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Simple Summary: Glioblastoma (GBM) resistance to standard treatment is driven by stem-like
cell behavior and epithelial-like-mesenchymal transition. The main purpose of this paper was to
functionally validate a novel discovered pharmacological strategy to treat GBM, the dual mTOR
pathway inhibitor Rapalink-1 (RL1) using relevant stem cell models of the disease to unravel
mechanistic insights. Our approach also interrogates combination studies with clinical treatment
options of tumor treating fields (TTFields) and the best standard of care chemotherapy, temozolomide
(TMZ). We provided clinical relevance of our experimental work through in silico evaluation on
molecular data of diverse patient samples. RL1 effectively impaired motility and clonogenicity of
GBM stem cells and reduced the expression of stem cell molecules. We elucidated a synergistic
therapeutic potential of the inhibitor with TTFields to minimize therapy resistance toward TMZ,
which supports its consideration for further translational oriented studies.

Abstract: Glioblastoma (GBM) is a lethal disease with limited clinical treatment options available.
Recently, a new inhibitor targeting the prominent cancer signaling pathway mTOR was discovered
(Rapalink-1), but its therapeutic potential on stem cell populations of GBM is unknown. We applied a
collection of physiological relevant organoid-like stem cell models of GBM and studied the effect of
RL1 exposure on various cellular features as well as on the expression of mTOR signaling targets
and stem cell molecules. We also undertook combination treatments with this agent and clinical
GBM treatments tumor treating fields (TTFields) and the standard-of-care drug temozolomide, TMZ.
Low nanomolar (nM) RL1 treatment significantly reduced cell growth, proliferation, migration,
and clonogenic potential of our stem cell models. It acted synergistically to reduce cell growth
when applied in combination with TMZ and TTFields. We performed an in silico analysis from
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the molecular data of diverse patient samples to probe for a relationship between the expression of
mTOR genes, and mesenchymal markers in different GBM cohorts. We supported the in silico results
with correlative protein data retrieved from tumor specimens. Our study further validates mTOR
signaling as a druggable target in GBM and supports RL1, representing a promising therapeutic
target in brain oncology.

Keywords: glioblastoma; rapalink-1; tumor treating fields; EMT; therapy resistance; human stem cell
in vitro platform; drug development; risk assessment; mTOR

1. Introduction

Glioblastoma (GBM) is a fatal disease that can occur at any age, with a worse prognosis in
older patients. The disease is considered to be driven by glioblastoma stem cells (GSCs), a small
subpopulation of highly tumorigenic cells that have stem-like properties including self-renewal,
high proliferation rates, and an ability to generate and regenerate different progenies of the tumor [1–5].
GSCs also regulate the molecular process of epithelial-like-to-mesenchymal-like transition (EMT)
process, in which the cells acquire a greater motile and therapy resistant phenotype [6].

After maximal safe surgical macroscopic resection of a newly diagnosed GBM (ndGBM),
the consensus for best standard-of-care (BSC) involves treating the microscopic dissemination
and/or the remaining unresected tumor through a combination of the chemoagent temozolomide (TMZ)
and radiotherapy [1,7]. The constitution of the genomic loci of isocitrate dehydrogenase 1 (IDH1)
and the activation of O [6]-methylguanine-DNA methyltransferase (MGMT) have been identified to
be predictive for BSC response [8,9]. Additionally, sub classification of GBM into transcriptomic or
epigenetic subtypes, associated with different gene activation signatures and clinical features have been
described [10]; namely, proneural (PN), neural (NE), mesenchymal (MES), and classical (CL). Despite
this progress in clinical diagnostics, adequate advances on the therapeutic side, targeting molecular
features of the disease, are lagging behind. Anti-stem cell/anti-EMT directed therapies, ideally in a
disease subtype specific manner, are desirable [11].

Recently, a novel therapy termed tumor treating fields (TTFields) has been approved for clinical
treatment as both monotherapy for recurrent GBM (rGBM) and in combination with adjuvant
post-chemoradiation TMZ for ndGBM [12,13]. It is believed to generate a main non-invasive antimitotic
effect on the cells by delivering low intensity, intermediate frequency, alternating electric fields, locally
targeting the tumor bed. However, the mode of action is not fully understood [14]. Additionally,
the available knowledge as to its therapeutic potential in combination with other treatment regimens,
or its potential to attack GSC/EMT is not fully known.

Mammalian Target of Rapamycin (mTOR) is a hallmark signaling pathway in cancer including
GBM, frequently taken into account as therapeutic targets in major clinical studies [15,16]. Elevated
mTOR signaling activity has been associated with the activation of EMT and GSCs maintenance [17–19].
Historically, the clinical translation of pharmacological strategies to block mTOR signaling has been
challenging due to the emergence of therapy resistance or infectivity in signal suppression under
therapy [20,21]. However, the recent generation of mTOR inhibitors directed simultaneously against the
two branches of the network (mTORC1 and mTORC2) a.k.a. Rapalinks, have shown great therapeutic
potential in an experimental trial of GBM [22]. However, hardly anything is known on the effects of
Rapalinks on GSCs EMT biology in GBM.

Thus, we sought to tackle these knowledge gaps by using an in vitro platform composed of
well-characterized GSCs and non-cancer neural stem cells derived from fetal origin or human induced
pluripotent stem cells. Our drug characterization study employed a wide portfolio of functional
bioassays and also included an ex vivo analysis after an in silico interrogation of clinical datasets to
further validate the clinical relevance of our experimental findings. By integrating an experimental
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TTFields system in our experimental design, we believe our results are of interest for translational
oriented research community of neuro oncology and beyond.

2. Results

2.1. Rapalink-1 Inhibits Cell Growth in Glioblastoma Stem Cells (GSCs) Compared to Non-Cancerous Cells

We used established GSC models in order to corroborate the effect of a chosen compound of
the Rapalink class (Rapalink-1, RL1) [22] in our models. Details about the molecular properties of
the models can be found in Figure 1 and Table 1. The drug dose dependent decrease in cell growth
was just visible at two days with a clear effect peak at four days (Figure 1a). We then calculated the
respective half maximal inhibitory concentration (IC50) values, leading to values in the nano-molar (nM)
range (Table 1). In order to have a non-cancerous control for the cell growth analysis, we treated and
calculated the IC50 from an induced neural stem cell (iNSC) model derived from induced pluripotent
stem cells (IMR90/4), and from fetal brain cortex (CTX) and cerebellum (CER) derived neural stem cells.
We then compared the main protein expression profiles of the mTOR pathway, namely eukaryotic
translation initiation factor 4E-binding protein 1 (4EBP1), ribosomal protein S6 (S6), and Akt with a
clearly higher mTOR expression in cancer cells compared to non-cancerous stem cells, mainly with the
4EBP1 marker (Figure 1b). Based on curve analysis and IC50 values, the cell line NCH644, characterized
as PN [23], was the most resistant cancerous model, followed by the CL-subtype cell line GBM1 [24].
The MES subtypes BTSC233 and JHH520 [25,26] followed in drug sensitivity, finally followed by the
pediatric glioblastoma model SF188, which was the most sensitive and only MGMT-unmethylated
cell line used (Figure 1c,d). All cell lines were classified accordingly by other institutions and verified
by our lab using RNA sequencing data from an ongoing project [10,27]. Furthermore, the effect of
RL1 was significantly more potent in cancerous models compared to the non-cancerous tested models
(Figure 1d).
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Figure 1. RL1 cell growth effects. (a) Cell growth of glioblastoma stem cells (GSCs) measured with 
MTT (3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide) absorbance assay after two and 
four days of incubation, (b) main protein expression proteins of the mTOR pathway in cancerous and 
non-cancerous cells, (c) cell growth dose dependent decrease comparison measured with MTT 
absorbance after 4 days of incubation, (d) 4-day incubation significant difference of cell growth 
decrease measured with MTT absorbance of cancer GSCs compared to non-cancerous NSCs. All the 
plots present the mean and the standard deviation. The p-value < 0.05 was considered statistically 
significant in all analysis. Statistical tests performed for two variables, unpaired Student’s t-test, for 
more than two related variables, one-way-ANOVA. The significance of the difference between groups 
was described as **** p < 0.0001. 

