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Abstract

By means of excursion theory, the evolution of a continuous Markov process satisfying regularity
assumptions is analysed in terms of its behaviour between visits to a recurrent point, for instance the
point zero in the state space of Brownian and Bessel diffusions of type reflecting at the origin. As a
preliminary conclusion, a sample path of the process can be reconstructed by the excursions away from
zero of random finite lengths and the time spent at visits to zero. These two together constitute the core

of the work in this thesis.

With respect to the zero-free intervals, we study the duration of the excursion in process away
from zero by time ¢, namely the age process, of a Bessel process instantaneously reflected at the origin.
The main contribution of our work is the development of a hybrid structural-reduced form model with
an endogenous intensity defined by the age process. This model provides a framework for assessing
default probabilities within a circumstance of very limited information, assuming that some statistics
about a firm are not observable but the time points when they reach certain level are. Results presented
include distributional properties for the default time and level as a joint stopping process, by which we
discover a decomposition theorem that contributes to exact schemes for simulating the default process.
A counting process for monitoring consecutive arrivals of some event driven by the same intensity is
also established. Main aspects to be addressed are the properties and the derivations of distributional
quantities concerning the interarrival times, the arrival of the nth event and the associated counting

process.

With respect to the zero set, we construct a continuous family of functionals for the part of time
spent at the origin by the age process, namely the local time at zero. It is a well known fact that there is
no unified representation for the local time of Markov process, as it can be approximated as a limit of
various processes describing the behaviour of trajectories of the underlying process. That being so, the
focus and efforts are put on the certain properties of the limit processes served as the approximations,

and on the first and second order limit theorems for the convergences to the local time.
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Introduction

Following the profound study by P. Lévy and K. It6 on the excursion theory of Markov processes,
the evolution of a continuous process satisfying regularity assumptions is analysed in terms of its
behaviour between visits to a recurrent point in the state space (see Itd [54] for full details). A sample
path of the process is then broken up into components, consisting of pieces of the path of random
finite lengths starting and finishing at the recurrent point (namely the excursion process), and the
time spent at all visits to the same point. This thesis proceeds in this spirit, studying and developing
theories on the path behaviour of Bessel processes of dimension (2 — 2a) with @ € (0,1), denoted
by X = {X;, t > 0} throughout the thesis. This type of diffusions has the feature of instantaneous
reflection at zero, and for @ = Y2 it coincides with a reflected Brownian motion. Partitioned by the

reflection points, the core of this work points to the zero-free intervals and the set of all zeros.

1.1 Zero-Free Intervals

With respect to the zero-free intervals, we study the duration of the excursion in progress away from
zero at time ¢ of recurrent Bessel processes, namely the age process of Bessel excursions. Denoted by

U = {U,,t > 0}, the age of X straddling ¢ is represented in the form:
U =t—sup{s<t|Xy=0}, t>0.

Excursion age along with relevant properties is well studied through working on various functionals

of excursion processes (see Jeanblanc et al. [61, Chap 4.3] and Yen and Yor [89, Chap 7] for more



details). Particular attention has been paid to the scaled/signed age, which leads to the development and
extension of the famous Azéma martingale (see Azéma and Yor [2], Cetin [19] for reference). Literature
addressing the mathematical finance aspect related to the age process is extensive. Considerable effort
has been directed towards the study of the well-known "Parisian stopping time". It was introduced
by Chesney et al. [21], who defined it as the first time the age of the underlying process exceeds a
certain level. Topics regarding this stopping time include Parisian options with single/double barriers
[30, 31, 36], Parisian ruin problems [4, 26, 33] and decision problems with implementation delay

[24, 35, 70].

In this thesis, we extend the knowledge of Bessel age process to the area of default risk valuation
with incomplete information, which has not received due attention in the current literature. As the main
contribution of our work, we develop a hybrid structural-reduced form model with an endogenously
defined intensity to assess default probabilities for the context within which some statistics associated
with a firm’s positive activities (e.g. revenue, cash inflow, investments or other forms of asset) and
negative activities (e.g. debt, loan, cash outflow or other forms of liability) are not observable, but
instead the time points when they reach zero are. The idea of adopting such a hybrid method into
credit risk measurement arises primarily as a resolution to the defects existing in the classic structural
and intensity models. For background references please see [9, 80] for the former and [41, 60] for the

latter.

Turning first to the former, structural models assume complete knowledge of a very detailed
information set, thereby implying a predictable default time. In reality, however, the information
accessed from the public reports of a firm is certainly not exhaustive with noise, delay and omission
(see Cetin et al. [20] in this regard). In response to these issues, we provide a framework for modelling
default risk with a reduced information set, or a shrunk filtration from the perspective of filtration
theory. More precisely, the available statistics for assessing default, modelled as the elapsed time U; of

the underlying process X; since the last time visiting zero, are adapted to

4, = o{Us, s <t} C o{X,, s <t}.

As an immediate consequence, the default time turns inaccessible, which results in a transformation to

the intensity-based approach (see Guo et al. [50], Jarrow and Protter [58] in this regard).



As opposed to the former, intensity-based models put no restriction to the completeness of the
information set. The arrival of default is in general modelled as the first jump of a point process
governed by an intensity process A,, either or not related to the assumed information set. The
presumption of an utterly exogenous intensity appears prevalent in the early frameworks (see Hiibner
[53], Jarrow et al. [57], Jarrow and Turnbull [60] for instance), but becomes counterfactual as dealing
with more practical cases [41]. It seems to us that the nature of default is inextricably tied to some
sort of the performance of the underlying process, though it has been designed as an exogenous
event coming by "surprise" in the traditional intensity-based models. The exogeneity assumption,
disregarding the incentives to default and thus lacking fundamental interpretation in the economic
context, makes itself obsolete. Given this belief, we further postulate that the likelihood of default is

directly linked to the current age level by some function, e.g. A, = A(U;).

Akin to our hybrid approach, various examples of model transformations as a result of imperfect
information appeared in the recent literature. Interested readers can refer to Giesecke [47], Kusuoka
[67] for coping with noisy information, to Collin-Dufresne et al. [23], Guo et al. [50] for deferred
information and to Cetin et al. [20], Jarrow et al. [59] for shrinking information. In particular to the
third case, it refers to modelling with a strict sub-filtration, to which our work belongs. The work of
Cetin et al. [20] resembles closely to ours but within the context of Brownian motion, by assuming
observables on both the age level and the sign changes and choosing a dependent intensity obtained

from the Azéma martingale.

As a sequel to this model, a counting process for monitoring consecutive arrivals of some event
driven by the same intensity is also established. Main aspects to be addressed are the properties and
the derivations of distributional quantities concerning the interarrival times, the arrival of the nth event

and the associated counting process.

Chapters related to the topic "Zero-Free Intervals" are 2, 3 and 4 with outlines as follows:

Chapter 2 Bessel Age Process. A formal introduction to the Bessel age process is given with
mathematical definitions and a visual impression of this jump-linear Markov process. By means of a
piecewise-deterministic Markov process framework, a perturbed Bessel process is constructed in order
to resolve the problem of producing infinitely tiny jumps in the path of the age process. Accordingly,

the distributional properties associated with the first stopping time problem are characterised with



explicit results on the quantities like generating functions, Laplace transforms and densities. A notable
result to be mentioned is that we derive a decomposition rule for the stopping time which in turn

contributes to the development of simulation schemes.

Chapter 3 Application to Credit Risk Modelling with Exact Simulation Scheme. The realisation
of the hybrid model is presented in this chapter. We provide precise simulation algorithm for the
default time and level as a joint process by choosing a piecewise constant intensity function. To verify
the accuracy of the algorithm and assess its performance in evaluating the default risk, a numerical

study for the case of reflected Brownian motion is carried out.

Chapter 4 An Age-dependent Counting Process. A point process is established for monitoring
consecutive arrivals of some event with an age-driven intensity over a finite time interval. Main aspects
to be covered are the related properties and the derivation of distributional quantities concerning the

interarrival time, the arrival of the nth event and the moments of the counting process.

1.2 The Set of Zeros

With respect to the zero set, we construct and study a continuous family of functionals in an integral

form :

/t f(Xs) ds, t >0,
0

with f is a non-negative Borel measurable function. Great attention has been given to a (scaled)
Lebesgue measure of the time spent by the age process under an arbitrary level @ up to time ¢. Denoted

by zP = {Zl',t > 0} with
1 t
Zf(a)) = 5‘/0 1y, <y ds, 0<<t,

such measure is often known as the occupation process at time t of a Bessel age process. Of special
interest to us is the asymptotic behaviour of Z” (@) as @ approaches zero. With probability one for
all + > 0, the existence of such limit is guaranteed for every regular point in the state space of U,
according to the general theory of additive functionals [11]. In addition to the limit, this interest is also

linked to the distributional properties of limo ZP(®) as a limiting process, and to the convergence to
0 —



the associated local time. By the local time at zero of a Bessel age process, we mean that there exists a
continuous functional denoted by L = {L;, t > 0} that measures Z = {¢ > 0| U; =0 }, i.e. the time

set at which the age process visits zero.

The concept of "local times" originated from Lévy’s study on the zero set of Brownian motion, at
which early time it was described as an occupation density and named as "Mesure du Voisinage" (see
[72] and [73] for details). It is a well known fact that there is no unified representation for the local
time, as it can be approximated as a limit of various processes describing the behaviour of trajectories
of the underlying process. Lévy gave several different definitions of Brownian local times in terms
of the occupation measure, the number of downcrossings and the total length/number of zero-free
intervals satisfying certain conditions. Interested readers are referred to Borodin [14], Itd6 and McKean

[55] and Karatzsas and Shreve [62] for full accounts.

Apart from the occupation time as a continuous measure, we also take into account other equivalent
representations for the local time. In the spirit of Lévy’s downcrossing theorem, we construct a
discontinuous one, defined as the number of times that U; jumps down to zero by time ¢ and denoted
by {D;, t > 0}. By virtue of the pathwise relation between U, and X;, D, is equal in quantity to the
number of completed excursions away from zero by the underlying Bessel path. Particular interests
are given to the relevant properties of the limiting processes served as the approximations, and to the

first and second-order limit theorems for the convergence to the local time.

Another important fact concerning the local time of Markov processes is that it is analogous to an
inverse subordinator. Put another way, an inverse subordinator is the local time of some "well-behaved"
Markov process [6, 69]. In this regard, the most famous case is the Brownian local time that is an
inverse of a Y2-stable subordinator; and a more general case is presented by Bingham [7] who showed
the inverse of @-stable subordinators with 0 < @ < 1 arising as a limit process of occupation times.
Particularly relevant to our study is the correspondence of the local time to the inverse subordinator
that leads us to the law of L, by characterising the inverse of L, to the family of a-stable processes.
As an immediate consequence of this finding, L, is further identified as a self-similar process, whose

paths fulfil the scale invariance property such that for all 4,7 > 0,

(AL, 120 2 {1, 1>0}.



Real valued positive self-similar processes often arise as the limits of some rescaled processes. For
instance, Brownian motion, Bessel processes, stable subordinators and the local time concerned in this

thesis, etc.

Chapters related to the topic "The Set of Zeros" are 5, 6 and 7 with outlines as follows:

Chapter 5 Local Times related to Bessel Age Process. This chapter deals with equivalent approxi-
mations to the local time of a Bessel (age) process. Main attentions are put to the occupation time and
the jump counting measures associated with the age process. Of great interests to us are the certain
properties arising from their asymptotic behaviours, and the first and second-order limit theorems for
the convergence to the local time. Furthermore, in favour of the fact that the inverse of local time is a

subordinator, the law of the local time is determined with a closed-form expression.

Chapter 6 Scale Invariance about Local Times. This chapter further explores the local time of
Bessel age process from a prospective of self-similar Markov processes. Specifically, we present some
examples of basic scaling properties associated with a Bessel (age) process and show that the local
time fulfils the scale invariance property. An interesting consequence is that the difference between

two scaled local times follows a brand new time-changed Brownian motion.

Chapter 7 Local Times related to Brownian Motion. In this chapter, we restrict our attention to
the zero set of a reflected Brownian motion and provide elementary proof for some celebrated results
concerning a Brownian local time. For instance, Lévy’s "Mesure du Voisinage", Lévy’s downcrossing

theorem and a central limit theorem as a sequel to the latter.



Bessel Age Process

Bessel processes have been intensively studied in the area of mathematical finance. Main focus has
been put on the applications to the dynamics of asset prices (see [75, 77, 84] for examples), of interest

rates (see [45, 51]) and of stochastic volatilities (see [74, 76]).

Of particular interest to us is the Bessel process of dimension ¢ € (0, 2), whose path is continuous,
non-negative and reflected instantaneously at zero. A special case is given to 6 = 1 as it corresponds to
a standard Brownian motion. For such processes denoted by X; with zero a regular point in the state

space, we study the age process of its excursions away from zero. The Bessel age process defined by
U =t-sup{s<t|Xs=0}, t=>0,

refers to the length up to time ¢ of the excursion in progress, in line with the definitions appearing in
the majority of the literature on excursion theory. To get a visual impression of this process, sample

paths of the joint process (X;, U;) with § = 0.5,1.5 are presented in Figure 2.1.

This chapter together with the next contributes to the relevant literature in two aspects. First, as
a complement to the functionals of Bessel excursions, we develop distributional properties for joint
process (U, t) stopped at the first jump time 7 with a general intensity function of the form A(Uy;).
This is achieved by means of a piecewise-deterministic Markov process (PDMP) framework. Explicit
formulae for the generating functions, Laplace transforms and marginal densities are derived. In
addition to these, a notable result to be mentioned is that the stopping time 7 is decomposable into
two independent variables: the stopping level of the age process and a Lévy process stopped at a unit

exponential time.
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Fig. 2.1 A sample path of the joint process (X;, U;) with dimension 0.5 and 1.5 respectively.

Second, as a complement to the default risk measurement with limited information content, we
set up the mathematical framework for a hybrid structural-reduced form model with an endogenous
intensity A(U;). This model provides a framework for assessing default probabilities within a circum-
stance of very limited information, assuming that some statistics about a firm are not observable but
the time points when they reach certain level are. The distributional results associated with the default
time achieved in the first part lead to the development of exact simulation schemes for the joint default

process (Ur, 7).

The realisation of this model awaits to be presented in the next chapter.



2.1 Age Process of Bessel Excursion

Characterised by its dimension (or index), a Bessel process behaves differently. The one of our concern
is the so-called recurrent Bessel process. The following describes how this type of Bessel process is

attractive to us.

2.1.1 Definitions

Given a filtered probability space (Q,.%,P), let X = {X,},>0 adapted to {.%,},, be a Bessel process
of dimension 6 = 2(1 — @) or equivalently of index (—a) with @ € (0,1). This process, denoted as
BES@ throughout this chapter, is a R*-valued Feller diffusion whose infinitesimal generator coincides

on C?(0, c0) with :
1-209 14

X _ —_
6 = 5 ox T30

For an extensive study on the path properties for Bessel process, we refer to Borodin and Salminen

[16, Chap IV-6] and Jeanblanc et al. [61, Chap 6].

We first recall some important characteristics of such a Bessel process:

(i) BESY is a strong Markov process with continuous path taking values in [0, 0);
(ii) For a =, BES@ js identical in law to a reflected Brownian motion;

(iii) (Existence of Excursions) a restricted to (0,1) ensures BES'Y) recurrently and instantaneously

reflecting at the boundary point zero, which implies the existence of excursions in its path.

Then we shall give a precise definition of what we mean by the Bessel age process. For all # > 0,
let

g = sup{s<r[X;=0} d = inf{s>1|X;=0},

denote the last hitting time of zero before time ¢ and the first hitting time after ¢, respectively. The
Bessel excursion straddling 7 is the path {Xg,H; 0<s<d -~ gt}, in which the portion up to ¢ is often

known as the Bessel meander. The age of Bessel excursion straddling ¢ is defined by

0<U =t-g <t @.1)



i.e. the length of the Bessel meander. In fact, it is right-continuous with left limits at every time point
and jumps down to 0 at points in which BES@ gets reflected as a result of reaching zero. Due to

the Markov property of a recurrent Bessel process, {U; }+>¢ is thus a Markov process in the filtration

{gigt}tz()‘

2.1.2 Some Preliminary Results

This section presents some preliminary results concerning the joint law of (X;, U;).

Proposition 2.1.1 (First Passage Time). Denote Ty, = inf{t > 0| X, = 0 } as the first hitting time of

zero for BES@ starting from x, > 0. The density function of T, is
x2a

x 2
e dy, t>0, 2.2
2T(@) ¢ g 2.2)

P(Ty, € dr) =
with0 < a < 1, i.e. T, is indeed a multiple of the reciprocal Gamma variable.

Proof. 1t is a well-known result in the area of first passage time of a Markov process, whose proof can
be found in [18, 51, 52]. In the literature related, this result is mainly deduced by the time reversal
property of Bessel process. Relying on the equality between the joint process of a recurrent Bessel
with its first hitting time and that of a transient Bessel with its last exit time, they conclude that the first
hitting time is identical in law to the last exit time. See examples in Going-Jaeschke et al. [48] and

time/path reversal properties in Nagasawa [81], Pitman and Yor [83], Williams [88].

We propose another approach by means of the martingale property associated with the infinitesimal

generator. Interest readers may refer to Appendix 1. O

In the following, we describe some measures with asymptotic analysis on the joint process (X;, U;).
Let pg")(x, y), with x > 0,y > 0 and ¢ > 0, denote the transition probability for BES®. From

Jeanblanc et al. [61, Chap 6.2.2], we have

(@) y(x\" o (xyy _xtn?
pt (X,Y) Dl lo(_)e 2t

t\y t

p(a)(o y) — 2¢ yl—QQta—le—g
P I(l-a) )

10



where 7,,(x) is the modified Bessel function with index v of the first kind. The second result can be

achieved by taking x — 0 and applying L"Hdpital’s Rule .

Lemma 2.1.2. Let (X;);>0 be a Bessel process defined as before with starting level € > 0 and

U=t —sup{s<t|Xs; =0} beits age process. It holds for any a € (0,1) that

L xtmhb 2
lll% & 2a P(Xz edx,U; € dt | Xo = 8) = me‘ 2t dx dt. 2.3)
As a result,
t—(l
li —2a Xy = = — 2.4
lim & P(U;, edt | Xy =€) T+ a) dr, 2.4)
and
X x2
P(X, edx |U, =1t) = ?e_f dx. 2.5)

Proof. Given T the first time point in which the Bessel process X reaches zero, the probability in

(2.3) is equivalent to

P(X; € dx, X > 0,Vs € (0,1) | Xp = &)

P(X; € dx,Te =2t | Xo = €)

P(X; edx | Xg=¢)-P(X; edx, T, <t | Xy = &). (2.6)

The first probability follows pga)(e, x)dx. Let X be an independent duplicate of X starting from zero

describing the motion by the underlying process after 7.. We then calculate the second probability by

P(X; e dx, T, <t | Xy =¢)

t
/P(X, edx,To eds | Xog=¢)ds
0

t

/P(TS € ds) - ]P’(f(,_s € dx ! Xo = 0) ds

0
! 2a @
£2 2 — x2
= / el —— x172( — 5)¥ o725 dx ds.
29T (a) Ira-aw)
0

11



This integral expression is obtained as a consequence of the strong Markov property of Bessel process

and the first-entrance decomposition.

Taking Laplace transform over ¢ of (2.6) gives,

2(1/ 1-2a 9
- -pt -a—-1 a-1 X
T(a)l(1 - @) / / ) eXP{ % T30 - S)} dx ds de

ala

0 1, e, )~ 2 (BB 58]
E gt (V)

{(8)" 2 (o28) ~ s (28 )
2 o8 o8] o)

where we have used the following equation for the modified Bessel functions of first and second kind:

F(a)F(l

K() = Dz,0- 1)

With regard to the limit behaviour as € — 0, the product of the last two terms involving & grows at

arate of €22, i.e.
(o) 2e8) ~ 0fe)

and thus

lim 572 (s\/_) . (ev28) = A 2.8)

I'l +a)

Therefore, the limit of the Laplace transform as ¢ tends to zero is equal to

21_2& BE 1K, (x+25). (2.9)

Inverting it w.r.t. § produces (2.3). (2.4) follows immediately by integrating x from 0 to co and the

quotient of the two yields (2.5). O
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Lemma 2.1.3. Forany x,x, € R" and 0 <t < T,

P(Xr edx, Up edt | Xo = x,) =

1 P N SR P 2.10)
TI-al(l+a) Bl BT ) '
and
P(Ur edt | Xp = x0) =
1 Xo”
- T — a-1 __70 . 211
I[(1-a)(+ oz)t -0 eXp{ 2T - t)} & @1

Proof. The idea of proving (2.10) is due to the path decomposition at last zero. Using the strong
Markov property of Bessel (age) processes, the equality in probability of the following events is

implied:

{Xr =x,Ur =t | Xo = x}

{Xr =x,Xr- =0,Ur =t | Xo = xo}

{XT—t=0|X0=xo}ﬂ{)~(t=X’Ut=t|)~(0=0},

where X is an independent duplicate of X describing the motion commencing from the last zero,

referred by the time T — 7, and U is the age process defined based on X. By path analysis,
Ur-tyr = Uy = Xr—ry» = Xo = 0.
It allows us to compute its probability by weak convergence in distribution, i.e.

P(XT € dx,Ur € dr | Xo = XO) =

lim &7 P(Xr—, € de | Xo = %) P(f(t edr,U, €d | Xy = g). 2.12)
E—

Note that the right of the equation is constructed by the measure of the likelihood of Xr_; (or Xo)
at e-neighbourhood of zero. As & — 0, the result turns out to be the probability right at zero. The

transition density of BES® gives

P(Xr—; ede | Xo =x0) =

13



R e e R T

Following this result and (2.3), (2.12) equates to

X, e dx, U, e dr | % = 2)

(T_,)a—l il_{% ( Xo€ )QL,( XoE )exp{ xo2 +82}P(

T—1t T—t 2T -1) £2a
1 Xo? x?
= N T -t ——— — ldxdr.
M-ora+a™ T eXp{ 6T -1 2]
Integrating it over x from 0 to oo yields (2.11) . O

2.2 Mathematical Framework of Hybrid Model

As expounded in the introduction, we construct a hybrid structural-reduced form model based on
the information described by ¥; = o{Us, s < t} with an intensity defined endogenously by {U; };>0.
This section establishes the mathematical framework underpinning the proposed model. To be more
specific, we study the joint process (U, ) at the first jump time 7 followed a general intensity function
of the form A(U;). Essentially the path of (U;,t) admits two resources of jumps: one of which is
spontaneous jumps coming from the self-reflection by BES@ upon reaching zero (i.e. the time points
when the statistics being observed attain zero), and the other a one-time endogenous jump occurring in
a Poisson-like fashion with rate depending on the age of the excursion straddling t (i.e. the arrival of
default). Within a piecewise-deterministic Markov process (PDMP) framework, a specific type of
Markov process initially formalised by Davis [39] to deal with non-diffusion models, distributional
properties concerning the stopping time 7 and the stopping level U, including the generating functions,

Laplace transforms and marginal densities, have been derived.

2.2.1 Perturbed Bessel Process

A peculiar problem in considering the path of BES(® is the frequent visits at the regular point zero that
results in the occurrence of infinitely many small excursions, thereby producing also correspondingly
infinite jumps in the path of the age process. To circumvent this problem, we construct a new process,

namely the perturbed Bessel process, from the original process X defined in the space (€,.%,P)such

14



that forallt > 0
{weQ| X, (w)eB}eF, VBeB(R).

For £ > 0 and n € N*, define a sequence of stopping times by

o9 = 0;

Oy inf{t>06,| X =¢};

inf{t>0,| X =0},

5n+1

and then define the perturbed Bessel process, denoted as X, by

- X, if 0, <t <oy;
XF =
Xl’ lf O-n S t < 6n+]_.

