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Abstract: Land cover classification is able to reflect the potential natural and social process in
urban development, providing vital information to stakeholders. Recent solutions on land cover
classification are generally addressed by remotely sensed imagery and supervised classification
methods. However, a high-performance classifier is desirable but challenging due to the existence
of model hyperparameters. Conventional approaches generally rely on manual tuning, which is
time-consuming and far from satisfying. Therefore, this work aims to propose a systematic method
to automatically tune the hyperparameters by Bayesian parameter optimization for the random
forest classifier. The recently launched Sentinel-2A/B satellites are drawn to provide the remote
sensing imageries for land cover classification case study in Beijing, China, which have the best
spectral/spatial resolutions among the freely available satellites. The improved random forest with
Bayesian parameter optimization is compared against the support vector machine (SVM) and random
forest (RF) with default hyperparameters by discriminating five land cover classes including building,
tree, road, water, and crop field. Comparative experimental results show that the optimized RF
classifier outperforms the conventional SVM and the RF with default hyperparameters in terms of
accuracy, precision, and recall. The effects of band/feature number and the band usefulness are also
assessed. It is envisaged that the improved classifier for Sentinel-2 satellite image processing can find
a wide range of applications where high-resolution satellite imagery classification is applicable.

Keywords: Sentinel-2 satellite; random forest; bayesian optimization; hyperparameter tuning; urban
management; land cover classification

1. Introduction

Land cover classification (LCC) is able to reflect the potential natural and social process
in urban development so that the vital information can be extracted to key stakeholders [1,2].
Earth observation satellite, one of the most significant platforms, is widely applied for LCC
due to their customized sensors which are able to provide extensive geographical coverage
while with an affordable cost for spatial and temporal land use/cover mapping [3]. In
particular, LCC using remote sensing images of high spatial/spectral resolutions is playing
a paramount role in urban planning, land resource management, green infrastructure
monitoring, disaster management, and agricultural applications [4–7]. In China, the largest
developing country, rapid urbanization has been changing its geographic characteristics,
particularly for urban areas where the balance of environment and urban infrastructures is
gradually being impaired. Therefore, land cover classification for urban areas is of great
importance to assess its changes for its sustainable development [6].
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With the advent of various earth observation satellites, image quality in terms of
spatial, spectral, and temporal resolutions is constantly improving and so the LCC per-
formance can be guaranteed. Among the freely accessible satellites, the newly launched
Sentinel-2 series satellite composed of Sentinel-2A and Sentinel-2B possesses the best spa-
tial, spectral, and temporal resolutions [8,9], which are a key part of the Global Monitoring
for Environment and Security program supported by the European Space Agency (ESA).
Its Multi-Spectral Instrument (MSI) features 13 bands from visible bands to short waved
infrared (SWIR) bands. In addition, three different spatial resolutions (e.g., 10 m, 20 m, and
60 m) are provided for various tailored tasks [10]. A number of qualitative and quantitative
studies have been done for Sentinel-2A satellite on land management, urban planning,
ecosystem monitoring, and smart farming [1,3,5,7,11,12]. Sentinel-2B was launched on 7
March 2017 to complement Sentinel-2A for a better temporal resolution. Therefore, in this
study, Sentinel-2A/B satellites are selected to provide the high-resolution remote sensing
images for the purpose of urban land cover classification.

On the other hand, it is widely acknowledged that the selection of classification
method can significantly affect the land use/cover mapping performance [3]. The ever-
increasing computation power and the advanced classification algorithms are making the
land use/cover classification more accurate than ever before, where the commonly used
algorithms may include the Support Vector Machine (SVM), k-Nearest Neighbors (KNN),
Decision Tree (DT), Artificial Neural Networks (ANN), and Random forest (RF) [5,13–15].
Machine learning based classifiers, such as SVM, ANN, and RF, are able to cope with
unbalanced and noisy datasets in LCC, yielding better classification performance over
traditional parametric approaches [16]. However, in these machine learning methods,
model hyperparameters should be appropriately set in order to get satisfying classification
results. In conventional approaches, hyperparameters are usually set empirically or tuned
manually. As a result, these manually set hyperparameters are insufficient to obtain accu-
rate and reliable land cover classification performance and therefore alternative approaches
should be sought. Consequently, it is desirable to develop an automated and systematic
approach to determine the model hyperparameters before a reliable and accurate classifier
being realized.