Table 1. Cell line characteristics. 
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Code 1 
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IC50 
nM 

TMZ 
IC50 
µM 

Gender Age 
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Molecular 
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(Verhaak) 
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IDH  
Status 

ALDH1A3 
Expression 

Glioblastoma 
stem cells 

NCH644  10.5 110 Female Adult Proneural Methylated Wildtype Negative 
GBM1  7 5 Male Adult Classical Methylated Wildtype Positive 

BTSC233  3 10 Female Adult Mesenchymal Methylated Wildtype Positive 
JHH520  2.2 10 Female Adult Mesenchymal Methylated Wildtype Positive 
SF188  1.8 40 Male Pediatric - Unmethylated Wildtype Positive 

Induced 
Neural Stem 

Cell 
IMR 90/4  15.5 - - - - - - - 

Neural Stem 
Cells 

Cortex  12 - - - - - - - 
Cerebellum  11 - - - - - - - 

1 Color code defined to simplify the interpretation of the figures. 

2.2. RL1 Inhibits mTOR Pathway Signaling Activity 

Next, we undertook a protein expression analysis to validate if the described effect of RL1 on 
mTORC1/2 applied to our GSCs (Figure 2a,b). For mTORC1 activity, we used the downstream 
markers phospho-4EBP1-Ser65 and phospho-S6-Ser473, and for mTORC2, we used phospho–AKT-
Ser473. Phosphorylation of most of the proteins used to quantify signaling pathway activity was 
inhibited by RL1, only the phosphorylated S6 marker was not inhibited in NCH644 (Figure 2a,b). We 
thus confirmed a dual inhibition of RL1 in the mTORC1 and mTORC2 downstream pathway markers 
in GSCs. 

Figure 1. RL1 cell growth effects. (a) Cell growth of glioblastoma stem cells (GSCs) measured with
MTT (3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide) absorbance assay after two and
four days of incubation, (b) main protein expression proteins of the mTOR pathway in cancerous
and non-cancerous cells, (c) cell growth dose dependent decrease comparison measured with MTT
absorbance after 4 days of incubation, (d) 4-day incubation significant difference of cell growth decrease
measured with MTT absorbance of cancer GSCs compared to non-cancerous NSCs. All the plots present
the mean and the standard deviation. The p-value < 0.05 was considered statistically significant in all
analysis. Statistical tests performed for two variables, unpaired Student’s t-test, for more than two
related variables, one-way-ANOVA. The significance of the difference between groups was described
as **** p < 0.0001.

Table 1. Cell line characteristics.

Type Cell Line Color
Code 1

RL-1
IC50 nM

TMZ
IC50 µM Gender Age

Group

Molecular
Subtype

(Verhaak)

MGMT
Status

IDH
Status

ALDH1A3
Expression

Glioblastoma
stem cells

NCH644 10.5 110 Female Adult Proneural Methylated Wildtype Negative
GBM1 7 5 Male Adult Classical Methylated Wildtype Positive

BTSC233 3 10 Female Adult Mesenchymal Methylated Wildtype Positive
JHH520 2.2 10 Female Adult Mesenchymal Methylated Wildtype Positive
SF188 1.8 40 Male Pediatric - Unmethylated Wildtype Positive

Induced
Neural

Stem Cell
IMR 90/4 15.5 - - - - - - -

Neural
Stem Cells

Cortex 12 - - - - - - -
Cerebellum 11 - - - - - - -

1 Color code defined to simplify the interpretation of the figures.

2.2. RL1 Inhibits mTOR Pathway Signaling Activity

Next, we undertook a protein expression analysis to validate if the described effect of RL1
on mTORC1/2 applied to our GSCs (Figure 2a,b). For mTORC1 activity, we used the downstream
markers phospho-4EBP1-Ser65 and phospho-S6-Ser473, and for mTORC2, we used phospho–AKT-Ser473.
Phosphorylation of most of the proteins used to quantify signaling pathway activity was inhibited
by RL1, only the phosphorylated S6 marker was not inhibited in NCH644 (Figure 2a,b). We thus
confirmed a dual inhibition of RL1 in the mTORC1 and mTORC2 downstream pathway markers
in GSCs.
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Figure 2. RL1 effect on mTOR signaling protein marker expression. RL1 protein expression analysis
validates the inhibition of both (a) mTORC1 and (b) mTORC2 in our GSCs. Statistical tests performed
for two variables with the unpaired Student’s t-test. The significance of the difference between groups
was described as * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.3. RL1 Induces Cell Cycle Arrest, Apoptosis, and Proliferation Inhibition

After determining that the cell growth and mTOR pathway inhibition capacity of RL1 extends to
GSCs, we aimed to further characterize the mode of action of this therapy. There was a significant cell
cycle arrest in the G0/G1 phase of all models (Figure 3a), corroborating a clear antimitotic effect.

In parallel, there was a slight increase of apoptosis in all the cell lines as an additional effect,
but this was only statistically significant in the NCH644 and BTSC233 lines (Figure 3b). In line with
this, there was a significant decrease in proliferation for all the tested cell lines (Figure 3c).
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Figure 3. RL1 mechanistic effects. (a) Cell cycle arrest in the G0/G1 phase of all the models given DNA
content %, (b) small apoptosis increase in all cell lines only statistically significant in NCH644 and
BTSC233, with numerical increase in the other cell lines, (c) significant decrease in GSC proliferation
given by Ki67% expression. Statistical tests performed for two variables with the unpaired Student’s
t-test. The significance of the difference between groups was described as * p < 0.05, ** p < 0.01,
# numerical-nonsignificant.

2.4. RL1 Inhibits Stemness and EMT

Since we identified a wide functional effect of RL1 on our GSCs, we sought to probe for the effects
on markers indicating stem cell properties. We chose the validated neural stem cell markers, CD133
and SOX2, and the mesenchymal transformation markers CD44 and ZEB1 and quantified their total
protein abundancy. We could not observe all markers in all of our models. CD133 and SOX2 were
suppressed by RL1 in NCH644, BTSC233, and JHH520; while CD44 expression was reduced by the
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same drug in MES BTSC233 and JHH520, the only cell models that were found positive for this protein
(Figure 4a). Phenotypically, the ability to form GSC colonies was strongly and significantly inhibited in
all cell lines by RL1 (Figure 4b). The master EMT transcription-factor marker ZEB1 was inhibited by
RL1 in the BTSC233 and JHH520 MES-type models, but not in PN NCH644 (Figure 4a). The indication
of suppressed EMT was phenotypically supported by the fact that RL1 treatment strongly inhibited
cellular migration in all cell lines except NCH644, which after several attempts continued to form
consolidated neuro-spheres before undergoing migration (Figure 4c).
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Figure 4. RL1 effect on stemness and EMT protein marker expression. (a) RL1 protein expression
analysis validates the inhibition of neural stem cell markers and mesenchymal transformation markers
in our GSCs, (b) RL1 strongly inhibited colony formation in all GSCs in agar assays, (c) RL1 strongly
inhibited migration in all cell lines except NCH644 in Boyden chamber assays. Statistical tests performed
for two variables, unpaired Student’s t-test. The significance of the difference between groups was
described as * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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2.5. Association between mTOR Biomarkers and EMT/Mesenchymal Markers Biosamples of GBM Patients of
Western and Eastern Ethnicity

To probe for clinical relevance of our experimental data, we performed a data-mining analysis
from established clinical cancer sample datasets. To this aim, we used an American cohort (The Cancer
Genome Atlas, TCGA) and a Chinese cohort (Chinese Glioma Genome Atlas, CGGA) of patients. In our
analysis, we put special emphasis on probing the potential correlation between the expression of two
main mTOR signaling genes, namely EIF4EBP1 (gene encoding 4EBP1) and RPS6 (gene encoding S6),
and one EMT marker, namely ZEB1 as well as one mesenchymal marker, namely ALDH1A3, a recently
identified marker for mesenchymal transformation in GBM [28]. We found that while EIF4EBP1
and ZEB1 expression were negatively correlated, even though minimally, in the American cohort,
this was not observed in the Chinese dataset (Figure 5a,b). There was a significant positive correlation
of EIF4EBP1 and ALDH1A3 mRNA expression levels in samples from Chinese patients, but not
in the American dataset (Figure 5a,b). When analyzing the expression levels of RPS6 in the same
datasets, we found RPS6 and ZEB1 mRNA expression levels to be positively correlated in both cohorts
(Figure 5c,d). While the expression levels of ALDH1A3 was negatively correlated with RPS6 in the
American cohort, it was positively correlated with RPS6 expression in samples from Chinese patients
(Figure 5c,d).