Accordingly, the age process for the new process is given by

t— 0, if 6, <t < oy;
Uy =
t— oy, if o, <t <0p41-

For a graphical illustration of this process, please refer to Figure 2.2 that shows a sample (original)
path of X; and the defined stopping times o, and J,, and to Figure 2.3 that demonstrates how the
perturbation technique has been applied to the original path resulting in a clear pattern of the age

process.

In words, the perturbation has been done by chopping up the original path into pieces according to
the positions of ¢, and d,, and reversing all the parts of the periods 6, < ¢ < o, by (& — X;). In this
manner, we ensure the associated process U conforms to our definition of age process since all the

stopping times of o, and ¢,, are actually describing the last zero points in the perturbed path.

This perturbation approach, aimed at achieving a clear structure of excursions around a regular
point, was introduced by Dassios and Wu [36] in their study of the Parisian stopping time in the context
of a drifted Brownian motion. Instead of doing path reversions, they do path movements by imposing
a jump of e-size on the process immediately after it reaches zero. In comparison, our method of

path reversions is preferable in the respect of coordinating with a wider range of processes involving

15
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Fig. 2.3 Illustration of the perturbed path X versus the associated age process Uf.

reflected processes and non-negative processes. For more applications of this approach to the area of

option pricing and barrier strategy, interested readers are referred to the subsequent papers of the same

authors and in particular to Dassios and Wu [34, 35, 37, 38].

By such construction, it is clear that X* converges pointwise to X, often written as

{weQ

li?ol Xf(w) = X(w), Vt > 0}

This implies convergence between (i) variables defined on the basis of X* and X, in particular U®

converges pointwise to U as & approaches zero, and (ii) expectations of continuous bounded functions

16



of the variables referred to in (i). In this regard, similar convergences for the case of a drifted Brownian
motion have been proved in the mentioned [34, 38]. Following an analogous line of reasoning, one
can find that it holds for a recurrent Bessel process as well. Consequently, we obtain the results with
respect to U; by carrying out the calculations for U7, in the course of which & will be retained without

taking the limit to zero until the very last step.

2.2.2 Martingale Problem and Generating Function

To find a martingale on the joint perturbed process (UZ, 1), we refer to the framework of PDMP.

According to it, (U7, 1) is characterised by two components: namely,

* flow: the motion between spontaneous jumps in the new age process U? is increasing at unit

rate due to the time characteristics of age process; and

* transition intensity, the likelihood of observing a spontaneous jump in the next instant of time is
formulated as
—u
pew) _ 2T()
Pe(u) .2 ’
) / e’ x_a_le_% dx
29T (@)

u

where p. (1) and P.(u) denote the density function and the tail distribution, respectively, of the

first hitting time of zero for the perturbed Bessel process X starting from &.

The theory of PDMP provides a certain infinitesimal generator for (U?,t). Consider a bounded

function f : R? — R, we define A as the operator making

F(UE) / AL

a martingale and we have

9
Af(ut) = 6—{+ﬂ f
(2.13)
_ 5f af ps(”)
= o ou P()(f((”) flw)

17



A suitable candidate of martingale of the form f(UZ,7) can be obtained from solving A f = 0. In our
hybrid model, the default time 7 is defined in the way that the probability of a company to default in

the infinitesimal interval [t, t+ dt) having not defaulted before 7 is :
Plre[t,t+dt)|T=1t) = AUy dt, (2.14)

with A(U;), a hazard rate, representing an instantaneous credit spread. Having constructed the above,
we can find the generating functions for the joint stopping process (UZ,7¢) and thus (U, 7) by taking

& to zero.

To simplify expressions, we adopt the following convention in subsequent calculations that for all
t>0

A@) = /(;t A(s) ds, and AN () = A@). (2.15)

Theorem 2.2.1 (Generating Functions). For «(-) and A(-) to be non-negative bounded functions,
B eRYand 0 < a < 1 to be constants, and T to be the first jump time with the intensity A(U?), the

probability generating function of (UZ, Tg) is given by

(o9

/e_ﬁvk(v)/l(v)e_A(V)PE(v) dv
E[e#™ k(UZ)] = 2 : (2.16)

/ B+ AW)e P e MMP (v) dv
0

Taking limit of € to zero yields the generating function of (U, T) with T being the default time dominated
by the intensity A(U),

(o8]

/ e PV k() AV)e Ay dy
0

Ele P x(U;)] = (2.17)

(o)

/(ﬁ + /l(v))e_ﬁ"e_A(V)v_" dv
0

Proof. Let9? = O'{U 2,5 < t} denote the o-algebra generated by the information of U#® up to time ¢.
According to (2.14) the definition of 7 , the probability of the endogenous jump occurring in [ ¢, r+d¢ )
is given by

P(® e d | 4F) = A(UP) exp{— /O t/l(Uf)ds} dr.

18



Based on this result, we formulate the generating function of (UZ,7¢) as follows
£ r !
Ble#”sus)] = [ E[K(Uf)/l(Uf) exp{— / /I(Uf)ds}] . 2.18)
0
0

To find the representation of (2.18), we apply the Feynman-Kac Theory to the PDMP framework
constructed before for (U?, ). First, we extend the joint process by adding two more components, the

continuous processes
t &
YP = / AUZ)ds  and  ZF = /e‘ﬁs k(UE)A(UE)e™s ds.
0

Please note that A(-) and «(-) are provisionally set to be arbitrary bounded functions and they will be
chosen in the way that contributes to the achievement of various distributionals. We then define another

generator G for the expanded process (Uf, YE,Z7, t) acting on a function f(u,y, z,t) in its domain as
af

Gf(uy,z,1) = % + /l(u)g + e_ﬁtk(u)/l(u)e_y% + A, f.

Substituting f(u, y,z,t) = z + e P'e™ g(u) with g(-) assumed to be a bounded function into Gf = 0

generates

¢/(u) - g<u>( B+ ’;L(; + ) ) + g(@% + KA = 0.

Solving this differential equation gives,

gu)e P P(u)e ™ =

g(O)/e‘ﬁve_A(V)pg(v) dv + ‘/e_ﬁvk(v)/l(v)e_’\(")Pg(v) dv.

u
Setting u = 0,

‘/e—ﬁvk(v)lsg(v)/l(v)e_’\(") dv
g(0) = ° =

1- /e_ﬁvpg(v)e_A(V) dv
0

19



By the property of PDMP, we get a martingale in the form
FUPYEZED) = ZF + ePleg(UF),

and therefore
lim E[ZF + ePle™ g(UF)] = lim E[Z7] = g(0).

t—o00

This completes the proof of (2.16) and (2.17) follows immediately by taking & to zero. O

2.2.3 Distributional Results

This section presents some other distributional results obtained from a proper choice of «(-) in the
generating functions. In particular, we find exact representations of the Laplace transforms of U, and

7, and get the marginal density of U;.

Theorem 2.2.2. For 3,0 € R and 0 < a < 1, we find the joint Laplace transform of as

/e_ﬁve_‘pv/l(v)e_/\(v)v_a dv

E[e#Te¢Ur] = L : (2.19)
/(,8 + AW))e Pre My gy,
0

Proof. This result follows immediately by replacing x(u) in the generating function (2.17) with

e u, O

Corollary 2.2.3. Based on the joint Laplace transform, we have got the Laplace transform of Uy,

(o)

/ eV A)e Ay gy

E[e_""UT] =0

(2.20)

0 >

/ Av)e Ay qy

0

20



from which we extract the density function of Uz,

-Au),,—a
fu.(w) = wﬁ(”)e - ; (2.21)

/ AW)e Ay gy

0

and the Laplace transform of T,

(o)

/e_ﬁv/l(v)e_/\(")v_" dv
E[e 7] = : (2.22)

/(,8 + &(v))e_ﬁve_’\(")v_“ dv
0

For the conditional case, we also get

(o)

e_BUT//l(v)e_A(V)v_“ dv
E[e ™| U.] = 0 : (2.23)

/(ﬁ + /l(v))e_ﬁ"e_’\(v)v_" dv
0

Proof. (2.20) and (2.22) are obtained by setting 8 and ¢ zero, respectively, in the joint Laplace
transform (2.19). The density of U, comes naturally from the representation of its Laplace transform.

For the last result, it comes from the representation

E[eiﬁT] = /E[eﬁT | U, = u]fUT(u) du.
0

Upon realising that a closed-form solution to the density of 7 is unattainable, we provide an
alternative way of studying the randomness of 7. Specifically, we discover a decomposition rule for
7 that it can be decomposed into U, the stopping level of the age process and V,, a Lévy process

stopped at a unit exponential time.
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Lemma 2.2.4. For 0 < a < 1, the Laplace transform of T can be decomposed as follows

(o)

Lp(r) = Lﬁ(UT)-/e_V exp —%/(l—e_ﬁx)e_/\(x)a/x_a_l dx ¢ dv, (2.24)
0 0

with Lg(U) denotes the Laplace transform of U, with respect to 8 and

o0

n = //l(v)e_A(")v_" dv. (2.25)
0

Proof. Multiplying the constant term / /l(v)e_A(V)v_" dv to both the numerator and the denominator
0

of the result (2.22), we have

/e_ﬁv/l(v)e_’\(v)v_" dv '//l(v)e_A(")v_" dv
E[e_ﬁ‘r] = . [} =) . .
//l(v)e_A(V)v_“ dv /(ﬁ + AW))ePre My gy,
0 0

The first fraction recovers the Laplace transform of U,. Considering the denominator of the second

fraction, we first rewrite it as

(o8]

/ R / e P Av)e N d, (2.26)
0 0

and then substitute

e Ay = //l(x)e_A(x)x_“ dx + /e_A(x)ozx_a_1 dx,
v

v

into the first integral in (2.26) and thus get

/,Be_ﬁv/ Ax)e My dx dv + /,Be_BV/ e M¥ax 1 dx dv
v v
0 0

(o)

+ /e_'BV/l(v)e_A(V)v_“ dv.
0
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Changing the order of integrals gives

(o)

//l(x)e_/\(x)x_” dx + /(1 - e_ﬁx)e_/\(x)cwc_“_1 dx,
0 0

which completes the proof. O

The greater details on the decomposition along with necessary conditions are given in the following

theorem.

Theorem 2.2.5 (Decomposition Rule). There exists a decomposition for T in the form:
r 2 U, + Y, (2.27)

where

o U; is the stopping level of the age process ; and

* V, is a Lévy process stopped at a unit exponential time, i.e. o0 ~ exp(l), whose measure is
described by

e—A(x)a,x—a—l

Mdx) = ———dx, x>0 (2.28)
n

with 1 defined by (2.25) and satisfying /

R+(1 A x2) IT(dx) < oo.

Proof. Clearly, (2.24) is expressed as the product of the Laplace transforms of U, and ,,. By the

convolution theorem, the result follows. O

At this stage, it is difficult to attribute V, further to any specific subclass, as one notice in the above
that the choice of A() acting on the Lévy measure determines the existence and characteristics of such
process. Without loss of generality, we have selected a piecewise constant intensity, represented of the
form:

AU,) = /llll{U, <e) t /12]1{Uz >c)h A1 >0, A9,¢ > 0.

to continue the study in terms of simulation. This appears in CHAPTER 3: Application to Credit Risk

Modelling with Exact Simulation Scheme.
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Appendix I : A Supplementary Proof for PROPOSITION 2.1.1.

Proof. With the above construction of the Bessel process, we define Y = X2, a squared Bessel of
the same dimension 2(1 — @) with 0 < @ < 1 and starting value y. Considering a bounded function

f :R? — R, we define a generator A acting on the function f(y,?) by,

d 3 92
Af(y,t) = a—{ +2(1 - a)é + 2ya—y];. (2.29)

Any candidate satisfying A f(y,?) = 0 subject to certain conditions makes itself a martingale of the
form f(Y;,t), to which allow the application of optional sampling theorem in order to obtain the

Laplace transform of the stopping time/level.

Assuming f is of the following form,

(o)

e P / e h(u) du, (2.30)
0

where h(u) is a bounded function restricted to: lim e “u?h(u) = 0. Applying (2.30) to (2.29) and

u—00

then equating the latter to zero give

o0

—,B/e_y”h(u) du -2(1 - a) / e Muh(u) du + 2y / e h(u) du = 0,
0 0

0

from which we extract
- Bh(u) - 2(1 — @)uh(u) + 2.2 { w’h(u) } = 0. (2.31)

By solving it we obtain, for ¢ to be an arbitrary constant,

h(u) = cu_“_le_%. (2.32)
The martingale is thus found as,
f(Ys,1) = ce P! / e Yty o= hu qy (2.33)
0
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Define TyY_)0 = 1inf{r>0]Y =0} to be the first hitting time of level zero for the squared Bessel

process. With y = x2, TyY_>O is identical in law to Tx_,o. According to the optional sampling theorem,

the Laplace transform of TyY_)0 is obtained by ,

« [Se)
E[e_'BT.vY%] = 2“?( )/e—y“u_“_le_zi du.
a
0

Change of variable u = %,
a [ee]
E[e_ﬁTyy*O] - 2 / e Braloa dy.
29T (@)
0
Replacing y with x? completes the proof. O
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Application to Credit Risk Modelling with

Exact Simulation Scheme

Following the Decomposition Rule (THEOREM 2.2.5) in Chapter 2, we compute default probabilities
by developing exact simulation schemes for the joint stopping process (U, 7). The intensity at this
stage has been chosen in the form of a piecewise constant function, whose description along with the
implication is given in Section 3.1. The motivation of this choice, in a nutshell, is that an intensity (or
a hazard rate) in such form has been widely used in survival analysis due to its strength in coordinating
with recurrent event processes, e.g. visiting zero by U; in our case, while achieving a high degree of
flexibility and robustness [71]. The simulation algorithm for the joint process is presented in Section
3.3. To assess the accuracy of the algorithm and its performance in evaluating default risk, a numerical
study for the case of reflected Brownian motion (i.e. the Bessel of dimension ¢ = 1) is carried out in

Section 3.4.

3.1 Piecewise constant Intensity Function

What we have achieved before is conducive to investigating default time from the perspective of
simulation. To demonstrate this, particular attention is given to a default intensity defined by a two-step

function such that for all 1; > 0, As,¢ > 0,

AWU) = Wl <y + 221w, se) - (3.1
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That is to say, given the current age smaller than a predetermined level ¢, the conditional probability of

default arriving within Az-period of time is
Plr < t+at|t > t, U < c) = Q1A+ o(AD),
otherwise, the probability is
Pir<t+at|t>t U = ¢) = oAt +o(AL).

We presume that conditioned on whether the age level exceeds ¢ at time ¢, a firm is afflicted with
different loads of default risk. In terms of economic interpretation, the case 4; > A is applicable to
the scenario where the underlying process X; represents some unobservable positive statistics and
U; is constructed from the known points of time when they fall down to zero. Following it, if the
firm’s revenue (e.g.) remains above zero for a period longer than c, the intensity of default is thought
to downgrade from A; to A3. Conversely, the case 11 < A2 applies to that where X; represents some
unobservable negative statistics and U, records the time elapsed since the last time they are cleared to
zero. If a period of length ¢ has passed and the debt (e.g.) remains outstanding, the default intensity as

a consequence upgrades from A; to As.

3.2 Distributional Results

In the sequel, for simplicity in presenting results we denote by

Z
v(a,z) = / et 1ol dr;
0
[a,z) = / et dy,
e
the lower and upper incomplete gamma functions.

We first update THEOREM 2.2.2 and its COROLLARY 2.2.3 with the chosen intensity (3.1). New

results are given explicitly in closed form.
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Theorem 3.2.1. Given 7 the default time driven by A(U), the joint Laplace transform of (U, T°) is

obtained by
/11 _ /12
T B+ e+ )+ ———f(B+p+A2)
E[e—ﬁT*e—yJUT»«] _ Breth B+e+ Ay
(B + A1) + (B + A2) ’
and we have defined functions 17 and 17" to be
7(s) = €5 y(1 - a,s50); (3.2)
17(s) = e2¢s°T(1 — a, sc). (3.3)

Corollary 3.2.2. We hence have the Laplace transform of U,

/11 _ /12 +
T+ )+ =+ o)
E[e#Ur] = £2°L P : (3.4)
(A1) +17(A2)
the density function of U,
o) /lle_/h(u_c)u_aﬂ{u <ecy t /126_12(u_c)u_01{u > ¢}
U = - m )
- (1) +1(A2)
the Laplace transform of 7,
/11 _ /12
nB+ )+ (B + 12)
E[e_ﬁﬁ] - 24 ki ;
(B + A1) +7(B + A2)
and the Laplace transform of T conditioned on U,
. (A1) +77(4
E[e—ﬁT U,*] = U M) (3.5)
B+ ) +7(B+12)

Proof. The results from Theorem 3.2.1 and Corollary 3.2.2 are simply obtained by substituting

Au) = 111 <cy + 221 5y into the results (2.19) — (2.23) from the last chapter. o
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3.3 Exact Simulation Algorithm

This section is devoted to developing simulation schemes for the default time 7* and the default level
U governed by the new intensity measure. Following the 7-decomposition in THEOREM 2.2.5, we
impose an upgrade on the Lévy part by decomposing it to an exhaustive extent, with each component
corresponding to a well-defined random variable that allows exact simulation. The simulation method
is straightforward and fast in implementation and avoids generating sample paths in the entire process

thus eliminating discretization bias.

3.3.1 Simulation Scheme for the Stopping Level

The algorithm for generating N samples of U, is given as follows:

Algorithm 1 : Generating N samples of U

(I) Generate n indicator variates, u = { uy,us,- - - ,u, }, from a Bernoulli distribution with success
rate
(A
- # (3.6)
(A1) +17(A2)

where 77(-) and 7(+) are given by (3.2) and (3.3).

(II') Compute two parameters: /1 = >, ; u; and lr = n —[;.

(III) Generate [; variates, x = { X1,X2,°* ,X], }, from a left-truncated gamma distribution with
density:
~ e x?
= ——— 1 ; 3.7
fl(x) ’Y(l —a. C/ll) {x <cay} ( )
and rescale them by the factor %, ie X = %
(IV ) Generate I, variates, y = { V1. Y2, 5 Vi, }, from a right-truncated gamma distribution with
density:
- e—xx—(l
folx) = (3.8)

— 1 )
r'(l-a,cly) {x 2 ca}

and rescale them by %, ie.y=1.

(V) Combine x with y in order of the one-zero distribution of u.
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Proof. We start by rewriting the Laplace transform of U, in (3.4) into the following form

c [o)

/11/6_/1”6_‘”\}_“ dv +/12e_(’11_/'2)°'/e_/bve_‘pvv_“ dv
0 c

C [o)

/11/6_/1”11_“ dv +/lge_(’ll_’12)c/e_’12vv_" dv
0 c

]E[e_""UT*] =

(o)

Aic -1 v, —a Aoc —Aov_ —a
_‘pv/llele YTy <oy + A2 eV, 5
e dv,

C [o'e)
0 /lle’llc'/e’llvv“ dv +/126’l2c/e/lzvv“ dv
0 c

from which we extract the density of U,
/lle/llce—/lluu—a
fUT*(u) = c o ]1{u<c}
/lle’hc/e_/hvv_“ dv +/lge’126/e_’12vv_“ dv

0 c

/12 e/lgce—/lguu—a/

+ ]l{uzc}-

(o8]

C
/lle’hc/e_/hvv_“ dv +/lge/12”/e_’bvv_°Z dv
0

C

c
Multiplying the top and bottom of the first fraction with / e~y dy and of the second with
0

[se]
/ e 2"y dy, we get
C

C

/lle/llc / e—/llvv—(l dV
s e—/lluu—a

- = c L < ey

/lle’hc/e_’llvv_“ dv+/lge’126/e_/l2vv_“ dy /e_’h"v_“ dv

0 c 0

(9

/126/120'/6_/12‘}\/_& dv

c

+ c 00 ]I{MZC}

(o)
/lle’llc'/e_’llvv_“ dv+/126’l2c/e_/l2vv_“ dv /e_/b"v_" dv
C C

0

e—/lguu—a/

= p-filw)+ (1 -p)- fo(w),
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where

p= - — :
/lle’llc/e_/l1 y e dv+/lge/l2c‘/e_’lzvv @ dy
0 c
A, —a “dou —a
e u e u
fl(“) I ]l{u <c} and f2(u) = = ]l{u >c}-

It is apparent that the result of the above form is a convex combination of two density functions: f;
(a left-truncated gamma) and f; (a right-truncated gamma). The simulation of one variate from such
a mixed distribution with weights specified as p and 1 — p can be undertaken in two steps. We first
generate an indicator variate from a Bernoulli distribution with success rate p and indicated by which
we then generate another variate from either f; or fo. Note that in order to improve the efficiency
of simulating the two truncated gamma functions, we have rescaled the random variable by defining
x = Aqu for its support in (0,¢) and x = Asu for u € (c,00). The resulting density functions are the

results shown by (3.7) and (3.8). O

3.3.2 Simulation Scheme for the Stopping Time

According to the decomposition rule in THEOREM 2.2.5, the difference by subtracting 7* from U, has
been clarified as a Lévy process stopped at unit exponential time, denoted as 7V}, with measure IT(dx).

As for our choice of A{U), one can easily check that / (1 A xQ)H*(dx) < oo holds where
R+

C [o'e)
. 3 _ _3 _
e’ll‘/x 27U dx + €A2C/X 2o 2% (x
C

IT{dx) = 0

2( ) + 7))

However, it does not provide any insight into the implementation of its simulation. Towards a better
understanding of V7, following the same spirit of decomposition we subdivide it into two independent
components, each corresponding to a precise and efficient simulation scheme. More precisely, we find

on the whole that a random variate of V) can be obtained by generating one variate from a-stable
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process and one from compound Poisson. Due to the difference in quantity between 4; and Ag, there

will be a slight difference in the parametrization.

Casel: A1 > Ay

We find an integral representation for the Laplace transform of V7 in the case 41 > A.

Theorem 3.3.1. For any A1 > Ao, the Laplace transform of V; has an integral representation of the

form

(1 - e_ﬁx)e_’hxa/x_o‘_1 dx¢-

3]
N|
iy
A
Il
o\g
Q
4
@
e
o]
|
I
(4N
g
[}
0\8

expy — ! /(1 - e_ﬁv) (e_’b(v_c) - e_/h("_c))cw_“_1 dv ¢ dr. 3.9

C
withy = 17(d1) + n7(d2).

