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Abstract
The greatest unmet need in multiple sclerosis (MS) are treatments that delay, prevent or reverse progression. One of the 
most tractable strategies to achieve this is to therapeutically enhance endogenous remyelination; doing so restores nerve 
conduction and prevents neurodegeneration. The biology of remyelination—centred on the activation, migration, prolifera-
tion and differentiation of oligodendrocyte progenitors—has been increasingly clearly defined and druggable targets have 
now been identified in preclinical work leading to early phase clinical trials. With some phase 2 studies reporting efficacy, 
the prospect of licensed remyelinating treatments in MS looks increasingly likely. However, there remain many unanswered 
questions and recent research has revealed a further dimension of complexity to this process that has refined our view of the 
barriers to remyelination in humans. In this review, we describe the process of remyelination, why this fails in MS, and the 
latest research that has given new insights into this process. We also discuss the translation of this research into clinical tri-
als, highlighting the treatments that have been tested to date, and the different methods of detecting remyelination in people.
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Introduction

Multiple sclerosis (MS) is a chronic, primarily inflamma-
tory, disorder of the central nervous system (CNS) char-
acterised by focal lymphocytic infiltration causing damage 
to myelin and axons [1-3]. Typical clinical features include 
weakness, sensory loss, diplopia, reduced visual acuity, 
dysarthria, dysphagia, ataxia, and bladder dysfunction; 
largely a reflection of the distribution of demyelinating foci 
throughout the CNS. In 85% of patients, there is an initial 
period of episodic neurological dysfunction followed by par-
tial or complete recovery (relapsing–remitting MS, RRMS) 
[4]. Over time, the clinical picture often develops to one of 
progressive disability (secondary progressive MS, SPMS) 
[5], while in 15% the illness is progressive from the outset 
(primary progressive MS, PPMS) [6, 7]. In both SPMS and 
PPMS, the strongest predictor of the onset of progression is 
age, typically being seen from around 40 years [8].

There now exists an extensive therapeutic arma-
mentarium against the inflammation of MS [9]. These 

disease-modifying treatments (DMTs) reduce the incidence 
and severity of new lesions by limiting the activity and 
availability of immune cells, manifesting clinically through 
reductions in relapse rates and disability accrual [10-19]. 
However, the “therapeutic window” for treatment with these 
immunotherapies is limited [20]; best long-term results on 
disability are seen if an anti-inflammatory treatment is 
started within 5 years of the first clinical episode of demy-
elination in relapsing–remitting disease [21]. Furthermore, 
while the 16 current DMTs are licensed for RRMS, only 
one—ocrelizumab—is approved for primary progressive 
disease [22], and even then its effects are so modest that 
several reimbursement agencies, notably NICE in the UK, 
declared it only cost-effective in a subset of people with new 
or contrast-enhancing lesions on MRI and a disease duration 
of less than 15 years.

Instead, the promotion of regeneration of the myelin 
sheath, through enhancing the process of endogenous remy-
elination, has emerged as one of the most amenable pros-
pects to delay, prevent or reverse progression [23]. This is 
grounded in experimental evidence that demonstrates that 
the myelin sheath (and its associated oligodendrocytes) 
does not just facilitate nerve conduction, but is also directly 
protective against degeneration [24-29]. In this review, we 
describe the biology of remyelination, why this fails in MS, 
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and recent research that has raised questions about current 
approaches to promoting remyelination. We then consider 
the therapies that have been, and are being, evaluated and 
discuss the best approach to measure remyelination in peo-
ple, which is proving increasingly essential as we translate 
promising preclinical research into clinical trials.

The role of myelin

Myelination offers a far better way of increasing the conduc-
tion velocity of nerve fibres than simply increasing axon 
size. Myelin increases the transverse, insulating, resistance 
of the axon membrane, while the voltage-gated sodium and 
potassium channels are virtually confined to short unmy-
elinated nodes of Ranvier. The action potential is therefore 
propagated by the comparatively rapid and energy-efficient 
process of saltatory conduction [30, 31]. It follows that 
loss of myelin leads to slower transmission of the action 
potential, and hence prolonged latency, but can also lead to 
conduction block [32]. Remyelination is therefore a way to 
restore saltatory conduction [33], and clinical function [34], 
after demyelination.

Additionally, oligodendrocytes directly support the neu-
ron, for example through providing lactate for metabolism 
and generation of ATP [25-27]. Pathological studies and 
animal models also suggest that axonal degeneration is 
reduced in remyelinated areas [24, 28, 29]. Taken together, 
the rationale for a remyelinating therapy is to restore func-
tion and prevent neurodegeneration.