Moreover, we verified our in silico analysis with primary GBM samples (pGBM) derived
from surgical subjects of our institution. We tested the same relevant markers above-mentioned.
We confirmed a high expression of the mTOR signaling pathway molecules in all of the samples.
As for the phosphorylation defined proteins, the RPS6 marker was widely activated, in contrast to
EIF4EBP1, which was clearly phosphorylated in four samples (pGBM#2, pGBM#4, pGBM#8, pGBM#9).
Correlating ZEB1 activity, the samples pGBM#2 and pGBM#4 featuring the highest ZEB1 activity
showed a clear correlation of ZEB1 with mTOR activity, whereas pGBM#1, pGBM#5, and pGBM#6 had
a mild correlation between mTOR activity and EMT.
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analyzed by unpaired T test.

2.6. TTFields, RL1, and TMZ Synergistically Reduced Cell Growth

Finally, given the recent advances in the clinic in treating GBM [7,13,28], we included experimental
TTFields therapy and TMZ treatment in our study. To identify the IC50 of TMZ of our models,
we performed the cell growth assays under a range of TMZ treatment concentrations for up to six
days (Table 1, Figure 6, Figure S1). This data correlates well with previous literature reports and
MGMT promoter methylation characteristics of the respective models with SF188 (the only model with
unmethylated MGMT promoter status) having the second lowest IC50. The fast ability to form spheres
may have increased the treatment resistance of the NCH644 model, which had the lowest IC50.

For TTFields, we applied the clinically relevant field frequency of 200 kHz. With our setup,
we thus achieved a field intensity of 1.7 V/cm RMS. We then assessed growth on cells under different
treatment conditions to probe for any combinational effects when combining RL1 with the clinical
treatment scenarios using the Chou–Talalay method [29]. Our treatment setup can be found in Table 2.
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there is a small table with the multiplication fold values of RL1 and TMZ. The statistical test performed
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Table 2. Experimental setup for combination treatment study.

Dish Configuration Value Drug Concentration

Frequency 200 kHz IC50 folds of RL1 0.25×, 0.5×, 1×, 2×, 4×
Plus DMSO control.Temperature 37 ◦C

Current 12 mA IC50 folds of TMZ 0.25×, 0.5×, 1×, 2×, 4×
Plus DMSO control.

Voltage 1.7 V/cm RMS Combined IC50 folds of TMZ
and RL1 in ascending order

0.25 + 0.25, 0.5 + 0.5, 1 + 1, 2 + 2, 4 + 4
Plus DMSO control.Incubation Time All 48 h

BTSC233 96 h
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A 48-h incubation was an adequate time frame to induce a synergistic dose dependent effect in
all the cell lines and groups, except for BTSC233, which required 96 h of incubation in order to show
significant synergistic combination index (CI) values -CI < 1 referring to synergism, CI = 1 to additive
effect and CI > 1 to antagonism-. NCH644, which was up to this point the most resistant GSC against
both RL1 and TMZ, showed the most potent synergistic effect CI < 0.02 p < 0.0001 with a tendency of
increased CI proportional to the drug concentrations applied, as opposed to the rest of the cell lines,
which showed opposite curve directions. Despite this effect, the additional TTFields treatment showed
a numerically enhanced, non-significant synergistic CI effect. The cell line JHH520, showed the second
most potent synergistic effect of TMZ and RL1 with values CI < 0.2 p < 0.0001, which was significantly
strengthened by the TTFields treatment. The cell line GBM1 had a more discrete but significant drug
combination synergy with CI values lower than 0.75 p < 0.0001, however, TTFields treatment showed
a numerical, non-significantly stronger synergistic CI effect. For the other cell lines, namely SF188
(CI values < 0.5) and BTSC233 (CI values < 0.9), the synergistic effect was significant, both for the
drugs alone (p < 0.0001) and stronger with the addition of TTFields treatment (p < 0.0001). Our data
strongly indicate a synergistic therapeutic potential for RL1 on GSCs when combined with TTFields
and TMZ. The TTFields synergy bioassay results showing synergism can be found in Figure 6a–e.

3. Discussion

mTOR is a key player in the activation of cell growth, reprogramming of cell metabolism,
and structural cytoskeleton remodeling, amongst many others [30]. In the context of cancer,
many projects have been conducted dedicated to developing inhibition strategies to effectively
block the activation of mTOR signaling activity [31], with some promising clinical trials underway [32].
Additionally, in the context of brain tumors, targeting mTOR activation is considered a potent
therapeutic avenue [15,33]. However, given the complex nature of this signaling pathway comprising
two molecular distinct signaling branches, enabling the compensation of signal loss from either of the
two [30], it is generally accepted that clinically relevant anti-mTOR directed therapies will have to
block the entire pathway [34] to avoid the emergence of therapy resistance [31].

In this regard, recent development in campaigns aimed to generate dual mTOR complex
inhibitors [22,35] and their functional validation in experimental trials has raised hopes in advancing
our ability to treat lethal cancers. By choosing the most promising last generation mTOR inhibitor
drug candidate, termed Rapalink1, our study sought to validate its effects on state-of-the-art disease
models of the disease. Rapalink1 has previously been shown to effectively penetrate the blood brain
barrier and brain parenchyma of the rodent model of brain tumor [22]. We now extend the evidence of
the potential of this drug candidate to possess effective anti-cancer stem cell effects and to potentiate
clinical approved treatments, at least in vitro. Although we applied 3D organoid-like in vitro models
of the disease, future animal studies, especially incorporating the animal setup of TTF, are required
to unequivocally postulate the therapeutic relevance of our findings. Of note, our initial off target
characterization assay using non cancer cell models indicated that RL1 possesses a higher therapeutic
index on cancer cells, supporting this drug substance for further oncology studies.

Our results clearly demonstrated the potency of this drug candidate to be able block stem cell
markers and properties including migration and clonogenicity in GBM. The soft agar assay was chosen
because of our group’s previous experience using reduction of sphere formation as well as the reduction
of protein abundancy of stem cell markers such as ZEB1, as a biomarker combination to indicate
the blockade of stem cell phenotype in our disease models [36,37]. Interestingly, we found that the
strongest drug effects were seen in the most aggressive cell models of the MES subtype, a subtype with
the worst clinical prognosis for overall survival of the patients [38], and more moderate effects in the
PN cell model, further advocating this drug candidate to be particularly useful for targeting the highest
malignant cell population in GBM. Concordantly, the correlations of mTOR signaling regulating cell
cycle [39,40], stemness/EMT [18,30,41], and cellular survival [42] are generally accepted and our results
are well in line with those high-profile papers. Thus, together with the translational focus of our study
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to test the promising drug candidate in a clinical-near experimental setting, our data proved solid
ground for mode of action characterization of RL1 on GSCs featuring efficient target suppression,
consequently blocking stemness/EMT.

