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Abstract
Detecting individual pronunciation errors and diagnosing pro-
nunciation error tendencies in a language learner based on
their speech are important components of computer-aided lan-
guage learning (CALL). The tasks of error detection and er-
ror tendency diagnosis become particularly challenging when
the speech in question is spontaneous and particularly given
the challenges posed by the inconsistency of human annota-
tion of pronunciation errors. This paper presents an approach
to these tasks by distinguishing between lexical errors, wherein
the speaker does not know how a particular word is pronounced,
and accent errors, wherein the candidate’s speech exhibits con-
sistent patterns of phone substitution, deletion and insertion.
Three annotated corpora of non-native English speech by speak-
ers of multiple L1s are analysed, the consistency of human an-
notation investigated and a method presented for detecting in-
dividual accent and lexical errors and diagnosing accent error
tendencies at the speaker level.
Index Terms: pronunciation, CAPT, CALL, speech recogni-
tion

1. Introduction
Computer Assisted Pronunciation Training (CAPT) is an im-
portant component of Computer Aided Language Learning
(CALL). Two key tasks in providing useful feedback to a
learner to improve their pronunciation are error detection, iden-
tifying words that are pronounced incorrectly, and error ten-
dency diagnosis, detecting speakers’ overall tendencies to make
particular types of errors. Spontaneous speech provides addi-
tional constraints to CALL tasks, as it tends to be less fluent,
containing non-words, grammatical errors and hesitations. The
text being spoken is not known in advance and varies between
speakers so has to be recognised by an automatic speech recog-
niser (ASR), inevitably introducing noise in the transcriptions.

The most direct way to evaluate pronunciation is free phone
recognition. Systems are trained to directly recognise the appar-
ent phones pronounced by the speaker so they can be compared
to canonical pronunciations [1, 2]. Problems with this approach
include scarce annotated training data and variability in how
different speakers render each phone. These have been tackled
by recognising articulatory features instead of phones [3, 4] and
employing multi-task learning to incorporate speech data in the
speakers’ native languages (L1s) [5, 6]. Recently, end-to-end
approaches have been developed [7, 8] to directly detect errors
from acoustic features.

A common problem, however, underlying all supervised er-
ror detection methods is that inter-annotator agreement in la-
belling of pronunciation errors is difficult to achieve [9]. These

agreements have been shown to be better, on the other hand,
when diagnosing error tendency at the speaker level [10]. This
suggests that, while a speaker’s tendency to pronounce a cer-
tain phone incorrectly can be ascertained objectively, which of
the instances of the speaker’s realisations of that phone will be
heard as incorrect will vary between listeners.

Approaches to obtain a more reliable ground truth than
human annotation include using motion sensors on speakers’
mouths [11] and even MRI scanning [12] to directly measure
articulation, but such techniques have limited practical appli-
cability due to scarcity of training data and difficulty assign-
ing physical metrics to pronunciation perceived by a listener.
Another common approach is dynamic time warping (DTW)
[13] to align and compare the non-native speaker’s utterance
to an utterance of identical text by a native. As this requires
prior knowledge of the text being read, however, it cannot be
used with spontaneous speech. A related but text-independent
method was introduced in [14], using self-DTW to compare tri-
phones to other tri-phones within the speech of the same speaker
and thus detect errors in a unsupervised manner.

Pronunciation scoring methods detect errors using confi-
dence features derived from the automatic speech recogniser
(ASR), including log likelihood [15], likelihood ratio [16, 17],
Goodness of Pronunciation (GOP) [18, 6] and phone posterior
probability [10, 19]. These approaches are mostly employed on
read speech as they rely on the ASR having detected the cor-
rect word sequence, though some work has produced promising
results on spontaneous speech [20, 21].

To avoid the ASR noise problems associated with free
phone recognition and confidence measures, Extended Recog-
nition Networks (ERN) generate a finite number of candidate
errorful pronunciations using phonological rules and employs
forced alignment to determine whether the candidate errorful or
canonical pronunciations are more likely for each word [22, 23]
or overall (for error tendency diagnosis) [24]. In [25], candidate
pronunciations were automatically learned from the canonical
pronunciation and spelling of each word, allowing end-to-end
trainable error detection, though this was only evaluated on read
speech. These methods use 1-best outputs so, unlike pronunci-
ation scoring, are not probabilistic and so don’t provide confi-
dence estimates or allow incorporation of prior probabilities.

