.2293 0.13 0.2290 0.2285 -0.21 0.4580 0.4578 -0.04
3.0 0.5 0.2147 0.2145 -0.10 0.2147 0.2147 -0.02 0.4294 0.4292 -0.06

1.0

0.0 3.5 1.2601 1.2607 0.05 1.2601 1.2597 -0.04 2.5202 2.5204 0.01
0.5 3.0 0.6794 0.6791 -0.04 0.6794 0.6805 0.17 1.3588 1.3596 0.06
1.0 2.5 0.4473 0.4476 0.06 0.4473 0.4479 0.14 0.8946 0.8955 0.10
1.5 2.0 0.3261 0.3266 0.14 0.3261 0.3259 -0.09 0.6523 0.6524 0.02
2.0 1.5 0.2537 0.2532 -0.19 0.2537 0.2539 0.10 0.5073 0.5071 -0.05
2.5 1.0 0.2067 0.2069 0.13 0.2067 0.2062 -0.25 0.4134 0.4131 -0.06
3.0 0.5 0.1756 0.1754 -0.10 0.1756 0.1758 0.11 0.3511 0.3511 0.00

1.5

0.0 3.5 1.7665 1.7663 -0.01 1.7665 1.7655 -0.05 3.5329 3.5318 -0.03
0.5 3.0 0.7790 0.7797 0.09 0.7790 0.7794 0.05 1.5581 1.5591 0.07
1.0 2.5 0.4725 0.4734 0.18 0.4725 0.4721 -0.09 0.9450 0.9454 0.05
1.5 2.0 0.3304 0.3301 -0.10 0.3304 0.3312 0.23 0.6608 0.6613 0.06
2.0 1.5 0.2512 0.2508 -0.13 0.2512 0.2513 0.05 0.5023 0.5021 -0.04
2.5 1.0 0.2017 0.2019 0.13 0.2017 0.2016 -0.03 0.4033 0.4035 0.05
3.0 0.5 0.1684 0.1686 0.10 0.1684 0.1682 -0.11 0.3369 0.3369 0.00

2.0

0.0 3.5 2.2702 2.2713 0.05 2.2702 2.2684 -0.08 4.5405 4.5397 -0.02
0.5 3.0 0.8444 0.8449 0.05 0.8444 0.8454 0.11 1.6889 1.6903 0.08
1.0 2.5 0.4851 0.4849 -0.06 0.4851 0.4858 0.14 0.9703 0.9707 0.04
1.5 2.0 0.3321 0.3325 0.11 0.3321 0.3316 -0.14 0.6642 0.6641 -0.02
2.0 1.5 0.2504 0.2501 -0.12 0.2504 0.2506 0.11 0.5008 0.5007 -0.01
2.5 1.0 0.2004 0.2000 0.20 0.2004 0.2006 0.06 0.4009 0.4006 -0.07
3.0 0.5 0.1670 0.1669 -0.06 0.1670 0.1674 0.17 0.3341 0.3343 0.07
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Table 3.2 Estimated CDFs of τ∗ and Uτ∗ for the Scenario (I), (II), and (III) with each based on a sample
size of 105; the associated plots are provided in FIGURE 3.2.

Scenario Time T P(τ∗ < T | c, λ1, λ2) Time T P(Uτ∗ < T | c, λ1, λ2)

c = 0.5 1.0 1.5 2.0 c = 0.5 1.0 1.5 2.0

I: (λ1, λ2) = (0,3)

1 0.3310 0 0 0 0.6 0.3032 0 0 0
2 0.7593 0.4572 0.2068 0 0.8 0.6590 0 0 0
3 0.9169 0.7134 0.5104 0.3367 1.1 0.8776 0.2863 0 0
4 0.9715 0.8501 0.6936 0.5411 1.3 0.9367 0.6352 0 0
5 0.9899 0.9213 0.8076 0.6809 1.6 0.9763 0.8645 0.2772 0
6 0.9964 0.9592 0.8785 0.7792 1.8 0.9882 0.9290 0.6234 0
7 0.9986 0.9787 0.9237 0.8475 2.1 0.9953 0.9732 0.8578 0.2744
8 0.9996 0.9890 0.9520 0.8937 2.5 0.9988 0.9923 0.9600 0.7983
9 0.9999 0.9943 0.9702 0.9271 3.0 0.9998 0.9984 0.9919 0.9582

10 1 0.9972 0.9817 0.9496 3.5 1 0.9997 0.9984 0.9913

c = 0.5 1.0 1.5 2.0 c = 0.5 1.0 1.5 2.0

II: (λ1, λ2) = (0.5,3)

0.5 0.2227 0.2226 0.2205 0.2217 0.3 0.3374 0.3745 0.3922 0.4031
1.0 0.5739 0.3935 0.3930 0.3942 0.6 0.5976 0.5053 0.5290 0.5442
1.5 0.7899 0.6316 0.5280 0.5291 0.9 0.8588 0.5919 0.6183 0.6376
2.0 0.9001 0.7875 0.7013 0.6343 1.2 0.9489 0.8028 0.6853 0.7051
2.5 0.9524 0.8777 0.8191 0.7612 1.5 0.9816 0.9264 0.7357 0.7552
3.0 0.9774 0.9304 0.8890 0.8481 1.8 0.9928 0.9723 0.8998 0.7937
3.5 0.9893 0.9602 0.9303 0.9019 2.1 0.9973 0.9894 0.9620 0.8659
4.0 0.9949 0.9771 0.9573 0.9358 2.4 0.9990 0.9960 0.9857 0.9480
4.5 0.9976 0.9867 0.9732 0.9586 2.7 0.9996 0.9985 0.9947 0.9799
5.0 0.9989 0.9923 0.9835 0.9725 3.0 0.9998 0.9994 0.9978 0.9922

c = 0.2 0.4 0.6 0.8 c = 0.2 0.4 0.6 0.8

III: (λ1, λ2) = (2,0.3)

0.2 0.3291 0.3301 0.3299 0.3288 0.1 0.5699 0.5178 0.4934 0.4844
0.4 0.4868 0.5518 0.5510 0.5505 0.2 0.7581 0.6866 0.6574 0.6460
0.6 0.5744 0.6660 0.6987 0.6991 0.3 0.7772 0.7922 0.7598 0.7457
0.8 0.6357 0.7331 0.7808 0.7988 0.4 0.7931 0.8654 0.8309 0.8157
1.0 0.6838 0.7778 0.8273 0.8558 0.5 0.8057 0.8742 0.8820 0.8652
1.2 0.7209 0.8096 0.8585 0.8883 0.6 0.8174 0.8821 0.9200 0.9032
1.4 0.7517 0.8346 0.8800 0.9095 0.7 0.8280 0.8889 0.9247 0.9305
1.6 0.7777 0.8542 0.8969 0.9244 0.8 0.8373 0.8948 0.9287 0.9512
1.8 0.8010 0.8714 0.9098 0.9361 0.9 0.8461 0.9006 0.9325 0.9541
2.0 0.8204 0.8853 0.9207 0.9441 1.0 0.8541 0.9056 0.9356 0.9565
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Fig. 3.1 Histograms of the simulated results of
(
Uτ∗,V

∗
ϱ , τ
∗
)

with each based on a sample size of 105

for four sets of parameters: Θi = (0.5,0.5,3),Θii = (1,0,3.5),Θiii = (1.5,2,1.5) and Θiv = (2,3,0.5),
respectively.

Case i: (c, λ1, λ2) = (0.5,0.5,3)

Case ii: (c, λ1, λ2) = (1,0,3.5)

Case iii: (c, λ1, λ2) = (1.5,2,1.5)

Case iv: (c, λ1, λ2) = (2,3,0.5)
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Fig. 3.2 The CDFs of τ∗ (the default time) and Uτ∗ (the default level) at time T based on a sample size
of 105 within the Scenario (I), (II) and (III), respectively .
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4
An Age-dependent Counting Process

A point process is said to be a counting process if it is non-negative, integer-valued and right-continuous

with left limits and upward jumps of magnitude one [17]. It is often used for monitoring event

occurrences with an arrival rate modulated by a random process. In the previous chapters, we introduce

and study an endogenous intensity process defined on the age of the current excursion of the underlying

process, and produced distributional results concerning the arrival time of the first event only. As a

succeeding development to the work done before, this chapter deals with consecutive arrivals over

a finite time interval. Main aspects to be considered are the study of related properties and the

derivation of distributional quantities concerning the interarrival times, the arrival of the nth event and

the associated counting process.

Organised in the following manner, the first SECTION 4.1 presents definitions, notations and some

preliminary results for such a counting process, which will be needed in the coming proofs. Using the

martingale approach within the framework of PDMP, we obtain some probabilistic results associated

with the counting process in SECTION 4.3.1 . Main results pertaining to the moments are delivered

with proof in SECTION 4.4. A further discussion on finding the distribution of the counting process is

included in the final section.
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4.1 Definition and Preliminary

On a filtered probability space
(
Ω,FU,

{
FU

t

}
t≥0
,P

)
, there is an age process adapted to FU

t for all

t ≥ 0, given by

Ut = t − sup{ s < t | Xs = 0 },

for a recurrent Bessel process X with index (−α) ∈ (−1,0). Within the same space, we construct

a framework for modelling event arrivals characterised by an intensity of the form λ(Ut ), where

λ : [0, t) → R+ is a non-negative measurable function. On this basis, we denote by {Ti}i∈N0 with

T0 = 0, a non-decreasing sequence of random times, representing the arrival time of the ith event, and

define the associated point process N = (Nt )t≥0 by

Nt =
∑
i≥1

11{Ti ≤ t }, N0 = 0, (4.1)

counting the number of events that has arrived in the time interval (0, t].

We now recall some relevant concepts and properties of such point process:

( i ) Given the arrival times {Ti}i∈N0 , the quantity

τi = Ti − Ti−1, i = 1,2,3, · · ·

refers to the waiting time between two successive arrivals. Due to the fact that the chosen

intensity is stochastically varying with time, the sequence of interarrival times {τi}i∈N+ is

generally not independent. Let GTi−1 = σ{Us, s ≤ Ti−1} denote the information of U up to the

(i − 1)th arrival time. It follows for t > 0 that

P
(
τi ∈ [ t, t + dt)

�� GTi−1

)
= E

[
λ
(
UTi−1+t

)
exp

{
−

∫ Ti−1+t

Ti−1

λ(Us) ds
}]

dt .

( ii ) N is a stochastic process taking values in N0. For all ω ∈ Ω, it is càdlàg (right continuous with

left limits), i.e. lim
s↑t

Nt (ω) exists and finite for all t ≥ 0. Assuming that no two jumps occur

simultaneously, the sample path t → Nt (ω) is piecewise constant with jumps of size +1.
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( iii ) λ(Ut ) is a R+-valued stochastic process such that for any non-negative measurable function

λ : [0, t) → R+, with probability one, the intensity measure

Λt =

∫ t

0
λ(Us) ds < ∞, t ≥ 0. (4.2)

This measure is often called as the cumulative intensity process up to time t.

( iv ) Consider an augmented filtration Gt = F N
t ∨FU

t , where F N
t = σ{Ns, 0 ≤ s ≤ t} and FU

t =

σ{Us, 0 ≤ s ≤ t}, are the natural filtrations generated by gathering the information up to time t

of the counting and the age processes. Then Nt is called a doubly stochastic point process with

Gt -intensity λ(Ut ) in the sense that

E[Nt+d − Nt | Gt ] = E

[∫ t+d

t

λ(Us) ds
]
, d ≥ 0, (4.3)

which implies

• the integrability of
∫ t

0
λ(Us)ds and Ut ;

• the independence of (Nt+d − Nt ) and (Gs)s≤t ; and

• the existence of a Gt -martingale in the form

Nt −

∫ t

0
λ(Us) ds, t ≥ 0. (4.4)

Hence, Λt is also called the compensator process for Nt .

( v ) Intuitively, given the information up to time t, the probability of m jumps occurring within the

next infinitesimal time interval △t → 0 is equal to

P(Nt+△t − Nt = m | Gt ) =


1 − λ(Ut )△t + o(△t), m = 0;

λ(Ut )△t + o(△t), m = 1;

o(△t), m > 1.

(4.5)

Furthermore, it follows from (4.3) that the distribution of N over the time interval (s, t) with

0 ≤ s < t is given by

P(Nt − Ns = n | Gs) =

E

[
exp

{
−

∫ t

s

λ(Ux) dx
} (∫ t

s

λ(Ux) dx
)n]

n!
, n ∈ N0. (4.6)
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For a more detailed and extensive treatment on the doubly stochastic processes, interested readers are

referred to the books by Brémaud [17], Björk [8], Grandell [49] and Jacobsen [56].

4.2 Mathematical Framework of the Counting Model

For the same reason that there are infinitely tiny jumps in the path associated with a Bessel age

process of index 0 < α < 1, we will keep working with the ε-perturbed Bessel process, formulated in

CHAPTER 2.2.1 Perturbed Bessel Process as

Xε
t =


ε − Xt, if δn ≤ t < σn;

Xt, if σn ≤ t < δn+1,
n = 1,2,3, · · · ,

with δ0 = 0,

σn = inf{ t > δn | Xt = ε }, δn+1 = inf{ t > σn | Xt = 0 },

denoting an alternating sequence of the stopping times passing through ε and zero by the original

process Xt . We define the corresponding age process by

Uε
t =


t − δn, if δn ≤ t < σn;

t − σn, if σn ≤ t < δn+1.

Accordingly, we denote by
{
Tε
i

}
i∈N+

with Tε
0 = 0, the sequence of ordered arrival times, and by{

τεi
}
i∈N+

, the corresponding interarrival times. We then define

Nε
t =

∑
i≥1

11{T ε
i ≤ t}, Nε

0 = 0,

to be the counting process generated by λ
(
Uε
t

)
acting as its intensity.

The joint process we concerned in this chapter is a mixture of deterministic motion and random

jumps. As a powerful mathematical tool in dealing with such non-diffusion process, we construct

a martingale in the form f
(
Uε
t ,N

ε
t

)
and obtain an explicit representation of f with the aid of the

piecewise-deterministic Markov process (PDMP) theory. This result produces immediately the (joint)
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Laplace transforms and the generating functions of the variables of interest, from which we derive

out more distributional quantities concerning the Nth arrival. As previously justified, the joint process

f
(
Nε
t ,U

ε
t

)
converges pointwisely to f (Nt,Ut ) as ε approaches zero. Calculations with respect to the

path of the original process are actually carried out with the corresponding perturbed process.

On the basis of the above construction, the infinitesimal generator for
(
Uε
t ,N

ε
t

)
acting on a bounded

function f : [0, t) × N0 × R+ → R+ is given as

A f (u,n, t) =
∂ f
∂t
+Au,n f ;

Au,n f =
∂ f
∂u
+

pε(u)
P̄ε(u)

(
f (0,n) − f (u,n)

)
+ λ(u)

(
f (u,n + 1) − f (u,n)

)
,

with

pε(u) =
ε2α

2αΓ(α)
u−α−1e−

ε2

2u ;

P̄ε(u) =

∞∫
u

ε2α

2αΓ(α)
x−α−1e−

ε2

2x dx,

where pε(u) and P̄ε(u) denote the density function and the tail distribution, respectively, of the first

hitting time of zero for a recurrent Bessel process starting from ε. In particular to the time domain

t ∈
[

Ti−1, Ti−1 + τi
)
i∈N+ , the main concern associated with this period of time is the interarrival

process, denoted by
(
UTi , τi

)
, such that for ν > 0 ,

P
(
τi ∈ dν

��� GTi−1 ∨ σ
{
Us, s ∈

[
Ti−1, Ti−1 + ν

)})
= λ

(
UTi−1+ν

)
exp

{
−

∫ Ti−1+ν

Ti−1

λ(Us) ds
}
dν. (4.7)

4.3 Distributional Results concerning the Counting Process

For better presenting the results, we adopt the following conventions

Λ(t) B
∫ t

0
λ(s) ds, Λ

′(t) = λ(t) .

52



To proceed, we define a pair of complementary probabilities denoted by Θε
(
UTi−1

)
and Θ̄ε

(
UTi−1

)
such

that

Θε(U) =
eΛ(U)

P̄ε(U)

∞∫
U

λ(x)e−Λ(x)P̄ε(x) dx;

Θ̄ε(U) =
eΛ(U)

P̄ε(U)

∞∫
U

e−Λ(x)pε(x) dx.

It holds for any proper choice of λ(·) that: for any 0 < U < ∞

• Θε(U) ∈ (0,1), Θ̄ε(U) ∈ (0,1);

• lim
U→0
Θε(U) = 0 and lim

U→∞
Θε(U) = 1 ;

lim
U→0
Θ̄ε(U) = 1 and lim

U→∞
Θ̄ε(U) = 0 ;

• Θε(U) + Θ̄ε(U) = 1

Intuitively, the quantity Θε
(
UTi−1

)
measures the possibility that the i-th event arrives before the first

reflection at zero by the age process since the last arrival UTi−1 , i.e.

Θε
(
UTi−1

)
= P

(
Ti < inf

{
t > Ti−1

�� Uε
t = 0

} )
, i ∈ N+ ,

and Θ̄ε
(
UTi−1

)
stands as the contrary. Within each circumstance, the probability densities corresponding

respectively to Θε and Θ̄ε are denoted and given by

ϑε(x;U) =
λ(x)e−Λ(x)P̄ε(x)

∞∫
U

λ(x)e−Λ(x)P̄ε(x) dx

11{x ≥ U };

ϑ̄ε(x;U) =
e−Λ(x)pε(x)

∞∫
U

e−Λ(x)pε(x) dx

11{x ≥ U } .

53



After taking ε to zero, the above quantities turn into

Θ(U) = lim
ε→0
Θε(U) = eΛ(U)Uα

∞∫
U

λ(x)e−Λ(x)x−α dx;

Θ̄(U) = lim
ε→0
Θ̄ε(U) = eΛ(U)Uα

∞∫
U

e−Λ(x)αx−α−1 dx;

ϑ(x;U) = lim
ε→0
ϑε(x;U) =

λ(x)e−Λ(x)x−α
∞∫

U

λ(x)e−Λ(x)x−α dx

11{x ≥ U };

ϑ̄(x;U) = lim
ε→0
ϑ̄ε(x;U) =

e−Λ(x)αx−α−1
∞∫

U

e−Λ(x)αx−α−1 dx

11{x ≥ U } .

Please note these notations will be utilised throughout the rest of this chapter.

4.3.1 Generating Functions

It can be seen immediately that due to the Markov property of the age process, results associated with

the i-th arrival are mostly representable of that with the first denoted in this chapter by τ1 = T1.

Theorem 4.3.1 (Generating Functions for the Interarrival Time). Let κ(·) be a non-negative

bounded function and α ∈ (0,1) and β ∈ R+ be constants, the generating function for the conditional

process
(
Uε
Ti
, τεi

��� GT ε
i−1

)
i∈N+

is evaluated as

E
[
e−βτ

ε
i κ

(
Uε
Ti

) ��� GT ε
i−1

]
· e−βU

ε
Ti−1 =

Θ̄ε

(
Uε
Ti−1

) ∞∫
Uε

Ti−1

e−βv ϑ̄ε
(
v;Uε

Ti−1

)
dv · E

[
e−βτ

ε
1 κ

(
Uε
τ1

) ]
+

Θε

(
Uε
Ti−1

) ∞∫
Uε

Ti−1

e−βv κ(v)ϑε
(
v;Uε

Ti−1

)
dv. (4.8)
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Taking limit of ε to zero yields the generating function for
(
UTi , τi

�� GTi−1

)
i∈N+

E
[
e−βτi κ

(
UTi

) �� GTi−1

]
· e−βUTi−1 =

Θ̄
(
UTi−1

) ∞∫
UTi−1

e−βv ϑ̄
(
v;UTi−1

)
dv · E

[
e−βτ1κ

(
Uτ1

) ]
+

Θε
(
UTi−1

) ∞∫
UTi−1

e−βv κ(v)ϑ
(
v;UTi−1

)
dv. (4.9)

In the above expectations, E
[
e−βτ

ε
1 κ

(
Uε
τ1

) ]
and E

[
e−βτ1κ

(
Uτ1

) ]
are the results corresponding to τ1,

which have been derived by (2.16) and (2.17) respectively of Theorem 2.2.1 (in Chapter 2).