Bayesian optimization is a promising method for parameter tuning/optimization;
however, until now, very few studies have been available to apply it for model hyperpa-
rameter tuning, especially for land cover classification with satellite images. Therefore,
Bayesian optimization is adopted to tune the hyperparameters of the widely used RF
classifier for land cover classification. To summarize, the aim of this study is to optimize
RF classifiers and compare against other machine learning methods for urban land cover
classification (five classes including building, tree, road, water, and crop field) by using
Sentinel-2A/B remote sensing satellite images, where the study area is located in Beijing,
China. The optimized RF classifier by Bayesian optimization is compared against the SVM
and the random forest with default hyperparameters. In addition, both Red–Green–Blue
(RGB) features and full band features are selected for training and testing in different
methods so that their effects on classification performance can be assessed. It is expected
that a better classification result can be achieved by the optimized RF over the conventional
SVM and RF with default hyperparameters.

To be more exact, the main contributions of this study are summarized:

(1) State-of-the-art earth observation satellite Sentinel-2A/B with the best spatial/spectral/
temporal resolution among freely available satellites are evaluated for urban land
cover classification;

(2) Bayesian optimization is drawn to automatically tune the hyperparameters of random
forest classifiers for satellite remote sensing image classification.

(3) Both RGB band and full multispectral bands available on Sentinel-2A/B of an urban
scenario with five classes are adopted to evaluate the classification performance of the
optimized RF against the SVM and the RF with default hyperparameters.



Appl. Sci. 2021, 11, 543 3 of 17

The remainder of this paper is organized as follows: Section 2 introduces some
related work; Section 3 introduces related materials in this case study; Section 4 proposes
the methodology of the optimized random forest classifier; Section 5 demonstrates the
comparative results by using various methods; Finally, discussion and conclusions along
with future work are drawn in Sections 6 and 7, respectively.

2. Related Work

Land cover classification is usually formulated as a pixel-wise classification task in
the remote sensing community, where the pixels that belong to the same classes are labeled
accordingly [17]. With the development of remote sensing technology, the commonly
used classifiers can be divided into two branches including the machine learning based
classifiers and the deep learning based classifiers. Both of the aforementioned classifiers
will be introduced with their advantages and shortcomings in the following sections.

2.1. Machine Learning Classifier

Machine learning based classifiers such as Support Vector Machine (SVM), k-Nearest
Neighbors (KNN), Decision Tree (DT), and Random forest (RF) are widely used in remote
sensing image classification. Zhang proposed to combine the SVM classifier and a mutual
information ranking method to obtain more efficient band information, which achieves the
state-of-the-art performance in the land cover classification problem [5]. DT classification
algorithms have significant potential for land cover mapping problems since they are
flexible and robust against the nonlinear and noisy relations among input features and
the corresponding class labels [18]. The KNN classifier is widely used because of its
implementation simplicity but will perform poorly when training samples distribute
unevenly or the sample number of each class is very different [19]. With consideration of the
applications of the classifiers in city scenes, SVM and RF classifiers are proved to outperform
the traditional classifiers [3]. However, the classification performance of the aforementioned
classifiers including RF classifier is highly related to the hyperparameters involved in the
model, which normally rely on experience or trial and error tuning. Therefore, in this paper,
we take the RF classifier as the baseline and evaluate the influence of the hyperparameters.
In this paper, we propose to adopt the Bayesian optimization to automatically optimize the
hyperparameters of RF classifier for the city scenario.

2.2. Deep Learning Classifier

Artificial neural network (ANN) kicks off the prelude to deep learning, which can
simulate the human brain to make the decision [13]. Now, the deep learning based methods
mostly take convolutional neural networks (CNN) as the backbone of the algorithms. The
CNN architecture can automatically learn the image features via lots of parameters (usually
billions), which are trained with a large volume of training data. The CNN classification
performance is usually higher than machine learning based classifiers with sufficient
computation resource and samples [20]. However, deep learning classifiers highly rely
on personal experience and a huge amount of training samples. By considering the
limitation of the dataset, in this paper, the machine learning method is considered as a
classification approach.

3. Materials

This section introduces the related materials involved in the land cover classification
problem by using Sentinel-2A/B satellites and machine learning based classifiers. Both
satellite imagery and experimental field information are detailed in this section.

3.1. Sentinel-2 Satellite Imagery

The earth observations satellite Sentinel-2 series are able to provide remote sensing
imageries of high spatial, spectral and temporal resolutions due to its customized Multi-
spectral Instrument (MSI) sensor. The spatial resolutions of Band1, Band9, Band10 (60 m),
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Band5, Band6, Band7, Band8A, Band11, Band12 (20 m) and Band2, Band3, Band4, Band8
(10 m) can meet various requirements in atmospheric and geophysical parameters cor-
rection, vegetation detecting, and land classification [8,10,21]. Moreover, the 13 bands
provided by Sentinel-2 series cover visible bands, near Infrared (NIR) bands, and short
waved Infrared information (SWIR) bands.

