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(S I N I

Abstract: Alzheimer’s disease is one of the major challenges of population ageing, and diagnosis
and prediction of the disease through various biomarkers is the key. While the application of deep
learning as imaging technologies has recently expanded across the medical industry, empirical design
of these technologies is very difficult. The main reason for this problem is that the performance of the
Convolutional Neural Networks (CNN) differ greatly depending on the statistical distribution of
the input dataset. Different hyperparameters also greatly affect the convergence of the CNN models.
With this amount of information, selecting appropriate parameters for the network structure has
became a large research area. Genetic Algorithm (GA), is a very popular technique to automatically
select a high-performance network architecture. In this paper, we show the possibility of optimising
the network architecture using GA, where its search space includes both network structure configu-
ration and hyperparameters. To verify the performance of our Algorithm, we used an amyloid brain
image dataset that is used for Alzheimer’s disease diagnosis. As a result, our algorithm outperforms
Genetic CNN by 11.73% on a given classification task.

Keywords: Alzheimer’s disease; classification; deep learning; convolutional neural network;
genetic algorithm; model optimisation

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, and is one of the
major problems of global population ageing. With advances in relevant technologies,
there is ongoing research into the diagnosis and treatment of dementia.

Amyloid, as well as the tau (7) protein, is considered as one of the main causes of AD
because this protein is found in brains of the majority of patients with AD. Moreover, as de-
position of amyloid occurs gradually and long before the disease is clinically significant,
it is regarded as a very important factor of screening for AD [1].

Standard Uptake Value Ratio (SUVR) [2], is a classical, quantitative analysis method,
to analyse Positron Emission Tomography-Computed Tomography (PET/CT). This method
calculates the ratio of two mean activity concentrations of Region of Interest (Rol) or Vol-
ume of Interest (Vol), and the reference region. These activity concentrations are calculated
using the intensity of the image, which has been regularised using patients’ body weight
and injected radioactivity. SUVR provides an objective and quantitative update ratio. How-
ever, it is very difficult to decide Rol/ Vol and takes a long time to analyse. Furthermore,
generalising the threshold for the diagnosis is impossible due to the noise and inconsistency
of devices.

Recently, with the development of image processing techniques, various deep learning-
based technologies are applied across different areas of medical industry [3,4]. Specifically,
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image classification techniques extract relevant features from input images via training,
and use these features to perform classification.

If an appropriate algorithm is used for the given domain, a strong performance is
observed. However, depending on the statistical distribution of the input data, the error
space formed by the loss function is completely different. Therefore, various optimisation
techniques are required. Zoph et al. [5] suggested a machine learning-based method to
search for the best network structure for an input data. It decides the ideal structure for
each layer using the information from previous hidden layers.

Genetic Algorithm (GA) [6] is a computational model that simulates methodologies de-
scribed from Darwin’s theory of evolution, such as natural selection and genetic mechanisms.
As GA searches the optimal solution through simulation of the natural evolution process, it is
beneficial to use this algorithm for problems that require complicated algorithms to find their
solutions. Genetic CNN [7] is a popular example that is developed from GA, which optimises
the structure of CNN models. Network structure configured from the algorithm showed
similar performances when compared with state-of-the-art classification networks.

However, one limitation of Genetic CNN is that it does not consider a set of hyper-
parameters, which affects the rate of convergence of the network on the error surface.
Examples of such hyperparameters include activation functions and optimisation algo-
rithms. Appropriate selection of these parameters will lead to faster convergence to the
global minimum point on the error surface. This leads to excellent task performance,
and also avoids problems such as overfitting.

In this paper, we show that our version of genetic algorithm is capable of finding the
best-performing CNN architecture, including activation function and optimisation algorithm,
which is specific for the given input dataset. The input dataset used in the algorithm is the
set of PET/CT images with amyloid. As these images are used for early diagnosis of AD,
the dataset is appropriate for extracting features of lesions associated with AD.

2. Related Works
2.1. Convolutional Neural Networks

A Convolutional Neural Network (CNN) [8] is a type of multilayer perceptron that
originates from the behaviour of the visual nervous system of animals. Due to its nature,
networks with layers of CNN outperform other type of layers, such as Bag of Visual Words,
for tasks involving visual features.