Proof. Given the representation in (4.7), the following probabilities are equal in quantity,

P
(
τεi ∈ dν

��� GT ε
i−1
∨ σ

{
Uε
s , s ∈

[
Tε
i−1, Tε

i−1 + ν
)})

= P
(
Tε
i ∈ dt

��� GT ε
i−1
∨ σ

{
Uε
s , s ∈

[
Tε
i−1, t

)})
= λ

(
Uε
t

)
exp

{
−

∫ t

T ε
i−1

λ
(
Uε
s

)
ds

}
dt,

with 0 < ν < ∞ and t = ν + Tε
i−1 ∈

[
Tε
i−1, ∞

)
.

The generating function for
(
Uε
Ti
, τεi

��� GT ε
i−1

)
is formulated as a Laplace transform of the following

form

eβT
ε
i−1 · E

[
e−βT

ε
i κ

(
Uε
Ti

) ��� GT ε
i−1

]
= eβT

ε
i−1

∞∫
T ε
i−1

E
[
e−βt κ

(
Uε
t

)
P
(
Tε
i ∈ dt

��� GT ε
i−1
∨ σ

{
Uε
s , s ∈

[
Tε
i−1, t

)}) ��� GT ε
i−1

]
dt

= eβT
ε
i−1

∞∫
T ε
i−1

e−βt E

[
κ
(
Uε
t

)
λ
(
Uε
t

)
exp

{
−

∫ t

T ε
i−1

λ
(
Uε
s

)
ds

}
dt

����� GT ε
i−1

]
dt . (4.10)
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To find a representation of this formula, we augment the original process by adding two continuous

processes, read as

Yε
t =

t∫
T ε
i−1

λ
(
Uε
s

)
ds, Zε

t =

t∫
T ε
i−1

e−βs κ
(
Uε
s

)
λ
(
Uε
s

)
e−Y

ε
s ds.

The generator written by the bounded function f for the augmented process
(
Uε
t ,Y

ε
t , Z

ε
t , t

)
in its

domain is:

G f (u, y, z, t) =
∂ f
∂t
+Au f + λ(u)

∂ f
∂y
+ e−βt κ(u)λ(u)e−y

∂ f
∂z
.

Substituting f (u, y, z, t) = z + e−βte−yg(u) with g(·) assumed to be a bounded function into G f = 0

generates

g′(u) − g(u) ∂∂u
{
βu − ln P̄ε(u) + Λ(u)

}
= −

(
pε(u)
P̄ε(u)

g(0) + λ(u)κ(u)
)
.

The solution to this differential equation is obtained as

e−βug(u) =
eΛ(u)

P̄ε(u)

∞∫
u

e−βve−Λ(v)pε(v) dv ·

∞∫
0

e−βvκ(v)λ(v)e−Λ(v)P̄ε(v) dv

∞∫
0

(β + λ(v))e−βve−Λ(v)P̄ε(v) dv

+
eΛ(u)

P̄ε(u)

∞∫
u

e−βvκ(v)λ(v)e−Λ(v)P̄ε(v) dv.

According to the theory of PDMP, we prove a martingale of the form,

f
(
Uε
t ,Y

ε
t , Z

ε
t , t

)
= Zε

t + e−βte−Y
ε
t g

(
Uε
t

)
,

and further by the property of Markov process we get,

lim
t→∞
E
[
Zε
t + e−βte−Y

ε
t g

(
Uε
t

) ��� GT ε
i−1

]
= lim

t→∞
E
[
Zε
t

��� GT ε
i−1

]
= e−βT

ε
i−1g

(
Uε
Ti−1

)
.
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This leads immediately to the result of the Laplace transform in (4.10) and thus to the generating

function in (4.8). So the other function (4.9) is simply obtained by taking ε to zero. □

Theorem 4.3.2 (Generating Functions for the Counting Process). Let h(·) be a non-negative

bounded function and α, ϕ ∈ (0,1), β ∈ R+ be constants, the Laplace transform (with respect to

time t) of the generating function for the counting process
(
Nε
t , Uε

t

�� U0
)

is defined and evaluated by

Lt

{
E
[
ϕN

ε
t h

(
Uε
t

) �� U0

]
, β

}
· e−βU0 =

∞∫
U0

e−βve−(1−φ)
(
Λ(v)−Λ(U0)

) pε(v)
P̄ε(U0)

dv · Lt

{
E
[
ϕN

ε
t h

(
Uε
t

) ]
, β

}
+

∞∫
U0

e−βvh(v)e−(1−φ)
(
Λ(v)−Λ(U0)

) P̄ε(v)
P̄ε(U0)

dv. (4.11)

Taking limit of ε to zero yields the generating function for (Nt, Ut | U0),

Lt

{
E
[
ϕNt h(Ut )

�� U0

]
, β

}
· e−βU0 =

U0
α

∞∫
U0

e−βve−(1−φ)
(
Λ(v)−Λ(U0)

)
αv−α−1 dv · Lt

{
E
[
ϕNt h(Ut )

]
, β

}
+

U0
α

∞∫
U0

e−βvh(v)e−(1−φ)
(
Λ(v)−Λ(U0)

)
v−α dv. (4.12)

In the above results, we have defined

Lt

{
E
[
ϕN

ε
t h

(
Uε
t

) ]
, β

}
=

∞∫
0

e−βvh(v)e−(1−φ)Λ(v)P̄ε(v) dv

∞∫
0

(
β + (1 − ϕ)λ(v)

)
e−βve−(1−φ)Λ(v)P̄ε(v) dv

.

It represents a limited case for the counting model as taking U0 equal to zero, in which circumstance

the underlying process is reset to zero.
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Then the limit of ε → 0 is given by

Lt

{
E
[
ϕNt h(Ut )

]
, β

}
=

∞∫
0

e−βvh(v)e−(1−φ)Λ(v)v−α dv

∞∫
0

(
β + (1 − ϕ)λ(v)

)
e−βve−(1−φ)Λ(v)v−α dv

.

Proof. We start by adding

Zε
t =

∫ t

0
e−βsϕN

ε
s h

(
Uε
s

)
ds, ϕ ∈ (0,1), t ≥ 0,

to the joint process
(
Nε
t ,U

ε
t

)
. Then the new generator for the extended process

(
Zε
t ,N

ε
t ,U

ε
t , t

)
in the

domain t ≥ 0 is written by

G f (z,u,n, t) =
∂ f
∂t
+ e−βtϕnh(u)

∂ f
∂z
+Au,n f , (4.13)

where Au,n f has been given in (4.2). We propose a suitable solution to G f = 0 in the form

f (z,u,n, t) = z + e−βtϕng(u),

with g(·) assumed to be a bounded function. Substituting it into (4.13) generates an equation,

−βg(u) + g′(u) + h(u) +
pε(u)
P̄ε(u)

(
g(0) − g(u)

)
− (1 − ϕ)λ(u)g(u) = 0.

The solution to this differential equation is found as

g(u) = g(0)

∞∫
u

e−βve−(1−φ)Λ(v)pε(v) dv

e−βue−(1−φ)Λ(u)P̄ε(u)
+

∞∫
u

e−βvh(v)e−(1−φ)Λ(v)P̄ε(v) dv

e−βue−(1−φ)Λ(u)P̄ε(u)
,

with

g(0) =

∞∫
0

e−βvh(v)e−(1−φ)Λ(v)P̄ε(v) dv

∞∫
0

βe−βve−(1−φ)Λ(v)P̄ε(v) dv +

∞∫
0

(1 − ϕ)e−βvλ(v)e−(1−φ)Λ(v)P̄ε(v) dv

.
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By the property of PDMP, we find a martingale of the form

f
(
Zε
t ,N

ε
t ,U

ε
t , t

)
= Zε

t + e−βtϕN
ε
t g

(
Uε
t

)
.

Given that both g(u) and h(u) are bounded functions, we have

lim
t→∞
E
[
Zε
t + e−βtϕN

ε
t g

(
Uε
t

) ]
=

∞∫
0

e−βt E
[
ϕN

ε
t h

(
Uε
t

) ]
dt

= g(U0).

The proof of (4.11) is then completed and (4.12) follows immediately by taking ε to zero. □

4.3.2 Laplace Transforms

On the basis of these generating functions, they produce distributional results describing each of the

concerned processes over time, or conditioned on the others.

Corollary 4.3.3 (Laplace Transforms for the Interarrival Times). Regarding the interarrival pro-

cess, the Laplace transform of UTi | GTi−1 , i ∈ N+, with φ > 0 is given by,

E
[
e−ϕUTi

�� GTi−1

]
=

Θ̄
(
UTi−1

)
· E

[
e−ϕUτ1

]
+ Θ

(
UTi−1

)
·

∞∫
UTi−1

e−ϕv ϑ
(
v;UTi−1

)
dv,

from which we get the density function of UTi | GTi−1 ,

P
(
UTi ∈ du

�� GTi−1

)
=

Θ̄
(
UTi−1

)
· P

(
Uτ1 ∈ du

)
+ Θ

(
UTi−1

)
· ϑ

(
u;UTi−1

)
du.

Furthermore, the Laplace transform of τi | GTi−1 is given by,

E
[
e−βτi

�� GTi−1

]
· e−βUTi−1 =
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Θ̄
(
UTi−1

) ∞∫
UTi−1

e−βv ϑ̄
(
v;UTi−1

)
dv · E

[
e−βτ1

]
+ Θ

(
UTi−1

) ∞∫
UTi−1

e−βv ϑ
(
v;UTi−1

)
dv.

In the results above, E
[
e−ϕUτ1

]
, E

[
e−βτ1

]
and P

(
Uτ1 ∈ du

)
are obtained before in Corollary 2.2.3 of

Chapter 2.

Proof. These results are obtained as a direct consequence of setting β = 0 and κ(v) = 1 in (4.9). □

Corollary 4.3.4 (Laplace Transform concerning the Counting Process). Regarding the counting

process, the Laplace transform of the generating function of Nt | U0 is given by

Lt

{
E
[
ϕNt

�� U0

]
, β

}
=

U0
α

∞∫
U0

e−βve−(1−φ)
(
Λ(v)−Λ(U0)

)
αv−α−1 dv · Lt

{
E
[
ϕNt

]
, β

}
+

U0
α

∞∫
U0

e−βve−(1−φ)
(
Λ(v)−Λ(U0)

)
v−α dv,

(4.14)

with

Lt

{
E
[
ϕNt

]
, β

}
=

∞∫
0

e−βve−(1−φ)Λ(v)v−α dv

∞∫
0

(
β + (1 − ϕ)λ(v)

)
e−βve−(1−φ)Λ(v)v−α dv

.

Proof. This result follows immediately by setting h(v) = 1 of the generating function in (4.12). □

4.4 The First Two Moments for the Counting Process

This section is concerned with the derivation of first two moments of the counting process with a

general intensity function. The moments are derived from the distributional results just solved in

SECTION 4.3.2 Laplace Transforms, and expressed explicitly as integrals.
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Theorem 4.4.1 (First Moment). The first moment (expectation) of the counting process Nt | U0 > 0

with a density defined by λ(Ut ) is given by

E[Nt | U0] = U0
α

t∫
0

{
1

Γ(1 − α)Γ(α)

∫ v

0
(t − v +U0)

−α−1(v − x)αx−αλ(x) dx

+ (U0 + v)
−αλ(v +U0)

}
dv, (4.15)

where λ(·) is any non-negative function satisfying
∫ t

0
λ(s)ds < ∞ for t > 0.

Proof. To avoid tediously long expressions, we temporarily set

R(ϕ) =

∞∫
0

e−βve−(1−φ)Λ(v)v−α dv

∞∫
0

(
1 − e−βxe−(1−φ)Λ(x)

)
αx−α−1 dx

, (4.16)

and then

R′(ϕ) =

∞∫
0

e−βvΛ(v)e−(1−φ)Λ(v)v−α dv + R(ϕ)

∞∫
0

e−βxΛ(x)e−(1−φ)Λ(x)αx−α−1 dx

∞∫
0

(
1 − e−βxe−(1−φ)Λ(x)

)
αx−α−1 dx

. (4.17)

Taking the derivative of (4.14) with respect to ϕ, we obtain

∂
∂φ Lt

{
E
[
ϕNt

�� U0

]
, β

}
· e−βU0U0

−α

= R(ϕ) ·

∞∫
U0

e−βv
(
Λ(v) − Λ(U0)

)
e−(1−φ)

(
Λ(v)−Λ(U0)

)
αv−α−1 dv

+ R′(ϕ) ·

∞∫
U0

e−βve−(1−φ)
(
Λ(v)−Λ(U0)

)
αv−α−1 dv

+

∞∫
U0

e−βv
(
Λ(v) − Λ(U0)

)
e−(1−φ)

(
Λ(v)−Λ(U0)

)
v−α dv.
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Setting ϕ = 1, we get the Laplace transform for the first moment

Lt { E[Nt | U0], β } =

U0
α

Γ(1 − α)Γ(1 + α)

∞∫
0

e−βt
t∫

0

α(v +U0)
−α−1

∫ t−v

0
(t − v − x)αx−αλ(x) dx dv dt

+ U0
α

∞∫
0

e−βt
t∫

0

λ(v +U0)(v +U0)
−α dv dt .

By the property of Laplace transform, we get an exact expression for E[Nt | U0]. □

Corollary 4.4.2. The conditioned age process {Ut | U0 > 0}t>0 follows a generalized arcsine law

with parameter α ∈ (0,1), read as

P(Ut ∈ dx | U0) =


(
1 −

U0

t − x +U0

)
(t − x)α−1x−α

Γ(1 − α)Γ(α)
dx, 0 < x < t;(

1 +
t

U0

)−α
dx, x = U0 + t,

(4.18)

i.e. a Beta distribution with parameter α, denoted by U ∼ Beta(α,1 − α).

Proof. First we rewrite the expectation (4.15) as

U0
α

Γ(1 − α)Γ(α)

t∫
0

∫ v

0
x−αλ(x)

∫ v

x

α(v − z +U0)
−α−1(z − x)α−1 dz dx dv

+ U0
α

t∫
0

λ(v +U0)(v +U0)
−α dv

=

t∫
0

{ ∫ v

0

1

Γ(1 − α)Γ(α)
(v − x +U0)

−1(v − x)αx−αλ(x) dx

+ U0
α(U0 + v)

−αλ(v +U0)

}
dv

=

∫ t

0
E[λ(Uv) | U0] dv.
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As mentioned earlier, it holds for every Borel function λ : (0, t] → R+ such that
∫ t

0
λ(Us) ds < ∞. The

inner integral contains a proper density function, verified by the Euler’s reflection formula [1],∫ t

0
(t − s)α−1s−α ds = Γ(1 − α)Γ(α) =

π

sin(απ)
.

□

Remark 4.4.3. There is a special case for the expectation. By taking the limit of U0 to zero, we get

lim
U0→0

E[Nt | U0] =
1

Γ(1 − α)Γ(1 + α)

∫ t

0
(t − x)αx−αλ(x) dx, t > 0,

and then

P(Ut ∈ dx) =
1

Γ(1 − α)Γ(α)
(t − x)α−1x−α dx, 0 < x < t .

The result above is an extension of the classical Lévy’s arcsine law to the context of Bessel processes,

thus recovering the results proved already in Dynkin [42], Getoor and Sharpe [46] and Nikeghbali [82]

by means of excursion theory.

Theorem 4.4.4 (Second Moment). The second moment of the counting process Nt | U0 > 0 with the

density λ(Ut ) is given by

E
[
Nt

2
�� U0

]
= E[Nt | U0] + 2

t∫
0

∫ v

0
E
[
λ(Ux)λ

(
Ũv−x

) ��� U0

]
dx dv, (4.19)

where λ(·) is any non-negative function satisfying
∫ t

0
λ(s)ds < ∞ for t > 0. Ũ is a duplicate age

process with a time-varying initial level depending on U | U0 such that,

P
(
Us ∈ dx, Ũt−s ∈ dy

�� U0

)
=
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

1

Γ(1 − α)2Γ(α)2
(t − s − y)αy−α(s − x)αx−α

(t − s − y + x)(s − x +U0)
dx dy,

for x ∈ (0, s), y ∈ ( 0, t − s );

1

Γ(1 − α)Γ(α)

(t − s + x)−α(s − x)α

s − x +U0
dx,

for x ∈ (0, s), y = t − s + x;

1

Γ(1 − α)Γ(α)

(t − s − y)αy−α

t − y +U0

(
1 +

s
U0

)−α
dy,

for x = s +U0, y ∈ ( 0, t − s );(
1 +

t
U0

)−α
,

for x = s +U0, y = t +U0.

Proof. In a nutshell, the second moment of Nt is obtained from the 2nd-derivative of the moment

generating function, given in (4.14), evaluated at ϕ∗ = 0. That is to say,

Lt

{
E
[
Nt

2
�� U0

]
, β

}
= ∂2

∂φ∗2

[
Lt

{
E
[
eφ
∗Nt

��� U0

]
, β

}]
φ∗=0

.

Due to the complexity involved in the calculations, detailed steps of this proof are left to Appendix

I. □

Here comes the special case when taking the limit of U0 to zero.

Corollary 4.4.5. The second moment of the counting process Nt with U0 = 0 is

E
[
Nt

2
]
= E[Nt ] + 2

t∫
0

∫ v

0
E
[
λ(Ux)λ

(
Ũv−x

)]
dx dv. (4.20)

Likewise, the joint density of
{
Us, Ũt−s

}
s∈(0,t)

is given by

P
(
Us ∈ dx, Ũt−s ∈ dy

)
=
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

(
1 −

x
t − s − y + x

)
(t − s − y)α−1y−α(s − x)α−1x−α

Γ(1 − α)2Γ(α)2
dx dy,

for x ∈ (0, s), y ∈ ( 0, t − s );(
1 +

t − s
x

)−α (s − x)α−1x−α

Γ(1 − α)Γ(α)
dx,

for x ∈ (0, s), y = t − s + x.

Proof. By taking limit of U0, we get

E
[
Nt

2
]
= lim

U0→0
E
[
Nt

2
�� U0

]
= E[Nt ] +

t∫
0

(t − v)αv−α

Γ(1 − α)Γ(1 + α)
2λ(v)Λ(v) dv

+

t∫
0

(t − v)2α

Γ(1 − α)2Γ(1 + 2α)

∫ v

0
x−αα(v − x)−α−12λ(x)Λ(v − x) dx dv.

The two integrals are further transformed as follows

• for the first integral:

2

Γ(1 − α)Γ(1 + α)

t∫
0

(t − v)αv−αλ(v)Λ(v) dv

=
2

Γ(1 − α)Γ(α)

t∫
0

∫ v

0

∫ z

0

(
1 +

v − z
x

)−α
λ(v − z + x)(z − x)α−1x−αλ(x) dx dz dv

= 2

t∫
0

∫ v

0

∫ z

0
P
(
Ũv−z = v − z +Uz, Uz ∈ dx

)
λ(v − z + x)λ(x) dx dz dv

= 2

t∫
0

∫ v

0
E
[
λ(Uz)λ(Ũv−z) 11{Ũv−z = v−z+Uz}

]
dz dv;

• for the second,

1

Γ(1 − α)2Γ(1 + 2α)

t∫
0

(t − v)2α
∫ v

0
x−αα(v − x)−α−12λ(x)Λ(v − x) dx dv
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=
2

Γ(1 − α)2Γ(α)2

t∫
0

v∫
0

∫ v−x

0

∫ x

0
dz dy dx dv

(
1 −

z
v − x − y + z

)
(v − x − y)α−1y−α(x − z)α−1z−αλ(y)λ(z)

= 2

t∫
0

v∫
0

∫ v−x

0

∫ x

0
P
(
Ux ∈ dz, Ũv−x ∈ dy

)
λ(z)λ(y) dx dv

= 2

t∫
0

∫ v

0
E
[
λ(Ux)λ

(
Ũv−x

)
11{Ũv−x ∈ (0, v−x)}

]
dx dv.

This proof is completed by adding the two terms up, which equates to

2

t∫
0

∫ v

0
E
[
λ(Ux)λ

(
Ũv−x

)]
dx dv.