Meanwhile, it is increasingly apparent that myelin regu-
lation is a dynamic process in which both newly formed 
oligodendrocytes and pre-existing oligodendrocytes remodel 
myelin, often in response to activity, to facilitate learning 
and plasticity [35]. Whether activity-dependent remyelina-
tion could be restored by the proposed treatments remains 
an unanswered question.

Biology of remyelination

Demyelination (induced experimentally or by disease) can 
be followed by this regenerative response leading to the 
formation of new myelin sheaths around denuded axons by 
newly formed oligodendrocytes [23, 36-39]. Histopathologi-
cal assessments have highlighted that this can occur exten-
sively in some people with MS [40], but is inadequate in 
a significant proportion [41, 42]. For example, one study 
analysed forebrain tissue from 51 MS patients and found 
widespread remyelination in 20% of individuals, yet 34 cases 
remyelinated fewer than 25% of their lesions [42]. High 
inter-subject variability in remyelination capacity is sup-
ported by dynamic myelin imaging using positron emission 

tomography (PET) [43] and, when combined with evidence 
that those demonstrating more remyelination display lower 
levels of disability [44], it underscores the therapeutic prom-
ise of a remyelinating treatment. Consequently, efforts have 
been made to understand the mechanisms of remyelination 
and why this fails in MS, in the hope of defining druggable 
targets to enhance this process.

Mechanisms of remyelination

While pre-existing mature oligodendrocytes are able to 
increase the number of internodes they generate, and there-
fore contribute to recovery after demyelination [45], they do 
not add to the pool of new myelinogenic oligodendrocytes 
that are required for remyelination in animals [46]. Thus, 
remyelination is crucially dependent upon adult oligoden-
drocyte progenitor cells (aOPCs), derived from neonatal 
OPCs (nOPCs) [47], which have been shown by genetic 
fate-mapping to be the cells responsible for generation of 
the majority of new oligodendrocytes in the adult nervous 
system [48, 49]. These cells are maintained in sufficient 
quantities predominantly by their own self-renewal, rather 
than by replacement from neural stem cell niches in the CNS 
[50, 51].

Following damage to myelinated areas, aOPCs must 
follow a choreographed process of activation, migration, 
proliferation and differentiation before culminating in the 
formation of new myelin sheaths [48]. The final product is 
a compacted layer of myelin that is thinner and shorter than 
those formed during developmental myelination [52], a fact 
often used to identify remyelination histologically when the 
process is studied in animal models (Box 1). Mechanisti-
cally, remyelination might fail due to a defect anywhere 
in this sequence; a paucity of pro-regenerative factors, or 
excess of inhibitory factors, as can be seen in MS lesions, 
combined with the intrinsic composition of the aOPC, can 
limit the capacity to remyelinate [23].

Given that large numbers of aOPCs are seen in chroni-
cally demyelinated MS lesions [53], it is often stated that 
remyelination fails as aOPCs become quiescent and unable 
to differentiate. As a consequence, increasing research has 
been deployed to elucidate the key regulators of differentia-
tion [54-58] and identify agents capable of enhancing this 
process for clinical use, which is discussed further below.

However, it should be acknowledged that differentiation 
may not universally be the rate-limiting step in humans. It 
has previously been established that aOPCs do migrate to 
sites of injury and evenly distribute themselves to facilitate 
remyelination [59], though they probably do so over short 
distances [60]. But recently, two papers have also raised 
questions about the contributions of aOPCs to lesion repair 
in people. Yeung and colleagues utilised a 14C dating tech-
nique to show that oligodendrocytes from shadow plaques 
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in MS brains, areas thought to have undergone at least par-
tial remyelination, could not have been generated from new 
OPCs [61]. Further, Jäkle et al. reported that at autopsy, 
OPCs are reduced in number within shadow plaques [62]. 
Indeed, this latter study also highlighted changes in oli-
godendrocyte gene expression profiles between areas of 
normal-appearing white matter of MS brains and healthy 
controls, implying that the pathology seen in lesions may not 
reflect the global cellular changes occurring in MS.

Such results may find explanations in the differences 
between humans and the rat and mouse models used to 
study the disease. Taken together with evidence that some 
MS patients remyelinate better than others [42, 43], it seems 
clear that a treatment strategy that enhances differentiation 
alone may not necessarily be sufficient to address remyelina-
tion across a population of heterogenous MS patients.

Further, interactions between other glial cells and OPCs 
are also being increasingly clearly defined. Reactive astro-
cytes found at the site of demyelination, for example, secrete 
inhibitors of remyelination such as Endothelin-1 [63] and 
the recent description of A1 reactive astrocytes, which con-
tribute to the death of oligodendrocytes [64], needs to be 
incorporated into the current model of remyelination and 
potential therapeutic targets explored.