CNN models consist of a convolution layer, activation layer, pooling layer, and fully
connected layer. Figure 1 visualises the structure of a basic CNN model. The convolution
layer involves convolution filtering of input images to extract feature maps, and the
activation layer introduces non-linearity to these feature maps. Non-linearity is important
in neural networks because it adds complexity to the network, which allows the network
to learn complex, non-linear classifiers for the input data. The pooling layer abstracts
these feature maps and changes the dimension of them if required. Finally, the fully
connected layer uses information obtained from the convolution and pooling layers to
perform classification.

To find the best combination of parameters that minimises the loss function (or the
cost function) of the model, an optimisation algorithm is used. This algorithm updates
parameters of the CNN during the backpropagation process.

Outputs of the fully connected layer are usually represented as a linear combination
of input and weights, as shown in (1).

gi= f( Y w;jx;, bj) (1)
i=0

where J; is the output, x; is the input, b; is bias, and w; ; is the weight of the fully connected
layer. f is an activation function.
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Typical cost function for optimising fully connected networks is Mean Squared Er-
ror (MSE).
J(w;j) = E[e*(t)] = E[(y; — 9,)°] )
where y; is the ground truth value and ] () represents a loss or cost function.

Optimisation of the weight is often done using Gradient Descent (GD) [9] tech-
nique (3,4).

d] Wi
Wii1j = Wej — 1] aw, 3)
oWy ; )
W: = —=2(Yti — Uri)Xei 4)

where 7 is a learning rate.

As shown in (4), the optimisation algorithm is heavily affected by the input of the
layer. Furthermore, the output of the layer has been processed with an activation function.
Therefore, proper selection of both activation function and optimisation algorithm is
essential for the performance of the network.

Fully Connected
Layer
Convolution Activation Pooling

Input Layer Layer Layer Output

Backpropagation with Optimisation Algorithm

Figure 1. Basic structure of a typical Convolutional Neural Network (CNN).

The cost function, as a result of the relationship between input data and parameters of
the network, defines an error surface. Figure 2 represents a simple error surface defined by
the cost function. This surface affects the accuracy and convergence speed of the network.
Therefore, input data does effect the performance of the neural networks significantly,
and good architectural design is required to ensure this performance.
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Figure 2. Example error surface defined by the cost function, input dataset and parameters of
the network.
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Recently, several CNN structures have been investigated to achieve better perfor-
mance, specially for the classification tasks. These structures can be categorized into three
types; Chain-shaped; Multiple-path; and Highway Network. A chain-shaped network is a
simple, linear structure that is used from the beginning of CNNSs. Still, many state-of-the-art
networks, such as VGG [10], perform very well with this structure. Multiple-Path Networks
increase the number of layers that are connected in parallel, and concatenate or add the
results of these layers as the input for the next layer. ResNet [11] and GoogleNet [12] are
popular examples of this block. Finally, highway network [13] uses the output of a layer as
input for all proceeding layers. DenseNet [14] is a very popular network that successfully
adapts this network structure.

2.2. Hyperparameters

As mentioned in the previous section, activation function and optimisation algorithm
are the core components of the CNN. In addition, these hyperparameters will increase the
convergence speed of the model, and greatly change the score of the models by avoiding
overfitting [15] and vanishing gradient problems [16].

The activation function is used to introduce non-linearity to the network. Various acti-
vation functions are suggested. Rectifier Linear Unit (ReLU) [17], which is derived from
the action potential of neurons, is one of the most popular activation functions. As ReLU
outputs all negative numbers to zero, negative nodes will die out. In order to solve this
problem (dying ReLU), Leaky ReLU [18] is introduced. In this function, negative values
are multiplied with a small parameter, &, and not zeroed out. Finally, Clipped Relu [19] is
introduced in order to prevent the exploding gradient problem of ReLU. It sets a ceiling
value so that large values are ‘clipped’ to the ceiling number.

On the other hand, an optimisation algorithm is used to find a model’s parameters
that minimise the loss function of the model. One popular method is Stochastic Gradient
Descent (SGD) [20], which is a modification of GD [9]. The difference between GD and SGD
is that GD uses the entire dataset to update gradient, whereas SGD updates the gradient
with a random sample within the dataset. As parameter values calculated with part of the
dataset are approximate values, this method is a stochastic method. In addition, the pro-
cedure of SGD might introduce oscillation into the path of the algorithm. To prevent the
oscillation problem, a momentum value is introduced. This algorithm is called Stochastic
Gradient Descent with Momentum (SGDM) [21].