□
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Appendix I : A Supplementary Proof for THEOREM 4.4.4

Proof. Replacing ϕ with eφ
∗

to the Laplace transform in (4.14), we get

Lt

{
E
[
eφ
∗Nt

��� U0

]
, β

}
· e−βU0 =

Θ̄(U0)
∞∫

U0

e−Λ(x)αx−α−1 dx

∞∫
U0

e−βvee
φ∗
(
Λ(v)−Λ(U0)

)
e−Λ(v)αv−α−1 dv · R̃(ϕ∗)

+
Θ(U0)

∞∫
U0

λ(x)e−Λ(x)x−α dx

∞∫
U0

e−βvee
φ∗
(
Λ(v)−Λ(U0)

)
e−Λ(v)v−α dv, (4.21)

with

R̃(ϕ∗) =

∞∫
0

e−βve−
(
1−eφ

∗
)
Λ(v)

v−α dv

∞∫
0

(
1 − e−βxe−

(
1−eφ

∗
)
Λ(x)

)
αx−α−1 dx

.

The first and the second derivatives of R̃(ϕ∗) are obtained as follows

R̃′(ϕ∗) =

eφ
∗

∞∫
0

e−βvΛ(v)e−
(
1−eφ

∗
)
Λ(v)

(
v−α + R̃(ϕ∗)αv−α−1

)
dv

∞∫
0

(
1 − e−βxe−

(
1−eφ

∗
)
Λ(x)

)
αx−α−1 dx

;

R̃′′(ϕ∗) = R̃′(ϕ∗) +

e2φ
∗

∞∫
0

e−βvΛ(v)e−
(
1−eφ

∗
)
Λ(v)


Λ(v)v−α + R̃(ϕ∗)Λ(v)αv−α−1

+
(
1 + e−φ

∗
)
R̃′(ϕ∗)αv−α−1

 dv

∞∫
0

(
1 − e−βxe−

(
1−eφ

∗
)
Λ(x)

)
αx−α−1 dx

.

Now we take a derivative w.r.t. ϕ∗ of (4.21) and obtain,

∂
∂φ∗ Lt

{
E
[
eφ
∗Nt

��� U0

]
, β

}
· e−βU0 =
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Θ̄(U0)
∞∫

U0

e−Λ(x)αx−α−1 dx

∞∫
U0

e−βvee
φ∗
(
Λ(v)−Λ(U0)

) {
eφ
∗

R̃(ϕ∗)
(
Λ(v) − Λ(U0)

)
+ R̃′(ϕ∗)

}
×

e−Λ(v)αv−α−1 dv

+
Θ(U0)

∞∫
U0

λ(x)e−Λ(x)x−α dx

∞∫
U0

e−βvee
φ∗
(
Λ(v)−Λ(U0)

)
eφ
∗
(
Λ(v) − Λ(U0)

)
e−Λ(v)v−α dv.

Taking further derivative over the same gives,

∂2

∂φ∗2
Lt

{
E
[
eφ
∗Nt

��� U0

]
, β

}
· e−βU0 =

Θ̄(U0)
∞∫

U0

e−Λ(x)αx−α−1 dx

∞∫
U0

e−βvee
φ∗
(
Λ(v)−Λ(U0)

) 
R̃′′(ϕ∗) + 2R̃′(ϕ∗)eφ

∗
(
Λ(v) − Λ(U0)

)
+ R̃(ϕ∗)

2∑
j=1

[
eφ
∗
(
Λ(v) − Λ(U0)

)] j

×

e−Λ(v)αv−α−1 dv

+
Θ(U0)

∞∫
U0

λ(x)e−Λ(x)x−α dx

∞∫
U0

e−βvee
φ∗
(
Λ(v)−Λ(U0)

) 2∑
j=1

[
eφ
∗
(
Λ(v) − Λ(U0)

)] j
e−Λ(v)v−α dv.

To get the Laplace transform of E
[
Nt

2
�� U0

]
we set ϕ∗ = 0, then

Lt

{
E
[
Nt

2
�� U0

]
, β

}
=

U0
α

∞∫
0

e−βv
∫ v

0
λ(x +U0)

(
1 + 2

(
Λ(x +U0) − Λ(U0)

))
(x +U0)

−α dx dv

+ U0
α

∞∫
0

e−βv
(
R̃′′(0) + 2R̃′(0)

(
Λ(v +U0) − Λ(U0)

))
α(v +U0)

−α−1 dv,

with

R̃′(0) =
1

Γ(1 − α)Γ(1 + α)

∞∫
0

e−βt
∫ t

0
(t − x)αx−αλ(x) dx dt;
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R̃′′(0) = R̃′(0) +

∞∫
0

e−βt
t∫

0

{
(t − v)αv−α

Γ(1 − α)Γ(1 + α)
2λ(v)Λ(v) +

∫ v

0

(t − v)2αx−αα(v − x)−α−1

Γ(1 − α)2Γ(2α + 1)
2λ(x)Λ(v − x) dx

}
dv dt .

Thus,

E
[
Nt

2
�� U0

]
=

t∫
0

(
1 −

(
1 +

v

U0

)−α)
·

{ ∫ t−v

0

(t − v − x)α−1x−α

Γ(1 − α)Γ(α)
λ(x)

(
1 + 2Λ(x)

)
dx

+

∫ t−v

0

∫ x

0

(t − v − x)2α−1z−αα(x − z)−α−1

Γ(1 − α)2Γ(2α)
2λ(z)Λ(x − z) dz dx

}
dv

+

t∫
0

(
1 +

v

U0

)−α
·

{
λ(v +U0)

(
1 + 2

(
Λ(v +U0) − Λ(U0)

))

+
2
(
Λ(v +U0) − Λ(U0)

)
v +U0

∫ t

v

(t − x)α(x − v)−αλ(x − v)
Γ(1 − α)Γ(1 + α)

dx

}
dv.

It can be further transformed as follows

E
[
Nt

2
�� U0

]
= E[Nt | U0]

+
2U0

α

Γ(1 − α)Γ(1 + α)

t∫
0

α(t − v +U0)
−α−1

∫ v

0
(v − x)αx−αλ(x)Λ(x) dx dv (4.22)

+
2U0

α

Γ(1 − α)2Γ(1 + 2α)

t∫
0

∫ v

0
(v − x)2α

∫ x

0
(x − z)−αλ(x − z)αz−α−1Λ(z) dz dx

α(t − v +U0)
−α−1 dv (4.23)

+ 2U0
α

t∫
0

(
Λ(v +U0) − Λ(U0)

){
α(v +U0)

−α−1

∫ t−v

0

(t − v − x)αx−αλ(x)
Γ(1 − α)Γ(1 + α)

dx

+ (v +U0)
−αλ(v +U0)

}
dv. (4.24)
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Respectively expressing (4.22), (4.23) and (4.24) in terms of some expectations of λ(U) and λ(Ũ),

where Ũ is defined to be an age process whose initial level is dependent on U. With the density of

{Ut | U0}t>0 obtained in COROLLARY 4.4.2, we have

• for (4.22) :

2U0
α

Γ(1 − α)Γ(α)

t∫
0

∫ v

0
α(z +U0)

−α−1

∫ v−z

0
(v − z − x)α−1x−αλ(x)Λ(x) dx dz dv

=
2

Γ(1 − α)Γ(α)

t∫
0

∫ v

0

∫ x

0

(
1 −

U0

v − x +U0

)
(v − x)α−1x−αλ(x)λ(z) dz dx dv

=
2

Γ(1 − α)Γ(α)

t∫
0

∫ v

0

∫ z

0

(
1 −

U0

z − x +U0

)
(z − x)α−1x−αλ(x)

(
1 +

v − z
x

)−α
λ(v − z + x) dx dz dv

= 2

t∫
0

∫ v

0

∫ z

0
P
(
Ũv−z = v − z +Uz, Uz ∈ dx

�� U0

)
λ(v − z + x)λ(x) dx dz dv

= 2

t∫
0

∫ v

0
E
[
λ(Uz)λ(Ũv−z)11{Uz ∈(0, z), Ũv−z = v−z+Uz}

��� U0

]
dz dv;

• for (4.23) :

2U0
α

Γ(1 − α)2Γ(2α)

t∫
0

v∫
0

α(w +U0)
−α−1

∫ v−w

0
(v − w − x)2α−1

∫ x

0
(x − z)−αλ(x − z)αz−α−1Λ(z) dz dx dw dv

=
2

Γ(1 − α)2Γ(α)2

t∫
0

v∫
0

∫ w

0

(
1 −

U0

w − x +U0

)
(w − x)α−1x−αλ(x) dx

∫ v−w

0

(
1 −

y

v − w

)
(v − w − y)α−1y−αλ(y) dy dw dv

=
2

Γ(1 − α)2Γ(α)2

t∫
0

v∫
0

∫ v

x

∫ y

x

(
1 −

U0

w − x +U0

)
(w − x)α−1x−αλ(x)

(
1 −

y − w

v − w

)
(v − y)α−1(y − w)−αλ(y − w) dw dy dx dv

70



=
2

Γ(1 − α)2Γ(α)2

t∫
0

v∫
0

∫ v−x

0

∫ x

0

(
1 −

w

v − x − y + w

)
(v − x − y)α−1y−αλ(y)

(
1 −

U0

x − w +U0

)
(x − w)α−1w−αλ(w) dw dy dx dv

= 2

t∫
0

v∫
0

∫ v−x

0

∫ x

0
P
(
Ux ∈ dw, Ũv−x ∈ dy

�� U0

)
λ(w)λ(y) dx dv

= 2

t∫
0

∫ v

0
E
[
λ(Ux)λ

(
Ũv−x

)
11{Ux ∈(0, x), Ũv−x ∈(0, v−x)}

��� U0

]
dx dv;

• for (4.24) :

2U0
α

t∫
0

∫ v

0
(Λ(x +U0) − Λ(U0))α(x +U0)

−α−1

∫ v−x

0

(v − x − z)α−1z−α

Γ(1 − α)Γ(α)
λ(z) dz dv dx

+ 2U0
α

t∫
0

∫ v

0
λ(x +U0) dx (v +U0)

−αλ(v +U0) dv

= 2

t∫
0

v∫
0

(
1 +

x
U0

)−α
λ(x +U0)

{ ∫ v−x

0

(
1 −

x +U0

v − z +U0

)
(v − x − z)α−1z−α

Γ(1 − α)Γ(α)
λ(z) dz

+

(
1 +

v − x
x +U0

)−α
λ(v +U0)

}
dx dv

= 2

t∫
0

∫ v

0
E
[
λ(Ux)λ

(
Ũv−x

)
11{Ux = x+U0 }

��� U0

]
dx dv.

It is quite obvious to see that

11{Ux ∈(0, x), Ũv−x = v−x+Ux} + 11{Ux ∈(0, x), Ũv−x ∈(0, v−x)} + 11{Ux = x+U0 } = 1,

so putting together the results of (4.22) − (4.24) leads to

2

t∫
0

∫ v

0
E
[
λ(Ux)λ

(
Ũv−x

) ��� U0

]
dx dv.

This completes the proof. □
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5
Local Times related to Bessel Age Process

For a standard Markov process with zero a regular point for itself, the excursions of such processes

are described as a sequence of independent and identically distributed pieces of path (each with finite

length), glued together by the time points of visiting zero. The behaviour between visits has been well

characterised except in the vicinity of zero. The measure in time of the zero set is called the "local

time". More precisely, the local time at zero is an additive functional of the Markov process, measuring

how often the process visits {0} thus evolving only on the random set of zeros. According to the

theory of Blumenthal and Getoor [11], such a functional exists on the premise of {0} a suitable point

in the state space. For background knowledge on local times, we refer to Blumenthal [10], Borodin

[14], Marcus and Rosen [78], McKean [79].

5.1 Introduction

The remaining chapters are devoted to the study of the local time at zero of Bessel age process, denoted

by L = {Lt, t ≥ 0} throughout. Focusing on this subject, there are many attractive aspects to discover.

Among them to be considered in the present chapter are the following:

♦ There are various ways of approximating a local time, mainly by limiting processes describing

the sample path properties of the underlying process. Above all, an intrinsic definition of Lt is

given as the derivative of an occupation measure of (0, ε), representable of the form:

Lt = lim
ε↓0
ν1(ε)

−1 measure
{
s ∈ [0, t) | Us < ε

}
, ε > 0 .
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{Ut, t ≥ 0} remains unchanged, the Bessel age process. ν1(ε) is the speed measure function and

determined uniquely up to multiplication by a constant.

♦ Another way of constructing a local time is based on the theory of Poisson point process

established by Itô [54], who presented an idea of characterising a Markov process in terms of its

excursions away from a fixed point in the state space. One merit of this theory is the concept

of "excursion point processes" that recovers a local time from the behaviour of the associated

excursions (see [62, Chap. 6] for full information). To illustrate, let Mt denote the number of

jumps in the path of Ut . According to Itô’s idea, Mℓ(t)(ε) is a Poisson process with a proper

intensity ν2(ε)−1, which leads to a weak convergence in distribution :

Lt
D
→ ν2(ε) Mt (ε), as ε → 0,

where ℓ denotes the right-continuous inverse of L. It is worth mentioning that the limit relation

stems from a famous conjecture namely "Lévy’s downcrossing theorem", proved by Itô and

McKean [55, Chap 2, 6] in the case of reflecting Brownian motion. Depending on the path

features of the underlying process, Itô’s way of approaching local times is applicable to a wider

class of Markov processes. Please refer to Blumenthal [10], Fristedt and Taylor [44], Itô and

McKean [55], McKean [79] and Karatzsas and Shreve [62, Chap 6] for other constructions of

local times.

♦ There is a well-known property about the local time of a standard Markov process. That is, the

inverse process of the local time at a regular point a is a subordinator whose jumps correspond

to the lengths of the excursions away from a (see [64, 66, 78] and [5, Chap 4] for references in

this regard). As a direct consequence, the law of the local time Lt can be determined from the

fact that ℓ(t) coincides with a stable process of index α ∈ (0,1).

♦ Applying the central limit theorem, it is of great importance to show that the difference between

the local time Lt and the limiting process, defined either by the occupation or the counting

measures introduced above, is closely related to a zero-mean Gaussian process subordinated by

Lt . This problem is motivated by the work of Kasahara [63], who following the downcrossing

theorem obtained an independent time-changed Brownian motion from the associated difference.

Extensions of this result to the Brownian excursions and general Lévy processes are discussed

in [25] and [64] by the same author.
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5.2 Definitions and Notations

On a filtered probability space (Ω,F ,P), there is a (Ft )-adapted age process U = {Ut, t ≥ 0} given by

Ut = t − sup{ s < t | Xs = 0 },

for X to be a (2−2α)-dimensional Bessel process instantaneously reflected at the origin with α ∈ (0,1).

Within the space, the occupation time of the Bessel age on the time interval [0, t) is the measure defined

by

Zt (ϖ) B

∫ t

0
11{Us<ϖ} ds, 0 < ϖ < t . (5.1)

Technically speaking, the quantity Zt (ϖ) is equal to the Lebesgue measure of the time spent by the

age process under the level ϖ before t. Obviously t → Zt (ϖ) is continuous, non-decreasing and

Z0(ϖ) = 0.

Integral functionals for Markov processes Y of type
{∫ t

0
f (Ys) ds, t ≥ 0

}
are being widely explored,

where f is a non-negative Borel function. Please refer to Blumenthal and Getoor [12] for general

knowledge on (additive) functionals. Great attention has been given to the perpetual integral functionals,

i.e. the limiting process by taking t to infinity (see [40, 85, 86] for examples); to the distributional

properties related to α-quantiles (see [27, 28, 29]); and to the convergence to some other functionals

(see [13, 15, 65]), in particular to the local time concerned here.

The probabilistic behaviour of U is well clarified in previous chapters except when it is approaching

the set of zeros given by Z = { t : Ut = 0 }. By the local time at zero of a Bessel age process, we mean

that there exists a continuous family of functionals denoted by L = {Lt, t ≥ 0} and Lt is measurable

relative to σ{Us, s ≤ t} for each t. It measures the part of time spent at zero by the age process over

the time interval [0, t). This makes it clear that L is a non-decreasing process and it increases strictly

on the zero set Z . The notion of local times for general Markov processes was due to Blumenthal and

Getoor [11], who by means of the potential theory clarified the existence of such additive functionals.

Precisely, the local time L is constructed on the fact that zero is a regular point in the state space of U,

i.e.

P
(
inf{ t > 0 | Ut = 0 } = 0

)
= 1 .
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It is a well known fact that there is no unified representation for the local time of Markov process,

as it can be established as a limit of various processes describing the behaviour of trajectories of

the underlying process. As mentioned in the introduction, we are concerned with two ways of

characterising Lt , in terms of the occupation time Zt (ϖ) and a counting measure. The former provides

an intrinsic definition of Lt , expressed as a limit of Zt (ϖ),

Lt = lim
ϖ↓0
ν1(ϖ)

−1 Zt (ϖ), (5.2)

under a certain manner of normalisation on ν1(ϖ). The latter arises from the Poisson random measure

attached to Markov processes.

To get a precise definition of this counting measure, let Uε
t be a perturbed age process by size ε.

Please refer to CHAPTER 2.2.1 Perturbed Bessel Process for full accounts on perturbation. The zero

set up to time t of Uε
t is given by

Zt (ε) B
{

s ∈ [0, t) | Uε
s = 0

}
.

The complement Z c
t (ε) = [0, t) \Zt is then a countable union of disjoint open intervals of lengths

ρi > 0 such that
∑∞

i=1 ρi = t. Let Mt (ε) B #Zt (ε) denote the number of points in the zero set, which

in quantity equal to the jumps in the path of Uε
t represented of the form:

Mt (ε) =

∞∑
i=1

11{T ε
i ≤ t}, M0(ε) = 0 ,

where
{
Tε
i

}
i∈N+

is a sequence of random times defined by

Tε
i B inf

{
s > Tε

i−1

�� Uε
s = 0

}
, with Tε

0 = 0.

According to Itô’s idea, if Zt (ε) is parametrized in terms of the local time at zero, there implies a

point process describing the pieces of path corresponding to Z c
t (ε) with values in {ρi}i∈N+ (see [10]).

To be more precise, suppose ℓ is the right continuous inverse of L such that

ℓ(t) = inf{ s | Ls > t }, 0 ≤ t < ∞ .
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{
Mℓ(t)(ε)

}
follows a Poisson process with a proper intensity ν2(ε)−1 satisfying lim

ε→0
ν2(ε) = 0. Then

for all t > 0, there should be a relation like this:

Mℓ(t)(ε)ν2(ε)
D
→ t, as ε → 0,

and by changing t → Lt , it leads to

ν2(ε)Mt (ε)
D
→ Lt, as ε → 0, (5.3)

where
D
→ denotes the convergence in distribution.

An important consequence of (5.2) and (5.3) is to present a central limit theorem (CLT) that relates

the local time of Bessel age process to a time-changed Gaussian process with mean zero. Many

interesting features of the Gaussian process are described on the basis of the characteristic measures

ν1(ε) and ν2(ϖ). The two functions are uniquely determined by

lim
ϖ→0

E

[∫ ∞

0
e−βt f

(
ν1(ϖ)

−1 Zt (ϖ)
)
dt

]
= lim

ε→0
E

[∫ ∞

0
e−βt f (ν2(ε)Mt (ε)) dt

]
, (5.4)

for every β > 0 and Borel f on [0,∞). By means of martingale approach, ν1 and ν2 are dealt with in

Limit Theorem I & II respectively.

While performing calculations, to avoid confusions in presenting results we define a double Laplace

transform for a real-valued random variable Xt by

Lβ,ξ {Xt } B E

[∫ ∞

0
e−βte−ξXt dt

]
=

∫ ∞

0
e−βt E

[
e−ξXt

]
dt,

where the last equality follows from Fubini’s theorem. We further adopt the following notations

L
β
t {φ(t)} =

∫
R+

e−βt φ(t) dt,

the Laplace transform of some function φ(t) defined for all real numbers t ≥ 0, and

γ(α, z) =
∫ z

0
e−t tα−1 dt;

Γ(α, z) =
∫ ∞

z

e−t tα−1 dt,
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for the lower and upper incomplete gamma functions, and thus γ(α, z) + Γ(α, z) = Γ(α).

Note: the symbols and notations defined above will be used throughout in this chapter.

5.3 Limit Theorem I : Local Time as a Limit of Occupation Time

By describing our approach as martingale, we meant to consider a continuous function f : [0, t)2 → R+

arising as the solution to Az f (u, z) = 0 such that f (Ut, Zt (ϖ)) is a martingale. Az is a generator used

to analyse the infinitesimal movements of the Markov process
{(

Ut, Zt (ϖ)
)}

, and obtained from:

Az f (u, z) = lim
t→0

E
[

f
(
Ut, Zt (ϖ)

)]
− f (U0,0)

t
.