This paper builds on the above work by presenting a frame-
work to explicitly divide pronunciation errors into accent and
lexical errors, generate a dictionary of candidate pronuncia-
tions for each, perform lattice forced-alignment therewith and
use pronunciation scoring on features from the resultant lattices
for probabilistic error detection and tendency diagnosis of each
type of error. This approach is investigated on three corpora.
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2. Accent and lexical errors
Consider a speaker speaking a word wi (e.g. the word the). Let
the word’s intended pronunciation be the sequence of phones
ψ

(wi)
1:N = ψ

(wi)
1 , ψ

(wi)
2 ...ψ

(wi)
N that the speaker is trying to say

(i.e. thinks is the correct lexical pronunciation of the word) and
the apparent pronunciation be the sequence of phones φ(wi)

1:M =

φ
(wi)
1 , φ

(wi)
2 ...φ

(wi)
M that a listener would hear, given the way

the speaker rendered the word.
The word wi has a set of canonical pronunciations which a

listener would recognise as correct, represented by the pronun-
ciation dictionary entry D(0)

wi (e.g. D(0)
the ={/dh ax/, /dh iy/}). A

lexical error occurs when the intended pronunciation is not one
of the canonical pronunciations (i.e. the speaker does not know
the correct pronunciation of the word):

ψ
(wi)
1:N /∈ D(0)

wi (1)

e.g. pronouncing subtle as /s ax b t l/.
An accent error occurs when the intended pronunciation

does not match the apparent pronunciation (i.e. the speaker pro-
nounces the correct phonemes in a way that sounds incorrect):

φ
(wi)
1:M 6= ψ(wi)

1:N (2)

e.g. pronouncing the as /d ax/.
When processing speaker audio using an ASR, the intended

pronunciation cannot be directly inferred, and it is only possible
to ascertain the apparent pronunciation and compare it with the
canonical pronunciations. However, there are other expected
properties of the two types of errors that should make them dis-
tinguishable. Lexical errors depend on the graphemic rather
than phonemic rendering of a word (e.g. someone who pro-
nounces the silent b in subtle is not likely to also pronounce
scuttle as /s k ax b t l/), while accent errors are uniquely a prod-
uct of the canonical phone (e.g. someone pronouncing the as
/d ax/ would be more likely to also pronounce that as /d ah t/).
Separate models can thus be defined for the production of each,
conditioned on canonical pronunciation for accent errors, and
on spelling for lexical errors.

3. Proposed methodology
Consider an utterance with audio frames o1:T , which an ASR
has recognised as containing the word sequence w(ASR)

1:I , and
in which we want to detect words pronounced incorrectly.

Starting with each possible canonical pronunciation
φ
(wi)
1:Mj

∈ D(0)
wi of each word wi, accent error candidates are

generated by applying a sequence of up to R mispronuncia-
tions, namely discrete insertions, deletions and substitutions of
phones, where possible. Specifically, these are: word-final dele-
tion and insertion, consonant cluster reduction and anaptyxis
[26], word-initial insertion, schwa lengthening, vowel shorten-
ing, dipthong reduction, consonant voicing, affricate confusion,
affricate-fricative and fricative-plosive substitution, liquid con-
sonant confusion and v-w and y-j substitution.

Lexical error candidates are generated by passing the
spelling of wi through a grapheme-to-phoneme (G2P) sys-
tem trained on canonical pronunciations and removing canon-
cial pronunciations in the output. The hypothesis is that non-
canonical pronunciations predicted by such a G2P are also
likely to be made by a non-native speaker who hasn’t encoun-
tered the word and guesses its pronunciation from its spelling.

The result is an entry D(R)
wi , containing, as needed, accent

errors of a particular type or all possible accent errors, lexical er-

rors or both. The utterance o1:N is now Viterbi forced aligned,
replacing the canonical pronunciation dictionary forwi with the
union D(0)

w ∪ D(R)
w . The alignment process generates a lattice,

representing the likelihood p(o1:T , π) of each possible path π
through o1:T . Each path π corresponds to a sequence of phone
labels φ(wi)

1:M (from the supplied dictionary) representing the ap-
parent pronunciation of each word wi and a sequence of start
and end times t(0)m : t

(1)
m for each phone φm.

The posterior probability thatwi was pronounced errorfully
given it was recognised correctly by the ASR is given by:

p(en|o1:T , w(ASR)
n ) =

∑
π|φ(n)

1:M
/∈D(0)

wn
p(o1:T , π)

−γ∑
π|w(π)

n =w
(ASR)
n

p(o1:T , π)−γ
(3)

where γ is an acoustic model scaling factor.
Errors are detected by computing and thresholding this pos-

terior at a value tuned for balance between precision and recall
(in this work, this is achieved by maximising F1 score).