In particular, compared against the popular Landsat 8 and other freely accessible
mainstream satellites [5,22,23], Sentinel-2 satellites are able to provide more details in NIR
and SWIR bands, which can promote the land cover classification performance in urban
monitoring, forest monitoring, and smart farming, among many others [4,24]. Moreover,
Sentinel-2 series satellites also improve the temporal resolution, where a 5-day revisit
time is available with the introduction of Sentinel2-B. The Sentinel-2 satellite information
in terms of band characteristics, wavelength, and spatial resolution are summarized in
Table 1, where the band wavelength information is at the central wavelength. It is also
noted that Band 10 is particularly for cirrus; therefore, this band is omitted in the land
cover classification problem in this study.

Table 1. Band information of Sentinel-2A/B.

Band No. Characteristic Wavelength (µm) Resolution (m)

1 Coastal Aerosol 0.443 60
2 Blue 0.490 10
3 Green 0.560 10
4 Red 0.665 10
5 Near Infrared 0.705 20
6 Near Infrared 0.740 20
7 Near Infrared 0.783 20
8 Near Infrared 0.842 10

8A Near Infrared 0.865 20
9 Water Vapour 0.945 60
10 Cirrus 1.375 60
11 Shortwave Infrared 1.610 20
12 Shortwave Infrared 2.190 20

3.2. Study Area

In this study, to evaluate the classification capabilities for different machine learn-
ing based classifiers, an image of 636 × 954 pixels for an urban area in Beijing, China
(see Figure 1) is selected. A summary of the geographic location, number of spectral
bands, imagery pixels, and cloud cover is displayed in Table 2. In particular, all satel-
lite images of Sentinel series could be freely downloaded from Sentinel Open Hub
(https://scihub.copernicus.eu/). The officially customized software Sentinel Application
Platform (SNAP) is utilized to import all the sensor information and export tailored data
for follow-up analysis in comparison to other geo-software such as ENVI [25,26]. The se-
lected field is a typical area composed of five main classes: buildings (such as universities,
factories and companies), trees, roads, water, and crop fields.

https://scihub.copernicus.eu/
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Figure 1. The study area in Beijing, China and its zoom-in satellite image (false-color RGB).

Table 2. A summary of the study area and satellite image.

Location No. of Bands Image Size Cloud Cover (%)

40◦01′23′′ N, 116◦12′10′′ E
39◦58′01′′ N, 116◦18′52′′ E 12 6360 m × 9540 m 1.67

4. Methodology

This section introduces the overall methodology including problems formulation, the
developed framework, and algorithm of RF with Bayesian optimization.

4.1. Problems Formulation

The land cover classification problem in this study can be formulated as a supervised
classification problem where bands (or typical indices) are selected as features into a super-
vised classifier for training. In this study, the Sentinel-2A/B image pixels are represented by
D = {1, · · · , n}where n means the total number of individual pixels in the original satellite
map. Here, the pixel matrix of this image with f being the number of features (bands or
indices) is defined as x = (x1; · · · ; xn) ∈ Rn× f . Let L = {1, · · · , k} and C = (c1, · · · , cn) be
a set of class labels and classification map corresponding to the label, respectively, where k
denotes the number of class. Therefore, the training dataset T can be generated by the num-
ber of features f and the corresponding labels C in the form of T = {(x1, c1), · · · , (xτ , cτ)}
with the number of training samples τ. As a result, after the classification model is built,
the classification evaluation matrix and also the corresponding classification map can be
generated by sending the training dataset T into the classifier. The aim of this study is to
evaluate the classification performance of three different supervised classifiers including
the random forest classifier with Bayesian parameter optimization.

4.2. Land Cover Classification Framework

It can be seen from Figure 2 that the framework can be divided into two main stages:
classifier construction and classification performance evaluation. The classifier construction
includes data pre-processing, training data labeling, and RF with Bayesian optimization,
which are described in details in the following subsections.
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Figure 2. The developed framework for land cover classification by using Sentinel-2 satellite and
machine learning based classifiers.