SGDM uses a fixed learning rate to all parameters. On the other hand, Root Mean
Square Propagation (RMSProp) [22] automatically applies a different learning rate to each of
the parameters. It uses exponential moving average to find the gradient of the parameters.
RMSProp effectively decreases the learning rate for parameters with a large gradient, and vice
versa for small gradient parameters. Finally, Adaptive Moment Estimation (Adam) [23] uses
moving averages of both gradient and squared gradient, which are estimations of mean
and variance values, respectively. If the gradient change is minimal, a parameter update
can get some momentum from the moving average. On the other hand, if the gradient
is small, the moving average of the gradient also decreases, leading to a small change in
parameter values.

2.3. Network Architecture Search

NAS is a research field that emerged with the development of deep learning and DNNSs.
In order for a deep learning-based model to perform effectively at a given task, exceptional
design of the network architecture is required. Automation of the design process using
machine learning is one solution of the problem, as machine learning is proven to be very
effective in many automation tasks. This is the main objective of NAS [24].

The computational complexity of NAS is usually defined as O(nf), where n is the
number of architectures that are used in the evaluation process, and f is the average evalua-
tion time. In addition, as neural network models train using gradient-based optimisation
techniques, the cost of each training process is high. Therefore, an effective NAS algorithm
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must result with an excellent performing architecture, without increasing the complexity
of the task.

Various efforts have been made to effectively automate the design process. Methods
such as Reinforcement Learning [25], Gradient Descent-based approach [26], GA [27]
and Bayesian optimisation [28] are used to perform successive NAS. All of these NAS
projects use search spaces that are pre-defined by researchers, in order to obtain a desired
performance with minimal computational complexity.

2.4. Genetic CNN

Genetic CNN [7] is one example of the evolutionary approach to NAS. This algorithm
develops ideas from Genetic Algorithm to apply to CNN configurations. Set of networks
created from the algorithm has performed better than the average performances of stae-of-
the-art classification networks.

Genetic CNN first encodes the connection between convolutional layers of initial candi-
dates. Then, the algorithm selects CNN candidates with the best fitness score-performance
of the network. These selected ones will then create their offsprings through crossover
process. Finally, mutation is applied to random selection of candidates.

3. Model Optimisation
3.1. Structure of the Algorithm

As the performance of the CNN model is greatly affected by both network architec-
ture and hyperparameters, the search space suggested by Genetic-CNN is insufficient.
Therefore, in this paper, in order to find the effective network architecture for a given input,
we select both network configurations and hyperparameters as the search space, and use
GA to search for the ideal structure. Figure 3 illustrates the procedure of our system.

Generate CNN Calc. accurac
Start model —> y
. in CNN model
g(population)

‘ }

Calc. fitness
function
f(model)

Select :
Rank-based
s(chromosome)

|

Apply Crossover :
crossover & [« Uniform
mutation c(selected)

Figure 3. Block diagram explaining the process of our Genetic Algorithm (GA).

In order for any Genetic-type algorithm to optimise a given task, it first requires
mapping of the solution into the search space of the algorithm. The key to the mapping
process is to find a suitable representation scheme, so that solutions can be successfully
described as chromosomes-sequences of genes. Genes can be represented by binary digits,
alphabets, or floating point numbers.
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For our algorithm, we use binary representation to encode connections between
convolutional layers. An example of encoding such a connection is shown in Figure 4.
We define a set of convolutional layers—layers that are in between input and pooling
layers; two pooling layers; or pooling and fully connected layers—as a stage. For each layer
within a stage, we call it a node. The structure shown in Figure 4 has one stage, with three
nodes within the stage. We then convert the connection between each node into binary
numbers. Only forward connections are allowed, and preceding connections of each node
are encoded. Finally, stages are separated with bars, and nodes are separated with hyphens.
The number of bits required to encode a network with S stages, where each stage has Kg
nodes, and is calculated with (5).

number of bits = Z%KS(KS -1) (5)
S

Conv » Pool

\ 4

(a) Input » Conv » Conv

Encoding Area

(b) INPUT |~ — -> — — =»| POOL

Encoded as: 1-01

Figure 4. Encoding stages of architectures into binary strings. (a)-set of convolutional layer;
(b)-encoded version of the layers in (a). In (b), numbers before and after the hyphen represent
connections to node A2 and A3, respectively.

