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Abstract

Shape segmentation from point cloud data is a core step of the digital twinning process for

industrial facilities. However, it is also a very labor intensive step, which counteracts the

perceived value of the resulting model. The state-of-the-art method for automating cylinder

detection can detect cylinders with 62% precision and 70% recall, while other shapes must

then be segmented manually and shape segmentation is not achieved. This performance

is promising, but it is far from drastically eliminating the manual labor cost. We argue

that the use of class segmentation deep learning algorithms has the theoretical potential to

perform better in terms of per point accuracy and less manual segmentation time needed.

However, such algorithms could not be used so far due to the lack of a pre-trained dataset

of laser scanned industrial shapes as well as the lack of appropriate geometric features in

order to learn these shapes. In this paper, we tackle both problems in three steps. First, we

parse the industrial point cloud through a novel class segmentation solution (CLOI-NET)

that consists of an optimized PointNET++ based deep learning network and post-processing

algorithms that enforce stronger contextual relationships per point. We then allow the user

to choose the optimal manual annotation of a test facility by means of active learning to

further improve the results. We achieve the first step by clustering points in meaningful

spatial 3D windows based on their location. Then, we apply a class segmentation deep

network, and output a probability distribution of all label categories per point and improve

the predicted labels by enforcing post-processing rules. We finally optimize the results by

finding the optimal amount of data to be used for training experiments. We validate our

method on the largest richly annotated dataset of the most important to model industrial

shapes (CLOI ) and yield 82% average accuracy per point, 95.6% average AUC among all
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classes and estimated 70% labor hour savings in class segmentation. This proves that it is

the first to automatically segment industrial point cloud shapes with no prior knowledge at

commercially viable performance and is the foundation for efficient industrial shape modeling

in cluttered point clouds.
Keywords: class segmentation, industrial facilities, point cloud processing, CLOI

1. INTRODUCTION1

This paper focuses on class segmentation of the most important industrial shapes from2

point cloud data generated by Terrestrial Laser Scanners (TLS). We choose the most labor3

intensive industrial object shapes (classes) to model as defined in our previous work (Agapaki4

et al., 2018). These are, in descending order of labor intensiveness: electrical conduits,5

straight pipes, circular hollow sections (CHSs), elbows, channels, solid bars, I-beams, angles,6

flanges and valves. We introduce a new point cloud dataset called CLOI that consists of7

those shapes. The abbreviation CLOI is defined by the initials of the geometric shapes of the8

most important industrial classes, namely C-shapes, L-shapes, O-shapes and I-shapes, and9

their combinations. We focus on all potential types of manufacturing/industrial facilities10

as defined by the North American Industry Classification System (NAICS) (United States11

Census Bureau, 2012) on the condition that the CLOI classes are present. We define class12

segmentation as a partitioning of the TLS point cloud dataset to clusters of points with class13

labels assigned per point. This is different from detection that refers to object localization by14

determining the orientation and location of an object without necessarily associating class15

labels to points. The challenge that our research addresses is how to efficiently minimize16

the cost and manual labor of automatically generating object oriented Industrial geometric17

Digital Twins (IgDTs), such that their benefits outweigh the initial investment made to18

generate these models. This challenge is of utmost importance due to the potential value19

IgDTs are expected to bring to the industrial sector in terms of preventive maintenance and20

unplanned shutdowns.21

Improper maintenance of aging industrial facilities is a growing concern for the man-22

ufacturing industry given its significant and potentially irreversible impacts on both the23

natural and human environments. The United States Pipeline and Hazardous Materials24

Safety Administration reported more than 10,000 failures in oil and gas pipelines across25
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the U.S. which incurred financial losses of around $6 billion in the form of property dam-26

age, production losses, environmental impacts and human casualties (U.S. Department of27

Transportation, 2013). Maintenance concerns are growing given that an estimated 72% of28

the existing 300,000 U.S. factories are more than 20 years old (The American Institute of29

Architects and Rocky Mountain Institute, 2013). The oil and gas industry is more prone30

to improper maintenance since more than half of the world’s oil rigs will be more than 3031

years old over the next 5 years (Phillips, 2017). As an example, the Deepwater Horizon32

Spill, one of the largest marine oil spills in history was caused due to poor maintenance of33

a drill pipe in the gulf of Mexico and caused damages of $17.2 billion across the Gulf coast34

(Office of Maritime Administrator, 2011). Unplanned shutdowns due to corrective or poor35

maintenance are estimated to cost $50 billions per year in the U.S. with 44% of all unsched-36

uled equipment downtimes resulting from aging equipment (National Institute of Standards37

and Technology, 2018). Poor preventive maintenance also decreases the Overall Equipment38

Effectiveness (OEE) of a factory between 5 to 20% (PECI, 1999). These issues are mostly39

linked to inefficient and ineffective facility management and proper documentation of the40

existing conditions that lead to maintenance actions well after the problems have occurred.41

These have generated a market demand for a quicker and more efficient maintenance scheme42

of existing industrial facilities. Recent studies have shown that refurbishment and preventive43

maintenance of industrial assets will prevent the above-mentioned issues. For instance, the44

Chartered Institute of Building (Edwards and Townsend, 2011) have shown that the need45

for refurbishing and retrofitting 93% of existing industrial facilities will be a major focus in46

the U.K. construction industry by 2050. Another example of the perceived value of preven-47

tive maintenance proposed by the Association of Swedish Engineering Industries (Bokrantz48

et al., 2016) is the strategy to eliminate production shutdowns in Sweden by 2030. We49

argue that these market demands establish the need to generate and maintain up-to-date50

IgDTs. Yet most facilities do not have usable IgDTs. This occurs because the perceived51

cost of generating and maintaining the DT greatly counteracts the perceived benefits of the52

DT. The main reason for that is partly due to the high ratio of manual labor cost while53

generating the DT to data collection (laser scanning), which is roughly ten (Lu and Brilakis,54

2017, Fumarola and Poelman, 2011, Hullo et al., 2015). This explains why there is an urgent55

need to generate less labor-intensive industrial modeling techniques that can improve the56
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productivity of industrial assets and their maintenance. In this paper we address a core step57

of generating IgDTs, i.e. class segmentation of CLOI shapes.58

Class segmentation is the foundation for many reverse engineering applications. It par-59

ticularly facilitates clash detection analysis that managers of aging industrial facilities are60

confronted with (Akponeware and Adamu, 2017). This is only achieved by segmenting the61

class point clusters of interest and providing those to the Engineering Procurement Construc-62

tion (EPC) engineers. For example, piping engineers would only be interested in inspecting63

the piping system. Structural engineers, on the contrast, would only be focused on the64

structural integrity of the industrial facility. Segmentation of all the points of primary (load-65

bearing) steel shapes will be helpful for stress analysis, Finite Element Analysis (FEA) (Song66

et al., 2018) and structural health monitoring of the steel frames (Park et al., 2007). Direct67

segmentation of points rather than generating a segmented IgDT will result in further cost68

savings. Therefore, segmenting the piping, structural and other important industrial objects69

from the TLS data is of paramount importance. Improving the effectiveness of class segmen-70

tation algorithms that take TLS data as input remains a challenge towards high level scene71

understanding solutions for industrial environments.72

Leading 3D CAD vendors (Autodesk, AVEVA, Bentley, FARO and ClearEdge3D) have73

developed software containing a variety of 3D modeling functions that enable modeling from74

point cloud data, however none of those outputs class segmented TLS data. Geometric75

modeling using current software packages entails (a) primitive shape detection, (b) seman-76

tic classification of detected shapes and (c) fitting. Firstly, primitive shapes are detected77

(e.g., cylinders, tori, planes) and classified (e.g., pipes, elbows, I-beams). Afterwards, the78

primitives are fitted to known solid shapes to obtain their geometric parameters. A limited79

number of software achieve semi-automated modeling. We evaluated in our previous work80

(Agapaki et al., 2018) state-of-the-art commercial packages and demonstrated that Edge-81

Wise (ClearEdge, 2019) provides to-date the most advanced semi-automated 3D modeling82

tool. The modeling of pipelines is summarized in three basic steps: (a) automated detection83

and fitting of cylinders, (b) semantic classification of cylinders and (c) manual extraction84

and editing of pipes. Structural sections are manually modeled. Fitting of user-selected85

primitives (e.g., circular hollow sections, cuboids, tori etc.) is performed automatically.86

EdgeWise automatically detects cylinders with 62% precision and 75.6% recall on average.87
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We also showed that semi-automatically modeling cylinders with EdgeWise reduces man-88

hours needed for modeling those by 64%. However, this means that for a petrochemical plant89

with 240,687 objects and 53,834 pipes, 2,382 manual labor hours are still needed to model90

these cylinders (Agapaki et al., 2018). EdgeWise does not generate cylinder class labels91

per point, it directly extracts cylindrical objects. Therefore, EdgeWise is not designed to92

uniquely assign class labels to points, but rather could fit multiple standardized cylindrical93

shapes to an individual point cluster. This assumption does not necessarily reflect the exist-94

ing conditions of facilities, since cylindrical objects are either covered (anti-corrosion coating95

layer) or insulated, which means they are not straight cylinders. Another limitation is that,96

although EdgeWise is promising, it is far from a robust solution since there is high variability97

of the cylinder detection rates (standard deviation of 20.4% and 28.6% in recall and pre-98

cision respectively) as proved by Agapaki et al. (2018). Cylinder detection in EdgeWise is99

also dependent on parameter selection by the modeler. These parameters are the maximum100

number of points to detect a cylinder and the distance tolerance which explains how far101

away from the cylinder a 3D point can be, so that it is not excluded from the extraction102

algorithms (Agapaki et al., 2018). As such, the state-of-the-art 3D modeling practice has103

three main limitations: (a) the modelers should segment the structural elements manually or104

roughly select regions of interest using clipping polygons to fit standardized structural steel105

shapes, (b) detection of cylinders has only been partially solved and is dependent on user106

defined parameters and (c) EdgeWise does not enrich the point cloud data with semantic107

class labels but only fits 3D solid standardized shapes. It is easily distinguishable that the108

current practice still needs substantial manual efforts and is not designed to offset the high109

costs of IgDT generation. This necessitates the need to redesign the procedure of IgDT110

generation.111

We argue that cost reduction of IgDT generation will be achieved by automating the112

following steps: (a) class segmentation, (b) instance segmentation and (c) fitting. (a) de-113

scribes the procedure to associate each 3D point of a laser scanned factory with a class114

label (such as cylinder, elbow, I-beam, valve, flange, angle and channel) (Li et al., 2019).115

Instance segmentation adds an instance label to the cluster of points (e.g. cylinder #2), but116

is beyond the scope of this paper. This paper is the first to automatically generate class117

segmented TLS industrial data. We present our novel automated CLOI-NET methodology118
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in three parts: (a) a deep learning PointNET++ based geometric shape/class segmentation119

network, (b) optimization of the PointNET++ based network to boost class segmentation120

cost savings, should the user select it and (c) inference-rule segmentation enrichment for fine-121

grained class level predictions. We evaluate our CLOI-NET on our CLOI dataset. This is122

the first benchmark labeled dataset for industrial facilities that enables the use of supervised123

segmentation deep learning algorithms. We discuss the current state of research in Section124

2 and we outline our proposed methodology in Section 3. We then elaborate on our research125

methodology and experiments in Section 4. Finally, we present our conclusions in Section126

5.127

2. BACKGROUND128

There are two distinct IgDT generation strategies investigated in the literature. The129

first one (S1) involves two steps: (a) primitive industrial shape detection and (b) fitting.130

The second one (S2) has three steps: (a) class segmentation, (b) instance segmentation131

and (c) fitting. Therefore, we elaborate the current state of research in three parts: (a)132

industrial shape detection methods, (b) industrial shape class segmentation methods and133

(c) class segmentation deep learning methods with an overview of available TLS benchmark134

datasets. We discuss both detection and class segmentation methods in order to investigate135

the suitability of each for our industrial space application. We focus on the most important136

CLOI classes, namely: (a) cylinders, (b) structural steel shapes and (c) piping elements.137

2.1. Industrial shape detection (S1)138

2.1.1. Industrial cylinders139

State-of-the-art research work has partially solved the cylinder detection problem and140

achieved similar performance compared to commercially available software packages like141

EdgeWise (Agapaki et al., 2018). Research studies do give us an idea of the methods that are142

likely used by EdgeWise given the similarity in performance (Jin and Lee, 2019, Ahmed et al.,143

2014, Patil et al., 2017, Sharif et al., 2017, Liu et al., 2013, Lee et al., 2013, Kawashima et al.,144

2014, Qiu et al., 2014, Bey et al., 2011, Rabbani et al., 2006, Su and Bethel, 2010). Research145

efforts so far have focused on automated cylinder detection by defining the five parameters146

that describe cylinder orientation, position and radius using a variety of methods. Most of147
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the methods use pre-knowledge to detect cylinders: (a) cylinders in orthogonal directions148

(Liu et al., 2013, Kawashima et al., 2014, Ahmed et al., 2014, Qiu et al., 2014), (b) a priori149

CAD models (Bey et al., 2011) or (c) Piping and Instrumentation Diagram (P&ID) (Son150

et al., 2013).151

Industrial cylinder detection methods are model driven. The most commonly used meth-152

ods are based on RANdom SAmple Consensus (RANSAC) (Fischler and Bolles, 1981) and153

Hough Transform (Hough, 1959). The main limitation of RANSAC methods are their com-154

putational inefficiency in large TLS datasets with multiple cylinders given the large number155

of point selection needed. Hough Transform methods are limited for detection of cylinders156

with similar directional orientation in TLS data with multiple cylinders (Rabbani et al.,157

2006, Patil et al., 2017, Ahmed et al., 2014). The method proposed by Ahmed et al. (2014)158

has two additional limitations: (a) they only detect cylinders in orthogonal directions along159

the main axes of a facility and (b) the number of cylinders and diameters of cylinders are160

pre-defined to assist the detection procedure. Their assumption is that typical pipe diam-161

eters are within the range of 0.0508 and 0.1016m (2 and 4in). Patil et al. (2017) recently162

developed a cylinder detection method that depends on threshold values for radius and nor-163

mal estimation. Their cylinder radius range is 0.0254m - 0.762m and the normal deviation is164

5◦. Their RANSAC and updated Hough Transform based on work by Rabbani et al. (2006)165

detects cylinders in two sample datasets with 60% recall and 89% precision. Our previous166

work (Agapaki and Brilakis, 2017) investigated the range of pipe radii being from 0.0075m167

to 0.525m. Sharif et al. (2017) propose a model-based (RANSAC-based) cylindrical and168

structural object detection method by matching features of the acquired point cloud data169

with those of library generated point cloud models. However, the experiments are limited to170

a small-scale pipe spool and a structural frame and they are also dependent on manual effort171

needed to manually generate the library of point cloud models. Likewise, Liu et al. (2013)172

detect cylinders by detecting circles using RANSAC in projected planes in two orthogonal173

directions (parallel and perpendicular to the ground plane of an industrial facility). However,174

their main limitation is they cannot detect cylinders in arbitrary orientations. Recently, Jin175

and Lee (2019) proposed a RANSAC-based method to detect cylinders. They fitted spheres,176

connected their traces and then a RANSAC technique was applied to determine the axes177

of cylinders. There were several preprocessing steps required for plane removal and filter-178
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ing. This method is promising (77% recall and 86.5% precision on average). As stated in179

their paper, a downside of the method is that the cylinder modelling performance is highly180

dependent on the sphere increments.181

Other cylinder detection methods are highly dependent on user defined parameters, prior182

knowledge provided by the users or manual cropping of the initial TLS dataset. Lee et al.183

(2013) proposed a method to detect straight pipes, elbows and junctions from points in the184

piping system using a Voronoi diagram. However, the input point cloud only includes pipe185

elements and other parts of the piping system or industrial shapes such as flanges or valves186

and other parts of an industrial facility are manually segmented. This method makes the187

inherent assumption that it is comprised only of straight pipes, elbows and tees. If other188

objects exist, their method cannot distinguish them. For example, it could detect an I-beam189

as a straight pipe. This means that their method requires significant manual cropping to190

detect pipe elements in industrial Point Cloud Datasets (PCDs). Kawashima et al.191