4.2.1. Remote Sensing Image Pre-Processing

Sentinel-2B level 2A product image was obtained on 4 October 2020 for the region
of interest. Three different steps are adopted to pre-process the raw image including
atmospheric correction, image resampling, and field subset. This image is atmospherically
corrected based on Atmospheric/Topographic Correction for Satellite Imagery proposed
by Richter [27]. Such a method is based on libRadtran radiative transfer model so that the
image quality can be guaranteed [5]. Due to the difference of image spatial resolution in
different bands, the resampling process is done so that a consistent image resolution can
be guaranteed. Finally, the subset process allows for selecting the region of interest (ROI)
from the downloaded large images. colorredAll of the pre-processing work is finished by
Sentinel Application Platform (SNAP) software which is particularly designed for Sentinel
series satellites.

4.2.2. Image Labeling

According to [12], Band 10 is especially for cirrus recording and thus being omitted in
this study. The remaining twelve bands are selected as features for pixel-wise classification.
Ground-truth labeling is necessary in supervised learning tasks in order to build the model.
Thus, this image is labeled based on manual interpretation of the original Sentinel-2 satellite
image (in false-color RGB format) along with Google map images and on-site checking.
The ground-truth of five classes including building (No. 1), tree (No. 2), road (No. 3), water
(No. 4), and crop field (No. 5) are labeled in Matlab software (2017b) using polygons of
different shapes for each class (see Figure 3) and ‘Un’ denotes the unlabeled data. By using
the labeled pixels, the average reflectance over five different land cover classes can be
compared and shown in Figure 4, which lays the foundation for discriminating various
classes by various machine learning based classifiers.
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Figure 4. Band reflectance for five different classes including building, trees, roads, water, and crops.

In order to compare the discrimination ability of visible images and multispectral
images [20], two training datasets are separately selected to evaluate the performance of
various methods: RGB features (e.g., only Red, Green, and Blue bands) and full 12 band
features. In addition, the labeled dataset is divided into the training dataset and testing
dataset to avoid the problem of over-fitting, which is a common issue in machine learning
based classifiers. In this study, the proportions of training data and testing data are set to
be 80% and 20%, respectively.

4.2.3. RF with Bayesian Optimization

An appropriate classifier can build the implicit relationship between feature infor-
mation (e.g., band information) and target information (e.g., five classes in this study) by
supervised learning from training datasets. Given the trained classification model, predic-
tion can be made on unseen data to generate the corresponding class labels. A number
of classifiers have been used in the literature for supervised learning, such as SVM, RF,
decision trees, nearest neighbor, and neural network. It has been shown that RF possesses
more advantages in avoiding over-fitting while with a relatively low computation load [28].

RF is an ensemble learning based classification approach with a large number of
decision trees constructed in the training process, where the final output integrates the
outcome class of individual decision trees [15,28]. Such a method is able to avoid over-
fitting and at the same time is much more robust than a single decision tree. It is also
shown in the existing studies that the RF method is able to achieve a high accuracy, a
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good robustness, and less computation load [29,30]. However, some hyperparameters in
this method are necessary to be tuned according to the tasks of interest so that a better
classification performance can be fully realized. According to [17], Bayesian optimization
can be adopted to automatically tune the hyperparameters, where the details are summa-
rized in Algorithm 1. Due to the lack of space, the basic RF algorithm is referred to the
existing studies [31]. To demonstrate the advantages of the proposed RF with Bayesian
hyperparameter optimization, its performance is compared against the conventional SVM
and the RF with default parameters.

Algorithm 1 Optimized random forest classifier

(a) Initial settings: RF is composed of a large number of decision trees. Therefore, the
number of decision trees need to be first determined (e.g., 150) because a large number
of individual trees can improve the discrimination ability. At the same time, certain
stopping rule needs (e.g., here the rule is maximum evaluation time) can also be
defined to end the optimization iteration.

(b) Objective function: Set the hyperparameters H ∈ Ω that should be tuned such
as MinLeafSize (mls), NumPredictorsToSample (npts). The objective function in
Bayesian optimization is then defined as the mean of the out-of-bag error (‘oobErr’)
to avoid overfitting, so that the optimization problem is given by

Hopt = arg min
H∈Ω

oobErr(H). (1)

(c) Bayesian optimization: The Bayesian optimization method aims to automatically
and optimally suggest new parameters by fitting a Gaussian process model G for
the existing data points {Hi, oobErr(Hi)} and find a new point after updating to
minimize the objective function based on the posterior distribution function G.

(d) Optimized hyperparameters: The optimization process will end when the stopping
criterion in Step (a) is satisfied and these optimized hyperparameters will be put into
the random forest classifier.