Next, we performed a confirmatory in silico study to probe for the clinical relevance of mTOR and
EMT biomarkers in large scale molecular datasets of clinical samples from cohorts of different genders
and ethnicities. We identified a tendency of direct correlation between the expression of the mTOR
gene RPS6 and the expression of the mesenchymal marker ZEB1 in two different cohorts (TCGA and
CGGA cohorts), suggesting a link between the mTOR pathway and EMT in GBM patient samples.
This is in line with a previous study identifying the mTOR pathway as a prognostic gene set in the
MES subtype [43]. The results of our drug validation and patient sample studies are in line with the
work of others that have identified mTOR signaling as a promoter of EMT and stemness in various
diseases as well as in normal development [19]. Furthermore, previous recent work of others have
already identified the existence of an mTOR-ZEB1 signaling axis in GBM using various functional
attempts, which we now confirm in the context of a therapeutic relevant pharmacological in vitro
model [44–46]. Together with our correlative assays of transcript and protein abundancy in patient
samples, we hypothesize that the mTOR-ZEB1 axis extends to GSCs, but seems differentially aberrant
amongst individual GBM cases. However, in all tested cases, RL1 provides an efficient option to
effectively reduce their activation, leading to desired anti-cancer cell effects.

After corroborating an antimitotic and partially apoptotic effect of RL1 on GSCs, known to be
highly resistant to standard clinical treatments [47], we wanted to see if RL1 can augment the effectivity
of clinical GBM treatments. We executed detailed combination treatment studies in vitro featuring
RL1, BSC chemotherapeutic agent TMZ as well as TTFields. The widely used drug combination effect
method described by Chou and Talalay [29] was chosen to guide our experimental design and the
quantification of results to identify any potentiating effects. Applying inovitro™ settings that mimic
the TTFields therapy used in the clinical setting, we found a synergistic anti-cell growth effect when
combining RL1 with TMZ and TTFields. Follow up testing in vivo, using the recently launched animal
system for TTFields, inovivo™, will now need to be done to validate the therapeutic potential of this
treatment regime. Nevertheless, given the previously described therapeutic effect of RL1 in animal
models of human GBM [22], we believe that our results already support the consideration of this
treatment option from a clinician-scientist point of view.

It was demonstrated that the binding of RL1 to the factor termed FKBP12 is required to inhibit
mTOR activity and to mediate the anti-proliferative effect of Rapalink1 [22,48]. Therefore, it is highly
likely that the effect of Rapalink1 on stemness and EMT markers as well as its synergy with tumor
treating fields requires FKBP12. Since FKBP12 has not been proven as a clinically relevant marker,
this may be a relevant approach for further studies.

In summary, we used our diverse stem cell in vitro platform to perform mode of action analysis
and initial risk assessment of a novel drug candidate, and interrogated clinical treatment options to
benchmark its therapeutic potential in combination regimes. We used clinical specimens from ethnic
and gender diverse backgrounds to validate our experimental findings to benchmark relevance.

4. Materials and Methods

4.1. Cell Culture, Fresh Patient Samples, and Pharmacologic Substances

The in vitro cell models used were kindly provided as follows, glioblastoma neuro-spheres
JHH520 (G. Riggins, Johns Hopkins, Baltimore, MD, USA); SF188 (E. Raabe, Johns Hopkins, Baltimore,
MA, USA); BTSC233 (M.S. Carro, Freiburg University, Freiburg im Breisgau, Germany); NCH644
(C. Herold-Mende, Heidelberg University, Heidelberg, Germany); and GBM1 (A. Vescovi, San Raffaele
Hospital, Milano, Italy). Ethical approval for the use of cell models to study brain cancer biology was
from the ethical commission of the medical faculty of Heinrich-Heine University (study ID 5841R).
Cortical fetal neural stem cells were collected from human fetal cortical tissue grown in a neurosphere



Cancers 2020, 12, 3859 13 of 19

condition (ethical vote Study ID #5206). Induced neural stem cells were differentiated from the human
iPSC line IMR 90/4 (WiCell, Madison, WI, USA), as previously described [49].

The primary GBM tumor samples were derived from the operation room of the department of
neurosurgery (Düsseldorf, Germany) and were snap-frozen in liquid nitrogen until the preparation
of lysates. All subjects gave their informed consent for inclusion before their participation in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of the Medical Faculty of the Heinrich-Heine University of
Duesseldorf (#2019-484-FmB).

All cells were grown in complete serum-free suspension media enriched with bovine fibroblast
growth factor (Peprotech, Rocky Hill, NJ, USA) and human epidermal growth factor (Peprotech),
as previously described [50]. These were incubated under standard conditions (SCs, humidified 37 ◦C,
5% carbon dioxide (CO2)). Cells were regularly tested for mycoplasma accumulation and authenticity
using the short tandem repeat assay, as previously described [51]. Rapalink-1 was purchased from
Apexbio Technology (Houston, TX USA) and TMZ (Sigma-Aldrich, St. Louis, MO, USA). Both were
resuspended in a DMSO (dimethyl sulfoxide, Sigma-Aldrich) vehicle, according to their molecular
weight and the manufacturer’s instructions, after which we further diluted them to the required
concentrations and stored them at −20 ◦C.

4.2. Cell Growth (MTT Assay)

Cell growth of the different models was assessed using the MTT (3-(4,5-dimethylthiazol-2-yl)
2,5-diphenyl tetrazolium bromide; Sigma Aldrich) assay and plating 3000 cells per well in technical
triplicates of 100 µL growth-media each in clear-96-well plates (Corning Inc., Corning, NY, USA).
On each plate, we included a respective cell control triplicate (media, cells, and DMSO < 1%) and a
blank control (media, no cells) to normalize the cell growth and background reading. We tested RL1 at
the following concentrations of 1.5, 6, 12, 24, and 48 nM. For TMZ, 5, 10, 25, 50, and 100 µM. Cells were
then incubated with RL1, initially over six days, then finally over four days in SCs. In parallel, for TMZ,
this was done for six days in SCs. Starting from day 0 and then every other day (days 2, 4, or 6),
we measured the MTT absorbance values as follows: we added 10% of MTT reagent per well, incubated
the cells in SCs for three hours, verified the formation of crystals under bright field microscope,
and finally lysed the cells by incubating them with HCl-isopropanol-TritonX for 10 min. The resulting
relative absorbance was finally measured with the Paradigm micro-plate reader (Molecular Devices
LLC, San Jose, CA, USA). All experiments were done in three independent biological repetitions before
statistical analysis and IC50 calculations.

4.3. Tumor Treating Fields

The inovitro™ preclinical laboratory research system dishes (Novocure, Saint Helier, Jersey)
were plated in parallel to the 35 mm cell culture dishes and similarly contained 40,000 cells in 2 mL of
complete media per plate. Using the previously calculated IC50; different multiplication folds of drug
concentrations were applied to each condition in the inovitro™ dishes as follows:

• IC50 fold of RL1 (0.25×, 0.5×, 1×, 2×, 4×) plus DMSO control.
• IC50 fold of TMZ (0.25, 0.5, 1, 2, 4) plus DMSO control.
• Combined IC50 folds of TMZ and RL1 in ascending order (0.25 + 0.25, 0.5 + 0.5, 1 + 1, 2 + 2, 4 + 4)

plus DMSO control.

Immediately after, they were treated with TTFields (1.7 V/cm RMS) via the inovitro™ system by
using perpendicular pairs of transducers insulated by a high dielectric constant ceramic. TTFields
were applied for 48 h (except BTSC233 with 96-h treatment) at a frequency of 200 kHz, the optimal
frequency established clinically for glioblastoma patients at final temperature of 37 ◦C, in a humidified
incubator with 5% CO2.
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In parallel, identically plated non-TTFields control 35 mm cell culture dishes were incubated in
SCs. All dishes/plates/conditions had an equal DMSO concentration of less than 1%.

After 48 h of treatment or incubation, the different cell lines were re-plated in clear 96-well-plates
and processed as described above for the MTT assays. All experiments were done using three
independent biological repetitions before statistical analysis.