(2014) propose an automated method to detect straight cylinders, elbows and tees by using192

a normal-based, region growing method. Then, they estimate the positions and orientations193

of straight cylinders by calculating the eigenvalues and surface-normal vectors of their 3D194

points. The main limitation of this method is that their results are highly dependent on the195

parameters used in the detection method. Recall rates range from 60% to 94% depending on196

the parameters selected in their experiments. Son et al. (2013) and Son and Kim (2016) use197

P&IDs to assist the detection of straight cylinders, elbows, reducers and tees. The average198

overall recall of their method is 95%. However, as-is P&IDs are often not available as prior199

knowledge in industrial plants, thus they do not reflect the modifications a plant undergoes200

through its life. Li and Feng (2019) proposed the BAGSFit method that automatically201

segments boundaries with a CNN and then fits primitives (e.g. spheres, cones, cylinders and202

planes) from simulated and real-world RGB-D images. Similarly, Figueiredo et al. (2019)203

extract cylindrical shapes based on curvature and a-priori sampling of orientations and then204

extract 2D bounding boxes using a CNN network achieving performance of 72% precision205

and 63% recall on average. The above-mentioned methods detect match points to pre-defined206

cylinder models. Their detected points are then used to fit standardized cylinders.207

A comparative study of the state-of-the-art research methods that have investigated cylin-208

der detection is summarized in Table 1. The performance metrics used are precision and209
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recall defined as follows (Powers, 2011),210

Precc = |predc ∩ gtc|
|predc|

= TPc

TPc + FPc

(1)

Recc = |predc ∩ gtc|
|gtc|

= TPc

TPc + FNc

(2)

where TPc, TNc, FPc and FNc correspond to the number of the true positive, true211

negative, false positive and false negative predictions per point for class c. predc and gtc212

correspond to the set of points predicted as class c and set of ground truth points that belong213

to class c respectively.214

Table 1. Comparison of state-of-the-art research methods on cylinder detection

Method Performance

Precision (%) Recall (%)

Fast RANSAC (Jin and Lee, 2019) 77 86.5

Area-adaptive Hough Transform (Patil et al., 2017) 60.15 89.2

Hough Transform (Rabbani, 2006) 59.7 82.95

RANSAC on projected slices (Liu et al., 2013) 54.4 61.5

RANSAC (Schnabel et al., 2007) 50.7 26.3

Region growing (Kawashima et al., 2014) 50.1 88.9

P&ID (Son and Kim, 2016) - 92.3

The performance of these primitive-based methods is rather low and cannot be generalized215

to large scale TLS industrial facilities. Another reason these methods are likely unsuitable for216

industrial cylinder modeling is the high relative ratio of the total number of TLS points in a217

dataset to the number of per cylinder points. Liu et al. (2013) demonstrated that RANSAC218

methods cannot be used on TLS data with cylinders that have significant variation in the219

number of their points. The suitability of RANSAC methods will also be investigated on220

our CLOI data in Section 3.3 of the proposed solution.221
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2.1.2. Industrial structural steel shapes222

Detection of structural steel members in industrial TLS data is a challenging task that223

requires substantial manual modelling effort, since the methods that have been developed ei-224

ther only work on specific cases or have mediocre performance. Anil et al. (2012) investigate225

four manual methods to detect structural steel components: (1) point to point, (2) distance226

between edges, (3) distance between plane to plane intersection lines and (4) cross-section227

tracing. When compared to American Institute of Steel Construction (AISC) sec-228

tions, their best method only achieves 18.75% accuracy for columns and 39.68% accuracy for229

beams. Yeung et al. (2014a) compare the Hough Transform method and a clustering method230

based on normal vectors to detect structural steel sections (I-beams), by slicing the point231

cloud in all orthogonal directions. Yeung et al. (2014b) use binary images and a predefined232

library to find the best match pixels of a standard steel section and the image. However,233

cross-section errors vary significantly (-41% to +15%). Laefer and Truong-Hong (2017) use234

a non-parametric, kernel density estimation method to detect the primary surfaces of struc-235

tural steel members, which appear as local maximum peaks of probability density curves.236

They detect steel columns and I-beams with 85.7% recall and 77.8% precision. However, this237

method is only applicable to gridded structural members and these members are manually238

segmented from the noisy TLS point cloud data. Cabaleiro et al. (2014) use a Hough Trans-239

form method to automatically extract the web and flange lines of steel frame connections240

using 2.5D images and manually complete the steel frame using the software Solidworks 2012.241

The main limitation of these methods is that they only recognize members that are orthog-242

onal to one of the slicing planes and are not applicable to occluded regions. Circular and243

rectangular columns have been successfully detected from rasterized images (Díaz-Vilariño244

et al., 2015) in partially occluded indoor environments. However, the main limitation of their245

method is that its success is dependent on data completeness. This means that if the posi-246

tions of the laser scanner changed, this would greatly affect the columns detected using this247

method. Detection of structural steel shapes depends on matching the primitive shape with248

pre-defined steel profiles, which are again RANSAC- and Hough Transform-based. These249

methods are not further investigated given these methods’ limitation on the relative number250

of points of the extracted shape to the total number of points and the manual user input.251

The methods discussed in this section reveal that automated class detection of steel252
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sections from industrial TLS data when fitted to standardized steel profile shapes, give253

accurate results for deformation modeling, stress analysis and Finite Element Analysis254

(FEA) has not been achieved yet.255

2.1.3. Industrial piping elements256

Elbows are curved joints, which connect two cylinders of the same radii to allow change257

of direction. Detection of elbows is based on the dot product of the vectors of the axis of258

connected cylinders (Kawashima et al., 2014). Although their method detects some types of259

elbows (45-, 90-degree elbows) with 58.1% precision and 90.85% recall, it does not recognize260

180- and 120-degree elbows (return elbows) due to the assumption made that directions of261

the intersecting pipes should not exceed 90 degrees. Son and Kim (2016) only detect 45-,90-262

and 120-degree elbows with 97% recall. The main limitation of their method is that it relies263

on existing Piping and Instrumentation Diagrams (P&IDs) in order to determine curvature264

at points on the surface of pipes based on the radii of pipes.265

Machine learning methods have been used for valve and flange detection. Pang and266

Neumann (2016) concatenate multiple Convolutional Neural Networks (CNNs) in projected267

2D images generated by an exhaustive scanning window search. Their method allows for268

detection of valves with 77% recall and 88% precision. The advantage of this method is269

that it unifies the detection for multiple object classes with a multi-class CNN and uniform-270

size training samples without requiring prior segmentation of the scene. This method is271

promising, however it has a limitation. It is not designed for direct segmentation of TLS272

data, it rather requires to detect 2D shapes on projected depth images and then reprojects273

them in 3D. As a result, the detection of occluded shapes or shapes that are too close to each274

other is limited to the visibility of shapes on the projected views that are processed by the275

CNN. For instance, industrial spaces are highly congested and specifically many industrial276

shapes are closely located even overlapping each other such as electrical conduit that will277

not be visible in 2D projected views. Huang and You (2013) used Support Vector Machine278

(SVM) and local descriptor classifiers, Fast Point Feature Histograms (FPFH) and 3D Self-279

Similarity (3D SSIM) descriptors, to detect pipes, planes, parts of valve and elbow assemblies280

based on normal vector similarity. Then, they match the detected bounding boxes with the281

ground truth ones using a rigid body transformation with RANSAC. They achieve 87%282

precision and 62.5% on flange detection and 41.5% and 68% on valve detection. The method283
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is limited to matching pipes, a specific type of valves (hand-wheel valves) and elbows with a284

library of pre-existing shapes. Another limitation is that their method does not detect the285

large tanks with small curvatures as cylinders but rather as planes.286

The above-mentioned methods focus on detecting valves, flanges and elbows in synthet-287

ically or simplified industrial scenes, however none of these methods is designed to detect288

these shapes in real settings of multiple industrial facilities. Another limitation is that these289

methods are mostly focused on detecting individual shapes and not on segmenting all the290

points of specific classes.291

2.2. Industrial shape class segmentation (S2)292

In this section, we investigate the class segmentation methods applied on industrial shapes.293

Local descriptors have been used to segment cylinders in industrial scenes. Curvature based294

descriptors demonstrate superior performance compared to other local shape descriptors295

(Heider et al., 2012, Nagase et al., 2013). Dimitrov and Golparvar-Fard (2015) use a region296

growing method and principal curvatures as features to segment Mechanical, Electrical and297

Plumbing (MEP) systems in TLS point clouds. This method takes point cloud density,298

surface roughness, curvature and clutter into consideration. Although their main limitations299

are (a) over segmentation especially for highly occluded scenes and (b) lack of contextual300

inter-connectivity relationships to connect shapes, principal curvature is a local feature that301

can describe the 3D structure of points in occluded scenes and we will investigate using it in302

Section 3.5.1 of the proposed solution. Perez-Perez et al. (2016) use the segmentation method303

proposed by Dimitrov and Golparvar-Fard (2015) and refine class labels of indoor point cloud304

data using an SVM classifier and an Adaboost classifier. Then, they combine the semantic305

labels (wall, ceiling, floor, cylinder) and the geometric category labels (horizontal, vertical,306

cylindrical) learned into a Conditional Random Field (CRF) formulation to incorporate307

neighborhood context and their last step is to use a Markov Random Field (MRF) to enforce308

coherence between semantic (class) and geometric labels. Their results indicate 79% precision309

and 93% recall for pipe/cylinder segmentation. However, their main limitation is that their310

method is tested on simplified datasets since they manually segment their TLS data to only311

represent wall, floor, ceiling and cylinder components. This means that substantial manual312

effort is needed to pre-process the data. Huang and You (2013) segment four categories;313

planes, cylinders, edges and thin-cylinders (cylinders with diameter less than 5cm). They314
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use an SVM local descriptor classifier with point normals as local features (FPFH - Fast Point315

Feature Histograms and 3D-SSIM - 3D Self-Similarity). However, their method has mostly316

been tested on virtual point clouds and partial real-world industrial scenes, having less than317

200,000 points. The above-mentioned research efforts on cylinder segmentation from TLS318

scanned data that constitute 50% of the objects of an industrial facility on average (Agapaki319

et al., 2018) indicate that this problem remains an unsolved challenge.320

There are even fewer methods that assign a class label per point of steel shapes. Armeni321

et al. (2016) segment concrete beams and columns and other indoor object classes from322

TLS data using a 3D sliding window and an SVM classifier to learn local (occupancy, ratio,323

color, normals and curvature) and global features (3D position and size) in each 3D window.324

Their precision is 66.67% and 91.77% for beams and columns respectively. Steel structural325

components have not been investigated in their study. It is, therefore, evident that class326

segmentation of industrial shapes has not been solved in the literature. In the next section,327

we will investigate class segmentation methods using techniques applied in related fields.328

2.3. Class Segmentation Deep Learning methods329

In computer vision problems, image segmentation (referred to as semantic segmentation330

in the computer vision community) using hand-crafted features achieved a plateau in per-331

formance. CNNs are extensively used in image segmentation (Krizhevsky et al., 2012), text332

classification (LeCun et al., 2008), medical imaging (Taha and Hanbury, 2015, Pang et al.,333

2012) and self-driving vehicles (Wang et al., 2018a, Teichmann et al., 2018). A basic CNN334

architecture is using a deep neural network that combines convolutional and pooling layers to335

aggregate local information per pixel/letter in images/text respectively. Wang et al. (2019a)336

groups the existing 3D deep learning methods in three main groups: (a) view-based (Su et al.,337

2015b, Kalogerakis et al., 2017, Wei et al., 2016), (b) volumetric (Maturana and Scherer,338

2015, Wu et al., 2015, Zhou and Tuzel, 2017, Klokov and Lempitsky, 2017, Tatarchenko et al.,339

2017) and (c) geometric deep learning methods (Qi et al., 2017b,a, Wang et al., 2019a).340

There are three challenges that need to be addressed for the application of these techniques341

in real-world, TLS point clouds of industrial facilities:342

1. TLS data is irregular (unstructured) and needs to be permutation invariant. This means343

that if the order of the points changes, this should not affect the result.344
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2. TLS data is noisy, sparse, with outliers, occlusions, density variations and especially for345

industrial settings, large-scale.346

3. TLS industrial shapes can have different scales, objects in these point clouds may have347

the same shape but can be translated or rotated to their principal axes. Therefore,348

the selected method should be rotation and translation invariant. Objects of the same349

class can even have substantially different geometric shapes, e.g. valves (European350

Commission, 2010).351

Geometric deep learning methods address all three challenges by using conventional build-352

ing blocks like convolution and pooling to directly process 3D points. Henceforth, these353

methods will be further analyzed due to the scope of this paper that is focused on directly354

assigning class labels to points rather than converting the 3D points to other representations355

in order to process them.356

2.3.1. Geometric Deep Learning Methods357

The key difference between geometric deep learning methods and traditional approaches358

is that the former are feature-agnostic, i.e. they have to learn the shape features instead of359

hand-crafting them. Geometric deep learning has become a core technique for class segmen-360

tation tasks (Qi et al., 2017a,b). Prior to deep neural nets, class segmentation of images and361

point clouds was traditionally solved using feature extractors (such as spin Images (John-362

son and Hebert, 1999)) combining classical classifiers such as SVMs (Agrawal et al., 2009)),363

semantic hashing (Behley et al., 2010)) or Conditional Random Fields (CRFs) to enable364

label consistency in neighboring points (Munoz et al., 2009, 2008, Triebel et al., 2006). A365

comprehensive overview of hand-designed point features is out of the scope of this paper,366

but our readers can refer to Biasotti et al. (2016), Guo et al. (2014), Patraucean et al. (2015)367

and Grilli et al. (2017).368

Laser-scanned point clouds are massive datasets, where, unlike images, convolution oper-369

ations between 3D points cannot be performed since point clouds are unstructured and this370

prohibits the use of 3D CNNs. For this reason, PointNETs were developed. PointNETs are371

a special class of network architectures that process point cloud data in 3D space. Their372

key operation is a symmetric function applied to 3D coordinates so that they are invariant373

to permutations. Qi et al. (2017b) developed a deep neural network (PointNET) that takes374
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point clouds as inputs and outputs segmented labeled point clusters. PointNET was trained375

on the ShapeNet data set (Su et al., 2015a) and the Stanford3D indoor dataset (Armeni376

et al., 2016). However, PointNET is not designed to capture spatial relationships between377

features. In other words, PointNET processes fixed-size blocks separately, and uses fully con-378

nected neural network layers for the points of each block. However, this implies that it treats379

local information the same way as global information during the learning process, something380

that impairs the learning procedure. Also, the learned features are sensitive to the global381

transformation and rotational transformations of point clouds due to loss of neighboring382

information per point.383

PointNET++ (Qi et al., 2017a) solved this problem by applying individual PointNETs to384

local neighborhoods of points and combined their outputs by using a hierarchical approach.385

As such, PointNET++ captures both local and global contextual information. PointNET++386

has been widely used in buildings (Chen et al., 2019) and urban scenes (Behley et al., 2019).387

Chen et al. (2019) use a graph-based method to represent the connectivity between objects388

and segment them using PointNET++ (77.9% accuracy). A similar approach was studied by389

Shen et al. (2018) and exploited local high-dimensional feature vectors based on a nearest-390

neighbor-graph, which is constructed from the locations of 3D points. Another limitation of391

CNNs when applied on TLS data is that CNNs cannot adjust to point density variations (Li392

et al., 2016), since they process structured data (in a grid). For this reason, other techniques393

like projecting the point cloud to a voxel grid, tracking non-empty voxels using a hash table394

and then performing sparse convolution were used (Choy et al., 2019) or TLS data points395

were spherically projected to an image (Wu et al., 2018). The former is ideal for data of396

video sequences since it allows an extra spatial dimension (time), thus creating networks397

with 4-dimensional convolutions. The latter takes into account the geometry of a rotating398

LIDAR sensor and after application of a CNN, results are smoothed using a CRF. A recent399

approach used local information between pairs of neighborhoods of points and propagated400

this information by using EdgeConv layers (Wang et al., 2019b).401

Most of these deep learning networks are designed to use both spatial coordinates and402

RGB information per point. However, we argue that the latter is not suitable for indus-403

trial environments, because color does not give unique information to distinguish shapes in404

industrial spaces. For instance, cylinders can have the same color as structural elements405
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and color is dependent on the manufacturers’ specifications. ANSI/ASME A13.1 (American406

Society of Mechanical Engineers (ASME), 2015) is the most commonly used general purpose407

color coded scheme. Some industries require an even more detailed and customized standard408

coding scheme. For instance, water treatment pipes follow the Ten States Standards (Lakes,409

2004), which depends on the fluid carried on the pipelines. Other systems are so specialized410

that color coding should even distinguish between pipes carrying the same material using411

the phase of the material as color identifier (International Institute of Ammonia Refrigera-412

tion, 2014). Fig. 1 compares three widely applied piping color coding schemes, the ASME413

A13.1 standards (American Society of Mechanical Engineers (ASME), 2015), the British414

standards (BS 1710:2014, 2014) and the ANSI-APWA (American Public Works Asso-415

ciation) standards (ANSI Z535.1, 2017). We observe that all pipes except the ones used416

for fire purposes are painted with different colors based on the color coding scheme. This417

explains why we argue that there is no universal and widely applied color scheme that can418

be used as a unique feature for a geometric deep learning network on the class segmentation419

of industrial shapes.420

Fig. 1. Comparison of color between pipe color coding schemes.