The martingale properties are then of great help in investigating f (Ut, Zt (ϖ)) and its asymptotic

behaviour as ϖ→ 0. Furthermore, this section develops some distributional properties and facts that

are relevant to the occupation process, and preliminary to the limit theorem for the local time.

5.3.1 A Scaled Occupation Time Process

Given Zt (ϖ) an occupation time of levelϖ, we consider a scaled occupation measure in the manner,

ϖ−pZt (ϖ), 0 < ϖ < t, (5.5)

with p a scaler taking non-negative values. Within the scheme of perturbation, the process used to

perform calculations is
(
Uε
t , Z

ε
t (ϖ)

)
. Uε is the age process defined upon a perturbed Bessel process of

size ε > 0, and then

Zε
t (ϖ) =

∫ t

0
11{Uε

s < ϖ} ds, Zε
0 (ϖ) = 0.

As explained in CHAPTER 2.2.1, Uε converges pointwise to U as ε approaches zero. By similar

construction, it implies another convergence of
(
Uε
t , Z

ε
t (ϖ)

)
to (Ut, Zt (ϖ)). The infinitesimal generator

of
(
Uε
t , Z

ε
t (ϖ)

)
acting on bounded functions f ∈ C1 is given by

Az f (u, z) =
∂ f
∂u
+

11{u < ϖ}

ϖp

∂ f
∂z
+

pε(u)
P̄ε(u)

[
f (0, z) − f (u, z)

]
, (5.6)
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with

pε(u) =
ε2α

2αΓ(α)
u−α−1e−

ε2

2u ; (5.7)

P̄ε(u) =

∞∫
u

ε2α

2αΓ(α)
v−α−1e−

ε2

2v dv. (5.8)

Applying the martingale techniques to (5.6), for every suitable choice of f satisfying Az f = 0,

f
(
Uε
t , Z

ε
t (ϖ)

)
− f (U0,0)

is an (Ft )-martingale for all t > 0. An immediate consequence of this result is some characteristic

function of the (scaled) occupation time in (5.5).

Lemma 5.3.1. We denote the double Laplace transform forϖ−pZt (ϖ) with U0 ≥ 0 by

L
β,ζ
U0
{ ϖ−pZt (ϖ) } = E


∞∫

0

e−βt e−ζϖ
−pZt (ϖ) dt

������ U0

 .
For the case 0 < ϖ < U0,

L
β,ζ
U0
{ ϖ−pZt (ϖ) } =

U0
αβα−1eβU0Γ(1 − α, βU0) + L

β,ζ { ϖ−pZt (ϖ) } ·

(
1 −U0

αβαeβU0Γ(1 − α, βU0)

)
,

and the other caseϖ ≥ U0,

L
β,ζ
U0
{ ϖ−pZt (ϖ) } = U0

αe
(
β+

ζ
ϖp

)
U0
·

(
L

β
t

{
exp

{
−
ζ

ϖp
min{t, ϖ}

}
t−α11{t > U0 }

}
+ Lβ,ζ { ϖ−pZt (ϖ) } · L

β
t

{
exp

{
−
ζ

ϖp
min{t, ϖ}

}
αt−α−111{t > U0 }

} )
,

where in both equations, the quantity Lβ,ζ { ϖ−pZt (ϖ) } represents the Laplace transform of the

special case U0 → 0 with

Lβ,ζ { ϖ−pZt (ϖ) } = lim
U0↓0

L
β,ζ
U0
{ ϖ−pZt (ϖ) } =
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(
β +

ζ

ϖp

)−1©­­« 1 +
ζ
ϖp e−ζϖ

1−p
βα−1Γ(1 − α, βϖ)(

β +
ζ
ϖp

)α
γ
(
1 − α, βϖ + ζϖ1−p

)
+ e−ζϖ1−p

βαΓ(1 − α, βϖ)

ª®®¬. (5.9)

Proof. Based on what we have structured, we are keen to find a martingale of the form

t∫
0

e−βse−
ζ

ϖp Zε
s (ϖ) ds + e−βte−

ζ
ϖp Zε

t (ϖ)g
(
Uε
t

)
,

with g(·) assumed to be a bounded function. By the martingale property,

lim
t→0
E


t∫

0

e−βse−
ζ

ϖp Zε
s (ϖ) ds + e−βte−

ζ
ϖp Zε

t (ϖ)g
(
Uε
t

) ������ U0


=

∞∫
0

e−βs E
[
e−

ζ
ϖp Zε

s (ϖ)
��� U0

]
ds

= g(U0).

To find the expression of g(U0), we first expand the Markov process by one more element,

Wε
t B

t∫
0

e−βse−
ζ

ϖp Zε
s (ϖ) ds, β, ζ > 0.

As a result, the infinitesimal generator for the expanded process
(
Uε
t , Z

ε
t ,W

ε
t , t

)
is written as

A f (u, z,w, t) = Az f +
∂ f
∂t
+ e−βte−

ζ
ϖp z ∂ f
∂w
.

Consider that f (u, z,w, t) is of an exponential form

w + e−βte−
ζ

ϖp zg(u).

Substituting it into A f = 0, we have

−βg(u) + g′(u) −
ζ

ϖp
g(u)11{u < ϖ} + 1 +

pε(u)
P̄ε(u)

(
g(0) − g(u)

)
= 0.
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We find the unique solution to the differential equation, read as

g(u)e−βue−
ζ

ϖp min{u, ϖ} P̄ε(u) =

g(0)

∞∫
u

e−βve−
ζ

ϖp min{v, ϖ}pε(v) dv +

∞∫
u

e−βve−
ζ

ϖp min{v, ϖ} P̄ε(v) dv,

with

g(0) =

∞∫
0

e−βve−
ζ

ϖp min{v, ϖ} P̄ε(v) dv

∞∫
0

(
β + 11{v < ϖ}

ζ

ϖp

)
e−βve−

ζ
ϖp min{v, ϖ} P̄ε(v) dv

.

Assuming 0 < ϖ < U0,

g(U0) =
eβU0

P̄ε(U0)

©­­«
∞∫

U0

e−βv P̄ε(v) dv + g(0)

∞∫
U0

e−βvpε(v) dv
ª®®¬.

Otherwise withϖ ≥ U0

g(U0) =
eβU0+

ζ
ϖpU0

P̄ε(U0)
×

∞∫
U0

e−βve−
ζ

ϖp min{v, ϖ} P̄ε(v) dv + g(0)

∞∫
U0

e−βve−
ζ

ϖp min{v, ϖ}pε(v) dv
.

Then the results follow immediately by taking ε → 0. □

There is an important remark on the initial value U0.

Remark 5.3.2. The main goal of this section can be achieved by studying the limiting behaviour of

Lβ,ζ { ϖ−pZt (ϖ) }. Specifically, we investigate on the scaler p that admits a limit at ϖ → 0. As

obviously being of no use, results associated with the case 0 ≤ U0 ≤ ϖ will be left out of consideration

at all stages of limits taking. That being said, for the sake of completeness we yet provide results for

both cases where possible.
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Having the Laplace transforms in hand, we proceed to the limit of Lβ,ζ { ϖ−pZt (ϖ) }. As the

main results to the whole work, the choice of p and the corresponding limit are determined in the

following lemma by using L’Hôpital’s Rule .

Lemma 5.3.3. For every 0 < α < 1 and p > 0, it holds that

lim
ϖ→0

Lβ,ζ { ϖ−pZt (ϖ) } = L
β,ζ

{
lim
ϖ→0

ϖ−pZt (ϖ)
}
;

and in particular for p = 1 − α,

Lβ,ζ
{

lim
ϖ→0

ϖα−1Zt (ϖ)
}
=

(
β +

ζ β1−α

Γ(2 − α)

)−1
. (5.10)

Proof. We begin by writing the representation of Lβ,ζ { ϖ−pZt (ϖ) } in (5.9) into the following form,(
β +

ζ
ϖp

)α−1
γ
(
1 − α,

(
β +

ζ
ϖp

)
ϖ

)
+ βα−1e−ζϖ

1−p
Γ(1 − α, βϖ)(

β +
ζ
ϖp

)α
γ
(
1 − α,

(
β +

ζ
ϖp

)
ϖ

)
+ βαe−ζϖ1−p

Γ(1 − α, βϖ)
.

Given 0 < α < 1, it is obvious that the term
(
β +

ζ
ϖp

)α−1
γ
(
1 − α,

(
β +

ζ
ϖp

)
ϖ

)
is dominated by

e−ζϖ
1−p
Γ(1 − α, βϖ) in all possible values ofϖ, and

lim
ϖ→0

e−ζϖ
1−p
βα−1Γ(1 − α, βϖ) =


Γ(1 − α)βα−1, p ∈ ( 0,1 );

Γ(1 − α)βα−1e−ζ , p = 1;

0, p ∈ ( 1,∞ ).

Further for the denominator,

lim
ϖ→0

ζ

ϖp

(
β +

ζ

ϖp

)α−1
γ

(
1 − α,

(
β +

ζ

ϖp

)
ϖ

)
=


0, p ∈ ( 0,1 − α );

ζ

1 − α
, p = 1 − α;

∞, p ∈ ( 1 − α,∞ ).

81



Putting them together, we get

lim
ϖ→0

Lβ,ζ { ϖ−pZt (ϖ) } =



1

β
, p ∈ ( 0,1 − α );

Γ(1 − α)βα−1

Γ(1 − α)βα +
ζ

1 − α

, p = 1 − α;

0, p ∈ ( 1 − α,∞ ).

□

In conjunction with Lévy’s continuity theorem, the transform function in (5.10) is of great help

in studying the asymptotics of {ϖ−pZt (ϖ)}, particularly the convergence to the local time. Once

the limit relation between the occupation and local times is clarified, the probability density of the

latter is determined from the inverse Laplace transform method. Since most inversions are effected

by recognition, it leads to a better understanding towards the local time by identifying with a class of

variables in our knowledge. In this regard, we refer to the α-stable subordinators as mentioned in the

introduction. All these aspects will be dealt with in more detail below.

5.3.2 Convergence of Occupation Time to Local Time

Recall that we denote by Lt the local time at zero of a Bessel age process over interval [0, t). In terms

of the occupation time, it can be approximated by the form :

ν1(ϖ)
−1 Zt (ϖ)

D
→ Lt, as ϖ→ 0.

It turns out, by LEMMA 5.3.3, that ν1(ϖ) is a multiplication of ϖ1−α by some constant that is

determined in the course of normalising the density of Lt .

A well-known fact about the local times for a wide class of Markov processes is associated with

inverse subordinators. Put another way, an inverse subordinator is the local time of some "well-

behaved" Markov process (see [6, 69] for details). The most famous example is the Brownian local

time whose inverse is described as a ½-stable process. A more general case is due to Bingham [7] who

showed the inverse of α-stable subordinators with 0 < α < 1 arising as limiting processes of some

occupation times.
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Particularly relevant to the present study is the connection of stable subordinators to the local times

of Bessel related processes. Let us pause briefly to recall some basic facts about stable subordinators

of index α ∈ (0,1). For more detailed study on (inverse) subordinators, please refer to Bertoin [5] and

Kyprianou [68].

Definition 5.3.4 (Lévy process). On the probability space (Ω,F ,P), a real-valued process S =

{St, t ≥ 0} is said to be a Lévy process if it satisfies the following properties:

(i) P(S0 = 0) = 1 almost surely (a.s.) ;

(ii) As a function of t, St is right-continuous with left limits a.s ;

(iii) S has independent increments. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, the random

variables St0,St1 − St0,St2 − St1, · · · Stn − Stn−1 are independent ;

(iv) S is time homogeneous. The distribution of {St+v − St, t ≥ 0} does not depend on t.

Lévy processes have infinitely divisible distributions. Following this fact, a Lévy process can

be uniquely defined via the Lévy-Khintchine formula. Suppose that a, σ ∈ R and Π is a measure

concentrated on R \ {0} satisfying
∫
R

(
1 ∧ x2

)
Π(dx) < ∞. The probability law of a Lévy process is

determined with a unique characteristic exponentΨ , such that

E
[
eiλSt

]
= exp

{
− tΨ (λ)

}
, t ≥ 0, λ ∈ R,

where

Ψ (λ) := iaλ +
σ2λ2

2
+

∫
R\{0}

(
1 − eiλx + iλx11{ |x |<1}

)
Π(dx).

By looking into this formula, one can deduce that the corresponding Lévy process is equal in probability

to the sum of three terms: a deterministic linear drift, a Gaussian process, and a jump process whose

size and frequency are characterised by Π , namely Lévy measure.

Definition 5.3.5 (Lévy subordinator). On the same space, the Lévy process S is said to be a subordi-

nator if it has non-decreasing sample paths and can be defined with its Laplace transform

E
[
e−θSt

]
= exp

{
− tΨS(θ)

}
, θ ∈ R+,
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withΨS(θ) a Laplace exponent of the form

ΨS(θ) =

∫
R+

(
1 − e−θx

)
Π(dx),

and Π a Lévy measure on R+ \ {0} satisfying
∫
R+
(1 ∧ x)Π(dx) < ∞.

By the inverse subordinator, we mean a process
{
ℓSt , t > 0

}
defined by

ℓSt = inf{ x > 0 | Sx > t },

i.e. the right-continuous inverse of Sx .

Proposition 5.3.6. Due to the relation between ℓSt and Sx , the law of the former represented by the

latter has the form

P
(
ℓSt ∈ dx

)
= − ∂

∂xP(Sx ≤ t) dx .

For all β, θ > 0, the double Laplace transform of ℓSt is then given by

Lβ,θ
{
ℓSt

}
=
β−1ΨS(β)

θ +ΨS(β)
.

Proof. By the definition of ℓSt , we have an equality
{
ℓSt ≤ x

}
= { Sx ≥ t }. Then with E

[
e−θSx

]
=

e−xΨS (θ),

Lβ,θ
{
ℓSt

}
=

∞∫
0

e−βt
∞∫

0

e−θx P
(
ℓSt ∈ dx

)
dt

=

∞∫
0

e−βt
∞∫

0

e−θx d
{
P(Sx ≥ t)

}
dt

= θ

∞∫
0

e−βt
∞∫

0

e−θx P(Sx ≥ t) dx dt

=
1

β

ΨS(β)

θ +ΨS(β)
.

□
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Definition 5.3.7. In particular forΨS(θ) = cθα, or equivalently

Π(dx) =
c

Γ(1 − α)
αx−α−1 dx,

with c > 0 a scale constant and α ∈ (0,1) a stability index, such a process is called a α-stable

subordinator.

To get an explicit expression of the stable law, we adopt an integral representation provided by

Zolotarev [90] for one-sided stable random variables. Let sα denote a stable r.v. of index 0 < α < 1,

whose distribution according to [90] is given by

P
(
sα

α
1−α ≤ x

)
=

1

π

∫ π

0
e−

A(v)
x dv, x ≥ 0,

where A is the Zolotarev’s function, read as

A(v) def==
(
(sin(αv))α(sin((1 − α)v))1−α

sin(v)

) 1
1−α

.

By a simple change of variable, the stable law is written by

fsα (x) =
α

(1 − α)π

π∫
0

x−
1

1−α A(v)e−A(v)x
− α
1−α dv. (5.11)

The above definitions and results concerning stable subordinators play an important role in

delivering the subsequent theorems.

Theorem 5.3.8. By the continuity theorem, there is a limit relation holding for any 0 < α < 1 that,

Γ(2 − α)

ϖ1−α
Zt (ϖ)

D
→ Lt, as ϖ→ 0. (5.12)

That is to say, ν1(ϖ) = ϖ1−α

Γ(2−α) . It also implies a characterisation of {Lt } to the inverse of a α-stable

subordinator, whose law is thus determined by

P(Lt ∈ dz) =
tz−

1
α−1

α
fsα

(
tz−

1
α

)
dz, z ∈ R+ . (5.13)

fsα is the density function of a stable r.v. given in (5.11).
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Proof. By Lévy’s continuity theorem, the pointwise limit of characteristic functions is a characteristic

function provided that it is continuous at zero. That is to say, since we have shown that

lim
ϖ→0

Lβ,ζ
{
ϖα−1Zt (ϖ)

}
= Lβ,ζ

{
lim
ϖ→0

ϖα−1Zt (ϖ)
}

holds for all β, ξ ∈ R+ and Lβ,ζ is an operator defined continuous at zero, there exists a family of

random variables (clearly it refers to {Lt }), such that normalised by Γ(2 − α) we have the equality in

distribution:

Lt = lim
ϖ→0

Γ(2 − α)

ϖ1−α
Zt (ϖ) .

To find the law of Lt , we start by writing the Laplace transform (5.10) in LEMMA 5.3.3 as

Lβ,ζ ′{Lt } = −

∞∫
0

e−ζ
′y ∂

∂β

{
e−β

αy
} dy

αy

with ζ ′ = ζ
Γ(2−α) . Obviously e−β

αy coincides with the Laplace transform of sα (see DEFINITION 5.3.7).

Then the stable law in (5.11) contributes to the equation

− ∂
∂β

{
e−β

αy
}
=

α

(1 − α)π

∞∫
0

e−βt
∫ π

0
y

1
1−α t−

α
1−α A(x)e−A(x)y

1
1−α t−

α
1−α dx dt . (5.14)

We thus have

Lβ,ζ ′{Lt } =
1

(1 − α)π

∞∫
0

∞∫
0

e−βte−ζ
′y

∫ π

0
y

α
1−α t−

α
1−α A(x)e−A(x)y

1
1−α t−

α
1−α dx dt dy.

This proof is completed by checking the validity of the density function involved,

1

(1 − α)π

∞∫
0

∫ π

0
y

α
1−α t−

α
1−α A(x)e−A(x)y

1
1−α t−

α
1−α dx dy

= −
1

π

∞∫
0

∂
∂y

{ ∫ π

0
e−A(x)y

1
1−α t−

α
1−α dx

}
dy

= 1.

□
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In line with Paul Lévy’s manner, we provide another representation for Lt , expressed as a limit of

some quantity that measures the amount of time spent at zero over (0,φ) by a powered age process.

Definition 5.3.9. It is called the Lévy’s local time of Bessel age process, written by

Lt = lim
φ→0

Γ(2 − α)

φ

t∫
0

11{Us
1−α < φ} ds. (5.15)

THEOREM 5.3.3 states that the limit of the occupation time exists if it is scaled by ϖα−1. By

transformingϖ1−α with φ, we get this representation.

5.4 Limit Theorem II : Local Time as Limit of Jump Counting

This section is devoted to another approximation of the local time on the basis of Poisson random

measure. It is constructed with a counting measure on the number of jumps in the sample path of age

process. Following an analogous approach to that presented in Limit Theorem I, we shall develop a set

of results concerning the asymptotics of the new measure and their applications to the local time.

5.4.1 A Scaled Jump Counting Process

Recall that M(ε) denotes the counting process of jumps from the paths of Uε , whose underlying

process is a perturbed Bessel denoted by Xε . By virtue of the correspondence between Uε
t and Xε

t for

every t ∈ R+, Mt (ε) is equal to the times that Xε
t drops down to zero from ε > 0.

Of particular interest is a scaled counting measure in the form:

εκMt (ε), ε > 0,

with κ a scaler taking non-negative values. In some sense, εκ is regarded as a scaled unit increase per

occurrence of a jump arriving at rate pε (u)

P̄ε (u)
. Accordingly, the infinitesimal generator of

(
Uε
t ,Mt (ε)

)
,

defined by its action on C1 functions f : [0, t) × N0 → R+ as

Am f (u,m) =
∂ f
∂u
+

pε(u)
P̄ε(u)

[
f (0,m + 1) − f (u,m)

]
, (5.16)
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where pε(u) & P̄ε(u) are defined before by (5.7) & (5.8). Any solution to Am f = 0 is an (Ft )-

martingale represented by f
(
Uε
t ,Mt (ε)

)
− f (U0,0). To examine the asymptotic behaviour of this

measure, we derive the characteristic function of Mt (ε) and decide a suitable choice of κ upon that for

any t ≥ 0

lim
ε→0
E
[

f
(
Uε
t ,Mt (ε)

) ]
< ∞.

The associated results are presented below.