4.4. Synergy Assays

The CI, based on the unified theory of the median effect equation, was calculated using the Chou
method, as previously described [36,52] using the CompuSyn Software® (ComboSyn Inc., Paramus,
NJ, USA). The software algorithm defined as CI < 1 referring to synergism, CI = 1 to additive effect,
and CI > 1 to antagonism.

The significance of the synergistic effect of all treatments was calculated compared to the additive
effect (CI = 1), using the resulting CI values of each triplicate. The closer to CI = 0, the stronger the
synergy, and the closer to CI = 1 or >1, the lower the synergism. Using this, the significance of the RL1
effect compared to TMZ was calculated comparing the resulting CI values of each combination.

4.5. Flow Cytometry–Muse© Assays

Using the Muse © Cell Analyzer Flow Cytometer device (Merck, Darmstadt, Germany)
as previously described [53], we tested apoptosis assays with the Annexin V & Dead Cell Kit
(Luminex, TX, USA), proliferation assays with the Ki67 Proliferation Kit (Luminex), and the cell cycle
assay with the Cell Cycle Kit (Luminex), according to the manufacturer’s protocols. All kits used a
7aad fluorophore marker. All assays were performed after 48 h, in order to have an earlier drug effect
incubation, with the previously calculated IC50 drug concentration, in independent biological triplicates.

4.6. Migration–Boyden Chamber Assay

Assessment of the cellular migration was performed using a modified 24-well Boyden Chamber
assay similar to the invasion assay described before [50], but without coating, in order to determine
the migration effect. 75,000 cells were suspended in 500 mL of DMEM and placed on top of each
insert membrane (Life Technologies, Carlsberg, CA, USA). The bottom was filled with 700 mL DMEM
media containing 10% fetal calf serum. All Boyden chamber assays were analyzed 14 h after cell
plating. The upper side of the membrane was then wiped with a moist PBS (phosphate-buffered
saline) cotton swab to remove the remaining plated cells. The membrane was then fixed at −20 ◦C
with methanol for 15 min and stained with hematoxylin. The invasion of the cells was evaluated by
counting the cell nuclei on the lower side of the membrane under a bright field microscope, counting
five random high-power fields per insert in three independent biological repetitions. The migrated
cells were quantified using ImageJ software (National Institutes of Health, Maryland, USA), before
statistical analysis.

4.7. Clonogenicity–Colony Formation Assay

To evaluate the clonogenic capacity of our cell models, we performed a colony formation assay in
soft agarose as described previously [37]. Clear six-well plates (Corning Inc.) were initially coated
with a bottom layer of 1.5 mL of 1% agarose (Life Technologies) and complete media, then incubated
for at least 1 h at room temperature. Afterward, a 2 mL layer of 0.6% agarose with 5000 cell per
well was plated for all cells except SF188, which required 10,000 cells per well to generate clear
clones. It was then covered with an additional 2 mL of fresh media, which was changed every three
days. After three weeks, colonies were stained with 1 mg/mL 4-nitro blue tetrazolium chloride (NBT)
solution (Sigma-Aldrich), and incubated overnight in SCs; three independent biological repetitions
were performed before the colonies were quantified using Clono-Counter software [54], and the
statistical analysis was performed. This assay was established to functionally verify the stem cell
properties of our cell models [37,55].
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4.8. Protein Expression–Western Blot

Western blotting was done as previously described [50]; antibodies were used as per the
manufacturer’s instructions (for specifications, see Table S1 and Figure S2. Western blots membranes).
The total protein content of each cell line was extracted using RIPA Buffer, then determined
colorimetrically using the DC Protein Assay Kit (Bio-Rad, Hercules, CA, USA), according to the
manufacturer’s instructions, and measured with the Paradigm micro-plate reader. Primary antibodies
(as reported in Supplementary Table S1) were incubated overnight at 4◦ on a rocking platform. Secondary
antibodies (goat-anti-rabbit, IRDye800CW LI-COR #926-32211; goat-anti-mouse, IRDye680RD LI-COR
#926-68070; goat anti-rabbit-HRP, Jackson Immuno Research #111-035-144; all 1/10,000) were incubated
for 1 h at room temperature. All antibodies were diluted in blocking solution containing either
5% bovine serum albumin (BSA) for phosphorylated proteins, or 5% milk powder for the rest of
the non-phosphorylated proteins; both diluted in Tris-buffered saline with Tween20 (TBST). For the
phospho-proteins, we used a BSA blocking agent that allowed clear bands, since albumin tends to not be
phosphorylated; and we normalized the resulting inhibited proteins with the total non-phosphorylated
corresponding mTORC1 and mTORC2 markers. Signals were detected using either a film-based
system by applying a Super Signal West Pico Chemiluminescent Substrate (Thermo Scientific) or a
luminescence-based system in a LI-COR Odyssey CLx Imager (LI-COR). Densitometry quantification
was done either with the supplied software from LI-COR or ImageJ software for the films. Experiments
were performed using three independent biological repetitions before statistical analysis.

4.9. Bio-Informatic Analysis

Transcriptome sequencing data and clinical data of glioma patients were obtained from the CGGA
(Chinese Glioma Genome Atlas) database (https://www.cgga.org.cn) and TCGA (The Cancer Genome
Atlas Program) database (https://tcgadata.nci.nih.gov). For stemness, we tested the ALDH1A3 in order
to complement the limited reports of this marker in the published literature. For EMT, we explored the
master transcription factor ZEB1. The statistical computations and figure drawing were performed
with R package ‘ggplot2’.

The data used from CGGA were approved by the Beijing Tiantan Hospital Institutional Review
Board and tumor specimen quality control.

4.10. Statistical Analysis

All graphs and analyses were calculated with Prism GraphPad 8 software (San Diego, CA, USA)
except for the bioinformatics analysis, which was performed with the R package above-mentioned.
The media control absorbance value average was rested from all wells. The average absorbance value of
every DMSO-vehicle-control cell containing wells was used as the control for normalization. IC50 values
were calculated using a logarithmic nonlinear regression formula in the aforementioned software.
The performed statistical tests depended on the related variables; for two variables, the unpaired
Student’s t-test, and for more than two related variables, one-way-ANOVA was applied. All plots
present the mean and standard deviation. The p-value < 0.05 was considered statistically significant in
all analysis. The significance of the difference between groups was described as * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

5. Conclusions

We validated the therapeutic potential of RL1 against GBM using advanced human stem cell
disease modeling technology and identified its synergistic effect potency when combined with TTFields
and TMZ, two of the main clinically approved treatment options for this disease. By showing fewer
toxic effects on non-cancer stem cells, we validated our platform technology to be of benefit for drug
development and for projects that assess the risk of substances applied in experimental or clinical

https://www.cgga.org.cn
https://tcgadata.nci.nih.gov
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contexts. Given the previous report on the effectiveness of RL1 in animal models of human GBM,
our results support clinical trials of RL1 in patients with GBM.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3859/
s1, Figure S1: TMZ cell growth and IC50; Figure S2: Western blots membranes. Table S1: Western blot
antibody concentrations.

Author Contributions: Conceptualization, U.D.K., and A.V.-T.; Methodology, A.V.-T.; Software, A.V.-T.;
Bio-informatic analysis, W.Z., G.L. (Guanzhang Li), and A.V.-T.; mTOR/4EBP1 support, G.L. (Gabriel Leprivier);
Validation, A.V.-T., A.-C.N., and U.D.K.; Formal analysis, A.V.-T.; Investigation, A.V.-T.; Resources, U.D.K., R.A.B.,
M.S., D.H., H.-J.S., and E.F.; Data curation, U.D.K.; Writing—original draft preparation, A.V.-T.; Writing—review
and editing, M.A.K., S.M., and all authors; Visualization, All authors; Supervision, U.D.K.; Project administration,
U.D.K.; Funding acquisition, U.D.K., D.H., and H.-J.S. All authors have read and agreed to the published version
of the manuscript.