We also explored the suitability of intensity as a feature for deep learning421

networks in industrial TLS datasets. Our experiments were based on the same422

network architecture as shown in Table 7, however we observed significant over-423

fitting. We attributed that to surface reflectivity and roughness that did not424

facilitate the learning process. As the learning process in this work is geometry425
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driven, we have not investigated experimentally the reasons behind this issue,426

or ways to amend it.427

We provide here potential limitations of using intensity, as documented in428

the literature. It is known that LiDAR intensity values are greatly affected by429

factors related to data acquisition geometry (i.e. distance between the laser430

scanner and the target object or the angle between the emitted laser beam431

and the target surface normal) (Korpela et al., 2010, Yan et al., 2012, Kukko432

et al., 2008, Pfeifer et al., 2007, Vain et al., 2009, Krooks et al., 2013, Coren and433

Sterzai, 2006, Ding et al., 2013, Höfle and Pfeifer, 2007, Jutzi and Gross, 2009,434

Kaasalainen et al., 2011). Most LiDAR scanners use near-infrared lasers that435

are sensitive to environmental effects and weather conditions (e.g. temperature436

of surfaces, moisture, fog or rain), which impacts the intensity (Yan et al., 2012,437

Höfle and Pfeifer, 2007, Kashani et al., 2015, Shin et al., 2019, Ijaz et al., 2013,438

Filgueira et al., 2017). Solar exposure can also impact intensity (Gatziolis and439

Andersen, 2008).440

In summary, intensity values are primarily affected by two environmental441

factors:442

1. diverse scene settings in point cloud datasets (outdoor and indoor settings).443

Three of the datasets we used were indoor scenes with the fourth one being444

an outdoor facility,445

2. variation of scene settings in the same facility. A few examples of those446

are hot surfaces versus cold surfaces. The intensity of a pipe that contains447

hot liquids is completely different from a pipe that is not operational and448

therefore its surface is cold.449

Further research is needed to address the limitations due to laser reflectivity450

on surfaces, which is beyond the scope of this paper. Our proposed solution and451

scope are geometry driven, so the use of intensity will not be further analyzed.452

Future work could explicitly analyze the effects of adding intensity information453

on class segmentation of industrial TLS data by pre-processing intensity data454

(Alkadri et al., 2020) and proposing alternative network architectures that in-455

clude intensity values as additional features.456
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Geometric deep learning methods address all three challenges of real-world, TLS data457

that were presented earlier. Henceforth, these methods will be further investigated due to458

the scope of this paper on class segmentation that is focused on directly assigning class labels459

to points rather than converting the 3D points to other representation in order to process460

them.461

Applications of the above-mentioned networks range from indoor to urban scenes. How-462

ever, none of them is implemented on industrial facility data. The Stanford 3D Indoor spaces463

dataset (Armeni et al., 2016) is extensively used to validate these methods on indoor TLS464

datasets. Spatial coordinates, color information and relative position of each point within465

room settings are used as learnable features to apply the geometric deep learning networks466

mentioned above. It can be easily understood that these methods cannot be directly applied467

on industrial environments since these spaces present three main challenges: (C1) there is468

no universal color scheme that is followed across different facilities as proved above, (C2)469

industrial spaces are typically large and semi-structured with shapes that may span across470

their entire length/width and (C3) they are heterogeneous spaces where there are usually no471

direct contextual rules between shapes that belong in separate systems (piping, structural,472

electrical) and only the components that belong to the same system are internally connected473

with strong context. In other words, the relative location of a cylinder in a facility cannot474

imply derivation of contextual rules for the position of an I-beam. A prerequisite to apply475

a class segmentation deep learning network is the availability of a benchmark TLS dataset.476

Hence, we investigate in the next section the requirements in terms of the size and techniques477

to generate a TLS dataset on industrial spaces.478

Benchmark datasets. Manual extraction of thousands of point clusters from point479

clouds for a segmentation algorithm is a tedious process that prohibits training for the ap-480

plication of deep learning algorithms. The collected point clouds need to be annotated in481

order to allow the use of supervised learning multi-classifiers. There are several benchmark482

datasets of indoor scenes, which are generated by RGB-D cameras or are synthetically gener-483

ated (Armeni et al., 2017, Dai et al., 2017, 2018, Hua et al., 2016, Li et al., 2018, McCormac484

et al., 2017, Zhang et al., 2015, Silberman et al., 2012). A lot of work has also been done485

on road scenes from images (Ros et al., 2016, Chen et al., 2016, Song et al., 2015, Xiang486

et al., 2015, Zeeshan Zia et al., 2013, Zia et al., 2014) and recently promising work using487
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voxelization techniques in neural network architectures for TLS point cloud data was con-488

ducted by (Zhou et al., 2017). TLS benchmark datasets of urban scenes for self-driving489

car applications have recently been developed such as the Oakland3d, Freiburg, Wachtberg,490

Semantic3d, Paris-Lille-3D, Zhang et al. and KITTI (Behley et al., 2012, Hackel et al., 2017,491

Munoz et al., 2009, Roynard et al., 2018, Steder et al., 2010, Geiger et al., 2012). Current492

benchmark datasets are summarized in Table 2. Henceforth, there is no benchmark dataset493

to date that captures TLS point clouds of industrial facilities. As such, there is an imperative494

need to generate a dataset to use supervised methods like deep learning. The benchmark495

datasets in Table 2 give us intuition on the acceptable number of shapes/3D points to target496

for our dataset generation.497

Table 2. Overview of point cloud datasets with class annotations. 1refers to the number of

points in millions of each dataset, 2refers to the number of classes used for evaluation and

number of classes annotated is in brackets

#points1 #classes2 Sensor Annotation Use

Semantic3D 4,009 8 (8) Terrestrial 3D Laser Scanner Point-wise Urban scenes

KITTI 1,799 3 Velodyne HDL-64E Bounding box Urban scenes

Stanford 3D 273 13 (13) Matterport 3D scanner Point-wise Buildings

Paris-Lille-3D 143 9 (50) Velodyne HDL-32E Point-wise Urban scenes

Zhang et al. 32 10 (10) Velodyne HDL-64E Point-wise Indoor scenes

Oakland3D 1.6 5 (44) 2D laser scanner (SICK LMS) Point-wise Outdoor

Freiburg 1.1 4 (11) 2D laser scanner (SICK LMS) Point-wise People/bicycles

Wachtberg 0.4 5 (5) Velodyne HDL-64E Point-wise Urban scenes

A technique of hand labeling through crowd sourcing has emerged for images (Silberman498

et al., 2012, Song and Chandraker, 2015). For this purpose, crowd sourcing platforms like499

Amazon Mechanical Turk (Amazon Mechanical Turk, 2018) or LabelMe (Russell et al., 2008)500

have been developed. However, it is more difficult to accomplish this task for TLS point501

clouds due to noise, occlusions and difficulty to interpret cluttered 3D scenes for untrained502

users. Industrial scenes are a significant example of complex scenes with thousands of ob-503

ject categories that make hand-labelling even more time-consuming. Henceforth, another504

annotation needs to be used to generate a TLS benchmark of industrial facilities.505
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2.4. Gaps in knowledge, objectives and research questions506

Considering the state of practice and body of research reviewed above, existing works507

that attempted to segment industrial scenes using S2 methods only focus on cylindrical508

or piping components. Research efforts attempted cylinder detection using S1 methods,509

however these methods are parameter dependent and not extensively tested on large-scale510

facilities. Therefore, semantic information from point cloud data is lost and standardized511

shapes do not usually capture existing geometric shapes. Cylinder detection S1 methods512

that have been widely researched do not provide information per point, which can lead513

to mislabeled points and erroneous IgDT generation in highly occluded industrial scenes.514

For example, points of sagging pipes may be excluded when a bounding box is fitted in515

the cylinder. Although EdgeWise saves up to 64% of the cylinder modeling time (Agapaki516

et al., 2018), there is still substantially high manual modeling time involved resulting in517

high modeling cost. Gap 1 No method on cylinder segmentation has effectively reduced the518

substantial manual modeling time required for cylinder segmentation from TLS industrial519

point cloud data and it is still unclear whether S1 or S2 methodology benefits the IgDT520

generation.521

Structural steel shapes (channels, I-beams and angles) and other piping components (el-522

bows, flanges and valves) are detected manually or substantial manual cropping of indus-523

trial shapes that are not of interest to detect is involved in S1 methods. Gap 2. Class524

segmentation of industrial steel shapes and piping elements has not been solved. All the525

above-mentioned methods measured their success solely by taking into consideration the de-526

tection S1 or segmentation S2 performance. Gap 3. No method has optimized both time527

and performance, which both affect the cost of IgDT generation.528

Therefore, we argue that a method that satisfies all the user requirements in IgDT gen-529

eration is missing in the literature. We therefore contend that the problem of automatically530

generating IgDTs at a low cost has yet to be solved and is conditional on accurately seg-531

menting CLOI class point clusters from industrial TLS data.532

The objectives of this work are to:533

• Objective 1 : Automatically segment cylinders from TLS data with robust performance.534

This will be achieved by answering the following research questions; RQ1a: Which535

cylinder gDT methodology is more efficient for cylinder segmentation: S1 or S2? A536
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subsequent question that then needs to be answered is RQ1b: How to automatically537

segment cylinders without relying on prior knowledge such as 3D models and user538

defined cylinder geometry?539

• Objective 2 : Automatically segment the most important CLOI industrial shapes from540

the TLS data without manual cropping of irrelevant point clusters. This will be tackled541

by answering the following research questions; RQ2a: How to automatically segment542

industrial steel shapes given their highly occluded and noisy profiles? And RQ2b:543

How to automatically segment with robust performance the CLOI shapes other than544

cylinders and steel shapes from TLS data with varying point densities, occlusions and545

outliers?546

• Objective 3 : Automatically segment all the CLOI industrial shapes with optimal trade-547

off between manual effort needed and segmentation performance. This will be done by548

answering the research question; RQ3: How to optimize both the manual labor costs549

and the segmentation performance?550

3. PROPOSED SOLUTION551

3.1. Scope552

We focus on the class segmentation of the most important industrial CLOI shapes as553

identified in our previous work (Agapaki et al., 2018), since these shapes constitute 75% of554

industrial facilities on average. We also group all cylindrical shapes in one category, namely555

“cylinders”. The prioritized shapes that we focus on are: cylinders, elbows, channels, I-556

beams, angles, flanges and valves. Most of the CLOI shapes match one to one to a component557

class, (i.e. the shape is unique to this component), but for cylinders the shape is not unique.558

So we are segmenting the CLOI shapes, and by default, we also segment their component559

classes except for cylinders. Segmentation of the subcategories of cylindrical shapes (i.e.560

pipes, circular hollow sections, handrails, electrical conduit) is beyond the scope of this561

research. TLS scanned datasets typically have (1) cylinders with diverse sizes and (2) total562

number of TLS points being a lot more than the number of points of a cylinder. In this563

paper, we only focus on the class segmentation of CLOI shapes and not on the instance564

segmentation of those.565
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3.2. Overview566

Fig. 2 presents the workflow of our proposed methodology. The inputs of our method are567

the spatial coordinates of TLS points and the outputs are labeled, segmented point clusters568

with confidence levels of the predictions. Here we define segmented point clusters as all the569

points that belong to one class i.e. all cylinder points is one class point cluster. The method570

consists of three major steps: Step 1 partitions each facility into smaller spaces using a571

3D sliding window/block approach and prepares the data for training, Step 2 predicts a572

class label per point using a modified version (SFR) of a geometric deep learning network573

for point cloud segmentation (PointNET++) with the goal to accurately segment the CLOI574

shapes. The name SFR stands for Smaller and Fewer neighbourhoods with smaller575

Radius.These choices will be explained in detail in this section. In Step 2, the576

user has two options on how to train the network, either training with no data from the577

test facility or manually annotating data of the test facility and including those for training.578

The latter is based on the assumption that, inevitably, any class segmentation algorithm579

will have errors, which will have to be manually corrected eventually. Therefore the goal580

is to minimize the total manual annotation time. Step 3 refines the predicted class labels581

by improving class level predictions with stronger contextual relationships. We name our582

methodology CLOI-NET.583

Step 2 is further divided in two sub-steps depending on whether the user intends to584

annotate part of the test facility. Step 2a will focus on the class segmentation network585

without user annotation, whereas Step 2b will involve user annotation. Step 3 is partitioned586

into three sub-steps that are implemented regardless of the decision on user annotation.587

These are a cylinder classifier (Step3a), a steel shape segmentation algorithm (Step 3b)588

and a class label confidence adaptation method (Step 3c). The sections that follow describe589

each step of the proposed solution in detail in order to answer the research questions presented590

in Section 2.4.591

3.3. Step 1: 3D building block generation592

We first evaluate the applicability of cylinder detection methods (S1 methods) and par-593

ticularly, RANSAC. We follow the same assumption with Liu et al. (2013) to determine the594

number of uniformly random 3D point selections per cylinder needed: each cylinder will be595
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Fig. 2. Proposed CLOI-NET methodology

detected with the probability of at least 90%. This is achieved by repeatedly selecting five596

uniformly random points per iteration from a given TLS point cloud of a facility according597

to the RANSAC algorithm proposed by Devillers et al. (2003). Therefore, the number of598
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random selections (ki) of 3D points for each cylinder is given by:599

ki ≈
log 0.1

log(1−X5
i ) (3)

where Xi is the probability of a point to belong to a cylinder i.600

Table 3. Cylinder data summary for RANSAC evaluation

Facility
Number of

cylinders

Point Number

of cylinders

Percentage in

total points (%)