4. Corpora

Data Set Trans. #Utts. #Words #Marked errors

BLT
MAN 1438 61722 5968 (9.7%)

CS 1438 53668 4546 (8.5%)
ASR 1443 51535 4464 (8.7%)

SELL MAN 149 3003 363 (12.1%)
ASR 149 2701 296 (11.0%)

LeaP MAN 45 6536 4982 (76.2%)
ASR 43 6536 4383 (65.1%)

Table 1: Annotated errors in each dataset, using original man-
ual (MAN), ASR and crowd-sourced (CS) [27] transcriptions.

Three corpora are investigated. The first consists of can-
didate recordings from the Business Language Testing Service
(BULATS) spoken English test for foreign learners [28]. It
comprises spontaneous speech, manually transcribed [29], with
pronunciation errors and corrections annotated using ARPA-
BET [30]. The dataset used in this work contains 226 speakers
of varying proficiency, balanced for gender and between 6 L1s
(Arabic, Dutch, French, Polish, Vietnamese and Thai).

Next, the SELL-CORPUS [31] consists of recordings of
389 volunteer Chinese speakers of English of varying pro-
ficiency, gender balanced and spread across 8 L1s/dialects
(Northern Mandarin, Southwest Mandarin, Wu, Cantonese, Xi-
ang, Minnan, Hakka and Gan), reading phonetically balanced
utterances sampled from Project Guttenberg, with pronuncia-
tion errors and corrections human annotated using ARPABET.

Finally, the spontaneous part of the Learning Prosody in a
Foreign Language (LeaP) project [32] is used. 50 non-native
speakers of English, with 16 L1s, were recorded being inter-
viewed before and after a prosody training course. It is phonet-
ically annotated by humans using the X-SAMPA alphabet [33],
unlike BULATS and SELL where annotators marked pronunci-
ation errors.

For work on SELL, for which annotators assumed US pro-
nunciations, the CMU [34] pronunciation dictionary was used.
For BULATS and LeaP, a COMBILEX dictionary [35] of RP
English was used instead.



5. Experimental Setup
To be able to detect errors in spontaneous speech, the first step is
recognising the text being spoken and aligning the audio to a se-
quence of phones. Both tasks are performed using an automatic
speech recogniser (ASR). Due to the incorrect pronunciations,
grammar and rhythm related to the speaker’s proficiency level
and L1, the accuracy of standard commercial “off-the-shelf”
ASR systems is too low for non-native learner English. Instead,
an ASR system trained on non-native learners of English is used
[36, 37].

The LeaP data was further pre-processed by perform-
ing speaker diarisation to remove the sections of interviewer
speech, converting the X-SAMPA annotations to ARPABET,
identifying annotated errors by looking up annotated pronuncia-
tions in the pronunciation dictionary and selecting correspond-
ing corrections by minimising Levenshtein distance to the an-
notated errorful pronunciation.

6. Results and Discussion
Experiments are conducted to investigate whether the distinc-
tion between accent and lexical errors introduced in Section 2
is consistent with patterns in the data and evaluate the effective-
ness of the method proposed in Section 3 to identify each.

6.1. Distinctness of accent and lexical errors

After speech recognition has been performed on each dataset,
the canonical pronunciations of each recognised word are
looked up in the dataset’s canonical dictionary and a corre-
sponding accent error dictionary generated as described in Sec-
tion 3. The maximum number of mispronunciations per word
R is chosen to satisfy computational complexity constraints
(R = 2 here). Annotated errorful pronunciations in the dataset
which appear in this dictionary are identified as accent errors.

Figure 1: Cumulative frequency of the ranking of identified ac-
cent errors (blue) and all remaining errors (red) present in BU-
LATS (top, left), SELL (top, right) and LeaP (bottom) among
the 50 first outputs of a G2P system trained on the respective
canonical pronunciation dictionary of each corpus.

Meanwhile, a Sequitur [38] G2P system, with a context
window size of 3, is trained on the full canonical dictionary for
each dataset and evaluated on each word, to produce a ranking
of the 50 most likely pronunciations given each word’s spelling.
Each annotated error is looked up in this ranking and the cumu-
lative frequency of rankings for each of the accent and, as yet,

unidentified errors plotted (Figure 1). A ranking closer to 1
indicates that a pronunciation is more likely given the word’s
spelling.

It is seen that most accent errors are absent from the G2P
output and that unidentified errors are more likely to rank better
in the output than identified accent errors. This is consistent
with the hypothesis that a significant fraction of the unidentified
errors constitute lexical errors.

