

Supplementary Material

Noninvasive rapid detection of metabolic adaptation in activated human T lymphocytes by hyperpolarized ¹³C magnetic resonance

Emine Can¹, Mor Mishkovsky¹, Hikari A. I. Yoshihara¹, Nicolas Kunz¹, Dominique-Laurent Couturier², Ulf Petrausch³, Marie-Agnès Doucey⁴, Arnaud Comment^{2,5,*}

- ¹ Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- ²Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, United Kingdom

³OnkoZentrum, CH-8038 Zürich, Switzerland

⁴Department of Oncology, University Hospital Lausanne (CHUV) and University of Lausanne (UNIL),

Lausanne, Switzerland

⁵General Electric Healthcare, Chalfont St Giles, Buckinghamshire HP8 4SP, United Kingdom

Corresponding Author

*E-mail: arnaud.comment@ge.com

ORCID

Arnaud Comment: 0000-0002-8484-3448

Figure S1. (A) Circuit schematic of one of the two symmetric channels (¹H and ¹³C) of the custom-designed MR probe. The circuit scheme is identical for both ¹H and ¹³C channels. The PIN diodes were placed in forward (D24) and reverse (D14) bias to isolate the two probe heads using a transistor-transistor logic (TTL) signal synchronized with the RF pulse via a digitally-controlled driver¹. The capacitor values used in practice for C12 and C14 are 0.5 pF and 7.5 pF for ¹H and 6.2 pF and 102.2 pF for ¹³C. The capacitor values for the other side of each channel are identical. L11 and L21 represents the inductors of the ¹H/¹³C probe heads. Inductors (L12 and L22, 150nH each) were placed between the PIN diodes and the ground to create a DC current pass through; (B) A schematic diagram showing the pulse sequence implemented for alternating acquisitions of MR signals from each side of the probe (channel 1 corresponds to side 1 and channel 2 to side 2). A total of n acquisitions on each side is preset.

Figure S2. Representative spectra showing the impurity signal (marked with a star) overlapping with the lactate peak with a chemical shift difference of 0.3 ppm. To subtract the impurity signal from the [1-¹³C]lactate signal, the peak fitting module from the OriginPro 2019 Peak Analyzer toolbox was used to fit both signals with a fixed chemical shift separation of 0.3 ppm for all experiments. Only the integral of the peak corresponding to the [1-¹³C]lactate signal (light blue hatched area) was used for calculating the lactate-to-pyruvate signal ratios.

Figure S3. Residual analysis of the random-intercept linear mixed models fits of mRNA expression of MCTs (A-C), LDHA (D), LDHB (E), and [2,3-¹³C₂]lactate-to-[2,3-¹³C₂]pyruvate ratio measured by LC-MS. The plots show the residuals (y-axis) versus the fitted values (x-axis). Point colors correspond to donor and symbols to states: dots for resting and triangles for activated. These model checks, showing symmetry of the residuals around 0 and homoscedasticity, suggest a good fit of the model to the data.

References

1. Pilloud, Y. & Gruetter, R. in ESMRMB 2012. 556-557 (MAGMA).