Selection number

in RANSAC

Oil refinery 1 2.15 ∗ 108 6.63 1.8 ∗ 106

1 2.15 ∗ 108 6.6 1.83 ∗ 106

1 1.37 ∗ 108 4.2 1.73 ∗ 107

1 5 ∗ 107 1.52 2.82 ∗ 109

1 3.8 ∗ 107 1.19 9.54 ∗ 109

2341 <2 ∗ 107 <0.5 >3.6 ∗ 1011

Warehouse 1 5.9 ∗ 105 0.71 1.22 ∗ 1011

1 5.73 ∗ 105 0.7 1.38 ∗ 1011

1 5.46 ∗ 105 0.66 1.75 ∗ 1011

1 4.62 ∗ 105 0.56 4.08 ∗ 1011

1 4.15 ∗ 105 0.5 6.94 ∗ 1011

899 <4.1 ∗ 105 <0.5 >7.7 ∗ 1011

Petrochemical plant 1 3 ∗ 105 0.82 6.34 ∗ 1010

1 3 ∗ 105 0.82 2.36 ∗ 1011

1 2.31 ∗ 105 0.63 3.65 ∗ 1011

1 4.62 ∗ 105 0.58 4.91 ∗ 1011

1 4.15 ∗ 105 0.54 9.4 ∗ 1011

1483 <1.8 ∗ 105 <0.5 >1.1 ∗ 1012

Processing unit 1 7.7 ∗ 106 2.18 4.67 ∗ 108

1 4.29 ∗ 106 1.21 8.76 ∗ 109

1 2.31 ∗ 105 0.63 8.26 ∗ 1010

1 4.62 ∗ 105 0.58 9.09 ∗ 1010

1 4.15 ∗ 105 0.54 1.34 ∗ 1011

1 4.15 ∗ 105 0.54 1.85 ∗ 1011

1094 <2.2 ∗ 106 <0.5 >2.64 ∗ 1011
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The huge number of uniformly random selections of points per cylinder i in Table 3601

demonstrate that RANSAC cannot be directly applied in TLS industrial data, since it is602

computationally intractable (> 3∗1011 points selected per iteration in every industrial facility603

tested). The majority of cylinders have very few points relative to the total number of points604

in the TLS dataset (< 0.5%). This leads to a very high number of uniformly random point605

selections per cylinder. The data statistics and results in Table 3 confirm the observations606

discussed by Liu et al. (2013) and answer the RQ1a that modeling of cylinders should not607

be considered as a detection problem and then fitting cylinder primitives. Rather, it should608

be solved with S2 detection methods as a class segmentation and instance segmentation609

problem. The rest of CLOI shapes have even fewer points relative to the total number of610

points in the TLS dataset and a model-based method would require an even higher number611

of parameters to detect them. There is also an increasing trend in the computer vision612

community to shift away from traditional model-based methods and apply deep learning613

methods due to their reliable performance and scalability (Qi et al., 2017a,b, Wang et al.,614

2019b, Lecun et al., 2015, Santhanam et al., 2019, Zhang et al., 2019). In addition to that,615

• R1 : class segmentation gives representation power to the TLS point clouds as mentioned616

by Wang et al. (2019b). This is because it embeds topological information directly on617

the real point cloud representation, without the need to introduce bounding boxes or618

shape primitives into the representation, as was previously required when using S1619

object detection methods.620

• R2 : the robustness of primitive fitting RANSAC-based method is highly dependent on621

the spatial distribution of samples (Liang et al., 2018). In other words, samples with622

points that are closely located to each other usually cannot be properly detected (Liang623

et al., 2018, Li and Feng, 2019).624

Therefore, we propose the following methodology to solve the class segmentation problem625

of cylinders and the rest of CLOI classes to answer research questions RQ1b, RQ2a and626

RQ2b.627

We use a 3D block parser to slice the facility into smaller pieces that will then be used628

for training a geometric deep learning network. We follow the four conventions proposed by629

Qi et al. (2017b): (a) the 3D blocks are overlapping, (b) the 3D blocks are subsampled, (c)630
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we define the horizontal plane dimensions as the XY-plane for each 3D block of a facility631

and (d) the height dimension of each block to be parallel to the Z-axis of the facility. We632

use principal component analysis (PCA) to align a TLS industrial point cloud such that the633

XY-plane of each 3D block is positioned roughly parallel to the global XY-plane. The 3D634

blocks are used for training in Step 2 (“learnable” blocks).635

We first determine the 3D “learnable” block dimensions by investigating industrial shape636

dimensions. We conduct a statistical analysis on the dimensions of industrial piping shapes637

in existing as-designed facilities. The Outer Diameter (OD) of piping elements as defined in638

Agapaki and Brilakis (2017) shows that the OD ranges between 10 mm and 1050 mm. We639

determine the dimensions of structural steel industrial members based on British Standards.640

The profiles of I-beam and channel steel sections can be characterized by the following641

independent parameters: (a) width of the section (B), (b) depth between fillets (d), (c)642

thickness of the web (tc) and (d) thickness of the flanges (tf ). We compute the mean and643

standard deviation of these parameters for steel profiles based on the British Steel Manuals644

(BS EN 10365:2017, 2017) and these are summarized in Table 4. These parameters can be645

generalized based on steel shape dimensions on other specification catalogues (AISC, 2016,646

CISC, 2015, European Standard, 2005). Table 4 shows that the dimensions of the steel647

sections are within the range of 1 m2, with maximum steel section dimension that of 0.4m648

for the I-beam sections. This means that the selection of 1m side of 3D blocks is reasonable649

as proved by our analysis. The cubic blocks are the units used for training the facilities in650

Step 2. We then present in the next section the class segmentation network architecture and651

parameters chosen.652

3.4. Step 2a: Class Segmentation Network653

We use a deep learning network for an initial class segmentation of our TLS point cloud654

data. We experimentally prove the applicability of the PointNET++ network for our CLOI-655

NET method, by testing the three state-of-the-art point cloud segmentation networks for656

our pointwise application: PointNET (Qi et al., 2017b), DGCNN (Wang et al., 2019b)657

and PointNET++ (Qi et al., 2017a). We use precision Eq.1, recall Eq.2, accuracy and658

the commonly used mean Jaccard Index or mean intersection-over-union (mIoU) metric659

(Everingham et al., 2014) to measure the performance of the above-mentioned networks. We660
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Table 4. Shape parameters of I-beams, Channels and Angles

Shape parameter Mean (mm) Standard deviation (mm)

I-beam Channel Angle I-beam Channel Angle

Width of section (B) 239.5 83.1 171 86.1 13.4 33.8

Depth between fillets (d) 387.2 178.6 146 211 79.6 34

Thickness of the web (tc) 13.3 7.2 14.4 7 1 4

Thickness of the flanges (tf ) 20.4 13.2 - 11.7 2.8 -

define accuracy and mIoU as;661

accuracy = 1
C

C∑
c=1

TPc + TNc

TPc + TNc + FPc + FNc

(4)

mIoU = 1
C

C∑
c=1

TPc

TPc + FPc + FNc

(5)

where TPc, TNc, FPc and FNc correspond to the number of the true positive, true662

negative, false positive and false negative predictions per point for class c and C is the total663

number of classes.664

We measure the success of a deep learning segmentation network based on the mIoU665

metric, since precision and recall do not sufficiently explain the prediction results. Class666

segmentation errors occur due to two main reasons. Assuming that we have a binary classi-667

fication problem, 100% precision does not imply sufficient performance since the algorithm668

may only correctly predict a small part of the TLS data and incorrectly predict the rest of669

the point cloud. Mathematically, this can be expressed as predc∩gtc = predc or equivalently670

the predicted points are a subset of the ground truth points. As such, 100% precision can be671

associated to a very low recall. Similarly, recall cannot solely describe a good classifier since672

the classifier may consider all the TLS dataset and predict that all points belong to a single673

class. Mathematically, this means that predc ∩ gtc = gtc, which in other words means that674

the ground truth points are a subset of the predictions, therefore although recall is 100%675

precision is very low. Therefore, we need to use another metric that does not reward re-676
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call or precision for successful implementation of our segmentation networks. This is mIoU,677

which synthesizes precision and recall (Eq.5). The mIoU metric has also been used for class678

segmentation of indoor 3D spaces (46.67% mIoU in Qi et al. (2017b) and 56.1% in Wang679

et al. (2019b)). As presented in Table 5, PointNET++ outperforms the other two networks680

in all efficiency measures (accuracy, precision, recall and mIoU) and especially mIoU, as681

such we choose it as a baseline to our CLOI-NET methodology. Although promising, the682

class segmentation rates still have room for improvement (32% mIoU). Hence, we need to683

fine-tune the PointNET++ network to address the challenges of TLS industrial point cloud684

data. We validate these experiments on an oil refinery dataset (part of the CLOI dataset).685

Table 5. Performance of class segmentation deep learning networks for the oil refinery

dataset

Network
Accuracy

(%)

Precision

(%)

Recall

(%)

mIoU

(%)

DGCNN (Wang et al., 2019b) 66 36 31 22

PointNET (Qi et al., 2017b) 50 21 19 12

PointNET++ (Qi et al., 2017a) 68 46 41 32

PointNET++ receives as input a cluster of points and outputs a category prediction686

among the 8 CLOI classes. Industrial TLS data have three challenges (C1, C2 and C3) as687

discussed in Section 2.3.1. An additional challenge (C4) for the application of deep learning688

networks is that industrial TLS data are imbalanced datasets in terms of the number of689

points per class to the total number of TLS points as proved by Agapaki et al. (2018). We690

exclude RGB data from our input due to C1. The original version of PointNET++ is based691

on relative (with respect to the 3D block) spatial coordinates, RGB data and normalized692

absolute coordinates in the range [0, 1]. Normalized absolute coordinates are not relevant693

in the industrial settings, since these were used to obtain features related to the position of694

the 3D block within a building room, which is not applicable in our case since instead of695

rooms we have large, unstructured spaces and shapes not directly connected with contextual696

rules (challenge C2 and C3). Therefore, we only use relative spatial coordinates to train our697

fine-tuned PointNET++. Although the speed of convergence will not be our main concern698
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in this work, it is noteworthy that when one balances the training classes by oversampling699

blocks that have the least frequent classes to address the challenge C4, training converges700

around 60% faster. We achieve class balancing by selecting equal number of blocks of each701

class in each training epoch of the network in Algorithm 1. Also, a small number of points is702

insufficient for accurate predictions of shapes, even for a human observer. We discard blocks703

that have less than 100 points to overcome this issue as proposed by Qi et al. (2017a). We704

present the tunable parameters of PointNET++ in the next paragraphs.705

Algorithm 1 Class balancing algorithm
1: procedure Uniform class balancing between blocks

2: for epoch k = 1 . . . N do

3: for batch i = 1 . . . X do

4: cur_batch← ∅

5: for block b = 1 . . . B do

6: pick class j ∈ [1, . . . , 8] uniformly at random

7: sample block cur_block that contains ≥ 1 point of class j uniformly at random

8: cur_batch← cur_batch ∪ {cur_block}

9: Train on cur_batch

We group the tunable parameters of PointNET++ into two distinct groups: (1) geometric706

hyper-parameters, which depend on each neighborhood scale and (2) network-related hyper-707

parameters as presented in Table 6. These parameters are essential for the key building708

block of PointNET++, which is its sampling module. This module aggregates features from709

each neighborhood like a CNN would do for pixels in image segmentation problems. We710

fine-tune the geometric parameters of this sampling module to better fit the intricacies of711

industrial shape data. The search radius, ri of the neighborhood ball (a) and the number712

of neighbors (b), denoted as N(qi), where qi is the center point of each neighborhood define713

the neighborhoods from which features are extracted and their estimation is presented as714

follows. Parameter (c) is the number of neighborhood centers denoted as (qi) for which715

the neighborhood information is aggregated. Parameters (d) and (e) directly influence the716

architecture of the neural network in each scale. (d) is applied to all points of a specific717

neighborhood and (e) is the size of the neural network applied after the backwards feature718

extrapolation. The dropout rate (g) is adjusted to avoid overfitting and the learning rate (h)719

influences the convergence speed and capability of the network to generalize. The network720
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parameters are discussed in the next section at the method implementation.721

Table 6. Fine-tuned parameters of PointNET++ SFR

Geometric parameters (a) search radius

(b) number of neighbors

(c) number of points to subsample

(d) size of the MLP representing h

(e) size of the MLP for extrapolation

Network hyper-parameters (g) dropout rate

(h) learning rate

For the geometric parameters, we create six network architectures containing different722

neighborhood criteria. These architectures are listed in Table 7. The parameters are chosen723

heuristically based on the amount of information present in neighborhoods of different sizes724

and measured by a metric derived by the authors (neighborhood rate). The sizes of the725

MLPs are motivated by the ones used by Qi et al. (2017a), whereas the neighborhood sizes726

are motivated by the optimal neighborhoods derived from the dimensions of CLOI shapes727

as explained below.728
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In particular, industrial shapes (especially steel shapes) have very fine details as summa-729

rized in Table 4. As such, we need to capture fine-grained regions within each “learnable”730

unit block. The search radius (ri) at the largest scale is adapted to be less than 0.8m per731

neighborhood and choices of radii per each scale are based on PointNET++ (Qi et al., 2017a).732

We carry out a random parameter search from a manually selected pool of parameters and733

the experimental results of the six PointNET++ SFR architectures are presented in Table 8.734

For this parameter search, we only test on the oil refinery dataset, since it is a representative735

facility of our CLOI dataset. We observe that the capacity of the network slightly changes736

with the choice of parameters. This is quantified by an achieved overall accuracy ranging737

between 69 and 72%, mIoU between 34 and 38%, precision and recall changes of ±7% and738

±6% respectively. SFR3 generates optimized results by applying the following changes from739

the original PointNET++ parameters: (a) reduction of the numbers of the neighborhoods740

(i) in each block from 1024 (PointNET++) to 512 points, (b) reduction of the max radius741

(ri) of each neighborhood from 0.1m (PointNET++) to 0.05m and (c) increase of the max-742

imum number of samples from 32 (PointNET++) to 64 to select more neighborhood points743

within each center point (qi). The selected PointNET++ SFR3 architecture is presented in744

Fig. 4. The recall of PointNET++ SFR is 16% higher than that of the original PointNET++745

version with increases in all the other performance metrics as well. The naming convention746

SFR stems from Smaller and Fewer neighborhoods, more points selected per neighborhood,747

which characterizes our PointNET++ version applied on industrial TLS data.748

We further validate the optimal proposed network by quantifying the neighborhood in-749

formation in a novel metric defined by the authors. This definition stems from the fact that750

the first sampling layer of PointNET++ is the one that captures the finest details in the751

point cloud. It is natural to assume that each feature produced by the first layer should752

depend only on points of one specific class, in order to be able to capture characteristic753

features of one particular class. If many of the neighborhoods processed by the first layer754

contain points of more than one class, one can expect a suboptimal learning performance.755

The primary reason for that is the network will be trying to learn some features that are756

not specific to one shape but to a combination of neighboring shapes which makes learning757

a harder task. Henceforth, we define a metric named neighborhood rate (Nhrate) to account758

for neighborhoods that have 3D points belonging to more than one CLOI class:759
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Table 7. Network architecture parameters for PointNET++ SFR

SFR ID Parameter Scale 1 Scale 2 Scale 3 Scale 4

1 (a) search radius, ri in (m) 0.025 0.05 0.1 0.2

(b) number of neighbors, i 64 64 64 64

(c) number of points to subsample, N(qi) 1024 256 64 16

(d) size of the MLP representing h [32,32,64] [64,64,128] [128,128,256] [256,256,512]

(e) size of the MLP for extrapolation [256,256] [256,256] [256,128] [128,128,128]

ID Parameter Scale 1 Scale 2 Scale 3 Scale 4

2 (a) search radius, ri in (m) 0.025 0.05 0.1 0.2

(b) number of neighbors, i 64 64 64 64

(c) number of points to subsample, N(qi) 1024 256 64 16

(d) size of the MLP representing h [64,64,128] [128,128,256] [128,128,256] [256,256,512]

(e) size of the MLP for extrapolation [128,64] [256,256] [256,256] [256,256,256]

ID Parameter Scale 1 Scale 2 Scale 3 Scale 4

3 (a) search radius, ri in (m) 0.05 0.1 0.2 0.4

(b) number of neighbors, i 64 64 64 64

(c) number of points to subsample, N(qi) 512 128 32 8

(d) size of the MLP representing h [32,32,64] [64,64,128] [128,128,256] [256,256,512]

(e) size of the MLP for extrapolation [256,256] [256,256] [256,128] [128,128,128]

ID Parameter Scale 1 Scale 2 Scale 3 Scale 4

4 (a) search radius, ri in (m) 0.05 0.1 0.2 0.4

(b) number of neighbors, i 64 64 64 64

(c) number of points to subsample, N(qi) 512 128 32 8

(d) size of the MLP representing h [64,64,128] [128,128,256] [128,128,256] [256,256,512]

(e) size of the MLP for extrapolation [256,256] [256,256] [256,128] [128,128,128]