In parallel, the demonstration that protein synthesis in 
OPCs is modulated by axonal action potentials [65] speaks 
to an underlying symbiosis between the neuron and the cells 
responsible for its myelination. In the peripheral nervous 
system, there is a necessary relationship between axon and 
Schwann cell, exemplified by dependency on the neuron-
derived growth factor Neuregulin 1 to drive peripheral nerve 
myelination [66]. In the CNS, OPCs are able to differenti-
ate even in the absence of axons [67, 68] and, as will be 
discussed below, in culture are able to myelinate inert axon-
like substrates [69, 70]. Yet, while oligodendrocytes have a 
default ability to differentiate and myelinate axons, this is 

modulated by axon diameter and activity, implying a require-
ment for intact axons in vivo [71].

Therefore, it looks increasingly probable that combina-
tions of drugs, acting on different processes, will be required 
to facilitate remyelination, and that these will be most effec-
tive when there is a sufficiently preserved demyelinated 
axon. This latter point forms the rationale for many phase 2 
studies first focussing on people with RRMS, in whom it is 
anticipated that fewer axons will have degenerated.

Reasons for remyelination failure

To understand why remyelination fails in MS, one must look 
at two crucial contributory processes—namely those of age 
and the immune system.

While the immune system is often seen as having a det-
rimental role in MS, the innate immune system has been 
shown to be essential in the biology of remyelination [72]. 
Myelin debris contains inhibitors of aOPC differentiation 
and so its clearance, by phagocytosis, is an important step 
in the regeneration of the myelin sheath [73-76]. Similarly, 
infiltrating macrophages and activated microglia secrete a 
myriad of neurotrophic factors, which have direct effects 
on aOPCs [77]. Indeed, to facilitate robust remyelination 
in vitro, the polarisation of the macrophage response to an 
immunoregulatory, “M2”, phenotype is required [78]. It 
is not clear how these findings relate to the behaviour of 
monocyte-derived macrophages and microglia, in vivo, yet 
they emphasise how improving our understanding of sub-
populations of macrophages/microglia and lymphocytes in 
the brain is essential to developing treatments that prevent 
demyelination while promoting remyelination.

The potential for endogenous remyelination is both age 
and disease duration dependent: remyelination is great-
est in people aged less than 55 years and within the first 
10 years of disease onset [39, 79, 80]. Disentangling the 

Box 1   Animal models used to study remyelination

Remyelination has been studied in several animal models:
 Experimental autoimmune encephalomyelitis (EAE): this model of autoimmune inflammation, driven by injection of a myelin peptide along-

side an adjuvant, sees inflammation and remyelination occurring concurrently. However, when used experimentally to explore potential 
medicines, it is often hard to distinguish an effect of attenuation of inflammation from promotion of remyelination. Hence non-inflammatory 
models have been developed, as below

 Gliotoxin injections: lysolecithin and ethidium bromide (EB) are toxic to oligodendrocytes, yet spare axons. Experimentally, they can be 
injected into the CNS of animals to induce demyelination. Their particular benefit has been that the kinetics of demyelination and remyelina-
tion can be closely studied [162]. The limitation is that the lesions do not necessarily model the complexity of those in multiple sclerosis, 
which contain a myriad of remyelination inhibitors and inflammatory cells

 Oral cuprizone administration: dietary ingestion of the copper chelator cuprizone results in demyelination of white matter tracts, particularly in 
the corpus callosum [163]. It models remyelination, ongoing in the face of continued demyelination. However, the normally small diameter 
axons seen in the corpus callosum makes distinguishing a remyelinated from an unaffected axon challenging, and interpretation correspond-
ingly difficult

The best model for progressive MS is debated and variations of these employed (reviewed in [164]). Our view is, for reasons that will become 
apparent, that experiments should be performed in aged animals when studying the underlying mechanisms of remyelination failure in progres-
sive MS
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relative contribution of age versus duration of lesion 
demyelination to remyelination failure remains to be done, 
but clinical evidence would suggest age is especially perti-
nent as patients reach disability milestones at similar ages 
whether they have relapsing or progressive symptoms at 
onset [8, 80]. Similarly, lesional magnetisation transfer 
ratio (MTR)—a putative marker of remyelination—also 
shows age-dependent decline [81]. Remyelination is there-
fore akin to other regenerative processes [82] in becom-
ing less efficient with time [83-87]; understanding age-
associated remyelination failure is essential in treatment 
development.