Lemma 5.4.1. We denote the double Laplace transform for εκMt (ε) with U0 ≥ 0 by

L
β,ξ
U0
{εκMt (ε)} = E


∞∫

0

e−βt e−ξε
κMt (ε) dt

������ U0

 .
For every 0 < α < 1 and κ > 0, it holds that

lim
ε→0
L

β,ξ
U0
{ εκMt (ε) } = L

β,ξ
U0

{
lim
ε→0
εκMt (ε)

}
,

and in particular for κ = 2α

L
β,ξ
U0

{
lim
ε→0
ε2αMt (ε)

}
= Lβ,ξ

{
lim
ε→0
ε2αMt (ε)

} (
1 − βαU0

αeβU0Γ(1 − α, βU0)

)
+ βα−1U0

αeβU0Γ(1 − α, βU0).

where
Lβ,ξ

{
lim
ε→0
ε2αMt (ε)

}
= lim

U0↓0
L

β,ξ
U0

{
lim
ε→0
ε2αMt (ε)

}
=

(
β +
Γ(1 + α)

Γ(1 − α)
2αξβ1−α

)−1
. (5.17)

Proof. It is our aim to find a martingale of the form

t∫
0

e−βse−ξε
κMs (ε) ds + e−βte−ξε

κMt (ε)g
(
Uε
t

)
,

with g a bounded function. By the martingale property, we have

lim
t→0
E


t∫

0

e−βse−ξε
κMs (ε) ds + e−βte−ξε

κMt (ε)g
(
Uε
t

) ������ U0


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=

∞∫
0

e−βs E
[
e−ξε

κMs (ε)
��� U0

]
ds

= g(U0).

To find a suitable solution of g(U0), we insert an auxiliary process defined by

Wε
t B

t∫
0

e−βse−ξε
κMs (ε) ds

into
(
Uε
t ,Mt (ε)

)
. Accordingly, the generator acting on f (u,m,w, t) is given by

A f (u,m,w, t) = Am f +
∂ f
∂t
+ e−βte−ξε

κm ∂ f
∂w
.

Substituting f (u,m,w, t) = w + e−βte−ξε
κmg(u) into A f = 0, we get an equation

−βg(u) + g′(u) + 1 +
pε(u)
P̄ε(u)

(
e−ξε

κ
g(0) − g(u)

)
= 0,

and the solution is obtained as

g(U0) =

e−ξε
κ

∞∫
0

e−βv P̄ε(v) dv

1 − e−ξε
κ
+ e−ξε

κ

∞∫
0

βe−βv P̄ε(v) dv

eβu0

P̄ε(u0)

∞∫
u0

e−βvpε(v) dv

+
eβu0

P̄ε(u0)

∞∫
u0

e−βv P̄ε(v) dv.

Implied by P̄ε(v) a suitable choice of κ is determined as 2α. This leads immediately to

g(U0) =
Γ(1 − α)βα−1

Γ(1 − α)βα + 2αΓ(1 + α)ξ

©­­«1 − βU0
αeβU0

∞∫
U0

e−βvv−α dv
ª®®¬

+ U0
αeβU0

∞∫
U0

e−βvv−α dv.

□
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5.4.2 Convergence of Jump Counting to Local Time

Following the same reasoning as in the proof of THEOREM 5.3.8, it turns out that the local time Lt

arises as some limit of ε2αMt (ε).

Theorem 5.4.2. There is an identity in distribution between the counting measure and the local time,

such that for any 0 < α < 1,

Γ(1 − α)

Γ(1 + α)2α
ε2αMt (ε)

D
→ Lt, as ε → 0. (5.18)

Proof. To identify the limit, we compare the characteristic function in (5.10) with that in (5.17).

Obviously it holds by setting c(α) =
[
(1 − α)Γ(1 + α)2α

]−1
that

E
[
exp

{
−ζc(α) lim

ε→0
ε2αMt (ε)

}]
= E

[
exp

{
−ζ lim

ϖ→0
ϖα−1Zt (ϖ)

}]
.

This in turn by the continuity theorem proves the limit relation between ε2αMt (ε) and Lt . □

5.5 Limit Theorem III : A Central Limit Theorem for Local Time

In Limit Theorem I & II, we develop concepts for the local time at zero of Bessel age process and

characterise its law as the inverse of a α-stable subordinator. In terms of convergence, we prove two

equalities in distribution with the associated occupation and counting processes. Another concern

around the local time arises as an interesting consequence of the weak convergences. In brief, the

central limit theorem regarded as a corollary of the continuity theorem indicates that the limiting

distribution of the difference between the local time and the approximations is Gaussian.

5.5.1 A Scaled Difference about Local Time

Following the relations among Z(ϖ), M(ε) and L, the stochastic process describing the difference is

defined by

Vt (ε,ϖ) = ϖ
−q

(
Γ(2 − α)

ϖ1−α
Zt (ϖ) −

Γ(1 − α)

Γ(1 + α)2α
ε2αMt (ε)

)
, t ≥ 0, (5.19)
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with q a scaler taking non-negative values. In particular by allowing ε → 0,

Vt (ϖ) = lim
ε→0

Vt (ε,ϖ) = ϖ
−q

(
Γ(2 − α)

ϖ1−α
Zt (ϖ) − Lt

)
.

We are keen to find asymptotics of Vt (ε,ϖ) as ε andϖ approach zero, normalized byϖq for measuring

the speed that makes the convergence takes place. To this end, a martingale framework is established

on the Markov process (Ut, Zt (ϖ),Mt (ε)) to study the distributional properties of Vt (ε,ϖ).

Let Uε
t , Zε

t (ϖ) and Mt (ε) remain unchanged. The infinitesimal generator Av acting on C1-

functions f : [0, t)2 × N0 → R+ is simply obtained by merging (5.6) with (5.16). We thus have

Av f (u, z,m) =
∂ f
∂u
+

11{u < ϖ}

ϖ1−α

∂ f
∂z
+

pε(u)
P̄ε(u)

[
f (0, z,m + 1) − f (u, z,m)

]
.

The characteristic function of Vt (ε,ϖ) is then derived from any f satisfying Av f = 0. Please see

below for this result.

Lemma 5.5.1. We denote the double Laplace transforms of Vt (ϖ) by Lβ,ϑ{Vt (ϖ)}. For 0 < α < 1

and β,ϑ > 0

Lβ,ϑ{Vt (ϖ)} =
R1(β,ϑ;ϖ) + R2(β,ϑ;ϖ)(

β +
Γ(2 − α)

ϖ1−α+q
ϑ

)
R1(β,ϑ;ϖ) + βR2(β,ϑ;ϖ) −

Γ(1 − α)

ϖq
ϑ

. (5.20)

R1 and R2 are define by

R1(β,ϑ;ϖ) =

(
β +

Γ(2 − α)

ϖ1−α+q
ϑ

)α−1
γ

(
1 − α, βϖ +

Γ(2 − α)

ϖq−α
ϑ

)
;

R2(β,ϑ;ϖ) = β
α−1
Γ(1 − α, βϖ) exp

{
−
Γ(2 − α)

ϖq−α
ϑ

}
.

Proof. Denoted byLβ,ϑ{Vt (ε,ϖ)} the double transform of Vt (ε,ϖ), it can be obtained from computing

lim
t→0
E


t∫

0

e−βse−ζ̃Z
ε
s (ϖ)−ξ̃ε

2αMs (ε) ds + e−βte−ζ̃Zt (ε)e−ξ̃ε
2αMε

s g
(
Uε
t

)
=

∞∫
0

e−βs E
[
e−ζ̃Z

ε
s (ϖ)e−ξ̃ε

2αMs (ε)
]
ds

= g(0) ,
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with substitution

ζ̃ B ζ̃(ϑ) =
Γ(2 − α)

ϖ1−α+q
ϑ; ξ̃ B ξ̃(ϑ) = −

Γ(1 − α)

Γ(1 + α)2αϖq
ϑ.

Considering f
(
Ut, Zt (ϖ),Mt (ε),Wε

t

)
with

Wε
t B

∫ t

0
e−βse−ζ̃Z

ε
s (ϖ)−ξ̃ε

2αMs (ε) ds

is a martingale of the form: f (u, z,m,w, t) = w + e−βte−ζ̃ze−ξ̃ε
2αmg(u). g is a non-negative bounded

function. To prove it so as to get the representation of g(0), we show that

A f (u, z,m,w, t) =
∂ f
∂t
+
∂ f
∂u
+ 11{u < ϖ}

∂ f
∂z
+ e−βte−ζ̃ze−ξ̃ε

2αm ∂ f
∂w

+
pε(u)
P̄ε(u)

[
f ( 0, z,m + 1,w, t ) − f ( u, z,m,w, t )

]
= 0 .

By solving A
(
w + e−βte−ζ̃ze−ξ̃ε

2αmg(u)
)
= 0, we get

g(0) =

∞∫
0

e−βve−ζ̃ min{v, ϖ} P̄ε(v) dv

eξε
2α
− 1 +

∞∫
0

(
β + 11{v < ϖ} ζ̃

)
e−βve−ζ̃ min{v, ϖ} P̄ε(v) dv

.

Then (5.20) follows immediately by taking ε → 0 and replacing ζ̃ → ζ̃(ϑ) and ξ̃ → ξ̃(ϑ). □

To find a suitable normalizing factor ϖq that makes the difference having a non-trivial limit

distribution, we investigate the asymptotic behaviour of Vt (ϖ) asϖ→ 0. The associated results are

presented below.

Lemma 5.5.2. For every 0 < α < 1 and q > 0, it holds that

lim
ϖ→0

Lβ,ϑ{Vt (ϖ)} = L
β,ϑ

{
lim
ϖ→0

Vt (ϖ)
}
, (5.21)
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and in particular for q = α
2 ,

Lβ,ϑ
{

lim
ϖ→0

Vt (ϖ)
}
=

(
β −
(1 − α)Γ(2 − α)

2 − α
ϑ2β1−α

)−1
. (5.22)

Proof. Considering the numerator in (5.20), define ϑ̃(ϖ) = Γ(2 − α)ϑϖα−q

(
β +

ϑ̃(ϖ)

ϖ

)α−1
γ
(
1 − α, βϖ + ϑ̃(ϖ)

)
+ βα−1e−ϑ̃(ϖ) Γ(1 − α, βϖ)

= ϖ(1−α)
2+q(1−α)

ϖα−q∫
0

e−βϖ
1−α+qze−Γ(2−α)ϑz z−α dz + e−ϑ̃(ϖ)

∞∫
ϖ

e−βvv−α dv.

With 0 < α < 1, it can be checked that for all values of q

lim
ϖ→0

ϖ(1−α)
2+q(1−α)

ϖα−q∫
0

e−βϖ
1−α+qze−Γ(2−α)ϑz z−α dz = 0,

and the rest term is evaluated to

lim
ϖ→0

e−ϑ̃(ϖ)
∞∫
ϖ

e−βvv−α dv =


Γ(1 − α)βα−1, q ∈ ( 0, α );

Γ(1 − α)βα−1e−Γ(2−α)ϑ, q = α;

0, q ∈ ( α,∞ ).

Then for the denominator(
β +

ϑ̃(ϖ)

ϖ

)α
γ
(
1 − α, βϖ + ϑ̃(ϖ)

)
+ βαe−ϑ̃(ϖ)Γ(1 − α, βϖ) − Γ(1 − α)ϑϖ−q

= β


(
β +

ϑ̃(ϖ)

ϖ

)α−1
γ
(
1 − α, βϖ + ϑ̃(ϖ)

)
+ βα−1e−ϑ̃(ϖ) Γ(1 − α, βϖ)

 (5.23)

+ Γ(2 − α)ϑϖ−α(1−α+q)
©­«
ϖα−q∫
0

e−βϖ
1−α+qze−Γ(2−α)ϑz z−α dz −

ϖ(α−q)(1−α)

1 − α

ª®¬. (5.24)

(5.23) coincides with the numerator. Applying L’Hôpital’s Rule to (5.24),

Γ(2 − α)ϑ lim
ϖ→0

ϖα−q∫
0

e−βϖ
1−α+qze−Γ(2−α)ϑz z−α dz −

ϖ(α−q)(1−α)

1 − α

ϖα(1−α+q)
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= −
Γ(2 − α)ϑ(α − q)
αq(1 − α + q)

lim
ϖ→0

(
βϖ1−q + Γ(2 − α)ϑ(α − q)ϖα−2q

)
e−βϖe−ϑ̃(ϖ)

=



0, q ∈
(
0,
α

2

)
;

−
(Γ(2 − α)ϑ)2

2 − α
, q =

α

2
;

−∞, q ∈
( α
2
, ∞

)
.

Putting them together, we get

Lβ,ϑ
{

lim
ϖ→0

Vt (ϖ)
}
=



1

β
, q ∈

(
0,
α

2

)
;

Γ(1 − α)βα−1

Γ(1 − α)βα −
(Γ(2 − α)ϑ)2

2 − α

, q =
α

2
;

0, q ∈
( α
2
, ∞

)
.

□

5.5.2 Convergence of the Difference to Gaussian Process

The aim of what follows is to show a Gaussian process for the limiting difference, to which the normality

is shown by the central limit theorem. It is oriented by the work of Kasahara [63] who showed that the

difference between the Brownian local time and the normalised number of downcrossings follows a

brand new Brownian motion.

Theorem 5.5.3. By central limit theorem it holds for any 0 < α < 1 that

ϖ−
α
2

(
Γ(2 − α)

ϖ1−α
Zt (ϖ) − Lt

)
D
→ N

(
0,σ2α(t)

)
, as ϖ→ 0. (5.25)

N represents a normal distribution whose variance σ2α(t) is equal to

σ2α(t) =
2(1 − α)Γ(2 − α)

2 − α
Lt . (5.26)
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Proof. We start by writing (5.22) in the form

Lβ,ϑ
{

lim
ϖ→0

Vt (ϖ)
}
= −

∞∫
0

∂
∂β

{
e−β

αy
}
exp

{
ϕ2ϑ2y

2

}
dy

αy
,

with ϕ2 =
2(1−α)Γ(2−α)

2−α . A proper integral representation of − ∂
∂β

{
e−β

αy
}

has been derived in (5.14).

Moreover, the exponential term involving ϑ2 can be expanded in terms of the moment generating

function of a normal distribution, such that

exp

{
ϑ2ϕ2y

2

}
=

∞∫
−∞

e−ϑv
1

ϕ
√
2πy

exp

{
−

v2

2yϕ2

}
dv.

This leads to

Lβ,ϑ
{

lim
ϖ→0

Vt (ϖ)
}
=

∞∫
0

e−βt
∞∫

−∞

e−ϑv dv dt

1

(1 − α)ϕ
√
2π3

∞∫
0

y
1

1−α−
3
2 t−

α
1−α e

− v2

2yϕ2

∫ π

0
A(x)e−A(x)y

1
1−α t−

α
1−α dx dy.

We thus obtain the density of lim
ϖ→0

Vt (ϖ). With P(Lt ∈ dy) given by (5.13), it can then be expressed

in the form of a normal distribution subordinated by Lt acting on the variance, such that

P
(
lim
ϖ→0

Vt (ϖ) ∈ dv
)
=

∞∫
0

1√
2πyϕ2

exp

{
−

v2

2yϕ2

}
· P(Lt ∈ dy) dv.

The proof is completed by this representation. □
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6
Scale Invariance about Local Times

By self-similar Markov processes, we mean a R+-valued strong Markov process X = {Xt, t ≥ 0} with

X0 = 0, whose paths are almost surely right-continuous with left limits such that,

{ c−aXct, t ≥ 0 }
law
= { Xt, t ≥ 0 }, a, c > 0.

That is to say, X fulfils the scaling invariant property (please refer to Kyprianou [68, Chap 13] for

accounts on this process and to Embrechts and Maejima [43] for more general cases). Some known

examples having the same path property are subordinators, Brownian motions, Bessel processes and

the local time for Bessel age processes constructed in the last chapter.

This chapter concerns with the scaling property for some processes introduced before, involving

Bessel(Brownian) process, Bessel age process and occupation time of the age process. As a sequel to

the study on local times, we put an emphasis on exploring path properties of a time-scaled process

represented by {Lλt } with λ a scaler taking non-negative values. Main questions to be discussed are

the distributional results associated with Lλt and scale invariance for the local time along with a limit

theorem characterising the difference between Lt and Lλt to a Gaussian process.

To avoid confusion on notations, we will keep using the symbols defined in previous chapters as

much as possible.

96



6.1 Definitions and Notations

On the filtered probability space (Ω,F ,P), adapted to {Ft } let U = {Ut, t ≥ 0} be the age process

defined by

Ut = t − sup{ s < t | Xs = 0 }. (6.1)

The underlying process X = {Xt, t ≥ 0} is Bessel of dimension (2 − 2α) with α ∈ (0,1), thus

instantaneously reflected at the origin. Within the space, there is an occupation time of levelϖ > 0

expressed in the form

Zt (ϖ) =

∫ t

0
11{Us < ϖ} ds, 0 < ϖ < t . (6.2)

It has been proved with a scaler of ϖα−1 that the limiting process of Zt (ϖ) measures the local

time at zero of U up to time t. Denoted by {Lt, t ≥ 0}, the local time process admits the following

representation :

Lt = lim
ϖ→0

Γ(2 − α)ϖα−1Zt (ϖ). (6.3)

While performing calculations, to avoid confusions in presenting results we define a double Laplace

transform for a real-valued random variable Xt by

Lβ,ξ {Xt } B E

[∫ ∞

0
e−βte−ξXt dt

]
=

∫ ∞

0
e−βt E

[
e−ξXt

]
dt,

where the last equality follows from Fubini’s theorem. We further adopt the following notations

L
β
t {φ(t)} =

∫
R+

e−βt φ(t) dt,

the Laplace transform of some function φ(t) defined for all real numbers t ≥ 0, and

γ(α, z) =
∫ z

0
e−t tα−1 dt;

Γ(α, z) =
∫ ∞

z

e−t tα−1 dt,

for the lower and upper incomplete gamma functions, and thus γ(α, z) + Γ(α, z) = Γ(α).
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6.2 Scaling Property associated to Bessel (Age) Process

This section presents some examples of basic scaling properties associated to a Bessel (age) process,

which will in turn facilitate as guidelines towards developing the main theorem appearing in SECTION

6.4.

Denoted by BES(α), the Bessel process X with index α ∈ (0,1) is the solution of

dXt =
1 − 2α

2Xt
dt + dWt,

with W a standard Brownian motion. Let us consider a transformation in time of a general form:

t → ℓ(t), for ℓ ∈ C1 a non-negative Borel function with ℓ(0) = 0. Assuming ℓ is continuously

differentiable on (0,∞),

Xℓ(t) = X0 +

ℓ(t)∫
0

1 − 2α

2Xs
ds +Wℓ(t).

By a simple change of variable,

dXℓ(t) =
1 − 2α

2Xℓ(t)
ℓ′(t) dt +

√
ℓ′(t) dWt . (6.4)

Let Y = X2 be the squared Bessel process BESQ(α), whose path is described by

dYt = 2(1 − α) dt + 2
√

Yt dWt .

Following the same method,

dYℓ(t) = 2(1 − α)ℓ′(t) dt + 2
√

Yℓ(t)ℓ′(t) dWt . (6.5)

(Squared) Bessel diffusions lie in the intersection of several important classes of processes. Below

are a couple of well-known examples.

Example 6.2.1. Not all scale transforms have the feature of invariance.

• Scaling Invariance. When α = ½, dXt = dWt . For any c ∈ R+, it follows immediately from

(6.4), {
c−

1
2Wct, t ≥ 0

}
law
= {Wt, t ≥ 0 }.
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This is the famous Brownian scaling property and it can be further extended to Bessel diffusions.

For other choices of α, from (6.4) and (6.5),

{
c−

1
2 Xct, t ≥ 0

}
law
= { Xt, t ≥ 0 };{

c−1Yct, t ≥ 0
} law
= { Yt, t ≥ 0 }.

• Other Scalings. Consider a scaled Bessel process at exponential times, say Rt = e−2ktYℓ(t) with

ℓ(t) = e2kt−1
2k and k > 0. We obtain by using Itô formula,

dRt = − 2ke−2ktYℓ(t) dt + e−2kt dYℓ(t)

= 2
(
(1 − α) − kRt

)
dt + 2

√
Rt dWt,

a space-time changed BESQ(α), namely the Cox-Ingersoll-Ross process.

The invariant scaling of X immediately carries over to the Bessel age process U.