ID Parameter Scale 1 Scale 2 Scale 3 Scale 4

5 (a) search radius, ri in (m) 0.1 0.2 0.4 0.8

(b) number of neighbors, i 32 32 32 32

(c) number of points to subsample, N(qi) 1024 256 64 16

(d) size of the MLP representing h [32,32,64] [64,64,128] [128,128,256] [256,256,512]

(e) size of the MLP for extrapolation [256,256] [256,256] [256,128] [128,128,128]

ID Parameter Scale 1 Scale 2 Scale 3 Scale 4

6 (a) search radius, ri in (m) 0.1 0.2 0.4 0.8

(b) number of neighbors, i 64 64 64 64

(c) number of points to subsample, N(qi) 1024 256 64 16

(d) size of the MLP representing h [64,64,128] [128,128,256] [128,128,256] [256,256,512]

(e) size of the MLP for extrapolation [256,256] [256,256] [256,128] [128,128,128]

32



Table 8. Performance of class segmentation deep learning networks for the oil refinery

dataset

Network
Accuracy

(%)

Precision

(%)

Recall

(%)

mIoU

(%)

SFR1 69 49 56 37

SFR2 70 49 54 36

SFR3 72 50 57 38

SFR4 71 51 56 38

SFR5 67 56 52 34

SFR6 70 51 51 36

Nhrate = # neighborhoods with ≥ 2 CLOI classes
total # neighborhoods

(6)

where the number of neighborhoods in all blocks is defined as the number of blocks per760

point cloud dataset multiplied by the number of neighborhoods per block.761

We present our results for the proposed SFR networks in Fig. 3. We observe that the762

Nhrate is increasing with the neighborhood radius and the best performing SFR experiment763

is SFR1, with r = 0.025m and small increase in Nhrate between r = [0.025 − 0.05m] for764

all CLOI facilities. However, the increase in Nhrate between r = [0.025− 0.05m] is smaller765

compared to the increase between r = [0.05− 0.1m]. As such, we choose the SFR3 network766

architecture which is the best performing network validated by our previous experiments. It767

is clear that PointNET++ SFR captures distinctive features of specific neighborhoods, since768

there are fewer classes in each neighborhood to associate features with specific classes. When769

there are many classes in one neighborhood, features are not distinctive of a particular class.770

In other words, the number of neighborhoods chosen in PointNET++ with points belonging771

to more than one classes is higher than those neighborhoods chosen in PointNET++ SFR.772

This means that we justifiably expect PointNET++ lagging in performance compared to773

our PointNET++ SFR.774

We note that a two-fold reduction in the radius (ri) leads to around 50% decrease in775

the number of neighborhoods (i) that contain multiple classes. Therefore, according to776
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Fig. 3. Neighborhood rate comparison

intuition, this should improve the learning process. We present the selected PointNET++777

SFR3 architecture in Fig. 4. Step 2 partly answers the research question RQ1 and RQ2.778

The neighbourhood rate (Nhrate) is also a measure of the occlusions a TLS dataset can779

have. This is attributed to the fact that if two points belonging to different CLOI classes780

are closely located to each other, the more likely it is that these shapes are occluded. We781

then explore the impact of occlusions on performance with respect to the neighbourhood782

rate (Nhrate). Fig. 5 shows the mIoU performance of the selected PointNET++ SFR3783

network per CLOI facility with respect to the Nhrate. The results show that the higher the784

Nhrate is, the smaller the mIoU performance is. This highlights the impact of occlusion on785

performance. A more detailed analysis of this impact is not within the scope of this paper786

but is an interesting direction for further research.787

3.5. Step 3: Contextual rule enforcement788

The performance of PointNET++ SFR is still fairly satisfactory to answer the research789

questions RQ1b, RQ2a and RQ2b. We further refine the point label predictions from790

our PointNET++ SFR network using the following three stages of post-processing inference791

rules. More specifically, we propose the following techniques:792

(a) The parameters of PointNET++ SFR are fine-tuned to capture local neighborhood793
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Fig. 4. (a) PointNET++ SFR architecture and (b) illustration of parameters used for each

network layer at the block-level.

Fig. 5. PointNET++ SFR performance with respect to Nhrate
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information in dimensions of a cubic block. This limitation does not permit segmentation794

of shapes larger in dimensions than a cubic block. This affects mostly cylinders that can795

have diameters larger than 1m. We segment cylinders with larger than 1m diameters by796

computing curvatures to answer the research question RQ1b.797

(b) Other challenging shapes are secondary steel shapes (channels, angles and some I-798

beams). These shapes have low frequency of appearance in industrial facilities and prediction799

of their labels is a complex task. We follow an approach tailored to the peculiarities of these800

shapes for segmenting those shapes to answer the research question RQ2a.801

(c) We observe that predictions with low confidence level given by the neural network have802

a much higher chance of being incorrect. We replace these low confidence level predictions of803

PointNET++ SFR with higher-confidence level predictions based on (b) and the confidence804

level of PointNET++ SFR predictions RQ2b.805

3.5.1. Step 3a: Cylinder classifier806

Large enough shapes (cylinders with diameter greater or equal to 1m) are not captured807

as discussed earlier. Therefore, we develop a method to distinguish cylindrical shapes from808

other shapes in industrial settings focusing on a curvature-based analysis.809

We compute the mean and Gaussian curvatures (principal curvatures) upon calculation810

of surface normals on each point (x0, y0). We first compute the surface normals at point811

(x0, y0) as follows. We define a kDTree structure and find the closest points of (x0, y0)812

within a fixed distance (r). The definition of r is based on the bias-variance trade-off of813

noisy neighborhoods of points. Small radius results in high variance of the curve, whereas814

larger radius results in high bias. The choice of r = 0.1m gave us a balance on the trade-off815

of bias-variance.816

We then shift the center of mass of the closest points to the origin (0, 0, 0) and compute817

the normal as the min eigenvector of the covariance matrix. We rotate the points so that the818

normal is on direction Z. We follow the approach by Har’el (1995) that locally approximates819

the surface of neighboring points by a quadratic polynomial, and computes the curvature of820

that surface. The approximate surface is given by:821

z = ax+ by + cxy + d+ ex2 + fy2 (7)
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The principal curvatures are the eigenvalues of the paraboloid surface. Henceforth, the822

mean (H) and Gaussian (K) curvature of paraboloid surfaces at its vertex can then be823

approximated by finding the trace and determinant of an associated matrix.824

We compute our principal curvatures as:825

principal curvatures = eigenvalues

 1
1 + f 2

x + f 2
y

2e c

c 2f


 (8)

where fx

fy

 =

a
b

 +

2e c

c 2f


x0

y0


in order to calculate curvatures on point x0, y0.826

To smoothen the curvature computations and remove outliers, we assign as the (gaussian827

or mean) curvature of each point the median of the respective curvatures of points within dis-828

tance 0.2m. Then, our algorithm predicts a point as cylinder if the following three conditions829

(G1−G3) are met:830

G1. K ≤ 0.1m−1
831

G2. H ≥ 0.3m−1
832

G3. H ≤ 3m−1
833

These parameters are experimentally verified on the CLOI dataset. For an ideal cylinder,834

K = 0 and the mean curvature is H = 1/D, where D is the diameter of the cylinder.835

3.5.2. Step 3b: Steel shape Segmentation836

We develop a procedure to segment channels, angles and I-beams based on corner detec-837

tion. Our hypothesis is that these structural steel sections are composed of two perpendicular838

planes (two sets of perpendicular planes for the case of I-beams and channels) and we need839

to automatically detect these two planes. We consider channels as being composed of two840

L-shape corners, whereas I-beams as having two T-shape corners. We first compute the nor-841

mals of each point as the minimum eigenvector of the covariance matrix of the neighborhood842

of each point at a fixed radius of 0.3m based on the mean dimensions defined in British Steel843

Standards (BS EN 10365:2017, 2017) for these shapes. These normals are unoriented, as844

such we correct their orientation. We do so by picking a viewpoint, which is a vector v, such845
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that when the inner product of the viewpoint and our normal is positive we keep the same846

orientation. Otherwise, when 〈n, v〉 < 0, we change the direction of the normal vector n. We847

then define neighborhoods with fixed radius of 0.5m to check whether they are corners. For848

each neighborhood, we cluster the normals based on k-means clustering, where in our case849

k = 2 for two types of normals. We enforce that the angle between the two planes should850

be > 60◦ instead of = 90◦ as being angle edges due to noise. After finding the planes, we fit851

rectangles by assigning the points to either plane.852

An illustration of the L- and T-shapes with the directions of their normal vectors (n1853

and n2) is given in Fig. 6 and an L-shape and T-shape type distinction based on geometric854

parameters is presented in Fig. 7.855

Fig. 6. Illustrative representation of normals in (a) L-shape and (b) T-shape structural

steel profiles.

The condition for a structural steel profile to have an L-shape is that856

r1

S1
≈ r2

S2
(9)

whereas the condition for a structural steel profile to have a T-shape is that857

r1

S1
� r2

S2
(10)

where r1, r2 are the distances from the center of each rectangle to the intersection of the858

planes and S1, S2 are the lengths of each rectangle of the L-, T-shape respectively.859
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Fig. 7. Illustration of (a) L-shape and (b) T-shape structural steel profiles.

The normals of angles and channels are clustered in the same category given that they860

have the same L-shape. In contrast, I-beams form a T-shape.861

3.5.3. Step 3c: Confidence level adaptation862

The next step in our CLOI-NET methodology acknowledges the fact that low confidence863

predictions by the PointNET++ SFR network (Section 3.4) are more likely to be erroneous864

than high confidence ones. Therefore it is legitimate to determine a methodology to im-865

prove the predictions of the classes that are misclassified, and prioritizing those with low866

confidence. We present in Fig. 8 the confusion matrices of precision and recall for all the867

eight CLOI classes. We used heatmaps to show the precision and recall metrics in868

the confusion matrices. Dark blue colors indicate high precision/recall, whereas869

yellowish colors represent smaller precision/recall values. We show that angle and870

channel points are misclassified as “other” (17% and 30% probability respectively). Predicted871

“channels” are actually “other” (55% probability) or “angles” (9.7% probability). There is872

a similar trend for predicted “angles” being “channels” (6.4% probability), “cylinders” (14%873

probability) or “other” (36% probability). Our PointNET++ SFR network also confuses I-874

beam points with angle (23% probability) and channel points (34% probability). We develop875

the following two-step method to correct these misclassifications:876

• Step 1 : If a point is predicted as “channel” and is not close (> 0.1m) to either an L-877

shape or a T-shape corner, we convert its label to “other”. Definitions and determination878
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of whether a point is close to an L-shape are provided in Section 3.5.2.879

• Step 2 : If a point is predicted as “I-beam” with low confidence (<80%) and it is close880

to an L-shape corner, we classify it as “channel”.881

Fig. 8. Confusion matrices with (a) recall and (b) precision of network trained on Point-

NET++ SFR3 for the oil refinery dataset.

Valves and flanges are also classes that are more often misclassified, however some of882

these predictions cannot be corrected since they stem from ground truth errors. Some883

“cylinders” and “valves” are also predicted as “other”, however we cannot revert these cases884

since these can be parts of equipment with similar shapes and consistent geometric rules885

cannot be generated to correct these misclassifications. Angles are misclassified as “I-beams”886

(23% probability) and “Other” (17% probability). However their performance was fairly887

satisfactory and their frequency is relatively low (2%) compared to the other CLOI classes888

(Agapaki et al., 2018). Therefore, our CLOI-NET method on Step 3c focuses on improving889

the predictions of channels.890

3.6. Step 2b: Annotation Cost Optimization891

Our pipeline so far takes as input facilities that are annotated for training and first per-892

forms the test on PointNET++ SFR with the unlabeled facility and secondly post-processes893

these results using shape-specific rules for fine-grained per point segmentation. In this sec-894

tion we make the observation that the complex and noisy nature of the class segmentation895

40



problem for industrial data ensures that any algorithm will be approximate, and thus some896

of its predictions will be erroneous. For the process of generating IgDTs, however, these897

errors will, inevitably have to be manually corrected. Therefore any practical analysis of898

Digital Twin generation should focus on minimizing the manual annotation cost to address899

the research question RQ3. Indeed, in this section we use a simple model for the annotation900

time to demonstrate that manual pre-annotation of parts of the test dataset can greatly im-901

prove the accuracy of the predictions, thus significantly minimizing manual annotation time.902

We propose a two-stage annotation procedure with the goal to minimize the annotation903

cost, should the user choose the option to manually annotate part of the test facility. Our904

motivation stems from a recent research area called “active learning”. Researchers use active905

learning for image annotation (Jain and Grauman, 2016, Mahapatra et al., 2018) and exploit906

the most valuable images to manually annotate and then include them in the training set.907

As such, we follow a two-step procedure: (a) we apply the PointNET++ SFR training model908

that has no annotated windows from the test facility and post-process the test windows and909

(b) we manually annotate an x fraction of the windows from the test facility using the predic-910

tions of PointNET++ SFR to help us during annotation. We assume that this annotation911

step is performed using any manual annotation tool, i.e. CloudCompare (Cloudcompare,912

2016) or the LFM Software (AVEVA, 2019). We then apply the PointNET++ SFR model913

with the manually annotated windows during training and post-process the remaining test914

windows. We denote the approach described in Section 3.4 a passive learning approach, since915

no data from the test facility is included while training. A comparison of the steps followed916

for the active and passive learning approach is presented in Fig. 9. For the application of the917

active learning procedure on the pipeline of PointNET++ SFR, we parse the 3D TLS data918

in disjoint “windows” and then slice the facility into smaller pieces that will then further919

subdivide into cubic blocks for further processing. Therefore, we enforce uniqueness of the920

3D blocks during training and testing splits.921

We introduce a simple model in which we use the percentage of incorrect predictions922

(1 − accuracy) as a proxy for the manual annotation time. Our assumption is based on923

similar work conducted for active learning on clinical concept extraction in medical tasks924

(Kholghi et al., 2017). Intuitively, we assume that the manual annotation time is proportional925

to the percentage of incorrect predictions. However, our analysis is agnostic of the actual926
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evaluation metric used and could have been carried in terms of other metrics, e.g. Precision,927

Recall, mIoU.928

Fig. 9. (a) Active and (b) passive learning methodologies.