Mechanistically, in this circumstance, the rate-limiting 
step is more clearly differentiation of the aOPC, as increas-
ing aOPC recruitment does not lead to enhanced remyelina-
tion in aged mice [88]. Studies of how extrinsic factors vary 
with age have implicated a declining efficiency of the inflam-
matory response [89]; as noted above, macrophages produce 
pro-differentiation factors and clear debris by phagocytosis 
[76, 90, 91], which is essential for remyelination. That this 
process might be modifiable was demonstrated by the rever-
sal of a deficit in remyelination of an aged mouse by twin-
ning its circulation with a young animal by heterochronic 
parabiosis [92]. In a similar way, small molecule treatments 
can be used to promote endogenous remyelination, even in 
aged animals.

A detailed understanding of the intrinsic age-related 
changes in aOPCs is a recent development in the field fol-
lowing work by Neumann and colleagues [93]. They dem-
onstrated that aged aOPCs become less responsive to factors 
that induce differentiation, contributing to the reduced remy-
elination capacity seen in many non-remyelinating chronic 
MS lesions [94]. Moreover, RNA sequencing from young 
and aged aOPCs highlighted a significant contribution from 
the mTOR pathway. This led to the novel observation that 
manipulating this pathway in aged rats with caloric restric-
tion (three non-consecutive days of fasting per week over 
6 months), or with the AMPK-agonist metformin (over 
3 months), reverses the diminished differentiation capac-
ity of aOPCs and restores their ability to remyelinate. As a 
result, manipulation of intrinsic changes in these stem cells 
is emerging as a promising treatment strategy.

Finally, there are also anatomical variations to the extent 
of remyelination within different lesions in the same indi-
vidual. For example, periventricular lesions are less ame-
nable to remyelination than subcortical lesions [42, 80]. 
This might reflect an underlying heterogeneity in OPCs or 
in locational differences in permissibility for their differen-
tiation [95]: there are fewer inhibitors of remyelination in 
the cortex [96]. It could also be due to the importance of 
neuronal activity for remyelination, which is more likely to 
occur closer to the soma. Regional variations in remyelina-
tion within an individual is an opportunity to investigate 

barriers to enhancing remyelination, but also raise questions 
about which lesions should be tested in clinical trials.

Identification of agents capable 
of remyelination

An enhanced understanding of the intrinsic and extrinsic 
regulatory pathways implicated in remyelination has identi-
fied a multitude of sensible targets for therapeutic manip-
ulation. An example of this has been the development of 
opicinumab to inhibit Lingo-1 (leucine-rich repeat and 
immunoglobulin-like domain-containing nogo receptor-
interacting protein 1), a negative regulator of differentiation 
[97].

Another fruitful technique has been high-throughput 
screening of libraries of compounds, looking for an effect on 
aOPC differentiation [98]. One such study focussed on the 
ability of candidate compounds to promote differentiation 
of rat optic nerve-derived progenitor cells as evidenced by 
their production of oligodendrocyte differentiation markers 
[99]. This revealed that antagonism of muscarinic recep-
tors, with the antihistamine/anticholinergic benzatropine, 
promotes OPC differentiation in vitro, which translated into 
a remyelinating effect in both EAE and cuprizone mice mod-
els. Similarly, Najm et al. used a flat plate culture system to 
screen a library of bioactive small molecules, this time on 
mouse pluripotent epiblast stem cell-derived OPCs. They 
discovered that the topical corticosteroid, clobetasol, and 
the anti-fungal, miconazole, as well as benzatropine, lead 
to a mature oligodendrocyte morphology, and improved 
remyelination in a lysolecithin-induced mouse model of 
focal demyelination [100].

A slightly different approach has used concentric wrap-
ping of myelin around micropillars as an end point rather 
than differentiation per se. Mei et al. assessed the ability 
of 1000 FDA-approved small molecules to promote OPCs 
and oligodendrocytes to ensheath these cone-like structures 
with myelin [69]. In this way, they identified a cluster of 
compounds with an anti-muscarinic effect: atropine, iprat-
ropium, oxybutynin, trospium, quetiapine, benztropine and 
clemastine. This work was quickly translated into the posi-
tive phase 2 trial of clemastine as a remyelinating therapy 
[101], discussed below.

Such small molecules may not have their remyelinating 
effect through an exclusive action at their canonical targets. 
The closest to a unifying mechanism has been through dem-
onstration that a wide range of these, including clemastine, 
benztropine, miconazole and ketoconazole, might promote 
remyelination through altering the sterol landscape in the 
OPC to favour accumulation of 8,9-unsaturated sterols [102].