Proposition 6.2.2. Given U the age process defined as (6.1), for any c ∈ R+, it enjoys the scaling

property such that {
c−1Uct, t ≥ 0

} law
= { Ut, t ≥ 0 } . (6.6)

As an immediate consequence,

{ Zct (ϖ), t ≥ 0 }
law
=

{
cZt

(
c−1ϖ

)
, t ≥ 0

}
. (6.7)

Proof. From the scaling property of X , for c > 0,

Uct = ct − sup
{

cv < ct
��� c−

1
2 Xcv = 0

}
law
= c

(
t − sup

{
v < t

�� X̃v = 0
} )
,

where X̃ is an independent replicate of X . By the same token with a simple change of variable

Zct (ϖ) = c

t∫
0

11{c−1Ucx < c−1ϖ} dx
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law
= c

t∫
0

11{Ũx < c−1ϖ} dx,

and Ũ is an independent replicate of U. □

6.3 Distributional Results for Time-scaled Occupation /Local Time

This section proceeds with the distributional study on a scaled occupation measure in the form Zt (cϖ)

with 0 < c < 1, and on its association to the local time defined as (6.3). We shall construct a martingale

for the process ( Ut, Zt (ϖ), Zt (cϖ) ), from which distributional properties for the limiting difference

between Zt (ϖ) and Zt (cϖ) are developed .

Denoted by
(
Uε
t , Z

(1)

t , Z
(2)

t

)
the perturbed Markov process used to perform calculations, the infinites-

imal generator acting on a non-negative bounded Borel function f ∈ C1 is given by

Azc f
(

u, z(1), z(2)
)
=
∂ f
∂u
+

pε(u)
P̄ε(u)

[
f
(
0, z(1), z(2)

)
− f

(
u, z(1), z(2)

) ]
+ 11{u < ϖ}

∂ f
∂z(1)

+ 11{u < cϖ}
∂ f
∂z(2)
,

where Z (1)t B Zt (ϖ) and Z (2)t B Zt (cϖ), and

pε(u) =
ε2α

2αΓ(α)
u−α−1e−

ε2

2u ;

P̄ε(u) =

∞∫
u

ε2α

2αΓ(α)
v−α−1e−

ε2

2v dv.

Within the framework of infinitesimal generator, a martingale meeting our needs is obtained from

solving Azc f ( u, z(1), z(2) ) = 0.

Lemma 6.3.1. We find a representation for the double Laplace transform of {Zt (ϖ), Zt (cϖ)}, denoted

by

Ẑ(β, ζ1, ζ2;ϖ) = L
β
t

{
E

[
exp

{
−
ζ1
ϖp

Zt (ϖ) −
ζ2
(cϖ)p

Zt (cϖ)
}] }
.
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For β > 0 and 0 < α < 1,

Ẑ(β, ζ1, ζ2;ϖ) =

∞∫
0

e−βvE(v,ϖ)v−α dv

∞∫
0

(
β + 11{v < ϖ}

ζ1
ϖp
+ 11{v < cϖ}

ζ2
(cϖ)p

)
e−βvE(v,ϖ)v−α dv

, (6.8)

with

E(v,ϖ) = exp

{
−
ζ1
ϖp

min{v, ϖ} −
ζ2
(cϖ)p

min{v, cϖ}
}
.

Proof. The Laplace transform is implied by a martingale of the form

t∫
0

e−βs e−ζ1Z
(1)
s e−ζ2Z

(2)
s ds + e−βte−ζ1Z

(1)
t e−ζ2Z

(2)
t g

(
Uε
t

)
,

with g a non-negative Borel function bounded by one. By the martingale property, it follows immedi-

ately

lim
t→0
E


t∫

0

e−βs e−ζ1Z
(1)
s e−ζ2Z

(2)
s ds + e−βte−ζ1Z

(1)
t e−ζ2Z

(2)
t g

(
Uε
t

)
=

∞∫
0

e−βs E
[
e−ζ1Z

(1)
s e−ζ2Z

(2)
s

]
ds

= g(0).

To find a solution of g(0), we insert an auxiliary process Wε
t of the form

Wε
t B

t∫
0

e−βs e−ζ1Z
(1)
s e−ζ2Z

(2)
s ds

into the Markov process. Accordingly, a new generator acting on f ( u, z(1), z(2),w, t ) is written by

A f
(
u, z(1), z(2),w, t

)
= Azc f +

∂ f
∂t
+ e−βte−ζ1z

(1)
e−ζ2z

(2) ∂ f
∂w
.
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We propose a solution to be
(
w + e−βte−ζ1z

(1)
e−ζ2z

(2)
g(u)

)
. Substituting it into A f = 0, we have an

equation

0 = − βg(u) + g′(u) −
(
ζ111{u < ϖ} + ζ211{u < cϖ}

)
g(u)

+ 1 +
pε(u)
P̄ε(u)

(
g(0) − g(u)

)
(6.9)

To get the solution to (6.9), we multiply both sides with the term below

e−βu e−ζ1m(ϖ)e−ζ2m(cϖ)P̄ε(u),

with m(w) = min{u, w}. As a result, we get

g(u)e−βue−ζ1m(ϖ)e−ζ2m(cϖ)P̄ε(u) =

g(0)

∞∫
u

e−βve−ζ1m(ϖ)e−ζ2m(cϖ)pε(v) dv +

∞∫
u

e−βve−ζ1m(ϖ)e−ζ2m(cϖ)P̄ε(v) dv.

Taking ε → 0,

g(0) =

∞∫
0

e−βve−ζ1m(ϖ)e−ζ2m(cϖ)v−α dv

∞∫
0

(
β + ζ111{v < ϖ} + ζ211{v < cϖ}

)
e−βve−ζ1m(ϖ)e−ζ2m(cϖ)v−α dv

.

Replacing ζ1 →
ζ1
ϖp and ζ2 →

ζ2
(cϖ)p completes this proof. □

Next we present the limit of Ẑ(β, ζ1, ζ2;ϖ) atϖ→ 0.

Lemma 6.3.2. For any c > 0, we show that the limit exists when p = 1 − α and

lim
ϖ→0

Ẑ(β, ζ1, ζ2;ϖ) =
(
β +

ζ1 + ζ2
Γ(2 − α)

β1−α
)−1
.

Proof. We restrict the calculations to c ∈ (0,1). Other choices can be done by taking c−1 ∈ (1,∞).

However, it will be later shown that c has no effect on the final results.
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Considering the numerator of (6.8),

∞∫
0

e−βve−
ζ1
ϖp min{u, ϖ}−

ζ2
(cϖ)p

min{u, cϖ}
v−α dv (6.10)

= ϖp(1−α)

cϖ1−p∫
0

e−βϖ
pze−

(
ζ1+

ζ2
cp

)
z z−α dz + ϖp(1−α)e

−
ζ2

(cϖ)p−1

ϖ1−p∫
cϖ1−p

e−βϖ
pze−ζ1z z−α dz

+ e−
(
ζ1+

ζ2
cp−1

)
ϖ1−p

∞∫
ϖ

e−βvv−α dv.

The limit of (6.10) by takingϖ→ 0 is obtained as



Γ(1 − α)

β1−α
, p ∈ ( 0,1 );

e−(ζ1+ζ2)
Γ(1 − α)

β1−α
, p = 1;

0, p ∈ ( 1,∞ ).

Then for the denominator,

∞∫
0

(
ζ1
ϖp

11{v < ϖ} +
ζ2
(cϖ)p

11{v < cϖ}

)
e−βve−

ζ1
ϖp min{u, ϖ}−

ζ2
(cϖ)p

min{u, cϖ}
v−α dv (6.11)

=
ζ1
ϖp

ϖ∫
0

e−βve−
ζ1
ϖp min{v, ϖ}−

ζ2
(cϖ)p

min{v, cϖ}
v−α dv

+
ζ2
(cϖ)p

cϖ∫
0

e−βve−
ζ1
ϖp min{v, ϖ}−

ζ2
(cϖ)p

min{v, cϖ}
v−α dv

= ζ1ϖ
−αp

ϖ1−p∫
0

e−βϖ
pze−

(
ζ1+

ζ2
cp

)
z z−α dz + ζ2c−pϖ−αp

cϖ1−p∫
0

e−βϖ
pze−

(
ζ1+

ζ2
cp

)
z z−α dz.

Takingϖ→ 0 of (6.11) gives,


0, p ∈ ( 0,1 − α );

ζ1 + ζ2
1 − α

, p = 1 − α;

∞, p ∈ ( 1 − α,∞ ).
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Putting them together yields the results. □

It is not surprising to notice that the rescaled process (cϖ)−pZt (cϖ) tends to behave exactly as

ϖ−pZt (ϖ) in the sense of weak convergence. That means, by choosing ζ1 + ζ2 = 0, it will holds for

any c ∈ ( 0,∞ ) that

lim
ϖ→0

ϖα−1Zt (ϖ)
D
= lim

ϖ→0
(cϖ)α−1Zt (cϖ).

In relation to the main objective, due to the scaling property of Zt , this result will contribute in deriving

the law of the time-scaled local time and associated properties.

6.4 Scaling Property for Local Times

By a time scaled local time process, we mean the quantity Lλt defined via

Lλt

Γ(2 − α)
= lim

ϖ→0
ϖα−1

λt∫
0

11{Us < ϖ} ds = lim
ϖ→0

ϖα−1Zλt (ϖ) ,

where λ > 1 is a scaler on time t. This section puts emphasis on the relation between Lλt and Lt which

enables to determine the self-similarity of the local time, and on the limit theorems associated with the

difference between them.

Theorem 6.4.1. Let Lt be the local time admitting the representation of (6.3). With λ ∈ (1,∞), it can

be shown that inheriting from the scaling property of U the following two identities hold for all t ≥ 0:

Γ(2 − α)λϖα−1Zt

(
λ−1ϖ

) D
→ Lλt, as ϖ→ 0 ; (6.12)

λ−αLλt
D
= Lt . (6.13)

These then prove {Lt } a self-similar process with index α ∈ (0,1).

Proof. As shown in (6.7), the occupation time Zt is scaling invariant. That is to say,

ϖα−1Zλt (ϖ)
law
= λϖα−1Zt

(
λ−1ϖ

)
.
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Taking limits on both sides yields (6.12). It then follows immediately

Lt

Γ(2 − α)

D
= lim

ϖ→0
ϖα−1Zt (ϖ)

D
= lim

ϖ→0
λ1−αϖα−1Zt

(
λ−1ϖ

)
D
=
λ−αLλt

Γ(2 − α)
.

□

Following the scaling invariant relation between Lλt and Lt , the attention is then turned to the

stochastic analysis of their difference denoted by Wt (ϖ). We define the stochastic process describing

the difference scaled by a factorϖq as

ϖ−qWt (ϖ) =
Γ(2 − α)

ϖ1−α+q

(
Zt (ϖ) − λ

1−αZt

(
λ−1ϖ

) )
, q ≥ 0. (6.14)

The distributional characteristics of {(Lt − λ
−αLλt ), t ≥ 0} are then derived from the Markov process(

Ut, Zt (ϖ), Zt

(
λ−1ϖ

) )
, whose limiting behaviours corresponding to needs are studied in SECTION

6.3.

Corollary 6.4.2. The double Laplace transform of ϖ−qWt (ϖ), denoted by Lβ,ϑ{ϖ−qWt (ϖ)}, is

obtained as

Lβ,ϑ{ ϖ−qWt (ϖ) } =

∞∫
0

e−βvv−α ẽ(v,ϖ) dv

∞∫
0

(
β + ϑ̃(ϖ)

(
11{v < ϖ} − λ

1−α11{v < λ−1ϖ}

) )
e−βvv−α ẽ(v,ϖ) dv

,

where

ẽ(v,ϖ) = exp

{
−ϑ̃(ϖ)

(
min{v, ϖ} − λ1−α min

{
v, λ−1ϖ

})}
; and

ϑ̃(ϖ) =
Γ(2 − α)

ϖ1−α+q
ϑ .

Proof. This is simply obtained by substituting ζ1 =
Γ(2−α)
ϖq ϑ and ζ2 = −ζ1 to the transform by (6.8). □

The limiting behaviour of Lβ,ϑ{ϖ−qWt (ϖ)} asϖ→ 0 is presented below.
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Corollary 6.4.3. For every 0 < α < 1 and q > 0, it holds that

lim
ϖ→0

Lβ,ϑ{ϖ−qWt (ϖ)} = L
β,ϑ

{
lim
ϖ→0

ϖ−qWt (ϖ)
}
;

and in particular for q = α
2 ,

Lβ,ϑ
{

lim
ϖ→0

ϖ−
α
2 Wt (ϖ)

}
=

(
β −

(
1 − λ−1

)
(1 − α)Γ(2 − α)

(2 − α)
ϑ2β1−α

)−1
. (6.15)

Proof. First considering the numerator,

∞∫
0

e−βv exp
{
−ϑ̃(ϖ)

(
min{v, ϖ} − λ1−α min

{
v, λ−1ϖ

})}
v−α dv

=

λ−1ϖ∫
0

e−βve(λ
1−α−1)ϑ̃(ϖ)vv−α dv +

eλ
−α ϑ̃(ϖ)ϖ

ϖα−q∫
λ−1ϖα−q

e−
(
βϖ1−α+q + ϑΓ(2−α)

)
z z−α dz

ϖ(α−q−1)(1−α)
.

Given 0 < α < 1 and λ > 1, the first integral is equal to zero by takingϖ→ 0 for all value of q > 0.

The rest is calculated as follows

lim
ϖ→0

eλ
−α ϑ̃(ϖ)ϖ

ϖα−q∫
λ−1ϖα−q

e−(βϖ
1−α+q + ϑΓ(2−α))z z−α dz

ϖ(α−q−1)(1−α)

=



Γ(1 − α)

β1−α
, q ∈ ( 0, α ) ;

Γ(1 − α)

β1−α
e−(1−λ

−α)Γ(2−α)ϑ, q = α ;

0, q ∈ ( α,∞ ) .

Then consider the denominator,

ϑ̃(ϖ)

∞∫
0

(
11{v < ϖ} − λ

1−α11{v < λ−1ϖ}

)
e−βve−ϑ̃(ϖ)(min{v, ϖ}−λ1−α min{v, λ−1ϖ})v−α dv

=
(
1 − λ1−α

)
ϑ̃(ϖ)

λ−1ϖ∫
0

e−βve−(1−λ
1−α)ϑ̃(ϖ)vv−α dv
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+
(
1 − λ1−α

)
ϑ̃(ϖ)eλ

−α ϑ̃(ϖ)ϖ

ϖ∫
λ−1ϖ

e−βve−ϑ̃(ϖ)vv−α dv

=
Γ(2 − α)ϑ

ϖα(1−α+q)

[ (
1 − λ1−α

) λ−1ϖα−q∫
0

e−βϖ
1−α+qze−(1−λ

1−α)Γ(2−α)ϑz z−α dz

+ eλ
−α ϑ̃(ϖ)ϖ

ϖα−q∫
λ−1ϖα−q

e−βϖ
1−α+qze−Γ(2−α)ϑz z−α dz

]
.

Assuming q < α, it is easy to verify that

lim
ϖ→0

(
1 − λ1−α

)
Γ(2 − α)ϑ

ϖα(1−α+q)

λ−1ϖα−q∫
0

e−βϖ
1−α+qze−(1−λ

1−α)Γ(2−α)ϑz z−α dz = 0.

Applying the L’Hôpital’s Rule to the integral in the above term,

(α − q)Γ(2 − α)ϑ
α(1 − α + q)

lim
ϖ→0

{ (
λα−1 − 1

) e(1−λ
−1)βϖe−λ

−1Γ(2−α)ϑϖα−q

ϖq
−

λα−1
e−λ

−1Γ(2−α)ϑϖα−q
− e−Γ(2−α)ϑϖ

α−q

ϖq

}

=



0, q ∈
(
0,
α

2

)
;

−
1 − λ−1

2 − α

(
Γ(2 − α)ϑ

)2
, q =

α

2
;

−∞, q ∈
( α
2
,∞

)
.

Putting them together gives immediately the results. □

In the last chapter, we show that the difference of the local time Lt to the limit process converging

to it follows a Gaussian process subordinated by Lt . Concerning {Lt } a self-similar process, we present

a similar result with the rescaled local time
{
Lλt

}
.

Theorem 6.4.4. Given Wt (ϖ) defined by (6.14), we shown that the limiting difference of ( Lt − λ
−αLλt )

can be described by

Vλ
t B lim

ϖ→0
ϖ−

α
2 Wt (ϖ), t > 0 .
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By central limit theorem, for every λ > 1,

Vλ
t ∼ N

(
0,σ2α(λ)Lt

)
, (6.16)

where N represents a normal distribution and

σ2α(λ) =
2
(
1 − λ−1

)
(1 − α)Γ(2 − α)

2 − α
. (6.17)

Proof. By inverting the Laplace transform in (6.15), we have

Lβ,ϑ
{

lim
ϖ→0

ϖ−
α
2 Wt (ϖ)

}
= −

∞∫
0

∂
∂β

{
e−β

αy
}
exp

{
ϑ2σ2α(λ)y

2

}
dy

αy
.

Recall that e−β
αy characterises a one-sided stable r.v. who admits an integral representation, and

the exponential term involving ϑ2 can be written into the moment generating function of a normal

distribution with mean zero and variance described by σ2α(λ)Lt . Accordingly, we have

Lβ,ϑ
{

Vλ
t

}
=

1

(1 − α)σα(λ)
√
2π3

×

∞∫
0

e−βt
∞∫

−∞

e−ϑv
∞∫

0

y
1

1−α−
3
2 t−

α
1−α e

− v2

2yσ2
α (λ)

∫ π

0
A(x)e−A(x)y

1
1−α t−

α
1−α dx dy dv dt ,

with

A(x) def==
{
(sin(αx))α(sin((1 − α)x))1−α

sin(x)

} 1
1−α

.

We thus obtain the density of Vλ
t . It is expressed in the form of a normal distribution subordinated by

Lt acting on the part of variance, i.e.

P
(
Vλ
t ∈ dv

)
=

∞∫
0

1√
2πσ2α(λ)y

e
− v2

2yσ2
α (λ) · P(Lt ∈ dy) dv.

The proof is completed by this representation. □
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7
Local Times related to Brownian Motion

With respect to a reflected Bessel process, approximations for the associated local time are established

from various paths describing the trajectories of the underlying process. In previous study, the whole

work is formulated with an age process recording the time the Bessel process has been away from

last zero. Making extensive use of martingale approach, we construct two versions arising as limiting

processes of the occupation time and the jump counting for approximating the local time at zero. By

means of path analysis, some results derived within the Bessel structure generalise easily to provide

similar results for the other diffusions [87], e.g. the Brownian local time at zero.

The purpose of this chapter is two-fold. First, we provide elementary proof for some celebrated

results on Brownian local times. Second, comparing with the local time constructed by the age process,

we shall develop relations between different choices of local times for Bessel path.

7.1 Definitions and Notations

We are concerned with a reflected process arising from setting the index α = ½ of a (2 − 2α)-

dimensional Bessel process with 0 < α < 1. Denote it by Y = {Yt, t ≥ 0} with Y0 = 0, it has a

non-negative Brownian path reflected instantaneously at zero, and thus Yt = |Bt | where Bt is a standard

Brownian motion (SBM). On a probability space (Ω,F ,P), Y is an R+∪{0}-valued continuous process

adapted to {Ft }t≥0.
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For every Borel set A ∈ B(R+), the occupation time of Y by the Brownian path up to time t ≥ 0 is

defined by the Lebesgue measure

Zt (A) B measure{ 0 ≤ s ≤ t | Ys ∈ A } =

t∫
0

11{Ys ∈ A} ds.

The resulting process Z(A) = {Zt (A), t ≥ 0} is continuous, non-decreasing and adapted to {Ft }, and

it belongs to the family of additional functionals. Denoted by LB
t (s) the Brownian local time at level

s up to time t, it intrinsically serves as the density with respect to Lebesgue measure for occupation

times, representable of the form:

Zt (A) =
∫
A

LB
t (s) ds.

Of special interest to us is the random measure LB
t (0), the local time at zero increases only on the zero

setZ = { t ≥ 0 | Yt = 0 }, such that

t∫
0

f (Ys) dLB
t (0) = f (0)LB

t (0).

for every non-negative Borel bounded function f . In the sequel, we will write LB simply for LB(0).

There are a couple of equivalent ways of constructing this measure. Among them, the following

representations are found significantly related to our work (see [62, Chapter 6] for reference) ;

( 1 ) P
(
lim
ϵ ↓0

1

2ϵ
measure{ s < t | Ys < ϵ } = L+t , t ≥ 0

)
= 1 .

( 2 ) P
(
lim
ϵ ↓0

√
2ϵ ν1

(
(0,∞) × [ 0, ϵ)

)
= L+t , t ≥ 0

)
= 1 .