We define the total annotation cost c(x) as the cost of the two annotation phases sepa-929

rately, which are Steps 2 and 4 in Fig. 9(a). We propose that c(x) is a function of the fraction930

x of test windows that were manually pre-annotated. We assume that the annotation cost:931

(1) is proportional to the time to manually annotate the points of the whole facility, and (2)932

is proportional to the fraction of incorrectly classified points (1 − accuracy). So, we define933

the total annotation cost c(x) as:934
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c(x) = f(x) + g(x) (11)

where

f(x) = λx(1− a(0)) (12)

g(x) = λ(1− x)(1− a(x)) (13)

and a(x) : [0, 1]→ R is the accuracy on the remaining point cloud data after training on935

x fraction of the test set, λ is the time to manually annotate the entire point cloud facility,936

a(0) is the accuracy of the first annotation phase with x = 0 annotated windows, f(x) is the937

time to pre-annotate x fraction and g(x) is the time to annotate 1− x fraction after active938

learning is performed on our data.939

We then determine the optimal amount of data that need to be annotated to minimize940

this cost (c(x)). We make two further natural assumptions: (a) we assume that as the pre-941

annotated data of the test facility increases, the training accuracy increases, or equivalently942

that a′(x) ≥ 0, and (b) we assume that the accuracy learning curve is concave, i.e. a′′(x) ≤ 0.943

We base the latter assumption on recent active learning experiments (Jain and Grauman,944

2016). This means that the more data we provide for training, the rate of accuracy increase945

decreases.946

We inspect its first and second derivatives of the cost function c(x). We have:947

c′(x) = −λa(0) + λa(x)− λ(1− x)a′(x) (14)

and:948

c′′(x) = λ(2a′(x)− (1− x)a′′(x)) (15)

where a′′(x) ≤ 0 from assumption (b) and a′(x) ≥ 0 from assumption (a), which means949

that c′′(x) ≥ 0 i.e. the cost function c(x) is convex. In other words, c(x) only has one global950

minimum that we find by setting:951

−a(0) + a(x)− (1− x)a′(x) = 0 (16)
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where x is the annotation percentage that minimizes the total cost.952

We first prove that the optimal manual annotation percentage is always at most 50%.953

According to the mean value theorem, there exists an annotation percentage ξ that:954

a(x)− a(0) = a′(ξ)x (17)

where 0 ≤ ξ ≤ x. As a(x) is a concave function (as we increase x, accuracy increases at955

a slower rate), we have:956

a′(ξ) ≥ a′(x) (18)

Applying Eq. 18 to Eq. 17, we get:957

a(x)− a(0) ≥ a′(x)x (19)

Combining Eq. 16 with Eq. 19, we find the following equation for the maximum pre-958

annotation percentage:959

a′(x)(2x− 1) ≤ 0 (20)

Given that a′(x) ≥ 0, we have x ≤ 0.5. This means that it is never advantageous to960

pre-annotate more than 50% of the TLS data of a facility. A qualitative illustration of961

the accuracy and annotation cost curves with respect to the annotation percentage used962

for active learning is presented in Fig. 10. We demonstrate that the better the quality of963

learning is, the less the annotation cost, hence the manual pre-annotation percentage x of964

a test facility needed for training is smaller. In order words, the higher the accuracy curve965

is (optimal annotation percentage x to the top left of the plot), we achieve better quality966

and faster learning for the same pre-annotation percentage x. It is important to note that967

the annotation cost in Fig. 10(b) is the cost after applying the active learning approach as968

a percentage of the total manual annotation cost of the passive learning approach.969

We measure the success of our pipeline not by maximizing the point-wise accuracy of our970

method, rather by minimizing the cost that it incurs to the modelers when using it. Our971
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Fig. 10. (a) Accuracy of training and (b) annotation cost with respect to the pre-annotated

percentage (%) of a facility used for training.

novel method leverages the advances in point cloud deep learning segmentation, contextual972

shape specific attributes and active learning in order to accurately predict point-wise class973

labels with no significant difference in performance for different industrial environments. A974

critical part of our method’s novel design is the stage-wise annotation, which permits both975

human-annotated and automatically annotated points to influence the system’s view of what976

needs the most human attention next.977

The hypothesis of this paper is that class segmentation is (i) efficient and reliable, (ii)978

scalable when exploiting deep learning methods in a sensible manner tailored to industrial979

spaces and (iii) there is no significant bias in the segmentation performance for different980
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industrial facilities. We evaluate our hypothesis experimentally.981

4. RESEARCH METHODOLOGY982

The research design that we followed was to validate each process outlined in Section 3.983

Therefore, we propose the following research activities to validate the automated segmenta-984

tion of class point clusters:985

1. generation of the CLOI benchmark dataset class labels (Section 4.2) and data prepara-986

tion (Section 4.3.1) in order to run the training experiments of the CLOI-NET proposed987

solution,988

2. implementation of the CLOI-NET proposed solution (Section 4.3.2) and989

3. measuring the class segmentation performance to validate the hypothesis (Section 4.4).990

Then, Section 4.5 follows with a discussion of the performance of the CLOI-NET class991

segmentation solution in two levels: (a) overall performance (Section 4.5.1) and (b) class992

component performance (Section 4.5.2). For the overall performance of the CLOI-NET993

methodology, we first investigated the robustness of the proposed methodology by deter-994

mining the facility bias. Then, we measured the cost savings by implementing the proposed995

CLOI-NET active learning approach. The second part of Section 4.5 focuses on the discus-996

sion of the proposed method’s performance on class component level.997

We first state the assumptions of our research methodology in the section that follows.998

4.1. Assumptions999

A CLOI facility satisfies the following conditions:1000

C1. Cylindrical shapes are grouped into one CLOI class. This category includes the most1001

important cylindrical shapes from the piping, electrical and structural categories.1002

C2. Cylinders have diverse sizes.1003

C3. The number of points of the TLS scanned datasets is much larger than the number of1004

points per cylinder.1005

C4. Noise and clutter outside the industrial facilities is properly removed manually. For1006

instance, the removed points can be either vegetation or irrelevant points for outdoor1007

facilities or points reflected outside the scanned area of indoor facilities.1008
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According to the PointNET++ Qi et al. (2017a) implementation and standards of in-1009

dustrial facilities (Agapaki and Brilakis, 2017, BS EN 10365:2017, 2017), we assume the1010

proposed CLOI-NET class segmentation method is feasible in the context of either indoor1011

or outdoor TLS scanned industrial factories under the following conditions, which are also1012

confirmed by our experiments:1013

A1. The registration quality of the TLS industrial data is performed in commercial software1014

and is not part of the research methodology of this paper. In other words, it is assumed1015

to be of high quality to conduct post-processing, since data is collected from professional1016

laser surveys. Specifications of the laser surveys are given in Table 9.1017

A2. The proposed framework is independent of the laser scanner surveying parameters.1018

A3. The PointNET++ SFR network learns point features in cubic meter 3D blocks following1019

the initial PointNET++ implementation Qi et al. (2017b).1020

A4a. The PointNET++ SFR sampling layer generates neighborhoods around point centers1021

with the condition that the number of points belonging to different CLOI classes in1022

these neighborhoods is minimized.1023

A4b. The PointNET++ SFR sampling layer parameters are optimized based on the network’s1024

performance.1025

A5. Cylinders with diameters greater than 1m cannot be classified in our PointNET++1026

SFR network.1027

A6. The PointNET++ SFR confidence level of a CLOI class prediction is positively corre-1028

lated with the prediction that this point is correct.1029

A7. The performance of individual CLOI classes in the PointNET++ SFR is dependent on1030

the prior distribution of CLOI classes. Dominant classes are expected to have higher1031

prediction rates.1032

A8a. The user annotation time during the active learning methodology is a fraction of the1033

incorrect predictions of the PointNET++ SFR network.1034

A8b. The pre-annotation cost in the active learning procedure is proportional to the time to1035

manually pre-annotate.1036

A8c. The performance of training a class segmentation framework improves the more pre-1037

annotated data of a test facility one uses during training.1038
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In particular, A1-A7 are validated experimentally in Section 4.4 whereas A8a, A8b and1039

A8c are validated in Section 4.5.1.1040

4.2. Ground Truth Data1041

To test our hypothesis, we generate the first dataset of class labeled point clusters1042

of industrial facilities named CLOI (Agapaki et al., 2019). CLOI consists of 10 classes1043

that cover a wide range of industrial scenes (both indoor and outdoor). We use the TLS1044

datasets of four laser scanned industrial facilities for the generation of CLOI as shown in1045

Fig. 11. One facility is a warehouse, one is a petrochemical plant, one an oil refinery and1046

the fourth a processing unit. These facilities are anonymized since rights are reserved by1047

AVEVA Group Plc. and British Petroleum. All datasets are obtained using static terrestrial1048

laser scanners. We provide the (to the best of our knowledge) hitherto largest collection of1049

terrestrial laser scans of industrial facilities with point-level (a) class and (b) instance ground1050

truth annotations. (A) refers to one of the ten CLOI classes and (b) is an index number1051

that refers to a specific individual shape and is not further used in this work. In total, it1052

consists of 12,497 shapes and 4.3 billion points with their class and instance labels for each1053

point. To this end, this paper provides CLOI, the largest annotated dataset based on already1054

existing datasets presented in Table 2 and the only dataset of industrial environments that is1055

captured with more than one sensor. This means that processing CLOI point cloud data is1056

independent of the data capturing system that was used to generate the data. CLOI is also1057

the only dataset available for processing industrial environments. Below we investigate the1058

metadata of CLOI ; the frequency of appearance of each class and the scanner specifications1059

of each TLS dataset.1060

The frequency of appearance of each class across the four industrial facilities is shown in1061

Fig. 12. We observe that there is variation in the frequency of appearance of channels and1062

cylinders (∼ 10− 25%) across the four CLOI facilities. This is attributed to the specific use1063

of each industrial plant.1064

We acquire each dataset with the scanner specifications demonstrated in Table 9. There1065

is variability in the linearity error of the TLS scanners used to scan the CLOI facilities.1066

Each facility was scanned with a different TLS scanner and the oil refinery facility was sur-1067

veyed with the most accurate scanner that is designed to operate in industrial environments1068

(Surphaser, 2015). The petrochemical plant was surveyed in greyscale.1069
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Fig. 11. (a) warehouse, (b) petrochemical plant, (c) oil refinery and (d) processing unit.

Fig. 12. Frequency of appearance of the CLOI labeled classes.

We provide the definitions of the CLOI shapes below. We define angles as roll-formed1070

steel angles that have an L-shape. The legs of the L-shape have equal or unequal length.1071

Channels refer mostly to steel beams with a C-shape. Cylinders include the following three1072

sub-categories: (a) circular hollow sections, which refer to cylinders that support pipes,1073

cylindrical structural columns and handrails, (b) conduits that refer to the tubes that protect1074
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Table 9. Metadata of CLOI dataset

Metadata Warehouse Oil refinery Petrochemical plant Processing Unit

Scans 10 57 44 27

Original size 74,264,368 2,911,602,008 346,748,967 340,349,857

Scanner FARO X330 Surphaser 105HSX Z+F Imager 5010C Z+F Imager 5003 scanner

Resolution range @10m 0.3mm 0.21mm 0.1mm 1.6mm

Vertical resolution 0.009◦ 0.0003◦ 0.001◦ 0.018◦

Measurement range ±5◦ ±0.004◦ ±0.5◦ -

Linearity error ±2mm <0.7mm ≤ 1mm ±3mm

electric wiring and (c) pipes which are tubes that carry fluids and gases. Elbows are tubes1075

that connect piping elements or conduits. Flanges refer to plates or rings at the end of1076

pipes. We define I-beams as the structural steel beams that have an I-shape. Valves refer to1077

all the devices that control the flow of liquids through the pipelines. We cover all types of1078

valves across our datasets (globe, ball, gate, butterfly, diaphragm, plug, check, needle, pinch1079

valve). “Other” refers to any other point clusters that do not belong to the above-mentioned1080

classes. It is important to note that CLOI classes are more fine-grained and challenging to1081

distinguish than many of the existing indoor and outdoor segmentation datasets (Armeni1082

et al., 2016, Roynard et al., 2018, Hackel et al., 2017).1083

The first step in our pipeline is to prepare and register the laser scanned point clouds, so1084

that we can annotate them in the commercial manual labeling platform for industrial plants,1085

LFM (AVEVA, 2019). The readers can refer to Agapaki et al. (2019) for details on the CLOI1086

dataset generation.1087

4.3. Experiments1088

4.3.1. Data preparation1089

We subdivide each facility in overlapping 3D cubic blocks as explained in Section 3.3. We1090

show examples of regions from CLOI facilities and an illustration of slicing a facility into1091

3D cubic blocks in Fig. 13. These examples are taken from our CLOI oil refinery facility.1092

We use 0.5m stride to overlap the 3D cubic blocks as proposed by Qi et al. (2017b). We use1093

the Farthest Point Sampling (FPS) technique to sub-sample points (Qi et al., 2017a) within1094

these 3D cubic blocks. This technique is used for density-invariant subsampling and leads1095
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to a more uniformly distributed point cloud. We start with an empty set of points S and we1096

progressively add a point x such that x has the maximum distance from the points in S. The1097

distance between S and x is defined as min
Si∈S

d(x, Si). We use this sampling method, since it1098

covers the entire point cloud as opposed to random sampling that can be restricted to dense1099

parts of it with the same number of output points. At training time, we sample 4096 points1100

in each block on-the-fly. At test time, we test on all the points of a cubic block. The cubic1101

blocks are then shifted to the global axis origin [0, 0, 0] and aligned to the principal global1102

coordinate system axes both for training and testing.1103

Fig. 13. 3D block generation examples from the oil refinery facility.

4.3.2. Implementation1104

We implement our solution on Tensorflow 2.0 as a proof of concept and execute our exper-1105

iments on Google Cloud (Deep Learning VM image) with NVIDIA Tesla P100 GPUs. Vi-1106

sualizations of our point clouds and segmentation results are implemented on Potree Viewer1107

(http://potree.org/) in JavaScript, which is built upon ThreeJS. A pre-trained model on in-1108

dustrial facility point cloud data does not exist. As such, we train the network from scratch1109

for 250 epochs or about 100 000 steps using a batch size of 24, an initial learning rate of 0.011110

and a learning rate decay factor of 0.5. We choose this set of hyperparameters so that the1111
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loss function converges during training as proposed by PointNET++. We experimentally1112

identify the optimized network parameters of PointNET++ SFR. We use a randomized pa-1113

rameter search with a fixed list of options for each network parameter, dropout and learning1114

rate as listed in Table 6. We conduct experiments to optimize the dropout rate (g) of the1115

last training layer ranging from 0.2 to 0.6 and the learning rate (h) from 0.1 to 0.001, based1116

on the parameters used in Qi et al. (2017a). We find the optimal dropout rate being 0.3,1117

since our experiments suggest that overfitting is ameliorated by doing so. Fig. 4 shows the1118

PointNET++ SFR deep segmentation network that we implement. We adjust the training1119

size for each combination by observing saturation in the training accuracy. We do not fur-1120

ther investigate other network hyper-parameter sets as these do have minor impact on the1121

training quality for the scope of this work. They rather control the stability and speed of1122

convergence of the loss function. The training time takes 12 − 15h to converge on average1123

with the proposed configuration.1124

Fig. 12 shows that CLOI is an imbalanced dataset. Many learning algorithms have1125

a trend to bias the majority class for imbalanced datasets due to the objective of error1126

minimization (Hanley and McNeil, 1982). Henceforth, we assess the effectiveness of our1127

CLOI-NET methodology in terms of the discrimination measure Area Under the Curve1128

(AUC) which is equivalent to the Wilcoxon test in ranking classifiers. The AUC metric was1129

first used by Hanley and McNeil (1982) in diagnostic radiology and later used in validating1130

machine learning algorithms (Bradley, 1997). This metric is defined as the Area Under the1131

Receiver Operating Characteristic (ROC) curve which shows the trade-off between recall (or1132

True Positive Rate - TPR) and False Positive Rate (FPR) as defined below:1133

FPRc = FPc

FPc + TNc

(21)

The TPRc is also known as sensitivity of classification and measures the probability of1134

correct prediction of points of a CLOI class c, whereas the FPRc is known as the probability1135

of false alarm and measures the probability of incorrect predictions among all the points that1136

belong to all other classes other than c. The AUCc is then given by (Powers, 2011):1137

AUCc = TPRc + TNRc

2 (22)

where TNRc = 1− FPRc.1138
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The AUCc metric is ideal for predicting probabilities of classes that have a small number1139

of points in the CLOI datasets which is an issue that has similarly been tackled in 3D indoor1140

spaces (Armeni et al., 2016) and medical imaging applications due to small and heterogeneous1141

datasets (Hanley and McNeil, 1982).1142

4.4. Evaluation1143

We evaluate the CLOI-NET proposed method of our prototype on the optimal hyper-1144

parameters identified in Sections 3.4-3.6. We first evaluate the output of the PointNET++1145

SFR network. This is a prediction of the class label of each 3D point with a confidence score.1146

This score is interpreted as the likelihood of a 3D point to belong to one of the eight CLOI1147

classes. We compare predicted and ground truth labels pointwise and evaluate accuracy,1148

precision, recall and Intersection-over-Union (IoU) scores. We first use the overall accuracy1149

for comparing our sets of experiments. However, since this metric is biased towards dominant1150

classes (classes having a large number of TLS data points), we then use precision, recall and1151

IoU for individual class evaluations. We evaluate our PointNET++ SFR proposed solution1152

on each CLOI facility and the details of our experiments are illustrated in Table 10. We1153

train on pre-annotated (i) single facilities, (ii) “all” and (iii) “all but test” CLOI facilities.1154

For (i), we test on (a) either the same facility that PointNET++ SFR was trained on or1155

(b) any other CLOI facility. We use a k-fold validation strategy such that each facility is a1156

single fold. As such, the training models do not see any part of the test facility.1157