The experiment is repeated, splitting accent errors by type
(Figure 2). It is seen that, across datasets, final deletions are
the most likely to be predicted by G2P systems and voicing er-
rors the least likely. However, as expected, all mispronunciation
types rank below unidentified errors.

Figure 2: Cumulative frequency of the ranking of a representa-
tive sample of types of identified accent errors in BULATS (top,
left), SELL (top, right) and LeaP (bottom) among the 50 first
outputs of the G2P system.

A lexical error dictionary is now generated, as described
in Section 3, keeping the first 10 pronunciations in each G2P
output. The pronunciations in the accent and lexical error dic-
tionaries are compared (Figure 3) and it is confirmed that the
overlap is minimal. The dictionaries are then used to identiy
errors among the annotated pronunciations (Figure 4).

Figure 3: Overlap of accent and lexical error candidate pronun-
ciations in the dictionaries generated for the words in BULATS
(left), SELL (middle) and LeaP (right).

Figure 4: Proportions of total words in each dataset annotated
as errors and identified as accent and lexical errors.

In BULATS and SELL, where annotators were asked to find
and label pronunciation errors, only a small proportion of words



are marked as errorful, more errors are identified as accent than
lexical. By contrast, in LeaP, where annotators were asked to
label the utterances phone-by-phone, the majority of words are
marked with non-canonical pronunciations and most identified
errors are lexical.

6.2. Detection performance

The accent and lexical error dictionaries generated for the words
in the ASR outputs are now used to detect accent errors, specific
types of accent errors, and lexical errors, as described in Section
3 (Figure 5, left). In addition to detection of errors at a word-by-
word level, the sum of word-level posteriors (expected number
of errors) is thresholded to detect the presence of each type of
error at the utterance level (Figure 5, right).

Figure 5: F1 scores on each dataset for the task of detecting all
accent errors (’All’), specific types of accent errors and lexical
errors at a word-by-word (left) and utterance (right) level.

It is seen that the system can accurately predict the pres-
ence of accent and lexical errors at the word-level for LeaP, but
not for SELL and BULATS. At the utterance level, on the other
hand, the system can diagnose tendency for accent errors, lex-
ical errors and specific types of accent errors, across all three
corpora.

Figure 6: Detected expected number of errors (sum of word-
level posteriors) against annotated errors for each speaker in
BULATS (top-left), SELL (top-right) and LeaP (bottom).

Figure 6 shows the expected number of accent errors plotted
against the number of actual annotated errors for each dataset. It
is seen that the two correlate strongly, especially for SELL and
LeaP and, in the cases of BULATS and SELL, more strongly
than would be expected given the F1 scores of the prediction
tasks. It is also noted that, for BULATS and SELL, the ex-
pected number of accent errors is much greater (almost an or-
der of magnitude) than the actual annotated number of errors,
while for LeaP this is not the case. All the above is consis-
tent with the annotators in BULATS and SELL, who were in-
structed to specifically identify pronunciation errors, having an-

notated only a fraction of the accent errors actually present in
the dataset.

This would explain why both utterance-level performance
and correlation between aggregated word-level posteriors and
number of annotated errors are high, while word-level perfor-
mance is low. It would also explain why for LeaP, where an-
notators were instructed to label every single phone and the ex-
pected and annotated numbers of errors match, all three results
are instead consistent and high.

6.3. Robustness to ASR error

Figure 7 shows the effect on the receiver operator characteris-
tic (ROC) curves for accent error detection when the provided
manual transcription is used instead of the ASR output. As ex-
pected, using the manual transcription yields an improvement,
but the improvement is minor in all three cases. This is consis-
tent with the system displaying robustness to ASR error.

Figure 7: ROC for the task of detecting accent errors in each of
BULATS (top, left), SELL (top, right) and LeaP (bottom) using
the ASR output, the provided manual transcription (MAN) and
crowd-sourced transcriptions (CS).

7. Conclusions
A framework for considering pronunciation errors as divided
into accent and lexical errors and a methodology for detect-
ing each is presented and evaluated. The framework is inves-
tigated in the context of three corpora, two on which humans
were asked to annotate pronunciation errors, and one where they
were asked to transcribe actual pronunciation. Results are con-
sistent with accent and lexical errors being defined as distinct
categories of error that can be detected separately. The system
was successfully able to detect word-level accent and lexical
errors on the latter corpus but not the former two. It was, how-
ever, able to diagnose lexical and general and specific accent
error tendency with satisfactory performance across all three
datasets. Analysis suggested that the annotators of the first two
corpora were systematically under-annotating accent errors and
that therefore the phonetic transcription technique is a superior
method of annotation for error detection tasks.
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