We also encode activation functions and optimisation algorithms into bits, and separate
them with bars. The number of bits required for # hyperparameters can be calculated using (6).

number of bits = [log,(n) ] +1 (6)

Definition of the encoding procedure is very important for our process, as it is used
from the start of the algorithm—initialization. This step generates a population of CNN
models in encoded, binary form. This step generally uses information from a previous
generation to generate models, but for the first generation, it initialises the process by
randomly creating a number of candidates. Each of the population is called as a chromo-
some, s. During this process, each bit of a chromosome is sampled independently using a
Bernoulli distribution.

With provided population of networks, the algorithm decodes each of them and
calculates the classification accuracy. These accuracies are used as fitness scores for the
algorithm. The fitness score is also considered as the objective function of the algorithm,
as it decides the survival of each chromosome. In our algorithm, we set an optimal fitness
score, and repeat the entire procedure until a CNN model achieves this score.

If none of the population achieved the optimal fitness score, our algorithm then selects
number of chromosomes, using a rank-based system. In this system, chromosomes with
higher classification accuracies will survive, which ensures fast convergence of the algorithm.

After selection stage, survived chromosomes create the next generation of individuals
through a uniform crossover process, c. This process selects a random pair of parent
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chromosomes, and generates offspring using a random variable. If this variable is larger
than a predefined threshold, parent 1’s gene is taken. Else, parent 2 is chosen.

Finally, mutation is applied to the surviviving chromosomes. This process changes
each gene in the chromosome with some probability, increasing the search space of the
problem. Mutation occurs in a fixed number of generations, and can occur on chromosomes
that have been generated as a result of the crossover process.

As our algorithm uses classification accuracy as the measurement of fitness, the re-
sulting network structure and hyperparameter selection depend significantly on the input
dataset. In this paper, we test our algorithm using an 18F-Florbetaben Amyloid PET/CT
image dataset, which is used to diagnose symptoms of AD.

3.2. Dataset

The PET/CT dataset used in this paper was sampled from 18F-Florbetaben Amyloid
PET/CT images recorded by the Nuclear Medicine department in Dong-a University
Hospital between November 2015 to February, 2019. The sampled dataset was then
verified by the Neurology department in the same hospital, through clinical tests such
as neurophysiological testing. We eliminated samples with different cases of dementia.
The final dataset included brain images of 414 patients, who have been diagnosed as
Normal Control (NC), Mild Cognitive Impairment (MCI), and AD. Images of each classes
are shown in Figure 5.

Figure 5. Multi-slices of pre-processed 18F-Florbetaben imaging by disease group. Each column
shows 7 axial planes observed at equal intervals, and a sagittal plane. The blue lines represent the
extracted level of each axial plane.

The original dataset, which is reconfigured from a PET camera, is a set of 3D images
of size 400 x 400 x 110. This image represents a section of brain with a thickness of 1.5 mm.
Each individual PET is non-linearly spatially transformed from the native PET image space
to Montreal Neurological Institute (MINI) template space using an in-house PET template
created from Dong-A University Hospital [29,30]. Each voxel count was then normalized
to the whole cerebellar mean uptake to correct the image intensity due to differences in the
amount of radioactive isotopes injected or individual characteristics. Specifically, all images
were processed using MATLAB2018A and SPM12 old_normalize modules beforebeing used
as an input of the classifier.

After all sampling and processing, our dataset has a size of 95 x 79 x 68. To use
as the input for 2D Classification networks, 68 separate images from each patient were
extracted and the images were resized to 100 x 100. The dataset was divided into training
and test sets with a ratio of 9:1. Stratified sampling was used to create these sets of data.
Detailed information about this dataset is shown in Table 1.
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Table 1. Details of the dataset.

Image Type NII Images
Classes Number of Subjects Number of Images

Train Set

AD 159 10,812

MCI 130 8840

NC 85 5780
Test Set

AD 17 1156

MCI 14 952

NC 9 612

4. Results and Discussion
4.1. Experiment Settings

For the experiment, we created a neural network with S = 3, with nodes (K3, Ky, K3) =
3,4,5. Using the relevant equation from Genetic - CNN, we can calculate the number of
bits that is required to encode the network.