Funding: Andres Vargas-Toscano is supported by the German Catholic Academic Exchange Service (KAAD).
The work of Ulf Dietrich is supported by the Federal Ministry of Education and Research (BMBF KZ 03VP03791),
the VolkswagenStiftung, the Hempel Family Foundation, the Brigitte-and Konstanze Wegener Foundation, and
the Sino-German Center for Science Promotion and EU COST CA17140. We acknowledge the funding support
from the European Association of Neurosurgical Sciences and Forschungskommission of the Medical Faculty of
the University of Düsseldorf to SM. The collection of some of the human fetal tissue was supported by an NIHR
grant to the Cambridge Biomedical Research Center and the WT-MRC funded Cambridge Stem Cell Institute.
The authors have no other relevant affiliations or financial involvement with any organization or entity with a
financial interest in or financial conflicts with the subject matter or materials discussed in the manuscript apart
from those disclosed.

Acknowledgments: The authors acknowledge Guido Reifenberger, Constanze Uhlmann, Michael Hewera, Renfei
Du (Heinrich-Heine University Düsseldorf), Xiaoling He (University of Cambridge), Huda Abdullah, and Moshe
Giladi (Novocure) for kindly providing technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Tonn, J.-C.; Reardon, D.A.; Rutka, J.T.; Westphal, M. (Eds.) Oncology of CNS Tumors; Springer: Cham,
Switzerland, 2019; ISBN 978-3-030-04151-9.

2. Stupp, R.; Hegi, M.E.; Mason, W.P. Effects of radiotherapy with concomitant and adjuvant temozolomide
versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of
the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 8. [CrossRef]

3. Tabatabai, G.; Stupp, R.; van den Bent, M.J.; Hegi, M.E.; Tonn, J.C.; Wick, W.; Weller, M. Molecular diagnostics
of gliomas: The clinical perspective. Acta Neuropathol. 2010, 120, 585–592. [CrossRef]

4. Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.;
Dirks, P.B. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401. [CrossRef]

5. Guardia, G.D.A.; Correa, B.R.; Araujo, P.R.; Qiao, M.; Burns, S.; Penalva, L.O.F.; Galante, P.A.F. Proneural and
mesenchymal glioma stem cells display major differences in splicing and lncRNA profiles. NPJ Genomic Med.
2020, 5, 2. [CrossRef]

6. Kahlert, U.D.; Nikkhah, G.; Maciaczyk, J. Epithelial-to-mesenchymal (-like) transition as a relevant molecular
event in malignant gliomas. Cancer Lett. 2013, 331, 131–138. [CrossRef]

7. Stupp, R.; Weller, M.; Belanger, K.; Bogdahn, U.; Ludwin, S.K.; Lacombe, D.; Mirimanoff, R.O.
Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005,
352, 987–996. [CrossRef]

8. Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.;
Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell
2013, 155, 462–477. [CrossRef]

9. Machado, L.E.; Alvarenga, A.W.; da Silva, F.F.; Roffé, M.; Begnami, M.D.; Torres, L.F.B.; da Cunha, I.W.;
Martins, V.R.; Hajj, G.N.M. Overexpression of mTOR and p(240–244)S6 in IDH1 Wild-Type Human
Glioblastomas Is Predictive of Low Survival. J. Histochem. Cytochem. 2018, 66, 403–414. [CrossRef]

http://www.mdpi.com/2072-6694/12/12/3859/s1
http://www.mdpi.com/2072-6694/12/12/3859/s1
http://dx.doi.org/10.1016/S1470-2045(09)70025-7
http://dx.doi.org/10.1007/s00401-010-0750-6
http://dx.doi.org/10.1038/nature03128
http://dx.doi.org/10.1038/s41525-019-0108-5
http://dx.doi.org/10.1016/j.canlet.2012.12.010
http://dx.doi.org/10.1056/NEJMoa043330
http://dx.doi.org/10.1016/j.cell.2013.09.034
http://dx.doi.org/10.1369/0022155417750838


Cancers 2020, 12, 3859 17 of 19

10. Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.;
Mesirov, J.P.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma
Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [CrossRef]
[PubMed]

11. Wang, Q.; Hu, B.; Hu, X.; Kim, H.; Squatrito, M.; Scarpace, L.; deCarvalho, A.C.; Lyu, S.; Li, P.; Li, Y.; et al.
Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in
the Microenvironment. Cancer Cell 2017, 32, 42–56.e6. [CrossRef] [PubMed]

12. Stupp, R.; Wong, E.T.; Kanner, A.A.; Steinberg, D.; Engelhard, H.; Heidecke, V.; Kirson, E.D.; Taillibert, S.;
Liebermann, F.; Dbalý, V.; et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent
glioblastoma: A randomised phase III trial of a novel treatment modality. Eur. J. Cancer 2012, 48, 2192–2202.
[CrossRef] [PubMed]

13. Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.M.; Lhermitte, B.; Toms, S.; Idbaih, A.;
Ahluwalia, M.S.; Fink, K.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs.
Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma: A Randomized Clinical Trial.
JAMA 2017, 318, 2306. [CrossRef] [PubMed]

14. Wang, Y.; Pandey, M.; Ballo, M.T. Integration of Tumor-Treating Fields into the Multidisciplinary Management
of Patients with Solid Malignancies. Oncologist 2019, 24. [CrossRef] [PubMed]

15. Wick, W.; Dettmer, S.; Berberich, A.; Kessler, T.; Karapanagiotou-Schenkel, I.; Wick, A.; Winkler, F.; Pfaff, E.;
Brors, B.; Debus, J.; et al. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus
radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro Oncol.
2019, 21, 95–105. [CrossRef] [PubMed]

16. Wick, W.; Gorlia, T.; Bady, P.; Platten, M.; Taphoorn, M.J.B.; Steuve, J.; Brandes, A.A.; Hamou, M.-F.;
Wick, A.; Kosch, M.; et al. Phase II Study of Radiotherapy and Temsirolimus versus Radiochemotherapy with
Temozolomide in Patients with Newly Diagnosed Glioblastoma without MGMT Promoter Hypermethylation.
Clin. Cancer Res. 2016, 22, 4797–4806. [CrossRef] [PubMed]

17. Lamouille, S.; Connolly, E.; Smyth, J.W.; Akhurst, R.J.; Derynck, R. TGF-induced activation of mTOR
complex 2 drives epithelial-mesenchymal transition and cell invasion. J. Cell Sci. 2012, 125, 1259–1273.
[CrossRef] [PubMed]

18. Katsuno, Y.; Meyer, D.S.; Zhang, Z.; Shokat, K.M.; Akhurst, R.J.; Miyazono, K.; Derynck, R. Chronic TGF-b
exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic
mTOR inhibition. Sci. Signal. 2019, 12, eaau8544. [CrossRef]

19. Karimi Roshan, M.; Soltani, A.; Soleimani, A.; Rezaie Kahkhaie, K.; Afshari, A.R.; Soukhtanloo, M. Role of
AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process.
Biochimie 2019, 165, 229–234. [CrossRef]

20. Galanis, E.; Buckner, J.C.; Maurer, M.J.; Kreisberg, J.I.; Ballman, K.; Boni, J.; Peralba, J.M.; Jenkins, R.B.;
Dakhil, S.R.; Morton, R.F.; et al. Phase II Trial of Temsirolimus (CCI-779) in Recurrent Glioblastoma
Multiforme: A North Central Cancer Treatment Group Study. J. Clin. Oncol. 2005, 23, 5294–5304. [CrossRef]

21. Mecca, C.; Giambanco, I.; Donato, R.; Arcuri, C. Targeting mTOR in Glioblastoma: Rationale and
Preclinical/Clinical Evidence. Dis. Markers 2018, 2018, 1–10. [CrossRef]