(e) Optimized RF classifier: By using the optimized hyperparameters, the optimized
random forest can be used for performance assessment (e.g., confusion matrix calcu-
lation) and land cover classification applications (e.g., to the whole image of interest).

All algorithms (SVM, conventional RF, and RF with a Bayesian optimization method)
involved in this study are implemented in Matlab of version 2017b. For the proposed
method, there are a total of two hyperparameters being tuned including minimum leaf
size (mls) and the number of predictors to sample (npts), where mls is to control the depth
of the trees and npts determines the amount of predictors to sample at each node when
growing the trees. By default, mls is set as 1 for classification, and npts is equal to the
square root of the total number of variables for classification. In the proposed method
settings, the prior information of mls is between 1 to 20. In addition, the prior of parameter
npts is between 1 to n f , where n f means number of features. ‘oobErr′ is set as ‘on’ to store
information on what observations are out of bag for each tree, and this can be used to
compute the predicted class probabilities for each tree in the ensemble. The number of
trees is set as 150 and the maximum objective function evaluation time (stopping rule) is
set to be the default value of 30 times.

4.3. Classification Performance Evaluation

In this work, 80% and 20% of the labeled pixels are randomly selected for training and
testing, respectively, where the performance accuracy is calculated based on the testing
dataset to avoid the problem of overfitting. In particular, True Positive (TP) denotes the
correctly predicted positive values; False Positive (FP) is the value where actual class is
negative and the predicted class is positive; False Negative (FN) means the scenario where
the actual class is positive, but the predicted class is negative [29]. Various evaluation
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metrics can be defined based on these values such as accuracy, precision, and recall as in
Equations (2) and (3). In addition, confusion matrix is also commonly used to visually
assess the performance of various methods. In the confusion matrix, the rows denote the
output class (predicted class) and the columns represent the target class (groundtruth class).
A detailed explanation of the confusion matrix will be introduced where necessary in the
following parts.

The accuracy of the classification model for a particular class is defined by:

Accuracy =
∑ TP
All

. (2)

In order to properly assess model performance for unbalanced datasets, Precision and
Recall are also usually introduced [29,32], which for a typical class are defined by

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (3)

5. Results

This section summarizes the performance evaluation results for different machine
learning based classifiers with different features (RGB band features and full multispectral
band features). In addition, the spatial classification maps are also generated for visual
inspection wherever is necessary.

5.1. RGB Band Features

In the first set of models, RGB band features are selected for the three methods
including SVM, RF with default parameters, and the RF with Bayesian hyperparameter
optimization. The Bayesian hyperparameter optimization results are shown in Figure 5,
where subplot A shows the estimated minimum objective over evaluation time, and subplot
B shows the estimated objective over different hyperparameter combinations. It can be
observed that the estimated objective function achieves equilibrium after a few evaluations
and is close to the observed objective, and the minimum objective function is achieved by
the optimized hyperparameters vector mls = 1 and npts = 2 (default parameters: mls = 1,
npts = 1).
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Figure 5. (A) Minimum objectives over evaluation time by using RGB features; (B) estimated fitness function values over
the combinations of npts and mls using RGB features.

The confusion matrices for the three machine learning based classifiers are displayed
in Figure 6. In these matrices, target classes denote the truth labels, whereas the output
classes mean the classifier predicted labels. The diagonal cell in green shows the number
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and the corresponding percentage for correctly classified pixels and the off-diagonal cell
indicates the misclassified pixels. Taking the proposed algorithm as an example, for the
“building” class, 12,338 pixels in green is TP, another 1794 (162 + 1123 + 17 + 492) pixels in
red in the first row is FP, and 1102 (295 + 498 + 7 + 302) pixels in red in the first column is
FN. Thus, Precision for “buildings” class is 12,338/(12,338 + 1794) = 87.3% and similarly
Recall for “ buildings” is 12,338/(12,338 + 1102) = 91.8%. The overall accuracy is 87.9%. In
comparison to SVM and the RF with default parameters, the proposed method obtains the
best classification performance, which marginally improved against the conventional RF
by 0.5%. However, the overall accuracy of SVM algorithm is only 46.1%, which is much
less than random forest classifiers. The main reason is the inappropriateness of the SVM
algorithm for the land cover classification problem with only RGB band information. A
comparison for different methods is shown in Table 3 showing that the optimized random
forest method achieves the highest OA and kappa value.
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Figure 6. Confusion matrices of three machine learning based classifiers (a) SVM, (b) Random forest, (c) Random forest
with Bayesian optimization) by using RGB band features.
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Table 3. A comparison between different methods using OA and kappa value (RGB features).