However, these techniques predominantly rely on the 
assumption that OPC differentiation is the rate-limiting step 
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in remyelination, which might not be as rational as once 
thought [61, 62, 103]. The micropillar array is also limited in 
its ability to test the development of functional architecture 
in the form of nodes and internodes. It follows that combina-
tion therapies may be necessary to optimise an effect across 
the population of MS lesions. Moreover, such efforts will 
inevitably be hampered by the lack of an animal model that 
encapsulates the complexity of the MS lesion; there is a 
risk that agents showing promise in preclinical work do not 
translate into a beneficial effect in humans or indeed that a 
potentially useful treatment effect is missed in such models, 
halting progression towards clinical studies [23].

Remyelination clinical trials

The identification of agents that therapeutically enhance 
endogenous remyelination in preclinical models has led sev-
eral to be translated into clinical trials and the possibility of 
a neuroprotective treatment in MS looks increasingly likely. 
In Table 1, we summarise the clinical trials that have been 
performed while considering a few in more detail below.

Clemastine

This is a first generation anti-histamine that was identified in 
the micropillar array as being capable of stimulating OPCs 
to differentiate and carry out the first stages of myelination 
[69]. This was confirmed in a further screen [99] and shown 
to occur via an off-target anti-muscarinic action, likely a 
specific effect on the M1 muscarinic receptor [29]. Ensu-
ing work would confirm its remyelinating effect in multiple 
animal models [29, 69, 104, 105].

As clemastine has been licensed for allergic rhinitis since 
1992, it was readily translated into a clinical trial [101]. 
The ReBUILD study was a single-centre, double-blind, 
randomised, placebo-controlled, phase 2, crossover trial, 
which specifically investigated the remyelinating poten-
tial of clemastine in patients with RRMS and evidence of 
chronic demyelinating optic neuropathy. Their inclusion cri-
teria ensured that there was detectable demyelination in the 
optic pathway (evidenced by a visual evoked potential (VEP) 
P100 latency > 118 ms in at least one eye), but also sufficient 
axons to regenerate [with a retinal nerve fibre layer thick-
ness (RNFL) > 70 μm in the qualifying eye when measured 
with optical coherence tomography (OCT)]. Meanwhile, the 
remyelination that might be expected in the natural history 
of optic neuritis was excluded by selecting only those with-
out a history of acute optic neuritis in the qualifying eye 
within the last 5 years, or in either eye in the last 6 months.

The study design saw participants divided into two 
groups, but ensured that all had access to the study drug 
(which is readily available in the USA without prescription). 

25 were given 5.36 mg of clemastine twice daily for 90 days 
followed by placebo for 60 days (group 1), while a further 25 
patients were given placebo for 90 days followed by clemas-
tine for 60 days (group 2).

The results of this were rather promising. VEP P100 full-
field latency was reduced by 1.7 ms/eye (p = 0.0048) in the 
crossover model. Furthermore, the clinical effect of clem-
astine was sustained in group 1 after switching to placebo. 
Thus, the crossover model underestimates the actual effect, 
later demonstrated to be a 3.2 ms reduction in P100 latency. 
Further, there was a significant improvement in a functional 
outcome, low contrast letter acuity, when the delayed treat-
ment analysis was employed. All the while, the drug was 
well tolerated, though was associated with fatigue. Sec-
ondary end points were negative, however, including MRI 
assessments of myelin water fraction (MWF), whole brain 
MTR, white matter MTR, and white matter fractional anisot-
ropy (FA). There was no effect on the Expanded Disability 
Status Scale (EDSS), a timed 25-foot walk and the 6-min 
walk test.

This positive trial has provided some optimism about 
clemastine, though its selective inclusion criteria raise 
the possibility that the results are not generalisable; 75 
patients were excluded based on VEPs. The ReCOVER trial 
(NCT02521311) will, no doubt, advance things further as it 
investigates the effect of clemastine (4 mg three times daily 
for 1 week, followed by 4 mg twice daily until 3 months 
treatment) in patients with acute optic neuritis. However, its 
clinical role needs further definition before widespread use: 
the ReBUILD result requires progression to phase 3 studies, 
clemastine should be trialled in progressive cohorts, and the 
possibility of combining treatments, such as with the poten-
tial synergistic effect of metformin, requires investigation.

Opicinimab

As mentioned above, Lingo-1 is a negative regulator of oli-
godendrocyte differentiation and its antagonism has been 
shown in vitro and in animal models of CNS demyelination 
to enhance remyelination [106]. The human monoclonal 
antibody opicinumab (anti-Lingo-1) showed remyelinat-
ing activity in preclinical studies [107] and therefore its 
utility was explored in early clinical trials. After passing 
safety analyses in a phase 1 trial [108], there was a phase 
2, randomised, double-blind, placebo-controlled, clinical 
trial (RENEW) in patients with a first episode of acute optic 
neuritis (but not necessarily multiple sclerosis) [109]. The 
primary outcome measure was the recovery in VEP P100 
latency in the affected eye, referenced to the unaffected eye, 
over 24 weeks of treatment (at 100 mg/kg) after an episode 
of optic neuritis. It failed in this regard but, when a per-
protocol analysis was employed, an improvement of 7.6 ms 
in the opicinimab group was seen over that in the placebo 
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group. No change was observed in the secondary end points, 
though this did not include MRI sequences such as MTR.