∗ ν1 = The number of times {Ys; 0 ≤ s ≤ t} crosses down from ϵ to 0.

( 3 ) P
(
lim
ϵ ↓0

√
π

4ϵ
ν2

(
(0, t) × [ 0, ϵ)

)
= L+t , t ≥ 0

)
= 1 .

∗ ν2 = Total duration of all excursion intervals away from the origin of individual duration less

than ϵ , completed by {Ys; 0 ≤ s ≤ t}.

Note: L+t denotes the local time defined in the mentioned reference.

(1) is the remarkable Lévy’s "Mesure du Voisinage", which initiates the subsequent study on the

limiting behaviour in the neighbourhood of zero of Markov processes, for instance (2) and (3). (2)

is the downcrossing theorem, conjectured by Lévy and proved by Chung and Durrett [22], Itô and

110



McKean [55], Kasahara [63] and Csáki et al. [25] with various methods. Results corresponding to

(3) have been exploited by CHAPTER 5, in which ν2 is measured as
{
s < t | UY

s < ϵ
}

with UY
t =

t − sup{ s < t | Yt = 0 } a Brownian age process. For an in-depth study on Brownian local times,

please refer to Jeanblanc et al. [61, Chapter 4], Marcus and Rosen [78] and Itô and McKean [55].

Within the framework of martingale, Limit Theorem I & II are devoted to the refinements of some

known results about Brownian local times, with a special emphasis on the reconstructions of the above

representations(1) and (2).

In the sequel, to avoid confusions in presenting results we define a double Laplace transform for a

real-valued random variable Xt by

Lβ,ξ {Xt } B E

[∫ ∞

0
e−βte−ξXt dt

]
=

∫ ∞

0
e−βt E

[
e−ξXt

]
dt,

where the last equality follows from Fubini’s theorem. We further adopt the following notations

L
β
t {φ(t)} =

∫
R+

e−βt φ(t) dt,

the Laplace transform of some function φ(t) defined for all real numbers t ≥ 0, and

γ(α, z) =
∫ z

0
e−t tα−1 dt;

Γ(α, z) =
∫ ∞

z

e−t tα−1 dt,

for the lower and upper incomplete gamma functions, and thus γ(α, z) + Γ(α, z) = Γ(α).

7.2 Limit Theorem I : Local Time as Limit of Occupation Time

The martingale approach is particularly helpful in dealing with approximation and convergence in

distribution for Markov processes with continuous sample paths that can be characterised in terms of

its infinitesimal generator.

To fix ideas, we consider a continuous function f : R+ × [0, t) → R+ arising as the solution to

Az f (y, z) = 0 such that f (Yt, Zt (ϖ)) is a martingale. Az is the infinitesimal generator characterising
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the Markov process (Yt, Zt (ϖ)), and obtained from computing

Az f (y, z) = lim
t→0

t−1E
[

f
(
Yt, Zt (ϖ)

)]
.

The martingale properties are then of great help in investigating f (Yt, Zt (ϖ)) and its asymptotic

behaviour as ϖ→ 0. Furthermore, this section develops some distributional properties and facts that

are relevant to the occupation process, and preliminary to the limit theorem for the local time.

7.2.1 A Scaled Occupation Time Process

We first restrict ourselves to an occupation measure in the manner:

Zt (ϖ) =

t∫
0

11{Ys < ϖ} ds, ϖ > 0.

The infinitesimal generator of (Yt, Zt (ϖ)) acting on bounded functions f ∈ C2 is obtained as

Az f (y, z) =
1

2

∂2 f
∂y2

+ 11{y < ϖ}
∂ f
∂z
. (7.1)

Every suitable choice of f satisfying Az f = 0 is an (Ft )-martingale for all t ≥ 0.

Lemma 7.2.1. Let β, ζ ∈ R+ and h : R+ → R+ be a continuous bounded function in C2 . Then the

process f (Yt, Zt (ϖ)) is a martingale of the following form

t∫
0

e−βse−ζZs (ϖ) ds + e−βte−ζZt (ϖ)h(Yt ),

where depending on the domain of Yt , the function h(y) has representations

h(y) =


1

β + ζ
+ 2C1 cosh

(
y
√
2(β + ζ)

)
, y ≤ ϖ ;

1

β
+ C3e−y

√
2β, y > ϖ .

(7.2)

C1 and C3 are defined via

2C1 =

(
1
β −

1
β+ζ

)√
β

√
β cosh

(
ϖ

√
2(β + ζ)

)
+
√
β + ζ sinh

(
ϖ

√
2(β + ζ)

) ; and
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C3 = −
eϖ
√
2β

(
1
β −

1
β+ζ

)√
β + ζ

√
β + ζ +

√
β coth

(
ϖ

√
2(β + ζ)

) ,
in which sinh, cosh and coth are hyperbolic functions, such that

sinh(x) =
ex − e−x

2
& cosh(x) =

ex + e−x

2
& coth(x) =

cosh(x)
sinh(x)

.

Proof. Assuming that f (y, z) is of an exponential form like this

t∫
0

e−βse−ζZs ds + e−βte−ζzh(y) .

Expanding f (y, z) with Wt =

∫ t

0
e−βse−ζZs ds leads to

A f (y, z,w, t) = Az f +
∂ f
∂t
+ e−βte−ζz

∂ f
∂w
= 0 .

By substitution, 
h′′(y) − 2(β + ζ)h(y) + 2 = 0, y < ϖ;

h′′(y) − 2βh(y) + 2 = 0, y > ϖ.

(7.3)

Referring to the Feynman-Kac Formula [61, p112], bounded and continuous solutions to (7.3) are

given by

h(y) =


1

β + ζ
+ C1ey

√
2(β+ζ ) + C2e−y

√
2(β+ζ ), 0 ≤ y < ϖ;

1

β
+ C3e−y

√
2β, y ≥ ϖ.

To decide the values of Ci, i = 1,2,3, we rely on the continuity of h and h′ atϖ, the boundedness of

h(y) as y < ∞ and h′(0) = 0. These produce C1 = C2 and then

C1

(
eϖ
√
2(β+ζ ) + e−ϖ

√
2(β+ζ )

)
− C3e−ϖ

√
2β =

1

β
−

1

β + ζ
;

C1

√
β + ζ

(
eϖ
√
2(β+ζ ) − e−ϖ

√
2(β+ζ )

)
+ C3

√
βe−ϖ

√
2β = 0 .
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As a result, the unique solutions are completed with

C1 =

1

β
−

1

β + ζ(
eϖ
√
2(β+ζ ) + e−ϖ

√
2(β+ζ )

)
+

(
eϖ
√
2(β+ζ ) − e−ϖ

√
2(β+ζ )

)√β + ζ
√
β

;

C3 = − C1eϖ
√
2β

(
eϖ
√
2(β+ζ ) − e−ϖ

√
2(β+ζ )

)√β + ζ
√
β
.

□

A main contribution of the martingale process is to produce the characteristic function of Zt (ϖ).

Corollary 7.2.2. Let β, ζ > 0, the double Laplace transform of Zt (ϖ) is given by

Lβ,ζ {Zt (ϖ)} =
1

β + ζ
+ ζ Lβ,ζ

{
P(Zt (ϖ) ≤ z)

}
,

where for all 0 < z < t,

Lβ,ζ
{
P(Zt (ϖ) ≤ z)

}
=[ √

β(β + ζ)

(√
β cosh

(
ϖ

√
2(β + ζ)

)
+

√
β + ζ sinh

(
ϖ

√
2(β + ζ)

)) ]−1
. (7.4)

Proof. By the property of a martingale process, having h(y) a bounded function on all support of y

gives

lim
t→∞
E


t∫

0

e−βse−ζZs (ϖ) ds + e−βte−ζZt (ϖ)h(Yt )


=

∞∫
0

e−βs E
[
e−ζZs (ϖ)

]
ds

= h(0).

On the other hand, given Zt (ϖ) ∈ (0, t) for anyϖ > 0,

∞∫
0

e−βt
∫ t

0
e−ζz P(Zt (ϖ) ∈ dz) dt
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=

∞∫
0

e−βt
(

e−ζ t + ζ
∫ t

0
e−ζz P(Zt (ϖ) ≤ z) dz

)
dt

=
1

β + ζ
+ ζ

∞∫
0

e−βt
∫ t

0
e−ζz P(Zt (ϖ) ≤ z) dz dt .

This completes the proof. □

By means of inverse Laplace transform, the law of Zt (ϖ) is obtained in an explicit form.

Theorem 7.2.3. Givenϖ > 0, we define ψ(z, t;ϖ) by

P(Zt (ϖ) ∈ dz) = ψ(z, t ;ϖ) dz .

Then for all ζ > 0 and 0 < z < t,

t∫
0

e−ζz
∫ z

0
ψ(x, t;ϖ) dx dz =

4ϖ

π2

t∫
0

e−ζz
∫ z

0
ψ1(x, t) ψ2(z − x, t) dx dz , (7.5)

with

ψ1(x, t) =
∫ x

0

(
(t − x)−

1
2 − (t − v)−

1
2

)
v−

3
2 e−

ϖ2

2v dv ,

ψ2(x, t) =
∫ x

0

[
(t − x)(x − v)

]− 1
2
(t − v)−1v−

3
2

∞∑
k=0

k2e−
2k2ϖ2

v cos

(
k cos−1

(
2x − t − v

t − v

) )
dv ,

and thus

ψ(z, t ;ϖ) =
4ϖ

π2

z∫
0

ψ2(z − x, t)(t − x)−
3
2

(
1 − Φ

[
ϖ
√

x

] )
dx , (7.6)

where Φ[x] is the CDF of a standard normal distribution.

Proof. To invert (7.4), we write it into

2

(β + ζ)
√
β

1(√
β + ζ +

√
β
)
eϖ
√
2(β+ζ ) − ζ

e−ϖ
√
2(β+ζ )(√

β + ζ +
√
β
)
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=
2

(β + ζ)
√
β

e−ϖ
√
2(β+ζ )(√

β + ζ +
√
β
) 1

1 −
ζe−2ϖ

√
2(β+ζ )(√

β + ζ +
√
β
)2

=
2

(β + ζ)

e−ϖ
√
2(β+ζ )

√
β
(√
β + ζ +

√
β
) ∞∑
k=0

ζk(√
β + ζ +

√
β
)2k e−2kϖ

√
2(β+ζ ).

First the part before Σ can be expressed as some proper transform,

2

(β + ζ)

e−ϖ
√
2(β+ζ )

√
β
(√
β + ζ +

√
β
)

=
ϖ

π

∞∫
0

e−βve−ζv
∫ v

0
x−

3
2 e−

ϖ2

2x dx dv

∞∫
0

e−βt t−
3
2
1 − e−ζ t

ζ
dt

=
ϖ

π

∞∫
0

e−βt
∫ t

0
(t − v)−

3
2

e−ζv − e−ζ t

ζ

∫ v

0
x−

3
2 e−

ϖ2

2x dx dv dt

=
2ϖ

π

∞∫
0

e−βt
∫ t

0
e−ζz

∫ z

0

(
(t − z)−

1
2 − (t − x)−

1
2

)
x−

3
2 e−

ϖ2

2x dx dz dt.

With reference to Bateman [3], it can be checked that

ζk(√
β + ζ +

√
β
)2k = k

∞∫
0

e−βt t−1e−
1
2 ζ t Ik

(
ζ t
2

)
dt

e−ζ t Ik(ζ t) =
1

π

2t∫
0

e−ζx
(
(2t − x)x

)− 1
2
cos

(
k cos−1

( x − t
t

))
dx.

Then the Σ part is calculated to

∞∑
k=0

ζk(√
β + ζ +

√
β
)2k e−2kϖ

√
2(β+ζ )

=

√
2ϖ
√
π

∞∑
k=0

k2
∞∫

0

e−βt t−1e−
1
2 ζ t Ik

(
1

2
ζ t

)
dt

∞∫
0

e−βx e−ζx x−
3
2 e−

2k2ϖ2

x dx

=

√
2ϖ

π
√
π

∞∑
k=0

k2
∞∫

0

e−βv
∫ v

0
(v − t)−

3
2 e−

2k2ϖ2

v−t t−1 ×

e−ζ (v−t)
∫ t

0
e−ζx [ (t − x)x ]−

1
2 cos

(
k cos−1

(
2x − t

t

))
dx dt dv
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=

√
2ϖ

π
√
π

∞∫
0

e−βv
∫ v

0
e−ζx

∫ x

0
(v − t)−1t−

3
2 [ (v − x)(x − t) ]−

1
2 ×

∞∑
k=0

k2e−
2k2ϖ2

t cos

(
k cos−1

(
2x − v − t

v − t

))
dt dx dv.

Combining two parts together gives (7.5). Further due to the convolution theorem,∫ z

0
ψ(x, t;ϖ) dx =

4ϖ

π2

z∫
0

∫ x

0

ϖ
√
2π

s−
3
2 e−

ϖ2

2s

(
(t − z + x − s)−

1
2 − (t − s)−

1
2

)
ψ2(x − s, t) ds dx

and (7.6) follows immediately by differentiating with z,

ψ(z, t ;ϖ) =
2ϖ

π2

z∫
0

ψ2(z − x, t)(t − x)−
3
2

∫ x

0

ϖ
√
2π

w−
3
2 e−

ϖ2

2w dw dx

=
4ϖ

π2

z∫
0

ψ2(z − x, t)(t − x)−
3
2

(
1 − Φ

[
ϖ
√

x

] )
dx .

□

7.2.2 Convergence of Occupation Time to the Brownian Local Time

An important application on the convergence of Zt (ϖ) to the Brownian local time is discussed. To

perform calculations, we scale the occupation measure by a factorϖ−p with p taking any non-negative

values. To get a better understanding of the asymptotic behaviour ofϖ−pZt (ϖ) asϖ→ 0, we take

advantage of Lévy’s continuity theorem, finding the limit of the corresponding characteristic function

subject to a proper choice on p.

Lemma 7.2.4. For all β, ζ > 0 and p > 0, it holds that

lim
ϖ→0

Lβ,ζ { ϖ−pZt (ϖ) } = L
β,ζ

{
lim
ϖ→0

ϖ−pZt (ϖ)
}
;

and in particular for p = 1,

Lβ,ζ
{

lim
ϖ→0

ϖ−1Zt (ϖ)
}
=

(
β +

√
2βζ

)−1
. (7.7)
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Proof. Let us go back to the martingale process obtained in LEMMA 7.2.1. First we replace ζ with

ϖ−pζ . Restricted to the fact that Yt ≥ ϖ > 0 as a result of consideringϖ→ 0+, we thus have

lim
ϖ→0

Lβ,ζ { ϖ−pZt (ϖ) } =
1

β
+ lim
ϖ→0

C3(ϖ),

and

C3(ϖ) = −

√
β +

ζ
ϖp

(
1
β −

1

β+
ζ

ϖp

)
eϖ
√
2β√

β +
ζ
ϖp +

√
β coth

(
ϖ

√
2
(
β +

ζ
ϖp

) ) .
To evaluate the limit of C3 when takingϖ→ 0, we rewrite it into the form

e−ϖ
√
2βC3(ϖ) =

©­­«1 +
√
β√

β +
ζ
ϖp

ª®®¬
©­­­­­«

2√
β√

β +
ζ
ϖp +

√
β −

(√
β +

ζ
ϖp −

√
β

)
e
−2ϖ

√
2
(
β+

ζ
ϖp

) − 1

β

ª®®®®®¬
.

First to notice is the first bracket that is equal to 1 as taking ϖ to zero with any p > 0. Considering the

denominator in the other bracket, it reaches some limit by choosing p = 1 with the aid of L’Hôpital’s

Rule . As a result, the limiting denominator is calculated to

lim
ϖ→0

(√
β +

ζ

ϖp
+

√
β

)
−

(√
β +

ζ

ϖp
−

√
β

)
e
−2ϖ

√
2
(
β+

ζ
ϖp

)

= lim
ϖ→0

{ √
β

(
1 + e

−2ϖ

√
2
(
β+

ζ
ϖ

) )
+

2
√
2
©­­«1 −

√
β√
β +

ζ
ϖ

ª®®¬
(
2ϖ2

ζ

(
β +
ζ

ϖ

)2
−ϖ

(
β +
ζ

ϖ

) )
e
−2ϖ

√
2
(
β+

ζ
ϖ

) }
= 2

√
β + 2

√
2ζ .

Then the result follows. □

The asymptotics provide an approximation to the Brownian local time at zero, whose representation

coincides with Lévy’s "Mesure du Voisinage". Thereby, in the sense of equality in distribution, we

recover two well-known results concerning Lévy’s local time.
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Theorem 7.2.5. Let LB
t denote the Lebesgue measure of the time spent by Y at zero up to time t. By

the continuity theorem, there is a limit relation holding for all t > 0 such that

ϖ−1Zt (ϖ)
D
→ 2LB

t , asϖ → 0 . (7.8)

Furthermore, the following identity holds in law

{
Yt, LB

t , t ≥ 0
} law
= { Mt − Bt, Mt, t ≥ 0 }, (7.9)

where {Mt, t ≥ 0} defined by Mt B max
0≤s≤t

Bs is the running maximum before time t of a standard

Brownian motion Bt .

Proof. The key to proving the convergence and to characterising the distribution of the corresponding

limit process is inverting the Laplace transform in (7.7). We proceed with an integral representation of

Lβ,ζ
{

lim
ϖ→0

ϖ−1Zt (ϖ)
}
= − 2

∞∫
0

∂
∂β

{
e−
√
2βx

}
e−ζ

′x dx
x

= − 2

∞∫
0

∂
∂β

{ ∫ ∞

0
e−βt

x
√
2πt3

e−
x2

2t dt
}

e−ζ
′x dx

x

=

∞∫
0

e−βt
∫ ∞

0
e−ζ

′x 2
√
2πt

e−
x2

2t dx dt .

with ζ ′ = 2ζ . Obviously, the integrand is the density function of a running maximum of BM, and thus

the other identity in (7.9) follows immediately by virtue of the reflection principle. □

Underlying the identity is a famous result known as "Lévy’s Identity in Law". It provides a

representation connecting the local time of a reflected BM with the running maximum of a standard

BM [89, Chap 3]. The latter process is strictly increasing with upward jumps only occurring in

a Poisson-like manner. Motivated by the concept of Poisson random measure, we shall present,

equivalent to the one in (7.8), an alternate measure in terms of downcrossings.
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7.3 Limit Theorem II : Local Time as Limit of Downcrossings

Approximating local times with Poisson-like variables is familiar to us. Recalling the construction

in CHAPTER 5.4, we introduce a point process counting the number of times that an age process

jumps down to zero. By virtue of the association between the age and the underlying Bessel/Brownian

processes, the jump counting is equal in quantity to the number of completed excursions away from

zero by the underlying path. In other words, it is equal to the number of times that the underlying

process crosses down from ε to zero. Following a similar approach to that dealing with age processes,

the objective of this section is to recast the "Lévy’s Downcrossing Theorem".

On the same space that Yt is defined, let Mt (ε) be a process counting the number of downcrossings

suffered by Y over a time interval (0, t). A precise definition of this measure is presented by

Mt (ε) =

∞∑
i=1

11{τε
i ≤ t},

with

τεi B inf
{

s > τεi−1
�� Ys = 0

}
, τ0 = 0.

On the basis of it, we define a scaled measure of the form

εκMt (ε), ε > 0.

It is worth to mention that εκ with κ taking non-negative values is a speed measure for characterising the

convergence as ε approaches zero, and it corresponds to the (scaled) unit increase at each occurrence

of downcrossing by the BM .

Denoted by (Yt,Mt (ε)) the concerned Markov process, the infinitesimal generator acting on a

non-negative C2-function f : R+ × N0 → R+ has the form

Am f (y,m) =
1

2

∂2 f
∂y2
, with f (0,m) = f ( ε, m + εκ ) . (7.10)

To examine the limit of this counting measure, we find its characteristic function derived from a proper

martingale process for (Yt,Mt (ε)).
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Lemma 7.3.1. The limiting behaviour of εκMt (ε) is characterised by the Laplace function given by

lim
ε→0
Lβ,ξ { εκMt (ε) } = L

β,ξ
{
lim
ε→0
εκMt (ε)

}
.

For all β, ξ > 0, the limit is assured with κ = 1 and then

Lβ,ξ
{
lim
ε→0
εMt (ε)

}
=

(
β +
ξ
√
β
√
2

)−1
. (7.11)

Proof. The martingale of interest is implied by the solution to A f (y,m,w, t) = 0, with f in the form

w + e−βte−ξmh(y).