Methods OA Kappa Value

SVM 0.4605 0.2526
Random forest 0.8744 0.8152

Optimized random forest 0.8788 0.8210

5.2. Full Multispectral Band Features
5.2.1. Classification Performance Evaluation

It can be seen from Figure 4 that, in addition to the commonly used RGB bands,
other bands (e.g., NIR, SWIR) can also provide vital discrimination information for land
cover classification and therefore all multispectral band features are also assessed for
the three machine learning based models in this subsection. Similar to the case of RGB
band features in Section 5.1, the results of Bayesian hyperparameter optimization for full
multispectral band features are displayed in Figure 7 including the minimum objectives
over time and the estimated objective function values over different combinations of mls
and npts. The optimized hyperparameters vector shows that mls = 1 and npts = 10
(default parameters: mls = 1, npts = 6). In addition, the out-of-bag error over the number
of trees is also displayed in Figure 8. The smaller the out-of-bag error is, the more accurate
the classifier will be. It can be seen that the error using Bayesian optimization is smaller
than that of the RF with default parameters when the same number of trees is used.
Therefore, the RF with Bayesian optimization possesses better performance over the one
with default hyperparameters. Under this hyperparameter setting, the confusion matrix
of the optimized RF is shown against the ones for SVM and RF with default parameters
in Figure 9.
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Figure 7. (A) Minimum objectives over evaluation time by using full multispectral band features; (B) estimated fitness
function values over the combinations of npts and mls by using full multispectral band features.
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Figure 8. The out-of-bag error over the number of grown trees using different methods.
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Figure 9. Confusion matrix of the classifiers (a) SVM, (b) Random forest, (c) Random forest with Bayesian optimization)
with full multispectral band features.
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The confusion matrices for the three methods are shown in Figure 9. It can be seen that
incorporating more band information in the range of NIR and SWIR of the Sentinel-2A/B
satellite can significantly improve the land cover classification performance. For example,
the classification accuracy change of SVM is 46.1%−→93.2%, RF is 87.4%−→96.5%, and RF
with Bayesian optimization is 87.9%−→98.3%. This observation clearly demonstrates that
incorporating more related band information can significantly improve the classification
performance, as it can be seen from Figure 4 that, in addition to RGB bands, NIR bands and
SWIR bands also have a strong discrimination capability. On the other hand, in comparison
with SVM and the RF with default parameters, the RF with Bayesian hyperparameter
optimization shows the best performance in terms of Precision (user’s accuracy), Recall
(producer’s accuracy), and Overall Accuracy [33]. The comparison between different
methods is displayed in Table 4. This again shows the advantages of optimizing the
hyperparameters of RF classifiers.

Table 4. A comparison between different methods using OA and kappa value (full bands features).

Methods OA Kappa Value

SVM 0.9322 0.9002
Random forest 0.9650 0.9485

Optimized random forest 0.9834 0.9751

In addition, the curvature test [34] is capable of evaluating feature scores to reflect
their contribution and usefulness in the classification task. The curvature test result for the
RF with Bayesian optimization is displayed in Figure 10, where the usefulness of different
bands is shown with a high value meaning a higher predictor importance.
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Figure 10. Curvature test result for the features in the random forest classifier with Bayesian opti-
mization.

5.2.2. Classification Maps

Quantitative results are very useful to compare the performance of different models, it
would also be visually useful to assess the spatial classification maps by different methods.
To this end, the three trained models are applied to both the labeled areas and the whole
images, respectively. The trained models with all multispectral band features are first
applied to the labeled areas, where the spatial classification maps are shown in Figure 11.
It can be seen that all three models generate satisfying spatial classification maps; however,
the RF with Bayesian optimization has the fewest wrongly classified pixels and noises.
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Figure 11. Classification map for labeled areas by three models with all band features: (a) SVM; (b) conventional RF; (c) RF
with Bayesian optimization.