The SYNERGY trial followed (NCT01864148): a dose-
ranging study including 418 people with RRMS and SPMS. 
The primary outcome measure was a composite of ambula-
tion (25-foot walk), upper extremity function (9-Hole Peg 
Test), cognition (3-Second Paced Auditory Serial Addition 
Test; PASAT) and the EDSS. It failed to meet this primary 
end point, but was presented as showing an increased per-
centage of responders in those treated with the mid-range 
doses of 10 and 30 mg/kg [110]. This has led to Biogen 
proceeding with a refined phase II trial (AFFINITY) in addi-
tion to an extension study (RENEWED, NCT02657915) of 
the RENEW trial.

GSK239512

This H3-receptor antagonist was originally developed to 
treat Alzheimer’s disease [111, 112] and was put forward 
as a potential remyelinating agent because H3 negatively 
regulates oligodendrocyte differentiation [113]. A phase 2, 
randomised, placebo-controlled study in people with RRMS 
on interferon or glatiramer acetate revealed a small, but sig-
nificant, improvement in mean change in post-lesion MTR 
in gadolinium-enhanced lesions compared to placebo [114].

Bexarotene

Robin Franklin’s group demonstrated that, in aged animals, 
9-cis-retinoic acid enhances remyelination through agonism 
of the nuclear retinoid acid receptor RXR-γ [115]. As a simi-
lar effect could be achieved by a pan-RXR agonist licensed 
to treat skin lymphoma, bexarotene [116], this facilitated 
translation into a phase 2 clinical trial (CCMR One). Indeed, 
while an RXR-γ specific agonist might be more desirable, 
an effect of RXR-α activity on remyelination was also later 
reported [117].

The CCMR One study utilised MTR to quantify remy-
elination as a primary measure. However, in contrast to 
other studies, its focus is on changes in mean lesional MTR 
between month zero and month six for the lesions selected, 
for each patient, whose MTR lies below the within-patient 
median. In this way, it is hoped that the outcome will focus 
on an effect on lesions that are demyelinated at the baseline 
visit [118].

Biotin

Biotin is postulated to promote remyelination when given 
in high doses through its role as a cofactor for carboxylases 
required for fatty acid synthesis in oligodendrocytes [119]. 
To date, clinical trials have focussed on cohorts of progres-
sive patients. The MS-SPI study showed a small statistically 

significant effect in 12.6% of treated participants when using 
an improvement of either the EDSS or timed 25-foot walk 
as its outcome [120]. However, the MS-ON study returned a 
negative result when change in visual acuity was employed 
as the primary end point [121]. It therefore remains uncer-
tain whether high-dose biotin could be a clinically useful 
treatment for people with MS—and is under further investi-
gation in MS-SPII—yet these trials also highlight the impor-
tance of selection of patient group and outcome measures, 
which will be discussed further below.

Cell‑based therapies

Enhancing the activity of endogenous oligodendrocyte pro-
genitors has proved the most accessible strategy to promote 
remyelination to date, therefore forming the focus of this 
review. However, other non-ablative cell-based approaches 
have been generating substantial interest (reviewed in [122]): 
transplantation of mesenchymal stem cells (MSCs), derived 
from bone marrow or other tissues, and transplantation of 
OPCs, derived from foetal tissue, embryonic stem cells or 
induced pluripotent stem cells (iPSCs) [123, 124] are viable 
options, but remain experimental. Challenges exist for each 
with regard to cell production, mode of delivery, tumour-
forming potential, and requirements for immune suppres-
sion, although using autologous sources may abrogate the 
need for the latter. One noteworthy, albeit uncontrolled, trial 
administered bone marrow-derived MSCs to ten patients 
with progressive MS, noting an improvement in VEP latency 
of 1.3 ms, interpreting the mechanism for this as a neuropro-
tective effect through the promotion of myelin repair [125]. 
Larger phase 2 studies are underway [126], though there 
are many unresolved barriers to widespread application of a 
transplant-based approach to MS.