Accordingly, there exists an explicit and exhaustive decomposition for Vy; such that

Vs 2 T(0) + Top0), o~ Exp(l), (3.10)

where T(0) and Tcp(0) denote respectively the realisations at unit exponential time o of

* a-stable subordinator Ty described by Lévy measure

a,x—a—l e—/ll(x—c)

Tf I

3.11)

* and compound Poisson variable T}, with rate

ra- a)/l‘fe’llc

-1,
U

and jump size density
a,v—(t—l (e—/lg(v—c) _ e—/ll(v—c))

1 .
MO-afete —y "7
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Proof. We first give out the derivation of (3.9). The Laplace transform of 7* | U~ is given in (3.5), to

which we multiply both sides with e#U= to get the Laplace transform of V",

E[e_ﬁ(vg’] =
c o
/lle’hc/e_’l”x_“ dx + /lge’bc‘/e_/l”x_a dx
0 ¢

C o)

(B + A)ehr€ / e BrX e gy 4 (B + /12)e’12°"/e_(ﬁ+/12)xx_" dx
0 c

(3.12)

The numerator, computed and expressed as (n(/h) + 77*(/12)), is constant of no effect. For simplicity in
notation, we denote this quantity by 77*. Considering the denominator, we rewrite the lower incomplete
gamma function in the first integral as a subtraction of the upper function from the corresponding

complete function and thus obtain

[(1-a)B+1)%hC + (3.13)
/e_/gve_/ll(v_c)a/v_o‘_1 dv — /e‘ﬁve"b(v_c)ozv_“_1 dv. (3.14)
c c

Regarding the first term (3.13), with @ € (0, 1) we expand it to
T(1-a)((B+41)* = A7)ete + T(1 — a)afetrc

= /(1 - e_ﬁx)e_/ll(x_c)ozx_a_l dx + T(1- a)ﬁ‘fe’llc. (3.15)
0

Moreover, the two integrals in (3.14) can be transformed as follows,

(o]
_ e/llc /(e—/llv _ e—(,B+/11)v _ e—/llv)a,v—(t—l dv
c

=)
+ e/lzc‘/(e—/bv _ e—(ﬁ+/lz)v _ e—/lzv)av—(lf—l dV
Cc

- _ /(e—/lg(v—c) _e—/ll(v—c))a,v—a—l dv
c

+ /(1 - e_ﬂv) (e_’b(v_c) - e_’ll(v_c))a/v_"_1 dv. (3.16)
C
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Following (3.15) and (3.16), the denominator is equal to

ra- a)ﬂfe/llc - /(e_b(v_c) - e"ll(v_c))cxv_“_l dv (3.17)

C

o0

+ /(1 - e_'gx)e_’ll(x_c)a/x_a_1 dx + /(1 - e_ﬁv) (e_’b(v_c) - e_’ll(v_c))cyv_“_1 dv,
0

C

and (3.17) is further found matching the numerator,

o0

I'(1- a)/lile/hc _ /(e—/lg(v—c) _ e—/h(v—c))av—a_l dv

c

(o)

e—/llxx—(x dx + /(e—lg(v—c) _ e—/ll(v—c))a_(i{v—a} dv

~—s

/11 e/llc

c

(o)

0
C
= /he’hc‘/e_/hxx_“ dx + ﬁgeAQC/e_bxx_a dx.
0

Cc

Gathering all the results obtained, the Laplace transform of V7, after dividing both the numerator
and the denominator by 7%, is represented as
-1

1+ /(1 - e_ﬁx)e_’h(x_c)a/x_“_l dx
0

2=

Ble#%| =

+ % /(1 - e‘ﬁv)(e_/b(v_c) - e_’ll(v_c))afv_“_1 dv

c

Note that the two integrals, disregarding the parametrization, are the characteristic exponents of a a-
stable subordinator and a compound Poisson process, respectively. Taking this fraction as a whole, we
rewrite it as an integral form as (3.9). Following the integral representation whose integrand contains

a product of the two characteristic functions, the decomposition (3.10) comes by the convolution

theorem. o

This theorem leads immediately to the simulation algorithm of V.
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Algorithm 2 : Generating one sample of V5 with 4; > A,.

(I) Generate a unit exponential variable o ~ Exp(1).
(I) Generate one a-stable subordinator (at time p) 75 with measure given by (3.11).

(IIl) Generate one Poisson random variable N with rate :

(F(l — @)Ag et — n*).

< |

(IV) Generate N independent jump variables {Y;};=1 2.y using Acceptance - Rejection (A-R)

scheme. For each jump Y;, take the following steps:

(i) Generate a random variable Y from an envelope density

aeAQC e—/lgyy—a—l

c " =1(A2)

fr(y) = Ly s ey (3.18)

(ii) Generate a standard uniform variate U ~ U(0, 1);
@iii) SetY; «YifU < 1- e~ M=2)Y=0). siherwise, return to step (1).
Then, a sample of the compound Poisson is obtained by T¢;, = Zf\il Y.

(V) Set Vs =Ty + Top.

Remark 3.3.2. To be more precise on simulating the @-stable subordinator, there seems no problem
for the case @ = %, as it is the well-known inverse Gaussian process with ready-made simulation
packages. In general situation when o # %, we refer to Dassios et al. [32] who develops a so-called
backward recursive scheme for exactly simulating a class of tempered stable distribution with stability

index 5- € (0,1) and ¢,n € N*.

Casell: 11 < As

Within a manner analogous to the previous case, we find a modified integral representation for the

Laplace transform of ‘V; in the case 1; < As.
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Theorem 3.3.3. For any A1 < Ay, the Laplace transform of V;, can be represented in the following

integral form

E[e_ﬂ(";] = /e_t'exp —#6’116/(1—6_&) e 2oy @t dy b
0 0

exp —tA/(l—e_'Bv) [q-Q1(v)+(1—q)~Q2(v) dvgyde. (3.19)
0

Accordingly, the decomposition is given by

V2 Ty(o) + Toplo). o~ Exp(l), (3.20)

where T(0) and Tcp(0) denote the realisations at unit exponential time o of :

e a-stable subordinator Ty described by Lévy measure

e/llce—/lgvav—a—l

7

dv; 3.21)

* and compound Poisson variable T, with rate A equal to

ra- a)/lge/llc

- -4 (3.22)
and jump size density (q Q)+ (1 —-¢q)- Qg(v)) where
1 = ¢~(2-A1)c
17(A2) —17(d1) - T
= ; 3.23
1 I - a/)/lge’hc - (3-23)
e/hc (e—/llv _ e—/lzv)a,v—(l—l
Ql(v} - 1- e_(/lQ—/ll)c ”{V <ch (324)
17(A2) —17(A1) - T
Aac —A2v —-a—1
e e ay
Qa(v) = () Iy s ey, (3.25)

with 17" = 17(41) + 7(A2). 17(-) and 17(-) are defined before in (3.2) and (3.3).
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Proof. The core of this proof is to show the formation of the integral result (3.19), during which course
the detailed components in the decomposition are identified. We proceed as in the last proof with

minor modification on the representation of the denominator in (3.12), i.e.

C o0
‘/,Be_ﬁxe_’h(x_c)x_“ dx + ‘/,Be_ﬁxe_b(x_c)x_a dx
0 c

C [
+ /lle’hc‘/e_ﬁxe_/llxx_a dx + /lge’lzc‘/e_ﬁxe_bxx_“ dx.
0 c

Substituting fori = 1,2

o0 o0
e liX @ = //l,-e_/l"vv_“ dv + /e_/l"vcxv_“_1 dv,

X X

into the first two integrals and then interchanging the order of each yields, we have

C

el1e /(1 - e_ﬁ")( Ae~ VY™ 4 gm vy el ) dv

0
(o]
+ olic /(1 - e_ﬁc)( Aye My~ 4 pm v gyl ) dv
C
(o]
+ eh2¢ /(e_ﬁc - e_ﬁv)( Ay~ 2V~ 4 ooy gy ma-l ) dv
C

c

(e8]
+ /lle’hc/e_(ﬁml)xx_“ dx + /lge’bc/e_(ﬁ”l?)xx_a dx.
0 c

These integrals are computed to

C
/he’llc/e_/llvv_" dv + ¢% -
0

e BV e~ alv=c) gy ma-l gy,

+ (1 - e‘ﬂv)e_’ll(v_c)(xv_"_l dv

o " —,

C 0
=7+ /(1 - e_'BV)e_/ll(v_c)a/v_a_1 dv + /(1 - e_'BV)e"b(”_‘:)av—‘:’_1 dv.
0 c
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With A1 < Ag, this can be rewritten as follows,

c

7+ /(1 - e_ﬁv) (e—/h(v—C) — e—/lz(v—c))a,v—(z—l dv + (1 _ e—ﬁv)e_,b(‘,_c)av_a_l v

0 0

C C

77* + /(1 _ e—ﬁv)e—/h(v—c)a,v—a—l dv — /(1 _e—ﬁv)e—/lg(v—c)a,v—a_l dv

0 0
+ ehe /(1 - e_B")e_’b"av_“_1 dv + (e/bc - e’hc) /(1 - e_ﬁv)e_’lwa/v_“_1 dv
0 0
00 C
= + el /(1 - e_ﬂv)e_’bva/v_“_1 dv + ehi€ /(1 - e_ﬁv)(e_’llv - e_/lz")a/v_“_1 dv
0 0

(o)

+ (e’lzc - e’llc) /(1 - e_'B")e_’b"av_“_1 dv.

Cc

Therefore, a modified version of the Laplace transform of V; has been achieved as

e/llc P
1+ 7‘/(1—6_’8‘))6_/12\)011_0_1 dv
0
) e/llc R
E[e‘B(Vg’] = + 7 /(1—6_'3")([’11"—e"b")a/v_"_l dv
0

/lQL' _ /11(,‘ «
+ —(e ,fe )‘/(1—6‘_[;‘})6_/12‘)(1’\1_0_1 dv

Cc

(3.26)

It is apparent that the first integral is related to the characteristic exponent of a-stable subordinator.

Considering the second and the third integral in terms of a proper Lévy density, we find that they

combined together constitute the jump measure of a compound Poisson process. That is to say we can

express the sum of them as in the form

c o0
e/llc

C

= A]O(l - e_'B")(q Qi(v)+(1—gq)- Q2(V)) dv.
0
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A denotes the Poisson jump rate and equates to

(o8]
e/llc Asc

r p 2 1 e - ehie P 1
/(e_ Ve 2V)av_"_ dv + —/e_ Yy dy
U J U

c

C

C
Aic -Aic —-Asc
e _ _ _ _ e —e
= //126 Aavyma gy, //116 vy, -
0

Ul c

0

(9]

Aoc Aic —-Aa2c
e — e e _ —
+ —‘//lze dz2vy—a gy

T c

C
ra- a)/lge/llc )
= - .
(q ‘Qi(v)+(1—g)- Qg(v)) is a convex combination of two density functions @1 (v) and Qy(v) weighted

by g € (0,1) with

C C
— /l _/l .
Apeti€ / e 2VyT dy — 2 eh1€ / ey gy — e ((: v
c
0 0
q = a Aic M
I'(1-a)dje™ —q
Q1(v) and Q2(v) have been found by
(e_’llv - e_’b")a/v_“_lll{v <c}
Qi(v) = — - ;
N N e—/llc _ e—/lgc
/ﬂge_ 2y~ dy —'//lle_ Wy dy - ——————
CQ’
0 0
Qi) = O )

— .
e—/lgc
—//lge_’lwv_“ dv

C a
c

It is easy to prove that they are proper density functions.

To conclude this proof, we rewrite (3.26) into an integral form incorporating the above results to

get (3.19). This leads immediately to the decomposition result (3.20). O

The simulation algorithm for one sample of V}; is given as follows:
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Algorithm 3 : Generating one sample of V5 with 4; < A,.

(I) Generate a unit exponential variable o ~ Exp(1);
(II') Generate a a-stable subordinator (at time o) T, with measure given by (3.21) ;

(III') Generate one Poisson random variable N with rate :

( Ira- cz)/lge’hc - ) ;

3|

(IV) Generate N independent jump variables {Y;};=1 2....n using Acceptance - Rejection (A-R)

scheme. For each jump Y;, take the following steps:

(i) Generate an indicator variable R ~ Bernoulli(g) with ¢ given by (3.23) ;

(ii) e If R = 1, generate two independent standard uniform variables {Uy, Us} ~ U(0,1)
) —Y _ oY
and compute Y = cU;T-a. Set ¥; « Y if Uy < ———— ——; otherwise repeat this

(A2 = 2)Y
point;

* If R = 0, generate a random variable ¥ from the density given by (3.25) and set

Y, <Y
Then, a sample of the compound Poisson T, = SN, ¥;.

(V) Set Ve =T, + Tep.

The decomposition (3.20) has been found in the same form as (3.10) so the algorithm for the case
A1 < A9 is expected to follow a similar rule to that for A; > Ao. In particular, the simulation of 7 from
the a-stable family would not be hard by referring to the literature mentioned before. Moreover, the
methodology of generating T¢,, represented as a linearly combined density, has been introduced in

ALGORITHM 1 : Generating N samples of U, . Exactly the same procedures can be applied here.
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3.4 Numerical Studies

This section illustrates the accuracy of our simulations schemes and their performance in assessing
default risk. We assume @ = Y2 that reduces the underlying process, originally being a recurrent
Bessel process, to a reflected Brownian motion. As a result, the @-stable subordinator appearing in the

V;-decomposition turns into an inverse Gaussian process.

Examination of Simulation Algorithms. To verify the accuracy of our algorithms by means of
error analysis, we compare the estimated mean values of U, V; and 7 with the corresponding
theoretical results evaluated from their Laplace transforms obtained previously. For @ € (0,1) and
A1, A2 > 0, we get

E[Uz] = #( ATy (2 - e, dic) + e2CASTIT(2 - @, @c))

E[‘Vg] _ $( e/hc/lclt—l(y(l —a,A1¢) — v(2 - a,1¢) )

, (3.27)
+ eﬂzczg-l( I =, o¢) — T2 = a, A¢) ) )

L
us

with

N o= e/llcxlily(l —a,Aic) + 6’126/131"(1 —a, ).
In the special case of @ = V2, E[U] = E[(VS] =Y E[7"] holds.

The associated discrepancies are measured by relative error, expressed as the percentage of

estimates relative to the true values. To implement the simulation, we set parameters
A1 =(0,0.5,1,1.5,2,2.5,3 ),

one-to-one corresponding to

A =(3.5,3,2521.5,1,0.5),
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to be combined with each in ¢ = (0.5,1,1.5,2). Each estimate is obtained based on a size of 10°
samples. The comparison results are listed in TABLE 3.1, from which we conclude that demonstrated
by the close agreement between the true means and the estimated values, the proposed algorithms
provide consistent estimators for U, V; and 7° with an achievement of high-level accuracy. The
associated histograms for the chosen cases © := (¢, A1,42) = (0.5,0.5,3);,(1,0,3.5);;,(1.5,2,1.5);3;
and (2, 3,0.5);, are provided in FIGURE 3.1.

Application to Default Risk Assessment. Looking into the comparison table, we are indicated
that with an increase in the level ¢, the expected U, (VQ" and 7 (both true and estimated results)
moves progressively upwards for the case 41 > As but downwards for the opposite case. Once
studying further the role of (c, 11, A2) in determining the behaviour of default risk, we understand that
the default probability P(t* < T | ¢, A1, 12) and the default level P(U < T | ¢, 41, A2) do not always
follow the same rule. To demonstrate this, we conduct a sensitivity analysis by generating a table for
the cumulative distribution function of 7 and U~ within a range of parameter sets representing the

following three scenarios,

I (A1,42) =(0,3) withe ={0.5,1.0,1.5,2.0 } ;
1) (A4,42) =(0.5,3) with ¢ = { 0.5,1.0,1.5,2.0 } ;
) (A1,42) =(2,0.3) with ¢ = { 0.2,0.4,0.6,0.8 } .
The numerical results are presented in TABLE 3.2 and the associated plots in FIGURE 3.2.

It can be observed from the sub-plots in FIGURE 3.2 that in general the level ¢ imposes a negative
effect on the possibility of default for the case 1; < A2 and a positive effect for the opposite case. This
means that as ¢ increases, the probability of a default happening before time 7 is descending under the
case A; < Ag and ascending under the opposite case. The situation becomes a bit complicated for the
default level U,. The extreme case 1; = 0 suggests a strictly negative relationship in the effect of ¢ to
the probability of U, before T. For the rest two cases, there exist transitions in their CDF-plots that
turns the negative relationship towards positive referring to the case A7 < A9 or the other way around

to the case 11 > As.

The intuition behind these findings is straightforward. Depending on the age of the excursion

straddling t, the underlying process is subjected to and switching between different exposures to risk
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measured by A; within the space {U; < c} and A5 within {U; > ¢}. With a rise in the value of c, it is
increasingly unlikely for the process to complete an excursion with a length exceeding ¢ so as to enter
into the region {U; > c¢}. As for the case 1; < Ag, the process is expected to suffer more of the time
from the relatively lower risk than higher. However, each time it succeeds in escaping from the lower
risk region into that of higher risk, a boost in the possibility of default is ensured. Moreover, the bigger
value in c the less possibility of a boost. As a result, once a default happens it is ended up with a higher
value. This explains the finding mentioned at the beginning that the expected T and U, become smaller
as c increases. It has also been reflected in the associated plot as the conspicuous increase in the slope
of the curve happening immediately after c. Then for the other case A; > Ao, following a similar line
of reasoning, the underlying process is expected to remain more of the time in the higher-risk region
and highly likely the event of default will arrive before c. Due to the increasing difficulty of entering
into the lower-risk region, i.e. completing an excursion of length over ¢, the default is less likely to

happen after c. In the associated plot, this has been captured by the drop in the slope right after c.
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Table 3.1 Comparison between the true means (3.27) and the simulated results based on varying
parameter settings of (¢, 11, A2); the associated histograms are provided in FIGURE 3.1.

¢ A& A E[Ur] Estimates Error(%) E[V;] Estimates Error(%) [E[t*] Estimates Error(%)

0.0 3.5 0.7467 0.7461 -0.07 0.7467 0.7475 0.10 1.4934 1.4936 0.02
05 3.0 0.5186 0.5193 0.13 0.5186 0.5183 -0.06 1.0373 1.0377 0.04
1.0 25 0.3925 0.3928 0.07 0.3925 0.3918 -0.20 0.7851 0.7845 -0.07
0.5 1.5 20 03141 0.3146 0.14 0.3141 0.3136 -0.17 0.6283 0.6282 -0.02
20 1.5 0.2625 0.2624 -0.05 0.2625 0.2629 0.14 0.5250  0.5253 0.04
25 1.0 0.2290 0.2293 0.13 0.2290 0.2285 -0.21 0.4580  0.4578 -0.04
3.0 05 02147 0.2145 -0.10 0.2147 0.2147 -0.02 0.4294  0.4292 -0.06
00 3.5 1.2601 1.2607 0.05 1.2601 1.2597 -0.04 2.5202 2.5204 0.01
0.5 3.0 0.6794 0.6791 -0.04 0.6794 0.6805 0.17 1.3588 1.3596 0.06
1.0 25 0.4473 0.4476 0.06 0.4473 0.4479 0.14 0.8946 0.8955 0.10
1.0 15 20 0.3261 0.3266 0.14 0.3261 0.3259 -0.09 0.6523 0.6524 0.02
20 15 0.2537 0.2532 -0.19 0.2537 0.2539 0.10 0.5073 0.5071 -0.05
25 1.0 0.2067 0.2069 0.13 0.2067 0.2062 -0.25 04134  0.4131 -0.06
3.0 05 0.1756 0.1754 -0.10 0.1756 0.1758 0.11 0.3511 0.3511 0.00
00 3.5 1.7665 1.7663 -0.01 1.7665 1.7655 -0.05 3.5329 3.5318 -0.03
0.5 3.0 0.7790 0.7797 0.09 0.7790 0.7794 0.05 1.5581 1.5591 0.07
1.0 25 04725 0.4734 0.18 0.4725 0.4721 -0.09 0.9450  0.9454 0.05
1.5 15 20 03304 0.3301 -0.10 0.3304 0.3312 0.23 0.6608 0.6613 0.06
20 1.5 0.2512 0.2508 -0.13 0.2512 0.2513 0.05 0.5023 0.5021 -0.04
25 1.0 0.2017 0.2019 0.13 0.2017 0.2016 -0.03 0.4033 0.4035 0.05
3.0 05 0.1684 0.1686 0.10 0.1684 0.1682 -0.11 0.3369 0.3369 0.00
00 3.5 22702 22713 0.05 2.2702 2.2684 -0.08 4.5405 4.5397 -0.02
0.5 3.0 0.8444 0.8449 0.05 0.8444 0.8454 0.11 1.6889 1.6903 0.08
1.0 25 04851 0.4849 -0.06 0.4851 0.4858 0.14 0.9703 0.9707 0.04
20 1.5 20 03321 0.3325 0.11 0.3321 0.3316 -0.14 0.6642 0.6641 -0.02
20 1.5 0.2504 0.2501 -0.12 0.2504 0.2506 0.11 0.5008 0.5007 -0.01
25 1.0 0.2004 0.2000 0.20 0.2004 0.2006 0.06 0.4009 0.4006 -0.07
3.0 05 0.1670 0.1669 -0.06 0.1670 0.1674 0.17 0.3341 0.3343 0.07
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Table 3.2 Estimated CDFs of 7" and U~ for the Scenario (I), (I), and (III) with each based on a sample
size of 10°; the associated plots are provided in FIGURE 3.2.

Scenario Time T P(t* <T|c,A1,42) Time T P(Up <T | ¢cy21,43)
c= 0.5 1.0 1.5 2.0 c= 0.5 1.0 1.5 2.0
1 0.3310 0 0 0 0.6 0.3032 0 0 0
2 0.7593 0.4572 0.2068 0 0.8 0.6590 0 0 0
3 09169 0.7134 0.5104 0.3367 1.1 0.8776  0.2863 0 0
4 0.9715 0.8501 0.6936 0.5411 1.3 0.9367 0.6352 0 0
I (. 1) = (0.3) 5 0.9899 0.9213 0.8076 0.6809 1.6 0.9763 0.8645 0.2772 0
6 0.9964 0.9592 0.8785 0.7792 1.8 0.9882 0.9290 0.6234 0
7 0.9986 0.9787 0.9237 0.8475 2.1 0.9953 0.9732 0.8578 0.2744
8 0.9996 0.9890 0.9520 0.8937 2.5 0.9988 0.9923 0.9600 0.7983
9 0.9999 0.9943 0.9702 0.9271 3.0 0.9998 0.9984 0.9919 0.9582
10 1 0.9972 09817 0.9496 3.5 1 0.9997 0.9984 0.9913
c= 0.5 1.0 1.5 2.0 c= 0.5 1.0 1.5 2.0
0.5 0.2227 0.2226 0.2205 0.2217 0.3 0.3374 0.3745 0.3922 0.4031
1.0 0.5739 0.3935 0.3930 0.3942 0.6 0.5976  0.5053 0.5290 0.5442
1.5 0.7899 0.6316 0.5280 0.5291 0.9 0.8588 0.5919 0.6183 0.6376
2.0 0.9001 0.7875 0.7013 0.6343 1.2 0.9489 0.8028 0.6853 0.7051
2.5 0.9524 0.8777 0.8191 0.7612 1.5 09816 0.9264 0.7357 0.7552
II: (11, 42) = (0.5,3)
3.0 0.9774 0.9304 0.8890 0.8481 1.8 0.9928 0.9723 0.8998 0.7937
35 0.9893 0.9602 0.9303 0.9019 2.1 0.9973 0.9894 0.9620 0.8659
4.0 0.9949 0.9771 0.9573 0.9358 24 0.9990 0.9960 0.9857 0.9480
4.5 0.9976  0.9867 0.9732 0.9586 2.7 0.9996 0.9985 0.9947 0.9799
5.0 0.9989 0.9923 0.9835 0.9725 3.0 0.9998 0.9994 0.9978 0.9922
c= 0.2 0.4 0.6 0.8 c= 0.2 04 0.6 0.8
0.2 0.3291 0.3301 0.3299 0.3288 0.1 0.5699 0.5178 0.4934 0.4844
0.4 0.4868 0.5518 0.5510 0.5505 0.2 0.7581 0.6866 0.6574 0.6460
0.6 0.5744  0.6660 0.6987 0.6991 0.3 0.7772  0.7922 0.7598 0.7457
0.8 0.6357 0.7331 0.7808 0.7988 04 0.7931 0.8654 0.8309 0.8157
1.0 0.6838 0.7778 0.8273 0.8558 0.5 0.8057 0.8742 0.8820 0.8652
III: (A1, 12) = (2,0.3)
1.2 0.7209 0.8096 0.8585 0.8883 0.6 0.8174 0.8821 0.9200 0.9032
14 0.7517 0.8346  0.8800 0.9095 0.7 0.8280 0.8889 0.9247 0.9305
1.6 0.7777 0.8542 0.8969 0.9244 0.8 0.8373 0.8948 0.9287 0.9512
1.8 0.8010 0.8714 0.9098 0.9361 0.9 0.8461 0.9006 0.9325 0.9541
2.0 0.8204 0.8853 0.9207 0.9441 1.0 0.8541 0.9056 0.9356 0.9565
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Fig. 3.1 Histograms of the simulated results of (UT*,‘”VZ;, T*) with each based on a sample size of 10°

for four sets of parameters: ®; = (0.5,0.5,3),0;; = (1,0,3.5),0;; = (1.5,2,1.5) and ©;,, = (2,3,0.5),

respectively.
Case i: (¢,41,42) = (0.5,0.5,3)
4
12000 2510 : 4000 !
=
10000 )
8000
15
6000
:
4000
05
2000
500
0 0 0
0 1 3 40 2 4 6 8 100 8 9
Case ii: (c,11,42) = (1,0,3.5)
"
8000 2210 6000
18
7000 ‘
16 5000
6000
14
4000
5000 12
4000 1 3000
3000 08
06 2000
2000
0.4
1000
1000 0.2
0 0 0
1 15 2 25 3.5 4 45 0 5 10 15 20 10 15 20
Case iii: (¢,11,42) = (1.5,2,1.5)
3 x10* 3 x10*
[ |7
25 25 {5000
2 2 {4000
15 15 <3000
1 1 <2000
0.5 0.5 <1000
0 0 0
0 1 2 5 6 0 1 2 3 4 5 0 3 5 6
Case iv: (¢, A1,42) = (2,3,0.5)
4 4
510 420 - 16000 - -
[ [l
45 3.5 14000 q
4
3 {12000
35
3 25 +10000
25 2 1 8000
2 15 1 6000
15
1 1 4000
1
05 i 0.5 1 2000
0 0 0
0 2 4 10 12 0 2 3 4 5 6 70 6 10 12

46



Fig. 3.2 The CDFs of 7" (the default time) and U+ (the default level) at time 7 based on a sample size
of 10° within the Scenario (I), (IT) and (III), respectively .
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An Age-dependent Counting Process

A point process is said to be a counting process if it is non-negative, integer-valued and right-continuous
with left limits and upward jumps of magnitude one [17]. It is often used for monitoring event
occurrences with an arrival rate modulated by a random process. In the previous chapters, we introduce
and study an endogenous intensity process defined on the age of the current excursion of the underlying
process, and produced distributional results concerning the arrival time of the first event only. As a
succeeding development to the work done before, this chapter deals with consecutive arrivals over
a finite time interval. Main aspects to be considered are the study of related properties and the
derivation of distributional quantities concerning the interarrival times, the arrival of the nth event and

the associated counting process.