22. Fan, Q.; Aksoy, O.; Wong, R.A.; Ilkhanizadeh, S.; Novotny, C.J.; Gustafson, W.C.; Truong, A.Y.-Q.; Cayanan, G.;
Simonds, E.F.; Haas-Kogan, D.; et al. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in
Glioblastoma. Cancer Cell 2017, 31, 424–435. [CrossRef] [PubMed]

23. Podergajs, N.; Brekka, N.; Radlwimmer, B.; Herold-Mende, C.; Talasila, K.M.; Tiemann, K.; Rajcevic, U.;
Lah, T.T.; Bjerkvig, R.; Miletic, H. Expansive growth of two glioblastoma stem-like cell lines is mediated by
bFGF and not by EGF. Radiol. Oncol. 2013, 47, 330–337. [CrossRef]

24. Galli, R.; Binda, E.; Orfanelli, U.; Cipelletti, B.; Gritti, A.; De Vitis, S.; Fiocco, R.; Foroni, C.; Dimeco, F.;
Vescovi, A. Isolation and characterization of tumorigenic, stem-like neural precursors from human
glioblastoma. Cancer Res. 2004, 64, 7011–7021. [CrossRef] [PubMed]

25. Fedele, V.; Dai, F.; Masilamani, A.P.; Heiland, D.H.; Kling, E.; Gätjens-Sanchez, A.M.; Ferrarese, R.; Platania, L.;
Soroush, D.; Kim, H.; et al. Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression. Mol. Cancer
Res. MCR 2017, 15, 998–1011. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ccr.2009.12.020
http://www.ncbi.nlm.nih.gov/pubmed/20129251
http://dx.doi.org/10.1016/j.ccell.2017.06.003
http://www.ncbi.nlm.nih.gov/pubmed/28697342
http://dx.doi.org/10.1016/j.ejca.2012.04.011
http://www.ncbi.nlm.nih.gov/pubmed/22608262
http://dx.doi.org/10.1001/jama.2017.18718
http://www.ncbi.nlm.nih.gov/pubmed/29260225
http://dx.doi.org/10.1634/theoncologist.2017-0603
http://www.ncbi.nlm.nih.gov/pubmed/31444292
http://dx.doi.org/10.1093/neuonc/noy161
http://www.ncbi.nlm.nih.gov/pubmed/30277538
http://dx.doi.org/10.1158/1078-0432.CCR-15-3153
http://www.ncbi.nlm.nih.gov/pubmed/27143690
http://dx.doi.org/10.1242/jcs.095299
http://www.ncbi.nlm.nih.gov/pubmed/22399812
http://dx.doi.org/10.1126/scisignal.aau8544
http://dx.doi.org/10.1016/j.biochi.2019.08.003
http://dx.doi.org/10.1200/JCO.2005.23.622
http://dx.doi.org/10.1155/2018/9230479
http://dx.doi.org/10.1016/j.ccell.2017.01.014
http://www.ncbi.nlm.nih.gov/pubmed/28292440
http://dx.doi.org/10.2478/raon-2013-0063
http://dx.doi.org/10.1158/0008-5472.CAN-04-1364
http://www.ncbi.nlm.nih.gov/pubmed/15466194
http://dx.doi.org/10.1158/1541-7786.MCR-16-0494
http://www.ncbi.nlm.nih.gov/pubmed/28512252


Cancers 2020, 12, 3859 18 of 19

26. Binder, Z.A.; Wilson, K.M.; Salmasi, V.; Orr, B.A.; Eberhart, C.G.; Siu, I.-M.; Lim, M.; Weingart, J.D.;
Quinones-Hinojosa, A.; Bettegowda, C.; et al. Establishment and Biological Characterization of a Panel of
Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines. PLoS ONE 2016, 11, e0150271.
[CrossRef] [PubMed]

27. Wilson, K.M.; Mathews-Griner, L.A.; Williamson, T.; Guha, R.; Chen, L.; Shinn, P.; McKnight, C.; Michael, S.;
Klumpp-Thomas, C.; Binder, Z.A.; et al. Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug
Efficacy. SLAS Technol. Transl. Life Sci. Innov. 2019, 24, 28–40. [CrossRef] [PubMed]

28. National Comprehensive Cancer Network. Central Nervous System Cancers (Version 1.2016).
Available online: https://www.nccn.org/patients/guidelines/content/PDF/brain-gliomas-patient.pdf
(accessed on 16 October 2020).

29. Chou, T.-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method.
Cancer Res. 2010, 70, 440–446. [CrossRef]

30. Meng, D.; Frank, A.R.; Jewell, J.L. mTOR signaling in stem and progenitor cells. Development 2018,
145, dev152595. [CrossRef]

31. Duzgun, Z.; Eroglu, Z.; Biray Avci, C. Role of mTOR in glioblastoma. Gene 2016, 575, 187–190. [CrossRef]
32. Magaway, C.; Kim, E.; Jacinto, E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations.

Cells 2019, 8, 1584. [CrossRef]
33. Munster, P.; Mita, M.; Mahipal, A.; Nemunaitis, J.; Massard, C.; Mikkelsen, T.; Cruz, C.; Paz-Ares, L.;

Hidalgo, M.; Rathkopf, D.; et al. First-In-Human Phase I Study of a Dual mTOR Kinase and DNA-PK
Inhibitor (CC-115) in Advanced Malignancy. Cancer Manag. Res. 2019, 11, 10463–10476. [CrossRef] [PubMed]

34. Chiarini, F.; Evangelisti, C.; Lattanzi, G.; McCubrey, J.A.; Martelli, A.M. Advances in understanding the
mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. Biochim. Biophys. Acta BBA
Mol. Cell Res. 2019, 1866, 1322–1337. [CrossRef] [PubMed]

35. Fan, Q.W.; Nicolaides, T.P.; Weiss, W.A. Inhibiting 4EBP1 in Glioblastoma. Clin. Cancer Res. Off. J. Am. Assoc.
Cancer Res. 2018, 24, 14–21. [CrossRef] [PubMed]

36. Koch, K.; Hartmann, R.; Schröter, F.; Suwala, A.K.; Maciaczyk, D.; Krüger, A.C.; Willbold, D.; Kahlert, U.D.;
Maciaczyk, J. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in
glioblastoma cells. Oncotarget 2016, 7, 73414–73431. [CrossRef]

37. Kahlert, U.D.; Suwala, A.K.; Koch, K.; Natsumeda, M.; Orr, B.A.; Hayashi, M.; Maciaczyk, J.; Eberhart, C.G.
Pharmacologic Wnt Inhibition Reduces Proliferation, Survival, and Clonogenicity of Glioblastoma Cells.
J. Neuropathol. Exp. Neurol. 2015, 74, 889–900. [CrossRef]

38. Fedele, M.; Cerchia, L.; Pegoraro, S.; Sgarra, R.; Manfioletti, G. Proneural-Mesenchymal Transition: Phenotypic
Plasticity to Acquire Multitherapy Resistance in Glioblastoma. Int. J. Mol. Sci. 2019, 20, 2746. [CrossRef]

39. Fingar, D.C.; Richardson, C.J.; Tee, A.R.; Cheatham, L.; Tsou, C.; Blenis, J. mTOR controls cell cycle progression
through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol.
2004, 24, 200–216. [CrossRef]

40. Fingar, D.C.; Salama, S.; Tsou, C.; Harlow, E.; Blenis, J. Mammalian cell size is controlled by mTOR and its
downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16, 1472–1487. [CrossRef]

41. Kwasnicki, A.; Jeevan, D.; Braun, A.; Murali, R.; Jhanwar-Uniyal, M. Involvement of mTOR signaling
pathways in regulating growth and dissemination of metastatic brain tumors via EMT. Anticancer Res. 2015,
35, 689–696.