The target population for remyelination 
therapies

The efficacy of a remyelinating therapy would be greatest 
early in the course of MS, to stop long-term axonal degen-
eration and so prevent, or at least slow the onset of, second-
ary progression. More problematic is how effective such a 
therapy would be later in the disease course, for instance 
in progressive multiple sclerosis, when presumably many 
axons have already degenerated and so there is no scaf-
fold for remyelination. Ultimately, this question can only 
be resolved by clinical trials. For the moment, we would 
advocate testing potential remyelinating agents in trials of 
patients identified as having demyelinated lesions with axons 
still present, such as those in the ReBUILD trial.



38	 Journal of Neurology (2021) 268:30–44

1 3

Determining remyelination in clinical trials

One of the foremost challenges to translating promising 
preclinical findings into clinical studies is uncertainty in 
the optimum way to demonstrate a remyelinating effect 
in living individuals. Given that the anticipated benefit to 
the patient, the prevention or delay to progression, only 
manifests over years, reliance on standard objective clini-
cal markers of disability, for example the EDSS [127], 
or indeed on functional measures such as visual acuity, 
as outcomes may miss a useful therapeutic effect over a 
comparatively short clinical trial. Moreover, using func-
tional scores to study remyelination specifically is further 
complicated by other adaptations that occur in nerves in 
response to injury, such as ion channel redistribution and 
cortical plasticity/adaptation after demyelination [128, 
129]. There follows a reliance on paraclinical measures to 
determine a treatment effect; with no biomarker of myelin 
regeneration in biological fluids and the lack of acces-
sible tissue for histological examination, a combination 
of neurophysiological and imaging-based assessments are 
required [130].

Neuroimaging

From the imaging perspective, standard MRI meas-
ures (such as T2-weighted and gadolinium-enhanced 
T1-weighted sequences) correlate only modestly with dis-
ability and lack the ability to differentiate between patho-
logical correlates of MS: namely inflammation, oedema, 
axonal loss, demyelination, remyelination and gliosis 
[131]. As a result, advanced MRI techniques including 
myelin water fraction (MWF) [132, 133], diffusion tensor 
imaging (DTI) [134, 135] and magnetisation transfer ratio 
(MTR)[136, 137], as well as positron emission tomogra-
phy (PET) [43, 138], have been variably used to measure 
myelin dynamics.

Magnetisation transfer techniques investigate the 
exchange of magnetisation between protons in at least 
two pools: those that are mobile and those associated with 
macromolecules such as myelin or axonal membranes. 
Expressed as a ratio (MTR), it provides a quantitative 
measure of the proportion of protons bound to macromo-
lecular structures relative to those that are free in water 
and has been demonstrated to correlate with pathologi-
cal quantification of myelin: demyelinated lesions have a 
significantly lower MTR than remyelinated lesions [137]. 
MTR can be used to quantify myelin in several ways. One 
can use serial measures of mean MTR in white and grey 
matter [139], in chronic lesions [118] or in acute (gado-
linium-enhancing) lesions [81]. Indeed, as not all lesions 

remyelinate to the same extent, further refinements have 
been proposed. For example, in the CCMR One study of 
bexarotene, the primary outcome measure is based on the 
change in mean MTR of established lesions with a low 
MTR at the baseline scan, thereby maximising sensitiv-
ity to an effect on lesions that are demyelinated at the 
outset [118]. These aforementioned techniques have been 
used to show that mean MTR in white and grey matter 
remains static over time in people with MS treated with 
alemtuzumab, but deteriorates if not on disease-modifying 
treatment [139], and that the anti-histamine GSK239512 
has a small positive effect on mean MTR in gadolinium-
enhancing lesions [114].

Alternatively, DTI provides information about tissue 
microstructure by measuring water diffusion in vivo. Param-
eters derived from this such as radial diffusivity (a marker 
of water motion perpendicular to the axon) as well as the 
overall fractional anisotropy can be used as a surrogate of 
myelin content [135, 140]. Meanwhile, MWF indicates the 
proportion water trapped between myelin bilayers relative 
to water inside and outside of axons (which have different 
T1 and T2 relaxation times), and can be used as a proxy for 
myelin content [132, 141].

Finally PET imaging, alongside a myelin-specific ligand 
such as Pittsburgh compound B (PiB), might be especially 
sensitive to changes in myelin [142] and could potentially be 
used to stratify the patients by their remyelination potential 
for clinical studies [43]. However, the issues of availability 
and radiation exposure are likely to limit the role this has 
to play.

Neurophysiology

Evoked potentials allow for an assessment of nervous con-
duction along visual, somatosensory, auditory, and motor 
tracts in a way that correlates with function [143-145] and 
disability [146], but their clinical utility, particularly in 
diagnostics, has largely been replaced by MRI [147]. How-
ever, such indices are proving invaluable as biomarkers in 
assessing remyelination; in the recent positive phase 2 trial 
of clemastine, it was a reduction in VEP P100 latency, rather 
than clinical or imaging markers, that confirmed the biologi-
cal effect [101, 148].