Y SKs(Ks —1) = 3(2) +4(3) +5(4) = 19 @)

In addition, we included two hyperparameters, activation function and optimisation
algorithm, in the search space. Three activation functions, ReLU, Leaky ReLU, and Clipped
ReLU, were used. We set & value of Leaky ReLU as 0.01, and ceiling of Clipped ReLU as 10.
Similarly, three optimisation algorithms were used; SGDM with a momentum value of 0.9,
RMSProp with B = 0.999 and Adam with 1 = 0.9,8; = 0.999. Each hyperparameter
requires two extra bits when encoded, and the encoding rule is described in Table 2. Overall,
the total length of the chromosome was 23.

Table 2. Encoding rule for hyperparameters.

Activation Function Optimization Algorithm
Hyperparameter Bit Representation Hyperparameter Bit Representation
ReLU 00 SGDM 00
Leaky ReLU 01 RMSProp 01
Clipped ReLU 11 Adam 11

The number of individuals, N, is set to 10, and the algorithm will repeat for 50 genera-
tions. For the evaluation process, each selected chromosome is decoded into the network
architecture. Each of the decoded networks were trained for 50 epochs and tested to obtain
the accuracy of the network. Accuracy values were then used as fitness value for the
selection process.

4.2. Results

The results of the experiment are shown in Table 3. For each of the generations stated
in the table, maximum, minimum and average accuracy of 10 individuals are shown.
The best performing combination and network structure and hyperparameter set is also
listed as encoded form.
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Table 3. Results of the genetic algorithm, showing accuracy of generated networks.

Number of Accuracy (%) Best Combination of Network Structure and
Generations Maximum Minimum Average Hyperparameters
0 46.45 40.89 43.61 0-11 | 1-01-111 | 1-01-110-1101 | 10 | 00
1 46.45 38.25 42.78 0-11 | 1-01-111 | 1-01-110-1101 | 10 | 00
2 47.81 44.89 46.68 0-11 | 1-10-111 | 1-01-110-1101 | 10 | 00
5 47.81 48.63 48.24 0-11 | 1-10-111 | 1-01-110-1101 | 10 | 00
10 64.64 58.49 61.56 1-01 | 1-10-111 | 1-01-110-1101 | 01 | 01
20 71.48 67.86 69.67 1-01 | 0-11-010 | 1-01-101-1101 | 10 | 00
50 82.64 80.84 81.74 1-11 | 1-10-111 | 1-11-011-0111 | 10 | 10
Figure 6 visualises the accuracy values for each generation in graph form. Convergence
of three accuracy values is observed, showing that all individuals in the algorithm found
the ideal neural architecture as the number of generations increases.
80 \/—\//‘/
§ 60 _/_/_/_/f
:(3 30

N
S

5

o

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Number of Generations ——Max % =—Min % Avg %

Figure 6. Graph showing the accuracy of networks against the number of generations.

To evaluate the performance of our algorithm with other state-of-the-art GAs, we ran
the original Genetic - CNN with the same input dataset, and compared the average accuracy
of individuals for different numbers of generations. This algorithm uses ReLU and Adam
as hyperparameters to calculate their fitness values. The result is shown in Table 4. In early
generations, individuals in the Genetic-CNN algorithm seem to learn faster. However,
after the final generation, our algorithm found a neural architecture, including set of
hyperparameters, that had 11.73% higher classification accuracy for given input data.

Table 4. Comparison of our algorithm with Genetic CNN [7].

Number of Generations Average Accuracy (%) Difference (%)
Genetic CNN [7] Ours
0 23.29 43.61 20.32
1 23.29 42.78 19.49
2 28.95 46.68 17.73
5 51.91 48.24 —3.67
10 58.51 61.56 3.05
20 63.61 69.67 6.06
50 70.01 81.74 11.73

Our algorithm has four further bits compared with Genetic-CNN, due to the larger
search space. However, the increase in processing time is minimal. The processing times
required to obtain the result shown in Table 4 for Genetic-CNN and our algorithm were
618,278 s and 619,784 s, respectively. Only an increase of 0.24% was observed, which
is negligible.
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The final network architecture is visualised in Figure 7. The first stage of the network
is a residual architecture that is used in ResNet. The next stage has a multiple-path network
similar to GoogLeNet, as outputs of three previous layers are used as input of other
convolutional layers. The final stage has a highway-style structure, but not as complex
as DenseNet. In addition, this network uses Clipped ReLU and Adam as their activation
function and optimisation algorithm, respectively.