42. Hung, C.-M.; Garcia-Haro, L.; Sparks, C.A.; Guertin, D.A. mTOR-dependent cell survival mechanisms.
Cold Spring Harb. Perspect. Biol. 2012, 4. [CrossRef]

43. Park, A.K.; Kim, P.; Ballester, L.Y.; Esquenazi, Y.; Zhao, Z. Subtype-specific signaling pathways and genomic
aberrations associated with prognosis of glioblastoma. Neuro Oncol. 2019, 21, 59–70. [CrossRef] [PubMed]

44. Chen, W.; Kong, K.-K.; Xu, X.-K.; Chen, C.; Li, H.; Wang, F.-Y.; Peng, X.-F.; Zhang, Z.; Li, P.;
Li, J.-L.; et al. Downregulation of miR-205 is associated with glioblastoma cell migration, invasion,
and the epithelial-mesenchymal transition, by targeting ZEB1 via the Akt/mTOR signaling pathway. Int. J.
Oncol. 2018, 52, 485–495. [CrossRef] [PubMed]

45. Zhang, L.; Zhang, W.; Li, Y.; Alvarez, A.; Li, Z.; Wang, Y.; Song, L.; Lv, D.; Nakano, I.; Hu, B.; et al.
SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial-mesenchymal transition and
invasion in mice and humans. Oncogene 2016, 35, 5641–5652. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0150271
http://www.ncbi.nlm.nih.gov/pubmed/27028405
http://dx.doi.org/10.1177/2472630318803749
http://www.ncbi.nlm.nih.gov/pubmed/30289729
https://www.nccn.org/patients/guidelines/content/PDF/brain-gliomas-patient.pdf
http://dx.doi.org/10.1158/0008-5472.CAN-09-1947
http://dx.doi.org/10.1242/dev.152595
http://dx.doi.org/10.1016/j.gene.2015.08.060
http://dx.doi.org/10.3390/cells8121584
http://dx.doi.org/10.2147/CMAR.S208720
http://www.ncbi.nlm.nih.gov/pubmed/31853198
http://dx.doi.org/10.1016/j.bbamcr.2019.03.013
http://www.ncbi.nlm.nih.gov/pubmed/30928610
http://dx.doi.org/10.1158/1078-0432.CCR-17-0042
http://www.ncbi.nlm.nih.gov/pubmed/28696243
http://dx.doi.org/10.18632/oncotarget.12337
http://dx.doi.org/10.1097/NEN.0000000000000227
http://dx.doi.org/10.3390/ijms20112746
http://dx.doi.org/10.1128/MCB.24.1.200-216.2004
http://dx.doi.org/10.1101/gad.995802
http://dx.doi.org/10.1101/cshperspect.a008771
http://dx.doi.org/10.1093/neuonc/noy120
http://www.ncbi.nlm.nih.gov/pubmed/30053126
http://dx.doi.org/10.3892/ijo.2017.4217
http://www.ncbi.nlm.nih.gov/pubmed/29345288
http://dx.doi.org/10.1038/onc.2016.100
http://www.ncbi.nlm.nih.gov/pubmed/27041571


Cancers 2020, 12, 3859 19 of 19

46. Song, Y.; Chen, Y.; Li, Y.; Lyu, X.; Cui, J.; Cheng, Y.; Zhao, L.; Zhao, G. Metformin inhibits TGF-β1-induced
epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1
pathway. Oncotarget 2018, 9, 7023–7035. [CrossRef]

47. Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.L.; Rich, J.N. Cancer stem cells in glioblastoma.
Genes Dev. 2015, 29, 1203–1217. [CrossRef]

48. Rodrik-Outmezguine, V.S.; Okaniwa, M.; Yao, Z.; Novotny, C.J.; McWhirter, C.; Banaji, A.; Won, H.; Wong, W.;
Berger, M.; de Stanchina, E.; et al. Overcoming mTOR resistance mutations with a new-generation mTOR
inhibitor. Nature 2016, 534, 272–276. [CrossRef]

49. Fritsche, E.; Tigges, J.; Hartmann, J.; Kapr, J.; Serafini, M.M.; Viviani, B. Neural In Vitro Models for Studying
Substances Acting on the Central Nervous System. Handb. Exp. Pharmacol. 2020. [CrossRef]

50. Kahlert, U.D.; Suwala, A.K.; Raabe, E.H.; Siebzehnrubl, F.A.; Suarez, M.J.; Orr, B.A.; Bar, E.E.; Maciaczyk, J.;
Eberhart, C.G. ZEB1 Promotes Invasion in Human Fetal Neural Stem Cells and Hypoxic Glioma Neurospheres:
ZEB1 Regulates Motility in Hypoxic Gliomas. Brain Pathol. 2015, 25, 724–732. [CrossRef]

51. Kahlert, U.D.; Cheng, M.; Koch, K.; Marchionni, L.; Fan, X.; Raabe, E.H.; Maciaczyk, J.; Glunde, K.;
Eberhart, C.G. Alterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma
cells. Int. J. Cancer 2016, 138, 1246–1255. [CrossRef]

52. Suwala, A.K.; Koch, K.; Rios, D.H.; Aretz, P.; Uhlmann, C.; Ogorek, I.; Felsberg, J.; Reifenberger, G.;
Köhrer, K.; Deenen, R.; et al. Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde
dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro.
Oncotarget 2018, 9, 22703–22716. [CrossRef]

53. Vargas-Toscano, A.; Khan, D.; Nickel, A.-C.; Hewera, M.; Kamp, M.A.; Fischer, I.; Steiger, H.-J.; Zhang, W.;
Muhammad, S.; Hänggi, D.; et al. Robot technology identifies a Parkinsonian therapeutics repurpose to
target stem cells of glioblastoma. CNS Oncol. 2020, 9, CNS58. [CrossRef] [PubMed]

54. Niyazi, M.; Niyazi, I.; Belka, C. Counting colonies of clonogenic assays by using densitometric software.
Radiat. Oncol. 2007, 2, 4. [CrossRef] [PubMed]

55. Koch, K.; Hartmann, R.; Tsiampali, J.; Uhlmann, C.; Nickel, A.-C.; He, X.; Kamp, M.A.; Sabel, M.; Barker, R.A.;
Steiger, H.-J.; et al. A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma
stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discov.
2020, 6, 20. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.18632/oncotarget.23317
http://dx.doi.org/10.1101/gad.261982.115
http://dx.doi.org/10.1038/nature17963
http://dx.doi.org/10.1007/164_2020_367
http://dx.doi.org/10.1111/bpa.12240
http://dx.doi.org/10.1002/ijc.29873
http://dx.doi.org/10.18632/oncotarget.25210
http://dx.doi.org/10.2217/cns-2020-0004
http://www.ncbi.nlm.nih.gov/pubmed/32462934
http://dx.doi.org/10.1186/1748-717X-2-4
http://www.ncbi.nlm.nih.gov/pubmed/17212832
http://dx.doi.org/10.1038/s41420-020-0258-3
http://www.ncbi.nlm.nih.gov/pubmed/32337072
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Rapalink-1 Inhibits Cell Growth in Glioblastoma Stem Cells (GSCs) Compared to Non-Cancerous Cells 
	RL1 Inhibits mTOR Pathway Signaling Activity 
	RL1 Induces Cell Cycle Arrest, Apoptosis, and Proliferation Inhibition 
	RL1 Inhibits Stemness and EMT 
	Association between mTOR Biomarkers and EMT/Mesenchymal Markers Biosamples of GBM Patients of Western and Eastern Ethnicity 
	TTFields, RL1, and TMZ Synergistically Reduced Cell Growth 

	Discussion 
	Materials and Methods 
	Cell Culture, Fresh Patient Samples, and Pharmacologic Substances 
	Cell Growth (MTT Assay) 
	Tumor Treating Fields 
	Synergy Assays 
	Flow Cytometry–Muse© Assays 
	Migration–Boyden Chamber Assay 
	Clonogenicity–Colony Formation Assay 
	Protein Expression–Western Blot 
	Bio-Informatic Analysis 
	Statistical Analysis 

	Conclusions 
	References