Organised in the following manner, the first SECTION 4.1 presents definitions, notations and some
preliminary results for such a counting process, which will be needed in the coming proofs. Using the
martingale approach within the framework of PDMP, we obtain some probabilistic results associated
with the counting process in SECTION 4.3.1 . Main results pertaining to the moments are delivered
with proof in SECTION 4.4. A further discussion on finding the distribution of the counting process is

included in the final section.
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4.1 Definition and Preliminary

On a filtered probability space (Q, FY, {ﬁtu } £50° P), there is an age process adapted to .ZU for all
t > 0, given by
U =t-sup{s<t|X;=01}

for a recurrent Bessel process X with index (—a) € (—1,0). Within the same space, we construct
a framework for modelling event arrivals characterised by an intensity of the form A(U;), where
A : [0,r) — R* is a non-negative measurable function. On this basis, we denote by {7;};cno with
Ty = 0, a non-decreasing sequence of random times, representing the arrival time of the ith event, and

define the associated point process N = (N;);>0 by

Ne= > lgcn  No=0, (4.1)

i>1

counting the number of events that has arrived in the time interval (0, 7].
We now recall some relevant concepts and properties of such point process:

(1) Given the arrival times {7; };cno, the quantity
7 = Ti = Ti-, i=123,---

refers to the waiting time between two successive arrivals. Due to the fact that the chosen
intensity is stochastically varying with time, the sequence of interarrival times {7;};en+ is
generally not independent. Let 7, | = o{Us, s < T;_1} denote the information of U up to the

(i — Dth arrival time. It follows for ¢ > 0 that

Ti-1+t
P(rie[t, t+dt) |%,) = E[/l(UTi_lﬂ)eXp{—/ A(Uy) ds}] dr.

Ti—1

(ii) N is a stochastic process taking values in N°. For all w € Q, it is cadlag (right continuous with
left limits), i.e. li%n N;(w) exists and finite for all r > 0. Assuming that no two jumps occur
st

simultaneously, the sample path 1 — N;(w) is piecewise constant with jumps of size +1.
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(iii) A(U;) is a R*-valued stochastic process such that for any non-negative measurable function

A :[0,¢) — R*, with probability one, the intensity measure
t
A = / AU ds <00,  130. (4.2)
0

This measure is often called as the cumulative intensity process up to time t.

(iv) Consider an augmented filtration %, = .ZN v .ZV, where ZN = o{N,, 0 < s <t} and .ZV =
o{Us, 0 < s < t}, are the natural filtrations generated by gathering the information up to time ¢
of the counting and the age processes. Then N, is called a doubly stochastic point process with

%,-intensity A(U;) in the sense that
t+d
E[Nisa — N: | 9] = E[/ A(Uy) dS], d >0, (4.3)
t

which implies

* the integrability of fot A(Uy)ds and Uy;
* the independence of (N;+q4 — N;) and (%), ,; and

* the existence of a &;-martingale in the form
t
N, —/ A(Uy) ds, t>0. (4.4)
0

Hence, A; is also called the compensator process for N;.

(v) Intuitively, given the information up to time ¢, the probability of m jumps occurring within the

next infinitesimal time interval At — 0 is equal to

1 — A(U;)At + o(At), m = 0;
P(Ntsar =Ny =m | 9;) = A(U,)at + o(at), m=1; 4.5)

o(At), m> 1.

Furthermore, it follows from (4.3) that the distribution of N over the time interval (s,?) with

E[exp{— [ A(U) dx}([ A(U) dx)n]

n!

0 < s < tis given by

P(N, -Ns =n| %) = , neNY (4.6)
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For a more detailed and extensive treatment on the doubly stochastic processes, interested readers are

referred to the books by Brémaud [17], Bjork [8], Grandell [49] and Jacobsen [56].

4.2 Mathematical Framework of the Counting Model

For the same reason that there are infinitely tiny jumps in the path associated with a Bessel age
process of index 0 < @ < 1, we will keep working with the g-perturbed Bessel process, formulated in

CHAPTER 2.2.1 Perturbed Bessel Process as

- X, if 6, <t < oy;
Xf = n:172739"'a
Xt’ if On <t< 6n+1’

with g = 0,
o, = inf{t>6,| Xy =¢}, Ope1 = Inf{t>0, | X, =0},

denoting an alternating sequence of the stopping times passing through & and zero by the original

process X;. We define the corresponding age process by

t—On, if 0, <t <oy;
UZ =

l‘—O’n, lf 0',,St<(5n+1

Accordingly, we denote by {Tf} with 77 = 0, the sequence of ordered arrival times, and by

ieNt

{Tf } ., the corresponding interarrival times. We then define
ieN

N = Y lige oy NG=0,

i>1
to be the counting process generated by A(Uf) acting as its intensity.

The joint process we concerned in this chapter is a mixture of deterministic motion and random
jumps. As a powerful mathematical tool in dealing with such non-diffusion process, we construct
a martingale in the form f(U?, Nf) and obtain an explicit representation of f with the aid of the

piecewise-deterministic Markov process (PDMP) theory. This result produces immediately the (joint)

51



Laplace transforms and the generating functions of the variables of interest, from which we derive
out more distributional quantities concerning the Nth arrival. As previously justified, the joint process
f(N?,U#) converges pointwisely to f(N, U,) as & approaches zero. Calculations with respect to the

path of the original process are actually carried out with the corresponding perturbed process.

On the basis of the above construction, the infinitesimal generator for (Uf, Nf) acting on a bounded

function f : [0,1) x N x R* — R* is given as

ﬂf(u’n’t) = aa_j: + ﬂu,nf;
Aunt = G+ B (100 Flum)) + 260 Flaen-+ 1) = flam),
with
pé‘(u) ZQF(Q’) )
B < 82(1/ e
P.(u) = /2"F(a) le=2% dx,

where p.(u) and P,(u) denote the density function and the tail distribution, respectively, of the first
hitting time of zero for a recurrent Bessel process starting from . In particular to the time domain

t € [ T;1, T + 74 ) the main concern associated with this period of time is the interarrival

ieN*?

process, denoted by (Ur;, ;). such that for v > 0,
P(Ti e dv | grl._l \% O'{US, s € [Ti—b T, 1 +v )})

T;-1+v
= /l(UTHJr,,) exp{—/ AUy) ds} dv. 4.7
T;

4.3 Distributional Results concerning the Counting Process

For better presenting the results, we adopt the following conventions

Alt) = /0 t/l(s) ds, A1) =A@).
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To proceed, we define a pair of complementary probabilities denoted by 6, (Uy,_, ) and 6, (Ur;_, ) such

that
6.(U) = e,A(U) oo/l(x)e_A(")Pg(x) dx;
Pg(U)U ’
6,(U) = M f ~A)
S(U) - PS(U) e pg(x) dx.

It holds for any proper choice of A(:) that: forany 0 < U < o0
* 0:(U) €(0,1), O4(U) € (0,1);
. lljiin)0 0.(U)=0 and l}l_l’)r(l)o 0.(U)=1;
}Jigl}o 0.,(U)=1 and l}l_r)r(l)o 0,(U)=0;
* 0:(U) + 0,(U) = 1

Intuitively, the quantity @ (Ur, ) measures the possibility that the i-th event arrives before the first

reflection at zero by the age process since the last arrival Ur, |, i.e.
O:(Ur,_,) =P|T; < inf{t>Ti1 |UF=0}]), ieN*,

and O (Ur,_, ) stands as the contrary. Within each circumstance, the probability densities corresponding

respectively to @ and @, are denoted and given by

A(x)e™ 2 P (x)

Ue(x;U) = P ]l{x >U}s
/ A(x)e M Py (x) dx
U

_ —-A(x)

De(x;U) = - ‘ Pe(x) ]l{x >U} -
/e‘A(x)pg(x) dx
U
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After taking & to zero, the above quantities turn into

(o)

6) = lim 6:(U) = Sy / A(x)e A x=@ dx;
E—
U
o) = Iin%@g(U) = eA(U)U"‘/e_’\(x)oz)c_”_1 dx;
E—
U
) A(x)e AX) x—a@
PsU) = lim (s U) = Loy
-//l(x)e_A(x)x_" dx
U
-A(x),, .—a-1
_ - e ax
Hx; U) = ili%ﬂg(x; U) = Iisuy-

/e—A(x)ax—(t—l dx
U

Please note these notations will be utilised throughout the rest of this chapter.

4.3.1 Generating Functions

It can be seen immediately that due to the Markov property of the age process, results associated with

the i-th arrival are mostly representable of that with the first denoted in this chapter by 7 = 7.

Theorem 4.3.1 (Generating Functions for the Interarrival Time). Let x(-) be a non-negative

bounded function and a € (0,1) and B € R* be constants, the generating function for the conditional

e, )

is evaluated as
.

& &£
process (U TS
T ieN

£

E[e_ﬁTfK(U%) |ng;1] e UL =

Uﬁ_l) / e BY 55(V;U£_1) dv -E[e_ﬁTlsk(Ufl)] +

E
Ti—1

6

[oe]

@8(U§S~H) / e PV k(v)9; (v; U;EH) dv.

£
Ti—1
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Taking limit of € to zero yields the generating function for (UTi, T; | %TH)I. N+

Elek(Un) | %] - e P0rs =

o(Ur, ) / e 9 (v;Ur,_,) dv - E[e Pk (Uy,)] +
Uty

0:(Ur, ;) / e PV k()3 (v; Ur, ) dv. 4.9)
Ur;_y

In the above expectations, E[e‘ﬁTlg K(Ufl)] and E[e‘ﬁle(Uﬁ)] are the results corresponding to Ty,

which have been derived by (2.16) and (2.17) respectively of Theorem 2.2.1 (in Chapter 2).

Proof. Given the representation in (4.7), the following probabilities are equal in quantity,

P(Tf € dv|%ﬁ1 \/cr{Uf, s € [Tf_l, T?, +,,)})

P(17 e ar | Yo, v o{US, s € [T2,1)})

A(UF) exp{— ‘/T: A(U?) ds} de,

i-1

with0 <y <ocoandt=v+T" €[T?, o).

The generating function for (U;I 17 gTi 1) is formulated as a Laplace transform of the following

form

= HTE /E[e—ﬂfK(Uf)P(Tf e dt| %, voluz se| 1o, o)) | %, | ar
Lt

_ ST / B E

&
Ty

«(UF)A(UF) exp{— / t A(Uf)ds} dr

&
i-1

%{Sl] dr. (4.10)
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To find a representation of this formula, we augment the original process by adding two continuous

processes, read as

t t
= [awnas oz = [ aunawne as
TZ, TZ,

The generator written by the bounded function f for the augmented process (UZ, Y7, Z7,1) in its
domain is:
af f af

_9f of | - 9/
Gfu,y,z,t) = ey +ﬂuf+l(u)ay + e P k(u)A(u)e y@z’

Substituting f(u,y,z,t) = z + e Pe > g(u) with g(-) assumed to be a bounded function into Gf = 0

generates

g (u) - g(”)a%{ Bu —1n Ps(u) + A(u) } = - ( % (0) + A(u)k(u) )

The solution to this differential equation is obtained as

[ee)

- /e_ﬁvk(v)/l(v)e_/\(V)ISg(v) dv
Au)

¢ /e‘ﬁve_’\(v)pg(v) dv - (10
AD) J

eFuglu) =
P,
/(,8 + A0))e P e MM P (v) dv
0

AW

+ =
Pe(u)

e PV k(1)AW)e AV P, (v) d.

According to the theory of PDMP, we prove a martingale of the form,
FWURYEZE0) = 27 + ePleTM g (UF),
and further by the property of Markov process we get,

lim E[Zf + e Pl g (UP)

t—oo

%ﬁl]

lim E[zf

t—oo

e_BTiflg(Ui_il).

%;;l]
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This leads immediately to the result of the Laplace transform in (4.10) and thus to the generating

function in (4.8). So the other function (4.9) is simply obtained by taking & to zero. O

Theorem 4.3.2 (Generating Functions for the Counting Process). Let h(-) be a non-negative
bounded function and a,¢ € (0,1), B € R* be constants, the Laplace transform (with respect to

time t) of the generating function for the counting process (Nf, Uf | U()) is defined and evaluated by
LAE[" h(UF) | Vo). p}- e =

/e-ﬁve—(l—gb)(A(v)—A(Uo))pg—(V) dv- L{E[¢" n(UF)]. B} +
Up

ISS(UO)
By ~(1-0) (A)-A D)) P.(v)

Taking limit of € to zero yields the generating function for (N, U; | Uy),
LAE[¢"n(U) | Vo), B} - ePY0 =

Uy® / P10 (A=A a1 gy . £ (E[¢Mnw,)]. B} +
Uo

(o)

Uo® / e—ﬁvh(v)e-<1—¢>(A<V>-A<UO>)v—“ dv. (4.12)

Uo

In the above results, we have defined

(o)

/ e P h(v)e DAV P (1) dv
0

LAE[" h(UF)]. B} = — :
/ (ﬁ +(1- ¢)/l(v)) e PV e 1=AM P (1) dy
0

It represents a limited case for the counting model as taking Uy equal to zero, in which circumstance

the underlying process is reset to zero.
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Then the limit of € — 0 is given by

(o)

/ e PV h(v)e (1m9AM)—a gy,
0

/ (B+ (1= paw))e e =MDy gy
0

LAE[o" hU)]. B} =

Proof. We start by adding

t ~
75 = / ePIEVER(UE) ds, b e(0.1), 120,
0

to the joint process (N7, U?). Then the new generator for the extended process (Z7, Nf, U?,t) in the

domain ¢ > 0 is written by
0 0
Gf(zunt) = o, e_ﬁtcﬁnh(u)—f + Aunf, (4.13)
ot 0z |
where A, , f has been given in (4.2). We propose a suitable solution to G f = 0 in the form

f(zu,mt) = z+ e‘ﬁtqﬁ”g(u),

with g(-) assumed to be a bounded function. Substituting it into (4.13) generates an equation,

800 +.8/0) + i) + 22 (5(0) ~ g(w) - (1 = PAWg() = 0.
@)

The solution to this differential equation is found as

/e_'gve_(l_¢)A(v)Pg(V) dv /e—ﬁvh(v)e—(l—fﬁ)A(v)Pg(v) dv
u u
8w = 8O —F—5nw P LT A ()
with
./e_ﬁvh(v)e_(1_¢)A(V)Ps(V) dv
0
800) = — °

/ﬂe_’gve_(l_¢)A(V)Pg(V) dv + /(1 _ ¢)e—ﬁv/l(v)e—(l—q))A(v)ISg(v) dv
0 0
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By the property of PDMP, we find a martingale of the form
FZENEUE) = 27 + eProlig(Up).
Given that both g(u) and A(u) are bounded functions, we have
th_)mg(}E[Z‘9 e_'B’qSNfsg(Uf)]

= /e-ﬁ’E¢ Ch(UF)] dt
0

g(Up).

The proof of (4.11) is then completed and (4.12) follows immediately by taking & to zero. O

4.3.2 Laplace Transforms

On the basis of these generating functions, they produce distributional results describing each of the

concerned processes over time, or conditioned on the others.

Corollary 4.3.3 (Laplace Transforms for the Interarrival Times). Regarding the interarrival pro-

cess, the Laplace transform of Ur, | %r,_,, i € N*, with ¢ > 0 is given by,
E[e_"DUTi ’ ng._l] =

O(Ur,,) -E[e#Y1]| + 0(Ur,_,) / e 9(v; Ur,,) dv,

from which we get the density function of Ur, | %r, |,

P(UTi e du | gTi—l) =

O0(Ur, ) -P(Uy, € du) + O(Ur,,) - & (u; Ug,_,) du.
Furthermore, the Laplace transform of ; | %r,_, is given by,

E[e—ﬁ‘n' |gTi71] e BUTy =
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o(Ur,_,) / e 9(v;Ur,_,) dv -E[eP™] + O(Ur,,) / e PV 9(v; Up,_,) dv.
Ur, ,

Ut

In the results above, E[e_‘prl ], E[e‘ﬁ”] and P(Uy, € du) are obtained before in Corollary 2.2.3 of
Chapter 2.

Proof. These results are obtained as a direct consequence of setting 8 = 0 and x(v) = 1in (4.9). O

Corollary 4.3.4 (Laplace Transform concerning the Counting Process). Regarding the counting

process, the Laplace transform of the generating function of N; | Uy is given by
LA{E[¢" [Uo], B} =

UO(Z e—ﬁve—(1—¢)(A(V)—A(UO)) a/v—(l—l dv - Lt{ E[¢Nt], ﬂ } +

(4.14)

Ug® [ e e—(l—qﬁ)(A(v)—A(Uo))v—a dv,

Ug
Ug
with .
/ o BV (1-OAY) )
0

LAE[g™]. B} =

[ g+ a-onm)esretonmeq,
0

Proof. This result follows immediately by setting 4(v) = 1 of the generating function in (4.12). O

4.4 The First Two Moments for the Counting Process

This section is concerned with the derivation of first two moments of the counting process with a
general intensity function. The moments are derived from the distributional results just solved in

SECTION 4.3.2 Laplace Transforms, and expressed explicitly as integrals.
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Theorem 4.4.1 (First Moment). The first moment (expectation) of the counting process N; | Uy > 0

with a density defined by A(Uy) is given by

t

E[N, | Uy] = Up® / { m /0 v(z v+ Up) " v = )%~ %A(x) dx
0
+ (Ug +v) % A(v + Up) } dv,
where A(+) is any non-negative function satisfying fot A(s)ds < co fort > 0.
Proof. To avoid tediously long expressions, we temporarily set

/ B 10N e g,

0

R(¢) = — .
/ (1 - enem -0 ) goa-t g
0

and then
/e_ﬁVA(v)e_(1_¢)A(V)v_“ dv + R(¢) / e_ﬁxA(x)e_(1_¢)A(x)ax_a_1 dx
’ 0 0
R'(¢) =

/(1 - e‘ﬁxe_(1_¢)A(x))ax_”_1 dx
0

Taking the derivative of (4.14) with respect to ¢, we obtain

2 L{E[¢" | Uo). B} ePoupe

= R(¢) '/e_ﬁv (A(V) —A(UO))e_(1—¢)(A(V)—A(U0))av—a/—l dv
Uo

+ R'(¢) - /e_ﬁve_(l_‘b)(A(V)‘A(UO)) av @ tdy
Uo

[e9)

+ / e—ﬁv (A(V) _ A(UO))e—(l—d)) (A(v)—A(Uo))v—(t dv.

Uo
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Setting ¢ = 1, we get the Laplace transform for the first moment

LAE[N: | Dol B} =

oo t
an —,Bt/ el /t—v v
1"(1 _ a)F(l + a,) /6 a'(v + UO) 0 (t 1% X) X /l(x) dx dv dr
0 0

+ Up® / e Pl / AWV + Up)(v + Up)™® dv dt.
0

By the property of Laplace transform, we get an exact expression for E[N, | Up].

O

Corollary 4.4.2. The conditioned age process {U; | Uy > 0},- follows a generalized arcsine law

with parameter « € (0,1), read as

_ a1l .—a
1- Yo = x)™ x dx, 0<x<t
t—x+Uy) T(1-a)(a)
P(Uz S dx | UO) = —a
t
(1+—) dx, x=Ug+t,
Uy

i.e. a Beta distribution with parameter «, denoted by U ~ Beta(a, 1 — a).

Proof. First we rewrite the expectation (4.15) as

@ a-1 a-1
F(l _ Oz)l"(a) // /l(x)/ a(v—z+Uy) " (z—x)* dzdxdv

t

+ an / /l(v + U(])(V + Uo)_a dv
0

1

v 1 -1 a . —a
/{/ R =)@ T dx

+ an(U() + V)_a/l(v + Uo)} dv

/0 CBLAWY) | Uo] dv
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As mentioned earlier, it holds for every Borel function A : (0,¢] — R* such that fot AUy) ds < co. The

inner integral contains a proper density function, verified by the Euler’s reflection formula [1],

/ t(t—s)"_ls_” ds = T(1 - a)(a) =
0

sin(am)’
O

Remark 4.4.3. There is a special case for the expectation. By taking the limit of Uj to zero, we get

1 t
lim E[N, | Up] = t—x)%x"%A(x) dx, t >0,
Jim, EIN: | Uo] r(1—a)r(1+a)/o( A dx ~

and then

1
m(f - x)a_lx_“ dx, O<x<t.

The result above is an extension of the classical Lévy’s arcsine law to the context of Bessel processes,
thus recovering the results proved already in Dynkin [42], Getoor and Sharpe [46] and Nikeghbali [82]

by means of excursion theory.

Theorem 4.4.4 (Second Moment). The second moment of the counting process N; | Uy > 0 with the

density A(Uy) is given by
! v
E[N.2| Us] = EIN; | Uo] + 2// E[/I(UX)A(UV_X) | Uo] dx dv, (4.19)
0
0

where A(-) is any non-negative function satisfying fot A(s)ds < oo fort > 0. U is a duplicate age

process with a time-varying initial level depending on U | Uy such that,

IP(US € dx, Uy, € dy| Uo) -
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1 (t—s5s—y)%y (s —x)*x?