The pattern reversal VEP represents the average recordable 
electric potential in the visual cortex in response to the presen-
tation of an alternating checkerboard-patterned stimulus. The 
main focus is on the positive deflection in the VEP waveform 
approximately 100 ms after the visual stimulus (the P100), 
which provides measures in the form of latency (a surrogate 
of demyelination in the optic pathways) and amplitude (pre-
dominantly a function of axonal loss). Following an attack of 
optic neuritis, VEP latencies are prolonged but a period of 
recovery follows, most significantly within the first 6 months, 
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but for perhaps as long as 3 years [149, 150]. Meanwhile, in 
those with chronic stable optic neuropathy, a prolonged P100 
latency is seen, which has been shown in longitudinal data 
to remain stable, or gradually lengthen, with time [151]. As 
a result, in studies of patients without a recent bout of optic 
neuritis, improvements in VEP P100 latency can be used as 
a marker of remyelination; this was the rationale behind the 
ReBUILD trial [101]. When studies have enrolled patients 
with acute optic neuritis meanwhile, such as in the RENEW 
study of opicinumab [109], values for the unaffected contralat-
eral eye have been used as a control and the outcome measure 
given as the change in latency difference between the two eyes.

The clinical heterogeneity of MS has already been 
alluded to, which extends beyond a consideration of optic 
neuritis. Given the emerging importance of neurophysiologi-
cal measures in such studies, a more robust biomarker in 
future trials might be a combination of VEPs, motor EPs 
(MEPs), somatosensory EPs (SEPs), and brainstem auditory 
EPs (BAEPs) [152]. Such “multimodal” evoked potentials 
can be combined to give a “global” outcome, which has pre-
viously been shown to correlate with disability and inform 
disease progression [153], and have already been employed 
in the field of bone marrow-derived cell therapy [126, 154]. 
Indeed other exploratory, neurophysiological techniques 
have also been emerging, such as the use of saccadometry 
[155], most recently showing improved conduction along the 
medial longitudinal fasciculus in the setting of internuclear 
ophthalmoparesis treated with fampridine [156].

Other techniques

Optical coherence tomography (OCT) is another tool being 
employed to indirectly assess remyelinating therapies. By 
generating high-resolution images of the retina to gauge 
axonal loss in the retinal nerve fibre layer (RNFL) [157], 
which is decreased following optic neuritis [158], it provides 
a measure of neurodegeneration rather than specifically 
remyelination, but can be used to complement the analysis 
of the VEP [159]. Similarly, serum neurofilament, a marker 
of axonal damage that correlates with MS disease activity 
[160], has been postulated to be a valuable outcome measure 
for remyelination trials. A subset of participants from the 
SYNERGY trial (discussed above) showed a trend toward 
neurofilament light decline among treatment responders 
[161]; however such measures remain an indirect marker of 
remyelination and, in our view, should remain exploratory.

Conclusions

People living with multiple sclerosis in resource-rich regions 
now have access to a range of anti-inflammatory treatments 
which promise long-term disease modification if given early 

in the course of the relapsing–remitting phase of the disease. 
However, even the most effective of these treatments leaves 
significant numbers of axons demyelinated and vulnerable to 
degeneration, which is the substrate of progressive disability. 
Finding remyelinating therapies, with the potential to both 
restore function and prevent axon degeneration is therefore 
an urgent clinical need.

A host of strategies have been identified from preclinical 
research, and some have now been translated to early phase 
clinical trials. Two of these have yielded positive results on 
surrogate measures, such as VEP latency or lesional MTR, 
whose clinical validity is yet to be demonstrated. There have 
also been setbacks, such as the failure of anti-Lingo-1 anti-
bodies in phase 2 trials to replicate their in vitro efficacy.

In this review, we have highlighted a number of unre-
solved questions the scientific community faces. First, to 
ensure we take the right drugs forward, we must continue 
to develop an understanding of the barriers to remyelina-
tion, specifically in humans, and better appreciate how biol-
ogy observed in animal models of remyelination translates 
into human disease. Second, we need to identify which is 
the best, most reliable, measure of remyelination to use in 
clinical trials. Third, we must clarify when is the best time 
to initiate a remyelinating treatment in the disease course. 
Finally, we need to consider which is the most appropri-
ate test population for our trials. Ultimately, more work is 
required to reach a reality of neurologists prescribing neuro-
protective treatments to people with MS; however, advances 
in the last decade have made this look increasingly probable.
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