We also compared the network architecture from our genetic process to other state-of-
the-art classification networks. Table 5 lists the accuracy of each network. The number of
weighted layers in each network is also listed because this is related to the computational
complexity of the network. Deeper networks typically have a better classification accuracy
for any input dataset, but with the cost of computational complexity. An ideal deep learning
network should perform well (high accuracy) and have a small number of layers.

From the table, we can see that the performance of our network is better than all other
state-of-the-art networks, except for ResNet-50, with 50 weighted layers. However, the number
of layers in our network is significantly lower than that of ResNet (more than 3x lower).
In addition, as the performance of the network with similar number of layers, VGG 16, is much
worse than ours, it is possible to deduce that our network is extremely powerful.

Input

i

3 x 3 Conv
i

3 x 3 Conv
i

3 x 3 Conv
i

Pooling

]

/ 3 x 3 Conv \

3 x 3 Conv 3 x 3 Conv

\‘ 3 x 3 Conv ‘/

i
Pooling
i
3 x 3 Conv
i
3 x 3 Conv

3 x 3 Conv
i
3 x 3 Conv
¥
3 x 3 Conv
i
Pooling
i
Fully Connect
i
Fully Connect
¥

Softmax

Figure 7. Final network architecture suggested by GA.
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Table 5. Comparison of our network with state-of-the-art networks.

Network Number of Layers Accuracy (%)
AlexNet [31] 8 55.83
VGG-16 [10] 16 57.79

SqueezeNet [32] 18 68.37
Autoencoder [33] - 69.63
GoogLeNet [12] 22 70.45
ResNet50 [11] 50 85.20
Ours 14 81.74

5. Conclusions

In this paper, the aim was to optimise the configuration of CNN models for a given
input dataset, using our algorithm. With 18F-Florbetaben Amyloid PET/CT images,
architectures from our algorithm achieved an average classification accuracy of 81.74%,
with a network consisting of only 14 weighted layers. In addition, we observed that accu-
racy values (minimum, maximum and accuracy) converged as the generation progressed.
This proves that our algorithm is able to find the optimum set of network structure and
hyperparameters, and is significantly better than other genetic algorithms.

In future, we aim to adapt our genetic algorithm to include various input datasets,
as each input will create a different error surface for the classification task. Moreover,
it would be ideal to include a further selection of hyperparameters.

Author Contributions: Conceptualization, S.L., D.-YK. and J.P; Data curation, S.L., HK. and D.-Y.K;
Formal analysis, S.L., ].K. and J.P.; Funding acquisition, D.-Y.K. and J.P,; Investigation, S.L., H.K.
and J.P; Methodology, S.L. and H.K,; Project administration, S.L., D.-Y.K. and J.P.; Resources, S.L.
and H.K.; Software, S.L. and H.K,; Supervision, D.-Y.K. and J.P,; Validation, ].K.; Visualization, ].K;
Writing—original draft, ].K.; Writing—review & editing, J.K., D.-Y.K. and J.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation (NRF) funded by the
Ministry of Science, ICT & Future Planning (NRF-2018R1A2B2008178) & Brain Busan 21+ Program.

Institutional Review Board Statement: This study was approved by the Institutional Review Board
(IRB) of Dong-A University Hospital.

Informed Consent Statement: Informed consent was obtained from all individual participants
included in the study.

Data Availability Statement: The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Roychaudhuri, R.; Yang, M.; Hoshi, M.M.; Teplow, D.B. Amyloid B-Protein Assembly and Alzheimer Disease. J. Biol. Chem. 2009,
284, 4749-4753.

2. Yoder, KK, Basic PET Data Analysis Techniques. In Positron Emission Tomography-Recent Developments in Instrumentation, Research
and Clinical Oncological Practice; IntechOpen: London, UK, 2013. doi:10.5772/57126.

3.  Higaki, A.; Uetani, T,; Ikeda, S.; Yamaguchi, O. Co-authorship network analysis in cardiovascular research utilizing machine
learning (2009-2019). Int. ]. Med. Inform. 2020, 143, 104274.

4. Myszczynska, M.A.; Ojamies, PN.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, ].D.; Ferraiuolo, L.
Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440-456.