F1l-a)?T(a)? (t—s—y+x)(s—x+Up) dx dy,
for x€(0,s), ye(0,t—s);
1 (t—s+x)%s—x)” dx
' -a)(a) s—x+Uy ’
for x €(0, s), y=t—s+x;
1 o N\au-a -a
F(l—a)l"(a/)(ttjy-)i/-)Ui)} (1+Uio) .
for x=s+Upy, ye(0,t—s);
(1+ULO)_Q,
for x=s+Uy, y=t+Up.

Proof. In a nutshell, the second moment of N, is obtained from the 2"-derivative of the moment

generating function, given in (4.14), evaluated at ¢* = 0. That is to say,

)

Due to the complexity involved in the calculations, detailed steps of this proof are left to Appendix

LABINZ | U] B} = 2o | L] B[ ™

#=0

I O

Here comes the special case when taking the limit of Uy to zero.

Corollary 4.4.5. The second moment of the counting process N; with Uy = 0 is
p v
E[N,%] = E[N,] +2 / / E[A(Ux)/l(l?v_x)] dx dv. (4.20)
0
0

Likewise, the joint density of {US, Ut_s} is given by

s€(0,1)

IP’(US € dx, U,_, € dy) -
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(1 ~ X )(l‘ — 5= y)a—ly—a(s _ x)a—lx—a

t—s—y+x I'(1 - a)T(a)? dx dy,

forx €(0, s), ye(0,t—ys);

t—s\"(s —x)@ 1y~
(1+ x ) - a@

forx e (0, s), y=t—s+x.
Proof. By taking limit of Uy, we get

E[N?] = lim E[N? | Uo]

U0—>0

; (t—=v)*v @
E[N;] + / Fl-ardsa) 2A(v)A(v) dv

t

(t—v)%@ v ot
’ / T(1—a)2T(1+2a) Jo a(v = x) " 2A(x)A(v - x) dx dv.

0

The two integrals are further transformed as follows

* for the first integral:

2 \ . —a
(-l +a) J e riwam ay
0

m ./ ./ov ./oz(1 +- )_c Z)ia/l(v — 2+ 20)(z =0 Ax) dx dz dv
0

t
v Z .
2///P(UV_Z=V—1+UZ,UZE dx)/l(v—z+x)/l(x)dxdzdv
o Jo
0

2 / /0 vE[/l(UZ)/l(UV_Z) 1, . =V_Z+UZ}] dz dv;
0

e for the second,

1 \ 2a v - —a-1
I'(1 - @)2I(1 + 2) / t=v) /0 (v —x)" T 2(0)A v — x) dx dv
0
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t v
2 VvV—X X
(1 - a)2T(a)? / / /0 /0 dzdy dxdv
0 0

(1 _ ;)(V —x = )Ty (= 227 () AG)
V-Xx—y+2

t v
P / / / / P(Ux € dz Uy € dy) A)A(y) dx dv
0 0
0 0

2 / /0 VE[/I(UX)/I(UV_X) (0, < 0. vom| ¥ .
0

This proof is completed by adding the two terms up, which equates to

Q/t/OVE[/l(Ux)A(UV_X)] dx dv.
0
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Appendix I : A Supplementary Proof for THEOREM 4.4.4

Proof. Replacing ¢ with e? to the Laplace transform in (4.14), we get

.£;{ E[eﬁN’ ’ Uo], ﬁ} e Bl —

(o)

6(Uo)

_ e—ﬁvee‘/’* (A(V)—A(UO)) e MV gymal gy . Ié(ﬁb*)
./e_/\(x)()zx_"_1 dx
Uy

O(Uy) /00 e BV e’ (AW)-AWD) p=A0) -ar gy,
//l(x)e_A(x)x_“ dxbo
Uo
with -
R(#) = ——

/ ( px (1" )A(X))a,x—a—l dx
0

The first and the second derivatives of R(¢*) are obtained as follows

e /e—ﬂvA(v)e—(l—e¢i*)A(v)( V7 4 R(¢ v ) dv

5 0

R(¢) = - ;
=
0

= oo AT+ REAE)av
ad /e_BVA(v)e_(l_e¢ )A(v) dv

0 + (1 + e_¢*)1§'(¢*)av_"_1

R'(¢) = R(¢) +

/(1 — e x 1 e )A(x)) x—a—l dx
0

Now we take a derivative w.r.t. ¢* of (4.21) and obtain,

e ol o] ) -
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(o]

/ o BV ge? (AW)-AWD)) {e"’* R(¢*)(A(v) - A(UO)) + R’(¢*)} X

O(Up)
= 0
/e—/\(x)ax—a—l dx e Mgyl gy
Uy
6Wo) /e_ﬁvee¢* (A0)-AWD) po (A(v) - A(UO))e_A(V)v_“ dv.
/ﬂ(x)e_A(x)x_a dxbo
Uo

Taking further derivative over the same gives,

a¢2‘£’{ [¢Nz UO] B}'e_ﬁuo -

. R(¢) + 2R (¢)e” (M) = A(Uy)

o BV ge? (AW)-AWD)) »

, .
6W) & + R [e¢* (A0 - Awo) J
Jj=1

/ A N e b e Mgyl gy
Ug

(o)

2 J
B [ e (rornin) [e¢*(A<v>—A(Uo)) Ay gy,
'//l()c)e_’\(x)x_‘Z dx Yo =

Uo

To get the Laplace transform of E[N,2 | Uo] we set ¢* = 0, then
LA E[N? | Vo] B}
Uy® /m P / A+ Uo)(l + 2(A(x + Up) - A(Ug)))(x + Up)™ dux dv
; 0
+ U /w e (1%”(0) + 2R'(0)(A(V + Up) - A(Uo)))a(v + Up) L dv,
0

with

D/ _ 1 r -pt ! _ Y\, .
R'(0) = F(l—a)F(1+a)/e ‘/0 (t—x)"x"%A(x) dx dr;
0
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D/ Y (t_v)a ¢
R"(0) = R(0)+ / / {F(l—a)F(l 2AVA() +
0

v (t _ V)Q(lx—aa,(v _ x)—(l—l

0 I'l-a)?T2a +1)

2A(x)A(v — x) dx} dv dz.

Thus,

! v —a t—v (l‘ —y = x)a—lx—(z
/ (1 - (1 : 70) ) ' {/0 i aie @1 +2809) dx
0

t—v x (l —y - x)2(t—1z—aa(x _ Z)—a—l
" /0 0 (1 - a)2l2a)

2A(z)A(x — z) dz dx} dv

+ j(l + ULO)_Q . {/l(v + Uo)(l + 2(A(v + Up) — A(UO)))
0

+

2(A(v + U()) - A(Uo)) t (t x)a(x _ V) a//l(x _ V) q
v+ U / T —a)l(1+a) v

It can be further transformed as follows

E[N:*| Uo] = EIN; | Up]
t

200" alt —v+ Up)™ @t /v(v - X)X Y A(x)A(x) dx dv (4.22)
0

T Tl-or(+o
0

2an t v 2a * - —a-1
T T - o)1+ 2a) //0 (v =x) /0 (x = 2)7*Ax = 2)az™" A(z) dz dx
0

a(t —v+Up) ™t dv (4.23)

1

+ QUO"/ (A(V +Upy) — A(UO)){ a(v + UO)_Q_l ‘/0 R (tF_(lv:ciC));él_j‘/Z;) dx
0

+ (v+Up)™%A(v + Up) } dv. (4.24)
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Respectively expressing (4.22), (4.23) and (4.24) in terms of some expectations of A(U) and A0),
where U is defined to be an age process whose initial level is dependent on U. With the density of

{U: | Up};»( obtained in COROLLARY 4.4.2, we have

» for (4.22):

F(l - a)F(a) / / ate+ Loy ./ (v =2 = )" " A)A(x) dx dz dv

a-1_ -«
F(l—a)l“(g)///( v—x+U0)(V_x) x~A(x)A(z) dz dx dv

r(l—a)F(a)/ / / ( z-x+U)(Z‘x)“‘1"‘“ﬂ<X>

- Z)_a/l(v —z+x)dxdzdv

(1+
t

\% Z ~
2// / P(UV_Z:v—z+UZ, U, € dx|U0)/l(v—z+x)/l(x)dxdzdv
0 0
0

t

2 / /0 BV (1,0, 21, 0. = v-cv0r.} | U] dz

0

» for (4.23):

a-1 2a-1
T(l- a)2r(2a) / / a(w + Uo)” /0 (v=w=-1x)

/ (x —2)%A(x — 2)az ¥ A(z) dz dx dw dv
0

= _ a1l —-a
- r(1—CY)21"(Q)2/.//( w— x+Uo)(w XA dx

/_W(l_v— )(V_W Yy Ay) dy dw dv

F(l—a)2f(a)2/// / ( W X+U0)(w—x)“‘1x‘“/l(x)

y—w a— -
( )(V -y —w) Ay - w) dw dy dx dv
v—w
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WO/O//OH /Ox(l— ﬁ)(v—x—y)“‘ly‘“ﬂ(y)

U
(1 B —0)()‘ —w)* W A(w) dw dy dx dv
x=w+ Uy
t v ex N
= 2/// / P(Ux € dw, Uv—x € dy | Uo) /l(w)/l(y) dx dv
0 0
0 0

2

D\N

/0 BAUIA(T) U1, 0, ), 00t vy} | U] i v

e for (4.24) :

v—x (V —x - Z)a—lz—a
(1 - a)(e)

20U, / /0 V(A(x + Up) — AUp))a(x + Ug) @t /0 A(z) dz dv dx

0

t
+ 20" // Ax +Up) dx (v + Up) ™ %A(v + Up) dv
0
0

ror x\7¢ V=X x+Uy \(v=—x—-z)@lz@
2,0/‘0/(1+U_0) /l(x+U0){/0 (1_V—Z+U0) i —o)r@) A(z) dz

V—X

+ (1+x+Uo) /l(v+Uo)}dxdv

Uo] dx dv.

t
20//0 E[A(Ux)/l(ljv_x)]l{ux:HUo}

It is quite obvious to see that

]I{Ux €0, x), Uy_x = v-x+Ux } + ]I{UX €(0, x), Uy—x€(0, v—x)} + ]I{Ux = x+Uo} = L,

so putting together the results of (4.22) — (4.24) leads to

2/'/OVE[/1(UX)/1((7V_X) | Uo] dx dv.
0

This completes the proof.
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Local Times related to Bessel Age Process

For a standard Markov process with zero a regular point for itself, the excursions of such processes
are described as a sequence of independent and identically distributed pieces of path (each with finite
length), glued together by the time points of visiting zero. The behaviour between visits has been well
characterised except in the vicinity of zero. The measure in time of the zero set is called the "local
time". More precisely, the local time at zero is an additive functional of the Markov process, measuring
how often the process visits {0} thus evolving only on the random set of zeros. According to the
theory of Blumenthal and Getoor [11], such a functional exists on the premise of {0} a suitable point
in the state space. For background knowledge on local times, we refer to Blumenthal [10], Borodin

[14], Marcus and Rosen [78], McKean [79].

5.1 Introduction

The remaining chapters are devoted to the study of the local time at zero of Bessel age process, denoted
by L = {L,,t > 0} throughout. Focusing on this subject, there are many attractive aspects to discover.

Among them to be considered in the present chapter are the following:

¢ There are various ways of approximating a local time, mainly by limiting processes describing
the sample path properties of the underlying process. Above all, an intrinsic definition of L, is

given as the derivative of an occupation measure of (0, €), representable of the form:

L, = liﬁ)l vi(e)™ measure{s €[0,0) | Us < 8}, e>0.
&
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{U;,t > 0} remains unchanged, the Bessel age process. v,(¢) is the speed measure function and

determined uniquely up to multiplication by a constant.

Another way of constructing a local time is based on the theory of Poisson point process
established by It [54], who presented an idea of characterising a Markov process in terms of its
excursions away from a fixed point in the state space. One merit of this theory is the concept
of "excursion point processes"” that recovers a local time from the behaviour of the associated
excursions (see [62, Chap. 6] for full information). To illustrate, let M, denote the number of
jumps in the path of U;. According to Itd’s idea, Mg, )(¢) is a Poisson process with a proper

intensity v, (¢)~!, which leads to a weak convergence in distribution :
D
L: = vy(e) M;(e), as & —0,

where ¢ denotes the right-continuous inverse of L. It is worth mentioning that the limit relation
stems from a famous conjecture namely "Lévy’s downcrossing theorem", proved by It6 and
McKean [55, Chap 2, 6] in the case of reflecting Brownian motion. Depending on the path
features of the underlying process, Itd’s way of approaching local times is applicable to a wider
class of Markov processes. Please refer to Blumenthal [10], Fristedt and Taylor [44], Itd and
McKean [55], McKean [79] and Karatzsas and Shreve [62, Chap 6] for other constructions of

local times.

There is a well-known property about the local time of a standard Markov process. That is, the
inverse process of the local time at a regular point a is a subordinator whose jumps correspond
to the lengths of the excursions away from a (see [64, 66, 78] and [5, Chap 4] for references in
this regard). As a direct consequence, the law of the local time L, can be determined from the

fact that £(¢) coincides with a stable process of index a € (0, 1).

Applying the central limit theorem, it is of great importance to show that the difference between
the local time L, and the limiting process, defined either by the occupation or the counting
measures introduced above, is closely related to a zero-mean Gaussian process subordinated by
L,. This problem is motivated by the work of Kasahara [63], who following the downcrossing
theorem obtained an independent time-changed Brownian motion from the associated difference.
Extensions of this result to the Brownian excursions and general Lévy processes are discussed

in [25] and [64] by the same author.
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5.2 Definitions and Notations

On a filtered probability space (€,.#,P), there is a (.%;)-adapted age process U = {U,,t > 0} given by
U =t—-sup{s<t]|X;=01},

for X to be a (2 — 2a)-dimensional Bessel process instantaneously reflected at the origin with @ € (0, 1).
Within the space, the occupation time of the Bessel age on the time interval [0, 7) is the measure defined
by
t
Zt(a)) = / ]l{Us<@} ds, 0 <<L. (51)
0

Technically speaking, the quantity Z,(@) is equal to the Lebesgue measure of the time spent by the
age process under the level @ before 7. Obviously ¢t — Z;(@) is continuous, non-decreasing and

Zo(@) = 0.

Integral functionals for Markov processes Y of type { fot f(Ys)ds,t > 0} are being widely explored,
where f is a non-negative Borel function. Please refer to Blumenthal and Getoor [12] for general
knowledge on (additive) functionals. Great attention has been given to the perpetual integral functionals,
i.e. the limiting process by taking ¢ to infinity (see [40, 85, 86] for examples); to the distributional
properties related to a-quantiles (see [27, 28, 29]); and to the convergence to some other functionals

(see [13, 15, 65]), in particular to the local time concerned here.

The probabilistic behaviour of U is well clarified in previous chapters except when it is approaching
the set of zeros given by 2 = { ¢t : U; = 0 }. By the local time at zero of a Bessel age process, we mean
that there exists a continuous family of functionals denoted by L = {L;, t > 0} and L; is measurable
relative to o{Us, s < t} for each ¢. It measures the part of time spent at zero by the age process over
the time interval [0, ). This makes it clear that L is a non-decreasing process and it increases strictly
on the zero set 2. The notion of local times for general Markov processes was due to Blumenthal and
Getoor [11], who by means of the potential theory clarified the existence of such additive functionals.
Precisely, the local time L is constructed on the fact that zero is a regular point in the state space of U,
ie.

P(inf{t>0|Ut:0}:O):1.
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It is a well known fact that there is no unified representation for the local time of Markov process,
as it can be established as a limit of various processes describing the behaviour of trajectories of
the underlying process. As mentioned in the introduction, we are concerned with two ways of
characterising L;, in terms of the occupation time Z;(@) and a counting measure. The former provides

an intrinsic definition of L;, expressed as a limit of Z,(®@),
L, = limv,(@)! Z(@), (5.2)
@0

under a certain manner of normalisation on v,(@). The latter arises from the Poisson random measure

attached to Markov processes.

To get a precise definition of this counting measure, let U be a perturbed age process by size €.
Please refer to CHAPTER 2.2.1 Perturbed Bessel Process for full accounts on perturbation. The zero

set up to time ¢ of U7 is given by
F(e) = {se[o,t)wf:o}.

The complement Z,°(g) = [0,1) \ 2Z; is then a countable union of disjoint open intervals of lengths
pi > Osuch that };2, p; = . Let M;(g) = #Z:(¢) denote the number of points in the zero set, which

in quantity equal to the jumps in the path of U represented of the form:
Mi(e) = Y lipe oy Mole) = 0,
i=1

where {Tf}ieN+ is a sequence of random times defined by

TF = inf{s>TF, |UF=0},  with T{=0.

According to 1t0’s idea, if Z;(g) is parametrized in terms of the local time at zero, there implies a
point process describing the pieces of path corresponding to Z,°(&) with values in {p; }; -+ (see [10]).

To be more precise, suppose ¢ is the right continuous inverse of L such that

£(t) = inf{s|Lg>1t}, 0 <t < o,
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{Mg(,)(s)} follows a Poisson process with a proper intensity v,(g) ™" satisfying gg%] v,(€) = 0. Then

for all ¢ > 0, there should be a relation like this:
D
My (e)vo(e) — t, as € —0,
and by changing t — L, it leads to
D
vo(e)M(e) > Ly, as ¢ — 0, (5.3)

D e
where — denotes the convergence in distribution.

An important consequence of (5.2) and (5.3) is to present a central limit theorem (CLT) that relates
the local time of Bessel age process to a time-changed Gaussian process with mean zero. Many
interesting features of the Gaussian process are described on the basis of the characteristic measures

vi(€) and v,(@). The two functions are uniquely determined by

lim ]E[ /O " f(vl(a))_l Zt(a))) dt] = lim E[ /0 B (e)Mi(e) di|. (5.4

for every 8 > 0 and Borel f on [0, ). By means of martingale approach, v, and v, are dealt with in

Limit Theorem I & II respectively.

While performing calculations, to avoid confusions in presenting results we define a double Laplace

transform for a real-valued random variable X; by

ety o] ["emeen
0

= / e‘ﬁtE[e_fxf]dt,
0

where the last equality follows from Fubini’s theorem. We further adopt the following notations

B — -pt d
2 = [ e

the Laplace transform of some function ¢(¢) defined for all real numbers ¢ > 0, and

Ve
Y(a,z) = / e 127 dr;
0

INa,z) = / et 127l dy,
Z
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for the lower and upper incomplete gamma functions, and thus y(a, z) + I'(a,z) = T'(«@).

Note: the symbols and notations defined above will be used throughout in this chapter.

5.3 Limit Theorem I : Local Time as a Limit of Occupation Time

By describing our approach as martingale, we meant to consider a continuous function f : [0,£)2 — R*
arising as the solution to A, f(u, z) = 0 such that f(U;, Z;(@)) is a martingale. A, is a generator used

to analyse the infinitesimal movements of the Markov process {(Ut, Z(@)) }, and obtained from:

B| /(U @) | - £(W00)

A f(u,z) = zh_r)% "

The martingale properties are then of great help in investigating f(U;, Z,(@)) and its asymptotic
behaviour as @ — 0. Furthermore, this section develops some distributional properties and facts that

are relevant to the occupation process, and preliminary to the limit theorem for the local time.

5.3.1 A Scaled Occupation Time Process

Given Z,(@) an occupation time of level @, we consider a scaled occupation measure in the manner,
o Pz, (@), 0<m<t, (5.5)

with p a scaler taking non-negative values. Within the scheme of perturbation, the process used to
perform calculations is (U?, Zf(@)). U* is the age process defined upon a perturbed Bessel process of

size € > 0, and then

t
Z; (@) = ‘/0 ]1{U§<@}ds, Z§(@) =0.

As explained in CHAPTER 2.2.1, U? converges pointwise to U as & approaches zero. By similar
construction, it implies another convergence of (U?, Zf(®)) to (U, Z;(®)). The infinitesimal generator

of (U?,Z#(@)) acting on bounded functions f € C! is given by

0f  Vu<eydf | pw

ﬂzf(”’z) = % P 0z ﬁs(”)

| 70,09~ fwo) | (5.6)
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with

= —a-1l,-5;.
poli) = g™ (5.7)
_ P 2a 22
P.(u) = /Q;F(a)v_“_le_% dv. (5.8)

u

Applying the martingale techniques to (5.6), for every suitable choice of f satisfying A, f = 0,

fF(UE, ZE(@)) - f(Uo,0)

is an (.%;)-martingale for all # > 0. An immediate consequence of this result is some characteristic

function of the (scaled) occupation time in (5.5).

Lemma 5.3.1. We denote the double Laplace transform for @ P Z,(@) with Uy > 0 by

[ee)

L oPZ (@)} =E /e—f“ e 4@ Z@) qr | Uy .
0

For the case 0 < @ < Uy,

L @7PZ(@)} =

Up®BrLPUT(1 - o, BUY) + LP{ @ PZi(@) } - ( 1 - Up®B¥PYor(1 - @, BUY) )
and the other case @ > Uy,
I
Lg’f{ o PZ(@)} = ane(ﬁ+wP)U° . (Ltﬁ{ exp{—% min{t, @}}t“’l{t > Uo} }
+ L’B’g{ o PZ(@)}- Lf{ exp{—% min{z, a)}}at_“_lﬂ{t > Ug} } ),

where in both equations, the quantity LP%{ @ P Z,(@) } represents the Laplace transform of the

special case Uy — 0 with

LU DPZ(@)) = lim LEY Pz (@)} =
Up 10 0
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{ e~ ge-1r(1 - a, o)

1
B —) 1+ — or¢
( ®r (8+ %) v(1 - .o + (@1P) + i@ 7 oT(1 - )

Proof. Based on what we have structured, we are keen to find a martingale of the form

t
/e_ﬁse @) gy 4 ¢ Plear Zi(@ g(U7),
0

with g(-) assumed to be a bounded function. By the martingale property,

t

limE/e S L@ gy 4 Pl Ir L@ g(Uf) | Uo

t—0
0
= /e‘ﬁs E[e_#zf(m) ' Uo] ds
0
= g(Uo).

To find the expression of g(Up), we first expand the Markov process by one more element,

t

Wp = /e_ﬁse a7 % (@) g, B, > 0.
0

As aresult, the infinitesimal generator for the expanded process (Uf JLE WP, t) is written as

of

0
Af(u,z,w,t) = A f+—+ ePearz 2L f

ow’
Consider that f(u,z, w,t) is of an exponential form

z
w + ePlearig(y).

Substituting it into A f = 0, we have

pe(u)
P (u)

~Bg(w) + 80 = =58y <y + 1+ 2 (5(0) - () =
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We find the unique solution to the differential equation, read as

g(u)e—ﬁue—@% min{u, @}pg(u) —
£(0) / ¢ PV e~ min{v, @} pe(v)dv + ‘/e_ﬁ"e_ai[!’ min{v, @} p () dv,
u u
with

/e—ﬁve—cip min{v, Q}PE(V) dv
0

g(0) = —
p+1 £ ¢ P~ op min{v, @} p (v) dv
{v<o} P &
0

Assuming 0 < @ < Uy,

[Se]

BUo 3 P
{0 = 3o / PB) dv + g(0) / BV pu(v) dv
Uy Uo

Otherwise with @ > Uy

€,3U0+®’Lon

gWo) = —=
PS(UO)
/e_ﬂve_cfl’ min{v, Q}Isg(v) dv + g(O)/e_'Bve_afl’min{v’ a)}pg(v) dv
Uyp Ug
Then the results follow immediately by taking & — 0. O

There is an important remark on the initial value Uy.

Remark 5.3.2. The main goal of this section can be achieved by studying the limiting behaviour of
LB4{ @ PZ(®)}. Specifically, we investigate on the scaler p that admits a limit at ® — 0. As
obviously being of no use, results associated with the case 0 < Uy < @ will be left out of consideration
at all stages of limits taking. That being said, for the sake of completeness we yet provide results for

both cases where possible.
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Having the Laplace transforms in hand, we proceed to the limit of £#¢{ @ PZ,(@) }. As the
main results to the whole work, the choice of p and the corresponding limit are determined in the

following lemma by using L’Hopital’s Rule .