In addition to applying the trained models to the labeled areas, it would also be
interesting and useful to see the classification results on the whole satellite images for the
purpose of urban land cover analysis. Based on the five labeled classes, the classification
maps by using the three different models with full band features are shown in Figure 12. It
can be seen that the RF with a Bayesian optimization approach again generates the best
land cover classification result, which has fewer noises by comparing the areas highlighted
by red rectangles.
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Figure 12. Classification maps using different trained models to the original image: (a) SVM; (b) conventional RF; (c) RF
with Bayesian optimization (red rectangles mean obvious improvements for different regions among various classifiers).
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6. Discussion

The RF with Bayesian hyperparameter optimization method presented in Section 4
shows better performance in terms of precision, recall, and accuracy of an urban land cover
classification example. The RGB band features and full multispectral band features have
been discussed and examined by three different classifiers including SVM, RF, and RF with
Bayesian optimization. In order to evaluate the performance of different models, pixel-wise
classification is used in this paper. Then, Equations (2) and (3) are used to estimate the
evaluation values (accuracy, precision, and recall) from the confusion matrices. From the
confusion matrices, all three classifiers show improved performance by incorporating more
related band information. The classification accuracy of SVM is increased by 47.1%, RF is
improved by 9.1%, while the RF with Bayesian optimization is enhanced by 10.4%. Com-
pared with RGB bands, NIR bands and SWIR bands (multispectral band features) provide
more precise results (the minimum overall precision provided by SVM is over 93.2%).

Meanwhile, in terms of precision, recall, and accuracy, the RF with Bayesian hyperpa-
rameter optimization gives the best results. For the overall precision of an urban land cover
classification example given in Section 3, the RF with Bayesian optimization is 0.5% higher
than RF and 41.8% higher than SVM by using RGB band features, respectively. Simulta-
neously, the RF with Bayesian optimization is 1.8% higher than RF and 5.1% higher than
SVM by using multispectral band features, individually. Moreover, quantitative results
are also presented to compare the differences of the performance provided by different
models through the classification map for labeled areas with all band features and full
band features. Both classification maps show that the RF with a Bayesian hyperparameter
optimization model generates the best land cover visualization results with less noises and
error classified pixels.

There are also a number of issues that are worth investigation when the proposed
method is to be applied in real-world applications. For instance, the spatial resolution
of Sentinel-2 satellite is about 10 m; as a result, some pixels (in particular the ones at
boundaries of surface classes) are actually mixed pixels involving different surface classes.
The classification performance is therefore not accurate enough for these mixed pixels and
a better result may be obtained with a higher spatial resolution. In addition, the cloud
may have adverse effects on classification performance. This can be partially addressed by
either taking the satellite image with a low cloud coverage or taking the median value of
the satellite images within a time interval.

7. Conclusions and Future Work

This paper investigates the problem of urban land cover classification by using
Sentinel-2 satellite remote sensing imageries and machine learning based classifiers. In
particular, Bayesian optimization is drawn to automatically tune the hyperparameters of
random forest classifiers so that its performance can be improved. An urban land cover clas-
sification example in Beijing, China is drawn to demonstrate the performance of optimized
random forest classifier against the random forest with default parameters and the classical
support vector machine (SVM) classifier. In performance evaluation, RGB band features of
Sentinel-2 satellite are firstly considered by employing three different methods. The results
show that the optimized random forest classifier achieves the best performance with overall
accuracy (OA: 0.879), kappa coefficient (0.8210), whereas SVM achieves a low OA and
kappa value of 0.461 and 0.2526, respectively. Then, full band features are evaluated by the
three methods, and it is shown that the optimized random forest still possesses the highest
value of OA (0.983) and kappa value (0.9751). In addition, the classifiers with more useful
band information outperform the ones with only RGB band information. Therefore, the
developed random forest classifier with Bayesian hyperparameter optimization is expected
to provide better urban land cover classification performance so that city managements
can be achieved in a more precise manner. Meanwhile, with a suitable training dataset, this
method can also find a wide range of applications in land resource management, green
infrastructure monitoring, disaster management, and agricultural applications.
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Although the results in this study are quite promising, there is still much room for
further improvement. For instance, due to the logistics issues, only a small set of training
dataset is used to assess the performance of the algorithms. With the advent of a more
labeled dataset, the performance can be evaluated in a more accurate manner. Moreover,
this study is mainly focused on applying spectral information for land cover classification,
and spatial information can also provide vital information. In addition to machine learning
methods, the popular deep learning approaches such as a Convolutional Neural Network
(CNN) can also be drawn to simultaneously learn the spectral and spatial information in
an end-to-end manner and possible improved performance.
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16. Dobrinić, D.; Medak, D.; Gašparović, M. Integration of Multitemporal SENTINEL-1 and SENTINEL-2 Imagery for Land-Cover

Classification Using Machine Learning Methods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 91–98. [CrossRef]
17. Zhang, T.; Su, J.; Liu, C.; Chen, W.H. Bayesian calibration of AquaCrop model for winter wheat by assimilating UAV multi-spectral

images. Comput. Electron. Agric. 2019, 167, 105052. [CrossRef]
18. Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997,

61, 399–409. [CrossRef]
19. Li, Y.; Cheng, B. An improved k-nearest neighbor algorithm and its application to high resolution remote sensing image

classification. In Proceedings of the 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August
2009; pp. 1–4.