More specifically, we show that when the same training facility is used for testing (ex-1158

periments (ia) or (iia)), the test accuracy increases since it is easier for the PointNET++1159

SFR network to learn from data of a trained facility. It is important to note that in these1160

cases we do not use the same 3D blocks for the training and test experiments, the 3D blocks1161

are completely disjoint. The accuracy of the (ia) experiments is marked in bold and is the1162

maximum per row and column in Table 10. However, for all the CLOI facilities, annotat-1163

ing data of the same facility and training on those (experiments (ia)) does not contribute1164

to significantly higher accuracy than learning from annotated data of other CLOI facilities1165

(experiments (iia)). For example, the evaluation accuracy when training on the warehouse1166

alone (80% of its data for training) is 84.65%, and the same metric when training on all1167

CLOI facilities including 80% of the warehouse data is slightly smaller (79.9%). This means1168

that including more data from other CLOI facilities for training does not necessarily assist1169
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the learning algorithms and is an indicator of differences between facilities. We further in-1170

vestigate factors for facility differentiation in Section 4.5.1. We also demonstrate that when1171

a single CLOI trained facility is not the same as the one used for testing (experiments (ib)),1172

performance is relatively low. This is another case indicating bias between our facilities.1173

As such, we conduct experiments with all the CLOI facilities for training except one used1174

for testing (“all but test” - experiments (iiib)). We observe that the petrochemical plant1175

and the processing unit perform better when the former is used for training and the latter1176

for testing (72.7% test accuracy) in comparison to 61.85% when “all but test” CLOI fa-1177

cilities are trained. We attribute this to a greater similarity of these facilities and as such1178

we further investigate facility bias in Section 4.5.1. We observe a similar trend between1179

the petrochemical plant and the warehouse respectively. We also conduct experiments with1180

“all” the facility data during training (experiments (ii)). “All” facility data corresponds to1181

an active learning approach where 80% of all CLOI facilities (including the test facility) are1182

trained. With this experiment, we show that increasing the amount of training data results1183

in higher accuracy (from 66% to 82% on average). This means that if modelers are willing to1184

annotate 80% of the test facility, this will only increase the validation accuracy by 15± 5%.1185

A more detailed analysis on the optimal annotation percentage of the test facility that we1186

include while training follows in Section 4.5.1. If we do not include any data from the test1187

facility for the evaluation (“all but test”), then the accuracy is higher than training on a1188

single CLOI facility (experiments (ib)). This indicates that more data during training does1189

improve performance but it should be properly selected. Pre-annotating data from the test1190

facility (experiments (ia)) or training on a single CLOI facility other than the test facility1191

(experiments (ib)) is time-consuming to annotate for the performance gain that is achieved.1192

Therefore, the results of the “all but test” experiment are used for further processing.1193

We also investigate the confidence level of the predictions of our PointNET++ SFR1194

network. Fig. 14 shows the percentage of correctly predicted points per facility (accuracy)1195

with respect to the confidence level of the predictions. We observe that for the oil refinery1196

62% of the points are correctly predicted with confidence level 80% and above. Similarly,1197

63.4%, 66.7% and 58% of points are correctly predicted with confidence level 80% and above1198

for the warehouse, petrochemical plant and processing unit respectively. Therefore, there1199

is a positive correlation between the the correctly classified points and the confidence level1200
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Table 10. Evaluation accuracy (%)

Training

Facility

Test

Facility
Warehouse Oil Refinery

Processing

unit

Petrochemical

plant

Warehouse 84.65 55.43 47.17 73.33

Oil Refinery 51.54 92.97 59.79 62.85

Processing Unit 50.16 58.13 76.27 56.44

Petrochemical Plant 60 56.25 72.67 90.28

all 79.9 85.73 72.7 89.1

all but test 64.1 68.61 61.85 70

of the predictions for all four CLOI facilities. In other words, the higher the confidence1201

level, the more points are correctly predicted. This is an indication that our PointNet++1202

SFR network outputs correct CLOI class labels with high confidence, whereas the outputs of1203

incorrect CLOI class labels are given with low confidence. Therefore, we further post-process1204

the incorrect labels that have low confidence to improve the class segmentation performance1205

of our method.1206

We highlight three main pitfalls of our PointNET++ SFR network that account for1207

misclassified points based on these experiments: (a) shapes with volume larger than a cubic1208

meter cannot be efficiently captured, (b) classes of imbalanced datasets are penalized and1209

(c) the confidence level of predictions is not propagated while learning neighboring geometry.1210

As such, we further investigate the efficiency performance for each CLOI class addressing1211

each pitfall in Table 11. We demonstrate that cylinder prediction adaptation increases recall1212

by 14.75% on average, meaning that points belonging to cylinders with large radius are now1213

correctly predicted. Cylinder class adaptation penalizes precision by 2.5%, however the IoU1214

which combines precision and recall is improved by 3.5% on average. Steel shape adaptations1215

improve the performance metrics of channels (highlighted in Table 11). Our CLOI-NET1216

predictions are significantly improved by implementing the active learning approach and1217

confidence level adaptations for cylinders and I-beams. The precision, recall and IoU for1218
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Fig. 14. Confidence level of predictions with respect to accuracy for each CLOI facility.

cylinders are 81.25%, 81.75% and 68.25% respectively. Likewise, the precision, recall and1219

IoU for I-beams are 74.75%, 78.25% and 61.25% respectively. The other classes have lower1220

performance metrics, however they still have non-trivial performance.1221

We observe a trend that rewards the performance of dominant CLOI classes such as1222

cylinders and I-beams in Table 11). Their IoUs are 68.25% and 61.25% on average, whereas1223

angles, valves and flanges have lower performance in our CLOI-NET methodology (26.15%,1224

28% and 21.25% IoUs respectively). Fig. 15 plots the empirical ROC curves for each facility1225

on our data with minority classes being the angles and flanges. On average, CLOI facilities1226

have a very high AUC measure of 95.6%. Micro-averaged metrics are used to aggregate the1227

contributions of all classes (CLOI types) to compute the average metric. This metric is ideal1228

for CLOI classes due to the class imbalanced CLOI datasets. In other words, many more1229

points of cylinders and I-beams exist in the dataset in comparison to the other CLOI classes,1230

therefore their metrics are higher.1231
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Table 11. Average segmentation precision, recall and IoU (%) per CLOI shape

PointNET++ SFR Angles Channels Cylinders Elbows I-beams Valves Flanges Other

Precision 28.5 38.75 81.75 50.75 64 36.75 30 73.75

Recall 26.25 28.25 62.25 42.5 67 47.74 22.25 83

IoU 15.5 17.25 55 29.25 49 23.5 13.75 63

Cylinder adaptation Angles Channels Cylinders Elbows I-beams Valves Flanges Other

Precision 28.5 38.75 79.25 50.75 64 36.75 30 77

Recall 26.25 28.25 77 42.5 67 47.74 22.25 82

IoU 15.5 17.25 58.5 29.25 49 23.5 13.75 65

Steel shape/

Confidence level adaptation
Angles Channels Cylinders Elbows I-beams Valves Flanges Other

Precision 28.5 42.75 81.75 50.75 64 36.75 30 74

Recall 26.25 35.25 62.25 42.5 67 47.74 22.25 83

IoU 15.5 20.25 55 29.25 49 23.5 13.75 63

CLOI-NET Angles Channels Cylinders Elbows I-beams Valves Flanges Other

Precision 45.5 49.25 81.25 54.75 74.75 41.25 39.75 84.5

Recall 39.25 61.75 81.75 49.25 78.25 55.25 33.5 86.5

IoU 26.25 41.25 68.25 33.75 61.25 28 21.25 74

While precision measures the probability of a CLOI class classified as true to actually1232

be positive, the FPR measures the ratio of false positives within the true negative (“other”)1233

points. We expect the FPR metric to be higher for classes that have small number of1234

points in the CLOI facilities due to the large number of points belonging to the dominant1235

CLOI classes (cylinders, I-beams). We also show that the recall and precision of cylinders is1236

penalizing the less frequent classes and we improve that with the post-processing confidence1237

level adaptation and steel shape label contextual rule enforcement steps.1238

We further demonstrate the capacity of our CLOI-NET method on class segmentation of1239

industrial shapes by adding the 3D detection results of the commercial software EdgeWise1240

(ClearEdge, 2019) in Table 12. The motivation behind comparing with EdgeWise is that in1241

our previous work (Agapaki et al., 2018), this software package showed superior performance1242

out of all available software and research methods on automatically detecting cylinders. We1243

evaluate the precision and recall of our method for each CLOI class and we compare (only1244
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Fig. 15. CLOI-NET ROC curves across CLOI facilities.

intuitively and not directly) with the respective metrics with EdgeWise. It is important1245

to note that EdgeWise does not automatically segment structural steel components other1246

than cylinders. This is the reason that only the cylinder segmentation results of EdgeWise1247

are included in Table 12. The difference in the evaluation metrics between our method1248

and EdgeWise (ClearEdge, 2019) is that cylinder segmentation in EdgeWise is measured1249

per fitted cylindrical shapes whereas our calculation of the same metrics is based on points.1250

Once we have instance segmentation results which are out of the scope for this paper, we1251

can make a direct comparison for cylinders.1252

The goal of S1 detection methods is not to solve the cylinder segmentation problem1253

(Section 3.3). One of the main merit of our method is that users can separate the points1254

of each class, further process them and then more efficiently and intelligently generate the1255

gDT without losing the point cloud information. Cylinder detection S1 methods do not1256
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provide information per point rather they directly fit cylindrical shapes. While having been1257

widely researched and achieving promising performance, these methods do not comply with1258

the assumptions (Section 4.1) and scope of this work (Section 3.1). It is important to note1259

that the goal of this work is not to compare S1 and S2 methods (where applicable) with1260

each other. We rather presented and validated our proposed solution that best addresses1261

the pain points of the current practice as outlined in Section 1. Direct comparison with1262

existing methods of the S1 object detection literature is out of the scope of this work. This1263

is attributed to the fact that the metrics used in S1 and S2 methods are not comparable.1264

The former compare precision and recall metrics on shapes, whereas the latter compare1265

precision and recall on 3D points. Therefore, a comparison of state-of-the-art existing class1266

segmentation methods on TLS datasets is presented as follows.1267

Table 12. Segmentation precision and recall per shape for the petrochemical plant and

warehouse point clouds

Precision/recall (%) Angles Channels Cylinders Elbows I-beams Valves Flanges

EdgeWise (Petrochemical plant) - - 69.3/59.6 - - - -

CLOI-NET (Petrochemical plant) 25/27 63/72 76/83 40/41 75/83 14/70 39/43

EdgeWise (Warehouse) - - 41.25/69.8 - - - -

CLOI-NET (Warehouse) 44/44 86/91 79/85 42/59 51/75 57/51 21/24

We compare the performance of state-of-the-art class segmentation methods with our1268

proposed CLOI-NET Class segmentation proposed solution. The results in Table 13 show1269

that our method has the highest performance when tested on the oil refinery CLOI facility1270

presenting the first method of its kind to solve the class segmentation task on industrial TLS1271

data.1272
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Table 13. Comparison of state-of-the-art class segmentation methods tested on the oil

refinery dataset

Method
Accuracy

(%)

Precision

(%)

Recall

(%)

mIoU

(%)

PointNET (Qi et al., 2017b) 50 21 19 12

PointNET++ (Qi et al., 2017a) 68 46 41 32

SGPN (Wang et al., 2018b) - 12.3 14.5 7.6

ASIS (Wang et al., 2019a) - 26.5 23.9 14.5

DGCNN (Wang et al., 2019b) 66 36 31 22

CLOI-NET (passive) 72 54.9 55.1 40.8

CLOI-NET (active) 83 59 59.6 45.1

One can observe the visualization results of the four CLOI facilities in Fig. 16 and compare1273

them with the ground truth annotated points. We color points in both ground truth and1274

predicted classes based on the semantic class label they belong to. We also show illustrative1275

examples of predicted and ground truth point clusters of each CLOI class in Fig. 17 and1276

Fig. 18.1277

One can visualize windows where the CLOI-NET predicted labels and ground truth labels1278

are presented in Fig. 17. Fig. 17(a) shows that in some cases our predicted labels depict1279

the existing conditions even better than the ground truth due to annotation errors in the1280

ground truth data. For example, the points of an elbow are correctly predicted, however1281

our ground truth misclassified those. We also observe another case in Fig. 17(b) where1282

flanges are considered as parts of valves. This is also a reasonable near-miss, since flanges1283

are sometimes parts of valves. We also encounter this issue when generating our CLOI1284

ground-truth labels, where in cases it would be difficult to separate flanges from valves.1285

Regions where misclassifications are frequently encountered are usually close to the ceiling1286

or floor of the facilities in densely occluded regions as shown in Fig. 17(c) and Fig. 17(d).1287

We observe that even with human eyes, one could not distinguish the shapes close to the1288

roof. If one wants to capture these regions more accurately, a more specialized laser scanning1289

survey should be conducted. As such, low performance of our CLOI-NET algorithms in these1290
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Fig. 16. (i) Ground truth annotated points and (ii) automatically segmented points across

all CLOI facilities.
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regions is reasonable to be expected.1291

Fig. 17. (i) Ground truth annotated points and (ii) automatically segmented points gener-

ated from the oil refinery dataset.

4.5. Discussion1292

In this section we discuss the performance of CLOI-NET in two levels: (a) overall perfor-1293

mance and (b) class component performance. For the overall performance of our methodol-1294

ogy, we first investigate the robustness of our method by determining the facility bias. Then,1295

we measure the cost savings by implementing our CLOI-NET active learning approach. The1296
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Fig. 18. (i) Ground truth annotated CLOI point clusters and (ii) automatically segmented

CLOI point clusters generated from the oil refinery dataset.

second part of this section focuses on the discussion of our method’s performance on class1297

component performance.1298
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4.5.1. CLOI-NET overall performance1299

The average class segmentation accuracy and mIoU are 66.5% and 44.65% when all the1300

CLOI facilities are included for training except the one of interest to segment that is tested1301

(“all but test”). CLOI-NET has been proven to be consistent, reliable and without significant1302

bias, since the class segmentation performance for all CLOI facilities has a small standard1303

deviation (3.57% test accuracy). The CLOI-NET performance using the active learning1304

approach (“all”) has greater standard deviation (6.12%) and average accuracy of 82%, which1305

may be attributed to the greater difference between the CLOI facilities. We investigate two1306

main factors that can account for this bias of our CLOI training dataset. These are (a) the1307

point density of each CLOI facility and (b) CLOI facility diversity.1308

Point density and diversity of CLOI facilities1309

Fig. 19 shows the normalized point density across all four CLOI facilities with their 25%1310

(Q1) and 75% (Q3) percentiles. We demonstrate that the point density of the oil refinery1311

is at least one order of magnitude greater compared to the other three datasets, meaning1312

that this facility was more densely scanned. This finding is also in line with Table 9, where1313

we observe that this facility has the largest number of scans covering the largest number1314

of points in comparison to the rest of the facilities. Fig. 19 also demonstrates that there is1315

wider dispersion of data across facilities as indicated by the range of Q1−Q3 percentiles. We1316

observe that the point density is not normally distributed across CLOI facilities. Instead,1317

the point distributions are skewed towards point densities less than 200 000 points per square1318

meter of a facility especially for the petrochemical plant. This facility has larger open spaces1319

compared to the other facilities.1320

We determine (b) by training a PointNET++ network (Qi et al., 2017a) to predict whether1321

a facility is recognizable by its shapes in order to investigate facility bias. We train a1322

PointNET++ network that has as inputs non-overlapping 3D blocks of all CLOI facilities and1323

gives as outputs the predicted facility where a 3D block belongs to. If the network correctly1324

predicts from which facility the 3D block came from, it means the facility is differentiated1325

in comparison to the other CLOI facilities. In other words, this means that facilities would1326

not be similar to each other, should the network distinguish them. Fig. 20 demonstrates1327

that all four CLOI facilities are distinguishable by coloring the predictions per facility as a1328

heatmap. Light red colors indicate high precision/recall, whereas darker colors1329