Lemma 5.3.3. Forevery0 < a < 1and p > 0, it holds that
lim P40 PZ(@)} = LM{ lim @ "Z(®) };
®—0 »—0

and in particular for p = 1 — «,

Lhe { lim @“—12(@)} = /B+ﬂ 1 (5.10)
-0 ! - re-a)) - ‘

Proof. We begin by writing the representation of £5-¢{ @77 Z,(®) } in (5.9) into the following form,

5+ %)a_lv(l - (B+ &)@) + B @I - 0 )
l-a,(p |

S R A SR

@P

P

a-1
Given 0 < a < 1, it is obvious that the term (ﬂ + = ) y(l - a, (,8 + %)G}) is dominated by

e‘ga’l_pl“(l — @, B@) in all possible values of @, and

r(1-a)p*, p € (0,1);
lim @ BUIN(1 - 0, f@) = {T(1 - ) e -1
@®—0 ’ > p=4=4
0, p € (1,00)
Further for the denominator,
0, p € (01-a);
-1
4 ¢\ g 4
1 — — 1- — = =1-
@11% oF B oF 8% a, | B+ > @ - p 1-a;
0o, pe(l-—aow)
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Putting them together, we get

1
-, € (0,1-a);
3 p e ( @)
r(l-a)pet
lim LP{ @ PZ (@)} = 7 p=1-a
®=0 F-ap + 17—
0, p € (l-aow).

In conjunction with Lévy’s continuity theorem, the transform function in (5.10) is of great help
in studying the asymptotics of {@ ™" Z,(®@)}, particularly the convergence to the local time. Once
the limit relation between the occupation and local times is clarified, the probability density of the
latter is determined from the inverse Laplace transform method. Since most inversions are effected
by recognition, it leads to a better understanding towards the local time by identifying with a class of
variables in our knowledge. In this regard, we refer to the a-stable subordinators as mentioned in the

introduction. All these aspects will be dealt with in more detail below.

5.3.2 Convergence of Occupation Time to Local Time

Recall that we denote by L, the local time at zero of a Bessel age process over interval [0, 7). In terms

of the occupation time, it can be approximated by the form :
-1 D
(@) Zy(@) > Ly, as @ — 0.

It turns out, by LEMMA 5.3.3, that v,(®@) is a multiplication of @'~ by some constant that is

determined in the course of normalising the density of L;.

A well-known fact about the local times for a wide class of Markov processes is associated with
inverse subordinators. Put another way, an inverse subordinator is the local time of some "well-
behaved" Markov process (see [6, 69] for details). The most famous example is the Brownian local
time whose inverse is described as a %2-stable process. A more general case is due to Bingham [7] who
showed the inverse of a-stable subordinators with 0 < @ < 1 arising as limiting processes of some

occupation times.
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Particularly relevant to the present study is the connection of stable subordinators to the local times
of Bessel related processes. Let us pause briefly to recall some basic facts about stable subordinators
of index @ € (0, 1). For more detailed study on (inverse) subordinators, please refer to Bertoin [5] and

Kyprianou [68].

Definition 5.3.4 (Lévy process). On the probability space (Q,.%#,P), a real-valued process S =

{S;,t > 0} is said to be a Lévy process if it satisfies the following properties:
(1) P(Sp = 0) = 1 almost surely (a.s.) ;

(ii) As a function of t, S, is right-continuous with left limits a.s ;

(iii) S has independent increments. For any choice of n > 1 and 0 <ty < t; < -+ < t, the random

variables S;,, S, — St, Sty — St,5+ S, — S1,,, are independent ;

(iv) S is time homogeneous. The distribution of {S;+,, — S;,t > 0} does not depend on t.

Lévy processes have infinitely divisible distributions. Following this fact, a Lévy process can
be uniquely defined via the Lévy-Khintchine formula. Suppose that a,0 € R and /7 is a measure
concentrated on R \ {0} satisfying fR(l A x?)II(dx) < oo. The probability law of a Lévy process is

determined with a unique characteristic exponent ¥, such that
E[eS] = exp{-P(A)}, 120, 1€R,

where
2 /12

Y(A) = ial+ z + / (1 — ey i/lx]l{|x|<1}) I(dx).
R\{0}

By looking into this formula, one can deduce that the corresponding Lévy process is equal in probability
to the sum of three terms: a deterministic linear drift, a Gaussian process, and a jump process whose

size and frequency are characterised by /7, namely Lévy measure.

Definition 5.3.5 (Lévy subordinator). On the same space, the Lévy process S is said to be a subordi-

nator if it has non-decreasing sample paths and can be defined with its Laplace transform

E[e"gst] = exp{ - t‘PS(H)}, 0 eR",

83



with Y5(0) a Laplace exponent of the form

W(6) = /R + (1 - e—"X) H(dw),

and IT a Lévy measure on R* \ {0} satisfying fR+(1 A x)I(dx) < oo.

By the inverse subordinator, we mean a process {fts > 0} defined by
€5 = inf{x > 0|8, > 1},

i.e. the right-continuous inverse of S.

Proposition 5.3.6. Due to the relation between f;g and Sy, the law of the former represented by the
latter has the form

P(f,s e dx) = —2PB(S, <f)dx.
For all 5,0 > 0, the double Laplace transform of fts is then given by

_151/
o) - L

Proof. By the definition of €5, we have an equality { 5 < x } = { Sx >t }. Then with E[e“’s"] =

e—x‘[’g (9)’

()

]oe_B’]oe_gx P(fts € dx) de
0 0

[

/e_ﬁt e 0% d{ P(Sx > 1) } dt

0 0

0 [ ePt | e P(Sy >1)dxdr
0 0

1 (B

T BO+s(B)
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Definition 5.3.7. In particular for Ys(6) = c6%, or equivalently

c

—-a-1
< dx,
Ti-a™ o

I(dx) =

with ¢ > 0 a scale constant and « € (0,1) a stability index, such a process is called a a-stable

subordinator.
To get an explicit expression of the stable law, we adopt an integral representation provided by

Zolotarev [90] for one-sided stable random variables. Let s, denote a stable r.v. of index 0 < a < 1,

whose distribution according to [90] is given by

where A is the Zolotarev’s function, read as

det ( (sin(av))” (sin((1 ~ a)v))'~ \ 77
A= ( sin(v) ) :

By a simple change of variable, the stable law is written by

fu(x) = ﬁ / T A)e AN T (5.11)
0

The above definitions and results concerning stable subordinators play an important role in

delivering the subsequent theorems.
Theorem 5.3.8. By the continuity theorem, there is a limit relation holding for any 0 < a < 1 that,

I'2-a)

ch—a

Z(@) 3L, a @—0. (5.12)

: 1-¢ o Lo .
That is to say, v,(®) = 1%—_;) It also implies a characterisation of {L;} to the inverse of a a-stable

subordinator, whose law is thus determined by

1

1z a1

P(L, € dz) = fulrz®)ds  zer”. (5.13)

fs, 1 the density function of a stable r.v. given in (5.11).
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Proof. By Lévy’s continuity theorem, the pointwise limit of characteristic functions is a characteristic

function provided that it is continuous at zero. That is to say, since we have shown that
lim £A4{ @ 1Z(@)} = L4 { lim @*'Z,(@) }
©—0 ©—0

holds for all 8,¢ € R* and £P-¢ is an operator defined continuous at zero, there exists a family of
random variables (clearly it refers to {L,}), such that normalised by I'(2 — @) we have the equality in
distribution:

Lt = hm

@®—0

r@-a)
@1—_52,(60) :

To find the law of L;, we start by writing the Laplace transform (5.10) in LEMMA 5.3.3 as

[

’ ’ @ dy
s - _ -{'y 0 -
LPLY = /e yaﬁ{eﬁy}ay
0

with ¢’ = ﬁ Obviously e#*Y coincides with the Laplace transform of s, (see DEFINITION 5.3.7).

Then the stable law in (5.11) contributes to the equation

_ O [ B p —— -A(x)y I-a rtt e
%{ e } = a _a)ﬂ/ / yTa 1 15 A(x)e dx dt. (5.14)
We thus have

, 1 @ p 1 __a
LAy = ﬁ//e Ble= {y'/ yTat Ta A(x)e AT T gy dr dy.
—a)m
0 0

This proof is completed by checking the validity of the density function involved,

a

1 ; 4 (3 o L -
(1-a) // YA TE Ax)e AT (e dy
— Q) 0

1ol [
0

1]
3 | —
e
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In line with Paul Lévy’s manner, we provide another representation for L,, expressed as a limit of

some quantity that measures the amount of time spent at zero over (0, ¢) by a powered age process.

Definition 5.3.9. It is called the Lévy’s local time of Bessel age process, written by

t

. T2-a)

Lt = (})111’1)0 T/]I{U“la < (p} ds. (515)
0

THEOREM 5.3.3 states that the limit of the occupation time exists if it is scaled by @?~!. By

transforming @'~ with ¢, we get this representation.

5.4 Limit Theorem II : Local Time as Limit of Jump Counting

This section is devoted to another approximation of the local time on the basis of Poisson random
measure. It is constructed with a counting measure on the number of jumps in the sample path of age
process. Following an analogous approach to that presented in Limit Theorem I, we shall develop a set

of results concerning the asymptotics of the new measure and their applications to the local time.

5.4.1 A Scaled Jump Counting Process

Recall that M(g) denotes the counting process of jumps from the paths of U?, whose underlying
process is a perturbed Bessel denoted by X*. By virtue of the correspondence between Uy and X/ for

every t € R*, M,(¢) is equal to the times that X7 drops down to zero from & > 0.

Of particular interest is a scaled counting measure in the form:
"M, (e), e >0,

with « a scaler taking non-negative values. In some sense, £* is regarded as a scaled unit increase per

occurrence of a jump arriving at rate ’;—EZ;. Accordingly, the infinitesimal generator of (U, M,(g)),

defined by its action on C! functions f : [0,7) x N* — R* as

A fusm) = ‘;—i + % f(O,m+1)—f(u,m)], (5.16)
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where p. (1) & P.(u) are defined before by (5.7) & (5.8). Any solution to A,,f = 0 is an (.%;)-
martingale represented by f(UZ, M,(¢)) — f(Uo,0). To examine the asymptotic behaviour of this
measure, we derive the characteristic function of M;(&) and decide a suitable choice of x upon that for
anyt >0

lim B[ f(Uf, M;(e))] < o.
e—
The associated results are presented below.

Lemma 5.4.1. We denote the double Laplace transform for €“ M, (&) with Uy > 0 by

L’Z’f{eKM,(g)} =E /e_ﬁt e éE" Mi(#) gy Upl.
0

For every 0 < a < 1 and k > 0, it holds that
lim L84 &M (2)} = L5 lim & M,(e) |,
and in particular for k = 2«

£ im e Me) | = L4 tim S M) }( 1 - BUPVT(1 — a, ,BUO))

+ B U P (1 - @, BUY).

where

B.E] 1 2a _ ﬁ,g{- 2a }
£8€] tim &2 m o) | lim £54] limy 62 M, (e)

_ (’8+F(1+a/)

-1
@ l1-a
F(l _a)z B ) : (5.17)

Proof. 1t is our aim to find a martingale of the form

t
/ e—ﬁse—f,gKMS(g) ds + e—ﬁte—gg’(Mt(S)g(Uf)’
0
with g a bounded function. By the martingale property, we have
t
lim E / ePse7EE Ms(2) (g TPlemEE MilE)g(UE) | U

t—0
0
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/ o Bs E[e—fakMs(a) Uo] ds
0

g(Uo).

To find a suitable solution of g(Uy), we insert an auxiliary process defined by

t
Wi = /e_'Bse_‘faKMS(‘E) ds
0

into (U?, M,(¢)). Accordingly, the generator acting on f(u, m, w, 1) is given by

ﬂf(u,m, W,t) = Anf+ a_f + e—ﬁze—ggKma_f.
ot ow

Substituting f(u,m,w,1) = w + e B ™6 " g(u) into Af = 0, we get an equation

_ 7 pS(u) —§€K _ _
Bg(e) +8'0) + 1+ (650 gw) ) = 0,
and the solution is obtained as
e /e_ﬁ"Pg(v) dv -
Buo
0 e -
gWp) = = = e P pe(v) dv
. . _ Ps(uﬂ)
1—e ¢ +e7¢° /,Be_ﬁ"Pg(v) dv "o
0
Buo B
i ePVP.(v)dv.
Ps(u())

uo

Implied by P.(v) a suitable choice of « is determined as 2a. This leads immediately to

I -a)p"’ y /°° -
— 1— a 0 V. —a
sW0) = i+ 2ot v |- P O
Uo
+ aneBUO/e_'va_“ dv.
Uo
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5.4.2 Convergence of Jump Counting to Local Time

Following the same reasoning as in the proof of THEOREM 5.3.8, it turns out that the local time L,

arises as some limit of £2? M, (¢).

Theorem 5.4.2. There is an identity in distribution between the counting measure and the local time,
such that forany 0 < a < 1,

I'ia-a)

2a D
—— "M, L . .1
T+ a)2”8 (&) > L, as €—0 (5.18)

Proof. To identify the limit, we compare the characteristic function in (5.10) with that in (5.17).

Obviously it holds by setting ¢() = [(1 —a)T(1+ a/)2“] " that
E[exp{—{c(a) il_r)% 82“Mt(8)}] = E[exp{—{ éiirb a)“‘th(a))” .

This in turn by the continuity theorem proves the limit relation between £2? M, (&) and L. O

5.5 Limit Theorem III : A Central Limit Theorem for Local Time

In Limit Theorem I & II, we develop concepts for the local time at zero of Bessel age process and
characterise its law as the inverse of a a-stable subordinator. In terms of convergence, we prove two
equalities in distribution with the associated occupation and counting processes. Another concern
around the local time arises as an interesting consequence of the weak convergences. In brief, the
central limit theorem regarded as a corollary of the continuity theorem indicates that the limiting

distribution of the difference between the local time and the approximations is Gaussian.

5.5.1 A Scaled Difference about Local Time

Following the relations among Z(@), M (&) and L, the stochastic process describing the difference is

defined by

I'ia-aw

[ T2-0a)
T(1+a)2°

Vile,@) = @™ —~Z(@) -

a)l—a/

XM, () |, t>0, (5.19)
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with ¢ a scaler taking non-negative values. In particular by allowing £ — 0,

I'2-a)

S Zi(@) - Ly

V(@) = limVi(e,@) = @‘q(
E—
We are keen to find asymptotics of V;(g, @) as € and @ approach zero, normalized by @9 for measuring

the speed that makes the convergence takes place. To this end, a martingale framework is established

on the Markov process (Uy, Z; (@), M;(¢)) to study the distributional properties of V;(&, @).

Let U?, Zf(®) and M;(¢) remain unchanged. The infinitesimal generator A, acting on C!-

functions f : [0,7)?> x N® — R* is simply obtained by merging (5.6) with (5.16). We thus have

0f  Vu<e)df  pe
du = 9z P(u)

Ay f(u,z,m) = f0,z,m+ 1) — f(u,z,m)|.

The characteristic function of V;(g, @) is then derived from any f satisfying A, f = 0. Please see

below for this result.

Lemma 5.5.1. We denote the double Laplace transforms of V(@) by LB {V,(@)}. For0 < a < 1
and 8,9 >0

Rl(ﬁ’a; @) + RQ(ﬁ’Sv @)

LLAv(@) = . (520
Q- Iad-
(ﬁ + %8 )R1(,8,19; ®) + BR(B.V; @) — %‘9
Ry and Ry are define by
a-1
Ri(B, ;@) = (,8 + %8) Y(l—a,,BGD + %8);
Ry(B,%; @) = B II(1 - a,ﬁ@)exp{—%ﬁ} .

Proof. Denoted by £P-%{V;(g, @)} the double transform of V; (&, @), it can be obtained from computing

t

lim E ‘/e—ﬁse—fzf(ﬁ?)—fsmMs(S) ds + e—ﬁte—fzz(S)e—é;SQ"Mfg(Utg)

t—0
0
_ / b [ EZ @ 1) g
0
= g(0),
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with substitution

I'l-a)

{ =10 = Wﬁ; &= £@) = T ra2eed

Considering f (U, Z,(®), M, (), WF) with
t = ~
Wi = / ¢ B gCZE (@)~£* M (o) g
0

is a martingale of the form: f(u,z,m,w,t) = w+ e‘ﬁte—fze—é‘g?amg(u). g is a non-negative bounded

function. To prove it so as to get the representation of g(0), we show that

) 0 0 Fo g2y, 0
Af(u,z,mw,t) = 6_{ + % + ]1{u<a>}a—§ + e PleiieEe ’"%
‘118(”)

Pg(u) [f( 0,Z,m+ ].,W,t)_f( M,Z,m,w,t)

By solving ﬂ(w + e‘ﬁte‘&e‘gsmmg(u)) =0, we get

/e—ﬁve—fmin{v, Co}ps(v) dv

0
g(0) = =
5 14 /(,B + 1y < @}Z )e_ﬁve_‘:min{v’ @}P.(v) dv
0
Then (5.20) follows immediately by taking € — 0 and replacing £ — £(9) and & — £(). O

To find a suitable normalizing factor @9 that makes the difference having a non-trivial limit

distribution, we investigate the asymptotic behaviour of V;(@) as @ — 0. The associated results are

presented below.

Lemma 5.5.2. Forevery 0 < a < 1 and g > 0, it holds that

lim £P(V,(®)) = Lﬁ""{ lim w(@)}, (5.21)
0—0 ®—0
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and in particular for q = 5,

-1

U-MC-d)gpal (5.22)

o o] - [5- 22

Proof. Considering the numerator in (5.20), define @) =T (2 -a)por1

~ a-1
Hwo ~ 3
(/3 4 % y(l — o, B+ 8(@)) + g L@ (1 — o, o)
[l o0
— a)(l—a)2+q(1—a) / e—,BGJI_‘”qu—l"(Q—a)x‘)ZZ—a dz + e—é(a)) / e—,va—a dv.
0 @

With 0 < @ < 1, it can be checked that for all values of ¢

Y4
hmo a)(l—a)2+q(l—a) / e—,Ba)l_“+qze—l"(2—a/)192Z—af dz = 0,
w—
0
and the rest term is evaluated to
r1-ap*, g € (0,a);

[ee)

aljn_nm e—@(m)/e_ﬁvv—a dv = r(l_a)ﬁa—le—F(Z—a)ﬁ, q = a;
w

0, q € (@,0).

Then for the denominator

(ﬁ + ﬁ(a))) Y(l - @, fo + é(w)) + p2e@r(1 - 0, p@) - (1 - 2P

@
:9 a-1
@ o ~
=B (/3 + %) y(l - a,B® + 8(&))) + B e @ (1 - o, Bo) (5.23)
k]
—a+ ((l—q)(l—a)
+ I(2 - @)@ U2t / e PRz T2mayz e g, @1— . (5.24)
-
0

(5.23) coincides with the numerator. Applying L’Hopital’s Rule to (5.24),

[Nk
—ag)(1-
f e_ﬁwl—(ﬁqze_r@_a)‘gzz_a dz _ @(j— q)(1-a)
-

[2-a)d CIDILHO @a(l—(t+q)
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I'(2- — 3
= - (2 - )bl - q) lim (B +T(2-a)¥a - q)(D”_Qq e PPN @)
ag(l—a+gq) o0

. ve(0g)
] T@-aW)? o
I 1= 9

ve (5e)

Putting them together, we get

: 1< (0.3)
B[ = - op ; q=5
£ mvi@) | = 1 - aype - 2= o;)f»z 2
0, g € (%, oo).

5.5.2 Convergence of the Difference to Gaussian Process

The aim of what follows is to show a Gaussian process for the limiting difference, to which the normality
is shown by the central limit theorem. It is oriented by the work of Kasahara [63] who showed that the
difference between the Brownian local time and the normalised number of downcrossings follows a

brand new Brownian motion.
Theorem 5.5.3. By central limit theorem it holds for any 0 < a < 1 that

o4 %Zt(@)—g) RS N( 0,62(t) ) as @ — 0. (5.25)

N represents a normal distribution whose variance c2(t) is equal to

21-a)2-a),
2—-a "

o) = (5.26)
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Proof. We start by writing (5.22) in the form

(o)

. _ga 292y d
Lﬁ,ﬁ{ élinov’(w)} = —/%{e Ay Y eXp{%}a_;’

0

with ¢p? = w A proper integral representation of ——{ e By } has been derived in (5.14).

Moreover, the exponential term involving 92 can be expanded in terms of the moment generating

function of a normal distribution, such that

9292 [ a1 v2
eXp{ 2 }‘ /e wm“p{‘2y¢2}dv‘

This leads to

ﬁ”{ im v,(co)} - / e Pt / e dv di
-0
0 —00

00
V2

T 1 _a
yI- a_ft_l e 2v¢2 / A(x)e_A(x)y et e gy dy.
(1- a)qn/ / 0

We thus obtain the density of limo Vi(@). With P(L; € dy) given by (5.13), it can then be expressed
w—

in the form of a normal distribution subordinated by L; acting on the variance, such that

2

v
O/ \V2ryd? exp{— 2y¢?

P(lim V(@) € dv }-P(Lt e dy)dv.
@®—0

The proof is completed by this representation. O
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Scale Invariance about Local Times

By self-similar Markov processes, we mean a R*-valued strong Markov process X = {X;,7 > 0} with

Xop = 0, whose paths are almost surely right-continuous with left limits such that,
{c_“Xc,,tZO}li—vv{X,,tZO}, a, ¢ > 0.

That is to say, X fulfils the scaling invariant property (please refer to Kyprianou [68, Chap 13] for
accounts on this process and to Embrechts and Maejima [43] for more general cases). Some known
examples having the same path property are subordinators, Brownian motions, Bessel processes and

the local time for Bessel age processes constructed in the last chapter.

This chapter concerns with the scaling property for some processes introduced before, involving
Bessel(Brownian) process, Bessel age process and occupation time of the age process. As a sequel to
the study on local times, we put an emphasis on exploring path properties of a time-scaled process
represented by {L,, } with A a scaler taking non-negative values. Main questions to be discussed are
the distributional results associated with L;, and scale invariance for the local time along with a limit

theorem characterising the difference between L, and L, to a Gaussian process.

To avoid confusion on notations, we will keep using the symbols defined in previous chapters as

much as possible.
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6.1 Definitions and Notations

On the filtered probability space (Q,.%,P), adapted to {.%,} let U = {U,, t > 0} be the age process
defined by
U =t—-sup{s<t|X;=0}. 6.1)

The underlying process X = {X;, t = 0} is Bessel of dimension (2 — 2a) with @ € (0,1), thus
instantaneously reflected at the origin. Within the space, there is an occupation time of level @ > 0

expressed in the form

t
Z, (@) = / L, < o) ds, O<@<t. (6.2)
0

It has been proved with a scaler of @' that the limiting process of Z;(@) measures the local
time at zero of U up to time z. Denoted by {L;,t > 0}, the local time process admits the following
representation :

L, = lim I'2-a)o* ' Z(@). (6.3)

@—0

While performing calculations, to avoid confusions in presenting results we define a double Laplace

transform for a real-valued random variable X; by

LX) = E[/ e Plem¢Xi gy
0

= / e P Ele¢%] dt,

0

where the last equality follows from Fubini’s theorem. We further adopt the following notations

B — —pt d
L {e(0)} /R e @(t) dt,

the Laplace transform of some function ¢(¢) defined for all real numbers ¢ > 0, and

V4
Y(a,z) = / et dr,
0

INa,z) = / et dy,
Z

for the lower and upper incomplete gamma functions, and thus y(«a, z) + I'(a,z) = ['(a).
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6.2 Scaling Property associated to Bessel (Age) Process

This section presents some examples of basic scaling properties associated to a Bessel (age) process,
which will in turn facilitate as guidelines towards developing the main theorem appearing in SECTION

6.4.