20. Su, J.; Yi, D.; Su, B.; Mi, Z.; Liu, C.; Hu, X.; Xu, X.; Guo, L.; Chen, W.H. Aerial Visual Perception in Smart Farming: Field Study of
Wheat Yellow Rust Monitoring. IEEE Trans. Ind. Informat. 2020. [CrossRef]

21. Clevers, J.; Kooistra, L.; Van Den Brande, M. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of
a potato crop. Remote Sens. 2017, 9, 405. [CrossRef]

22. Li, H.; Chen, Z.X.; Jiang, Z.W.; Wu, W.B.; Ren, J.Q.; Liu, B.; Tuya, H. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for
estimating the leaf area index of winter wheat. J. Integr. Agric. 2017, 16, 266–285. [CrossRef]

23. Roy, D.P.; Wulder, M.; Loveland, T.R.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R.; et al.
Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [CrossRef]

24. Tavares, P.; Beltrão, N.; Guimarães, U.; Teodoro, A. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping
in the Urban Area of Belém, Eastern Brazilian Amazon. Sensors 2019, 19, 1140. [CrossRef] [PubMed]

25. Akanwa, A.O.; Okeke, F.I.; Nnodu, V.C.; Iortyom, E.T. Quarrying and its effect on vegetation cover for a sustainable development
using high-resolution satellite image and GIS. Environ. Earth Ences 2017, 76, 505. [CrossRef]

26. Shoko, C.; Mutanga, O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating
subtle differences between C3 and C4 grass species. ISPRS J. Photogramm. Remote Sens. 2017, 129, 32–40. [CrossRef]

27. Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction For Satellite Imagery; DLR Report DLR-IB; DLR: Wessling, Germany,
2005; pp. 565–601.

28. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
29. Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W.H. Wheat yellow rust monitoring by learning from

multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [CrossRef]
30. Su, J.; Liu, C.; Hu, X.; Xu, X.; Guo, L.; Chen, W.H. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral

imagery. Comput. Electron. Agric. 2019, 167, 105035. [CrossRef]
31. Reis, I.; Baron, D.; Shahaf, S. Probabilistic random forest: A machine learning algorithm for noisy data sets. Astron. J. 2018,

157, 16. [CrossRef]
32. Yi, D.; Su, J.; Liu, C.; Chen, W.H. Personalized driver workload inference by learning from vehicle related measurements. IEEE

Trans. Syst. Man Cybern. Syst. 2017. [CrossRef]
33. Barsi, Á.; Kugler, Z.; László, I.; Szabó, G.; Abdulmutalib, H. Accuracy Dimensions in Remote Sensing. Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. 2018, 42. [CrossRef]
34. Loh, W.Y.; Shih, Y.S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840.

http://dx.doi.org/10.1142/S2301385020500053
http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2020-91-2020
http://dx.doi.org/10.1016/j.compag.2019.105052
http://dx.doi.org/10.1016/S0034-4257(97)00049-7
http://dx.doi.org/10.1109/TII.2020.2979237
http://dx.doi.org/10.3390/rs9050405
http://dx.doi.org/10.1016/S2095-3119(15)61293-X
http://dx.doi.org/10.1016/j.rse.2014.02.001
http://dx.doi.org/10.3390/s19051140
http://www.ncbi.nlm.nih.gov/pubmed/30845748
http://dx.doi.org/10.1007/s12665-017-6844-x
http://dx.doi.org/10.1016/j.isprsjprs.2017.04.016
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1016/j.compag.2018.10.017
http://dx.doi.org/10.1016/j.compag.2019.105035
http://dx.doi.org/10.3847/1538-3881/aaf101
http://dx.doi.org/10.1109/TSMC.2017.2764263
http://dx.doi.org/10.5194/isprs-archives-XLII-3-61-2018

	Introduction
	Related Work
	Machine Learning Classifier
	Deep Learning Classifier

	Materials
	Sentinel-2 Satellite Imagery
	Study Area

	Methodology
	Problems Formulation
	Land Cover Classification Framework 
	Remote Sensing Image Pre-Processing 
	Image Labeling
	RF with Bayesian Optimization

	Classification Performance Evaluation

	Results
	RGB Band Features
	Full Multispectral Band Features
	Classification Performance Evaluation
	Classification Maps


	Discussion
	Conclusions and Future Work
	References