Referring to LEMMA 7.2.1, a bounded and continuous solution should have the form

h(y) =
1

β
+ Ce−y

√
2β, y > 0 .

The constant C is determined by the boundary condition: h(0) = e−ξε
κ
h(ε), which generates

1

β
+ C = e−ξε

κ

(
1

β
+ Ce−ε

√
2β

)
.

C is thus determined as

C = −
1 − e−ξε

β
(
1 − e−(ξ+

√
2β)ε

) .
This proof is completed by taking ε to zero. □

Theorem 7.3.2. The local time at zero of a reflected Brownian motion satisfies,

εMt (ε)
D
→ LB

t , as ε → 0 . (7.12)

Proof. Comparing the characteristic function in (7.11) with that in (7.7), we simply get

E
[
exp

{
−ξ lim

ε→0
εMt (ε)

}]
= E

[
exp

{
−ζ ′LB

t

}]
for every ξ = ζ ′. By the continuity theorem this implies the identity between Mt (ε) and LB

t . □
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7.4 Limit Theorem III : A Central Limit Theorem for Local Time

It is a well-known fact that there are various ways of approximating a Brownian local time at zero,

generally by limiting a sequence of processes that describe the behaviour in the neighbourhood

of zero of Brownian trajectories. Among such processes, the occupation time and the quantity of

downcrossings are being selected to construct limit relations between the local time and themselves.

On the basis of the results achieved, the asymptotics of the (normalised) difference between the local

time and the approximations is studied in this section.

7.4.1 A Scaled Difference about Local Time

In regard to the convergence of stochastic processes to the Brownian local time at zero, we have

constructed two limit relations, summarised as below

lim
ϖ→0

(2ϖ)−1Zt (ϖ)
D
= LB

t
D
= lim

ε→0
εMt (ε), ∀ t ≥ 0.

Following the identities, we define a stochastic process describing the difference by

Vt (ε,ϖ) = ϖ
−q

(
Zt (ϖ)

2ϖ
− εMt (ε)

)
, t ≥ 0,

with q a scaler taking non-negative values. In particular by allowing ε → 0,

Vt (ϖ) = lim
ε→0

Vt (ε,ϖ) = ϖ
−q

(
Zt (ϖ)

2ϖ
− LB

t

)
.

We are concerned with the asymptotic results of Vt (ε,ϖ) by taking ε andϖ to zero, normalized byϖq

for measuring the speed that makes the convergence takes place. To characterise the difference process,

we begin with a martingale process around (Yt, Zt (ϖ),Mt (ε)) whose generator is simply obtained by

merging (7.1) with (7.10). See below for this result.

Lemma 7.4.1. Let β, ζ ∈ R+ and h : R+ → R+ be a non-negative bounded function in C2. Then the

process f
(
Yt, Zt (ϖ), LB

t

)
is a martingale of the following form

t∫
0

e−βse−ζZs (ϖ)e−ξL
B
s ds + e−βte−ζZt (ϖ)e−ξL

B
t h(Yt ), (7.13)
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where depending on the domain of Yt , the function h(y) has representations

h(y) =


1

β + ζ
+ C1(ϖ) ey

√
2(β+ζ ) + C2(ϖ) e−y

√
2(β+ζ ), 0 ≤ y < ϖ ;

1

β
+ C3(ϖ)e−y

√
2β, y ≥ ϖ .

(7.14)

C1,C2 and C3 are defined via

C1(ϖ) =

√
β
(
1
β −

1
β+ζ

) (√
2(β + ζ) + ξ

)
−

ξ
β+ζ

(√
β + ζ −

√
β
)
e−ϖ
√
2(β+ζ )

d+ϖ − d−ϖ
;

C2(ϖ) =

√
β
(
1
β −

1
β+ζ

) (√
2(β + ζ) − ξ

)
−

ξ
β+ζ

(√
β + ζ +

√
β
)
eϖ
√
2(β+ζ )

d+ϖ − d−ϖ
;

C3(ϖ) e−ϖ
√
2β =

2√
β(β + ζ)

d+ϖ − ξ
√
β

d+ϖ − d−ϖ
−

(
1

β
+

1√
β(β + ζ)

)
,

with

d−ϖ =
(√
β + ζ −

√
β
) (√

2(β + ζ) − ξ
)
e−ϖ
√
2(β+ζ ) ; (7.15)

d+ϖ =
(√
β + ζ +

√
β
) (√

2(β + ζ) + ξ
)
eϖ
√
2(β+ζ ) . (7.16)

Proof. According to what we have structured, the martingale in (7.13) is equivalent to

lim
ε→0


t∫

0

e−βse−ζZs (ϖ)e−ξεMs (ε) ds + e−βte−ζZt (ϖ)e−ξεMt (ε)hε(Yt )
 .

This will be achieved by two procedures: finding the representation of hε(Yt ) and then taking the limit

of ε to zero.

Due to the complexity involved in calculations, this proof only includes several key results and

leaves the detailed steps to Appendix I. We have found that depending on the domain of Yt , the

function hε(Yt ) admits representations

hε(y) =


1

θ
+ C1(ε,ϖ) ey

√
2θ + C2(ε,ϖ) e−y

√
2θ, 0 ≤ y < ϖ ;

1

β
+ C3(ε,ϖ) e−y

√
2β, y ≥ ϖ ,

(7.17)
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and with θ B β + ζ

C1(ε,ϖ) = −

(
1
√
β
−

1
√
θ

)
e−ϖ

√
2θ

√
θ

(
1 − e−ξε

)√
β − d+ε,ϖ

d−ε,ϖ + d+ε,ϖ
;

C2(ε,ϖ) = −

(
1
√
β
+

1
√
θ

)
eϖ
√
2θ

√
θ

(
1 − e−ξε

)√
β + d−ε,ϖ

d−ε,ϖ + d+ε,ϖ
;

e−ϖ
√
2β C3(ε,ϖ) = −

2
√
βθ

(
1 − e−ξε

)
θ
√
β − d+ε,ϖ

d−ε,ϖ + d+ε,ϖ
−

1

β

(
1 +

√
β
√
θ

)
,

in which

d−ε,ϖ =
(√
θ −

√
β
) (
1 − e−ε(ξ−

√
2θ)

)
e−ϖ

√
2θ ;

d+ε,ϖ =
(√
θ +

√
β
) (
1 − e−ε(ξ+

√
2θ)

)
eϖ
√
2θ .

We proceed with calculating the limit of hε(y). Given the solutions of C1,C2 and C3, we now take

ε to zero and obtain

C1(ϖ) = lim
ε→0

C1(ε,ϖ)

=

√
β
(
1
β −

1
θ

) (√
2θ + ξ

)
−

ξ
θ

(√
θ −
√
β
)
e−ϖ

√
2θ(√

θ +
√
β
) (√

2θ + ξ
)
eϖ
√
2θ −

(√
θ −
√
β
) (√

2θ − ξ
)
e−ϖ

√
2θ

;

C2(ϖ) = lim
ε→0

C2(ε,ϖ)

=

√
β
(
1
β −

1
θ

) (√
2θ − ξ

)
−

ξ
θ

(√
θ +
√
β
)
eϖ
√
2θ(√

θ +
√
β
) (√

2θ + ξ
)
eϖ
√
2θ −

(√
θ −
√
β
) (√

2θ − ξ
)
e−ϖ

√
2θ

;

C3(ϖ) e−ϖ
√
2β = lim

ε→0
C3(ε,ϖ) e−ϖ

√
2β

=

2√
βθ

(√
θ +
√
β
) (√

2θ + ξ
)
eϖ
√
2θ −

2ξ
√
θ(√

θ +
√
β
) (√

2θ + ξ
)
eϖ
√
2θ −

(√
θ −
√
β
) (√

2θ − ξ
)
e−ϖ

√
2θ

−
1

β

(
1 +

√
β
√
θ

)
.
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For the sake of simplicity in presenting results, we introduce d−ϖ and d+ϖ as given by (7.15) and (7.16)

respectively. After a bit simplification with the notations, the solutions are converted into the form

presented. □

Given h a bounded function on all support of Yt , due to the martingale property we have

E


∞∫

0

e−βse−ζZs (ϖ)e−ξL
B
s ds

 =
1

β + ζ
+ C1(ϖ) + C2(ϖ).

In consideration of the caseϖ→ 0, however, as a result of the continuity constraint at the joint point

ϖ, it is obvious to have

1

β + ζ
+ C1(ϖ) eϖ

√
2(β+ζ ) + C2(ϖ) e−ϖ

√
2(β+ζ ) =

1

β
+ C3(ϖ)e−ϖ

√
2β .

While taking the limit ofϖ, the above equation still holds. That is to say,

lim
ϖ→0
E


∞∫

0

e−βse−ζZs (ϖ)e−ξL
B
s ds

 =
1

β
+ lim

ϖ→0
C3(ϖ) e−ϖ

√
2β .

7.4.2 Convergence of the Difference to a Brownian Motion

To decide a suitable normalizing factor that makes the limiting difference having a non-trivial distribu-

tion, we investigate the asymptotic behaviour through its characteristic function. The associated results

are presented below.

Lemma 7.4.2. We denote by Lβ,ϑ{Vt (ϖ)} the double Laplace transform of Vt (ϖ). For all β,ϑ > 0, it

holds that

lim
ϖ→0

Lβ,ϑ{Vt (ϖ)} = L
β,ϑ

{
lim
ϖ→0

Vt (ϖ)
}
,

and in particular for q = 1
2 ,

Lβ,ϑ
{

lim
ϖ→0

Vt (ϖ)
}
=

(
β −

√
β
√
2
ϑ2

)−1
. (7.18)
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Proof. Replacing ζ → ϑ
2ϖq+1 and ξ → − ϑ

ϖq produces,

h(ϖ,ϑ) =
1

β
+ C3(ϖ) e−ϖ

√
2β

=

4√
2β

d+ϖ(ϑ; q) + 4ϑ
ϖq√

2β + ϑ
ϖq+1

(
d+ϖ(ϑ; q) − d−ϖ(ϑ; q)

) − 1√
β
(
β + ϑ

2ϖq+1

) ,
and

d−ϖ(ϑ; q) =

(√
2β +

ϑ

ϖq+1
−

√
2β

) (√
2β +

ϑ

ϖq+1
+
ϑ

ϖq

)
e−ϖ

√
2β+ ϑ

ϖq+1 ;

d+ϖ(ϑ; q) =

(√
2β +

ϑ

ϖq+1
+

√
2β

) (√
2β +

ϑ

ϖq+1
−
ϑ

ϖq

)
eϖ

√
2β+ ϑ

ϖq+1 .

The limit of h(ϖ,ϑ) asϖ→ 0 has been calculated with q = 1
2 , so that

lim
ϖ→0

e
−ϖ

√
2β+ ϑ√

ϖ3

2β + ϑ√
ϖ3

{
4ϑ
√
ϖ
+

4
√
2β

d+ϖ
(
ϑ; 12

) }
=

4
√
2β
, (7.19)

and

lim
ϖ→0

e
−ϖ

√
2β+ ϑ√

ϖ3√
2β + ϑ√

ϖ3

{
d+ϖ

(
ϑ; 12

)
− d−ϖ

(
ϑ; 12

) }
= 2

√
2β − 2ϑ2. (7.20)

These two results are obtained by tedious calculations, which has been excluded by this proof but

relegated to Appendix II. □

Referring to the work presented in CHAPTER 5 within the context of Bessel age processes, the

limiting difference between the local time at zero and its approximations is characterised converging in

distribution to a Gaussian process. In the following, we show that this result is extended to the case of

Brownian motion with no surprise.

Theorem 7.4.3. By central limit theorem, it holds for all 0 < α < 1 that

ϖ−
1
2

(
Zt (ϖ)

2ϖ
− LB

t

)
D
→ N

(
0, σ2(t)

)
, as ϖ→ 0.

N represents a normal distribution whose variance σ2(t) = 2LB
t .
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Proof. The result is obtained straightforwardly by inverting (7.18),

√
2
√
β

1
√
2β − ϑ2

= − 2

∞∫
0

∂
∂β

{
e−t
√
2β

}
etϑ

2 dt
t

= − 2

∞∫
0

∂
∂β


∞∫

0

e−βx
t

√
2πx3

e−
t2

2x dx



∞∫

−∞

e−ϑy
1

√
2π2t

e−
y2

4t dy


dt
t

=

∞∫
0

e−βx
∞∫

−∞

e−ϑy
∫ ∞

0

2
√
2πx

e−
t2

2x
1

√
2π2t

e−
y2

4t dt dy dx.

Therefore, the difference process can be realised as a driftless time-changed Brownian motion, replacing

the real time by the local time LB
t . □

This central limit theorem is a well-known result as a sequel to the Lévy’s downcrossing theorem,

early proved by Kasahara [63, 64] and later extended by Csáki et al. [25].

127



Appendix I : A Supplementary Proof for THEOREM 7.4.1.

Proof. We begin with the infinitesimal generator acting on

t∫
0

e−βse−ζZs e−ξεMs (ε) ds + e−βte−ζZt e−ξεMt (ε)h(Yt )

with h(y) a bounded Borel function. Denoted by A f (y, z,m,w, t) the generator , then

A f (y, z,m,w, t) =
∂ f
∂t
+

1

2

∂2 f
∂y2

+ 11{y < ϖ}
∂ f
∂z
+ e−βte−ζze−ξm

∂ f
∂w
,

with a boundary condition f (0, z,m,w, t) = f ( ε, z,m + ε,w, t ) and 0 < ε < ϖ. By substitution with

f (y, z,m,w, t) = w + e−βte−ζze−ξmh(y) ,

we get a differential equation

h′′(y) − 2
(
β + ζ11{y < ϖ}

)
h(y) + 2 = 0 . (7.21)

Setting

h(y) =


h1(y), y < ϖ ;

h2(y), y > ϖ ,

recall that the bounded and continuous solutions to (7.21) are obtained before as


h1(y) =

1

β + ζ
+ C1ey

√
2(β+ζ ) + C2e−y

√
2(β+ζ ), 0 ≤ y < ϖ;

h2(y) =
1

β
+ C3e−y

√
2β, y ≥ ϖ.

The values of { Ci, i = 1,2,3 } are decided by fulfilling the conditions of continuity and boundedness.

To be specific, we need
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I. lim
y→∞

h2(y) < ∞ ;

II. h1(ϖ) = h2(ϖ) ;

III. h′1(ϖ) = h′2(ϖ) ;

IV. h1(0) = e−ξεh1(ε) .

These produce a system of three equations



1

β + ζ
+ C1eϖ

√
2(β+ζ ) + C2e−ϖ

√
2(β+ζ ) =

1

β
+ C3e−ϖ

√
2β;

C1

√
2(β + ζ)eϖ

√
2(β+ζ ) − C2

√
2(β + ζ)e−ϖ

√
2(β+ζ ) = − C3

√
2βe−ϖ

√
2β;

1

β + ζ
+ C1 + C2 = e−ξε

(
1

β + ζ
+ C1eε

√
2(β+ζ ) + C2e−ε

√
2(β+ζ )

)
.

Rearranging terms gives,

2C1 =

(
1

β
−

1

β + ζ

)
e−ϖ
√
2(β+ζ ) + C3e−ϖ

(√
2(β+ζ )+

√
2β

) (
1 −

√
β

√
β + ζ

)
;

2C2 =

(
1

β
−

1

β + ζ

)
eϖ
√
2(β+ζ ) + C3eϖ

(√
2(β+ζ )−

√
2β

) (
1 +

√
β

√
β + ζ

)
;

C1E−ε,ϖ + C2E+ε,ϖ = −
1 − e−ξε

β + ζ
.

Solving them in the system, we get solutions

C1 =
−
(1−e−ξε)

β+ζ

(
1 −

√
β

√
β+ζ

)
e−ϖ
√
2(β+ζ ) +

(
1
β −

1
β+ζ

) √
β

√
β+ζ

E+ε,ϖ(
1 −

√
β

√
β+ζ

)
e−ϖ
√
2(β+ζ )E−ε,ϖ +

(
1 +

√
β

√
β+ζ

)
eϖ
√
2(β+ζ )E+ε,ϖ

;

C2 =
−
(1−e−ξε)

β+ζ

(
1 +

√
β

√
β+ζ

)
eϖ
√
2(β+ζ ) −

(
1
β −

1
β+ζ

) √
β

√
β+ζ

E−ε,ϖ(
1 −

√
β

√
β+ζ

)
e−ϖ
√
2(β+ζ )E−ε,ϖ +

(
1 +

√
β

√
β+ζ

)
eϖ
√
2(β+ζ )E+ε,ϖ

;

e−ϖ
√
2βC3 =

−
2(1−e−ξε)

β+ζ −

(
1
β −

1
β+ζ

) (
e−ϖ
√
2(β+ζ )E−ε,ϖ + eϖ

√
2(β+ζ )E+ε,ϖ

)
(
1 −

√
β

√
β+ζ

)
e−ϖ
√
2(β+ζ )E−ε,ϖ +

(
1 +

√
β

√
β+ζ

)
eϖ
√
2(β+ζ )E+ε,ϖ

,

where

E−ε,ϖ B
(
1 − e−ε

(
ξ −
√
2(β+ζ )

) )
; and
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E+ε,ϖ B
(
1 − e−ε

(
ξ +
√
2(β+ζ )

) )
.

With a bit of simplification, the representation of h(y) together with C1,C2 and C3 yields hε(y) in

(7.17) □

130



Appendix II : A Supplementary Proof for LEMMA 7.4.2 .

Proof. To find a proper result of lim
ϖ→0

h(ϖ,ϑ), we multiply both the nominator and the denominator

with

e−ϖ
√
2β+ ϑ

ϖq+1

(
2β +

ϑ

ϖq+1

)−1
,

so we get

h(ϖ,ϑ) =
Q1(ϖ)

Q2(ϖ)
−

1√
β
(
β + ϑ

2ϖq+1

)
and

Q1(ϖ) =
e−ϖ
√
2Θ(ϖ)

2Θ(ϖ)

{
4ϑ

ϖq
+

4
√
2β

(√
2Θ(ϖ) +

√
2β

) (√
2Θ(ϖ) −

ϑ

ϖq

)
eϖ
√
2Θ(ϖ)

}
;

Q2(ϖ) =
e−ϖ
√
2Θ(ϖ)√

2Θ(ϖ)

{ (√
2Θ(ϖ) +

√
2β

) (√
2Θ(ϖ) −

ϑ

ϖq

)
eϖ
√
2Θ(ϖ)

−

(√
2Θ(ϖ) −

√
2β

) (√
2Θ(ϖ) +

ϑ

ϖq

)
e−ϖ
√
2Θ(ϖ)

}
.

First notice that for all q > 0,

lim
ϖ→0

1√
β
(
β + ϑ

2ϖq+1

) = 0,

so we put focus on the limits of Q1(ϖ) and Q2(ϖ). For simplicity in notations, let

2Θ(ϖ) B
(
2β +

ϑ

ϖq+1

)
.

Considering the numerator, applying the L’Hôpital’s Rule gives

lim
ϖ→0

Q1(ϖ) = lim
ϖ→0

{
e−ϖ
√
2Θ(ϖ)

Θ(ϖ)

2ϑ

ϖq
+

4
√
2β

(
1 +

√
2β√

2Θ(ϖ)

) (
1 −

ϑ

ϖq
√
2Θ(ϖ)

) }

=



4
√
2β
, 0 < q < 1 ;

4
√
2β

(
1 −
√
ϑ
)
, q = 1 ;

−∞, q > 1 .
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Then for the denominator,

lim
ϖ→0

Q2(ϖ) = lim
ϖ→0

√
2Θ(ϖ)

{ (
1 +

√
β√
Θ(ϖ)

) (
1 −

ϑ

ϖq
√
2Θ(ϖ)

)
−

(
1 −

√
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Θ(ϖ)

) (
1 +

ϑ

ϖq
√
2Θ(ϖ)

)
e−2ϖ
√
2Θ(ϖ)

}
. (7.22)

It becomes indeterminate (i.e. neither 0 nor∞) for 0 < q < 1, in which case a limit is attainable with

the help of L’Hôpital’s Rule. (7.22) is then calculated to

lim
ϖ→0
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If we further restrict q to
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where q has been chosen as ½. This completes the proof of (7.20), as a result of which (7.19) follows

immediately. □
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