Denoted by BES@, the Bessel process X with index a € (0,1) is the solution of

1-2a

t

dXt =

dr + dW,,

with W a standard Brownian motion. Let us consider a transformation in time of a general form:
t — {(t), for £ € C' a non-negative Borel function with £(0) = 0. Assuming ¢ is continuously

differentiable on (0, o),
(1)

1-2a
Xg(,) = Xpo + oX ds + Wg(t).

A

0
By a simple change of variable,
1-2a ,
dXeqy = C'(t) dt + t'(t) dW;. (6.4)
2X¢(r

Let ¥ = X2 be the squared Bessel process BESQ@, whose path is described by
dY, = 2(1 — ) dr + 24/, dW,.
Following the same method,

dYg(;) = 2(1- a)f'(t) dr + 21/Yg(t)f'(l) dWw;. (6.5)

(Squared) Bessel diffusions lie in the intersection of several important classes of processes. Below

are a couple of well-known examples.

Example 6.2.1. Not all scale transforms have the feature of invariance.

* Scaling Invariance. When @ = Y5, dX, = dW,. For any ¢ € R", it follows immediately from

(6.4),

law

{c—%Wct,tzo} Y (W, t>0).

98



This is the famous Brownian scaling property and it can be further extended to Bessel diffusions.

For other choices of «, from (6.4) and (6.5),

law

{c—%xct,zzo} Y (X, 120 )

{c Y t20} Y oy r>0).

e Other Scalings. Consider a scaled Bessel process at exponential times, say R, = e~ 2k Ye(r) with

o) =

eZkt_l
2k

and k > 0. We obtain by using Itd formula,

dR; - le_Qk[Yg(t) dr + e dYr )

2((1 —a)- th) dr + 2R, dw,,

a space-time changed BESQ, namely the Cox-Ingersoll-Ross process.

The invariant scaling of X immediately carries over to the Bessel age process U.

Proposition 6.2.2. Given U the age process defined as (6.1), for any ¢ € R*, it enjoys the scaling
property such that
(¢ Wer 120} & (U, 120} (6.6)

As an immediate consequence,
(Za(@), 120} 2 {cz,(c-laa), >0 } 6.7)
Proof. From the scaling property of X, for ¢ > 0,

Uer = ct—sup{ cv < ct’c_%Xcv :0}

law

= c(t—sup{v < t’f(v=0}),

where X is an independent replicate of X. By the same token with a simple change of variable

t
Z(@) = C/]l{c‘lch <clo} dx
0
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t
1‘2" c/ﬂ{gx <c*1a)} dx,
0

and U is an independent replicate of U. O

6.3 Distributional Results for Time-scaled Occupation /Local Time

This section proceeds with the distributional study on a scaled occupation measure in the form Z;(c@)
with 0 < ¢ < 1, and on its association to the local time defined as (6.3). We shall construct a martingale
for the process ( Uy, Z; (@), Z;(c®@) ), from which distributional properties for the limiting difference

between Z;(@) and Z;(c®@) are developed .

Denoted by (U£, Z,", Z;”') the perturbed Markov process used to perform calculations, the infinites-

imal generator acting on a non-negative bounded Borel function f € C! is given by

aof | psu)
¢ o @) = 2L - 0.7V, 7@ — 1 2
‘?{Z f(u’z < ) au + Pg(u)[f( ,Z 2 ) f(U,Z 5 < )]
af af
+ ]l{u<a)}az(1) + ]l{u<ca)}az(2),

where Z\" = Z,(@)and Z” = Z;(c®), and

pg(”) =

_ 82(1/ ) 52
P = [ Gt B .

Within the framework of infinitesimal generator, a martingale meeting our needs is obtained from

solving Aze f(u,z'",z? ) = 0.

Lemma 6.3.1. We find a representation for the double Laplace transform of {Z,(®), Z;(c®)}, denoted
by

28,01, 00 @) = Lf{E[exp{ 8 @) - & zz<cm)}] }

@r (c@)P
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ForB > O0and0 < a < 1,

[

‘/e_BVE(v, o *dv

0

Z(B. &1, ;@) = , (6.8)

r 4l & -Bv —a
/(ﬁ+”{v<w}5+”{v<cw}(6®)p )e E(v,@)v " dv
0

with
E(v,@) = exp{ - % min{v, @} — imin{v, c} } .

(c)P

Proof. The Laplace transform is implied by a martingale of the form

t
_ _ 1) _ (2) _ _ 1 _ (2)
/e ps 02 07 g5 o o P07 07 g (U

0

with g a non-negative Borel function bounded by one. By the martingale property, it follows immedi-

ately

t
() @ 1) @)
lim E ‘/e_'BS e Es 2l (s 4 e Plemh AT g (UF)

t—0
0

(o8]

/ e—ﬁsE[e—glzﬁ“e—@Z? ds
0

2(0).

To find a solution of g(0), we insert an auxiliary process W} of the form

t
s 7V g
Wy = /e Bs o612 pm 8225 s
0

into the Markov process. Accordingly, a new generator acting on f( u,z",z®,w,t ) is written by

9f

0
&Z(f(u, Z(l), Z(Q),W, t) = ﬂch + _f + e—.Ble—{lZ(l)e—{QZ@)
ot ow
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We propose a solution to be ( w + e B2V =0z g () ) Substituting it into A f = 0, we have an
equation

0 = —pgu) + g'(u)—(flll{u<a>} + Ol < cay )g(u)

Pe(ut)
R T BORF®) 6.9)

To get the solution to (6.9), we multiply both sides with the term below

e Pu e—é“lm(@)e—ézm(c@)pg(u),

with m(w) = min{u, w}. As a result, we get

g(u)e—ﬁue—é“lm(@)e—ézm(cw)pg(u) —

2(0) / B e Cm(@) = lam(c@), (1) 4y 4 / B g Em(®) = Lam(c@) p_ () dy.
u

u

Taking € — 0,
/ BV g Cim(@) ~Gam(c®) e g,
0
g0) = —
/(ﬂ + 01y <o) + Ll < coy)e P e D me@yme gy
0
Replacing {1 — % and {o — (L‘VTZ)L, completes this proof. O

Next we present the limit of Z(8, {1, {2; @) at @ — 0.

Lemma 6.3.2. For any ¢ > 0, we show that the limit exists when p =1 — a and

-1

gl + 52 ﬁl_a

g)iE}O Z(B. (1.4 @) = ﬁ+m

Proof. We restrict the calculations to ¢ € (0,1). Other choices can be done by taking ¢~ € (1, ).

However, it will be later shown that ¢ has no effect on the final results.
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Considering the numerator of (6.8),
[ee)
& : (9} .
/ e PVe P min{u, ®}-Z5p min{u, c@}v_(, dv

0

col P 1P

(6.10)

) __ %2 _
— a)p(l—a) / e—ﬁ@Pze—(§1+CTz)ZZ—a dz + @p(l—a)e (cao)p—1 / e—ﬁa)l’ze_glzz—a dz

0 col-pr

[e9)
+- col P _ _
+ (1 /e Bvy=a gy,
()]

The limit of (6.10) by taking @ — 0 is obtained as

rd-a)
ﬁl—a ’ JZRS (O 1 )7
e‘(§1+§2)r(1 -a) b =1
ﬁl—a ’ )
0, pe(loo).
Then for the denominator,
z
/( ]I{V <o}t (c i))l’ Ly < co) Ve P min{u, @)= (Laa)ﬂ min{u, c®} -a 4,

0
é / Ve col’ min{v, ®}- (C(D)P min{v, C(D} —a 4,

c
0
ol col P
= P / e_ﬁwpze_(gﬁ%)zz_“ dz + L P~ / e_ﬁa)pze_(gﬁ%)zz_” dz.
0 0

Taking @ — 0 of (6.11) gives,

0, p € (0,1l-a);
O+0 B

P = 1_a,7
l1-a’
0o, pE(l-aom0)
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Putting them together yields the results. O

It is not surprising to notice that the rescaled process (c@) ™ Z;(c@) tends to behave exactly as
@ P Z;(@) in the sense of weak convergence. That means, by choosing | + {» = 0, it will holds for
any ¢ € (0,00 ) that
lim 1 Z,(@) 2 lim (c®)"™' Z(c).
-

@—0

In relation to the main objective, due to the scaling property of Z;, this result will contribute in deriving

the law of the time-scaled local time and associated properties.

6.4 Scaling Property for Local Times

By a time scaled local time process, we mean the quantity L,, defined via

A

L

F(2ila/) = lm, G)Q_l/]l{Us <@pds = lim " Zu(@),
0

where A > 1 is a scaler on time ¢. This section puts emphasis on the relation between L, and L, which
enables to determine the self-similarity of the local time, and on the limit theorems associated with the

difference between them.

Theorem 6.4.1. Let L; be the local time admitting the representation of (6.3). With A € (1,0), it can

be shown that inheriting from the scaling property of U the following two identities hold for all t > 0:

F(Q—Q)Aa)“’lzt(/l‘la)) 2 Ly, a5 @ —0; (6.12)

1L, 2L, (6.13)

These then prove {L,} a self-similar process with index « € (0,1).

Proof. As shown in (6.7), the occupation time Z; is scaling invariant. That is to say,

017 (@) & A@"‘IZ,(A‘IGD).
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Taking limits on both sides yields (6.12). It then follows immediately

L; D 1 . 1— -1 -1 D A_QL/U
2 2%l Z(@ 11%“2(1&):—.
T2-a) @50 (@) = lim, ' T2 —-a)

Following the scaling invariant relation between L,; and L,, the attention is then turned to the
stochastic analysis of their difference denoted by W, (@). We define the stochastic process describing
the difference scaled by a factor @9 as

I'2-a

—-q - = 7
w Wt(w) T ol-atg

(z,(co) - ﬂl‘“Zt(/l‘lw) ) g > 0. (6.14)

The distributional characteristics of {(L; — A% Ly;), t > 0} are then derived from the Markov process

(Ur, Zy(®), Z; (1 ®)), whose limiting behaviours corresponding to needs are studied in SECTION
6.3.

Corollary 6.4.2. The double Laplace transform of @ 9W,(®), denoted by LB*{@ " I1W,(®)}, is

obtained as
LP oW (@)} =

/ e Py %y, @) dv
0

’

/ (ﬁ + (@) ﬂ{v <@}~ 1_(11{‘, < /l-lau}) ) e PV (v, @) dv
0

where

e(v,@) = exp{—é(@)(min{v, @} -l min{v, /l_la)})} ;and
@) = %a

Proof. This is simply obtained by substituting {; = r(2 a)

¥ and ¢» = —{; to the transform by (6.8). O

The limiting behaviour of £8-?{@~9W,(®)} as @ — 0 is presented below.
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Corollary 6.4.3. Forevery(0 < a < 1 and q > 0, it holds that
lim L5 9W,(@)} = Lﬁ’f’{ lim @~ 9W,(@) };
-0 @—0

and in particular for q = 5,

-1
Mg{gl—a ) ) (6.15)

5"9{ lim @ 2 W,(@ } = —(1—/1‘1)(
L @) p 2-a)
Proof. First considering the numerator,

/Ooe_'g" exp{—é(@)( min{v, @} - 17 min{v, /l_la)})}v_“ dv
0

[
o @ _/ ff(ﬁmhw + 9(2-a) )Zz_“ dz
— -Bv (/ll_"—l)é(a))v - A twad
/ e Ve v ¥dv + @)
0

Given 0 < @ < 1 and A > 1, the first integral is equal to zero by taking @ — 0 for all value of g > 0.

The rest is calculated as follows

[
e/raé(av)w / e—(ﬁwl-“W +9r(2-a))z 7 dz

lim e
-0 @(a’_q_l)(l_a’)

Ira-aw)

,81—“” qg € (0,a);

_Jra- Ol)e_u-,ra)r(z—a)s g =a
Igl—a ’ ’
Oa q e (G’,OO ) *

Then consider the denominator,

é(@)/ (]l{v <@y= ATy, 171@})e‘ﬁve‘5(“’)(mi“{v’ @}=A"min{v, M@}), - g,
0
p )

= (1 —/11_“)5(@) / e P e (1-ATTR@, e g,
0
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@

+ (1—/11_0)‘9(@)6/17(!5((0)@ / e B @ ma g,

1o
1 loaa
0
¥4
n e/l“’é(a))a) / e—Ba)l“”qze—F(Q—a){)zZ—a dz |.
A loa-q

Assuming g < «, it is easy to verify that

(1 B /ll_a/)r(Q - 0)19 /l_lwa_q 1-a+gq 1-a
/ e P® lze—(l—/l )F(Q—Q)ﬁzz—(t dz = 0.

0

lim
-0 @(t(l—a+q)

Applying the L'Hopital’s Rule to the integral in the above term,

(@=gT2-a)d .
lim
all—-a+qg) @0

(1-AHB@ -1 Tr2-a)P* 9
a-1 _ € €
{ ety

L AT _ - T2-a)d@* 4
4
a
0, € ( 0, — )’
7 2
1- /1_1 2 o
= d_ 2 - 19) , _ @
2—a ( 2-a) q 5
e ( i )
—oo @
9 q 2 ,
Putting them together gives immediately the results. -

In the last chapter, we show that the difference of the local time L, to the limit process converging
to it follows a Gaussian process subordinated by L,. Concerning {L;} a self-similar process, we present

a similar result with the rescaled local time {L 2 }

Theorem 6.4.4. Given W, (@) defined by (6.14), we shown that the limiting difference of ( Ly — A™%Ly; )
can be described by

a
/ANES ;’iinm @ 2 Wi(@), t>0.
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By central limit theorem, for every A > 1,
VA ~ N( 0,02()L, ) , (6.16)

where N represents a normal distribution and

21 -2 -l @2-a)

0o () = o

(6.17)

Proof. By inverting the Laplace transform in (6.15), we have
@ 9202 (A
.Eﬁ’ﬁ{ hma) 2W,(G)) / {e‘ﬁ y} ex { %l )y}
ay

Recall that e#Y characterises a one-sided stable r.v. who admits an integral representation, and
the exponential term involving 92 can be written into the moment generating function of a normal

distribution with mean zero and variance described by 02(1)L,. Accordingly, we have

1
Lﬁ,ﬁ V/l —
%) (1 - a)0, () V2r?
00 00 00 \ 2 x .
/e ﬁt/e /y1 a2 Toae 2095 u)/ A(x)e—A(X)ylfat = gy dy dv dr,
0 —00 0 0
with

3 (o} l1-a 1%(1
A(x) def {(sm(ax)) (sin((1 — @)x)) }

sin(x)
We thus obtain the density of V. It is expressed in the form of a normal distribution subordinated by

L; acting on the part of variance, i.e.

V2

1 _
P(Vt’l € dv) = /—2 e 2950 .P(L, € dy)dv.
0 2n05,(Ad)y

The proof is completed by this representation. O
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Local Times related to Brownian Motion

With respect to a reflected Bessel process, approximations for the associated local time are established
from various paths describing the trajectories of the underlying process. In previous study, the whole
work is formulated with an age process recording the time the Bessel process has been away from
last zero. Making extensive use of martingale approach, we construct two versions arising as limiting
processes of the occupation time and the jump counting for approximating the local time at zero. By
means of path analysis, some results derived within the Bessel structure generalise easily to provide

similar results for the other diffusions [87], e.g. the Brownian local time at zero.

The purpose of this chapter is two-fold. First, we provide elementary proof for some celebrated
results on Brownian local times. Second, comparing with the local time constructed by the age process,

we shall develop relations between different choices of local times for Bessel path.

7.1 Definitions and Notations

We are concerned with a reflected process arising from setting the index @ = %2 of a (2 — 2a)-
dimensional Bessel process with 0 < @ < 1. Denote it by ¥ = {V¥;, r > 0} with ¥ = 0, it has a
non-negative Brownian path reflected instantaneously at zero, and thus ¥; = |B;| where B; is a standard
Brownian motion (SBM). On a probability space (€,.%#,P), Y is an R* U{0}-valued continuous process

adapted to {-#;},¢.
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For every Borel set A € B(R™), the occupation time of Y by the Brownian path up to time ¢ > 0 is

defined by the Lebesgue measure
t
Zi/(A) == measure{0 < s < r|Y; € A} = ‘/Il{yseA}ds.
0

The resulting process Z(A) = {Z;(A), ¢t > 0} is continuous, non-decreasing and adapted to {.%; }, and
it belongs to the family of additional functionals. Denoted by L?(s) the Brownian local time at level
s up to time ¢, it intrinsically serves as the density with respect to Lebesgue measure for occupation

times, representable of the form:

Z:/(A) = /AL’f(s) ds.

Of special interest to us is the random measure L7 (0), the local time at zero increases only on the zero

set Z={t>0]|Y =0}, such that
f F%) dIE(0) = FO)LE(0).
0

for every non-negative Borel bounded function f. In the sequel, we will write L? simply for L?(0).

There are a couple of equivalent ways of constructing this measure. Among them, the following

representations are found significantly related to our work (see [62, Chapter 6] for reference) ;

1
(1) P{lim — measure{ s <t |Yy<e} =L ,t>0| =1.
el 2e

(2) P(li?g \/§EV1((0,00)><[O,6)) - L:,rzo) 1.

% v1 = The number of times {¥;;0 < s < ¢} crosses down from € to 0.

(3) ]P(lei{g \/4Z€v2((0,t)x[0,e)) - L;,zzo) - 1.

* v9 = Total duration of all excursion intervals away from the origin of individual duration less

than €, completed by {¥;;0 < s < t}.

Note: L, denotes the local time defined in the mentioned reference.

(1) is the remarkable Lévy’s "Mesure du Voisinage", which initiates the subsequent study on the
limiting behaviour in the neighbourhood of zero of Markov processes, for instance (2) and (3). (2)

is the downcrossing theorem, conjectured by Lévy and proved by Chung and Durrett [22], 1t6 and
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McKean [55], Kasahara [63] and Cséki et al. [25] with various methods. Results corresponding to
(3) have been exploited by CHAPTER 5, in which vy is measured as {s <t|UY < e} with UY =
t —sup{ s <t|Y; =0} aBrownian age process. For an in-depth study on Brownian local times,

please refer to Jeanblanc et al. [61, Chapter 4], Marcus and Rosen [78] and 1t6 and McKean [55].

Within the framework of martingale, Limit Theorem I & II are devoted to the refinements of some
known results about Brownian local times, with a special emphasis on the reconstructions of the above

representations(1) and (2).

In the sequel, to avoid confusions in presenting results we define a double Laplace transform for a

real-valued random variable X; by

LPEX} = E[ / e Ple X dt
0

= / e‘ﬁtE[e_fxf]dt,

0

where the last equality follows from Fubini’s theorem. We further adopt the following notations

2 = [ e
the Laplace transform of some function ¢(#) defined for all real numbers ¢ > 0, and
Zz
Y(a,z) = / e 127 dr;
0
INa,z) = / et 127l dy,
Z

for the lower and upper incomplete gamma functions, and thus y(a, z) + I'(a,z) = T'(a@).

7.2 Limit Theorem I : Local Time as Limit of Occupation Time

The martingale approach is particularly helpful in dealing with approximation and convergence in
distribution for Markov processes with continuous sample paths that can be characterised in terms of

its infinitesimal generator.

To fix ideas, we consider a continuous function f : R* x [0,7) — R* arising as the solution to

A f(y,z) = 0 such that f(¥;, Z,(@)) is a martingale. A is the infinitesimal generator characterising
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the Markov process (Y;, Z;(@)), and obtained from computing

Af(.0) = lim B[ f (¥ Z(@)|

The martingale properties are then of great help in investigating f(Y;, Z,(@)) and its asymptotic
behaviour as @ — 0. Furthermore, this section develops some distributional properties and facts that

are relevant to the occupation process, and preliminary to the limit theorem for the local time.

7.2.1 A Scaled Occupation Time Process

We first restrict ourselves to an occupation measure in the manner:
Z; (@) = /]I{Ys < oy ds, @ > 0.

The infinitesimal generator of (¥;, Z,(®)) acting on bounded functions f € C? is obtained as

19?2 0
A f(y,2) = 55—;; + 11{y<@}a—£. (7.1)

Every suitable choice of f satisfying A, f = 0 is an (.%;)-martingale for all ¢ > 0.

Lemma 7.2.1. Let 8, € R* and h : R* — R* be a continuous bounded function in C* . Then the

process f(Y;, Z;(@)) is a martingale of the following form

t
/e B3 C2@) g5 4 Bl @ pyy,
0

where depending on the domain of Yy, the function h(y) has representations

ﬁi§+2C1c0sh(y 2@8+{)), y £ @;
hy) = 1) (7.2)
E + C3e_y\/%7 y > .

C1 and Cs are defined via

(3~ 52 VP

2C; = ;and

ﬁcosh(@m) B+ Slnh(wm)
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R Vi
VB+Z + VBcoth(@y2(B+0)

C3 =

in which sinh, cosh and coth are hyperbolic functions, such that

er—e™* er+e* cosh(x)

sinh(x) = & cosh(x) = &  coth(x) = Snh(x)

Proof. Assuming that f(y,z) is of an exponential form like this

t
/e‘ﬁs{gz& ds + ePe™5n(y).
0

t
Expanding f(y,z) with W; = / ePSe74%s ds leads to
0

of | _pt -z0f
‘?{f(y’z’wat) = ﬂzf + E + eﬁte 42% =0.

By substitution,
h"(y) = 2(B+ h(y) +2 = 0, y < ®;

h"(y) —2Bh(y) +2 = 0, y > @.

(7.3)

Referring to the Feynman-Kac Formula [61, p112], bounded and continuous solutions to (7.3) are

given by
EY: + C? V2B o e V2B 0<y<
h(y) =17
- + C3€_ym y 2 .

ﬁ 2
To decide the values of C;, i = 1,2, 3, we rely on the continuity of 4 and 4’ at @, the boundedness of

h(y)as y < oo and h’(0) = 0. These produce C; = Cs and then

Cl(ea’ 2(ﬁ+{)+e—a>\/2(ﬁ+{)) _ Cye®VF - 1 1 ;
B B+

Cn/ﬁ+§(e®\'2(ﬁ+§)—e_CDVQ(BJ’O) + CBe™VE = 0.
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As a result, the unique solutions are completed with

1 1
C, = B _B+¢ :
(ea) 206+) +e—m/2(ﬁ+g)) N (em/2(ﬁ+g) _ e—m/Q(mg)) V/i;(
B

C3 = — Clea)x/%(ea)\m(ﬁﬂj) _ e—a)\/2(ﬁ+{)) VB + {

S

A main contribution of the martingale process is to produce the characteristic function of Z;(®).

Corollary 7.2.2. Let B, > 0, the double Laplace transform of Z,(®) is given by

L5 z(@)) + 2 P4 Rz@) < 9},

B+<

where for all 0 < z < t,

Lﬁ’4{P(zt(a>) < z)} =

[ VBB + {)(\/,Ecosh( V2B +2) ) +VB+ gsinh( V2B + ) )) ]_ . (1.4)

Proof. By the property of a martingale process, having 4(y) a bounded function on all support of y

gives

t

lim E /e_ﬁse_§ZS(®) ds + ePle 4% @ p(y,)

t—00

0

(o)

/ 0B E[e—gzs(aw] ds

0

h(0).

On the other hand, given Z,(@) € (0,¢) for any @ > 0,

< t

/e‘ﬁt/ e %2 P(Z;(@) € dz)dr
0

0
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° t
/e‘ﬁ’( e+ g/ e P(Z (@) < z)dz | dt
0
0

° t
= ﬂi{+{0/e_ﬁt/0 e P(Z (@) < z)dz dr.