64



Fig. 19. Normalized point density across all CLOI trained facilities with 25% and 75%

percentiles.

represent smaller precision/recall values. In particular, the petrochemical plant is1330

the one that according to this experiment is more easily distinguishable (87% precision and1331

77% recall) compared to the other three CLOI facilities. The oil refinery is the facility1332

that PointNET++ has more difficulty to distinguish, since its shapes have 24% likelihood1333

to be incorrectly predicted as shapes of the petrochemical plant. There are two main factors1334

for the difference in the shapes of the oil refinery facility: (a) the point density of the1335

CLOI shapes is higher in the oil refinery facility compared to the other three facilities1336

(Q1−Q3=[158, 790− 1, 079, 207]) and (b) the TLS survey accuracy is higher in comparison1337

to the other TLS surveyed CLOI facilities (< 0.7mm linearity error). This is reflected in1338
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the mIoU performance which is higher for the oil refinery facility 47%, whereas for the1339

processing unit and warehouse the mIoU is 45.125% and 45.5% respectively. These facilities1340

have similar overall performance due to the same factors. Their point densities are similar,1341

Q1−Q3 range of [3, 872−55, 240] and [12, 368−166, 108] for the warehouse and the processing1342

unit respectively. The wider range in the point density of the processing unit is attributed to1343

the fact that it is the only outdoor facility in the CLOI dataset. Technically, outdoor scenes1344

are inherently more occluded and incomplete exhibiting extreme variations in point density1345

(Hackel et al., 2016). These effects are mitigated by the limited size and constrained shape of1346

indoor facilities. The scanner properties are also comparable in the processing unit and the1347

warehouse. For example, the processing unit has a linearity error of 3mm as opposed to 2mm1348

linearity error of the warehouse (Table 9). This similarity is reflected in their mIoU metrics,1349

which are 45.125% for the processing unit and 45.5% for the warehouse. The petrochemical1350

plant has the lowest mIoU performance of 42.5% due to the different industrial shapes it1351

captures in comparison to the other CLOI facilities. For instance, the petrochemical plant1352

has around 25% industrial shapes classified as “other”. These shapes are mostly shapes1353

belonging to electrical circuits and other electrical equipment (i.e. transformers, motor1354

control centers). There are also rooms that the other facilities do not have, for instance an1355

exhibition/conference room, resulting to the majority of the “other” shapes. However, the1356

accuracy of the petrochemical plant is rewarded by the high performance of dominant classes1357

like the “other” and “cylinder” with 25% and 45% of the points respectively. Henceforth,1358

the accuracy is 70%.1359

Active Learning Cost Savings1360

We then validate our model of total annotation cost as presented in Section 3.6 on CLOI.1361

We test our methodology on all CLOI facilities and here we use the oil refinery as an example1362

to illustrate our methodology. We randomly select X% of (non-overlapping) 3D blocks of1363

the oil refinery that we want to test on and include them in the training set with the rest1364

of the CLOI facilities. We then measure the accuracy on the 1-X percentage of the 3D1365

blocks of the oil refinery dataset that were not included for training. We further calculate1366

the total annotation cost as a two-stage annotation cost from (a) the manual annotation1367

cost of the X% fraction of the oil refinery using predictions after training CLOI with no1368

pre-annotated 3D blocks from the oil refinery and (b) the manual annotation cost of the1369
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Fig. 20. Confusion matrices with (a) precision and (b) recall of network trained on all CLOI

industrial shapes.

remaining (1 − X) fraction of 3D blocks after augmenting the training with X% of the oil1370

refinery 3D blocks. We present the resulting accuracy and total annotation cost curves in1371

Fig. 21. Our analysis in Section 3.6 showed that it is never advantageous to pre-annotate1372

more than 50% of 3D blocks, as such we select annotation percentages in the range of [0, 50].1373

We also try an annotation percentage of 80% of the 3D blocks to validate consistency of1374

our results experimentally. We take four random samples at each annotation percentage in1375

order to reduce variance. The average standard deviation for all our experiments is ±0.4%.1376

Experiments were conducted for the mIoU curves as well and since they have a similar trend1377

with the accuracy curves, only the accuracy curves are illustrated in this paper.1378

We validate our theoretical model as outlined in Section 3.6 and Fig. 10. First, we prove1379

that our training accuracy curve is a concave function with decreasing slope the more data we1380

add during training. Also, we evaluate experimentally in Fig. 21 that the total cost annota-1381

tion function is a convex function with global minimum at around 25% of annotated data in1382

the oil refinery dataset. The results of the other facilities show that the optimal percentage is1383

between 20 to 30%. This gives us the insight that the optimal window annotation percentage1384

in order to minimize the total annotation cost is between 25 ± 5%. We demonstrate that1385

our accuracy curve in Fig. 21 is roughly (because of finite data) a highly non-linear, concave1386

function, in contrast to the results by Jain and Grauman (2016) where for passive (random1387
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user annotation) their curve was a linear concave function. User selective techniques such1388

as selection of 3D windows based on diversity and influence of selection could improve the1389

accuracy rate increase, therefore these techniques can be considered in future work.1390

Fig. 21. (a) Test accuracy as a function of the percentage of annotated data included during

training and (b) total annotation cost with respect to percentage of annotated data.

We then conducted a separate sensitivity analysis on the PointNET++ SFR network1391
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parameters compared to the original PointNET++ with respect to the active learning per-1392

formance for pre-annotation rates 20%, 30% and 35%, in order to validate whether the1393

selected parameters indeed yield significantly improved performance for cost optimization1394

with active learning. The results of our experiments, which are illustrated in Fig. 22, indi-1395

cate that, in all cases, the parameters of the PointNET++ SFR3 network indeed lead to1396

improved performance for the problem of manual labor cost optimization with the active1397

learning network, regardless of the industrial facility tested or the choice of metric (accuracy1398

or mIoU score). This proves the robustness of the PointNET++ SFR network, as its advan-1399

tage is not specific to passive learning, but rather generalizes to the active learning approach1400

as evaluated by the annotation cost optimization framework.1401

Fig. 22. Performance of the active learning approach with respect to the pre-annotated

data percentage on all the CLOI facilities

69



4.5.2. CLOI-NET performance on individual CLOI classes1402

All CLOI facilities had very high micro-average AUC (higher than 90%), specifically the1403

AUC for the warehouse, the oil refinery, the petrochemical plant and the processing unit1404

was 96%, 96%, 96.75% and 93.75% respectively. The AUC for the angles of the warehouse1405

and the petrochemical plant (93% and 91%) have reduced performance compared to those1406

of the other CLOI classes. The percentage of angles in the petrochemical plant dataset is1407

the lowest in comparison to the other CLOI classes in the same dataset (less than 5%),1408

which means that inherently angles are rare to find in this dataset and were also difficult to1409

distinguish even in the manual ground truth annotation. The angles of the petrochemical1410

plant have also relatively low AUC (71%), which is attributed to the channels being parts1411

of stairs or roof steelwork that is difficult to identify even with the human eye. This is more1412

evident in this facility due to the roof having more steel members to support it than the1413

other facilities. This problem can be addressed if the laser survey specifically targets roof1414

refurbishment and other laser equipment (i.e. drones) could be used to improve the accuracy1415

of the laser survey.1416

The average precision (PR), recall (R) and IoU were very high for cylinders and I-beams1417

(above 75%) for most of CLOI facilities (Table 11). Particularly, the average PR of cylinders1418

is 81.25% (std=6.3%) and the same metric for I-beams is 74.75% (std=16.8%). The reason1419

for the higher PR standard deviation of I-beams is due to their reduced PR in the warehouse1420

facility (51%). The I-beams of this facility were highly occluded (more than 50% of their1421

shape occluded), as such they were misclassified as channels or “other”. The class label1422

adaptation for channels (Step 3.5.2) improved their IoU by 5% on average and corrected the1423

misclassified channel points to I-beams and the reverse (7% increase in R and 5% increase in1424

PR of channels). R is higher for both the warehouse cylinders (81.75% on average, std=3.4%)1425

and I-beams (78.25% on average with std=3.4%). Respectively, IoU is 68.25% on average for1426

the warehouse cylinders (std=5.6%) and 61.25% for I-beams (std=12.4%). The cylinder PR1427

of the warehouse and the petrochemical plant (79% and 76% respectively) is relatively lower1428

than PR of cylinders in the other facilities. For the warehouse, this is attributed to the false1429

positives of cylinders in the corrugated steel profiles of the roof, which is a primary reason for1430

the reduced PR of cylinders (41.25%) using EdgeWise in the same dataset as well (Agapaki1431

et al., 2018). For the petrochemical plant, the PR of cylinders is lower (76%) compared to1432
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the other CLOI facilities, since it has steel trapezoid profiles in the roof and corrugated steel1433

profiles for wall cladding, which in many cases are misclassified as cylinders. Another reason1434

for the reduced PR of cylinders in the same facility is that the roof is composed of steel1435

tubular roof trusses that in the ground truth were mislabeled as “other”. Our CLOI-NET1436

correctly predicted the point clusters of the tubular steel truss as cylinders, however the1437

performance metrics are reduced due to the mislabeled ground truth. The petrochemical1438

plant has rollover cables that our CLOI-NET predicted as false positives due to the sparsity1439

of points in these clusters and highly occluded cables due to twists and congestion of conduits1440

in cable trays. Another reason for the inferior cylinder performance in the petrochemical1441

plant is that this facility has two grip strut safety metal grating walkways and stair treads1442

both with serrated diamond patterns. The complexity of these geometric patterns that in1443

many cases can be similar to cylindrical shapes leads to most of the points of the walkway1444

and stairs being incorrectly classified as cylinder points.1445

The other CLOI classes (angles, channels, elbows, valves and flanges) had lower metrics1446

compared to the dominant classes for all facilities, however they are still significant given1447

that they outperform the current practice and research that do not solve class segmentation1448

of those shapes. The petrochemical facility has initially lower than average performance in1449

channel segmentation (6% IoU) as shown in Table 11. However, our CLOI-NET methodol-1450

ogy increases IoU to 50% with 20% pre-annotated data (from Fig. 10) of the petrochemical1451

facility in the training dataset. The remaining misclassifications of channel points are partly1452

due to cable organizer side channels that are incorrectly classified as “other” in the ground1453

truth data. Another reason is that the petrochemical plant has many rectangular columns1454

which are misclassified as channels by our CLOI-NET methodology, as a result their PR is1455

63%. A third reason for the reduced R of channels (72%) is that many channels in the roof1456

are incorrectly classified as cylinders. The PR of valves is initially very low (8%) in the1457

petrochemical plant and is not greatly improved (PR=14%) due to two main reasons: (a) in1458

most cases electrical inductors are misclassified as valves and (b) the incorrectly predicted1459

valve points belong to spotlights close to the roof of the petrochemical plant. However, the1460

valves of the warehouse have satisfactory performance (57% PR, 51% R, 36% mIoU), since1461

most of them (37 out of 79 valves) are globe valves with hand wheels and check valves that1462

have distinctive geometric shape. The near-missed points of warehouse valves are mostly1463
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misclassified as flanges (Fig. 17) or points of flanged ball valves with maximum face to face1464

dimension of 33cm. We have a similar trend in the other CLOI datasets. The angles of1465

the petrochemical plant are improved with our CLOI-NET methodology (from IoU=8% to1466

IoU=14%). However, the angle performance in this unit is still the lowest compared to the1467

other CLOI facilities since the angle points were mostly parts of steel cross braces that were1468

misclassified as “other”.1469

The performance of our CLOI-NET methodology is significant despite these misclassifica-1470

tions of underrepresented CLOI classes as discussed above. Additional methods that address1471

those limitations need to be investigated. Although it is too soon to claim that the proposed1472

method will address all needs in CLOI industrial class segmentation, the experiments proved1473

that our method fills some gaps in knowledge and is capable of dealing with complex and1474

diverse industrial spaces. This method can be the foundation to segment other industrial1475

shapes.1476

5. CONCLUSIONS1477

Class segmentation in industrial point clouds remains an unsolved problem. In this paper,1478

we presented CLOI-NET, a novel deep learning and geometric method for the segmentation1479

of the most important industrial shapes in TLS point clouds, and tested it in the largest1480

dataset of real-world industrial facilities (CLOI ), generated by the authors. The validation1481

metrics showed that our CLOI-NET method is reliable, scale and TLS scanning system1482

independent. Our active learning optimization resolves the bias between the annotated1483

CLOI facilities and potential facilities that can be added in the future. Therefore, our1484

CLOI-NET method is only based on the registered industrial point cloud itself regardless of1485

the varying point densities. These support our hypothesis. Given the high performance of1486

our method compared to existing research and commercial tools on real world TLS industrial1487

point clouds containing defects such as occlusions and sparseness, we contend that there is1488

virtually minimal manual human intervention needed in our entire pipeline due to the high1489

confidence of our CLOI-NET’s predictions. We do not claim that our CLOI-NET method1490

has no manual user intervention, rather we minimize manual modeling by achieving optimal1491

performance when pre-annotating. Given the theoretical model we developed in Section 3.61492

and validated experimentally in Section 4.5.1, our CLOI-NET model with passive learning1493
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saves on average 66% (std=3.8%) of the manual labor hours needed for class segmentation.1494

The same model with our active learning methodology achieves on average 80% (std=6.1%)1495

of manual labor savings. Further work can theoretically validate the applicability of more1496

complicated models on the correlation between the learning accuracy and the annotation1497

cost.1498

The contributions of this research are the following:1499

1. Our method can deal with complex real-world industrial facility settings, such as highly1500

dense industrial spaces (oil refinery dataset). Our CLOI-NET achieved remarkably high1501

performance in all facilities, even on the processing unit, which was surveyed with 3mm1502

linearity error scanner and the survey was in gray-scale.1503

2. Our method automatically segments the CLOI shapes and as a by-product of this1504

paper, our method generates the largest annotated dataset in the built environment.1505

Researchers interested in the industrial space are welcomed to contribute to our dataset1506

directly.1507

3. Our CLOI-NET method is the first to automatically and robustly solve the class seg-1508

mentation of cylinders, I-beams and valves that have easily distinguishable geometric1509

patterns in the processing unit, warehouse and the oil refinery. It also achieves remark-1510

able performance in the remaining CLOI classes and in many cases defers from the1511

ground truth due to manual annotation errors.1512

4. Our method dramatically reduces the computational costs by applying an active learn-1513

ing method. In this way, the manual annotation time is minimized without sacrificing1514

performance and manual cost.1515

However, the proposed method does not intend to be a cure-all. It is limited on further1516

cylinder classification into pipes, circular hollow sections and conduits. This can enhance1517

the class segmentation and subsequently add value to the IgDT generation. Further cylinder1518

classification is part of future work that we want to address. Although our method presents1519

lower metrics for shapes with ambiguous and noisy edges like structural steel shapes and1520

flanges, it is important to consider that for these shapes, it is difficult and ambiguous even1521

for the human eyes to recognize them. Still, a more detailed TLS survey should be conducted1522

towards accurate segmentation of industrial steel shapes, should the modelers want higher1523
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performance. Further investigation of the TLS survey parameters with the CLOI-NET1524

performance is an interesting direction to be considered in future work.1525

Our method is designed with several practice implications, i.e. automated segmentation1526

of important industrial shapes, fully automated and ready to test on unlabeled facilities.1527

Therefore, we first expect to save industrial managers’ valuable time in data collection and1528

annotation of their facilities, so that they can concentrate their efforts on tackling unprece-1529

dented circumstances and solving problems that necessarily demand their expertise. Sec-1530

ondly, it can be applicable to spaces where CLOI classes appear, since it decomposes large1531

industrial open spaces into meaningful smaller windows. Thirdly, our method works directly1532

on the point cloud data and as a result is not dependent of a data capturing technique and1533

system.1534

Future planned research activities will focus on (1) the overcoming of the above-mentioned1535

limitations and addressing some of the assumptions; (2) instance segmentation of CLOI1536

shapes and use classification of cylinders; and (3) fitting IFC objects to the generated labeled1537

point clusters.1538
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