5. Zoph, B,; Vasudevan, V,; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-22 June 2018;
pp. 8697-8710.

6.  Zhi,H; Liu, S. Face recognition based on genetic algorithm. J. Vis. Commun. Image Represent. 2019, 58, 495-502.

7. Xie, L.; Yuille, A. Genetic CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV),

Venice, Italy, 22-29 October 2017; pp. 1388-1397.


https://doi.org/10.5772/57126

Appl. Sci. 2021, 11, 744 120f 12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.
25.
26.
27.

28.

29.

30.

31.

32.

33.

LeCun, Y.; Boser, B.; Denker, ].S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to
Handwritten Zip Code Recognition. Newural Comput. 1989, 1, 541-551.

Curry, H.B. The method of steepest descent for non-linear minimization problems. Q. Appl. Math. 1944, 2, 258-261.

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
Int. Conf. Learn. Representat, San Diego, CA, USA, 7-9 May 2015.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Szegedy, C.; Liu, W,; Jia, Y.; Sermanet, P,; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7-12 June 2015; pp. 1-9.

Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training Very Deep Networks. In Advances in Neural Information Processing Systems 28;
Curran Associates, Inc.: Montreal, QC, Canada, 7-10 December 2015; pp. 2377-2385.

Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22-25 July 2017; pp. 2261-2269.
Mohandes, M.; Codrington, C.W.; Gelfand, S.B. Two adaptive stepsize rules for gradient descent and their application to the
training of feedforward artificial neural networks. In Proceedings of the 1994 IEEE International Conference on Neural Networks,
Orlando, FL, USA, 28 June-2 July 1994; Volume 1, pp. 555-560.

Weir, M.K. A method for self-determination of adaptive learning rates in back propagation. Neural Netw. 1991, 4, 371-379.
Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel, 21-24 June 2010 ; pp. 807-814.

Maas, A.L.; Hannun, A.Y.;; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the
30th Int. Conf. Mach. Learn, Atlanta, GA, USA, 17-19 June 2013.

Hannun, A.Y,; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al.
Deep Speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:abs/1412.5567.

Bottou, L. Online Learning and Stochastic Approximations. In On-Line Learning in Neural Networks; Publications of the Newton
Institute, Cambridge University Press: Cambridge, UK 1999; pp. 9-42.

Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145-151.

Tieleman, T.; Hinton, G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude. In COURSERA:
Neural Networks for Machine Learning; COURSERA: San Diego, CA, USA, 2012.

Kingma, D.P;; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd Int. Conf. Learn. Representat,
San Diego, CA, USA, 7-9 May 2015.

Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. J. Mach. Learn. Res. 2019, 20, 1-21.

Zoph, B,; Le, Q.V. Neural Architecture Search with Reinforcement Learning. arXiv 2017, arXiv:cs.LG/1611.01578.

Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. arXiv 2019, arXiv:cs.LG/1806.09055.

Elsken, T.; Metzen, ].H.; Hutter, F. Simple And Efficient Architecture Search for Convolutional Neural Networks. arXiv 2017,
arXiv:stat. ML/1711.04528.

Kandasamy, K.; Neiswanger, W.; Schneider, ].; Poczos, B.; Xing, E.P. Neural Architecture Search with Bayesian Optimisation and
Optimal Transport. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal,
QC, Canada, 3-8 December 2018; pp. 2020-2029.

Kang, H.; Kim, W.G,; Yang, G.S.; Kim, HW.; Jeong, ].E.; Yoon, H.J.; Cho, K,; Jeong, Y.J.; Kang, D.Y. VGG-based BAPL Score
Classification of 18F-Florbetaben Amyloid Brain PET. Biomed. Sci. Lett. 2018, 24, 418-425.

Kang, H.; Park, J.S.; Cho, K,; Kang, D.Y. Visual and Quantitative Evaluation of Amyloid Brain PET Image Synthesis with
Generative Adversarial Network. Appl. Sci. 2020, 10, 2628.

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1106-1114.

Iandola, EN.; Han, S.; Moskewicz, M.W.; Ashraf, K; Dally, W.].; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:cs.CV/1602.07360.

Goodfellow, I; Bengio, Y.; Courville, A. Autoencoders. In Deep Learning; MIT Press: Cambridge, MA, USA, 2016.



	Introduction
	Related Works
	Convolutional Neural Networks
	Hyperparameters
	Network Architecture Search
	Genetic CNN

	Model Optimisation
	Structure of the Algorithm
	Dataset

	Results and Discussion
	Experiment Settings
	Results

	Conclusions
	References