This completes the proof. O

By means of inverse Laplace transform, the law of Z,(@) is obtained in an explicit form.

Theorem 7.2.3. Given @ > 0, we define \p(z,t; @) by
P(Z; (@) € dz) = P(z,t;®)dz.

Then forall { >0and 0 < z <t,

t t
/ﬁz / P, @) dr dz = i—?/e—&/ P1(n) oz - x)dxdz, (7.5
0 0
0 0

with

2

Wi(x1) = /Ox ((z—x)—% —(z—v)—%)v—%e—% dv,

Po(x,1) = /x [(t - x)(x — V)]_%(t - v)_lv_% Z er_@ cos( kcos_l(—Qx —- v) ) dv,
0 k=0

r—v

and thus .

4

I'I)(Z’t ; (D) = _? /¢2(Z - x9t)(t - x)_g( 1- (D|:2:| ) dx > (76)
¢ e
0
where ®[x] is the CDF of a standard normal distribution.
Proof. To invert (7.4), we write it into
2 1
B+ VB ~@\2(6+2)

(VB2 +B)
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) e—aJ\/Q(,B+{) 1
B+ VB (\//ng + \/ﬁ) , [ 2@ V2B
(vm #VB)
e @ 2(ﬁ+(

— 2 i —2k@\/2(ﬁ+{)‘
B+OVB(VB+E kzo(\/m+\/’)

First the part before X can be expressed as some proper transform,

2 VD
B+OVB(WB+Z++B)

(o)

v 6)2
9/e_'B"e_év"/ xS dx dv/ Py -31- g“ dt
0
e v — ¢t v o2
Q/ /(t—v)_ ¢ / x2e 5 dx dv dr
0
t z »2
2—@/€_ﬁt/ e“fz./ ((t—z)_%—(t—x)_%)x_%e_W dx dz dr.
n J 0 0

With reference to Bateman [3], it can be checked that

& [ s 1 bay (&1
e s

e (1) = %76_0( ((2t —x)x)_ cos(k cos_l(xt_t)) dx.
0

SIS

Then the X part is calculated to

k
4 o~ 2k@V2B+0)

Me

2k
k=0 ( B+ + \/,E)
5 s 0 1 < . 252
_ Yo Zk2/6‘ﬁ’ t‘le—§§flk(_§f) dr /e_ﬁx e TN dx
Vr k=0 2
0 0
o) X v 22
— @ZkQ/e_ﬁv / (v_[)_%e_%\,,, [_1 X
m\m , 0
t 2x —t
e“r(”_t)/ X[ (t—x)x ]2 cos(k cos_l( il )) dx dr dv
0
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_ V2@ r v [ e [T ~14-3 -3
= ﬁb/e '/Oe ‘/O(V—l‘) tr2[(v-—x)x—-1)] X

> 2 o2 2x —v—t
Zer_th cos(k COS_I(%)) dr dx dv.
k=0

Combining two parts together gives (7.5). Further due to the convolution theorem,
z

/ P(x,t; @) dx =

0
i@ [ [*

() (o) 3 _@? 1 1
— —s_§e_ﬁ((t—z+x—s)_§ —(t—s)_ﬁ) Po(x —s,¢) ds dx
n? 0/ -/0 V2n

and (7.6) follows immediately by differentiating with z,

P(z,t ;@) = 27T—(;)'()/Il)g(z—x,t)(t—x)_g ‘/Ox \/%w_ge_gf’ dw dx
_do ] “1-o|2)d
S RN ( - ﬁ) X
0

7.2.2 Convergence of Occupation Time to the Brownian Local Time

An important application on the convergence of Z,(@) to the Brownian local time is discussed. To

perform calculations, we scale the occupation measure by a factor @7 with p taking any non-negative

values. To get a better understanding of the asymptotic behaviour of @7 Z;(@) as @ — 0, we take

advantage of Lévy’s continuity theorem, finding the limit of the corresponding characteristic function

subject to a proper choice on p.

Lemma 7.2.4. Forall 5,{ > 0 and p > 0, it holds that
lim P40 PZ(@))} = Lﬁ’g{ lim ®7Z(®) };
®©—=0 @—0

and in particular for p = 1,

|ty o 201) = (550
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Proof. Let us go back to the martingale process obtained in LEMMA 7.2.1. First we replace { with

@ P¢. Restricted to the fact that ¥; > @ > 0 as a result of considering @ — 0%, we thus have
i B P 1 i
lim LP*{®PZ, (@)} = = + lim C3(@),
©—0 ﬂ @©—0

and

,/,8+®—{,+ ﬁcoth(a) 2(,8+®—§p)) |

To evaluate the limit of C3 when taking @ — 0, we rewrite it into the form

C3(@) = -

e VB (@) =

N v

1+ -

1
[5+ ol B
Btar ,3+§+\/B_( ﬂ+§—\/ﬁ)e2 2o+

P

First to notice is the first bracket that is equal to 1 as taking @ to zero with any p > 0. Considering the
denominator in the other bracket, it reaches some limit by choosing p = 1 with the aid of L’Hopital’s

Rule . As a result, the limiting denominator is calculated to

lim, (\/WE+ \/E) - ( . \/ﬁ)e‘mm

P
9w [2(g4 L
- al)imo{\/ﬁ(l+e2 2le “)) +
2 2 9w, [2(g+ £
S L (203 (ﬂ+£) —(D(ﬂ+£))62® 2(e é’)}
,,3+% 4 @ @
= 248 +2V2¢.
Then the result follows. O

The asymptotics provide an approximation to the Brownian local time at zero, whose representation
coincides with Lévy’s "Mesure du Voisinage". Thereby, in the sense of equality in distribution, we

recover two well-known results concerning Lévy’s local time.
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Theorem 7.2.5. Let L? denote the Lebesgue measure of the time spent by Y at zero up to time t. By

the continuity theorem, there is a limit relation holding for all t > 0 such that
o 1Z(@) 3 208, aso — 0. (7.8)

Furthermore, the following identity holds in law

(Yo 2,620} "™ (M, ~B, M, t>0}, (7.9)
where {M,, t > 0} defined by M, = max By is the running maximum before time t of a standard
<s<t

Brownian motion B;.

Proof. The key to proving the convergence and to characterising the distribution of the corresponding

limit process is inverting the Laplace transform in (7.7). We proceed with an integral representation of

-9 i{ o V2Bx } e—('XE

ﬁ’g 3 -1
£ { (})111)10 ® Zt(w)} B X

D

Il
1\9

0\8 0\8

{ X x2 } dx
e 3 dt
‘V27rt3 X

© 9 2
—ﬁr/ ~¢'x “% dx d
e e e X dr.
-0/ 0 V2t

with £’ = 2¢. Obviously, the integrand is the density function of a running maximum of BM, and thus

Tl

the other identity in (7.9) follows immediately by virtue of the reflection principle. O

Underlying the identity is a famous result known as "Lévy’s Identity in Law". It provides a
representation connecting the local time of a reflected BM with the running maximum of a standard
BM [89, Chap 3]. The latter process is strictly increasing with upward jumps only occurring in
a Poisson-like manner. Motivated by the concept of Poisson random measure, we shall present,

equivalent to the one in (7.8), an alternate measure in terms of downcrossings.
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7.3 Limit Theorem II : Local Time as Limit of Downcrossings

Approximating local times with Poisson-like variables is familiar to us. Recalling the construction
in CHAPTER 5.4, we introduce a point process counting the number of times that an age process
jumps down to zero. By virtue of the association between the age and the underlying Bessel/Brownian
processes, the jump counting is equal in quantity to the number of completed excursions away from
zero by the underlying path. In other words, it is equal to the number of times that the underlying
process crosses down from & to zero. Following a similar approach to that dealing with age processes,

the objective of this section is to recast the "Lévy’s Downcrossing Theorem".

On the same space that ¥; is defined, let M, (&) be a process counting the number of downcrossings

suffered by Y over a time interval (0,7). A precise definition of this measure is presented by

Mi(2) = i L <y
i=1

with

7= inf{s>Tf_1|YS=0}, 70 = 0.

On the basis of it, we define a scaled measure of the form
&M, (e), e > 0.

It is worth to mention that £ with « taking non-negative values is a speed measure for characterising the
convergence as € approaches zero, and it corresponds to the (scaled) unit increase at each occurrence

of downcrossing by the BM .

Denoted by (Y;, M;(g)) the concerned Markov process, the infinitesimal generator acting on a
non-negative C2-function f : R* x N — R™ has the form

10%f

A f(y,m) = 56_)12 with f(O,m) = f(e, m+&“). (7.10)

To examine the limit of this counting measure, we find its characteristic function derived from a proper

martingale process for (¥;, M;(g)).
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Lemma 7.3.1. The limiting behaviour of €“ M, (&) is characterised by the Laplace function given by
lim L€ M, (e)} = LP¥ { lim &< M,(s) } .
£—0 £—0

For all B,¢& > 0, the limit is assured with k = 1 and then

-1
+§£) . (7.11)

£8€] lim eM(e) | = (/3 v

Proof. The martingale of interest is implied by the solution to A f(y,m,w,t) = 0, with f in the form
w+ e Ple™smn(y).
Referring to LEMMA 7.2.1, a bounded and continuous solution should have the form
L cerVE
h(y):IE+Cey , y>0.

The constant C is determined by the boundary condition: 4(0) = e ¢4" (&), which generates

l+C = e_ggk(l+Ce_5W .
B

C is thus determined as
1-e7%¢

o 1 e enae)

This proof is completed by taking € to zero. O

Theorem 7.3.2. The local time at zero of a reflected Brownian motion satisfies,

eM(e) 2[5, as £ — 0. (7.12)

Proof. Comparing the characteristic function in (7.11) with that in (7.7), we simply get
A — _ 7B
E[exp{ & ;11% th(s)H E[exp{ 'Ly }]

for every ¢ = {’. By the continuity theorem this implies the identity between M; (&) and L. O
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7.4 Limit Theorem III : A Central Limit Theorem for Local Time

It is a well-known fact that there are various ways of approximating a Brownian local time at zero,
generally by limiting a sequence of processes that describe the behaviour in the neighbourhood
of zero of Brownian trajectories. Among such processes, the occupation time and the quantity of
downcrossings are being selected to construct limit relations between the local time and themselves.
On the basis of the results achieved, the asymptotics of the (normalised) difference between the local

time and the approximations is studied in this section.

7.4.1 A Scaled Difference about Local Time

In regard to the convergence of stochastic processes to the Brownian local time at zero, we have

constructed two limit relations, summarised as below
. _ D D ..
lim ) 'Z/(@) = [F = lim eM,(e), Vi>0.
©—0 £—0

Following the identities, we define a stochastic process describing the difference by

Z,(@)
2@

Vi(e,@) = (D_q( —eM;(¢) ), t >0,

with ¢ a scaler taking non-negative values. In particular by allowing £ — 0,

Z; (@
Vil@) = limVi(e,@) = w“’( ’Q(G))—Lf)-

We are concerned with the asymptotic results of V;(g, @) by taking £ and @ to zero, normalized by @4
for measuring the speed that makes the convergence takes place. To characterise the difference process,
we begin with a martingale process around (¥;, Z;(®), M;(g)) whose generator is simply obtained by

merging (7.1) with (7.10). See below for this result.

Lemma 7.4.1. Let 8, € R* and h : Rt — R* be a non-negative bounded function in C?. Then the

process f(Y;, Z,(®), L?) is a martingale of the following form

t
/e—ﬁse—ﬂs(@)e—ﬂf ds + e—ﬁte—ilz(a))e—fL?h(yt), (7.13)
0

122



where depending on the domain of Y;, the function h(y) has representations

1
Y + Cl(@) &VHBH) 4 Cy(@) e? V2B 0 <y < @;

h(y) = (7.14)
5 Cs(@)e ™V, y > @.

C1,Cy and Cs are defined via

VB~ 5z) (V2B + D + €) = 5 (VB+ T~ VB)e VA0

(@) = I~ d ;
VB(h -~ 52 (V2B + 0 - ¢) - G (VBT + VB VP
CQ((D) d;) — dg) 5
_ 2 d- — & (1 1
C(G)) V2B _ a)+ U _(_+—)
nee VBB D 45 - dg BB+ O

with

X
I

Y
+
Il

s = (VB2 ~B) (VEF+ 0 - ) VEFD .15
. (\/mh/—)(m )m/m, (7.16)

Proof. According to what we have structured, the martingale in (7.13) is equivalent to

t

lim / 3o EL@) g ML0) g Pt CZi(@) p-ESMA(e) )y (y)

0

This will be achieved by two procedures: finding the representation of /.(Y;) and then taking the limit

of ¢ to zero.

Due to the complexity involved in calculations, this proof only includes several key results and
leaves the detailed steps to Appendix I. We have found that depending on the domain of Y;, the

function &, (Y;) admits representations

1
- + Ci(e,@) V20 Co(e, @) e_y@, 0

he(y) = 1 (7.17)
E + C3(g,@) e—yW, y

IA
~
A
9

v
9
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and with 6 .= S+ ¢

( 11 )e—@@( _‘f‘g)\/ﬁ - dio

Ceo) = —|—=-—
S O ) B R
1 1)V (1 e ‘58)\/5 + dg o
CQ(E,@) = —(—+—) — ¥
\/E \/5 \/5 da,(D + da,(D
1—e42)0yB - d
VB Cy(e,@) = - — ( _) — ‘%”ﬁ),
VRO dep + dig B\" e

in which

d;,co = (‘/5 - \/E) (1 - e‘g(f—@))e—m\/ﬂ)
0l = (VB +B) (1 - eeer?D) =20

We proceed with calculating the limit of /.(y). Given the solutions of C1,Cy and Cs3, we now take

£ to zero and obtain

Ci(@) = lim Ci(e, @)
VB(3 - 5)(V20+£) - £(Vo-VB)e®
(V8- VB) (V28 + ) — (V6 - V) (V29— g -

@

Cx(@) = lim Ca(e @)
B R
(VB +B) (V28 + £)e™ T — (VB - B) (V28 - ¢

Co(@) ™ = lim Cy(e,@)
(‘/_+\/_)(\/_+g) @V _ - x
" A e — (]~

e

- BU Vel
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For the sake of simplicity in presenting results, we introduce d_ and d_] as given by (7.15) and (7.16)
respectively. After a bit simplification with the notations, the solutions are converted into the form

presented. =

Given & a bounded function on all support of ¥;, due to the martingale property we have

o0

1
E /e—ﬁse—gzs(w)e—fo ds| = + Ci(@) + C(@).
B+{

0

In consideration of the case @ — 0, however, as a result of the continuity constraint at the joint point

@, it is obvious to have

1 V23D N
B+l + Ci(@) PV 4 Cy(@) e OV = 7 + C3(@)e ™V,

While taking the limit of @, the above equation still holds. That is to say,

1
lim E /e‘ﬁse_gz‘(a’)e_af ds| = = + lim C3(@) e ®V%.
@=0 B @—0
0

7.4.2 Convergence of the Difference to a Brownian Motion

To decide a suitable normalizing factor that makes the limiting difference having a non-trivial distribu-
tion, we investigate the asymptotic behaviour through its characteristic function. The associated results

are presented below.

Lemma 7.4.2. We denote by LB-°{V,(®)} the double Laplace transform of V(@). For all 8,9 > 0, it
holds that

lim L {V(@)} = Lﬁﬁ{ lim V(@) }
®—=0 ®—0

and in particular for q = %,

-1
92 ) ) (7.18)
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Proof. Replacing { — m"ﬁ and & — —% produces,

1
— + Cy(@) e @VF

h®@,9) =
(@,9) 5
—d*(ﬁ q) + ;—‘2 1
26 + et (d+<s 9) - d(;(s;q)) BB+ 5)
and

v V| —o 28+

d;;(&¢1)=( 28 + q+1 \/_)(\/2ﬂ+ﬁ+&)e Vi
v V| @,/26+

d5(; q) =( 2,3"‘ \/—)( 2,3"‘%—&)6 m

The limit of A(@,VY) as @ — 0 has been calculated with ¢ = %, so that

—@_[28+——
e Vo [ 49 4 4
— + —d& (¥ = —, 7.19
{ Vo V2B ° | )} V2B 719

lim ——
@—0 Qﬁ + 9

Va?

@ [2B+—=
P NG P —d5(0;1) b = 24258 - 292, 7.20
m CD(’Q) o ’2 (7.20)

0—0 [2/34_ \/%

These two results are obtained by tedious calculations, which has been excluded by this proof but

and

relegated to Appendix II. O

Referring to the work presented in CHAPTER 5 within the context of Bessel age processes, the
limiting difference between the local time at zero and its approximations is characterised converging in
distribution to a Gaussian process. In the following, we show that this result is extended to the case of

Brownian motion with no surprise.

Theorem 7.4.3. By central limit theorem, it holds for all 0 < a < 1 that
Z/(®
a)_;(L—L‘f) 2>N(0,0'2(t)), as @ — 0.

20

N represents a normal distribution whose variance o>(t) = 2L7.
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Proof. The result is obtained straightforwardly by inverting (7.18),

V21 _2/i{e—zm}et622
V- ) f
r r t 2 r 1 »2 dr
= —2‘/i /e‘ﬁx e 2x dx e e dy t—
J aﬁ{ J V2rx3 E V2r2t t

© 2 2 1 y2
—ﬁx/ —ﬁy‘/ “ox 4 drdyd
e e e e t dy dx.
.0/ K 0 V2rx V212t

Therefore, the difference process can be realised as a driftless time-changed Brownian motion, replacing

the real time by the local time L7. m|

This central limit theorem is a well-known result as a sequel to the Lévy’s downcrossing theorem,

early proved by Kasahara [63, 64] and later extended by Cséki et al. [25].
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Appendix I : A Supplementary Proof for THEOREM 7.4.1.

Proof. We begin with the infinitesimal generator acting on

t
/ 5T EMAO) 4 4 Pt g=CZi €M@y
0

with h(y) a bounded Borel function. Denoted by A f(y, z,m, w, t) the generator , then

of 1%/

ot T 28y Heirgen ],

of
+ ]l{y<a)}a—z + e I

ﬂf(y’z’m’w7t) =
with a boundary condition f(0,z,m,w,t) = f(&,z,m+¢&,w,t)and 0 < & < ®. By substitution with

f(}’, z,m,w, T) = W+ €_Bte_~{ze_§mh(y) ’

we get a differential equation

W'(y)=2(B+ 1y <oy )h(y)+2 = 0. (7.21)
Setting
hi(y), y < @;
h(y) =
h2(y)7 y > (Da

recall that the bounded and continuous solutions to (7.21) are obtained before as

1
hi(y) = Y + Cley\/2(ﬂ+§) + CQe—y\/2(ﬁ+§), 0<y< ®;
1
ha(y) = B + C3eVP, y > @.

The values of { C;, i = 1,2,3 } are decided by fulfilling the conditions of continuity and boundedness.

To be specific, we need
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I lim ho(y) < oo
y—)OO

L hi(@) = ho(@);

1L hi(®)

hy(@) ;
IV. 11(0) = e %%hi(s).

These produce a system of three equations

1 \2B+0) Vogio _ L
Y, + C1e®@V2BH) 4 Chem@V2BHY) - E_,_Cge—a)\/%;

CIV2(B + )e®NMB+) _ Coa2(B + )e™®V2B+) = C342Be™ @V,

+C1+C2 = e_f's( ﬂj—{ + C1€EV2([;+§) + C26_8'2w+§)).

1
B+{

Rearranging terms gives,

I R N Y 7 ‘G’(WW@)( VB )
“ (ﬂ B+é)e " e Y VEee)
2C2=(1 )®W+Ce(‘/2(ﬁ—+fr)(+ \/3)7
popre B¢
- + 1—e%?
ClEg’@ + C2E$,G) = _W'

Solving them in the system, we get solutions

(1—e7¢%) VB_\,-@2 1_ 1\ VB
co - _ P (1- )=V + (3 - ) e Bl
1= ;
B\ B0 B\ N2 B0
(1- )= VBr g, o + (14 g )emVProIEy
(1-e€) VB )\, @V2(6+0) _ (L _ 1\ B p-
co - P (1 i \/ﬁ+§)e - (E _ﬁ_s“)\/ﬁ+§E8®
2 = ;
(1 i ) -V2(B+2) E— (1 + i ) DV2(B+) E+
_M_(l_L (e—m/2(ﬁ+<:>E— + OVEBI )
o NTF, - P BT B+
_ VB \,oV26+0) - ( )w\/2(ﬁ+{ +
(1-2E)e Er o+ (1+ 2L )e E}
where
- -e(& - V2(B+0)
E.o = (1—e 8( )), and

129



Ba = (1= Vo))

With a bit of simplification, the representation of i(y) together with C1,Co and Cg yields h.(y) in
(7.17) O
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Appendix II : A Supplementary Proof for LEMMA 7.4.2 .

Proof. To find a proper result of lim0 h(®@, V), we multiply both the nominator and the denominator
0—

with
—o. s -1
o e )
so we get
01(@) 1
h(®,9) = -
(0] /
and
cOVP@ 4y 4 9\ ovios
Q@) = W{E + fﬁ(WW%)(M—&)e W};
~21/20(@) s
¢ [ [
02(@) = W{ (\/2(9(@ ++/28 \/2®(@)—§ V20(@)

w4

| )
- (V290 )BT o ) T |

First notice that for all g > 0,

1
lim ————— = 0,

T BB+ )

so we put focus on the limits of Q1(®@) and Q2(®). For simplicity in notations, let

20(®) = (2,B+ @q+1) .

Considering the numerator, applying the L’'Hopital’s Rule gives

-01/20(®@)
lm 01(@) = lim 1 20 A N2 )
@0 ®—0 (@) @7 2B V20(@) @74/20(®)
4
ﬁ’ 0<g<1;
_ ) 4 1.
= m(l ‘/5), q = 17
—00, g > 1
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Then for the denominator,

gino 0s(@) = hm 2@(&)){(

B 9
1- —
G)(a)))( @9+/20(@)

VB 9 2020(@)
—|1-= . 7.22
( \VO(@) ’ @07+/20(®) ¢ 7:22)

It becomes indeterminate (i.e. neither O nor oo) for 0 < g < 1, in which case a limit is attainable with

the help of L’'Hopital’s Rule. (7.22) is then calculated to

| =)o w4
1 281 - —— | - 2|1 + —=—=——
lim /28 " a)( "o\ O(@) -
9 VB \(1
@(H— —2@(1— (— (@) - ﬁ)
1+
@7+/20(®) VO(D) q 2 6—260\/%
~ VB (w(q—l) 4ﬁ’ﬁ>‘“)
@)t «/@(@))(1 @9 2@(@ g+1  (1+gqpP
B q @(a)) mq 2@(6)
B 2\/— +q8«’}>—>0
— 2\/— _ —‘8 éuno e—2®\/2®(®)
VBl+g 9 - 29 - N/ 9
V2 94 @271(20(@))> @9+/20(@) Jo(@)) 4 632‘1(9(@)
|y VB (1+q 9 _2@1—4) . 9 . 29
Vo@) )\ ¢ 22%6(®) q 2090110(@) @1 \20(@)) |

If we further restrict g to (%, 1), it produces

1=
26 + “Tdy
1+¢
1—q 28 3 29 1+¢ 3 2
—— 4+ |1+ + -
q © 1 @e.Le(@) [\ ¢ ®*20(@) g7
lim
©—0 /2@(@)
1-q, .2
= 2 —29
5B+ 1+ g X
lim [ 2 +2 R q 1 1+g¢g d 2
i _ _z
©—0 \ 3¢ —1@3%920(@) 3q-1m@24-1 g @®1*120(®) g¢q

= 2428 - 20%,
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where g has been chosen as ¥2. This completes the proof of (7.20), as a result of which (7.19) follows

immediately. O
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